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We investigate the diffusion and conductance behavior of binary Archimedean lattices and binary
layer systems (with bonds of conductances GA and GB between the sites) close to the percolation
threshold (of the GA-lattice) by numerical simulations and by scaling theories. We are interested in
possible influence factors of geometry, defects and thickness on the conductivity and in particular on
the critical exponents of the phase transition between insulating and conducting phases. We aim for
information that will help to decide if experimentally observed transitions between good and poor
conductors are due to percolation effects, even if in real experiments, the pure theoretically expected
behavior is often not exactly reproduced. We find that the Archimedean lattices of all kinds show
the expected universal behavior in high precision. Layer systems show a crossover from 2D to 3D
behavior that becomes visible beyond a certain layer thickness. We discuss by which processes the
universal behavior might be disturbed.
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I. INTRODUCTION

The percolation model [1, 2] is well-known for its abil-
ity to describe a phase transition between an insulating
and a conducting phase and has among others been used
to describe insulator-conductor transitions in electrolytes
[3], two-component conductors [4–6], binary glasses and
gas sensors [7–9]. However, the universal critical expo-
nents of the percolation transition have so far numerically
only been tested on idealized square or cubic lattices [4–
6], while data on other geometries or on systems with de-
fects, finite-size effects, surface reconstructions and oth-
ers are surprisingly rare. To see if an experimentally
observed transition, such as the transition from an insu-
lator to a conductor, is really due to percolation effects,
it would, however, be of high interest to know in more
detail which kinds of changes as compared to the stan-
dard behavior may occur beyond perfect and square or
cubic lattices.

In practice, one normally compares the experimentally
observed properties to the ones of mathematical percola-
tion. As one recent example, the percolation transition
has been used in the context of gas sensing, when expos-
ing a surface of interconnected semi-conducting grains
to air with increasing gas concentration [7, 9–12]. Due
to chemical processes between the gas particles and the
grain surfaces, a certain number of grains drastically in-
crease their conductivity, which leads to a sudden and
dramatic increase of the conductivity of the whole sys-
tem. This has been interpreted in the framework of the
percolation model, even if the values of the observed ex-
ponents deviated from the well-known exponents of per-

∗Present address: Technische Universität Berlin, ER 3-2, Harden-
bergstr. 36a, 10623 Berlin, Germany

colation theory [11, 12].

In this paper, we therefore want to take a closer look
at the phenomena at the percolation transition. First, we
perform numerical tests of the conductivity exponent and
the related scaling behavior on many different idealized,
but non-square lattice geometries. Second, we investi-
gate systems of layers that are somehow between two and
three dimensions. As the universal exponents do depend
on the dimension, layers must experience some change
of the critical exponents when increasing the layer thick-
ness. We believe that this work will give valuable hints
for the interpretation of conductivity transitions in real
materials.

We concentrate on the bond percolation model, where
one starts with an empty lattice and chooses a bond occu-
pation probability p. A portion p of all nearest-neighbor
connections are randomly occupied by bonds GA, while
all other nearest-neighbor connections are occupied by
bonds GB (with probability q = 1 − p). Following the
notation of [4], we describe the conductivity of these sys-
tems as σ(p,GA, GB). In “standard percolation”, only
connecting and broken bonds exist, GA = 1, GB = 0.
More interesting are “binary mixtures” with two types
of conducting bonds, where h = GB/GA and 0 < h < 1.
This case is called a “Random Resistor Network” (RRN),
when GA = 1, GB � 1 and a “Random Superconducting
Network” (RSN) when GB = 1, GA � 1 [6]. To apply
this model to conductivity problems (“electrical percola-
tion”), GA and GB are considered as conductances be-
tween two nodes of an electrical network.

In standard percolation, the network is conducting
only when a continuous path of conductances GA con-
nects two opposite sides of the lattice, forming the so-
called “infinite cluster”. When the lattice size goes to
infinity, the transition between the insulating and the
conducting phase takes place at a well-defined (and well
explored) occupation probability p = pc that is therefore
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named the “critical probability”. The value of pc is non-
universal, i.e. it depends not only on the dimension d,
but also on the considered lattice geometry and the type
of percolation (e.g. site or bond percolation).

An RRN network, on the other hand, is weakly con-
ducting already at small values of p. Approaching pc from
below, the conductivity increases rapidly from the one of
a pure GB-network to the one of a GA-network. Scaling
theories describe the range around p = pc, h = 0, when
both values are varied. Clearly, both types of changes (p
as well as h) may be relevant in experimental situations.

The paper is organized as follows: In section 2, we sum-
marize the important concepts about random walks on
percolation systems that we use in the following, while in
section 3, we describe our numerical methods. In sections
4, we present our numerical results and the correspond-
ing scaling theories on perfect Archimedean lattices. In
section 5, we investigate layers that are between d = 2
and d = 3 to enforce a change of the values of the criti-
cal exponents. A summary and conclusions are given in
section 6.

II. SCALING RELATIONS OF ELECTRICAL
PERCOLATION

The electrical conductivity σ = nqµe (with the den-
sity n of charge carriers of charge q and mobility µe) can
be determined via the Einstein relation µe = qD/(kBT )
with the temperature T , the Boltzmann constant kB and
the diffusion coefficient D, where D is accessible via ran-
dom walk simulations [1]. Therefore, to determine σ, we
perform random walks on the given lattices and calculate
the mean squared displacement 〈r2(t)〉 where r(t) is the
distance that the walker has traveled after t units of time
(number of time steps). For h = 0 (standard percolation
in the RRN case) and for p slightly above criticality, the
system is self-similar for length-scales below the corre-
lation length ξ that decreases with increasing values of
p. The self-similarity of the lattice considerably slows
down the diffusion process and leads to “anomalous dif-
fusion”, where 〈r2(t)〉 is not proportional to t. When
the walker reaches a distance beyond ξ from its start-
ing point, r(t) > ξ, “normal diffusion” occurs, where
the self-similar structure of the system does no longer
dominates the diffusion behavior. When t is sufficiently
large, 〈r2(t)〉 always becomes linear in time for p 6= pc or
for GB > 0. For the simulations, we translate the con-
ductivities GA or GB of the resistive network into jump
frequencies along the respective bonds (see also section
III) and determine D ≡ limt→∞〈r2(t)〉/t (where for sim-
plicity, the usual prefactor 1/(2d) with the dimension d
has been set to unity).

Figure 1 shows one class of lattices that we con-
sider in this work, the so-called “Archimedean lattices”.
Archimedean lattices are ordered lattices, where all bond
lengths are equal and all vertices are surrounded by the
same polygons (e.g. by four squares in a square lattice or
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FIG. 1: [Color online] Ten out of eleven Archimedean lattices
(without the Square lattice (2)) at their respective percola-
tion thresholds where black lines stand for GA bonds and gray
lines for GB bonds. The symbols in bracket are the ones used
in the figures for the respective geometry (see also Tab. I).
(a) 3-12 (3), (b) Cross (+), (c) Square octagon (3), (d)
Kagome (K), (e) Rhombitrihexagonal (R), (f) Snub hexagon
(also called “Maple Leaf” - M), (g) Snub square (also called
“Puzzle” - P), (h) Frieze (F) (i) Honeycomb (H) (cyan dots)
and triangular (4) lattice (red dots), showing that they are
dual to each other.

by one square and two octagons in the case of the square
octagon lattice). There exist eleven Archimedean lat-
tices, which are also called uniform tilings [13]. The val-
ues of pc for site and bond percolation can be found in [13]
and [14], respectively (and in the references therein), but
to the best of our knowledge, no simulations of 〈r2(t)〉/t
on these lattices have yet been performed.

In the following, we shortly describe several helpful
relations that apply in the scaling regimes, i.e. for small
values of |p − pc| and for h � 1 in the RRN case and
for h � 1 in the RSN case. We hereby assume that the
charge density n does not depend on h, so that we can
treatD and σ in similar ways. For h = 0 and p > pc, close
to pc (RRN case), the behavior of σ, D and n depends on
(p−pc) by similar power-laws [1], i.e. σ ∝ (p−pc)µ, D ∝
(p − pc)µ

′
and n ∝ (p − pc)β with well-known universal

exponents µ and β and µ′ = µ − β. For h → ∞ (RSN
case) and close to criticality, one observes a very similar
power-law behavior σ ∝ (pc − p)−s for p < pc, close to
pc with the critical exponent s. For p = pc, on the other
hand, we have

σ ∝ D ∝ hu, (1)
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where the conductivity exponent u is known as u =
µ/(µ+ s) [4, 6].

When both variables, p and h are varied, we can
switch from the RRN to the RSN lattice (and vice versa)
through the changes GA → 1/GB and GB → 1/GA
– or equivalently by interchanging p and q and chang-
ing GA → 1/GA and GB → 1/GB . When varying
the values of the conductances, it is convenient to write
σ(p,GA, GB) as:

σ(p,GA, GB) = GA f(p, h), (2)

where f(p, h) is a function for which a well-known scaling
behavior applies [4, 6] when p is close to pc. This connects
the conductivity of the RRN and the RSN case:

f(p, h) = h f(1− p, h−1). (3)

Further insight into the scaling behavior of σ and D
can be gained by defining the so-called “dual lattice” L̃
to a given lattice L as e.g. for the case of the honey-
comb and the triangular lattices, which are dual to each
other. For our purposes, we follow the definitions of [4, 5]
for planar lattices without crossing bonds, while more
general aspects of dual graphs are found in [15]. Every
Archimedean lattice possesses a dual lattice, also called
Laves lattice. The geometrical construction of L̃ from L
is demonstrated in Fig. 1(i): Considering e.g. the trian-
gular lattice as L, the black lines represent bonds and
always three bonds surround one “face” of L. When we
cross all bonds between adjacent faces, we arrive at the
gray lines that form the bonds of L̃ (“dual bonds”). The
crossing points of the dual bonds represent the sites of
L̃ (“dual sites”). As we can see in Fig. 1(i), a site of L̃
corresponds to each face of L, while to each bond G cor-
responds a dual bond G̃. Bonds and dual bonds G and G̃
cross each other, while the dual sites lie inside the faces
of L and vice versa. A special case is the square lattice
that is self-dual, i.e. its own dual lattice.

With the help of Kirchhoff’s laws on L and L̃, it was
shown in [5] that σ(p,GA, GB) = GAGB/σ̃(q,GA, GB).
Moreover, by combining this finding with Eqs. (2)
and (3), one arrives at the “reciprocity formula” [4]
σ(p,GA, GB) σ̃(p,G−1A , G−1B ) = 1. We keep in mind that
the derivation was restricted to planar two-dimensional
lattices with non-crossing bonds.

To avoid confusion, we must distinguish between the
conductivity σ̃(p,GA, GB) of the geometrically dual lat-

tice L̃, and the more important quantity σ̃(p,G−1A , G−1B )

of the “electrical dual lattice”, where each conductance G̃
of L̃ has been chosen as the reciprocal conductance 1/G
of the respective bond of L [4]. The definitions given
above do not imply a special angle between bond and
dual bond, but in this work, we will always choose them
perpendicular to each other. Note that the definition of
the electrical dual does not depend on this special choice
(provided that the resistance of a bond does not depend
on shape and length).

In this work, we consider D instead of σ. In this case,
the critical exponents µ and s must be replaced by µ′

and s′, respectively (while u stays the same). Under the
assumption that the densities of charge carriers of L and
L̃ are proportional to each other, the same relations as
for σ should also apply for the diffusion coefficients D
and D̃ of L and L̃, respectively, i.e.

D(p,GA, GB) = GAGB/D̃(q,GA, GB), (4)

and

D(p,GA, GB)D̃(p,G−1A , G−1B ) = 1, (5)

where D̃ is the diffusion coefficient of the respective recip-
rocal lattice. A numerical test of Eq. (4) for some selected
pairs of Archimedean lattices and their dual lattices in
the case GA = 1 is shown in Fig. 2 (see below). Eq. (4)
offers several valuable insights that can be found in some
detail in [4] (and references therein). As an example, one
finds pc = 1/2 for the square lattice from equations (3)

and (5) together with L = L̃ (self-duality of the square
lattice), as well as characteristic relationships between

the values of pc of any couple L and L̃ [5]. As the RRN
lattice transforms to the RSN lattice by replacing GA by
G−1A , GB by G−1B and p with q, one can also argue that
µ = s for the square lattice and therefore u = 1/2 [4].
As the critical exponents µ, s (and therefore also u) are
assumed universal, u = 1/2 should apply for all lattices
in d = 2. We verify this universality hypothesis for the
class of Archimedean lattices in this work by numerical
simulations. In d = 3, numerical simulations on (small)
cubic lattices have shown that u = 0.72±0.02 [5]. It is an
interesting question with applications to real materials if
u is still universal for lattices that are non-planar and
eventually do not have a dual lattice L̃. We will consider
some of these cases in the last section.

III. NUMERICAL SIMULATIONS

It is by several reasons preferable to store only those
lattice sites and bonds where the walker actually steps
to, i.e. to create the lattice during the walk process.
This avoids the storage of huge and unnecessary lattice
information and enables a walk on a truly infinite system
without any danger that the walker touches a predeter-
mined boundary, thereby enforcing an upper limit to the
number of time steps. Therefore we decided to use a bal-
anced binary search tree structure, called red-black tree
[16] to create the lattice.

The (binary) lattice itself is given by its sites (labeled
by i) with nearest-neighbor sites j, the distances aij and

the microscopic resistances Rij = G−1ij between the near-
est neighbors, where in our case, all Rij > 0. The aij
are identical in an Archimedean lattice, but may have
different values in the dual lattices. Here, we follow the
lines of [4] and consider the values of the Gij as length-
independent, i.e. we attribute constant values GA or GB
to the bonds, independently of their lengths. This as-
sumption refers e.g. to electrical networks, where the
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FIG. 2: [Color online] Test of Eq. (4): The diffusion coeffi-
cients D(p,GA, GB) with h = GB/GA = 10−3 and GA = 1 of
different Archimedean lattices L are plotted versus p (black

symbols), while GAGB/D̃(q,GA, GB) of the corresponding

dual lattices L̃ are plotted versus q = 1 − p (red symbols).

The L/L̃ pairs are: (a) Honeycomb/Triangle, (b) Kagome/
Dual of Kagome (“Dice”), (c) Square octagon/Dual of Square

octagon, (d) Cross/ Dual of Cross. (L̃ of (b)-(d) are no
Archimedean lattices.) The results have been simulated over
108 time steps and are averaged over 103 runs.

resistances are considered as fixed devices on wires of
zero resistance. (A different point of view, with e.g.
Gij ∝ a−1ij would also be possible).

To perform the random walks of the type “blind ant”
[2], we translated the values of Gij and aij into jump
probabilities pij . For non-blind walks, we also need
the mean jump times. While a blind ant chooses one
of the possible directions with equal probabilities and
may simply wait if the chosen bond is of low conduc-
tivity, the non-blind walker jumps in any case, but the
jump-times are chosen such that waiting times are im-
plicitly included. We imagine that the walker is at site i
with k existing conducting bonds of (normally different)
lengths aij to neighboring places j with j ∈ {1, . . . , k}.
The jump probabilities are the normalized conductances,

pij = Gij/
∑k
j=1Gij . If all bonds have the same lengths,

this is sufficient to perform blind walks, otherwise we can
at least cut the bonds aij into smaller “virtual” bonds of
roughly the same lengths, where, however, the latter pos-
sibility is quite time-consuming and therefore only suited
for tests.

To perform (faster) non-blind walks, we can use the
virtual bonds as a picture to find the appropriate jump
times. In a non-blind walk, the walker chooses one of
the directions according to pij , and performs a jump to
site j. Without other neighbor sites, the average time for
this jump, according to Fick’s law would be (apart from
constant factors that we set to unity) 〈tij〉 = a2ij/Gij
and represents the time the walker would need to reach
the neighbor site j by a random walk over all virtual
bonds between sites i and j – including all intermediate

returns to i. However, if we have more than one nearest
neighbor, we must also take into account that the walker,
before having reached j, might step back to i and head for
another neighbor site afterwards. This way, the times for
jumps from site i to all nearest neighbors are no longer
separated from each other but coupled by these failed
attempts, so that 〈tij〉 must be replaced by the average

time over all attempts to leave i, 〈ti〉 =
∑k
j=1 pij〈tij〉 =∑k

j=1 aij/
∑k
j=1Gij , with pij and 〈tij〉 from above. This

way, we can attribute a mean jump time 〈ti〉 to each
lattice site. The virtual bonds can now be dropped by
performing a non-blind walk from site to site by using
only pij and 〈ti〉.

For test purposes, we realized both, “blind” walks over
many virtual bonds of roughly equal sub-segments and
“non-blind walks”. We verified that in all test walks,
both procedures lead to the same results for 〈r2(t)〉. The
numerical results of this work on systems with bonds of
unequal lengths are gained on non-blind walks with the
appropriate values of pij and 〈ti〉 as described above.

IV. ARCHIMEDEAN LATTICES

We test the relations of paragraph II on the
Archimedean lattices and their duals. Some of the duals
have bonds of equal lengths, while most have different
bond lengths. We consider both cases separately in the
following. We start with Eq. (4). (i) Apart from the
square lattice (for which relation (4) is trivial because
of the self-duality), there are four Archimedean lattices,
where also the dual lattices possess only one bond length.
We tested them all and found that all fulfill Eq. (4) per-
fectly. As an example, the results for the lattices of
Fig. (1)(d) and (i) are shown in Fig. 2(a,b), where we

plot D versus p (black symbols) and h/D̃ versus q = 1−p
(red symbols) for h = 10−3 and GA = 1. It can be seen
that the symbols of both curves lie perfectly upon each
other. (ii) In the case of non-equal bond-lengths of the
dual lattices, the test of relation (4) is also a sensible
test for the chosen values of the pij and 〈ti〉 (see preced-
ing section). As an example, in Figs. 2(c,d), we show
the results of the systems of Fig. 1(b) and (c) together
with their dual counterparts. Also here, the agreement
between both curves is very good.

Next, in Fig. 3, we test the value of the exponent u
by plotting D versus h for all Archimedean lattices at
their individual values of pc (taken from Refs. [13, 14]) in
a double-logarithmic plot. Indeed, as one would expect
from Eq. (1), all curves form straight lines of slope u, that
is very close to the expected value of u = 1/2. Finally,
we test the scaling relation of the binary RRN model [6]

D(p, h)/hu = ΦL

(
(p− pc)/hu/µ

′
)
. (6)

Here, ΦL(x) is a scaling function that depends on the

scaling variable x = (p − pc)/hu/µ
′
, while the lattice ge-

ometry L enters as a parameter. Therefore, a test of the
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FIG. 3: [Color online] (a) The diffusion coefficient D is plotted
at the respective values of pc versus h for the Archimedean
lattices of Fig. 1 (for the symbols see table I). The straight
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scaling behavior offers a sensible test, not only for the
universality of the exponent u, but also for µ′ (and the
scaling ansatz itself). In the literature, we found numer-
ical verifications of this relation for the square lattice [6],
but to the best of our knowledge, this scaling relation has
not yet been tested for the different geometries of Fig. 1.

In Fig. 4, we plot ΦL = D/hu versus x = (p−pc)/hu/µ
′

for all Archimedean lattices of Fig. 1 and for many (pos-
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FIG. 5: [Color online] Some of the scaling functions of Fig. 4
are shown in a magnified scale in a double-logarithmic plot.

(a) zoom of ΦL versus (p − pc)/hu/µ
′

in the region p > pc
where the asymptotic exponent is µ′ ≈ 1.16. (b): zoom of

ΦL versus (pc − p)/hu/µ
′

in the region p < pc where the
asymptotic exponent is −s′ ≈ −1.16. Note that p decreases
from left to right in this subfigure. (a) and (b): Colors and
symbols are the same as in Fig. 4. For clarity reasons, the
curves are shifted into the positive y-direction by multiples
of 4. The straight lines are guide for the eyes with slopes of
±1.16.

itive and negative) values of p− pc and many values of h
with 0 < h � 1 (in a half-logarithmic plot). For clarity
reasons, the curves for the different lattices are shifted to
the right (otherwise they overlap, even if not being iden-
tical). For each lattice L, the data points (same symbol
but different colors) collapse perfectly to the correspond-
ing scaling function ΦL(x).

At the left and the right ends of ΦL(x) one can observe
a power-law behavior that we demonstrate in Figs. 5(a,b)
in double-logarithmic plots. Figure 5(a) shows the “right
ends” of the scaling functions, i.e. the regimes of x > 0,
while Figure 5(b) shows the “left ends” (x < 0). Due to

the logarithmic scale the argument is x = |p− pc|/hu/µ
′
.

Note, that in the following discussion, where we compare
the values of h and |p − pc|, the scaling ansatz implies
that they both have rather small values. For large values
of |p− pc|, we are too far from the percolation threshold,
whereas for large values of h, GB is approaching GA, so
that the percolation threshold becomes invisible. In both
cases, only normal diffusion behavior is possible.

(i) The regime x� 1 (right ends in Fig. 4) is reached
for p > pc and for especially small values of h. In this
case, the scaling behavior (6) leads to the power-law

ΦL(x) = A+
Lx

µ′
with constant A+

L (see Fig. 5(a)). A
similar diffusion behavior is also observed for standard
percolation, i.e. for a system where h = 0. This can be
interpreted such that the GB-bonds are nearly not used
by the random walker (because of the extremely small
jump probabilities), so that its behavior is basically de-
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TABLE I: The proportionality constants A+
L , A−L and ΦL(0)

of the limiting cases of ΦL(x) (see text) for each of the 11
Archimedean lattices as well as for the systems with crossing
bonds (see next section) are shown together with the corre-
sponding symbols used in all figures.

Lattice A+
L A−L ΦL(0) Symb.

3-12 4.5± 0.24 0.62± 0.03 1.49± 0.06 3

Cross 3.83± 0.18 0.57± 0.03 1.36± 0.04 +

Squ. octagon 3.65± 0.16 0.57± 0.03 1.31± 0.04 3
Honeycomb 3.47± 0.14 0.55± 0.03 1.27± 0.03 H

Kagome 2.54± 0.14 0.46± 0.02 1.08± 0.03 K

Rhombitrihex. 2.35± 0.12 0.43± 0.02 0.98± 0.03 R

Square 2.37± 0.1 0.43± 0.02 1.0± 0.02 2
Snub hex. 2.02± 0.14 0.35± 0.02 0.89± 0.03 M

Snub squ. 2.03± 0.1 0.35± 0.02 0.87± 0.02 P

Frieze 1.98± 0.1 0.34± 0.02 0.87± 0.02 F

Triangular 1.84± 0.1 0.29± 0.02 0.78± 0.02 4
Crossings A 1.82± 0.06 0.32± 0.02 0.75± 0.03 A

Crossings B 2.11± 0.09 0.38± 0.03 0.83± 0.04 B

Two layers 1.43± 0.05 0.24± 0.02 0.58± 0.03 2

termined by the changes of p.
(ii) The regime x � −1 (left ends in Fig. 4) is a

very interesting case, as it does not exist in standard
percolation. (For p < pc and h = 0, the walker is
trapped in finite clusters.) Here, Eqs. (3) and (6) lead

to ΦL(x) = A−L |x|−s
′

with constant A−L (see Fig. 5(b)).
Indeed, and according to the expected universal behavior
of u = 1/2, we find that the exponent s′ is equal to µ′.

(iii) The regime |x| � 1 is reached for p ≈ pc, i.e.
for especially small distances of the system from the per-
colation threshold. In this case ΦL(x) tends towards a
constant ΦL(0), which is consistent with D = ΦL(0) · hu
(see Fig. 3). This means that the scaling behavior is ba-
sically determined by the changes of h and is similar to
the case of Fig. 3.

We find the values of µ′ and −s′ in the slopes of the
two regimes shown in Fig. 5(a) and (b), respectively. In
very good accuracy, we find µ′ = s′ ≈ 1.16 and thus
u = 1/2. The constants A+

L , A−L and ΦL(0) were deter-

mined numerically: A+
L and A−L through a least-square

fit for the points of Fig. 4 with |x| > 2 by assuming that
µ′ = s′ = 1.16; ΦL(0) through a least-square fit for the
points of Fig. 3 by assuming u = 1/2. They are shown in
Tab. I. In summary, Figs. 2-5 together give a very good
numerical proof of the universality of µ′, s′ and u for the
considered lattices that comprise Archimedean lattices
and their duals.

V. LAYERS OF FINITE THICKNESS

In real materials, the surfaces usually do not form
perfect planar two-dimensional lattices, but are recon-

(a) (b) (c)

FIG. 6: Systems that we consider in this work. Lattice points
are indicated by red dots and bonds are symbolized by black
lines that are isolated against each other, so that crossing lines
have no electrical or diffusional contact to each other. (a),
(b): Variations of the square lattice geometry with “crossing
bonds”. (c): Two-layer cubic geometry. This geometry can
be reduced to a 2D geometry with crossing bonds as explained
in the text. We determined the bond percolation thresholds
by estimating the proportion of systems having an infinite
cluster. By analyzing square systems of side length 2 ·104, we

found p
(A)
c = 0.481 ± 0.0005 and p

(B)
c = 0.470 ± 0.0005. For

pc of the layer system, see Fig. 8.

structed, possibly with crossing bonds. Additionally, in
many situations, as e.g. in the gas-exposed surfaces de-
scribed in the introduction, probably more than one layer
of atoms is involved. Layers of finite thickness lie between
two- and three-dimensional systems and are therefore not
in the same universality class as the systems of Fig. 1.

Layer systems and systems with crossing bonds are re-
lated to each other, as we can see in Fig. 6, where we show
three systems of this class. Whereas Figs. 6(a,b) (denoted
in the following as “crossings A” and “crossings B” – see
also Tab. I) are not far from an ordinary two-dimensional
system, the system of Fig. 6(c) shows an originally cubic
grid consisting of two layers, that we squeezed, so that
all bonds are now lying flat inside the xy-plane. The for-
mer vertical bonds (into the z-direction) now include an
(arbitrary) angle ϕ to the x-axis (and an angle ϑ = π/2
to the z-axis). As a result, a non-planar two-dimensional
system is formed with a lot of crossing bonds that we
consider as isolated against each other. This example
illustrates that systems with crossing bonds are no real
two-dimensional systems, but can often be mapped to a
layer of two (or more) planes. Therefore, we think that
systems with crossing bonds either belong to a different
universality class than pure 2D systems, or gradually de-
velop into the class of three-dimensional systems depend-
ing on the number of their crossing bonds. This guess is
enhanced by the fact that systems with crossing bonds as
well as layer systems usually don’t possess dual lattices,
so that the argument of [5] for the reciprocity formula
does not apply to these cases.

We are interested in the diffusion properties of layer
systems and systems with crossing bonds. To this end,
we performed random walks on the three different sys-
tems of Fig. 6 and analyzed them in the same way as the
Archimedean lattices. As a test, we tentatively assumed
the standard values of the 2D exponents u, µ′ and s′. In
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FIG. 7: [Color online] (a) Φ = D/hu is plotted versus x =

(p − pc)/h
u/µ′

for the lattices of Fig. 6, for many different
values of p and h (same colors as in Fig. 4, for symbols see
Tab. I). For clarity reasons, the curves are shifted into the
(positive) x-direction by intervals of 50. (b,c): zoom of (a)
to the regimes x > 0 and x < 0, respectively, in a double-
logarithmic scale (where Φ has been plotted versus |x|). The
straight lines are guides to the eye with the slope of ±1.16.
For clarity reasons, the curves are shifted into the y-direction
by factors of 2. (d): D at criticality is plotted versus h for
the lattices of Fig. 6. The line of slope 1/2 is a guide to the
eye. The curves with symbols B and 2 are shifted into the
negative y-direction by a factor of 2 and 4, respectively. The
data have been averaged over 1000 random walks after 108

time steps.

Fig. 7(a), we show the resulting scaling function Φ(x),
whereas Figs. 7(b,c) show the left and the right end of
this scaling function in a double-logarithmic plot. Fig-
ure 7(d) shows D versus h at criticality in order to find
the value of u of these systems. In spite of having used the
2D exponents for these non-planar systems, the results
are again surprisingly good and namely the scaling curve
still shows a perfect data collapse. Apparently, the cross-
ing bonds don’t have a visible effect on the 2D-diffusion
behavior yet, which is quite surprising.

In order to find the transition between 2D and 3D,
we now increase the number of crossing bonds by in-
vestigating layer systems of increasing thicknesses and
see in which way the exponents change from 2D to
3D. Squeezing the layer into the xy-plane is unimpor-
tant, as the mean squared displacement 〈r2sqz(t)〉 of a
squeezed layer ~rsqz = (x+ z cosϕ, y+ z sinϕ, 0) with the
squeezing angle ϕ as described above is the same as the
mean squared displacement 〈r23D(t)〉 of a layer with finite
thickness without squeezing, where ~r3D = (x, y, z), i.e.
〈r2sqz(t)〉 = 〈x2〉+ 〈y2〉+ 〈z2〉+2〈xz〉 cosϕ+2〈yz〉 sinϕ =

〈x2 + y2 + z2〉 = 〈r23D(t)〉.
The numerical results are shown in Fig. 8 for several

layer thicknesses m between 2 and 20 at the percolation
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FIG. 8: [Color online] D at pc is plotted versus h for sys-
tems of varying thickness, i.e. for m = 2 (black circles), 4
(red squares), 10 (green triangles up) and 20 (blue triangles
down) layers, respectively. The dashed lines of slope 0.5 and
the full line of slope 0.72 (theoretical values of u in d = 2
and d = 3, respectively) are guides to the eye. Inset: Cor-
relation lengths ξ of systems with numbers m of layers (as
indicated) plotted versus the occupation probability p. The
critical concentration pc is taken from the maximum in ξ,
i.e. pc = 0.375 ± 0.001 for m = 2, 0.310 ± 0.001 for m = 4,
0.271± 0.001 for m = 10 and 0.259± 0.001 for m = 20.

threshold. The figure shows D ≡ 〈r23D〉/t versus h at pc
in a double-logarithmic plot for h ≤ 10−1, i.e. for small
h (as the scaling theory breaks down for large h). We
took pc from the maximum in the correlation lengths ξ
as shown in the inset. The theoretical curves of D ∝ hu

with u = 0.5 (2D behavior) and u = 0.72 (3D behavior)
are shown as dashed and solid lines, respectively. We can
see that the curve for m = 2 is indeed best described by
the exponent u = 0.5 in the entire range. This explains
the good scaling behavior of Fig. 7 (see above), where the
same range of h ≤ 10−1 has been investigated. When
increasing the layer thickness m, a 3D behavior (u =
0.72) starts to show up at the upper edge, i.e. for larger
values of h. For increasing values of m, the range of
3D behavior gradually expands towards smaller values
of h. In the system with m = 20, the last one that
we examined, we found 3D behavior for 10−1 ≥ h ≥
10−3 (and 2D behavior below). Clearly, with an infinite
number of layers, a full 3D-behavior must be reached.

Finally, we want to give a qualitative explanation, why
we find the 3D behavior at higher and the 2D behavior
at lower values of h. Imagine first a system at pc with
h = 0. In this case, the walker can only follow the paths
along the infinite cluster (arranged like a maze), which in-
cludes a lot of deviations and dead ends. We now have to
distinguish between the “Euclidean distance” r between
two sites A and B of the infinite cluster and the “chem-
ical distance” ` [1, 2], which measures the length of the
path that a walker really has to take by stepping from A
to B along GA-bonds. Two nearest neighbor sites always
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have an Euclidean distance of r = 1, but may have a very
large chemical distance `, when the bond between them is
not occupied by a GA-bond. When the number of layers
increases, additional GA-paths become available between
sites A and B that are separated from each other by small
distances of r and large distances of `. (This is also the
reason why pc decreases with the number of layers.)

However, chemical paths may be very long (especially
in d = 3, when they range over many layers) and the dif-
fusion properties are therefore still quite poor at h = 0.
We think that the effect of the GB-bonds that leads to
Eq. (1) is to build bridges (shortcuts) between long paths
of GA-bonds, so that “mixed paths” of GA and GB-bonds
arise [17]. It seems reasonable to assume that the more
layers a system has (that is, the closer it is to a 3D-
system), the longer the chemical distances can be at pc.
The first reason is the higher number of layers that may
extend the paths by simple geometry. Second, the value
of pc decreases with the number of layers, thereby reduc-
ing the concentration of sites and thus the crossings be-
tween paths, which should also result in longer chemical
paths. This is why we think that u, which governs the re-
lation D ∝ hu at p = pc, is bigger in 3D-systems than in
2D-systems because of the higher possibility of shortcuts
between long GA-paths in d = 3. However, the result-
ing mixed paths are only important if the probability of
being used (that is determined by the jump-probability
over a GB-bond) is big enough as compared to the possi-
bility that the walker steps over the `-path of GA-bonds
instead. This means that at small values of GB (and thus
h), only shortcuts between very long distances ` would
play a role – which are not present in finite layers. For
larger values of h, on the other hand, already shortcuts
over smaller chemical distances (that appear in systems
with few layers) change the diffusion behavior and make
the layer system look as a 3D-system. This assumption
is supported by Fig. 8, where we can indeed see that the
3D-value of u can first be seen for higher values of h and
extends to smaller values of h when the number of lay-
ers (and thus the lengths of the `-paths) increases. The
described effect is a finite-size effect and it is interesting
to emphasize, that the change from 2D to 3D behavior
arises gradually and not at a well-defined crossover value
of h.

VI. SUMMARY AND CONCLUSION

When interpreting experimental phase transitions, as
e.g. the transition between the insulating and the con-
ducting phase, it is important to know how to identify
the nature of the transition between the different phases
even under non-optimal conditions, when e.g. the lat-
tice is disturbed by defects, surface-reconstructions, or
layer thicknesses that are neither clear 2D nor clear 3D

systems. In this paper, we first investigated numerically
the transition between the insulating and the conducting
phase of binary mixtures of Archimedean lattices with
two types of conductances GA and GB . We found that
the theoretical scaling relations and the universal crit-
ical exponents are met with very high precision in all
the Archimedean lattice structures. Moreover, these laws
persist also in square lattices with surface reconstructions
in the form of crossing bonds and for a layer of thickness
two, where some preconditions of the scaling theory are
no longer valid and where the system is no longer a real
2D system.

In cases of binary layer systems of cubic lattice struc-
ture, we investigated the conductance exponent and
found that, at the critical concentration, binary layer
systems of cubic lattice structure of higher thicknesses
(m > 3) show a crossover with u = 0.72 at higher and
u = 0.5 at smaller values of h, that correspond to the
value of u in d = 3 and d = 2, respectively. Experi-
mentally, this means that both values may be found, de-
pending on the different conductances between the lattice
sites. We gave a qualitative explanation for the behavior
of this crossover.

However, when experimental deviations of the theoreti-
cal exponents are reported in binary systems, one should
also keep in mind that two parameters are subject to
changes: the relation h between the two different inter-
atomic conductances and the concentration p of bonds
with the higher conductance. In experimental situations,
it may not always be clear if a given external influence (as
e.g. the exposure of the system to a certain gas) changes
h or p or possibly both. In these situations, the scaling
law (6) should be carefully considered.

Additionally, one should keep some idealizations in
mind that are normally made in theoretical considera-
tions and simulations (also in this work). For example,
we assumed that the concentration of charge carriers n
is independent of the number of conducting bonds and
that the lattice type is not changed during the transition.
As the transition might e.g. be driven by chemical reac-
tions and chemical transformations of the lattice atoms,
this might not always be the case. We think that our in-
vestigations, even if several open questions still remain,
will help in the future to interpret these types of phase
transitions.
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