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The abbreviations used are:  
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(bis-MGD), carbon monoxide ehydrogenase (CODH), cytidine-5’-monophosphate 
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ABSTRACT  

The Mo/Cu-dependent CO dehydrogenase (CODH) from Oligotropha 

carboxidovorans is an enzyme that is able to catalyze both the oxidation of CO to 

CO2 and the oxidation of H2 to protons and electrons. Despite the close to atomic 

resolution structure (1.1 Å), significant uncertainties have remained with regard to the 

reaction mechanism of substrate oxidation at the unique Mo/Cu-center, as well as the 

nature of intermediates formed during the catalytic cycle. So far the investigation of 

the role of amino acids at the active site was hampered due to the lack of a suitable 

expression system that allowed for detailed site-directed mutagenesis studies at the 

active-site. Here, we report on the establishment of a functional heterologous 

expression system of O. carboxidovorans CODH in Escherichia coli. We characterize 

the purified enzyme in detail by a combination of kinetic and spectroscopic studies 

and show that it was purified in a form with comparable characteristics to the native 

enzyme purified from O. carboxidovorans. With this expression system in hand, we 

were for the first time able to generate active-site variants of this enzyme. Our work 

presents the basis for more detailed studies on the reaction mechanism for CO and H2 

oxidation of Mo/Cu-dependent CODHs in the future. 
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INTRODUCTION 

Carbon monoxide dehydrogenase (CODH) is a bacterial enzyme that oxidizes CO 

together with H2O to yield CO2, two electrons and two protons (equation 1): 

CO + H2O à CO2 + 2 H+ + 2e- (E⁰ = -558mV at pH 7) 

Among the aerobic CODHs the Mo- and Cu-dependent CODH from the α-

proteobacterium Oligotropha carboxidovorans is one of the most intensely studied 

enzyme to date. CODH enables the organism to utilize CO as sole energy and carbon 

source under aerobic chemolithoautotrophic conditions.1, 2 The electrons released in 

the course of the reaction are transferred to the cytoplasmic membrane with quinones 

functioning as terminal electron acceptors.3 The produced CO2 is further fixed in the 

reductive pentose phosphate cycle and is thereby converted to biomass.4 CO oxidation 

is an environmentally crucial reaction since O. carboxidovorans contributes to the 

remediation of approx. 2 x 108 metric tons of atmospheric CO per year.5, 6 The 

enzyme is a molybdenum hydroxylase that is grouped into the xanthine oxidase (XO) 

family of molybdoenzymes on the basis of its coordination environment at the 

molybdenum atom.7 However, in contrast to the mononuclear molybdenum enzymes, 

CODH accommodates a unique bimetallic [MoO2S-Cu] cluster, with the molybdenum 

atom being embedded to the dithiolene group of the molybdopterin cytosine 

dinucleotide cofactor (MCD).8 The crystal structure revealed that the enzyme is a 

dimer of two heterotrimers with an overall (αβγ)2 structure. Each protomer of the 

enzyme has one small CoxS subunit (17.8 kDa) containing two [Fe2S2] clusters, a 

medium CoxM subunit (30.2 kDa) containing FAD and a large CoxL subunit (88.7 

kDa) that binds the bimetallic MCD cofactor. The two metals are bridged by a µ-

sulfido ligand while the Cu atom is additionally bound to the Cys388 of the protein 

backbone, which is located on the VAYRCS388FR active-site loop.8, 9 In O. 
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carboxidovorans, the genes encoding for CODH are localized on the megaplasmid 

pHCG3 in a large coxBCMSLDEFGHIK gene cluster comprising twelve genes 

including the three structural genes coxMSL.10, 11 The gene products of coxDEF were 

shown to contribute to the posttranslational maturation of the binuclear active-site. 

The CoxD protein was shown to be an AAA+ ATPase chaperone that is responsible 

for the insertion of the sulfur ligand, while CoxE and CoxF proteins were proposed to 

be responsible for insertion of copper into the active-site.12-14 CoxF, however, has 

amino acid sequence homologies to the XdhC protein family shown to be involved in 

the posttranslational modification and insertion of the sulfido-containing Moco into 

enzymes of the XO family.15-17 Since coxF mutants contained the MCD cofactor but 

lacked a sulfido-ligand in addition to Cu with the Mo-site being mainly present as 

[Mo(=O)2OH2]14, CoxF might be involved in the correct ligation of the Mo-S-Cu 

group. The CoxG protein is proposed to be a membrane protein attaching CODH to 

the inner cell membrane.12-14 Gene products of coxBC, coxH and coxK were predicted 

to be membrane localized proteins, with so far unknown function.11, 18, 19 The CoxI 

protein also shares amino acid sequence identities to the XdhC protein15-17, 20, 

however, its role for CODH maturation has not been characterized to date.  

In addition to its CO oxidizing activity, it was reported that the Mo-Cu containing 

CODH also exhibits hydrogenase activity, oxidizing H2 to protons.21 So far, on the 

basis of the co-crystal structure with inhibitors in addition to computational studies, 

several reaction mechanisms have been proposed for CO and H2 oxidation.8, 21-29 At 

the active site, several amino acids were predicted to play a crucial role in the reaction 

mechanisms of CO and H2 oxidation. The highly conserved glutamate residue 

Glu763, located in close proximity to the equatorial oxygen ligand at the Mo atom, 

has been proposed to act as active-site base.27, 30 By comparison, the Phe390 residue, 
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located in a flexible loop, has been suggested to play a role in positioning the 

substrates at the active site. Cys388 was shown to ligate the copper atom. 

Computational studies suggested that in the course of hydrogen oxidation, protonation 

of the Cu-coordinated cysteinyl-sulfur is able to trigger the shortening of the Cu-Mo 

distance, thereby favoring the binding interaction between dihydrogen and copper.25  

Due to the lack of a productive heterologous expression system for O. 

carboxidovorans CODH, detailed studies of the reaction mechanism and the exact 

role of amino acids in the active site were not performed in the past. Heterologous 

expression of O. carboxidovorans CODH in Escherichia coli has not been considered 

for a long time, due to the fact that E. coli was thought to be unable to synthesize the 

MCD cofactor. The discovery of an MCD-containing enzyme in E. coli in addition to 

the identification of the protein which attaches the cytidine-5’-monophosphate (5'-

CMP) nucleotide to the molybdopterin-backbone, however, suggested that E. coli 

might indeed be a suitable host for the expression of MCD-containing Mo-Cu 

containing CODH.31, 32 

In this report, a heterologous expression system of O. carboxidovorans CODH in E. 

coli was established, which gives rise to active protein. The activity of the wild-type 

protein after reconstitution with copper and the sulfido ligand was characterized for 

its activity and spectroscopic properties. CoxI proved to be essential for the insertion 

of the MCD cofactor into CoxMSL. With this expression system in hand, we were 

able to generate active-site variants of this enzyme for the first time. Our work 

presents the basis for more detailed studies to elucidate the role of the amino acids in 

the reaction mechanism of CO and H2 oxidation in the future. 



 

 7 

MATERIALS AND METHODS 

Strains  

The bacterial strains and plasmids used in this work are listed in Table 1. Site directed 

mutagenesis was performed using the Agilent QuikChange Lightning Kit with 

plasmid pPK2 as template. 

 

Table 1: E. coli strains and plasmids used in this study 
Strains 
and 
plasmids 

Description Source or 
reference 

Plasmid Genotype  
pTrcHis Expression vector pTrcdel containing the His6-Tag and trc 

promotor, AmpR 
33 

pACYC-
DuetI 

T7-RNA polymerase-based expression vector, CmR Novagen 

pPK1 A 3813-bp PCR fragment containing the coding region of coxMSL 
cloned into NheI-BamHI of pTrcHis, resulting in a N-terminal His6- 

fusion of CoxM 

this work 

pPK2 A 7417-bp PCR fragment containing the coding region of 
coxMSLDEFG cloned into NheI-SacI of pTrcHis, resulting in a N-
terminal His6- fusion of CoxM 

this work 

pPK3 A 1198-bp PCR fragment containing the coding region of coxH 
cloned NdeI-XhoI into MCSI and a 1007-bp PCR fragment 

containing the coding region for coxI cloned NcoI-HindIII into 
MCSII of pACYC-DuetI  

this work 

pPK4 A 1198-bp PCR fragment containing the coding region for coxH 
cloned NdeI-XhoI into MCSI of pACYC-DuetI 

this work 

pPK5 A 1007-bp PCR fragment containing the coding region for coxI 
cloned NcoI-HindIII into MCSII of similarly digested pACYC-DuetI 

this work 

Strains Phenotype  
TP1000 
(DE3) 

F-∆lacU169 araD139 rpsL150 relA1 ptsF rbsR flbB ∆mobAB::Kan 
(DE3) 

34 

RK5200 F-araD139 ∆lacU169 non rpsL gyrA thi chlA200::Mu cts [moaA
-

] 
35 

 

 

Protein Expression and Purification 

Active CODH and variants were expressed after transformation of pPK2 

(CoxMSLDEFG) and pPK4 (CoxH and CoxI) into E. coli TP1000(DE3) cells.34 The 

Moco-free apo-CODH was expressed in E. coli RK5200(DE3) cells. For expression at 

30°C, the main culture was started with an aerobically grown preculture (12h, 37°C 
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and 220 rpm, supplemented with 150 µg/mL ampicillin and 50 µg/ml 

chloramphenicol) in a 1:500 dilution. The main culture was supplemented with 

150 µg/mL ampicillin, 1 mM molybdate, 20 µM isopropyl β-D-1-

thiogalactopyranoside (IPTG) and 100 µM CuCl2 and proteins were expressed at 30°C 

and 130 rpm for 24h. For expression at 16°C, the main culture was started with an 

aerobically grown preculture (12h, 37°C and 220 rpm, supplemented with 150 µg/mL, 

ampicillin and 50 µg/mL chloramphenicol) in a 1:25 dilution. The main culture was 

grown in the presence of 150 µg/mL ampicillin and 1 mM molybdate at 37°C and 

200 rpm until an OD600 of 0.9 was reached. After addition of 20 µM IPTG and 

100 µM CuCl2 the cultures were grown at 16°C and 130 rpm for 24h. 

After harvesting of cells and cell lysis, the cleared lysate was applied to 0.5 mL of Ni-

nitrilotriacetate (Ni-NTA, Macherey & Nagel, Düren, Germany) resin per liter of cell 

culture. The resin was washed subsequently with 20 column volumes of 50 mM 

NaH2PO4 buffer, 300 mM NaCl, pH 8.0, containing 10 mM and 20 mM imidazole. 

Proteins were eluted with 50 mM NaH2PO4 buffer, 300 mM NaCl, pH 8.0 containing 

250 mM imidazole. Eluted fractions containing CODH were exchanged into 100 mM 

Tris-HCl, pH 7.2 or in 100 mM potassium phosphate, pH 7.2 buffer using PD-10 

columns (GE Healthcare, Piscataway, NJ).  

 

Metal and MCD analysis 

Metal analysis was performed using PerkinElmer (Waltham, MA) Life Sciences 

Optima 2100DV inductively coupled plasma optical emission spectrometer as 

described earlier.16 The MCD cofactor was detected fluorometically after its 

conversion to FormA-CMP with slight modifications.36 200 µL of pure protein 

solution (10 to 20 µM) in 100 mM Tris-HCl, pH 7.2 was oxidized by the addition of 
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25 µL acidic iodine and incubated over night at room temperature. Excess of iodine 

was removed by addition of 27.5 µL 1% ascorbic acid and pH was adjusted to 8.3 by 

addition of 100 µL 1M Tris. Separation of the FormA-CMP fraction was carried out 

using a C18 reversed phase HPLC column (4.6 * 250 mm ODS Hypersil, Thermo 

Fisher, particle size 5 µm) equilibrated in 5 mM ammonium acetate and 15% (v/v) 

methanol. Detection of FormA-CMP during elution was carried out using an Agilent 

1100 series fluorescence detector (excitation at 383 nm, emission at 450 nm). 

 

Nucleotide analysis 

CMP quantification was performed after the method described by Neumann et al. 

200931 with slight modifications. 190 µl of 50-100 µM CO dehydrogenase in 100 mM 

Tris-HCl, pH7.2 was incubated with 10 µl of concentrated sulfuric acid at 95°C for 30 

minutes. Afterwards the samples were centrifuged at 13,000g for 10 minutes. A CMP 

standard solution in the concentration range of 0 µM to 100 µM was employed for 

protein derived CMP content calculation. Separation of CMP was carried out using a 

C18 reversed phase HPLC column (4.6 * 250 mm ODS Hypersil, Thermo Fisher, 

particle size 5 µm) equilibrated in 50 mM ammonium phosphate, pH 2.5 and 1% (v/v) 

methanol at an isocratic flow rate of 1 mL/min. 

 

Quantification of the cyanolyzable sulfur  

30 to 50 µM of CODH in 100 mM potassium phosphate, pH 7.2 was incubated with 

100 mM KCN for 4 to 12 hours at 4°C, using the method described by Massey and 

Edmondson.37 Released SCN- was converted to Fe(SCN)2 and quantified as described 

previously employing a SCN- standard solution in the range of 0 to 100 µM.15 
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Quantification of FAD 

For quantification of FAD, 500 µL of 10 µM CODH in 100 µM Tris-HCl, pH 7.2 

were incubated with 60 µL of 50% (w/v) trichloroacetic acid (TCA) for 10 minutes at 

4°C. Precipitated protein was pelleted by centrifugation at 15000g for 20 minutes. 

The protein pellet was washed with 100 µL of 5% (w/v) TCA and centrifuged as 

described above. The pH of the supernatant was neutralized to 7.0 by the addition of 

102 µL of unbuffered 5 M Tris. The FAD content was measured spectroscopically at 

450 nm and quantified using a FAD standard curve in the range of 0 to 100 µM. 

 

Enzyme assays 

CO oxidation activities were measured as described previously with slight 

modifications.10 Anoxic 100 mM potassium phosphate, pH 7.2, containing 123.75 µM 

INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride), 22.25 µM 

MPMS (1-Methoxy-5-methylphenazinium methyl sulfate) and 0.5% (w/v) Triton-

X100 was bubbled at room temperature in an oxygen-free and rubber sealed flanged 

rim bottle with pure CO for at least 20 minutes to reach a CO concentration of 

1 mM.38 The CO saturated buffer was preheated to 30°C and 1 ml of CO-saturated 

buffer was transferred with a gas-tight µl-syringe, purged with pure CO, into a N2-

purged septum-sealed cuvette, preheated to 30°C. Activity measurements were started 

by the addition of 10 µl of 4-40 µM CODH using a gas-tight syringe. CO oxidizing 

activity was observed spectroscopically by monitoring the reduction of INT at 

496 nm. The activity was calculated using the equation U = 

(∆Abs496/min)/ε496(INT)*V, using the extinction coefficient for INT of 17.98 mmol-1 

x cm-1. One Unit is defined as the oxidation of 1 µmol CO per minute. Variation of 

CO concentrations for steady state kinetics was achieved by dilution of anoxic, 
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INT/MPMS-containing CO-saturated buffer with anoxic, INT/MPMS-containing CO-

free buffer in serum-stoppered cuvettes directly prior to measurement.  

H2 oxidizing activities were measured as described previously with slight 

modifications.38 100 mM potassium phosphate, pH 7.2, containing 50 µM methylene 

blue was bubbled at room temperature in an oxygen-free and rubber sealed flanged 

rim bottle with pure molecular hydrogen for at least 100 minutes to reach a H2 

concentration of 780 µM.38 The H2-saturated buffer was preheated to 30°C and 1 mL 

of H2-saturated buffer was transferred with a gas-tight µl-syringe, purged with pure 

H2, into a septum sealed cuvette, preheated to 30°C. Measurement was started by the 

addition of 10 µL of 10-60 µM CODH using a gas-tight Hamilton µL-syringe. H2 

oxidizing activity was recorded spectroscopically by monitoring the reduction of 

methylene blue at 615 nm. The activity was calculated using the equation U = 

(∆Abs615/min)/ε615(methylene blue)*V, using the extinction coefficient for methylene 

blue of 37.11 mmol-1 x cm-1. One Unit is defined as the oxidation of 1 µmol H2 per 

minute. Variation of H2 concentrations for steady state kinetics were achieved by 

dilution of anoxic, methylene blue-containing H2-saturated buffer with anoxic, 

methylene blue-containing H2-free buffer in serum-stoppered cuvettes directly prior to 

measurement.  

 

In vitro reconstitution of CODH with Sulfide and Copper 

CODH was reconstituted with sulfur and copper as described previously by Resch et 

al.39 and Wilcoxen et al.3 with slight modifications. All steps of the reconstitution 

procedure were carried out in an anaerobic chamber (Coy Laboratory Products, Grass 

Lake, MI) under a mixed Nitrogen/Hydrogen atmosphere (95%/5%). 1 mL of 60 to 

70 µM CODH, 10 µl of 10 mM methyl viologen, 10 µlLof 10 mM FAD in anoxic 
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100 mM Tris-HCl, pH 8.2 were mixed before the addition 20 µL of 100 mM Na2S 

and sodium dithionite until the solution reached a light blue color. The sulfuration 

mixtures were incubated for at least 12 hours in the dark at room temperature or 10°C 

for CODH variants. After sulfuration, CODH was purified from the incubation 

mixture by into 100 mM Tris-HCl, pH 7.2 using PD-10 columns under anoxic 

conditions (GE Healthcare, Piscataway, NJ). Sulfurated CODH was concentrated to a 

final concentration of 50 to 60 µM in a volume of 1 ml before the addition of 40 µL 

Cu[SC(NH2)2]3Cl in anoxic 100 mM Tris-HCl, pH 7.2. Cu[SC(NH2)2]3Cl was formed 

by incubation of 10 mM Cu(I)Cl in 100 mM Tris-HCl, pH 7.2 with 10 mM sodium 

ascorbate and 30 mM thiourea. After incubation for 12 hours at room temperature or 

at 10 °C over night, small molecular weight compounds were removed by gel 

filtration using a Superose-12 (GE Healthcare) or a Superdex200 10/300GL column 

(GE Healthcare) equilibrated in 100 mM Tris-HCl, pH 7.2. 

 

EPR Preparative and Spectroscopic Methods 

EPR samples were prepared anaerobically in a Coy chamber at O2 levels < 10 

ppm at 4 °C in a thermoblock, in 100 mM potassium phosphate, pH 7.2. Typical 

sample preparation methods involved either sample dilution of the concentrated stock 

enzyme in the above buffer in the as-obtained state (following treatment with KCN or 

reconstituted as described above), or involved excess addition of freshly-prepared 

sodium dithionite (11 mM final).  Samples were then pipetted into quartz EPR 

capillaries (3.9 mm O.D.; QSIL, Langewiesen, Germany), sealed and quickly frozen 

outside of the chamber in liquid N2-cooled ethanol.  Samples containing dithonite 

were incubated for approximately 20 seconds until freezing.  

CW X-Band EPR spectra recorded at 9.4 GHz were obtained using a home-
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built spectrometer (microwave bridge, ER041MR, Bruker, Rheinstetten, Germany; 

lock-in amplifier, SR810, Stanford Research Systems, Stanford, CA, USA; 

microwave counter, 53181A, Agilent Technologies) equipped with a Bruker SHQ 

resonator. An ESR 910 helium flow cryostat with an ITC503 temperature controller 

(Oxford Instruments, Oxfordshire, UK) was used for temperature control. CuEDTA 

was used as a standard reference with respect to spin quantitation. Spin quantitation 

was performed using the utility ‘spincounting’ (http://lcts.github.io/spincounting/) in 

Matlab (Mathworks; Natick, MA, USA). Field corrections were performed as needed 

by measuring a standard solution of sodium dithionite-reduced sample of R. 

capsulatus formate dehydrogenase40 (100 µM) at 80 K under acquisition conditions 

identical to those reported herein, and correcting with respect to the [Fe2S2] clusters 

present. At this temperature, the [Fe2S2] clusters present are nearly identical to those 

reported for C. necator formate dehydrogenase.41 Measurement parameters for the 

spectra presented herein were measured with 10 G Modulation Amplitude and 9.9 

mW Microwave Power, as reported elsewhere for the natively expressed and 

reconstituted enzyme26, at a 9.38 GHz Microwave Frequency.  Such parameters, 

while limiting with respect to obtaining resolved 1H-hyperfine features, have been 

shown to be sufficient to yield similar spectral features for the natively expressed and 

reconstituted enzyme. 26, 42    
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RESULTS 

Expression and purification of O. carboxidovorans CODH after heterologous 

expression in E. coli 

For heterologous expression of O. carboxidovorans CODH in E. coli, the genes 

coxMSLDEFG, coxH and coxI were amplified from the pHCG3 megaplasmid.19 We 

selected a procedure in which we cloned the coxMSLDEFG operon into the pTrcHis 

vector (pPK2), which resulted in a fusion of CoxM with an N-terminal His6-tag. The 

genes coxH and coxI were cloned separately into the pACYC-DuetI vector, allowing 

the expression of each gene from an own promoter (pPK3). For the expression of 

CODH, both plasmids were transformed into E. coli TP1000(DE3) cells, a strain that 

proved to be optimal for the expression of molybdoenzymes from the XO family in 

the past.31, 43, 44 Due to a deletion of the mobAB genes, the strain is expected to 

produce higher levels of the molybdopterin cytosine dinucleotide (MCD) cofactor, the 

variant of Moco present in CODH. The different constructs used for the expression 

with the combination of different genes are shown in Figure 1. 
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Figure 1: O. carboxidovorans CODH genes used for expression in E. coli 
Shown are the genes encoding CODH and the accessory genes used for the expression 
in E. coli from different plasmids. The plasmid names are shown on the left hand side. 
Different plasmid combinations were combined to elucidate the minimal requirement 
for the expression of an active CODH in E. coli. Details of the plasmid construction 
are given in Table 1. 
 

Optimization of the expression conditions showed that both the expression at 30°C 

and the expression at 16°C gave rise to brownish-colored protein, however, the 

presence of inclusion bodies was reduced when the temperature during the expression 

was decreased to 16°C. It has been reported before that CoxD forms inclusion bodies 

when expressed in E. coli.12 In addition to the temperature, the presence of additional 

copper was varied during the 16°C expression. The proteins were purified by Ni-NTA 

and size exclusion chromatography. The elution profile after size exclusion 

chromatography revealed highly similar elution profiles of the 16°C and 30°C 

expressed proteins (Figure 2). The majority eluted from the Superdex 200 column in a 

fraction corresponding to a molecular mass of 285 kDa, which is in good agreement 
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with the calculated molecular mass of 273 kDa for the (αβγ)2 hexamer (Figure 2). 

Minor fractions eluted as αβγ trimer or βγ dimer as revealed by SDS-PAGE (Figure 2, 

inset).  

 

Figure 2: Analysis of the oligomerization state of heterologously expressed CODH 
by size exclusion chromatography.  
100 µM of purified CODH after expression from plasmids pPK2 (coxMSLDEFG) + 
pPK3 (coxH and coxI) at 30°C (solid line), at 16°C (dashed line) or from plasmid 
pPK2 (coxMSLDEFG) at 16°C (dotted line) were applied on a Superdex-200 gel-
filtration (equilibrated in 100 µM Tris-HCl, pH 7.2) to determine the oligomerization 
states. Inset on the left: 17% SDS polyacrylamide gel separating proteins from 
collected fractions of the elution maxima (marked as 1, 2 and 3) of CODH expressed 
at 16°C from pPK2 + pPK3. Inset on the right: plot of the standard proteins (Bio-
Rad): thyroglobulin (670 kDa), gamma-globulin (158 kDa), ovalbumin (44 kDa), and 
myoglobin (17 kDa). 
 

The expressed CODH protein at 30°C revealed low CO-oxidizing activities in the as-

purified state (below 0.08 U/mg). As reported previously by Resch et al.39, CODH 

preparations from O. carboxidovorans requires an in vitro reconstitution of the active-

site with copper and sulfur. We therefore applied the same procedure, and after in 
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vitro reconstitution of the Cu-µS-ligand to the molybdenum atom, the activity was 

increased to 0.3 U/mg with CO and 0.038 U/mg with H2 (Table 2).  

Table 2 - Quantification of metals, cofactors and specific activities of CODH 

expressed in E. coli under different conditions. 

growth 
conditi

ons 

Yield 
mg/L 
cul-
turea 

Saturation in %a FormA
-CMP 
(LU*s/
mg)a,c 

Specific activity 
in U/mga,c 

Mob Feb Cub FADc CMPc 

CO H2 

30°Cd 
+Cu 

7 8 
±2 

100 
±20 

39 
±13 

78 
±3 

39 
±0.2 

388.6 0.3 
±0.01 

0.038 
±0.002 

16°Cd 
+Cu 

5.9 41 
±7 

104 
±8 

48 
±7 

79 
±7 

54 
±10 

3550 2.6 
±0.09 

0.26 
±0.003 

16°C  
-Cu 

6.5 19 
±5.5 

104 
±19 

15 
±6 

93 
±3 

43 
±2.5 

1613 0.3 
±0.02 

0.02 
±0.002 

 
aSpecific enzyme activities (units/mg) are defined as the oxidation of 1 µmol substrate/mg enzyme. 
Molybdenum (µM molybdenum/µM CODH), iron (µM 2 x [Fe2S2]/µM CODH) and copper (µM 
copper/µM CODH) contents were determined by ICP-OES (see Experimental procedures) and related 
to a fully saturated enzyme. The CMP content (µM CMP⁄µM CODH) was analyzed after release of 
CMP from MCD by heat treatment under acidic conditions, as described in Experimental procedures. 
FormA-CMP was determined after release of MCD from the enzyme under acidic conditions and over 
night oxidation with I2/KI at room temperature. FAD was quantified spectroscopically after TCA 
precipitation of the protein as described in Experimental procedures. 
bDetermined before in vitro reconstitution of the purified enzyme with copper and sulfide.  
cDetermined after in vitro reconstitution of the purified enzyme with copper and sulfide.  
dCultures were supplemented with 100 µM copper during growth. 
 

 

This value represents about 1.3% of the activity for the CO oxidation reaction 

reported for the highest active CODH obtained from O. carboxidovorans (23.5 U/mg 

with CO as substrate8). The low activity is consistent with a low level of molybdenum 

present in the enzyme and a low saturation with the MCD cofactor (Table 2). In 

comparison, the enzyme expressed at 16°C showed a higher molybdenum saturation 

of 41% and an about 7-fold increased MCD content (Table 2). These values suggest a 

more efficient MCD cofactor incorporation into recombinant CODH when the 
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enzyme is expressed at 16°C. However, the iron-, flavin- and copper-contents in both 

preparations were comparable (Table 2). After reconstitution of the active site with 

sulfur and copper, the enzyme expressed at 16°C showed a specific activity of 2.6 

U/mg, which represents a 9-times higher activity in comparison to the reconstituted 

enzyme expressed at 30°C. Interestingly, preparation at either temperature resulted in 

an increased 5’-CMP:Mo saturation ratio (Table 2), suggesting unspecific 5’-CMP 

binding at the active-site of CODH. The addition of 0.1 mM mM copper during the 

expression resulted in an almost 10-times more active enzyme, mainly based on the 

presence of a higher saturation of the enzyme with the MCD cofactor.  

The UV-visible spectrum of CODH expressed at 16°C in its oxidized form is similar 

to the one reported for CODH purified from O. carboxidovorans (Figure 3). 

 

Figure 3: UV-Vis absorption spectra of purified CODH.  
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UV-visible absorption spectra of purified CODH after expression at 16°C. Shown are 
the spectra of the oxidized enzyme (solid line) and the spectrum of the enzyme 
reduced with 950 µM CO (dotted line). Total reduction of the sample was achieved 
by addition of 10 mM sodium dithionite (dashed line). Spectra were recorded in 100 
mM Tris-HCl buffer (pH 7.2). The inset shows the protein separated on a 17% SDS-
polyacrylamide gel. 
 

 Characteristic are the typical shoulder at 550 nm corresponding to the 2 x [Fe2S2] 

clusters, and the absorption maximum at 450 nm due to the presence of the FAD 

cofactor. Further, the shoulder at 320 nm represents the sulfido-containing MCD 

cofactor.45 To calculate the amount of catalytically active CODH, reduction spectra 

were recorded after the addition of 950 µM CO and 10 mM mM sodium dithionite 

(NDT) (Figure 3). The results show that 13% of the recombinant CODH was reduced 

with CO, in comparison to the fully reduced enzyme with NDT. The level of 

reduction is consistent with the determined activity, representing 11% of the fully 

active CODH from O. carboxidovorans (Table 1). 

In conclusion for all further analyses, CODH was purified after heterologous 

expression in E. coli choosing a temperature of 16°C and the additional 

supplementation of copper to the medium.  

 

Steady state kinetics of recombinant CODH 

Steady state kinetics of recombinant CODH were carried out under anaerobic 

conditions at 30°C for the CO:INT/MPMS or H2:methylene blue reactions. The 

apparent specific activities for each substrate were plotted against their concentrations 

and fitted according to the Michaelis-Menten equation. The determined parameters 

are summarized as insets in Figure 4A and B.  
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Figure 4: Steady state kinetics of CODH 
A, Steady state kinetics of the CO:INT/MPMS reaction. Steady state kinetic 
parameters of the CO oxidation reaction were recorded at 30°C by monitoring the 
reduction of INT at 496 nm. CO concentrations were varied from 0-500 µM, while 
INT/MPMS was used under saturating conditions at a concentration of 123.75 µM 
and 22.25 µM, respectively. The data were fitted according to the Michaelis Menten 
equation and are mean values from at least 3 independent measurements. B, Steady 
state kinetics of the H2:methylene blue reaction. Steady state parameters were 
recorded at 30°C by monitoring the reduction of methylene blue at 615 nm. H2 
concentrations were varied from 0-780 µM, while methylene blue used under 
saturating conditions at a concentration of 50 µM. The data were fitted according to 
the Michaelis Menten equation and are mean values from at least 3 independent 
measurements.  The determined kinetic constants are depicted as insets. 
 

In consistency with literature data for CODH purified from O. carboxidovorans, the 

hydrogenase activity of recombinant CODH is in the range of 10-16% in relation to 

the CO oxidizing activity.18, 42 The kcat value for CO was determined to be 10.6 s-1 
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(Figure 4A), showing that the enzyme is 10% active as compared to the fully active 

enzyme with a kcat value of 107 s-1 (with INT/MPMS as electron acceptor) reported 

by Dobbek et al.8. The kcat value for H2 as substrate was determined as 1.4 s-1 (Figure 

4B). The KM values were determined as 0.52 µM for CO and 136.9 µM for H2 

(Figures 4 A+B).  

 

EPR Spectroscopic Characterization of CODH in E. coli 

The homogeneity of assembly of the active site for heterologously expressed 

CODH was assessed by EPR spectroscopy. Figure 5A shows a typical CODH-WT 

spectrum at 120 K following treatment with KCN in the as-obtained and dithionite-

reduced states.   

 

 

Figure 5: X-Band EPR spectra of CODH associated Fe-S clusters. Panel A 
represents X-band EPR spectra of CODHWT following purification and subsequent 
treatment with KCN. Shown are spectra of the as-obtained (top trace) and dithionite-
reduced (bottom trace) state. Spectral have been dilution factored to have a common 
[CODH] of 249 µM. Spectra were obtained at 120 K. Panel B represents X-Band EPR 
spectral comparison of reconstituted and non-reconstituted spectra of 141 µM 
CODHWT at 45 K reduced with sodium dithionite. Spectra represent CODHWT as-
purified and cyanide-treated (non-reconstituted) (top trace) and CODHWT 
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reconstituted with Cu(I) thiourea, sulfide, and dithionite (bottom trace). Spectral have 
been dilution factored to have a common [CODH] noted above. For additional 
spectral parameters, please see the Materials and Methods section. 
 

The resultant spectra were mostly featureless, aside from an isotropic signal at 

333 mT, which is thought to represent a small quantity of FADH• semiquinone.46 In 

the dithionite-reduced state (Figure 5B), at lower temperature a further signal appears, 

which can be assigned to [Fe2S2] clusters, bearing similarity to the type I [Fe2S2] 

cluster reported elsewhere for the natively expressed enzyme.47  As can be shown by 

the decreased linewidth for the [Fe2S2] cluster present at 45 K, reconstitution of the 

active site results in more structurally homogeneous g-values for the type I [Fe2S2] 

cluster detected. 

 Figure 6 depicts a typical CODH-WT sample following reconstitution of the 

active site sulfane sulfur and Cu. In the as-obtained state, Cu(II) predominates the 

spectrum (Figure 6A). Signal spin quantitation showed that the as-obtained state 

displayed 3.1 spins/protein, reflective of excess Cu(II) present in the sample. 

Interestingly, while Cu(II) appeared to represent the majority of the obtained signal, 

additional spectral features were observed at 348-360 mT. While these features are 

small relative to the overall signal, at this field position they are qualitatively similar 

to the dithionite-reduced CODH from O. carboxidovorans.26 
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Figure 6: X-Band EPR spectra of CODH after reconstitution with Cu(I) thiourea, 
sulfide, and dithionite.  
Panel A represents the as-obtained enzyme, while panel B represents the sample 
above following anaerobic reduction with 10 mM dithionite.  The spectra have been 
dilution-factored to represent a [CODH] of 141 µM.  Spectra were obtained at 120 K. 
For additional spectral parameters, please see the Materials and Methods section. 
 

Treatment of the reconstituted sample with sodium dithionite to CODH-WT resulted 

in reduction of the excess Cu(II) (Figure 6B), resulting in discernable spectral features 

similar to that reported for the native O. carboxidovorans enzyme.26  The spin 

concentration decreased from 3.1 spins/protein in the as-obtained (reconstituted) state 

to 0.5 spins/protein in the dithionite reduced state.  Additional components to the 

spectrum included a decreased, but residual Cu(II) signal, in addition to a small 

contribution of the FADH• semiquinone radical. No signal corresponding to a desulfo 

signal was observed. However, since samples were reconstituted in a 3% H2-

containing Coy chamber, it is probable that a small amount of H2-reduced signal is 

also present.42 Nevertheless, similar reproduction of the dithionite-reduced signal as 

has been shown for the native O. carboxidovorans enzyme demonstrates success in 

the reconstitution procedure.  
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Role of the accessory proteins for the maturation of an active CODH in E. coli. 

In order to define the minimal amount of accessory proteins required for the 

maturation of O. carboxidovorans CODH in E. coli, the coxMSL genes were 

expressed in the presence of different genes from the operon and the activity after Ni-

NTA affinity purification of the CoxMSL (abg)2 heterotrimer was analyzed. The 

different coexpression constructs of coxMSL with coxDEFG and coxH or coxI are 

listed in Figure 1. 

The expression of the coxMSL genes alone (from pPK1) resulted in a colorless and 

inactive protein that lacked the cofactors and was highly contaminated with other 

proteins (Figure S1, lane 1). When only the coxMSLDEFG operon was expressed 

(from pPK2) without the coexpression of coxI and coxH, a CODH with the 

oligomeric state of a (abg)2 hexamer was obtained (Figure 1 and S1, lane 2). 

However, the protein was completely inactive and devoid of the MCD cofactor 

(Figure 7).  
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Figure 7: Activities of CO Dehydrogenase expression variants 
A, Specific CO or H2 oxidizing activities (µmol of CO reduced per minute and mg of 
enzyme) with INT/MPMS or methylene blue as electron acceptors, respectively. 
Oxidation of substrates was monitored spectroscopically by following the reduction 
of INT/MPMS (CO) at 496 nm or methylene blue (H2) at 615 nm. B, Relative FormA-
CMP fluorescence (LU*s/mg) of MCD cofactor released from CODH. The MCD 
cofactor was oxidized to FormA-CMP and quantified after separation on a C18-RP 
column. Integrated FormA-CMP peak-areas were related to the amount of protein in 
mg. C, Relative CO or H2 oxidizing activities in µmol substrate oxidized per MCD 
present in the protein. n.d.: no activity or FormA-CMP detected 
 

A similar result was obtained when only the coxH gene was coexpressed with the 

coxMSLDEFG operon. The protein was purified as a (abg)2 hexamer, but the protein 

was devoid of the MCD cofactor and consequently completely inactive. In contrast, 

when the coxI gene was coexpressed with the coxMSLDEFG operon, an active protein 
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was obtained with a similar activity as compared to the protein expressed both in the 

presence of coxH and coxI. Consequently, coxH seems not to be required for the 

maturation of CoxMSL, while the CoxI protein was essential for the insertion of the 

MCD cofactor into CoxMSL. 

Analysis of the saturation of the proteins with the bound cofactors showed that the 

proteins were purified with saturation levels of 2 x [Fe2S2] clusters and FAD in a 

range of 80-100% (Table S1). Detection of the saturation levels with molybdenum, 

the cyanolysable sulfur ligand in addition to CMP revealed unspecific binding of the 

protein with these metals/molecules, since also a protein that was completely devoid 

of Moco after expression in a DmoaA mutant strain showed significant amounts of 

these atoms/molecules in a range of 10-40%. Especially the presence with copper 

revealed to be unspecific, since all proteins showed a copper saturation in a range of 

43-59%. 

 

Site-directed mutagenesis of amino acid residues at the active site of O. 

carboxidovorans CODH. 

The establishment of a heterologous expression system for O. carboxidovorans 

CODH in E. coli presented the basis to perform site-directed mutagenesis for 

analyzing the role of active-site amino acids for CO and H2 oxidation. In this study, 

we particularly focused on Glu763, Phe390 and Cys388.  

Glu763 is strictly conserved in all members of XO family of molybdoenzymes. 

Glu763 has been proposed to be involved in proton abstraction during the catalytic 

cycle of CO oxidation and in addition to facilitate the reversible deprotonation of the 

copper-bound H242. We exchanged Glu763 to a glutamine.27, 30  
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Further, Phe390 was suggested to be involved in substrate binding, and to investigate 

this role we replaced Phe390 by proline, valine and tyrosine. The phenylalanine is 

also conserved in other enzymes of the XO family like xanthine dehydrogenase, 

however, in CODH Phe390 adopts a different conformation to accommodate the 

additional Cys388 residue that coordinates the copper ion. To test the role of Cys388, 

we generated a Cys388 deletion variant in CODH. 

All variants described above were expressed in E. coli and purified by Ni-NTA and 

size exclusion chromatography after reconstitution of the enzymes with copper and 

sulfide. The variants were characterized by their absorption spectra before and after 

the reconstitution with copper and sulfide. As shown in Figure 8, the UV-Vis 

absorption spectra of all variants in addition to their purities were comparable to the 

wild-type protein. The yield was the lowest for the F390P variant (supporting Table 

S2) and all variants showed comparable levels of saturation with 2 x [Fe2S2] clusters 

and FAD.  
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Figure 8: UV-Vis spectra of CODH wild type and variants 
UV-Vis spectra of oxidized CODH variants before (solid line) and after (dotted line) 
reconstitution with sulfide and copper. The spectra were recorded in 100 mM Tris-
HCl, pH 7.2. Each insets show a 17% SDS polyacrylamide gel of the indicated 
CODH variant. A: CODH wild type, B: Variant E763Q, C: Variant F390P, D: Variant 
F390V, E: Variant F390Y, F: Variant ∆Cys388. 
 

The saturation with molybdenum, copper and CMP varied, however, since it was 

shown above that these metals/molecules bind unspecific to the protein (Table S2), 
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we determined the saturation levels with the MCD cofactor instead, assuming that this 

relates to a specific incorporation. As shown in Figure 9, only the saturation level 

with MCD of the E763Q variant was comparable to the wild-type protein. In all other 

variants, the cofactor saturation was largely decreased to levels ranging between 5-

10% (F390P and DCys388), 20% (F390V), or 30% (F390Y) in comparison to the 

MCD content of the wild-type protein. Further, all variants were inactive with CO and 

H2 as substrates, with the only exception of the F390Y variant, that revealed specific 

activities of 40 mU/mg for CO oxidation and 15 mU/mg for H2 oxidation (Figure 9).  
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Figure 9: Activities of CO Dehydrogenase active-site variants  
A, Specific CO or H2 oxidizing activities (µmol of CO reduced per minute and mg of 
enzyme) with INT/MPMS or methylene blue as electron acceptors, respectively. 
Oxidation of substrates was monitored spectroscopically by following the reduction 
of INT/MPMS (CO) at 496 nm or methylene blue (H2) at 615 nm. B, Relative FormA-
CMP fluorescence (LU*s/mg) of MCD cofactor released from CODH variants. The 
MCD cofactor was oxidized to FormA-CMP and quantified after separation on a C18-
RP column. Integrated FormA-CMP peak-areas were related to the amount of protein 
in mg. C, Relative CO or H2 oxidizing activities in µmol substrate oxidized per MCD 
present in the protein. n.d.: no activity detected. 
 

The amino acid exchange F390Y thereby had a larger effect on the CO oxidation 

activity, which was 65 fold reduced, as compared to the H2 oxidation activity, which 

was only 17 fold reduced. 

To confirm the inactivity of the other variants with both substrates, we additionally 

performed an in-gel activity staining of the proteins separated on native 

polyacrylamide gels. This method has the advantage that more protein can be applied 

and that the electron acceptor precipitates in the gel, so that the activity can be 

measured over a longer time-range and visualizes also residual activities in a 

qualitative manner, which would be below the detection limit in the quantitative 

cuvette assay. As shown in Figure 10 only the F390Y variant showed CO and H2 

oxidizing activities, confirming the activities of the cuvette assays and showing that 

the E763Q, F390V, F390P and ∆C388 variants were completely inactive. 
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Figure 10: Activity staining of CODH wild type and variants 
The figure illustrates 7% native polyacrylamide gels of purified CODH wild type and 
the indicated variants run under non-denaturing conditions: Gels were stained with 
(A) Coomassie Brilliant Blue, (B) for CO oxidizing activity or (C) H2 oxidizing 
activity after incubation with NBT/PMS. In panel A and B 6 µg of protein were 
loaded per lane. In panel C 24 µg of protein were lane. 
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DISCUSSION  

In this work we report the first heterologous expression system for the production of 

active O. carboxidovorans CODH in E. coli. In previous attempts only the coxMSL 

genes were expressed in E. coli, which resulted in an inactive enzyme that was devoid 

of Moco.26 Our work showed that for the correct MCD insertion into CODH, the gene 

products CoxDEFG and CoxI are essential. While the role of CoxDEFG in this 

process has been investigated before, our work presents a novel role of CoxI in MCD 

insertion into CoxL. We propose that CoxI and CoxDEFG work in conjunction for the 

insertion and the correct assembly of the MCD-Cu-sulfido cluster into CODH. CoxD 

was predicted previously to act as an ATP-dependent chaperone that interacts with 

CoxE and CoxF for the sulfane sulfur insertion into the MoO3 on the MCD cofactor, 

with the role of the CoxF and CoxE proteins being proposed to facilitate the insertion 

of the Cu(I) atom.12-14 Since both CoxF and CoxI share amino acid sequence 

homologies to the XdhC protein, which was proposed to be involved in the 

maturation of R. capsulatus xanthine dehydrogenase by binding the Mo-MPT cofactor 

for the insertion of the sulfido ligand and further insertion into the XDH enzyme, both 

CoxF and CoxI might act in a similar and concerted manner. We propose that CoxI 

might act as a scaffold for MCD binding and by involvement of CoxDEF the Cu-

sulfido ligands are assembled. The additional predicted roles of CoxDEF as DEAD 

box proteins involved in translational processes is not clear in the course of MCD-S-

Cu maturation, but might imply a coordinated translation of all three proteins to 

ensure their presence in equal amounts. 

A study by Santiago et al.11 reported on the transposon mutagenesis of O. 

carboxidovorans, to create a knock out of coxH and coxI. This study showed that in 
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O. carboxidovorans CoxH and CoxI are not essential for the synthesis of active 

CODH 11. Further, a recent publication by Heinrich et al.48 reported the heterologous 

expression of O. carboxidovorans CODH in Ralstonia eutropha. This report describes 

the successful expression of the coxMSLDEFG operon without the coexpression of 

coxI that yielded an inactive protein. Since both in O. carboxidovorans and R. 

eutropha coxI is not essential, we only can speculate that either another protein can 

take over the role of CoxI in these two organisms, or alternatively, that CoxF is able 

to replace the role of CoxI in this process, based on the amino acid sequence identities 

of both protein. CoxF might not be correctly folded in E. coli, the reason why the role 

of CoxI is indispensable in this organism.  

Our report also revealed unspecific molybdenum, copper and MCD binding to the 

heterologously expressed proteins. Unspecific binding of nucleotides was also 

reported for Hydrogenophaga pseudoflava CODH expressed under molybdenum-

deficient conditions.49, 50 While the protein expressed under molybdenum-free 

conditions was devoid of the MCD cofactor, the presence of different cytidine 

nucleotides in the protein was detected.49, 50 Thus, unspecific binding of metals and 

nucleotides might be a common feature also for other molybdoenzymes after 

overexpression in homologous or heterologous hosts, therefore the activity of the 

protein should be related to the active portion of the fully matured Moco present in 

the enzyme, and not solely to the amount of molybdenum or nucleotides present in the 

protein.  

The CODH produced in this work showed an activity of 10% in comparison to the 

most active CODH reported in the literature.8 However, in several reports, also the 

activity of the CODH purified from its native host varied and often activities are 

reported ranging about about 18 - 107 s-1.9, 12, 14, 22, 46 When comparing our data to 
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those reported by Wilcoxen et al.42, the kcat value for H2 is 27% of their value for the 

H2:1,4-benzoquinone reaction, with the KM values being comparable. As discussed 

above the relatively low activity of recombinant CODH in comparison to CODH 

purified from O. carboxidovorans might result from a low level of MCD cofactor 

saturation, due to the unproductive expression of the accessory proteins required for 

MCD assembly and insertion in inclusion bodies. The saturation of the protein with 

the MCD cofactor conclusively needs to be optimized in future studies, by optimizing 

the expression of the proteins CoxDEF and CoxI. Nevertheless, this work provides 

the first heterologous expression system for an aerobic, bi-nuclear CO dehydrogenase 

in E. coli in an active form. A recent report by Choi et al.51 demonstrated the 

heterologous expression of the aerobic CODH from Pantoea species YR343 in E. 

coli. While the authors report on the characterization of an active enzyme that shows 

CO oxidation activity with different electron acceptors, no details on the saturation of 

the protein with cofactors are given. Since only the structural coxMSL proteins were 

expressed in E. coli, it remains elusive how a protein with a correctly assembled 

[MoO2S-Cu] cluster was obtained. For example, the reconstitution of the copper-

sulfur cluster was not required for the purified protein (instead the protein was 

reconstituted with FAD). Due to the lack of a quantification of the MCD cofactor, we 

are unable to compare our activities of the O. carboxidovorans CODH to the 

recombinantly obtained Pantoea CODH and suggest that the activity data reported by 

Choi et al.51 should be taken with care. Further, amino acid sequence analysis 

revealed that the protein is lacking the conserved "VAYRCSFR" loop present in 

Mo/Cu CODH enzymes,11 which includes the cysteine corresponding to Cys388 in O. 

carboxidovorans CODH. Thus, it is likely that the Pantoea enzyme is not a Mo/Cu-

containing CODH. 
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 EPR spectroscopy has been employed as an important tool with respect to 

characterizing the mechanistic mode in the biotransformation of CO to CO2 in 

Mo,Cu-CODHs. The electronically coupled Mo and Cu sites as Mo(V)-Cu(I) provide 

a diagnostic tool to assess how active site changes affect the electron centered at the 

MCD site. In our work herein, we show that heterologous expression of O. 

carboxidovorans CODH in E. coli, upon in vitro reconstitution with Cu(I) and sulfide 

under reducing conditions, resulted in a partially loaded enzyme, yielding similar EPR 

spectral properties to previous reports.39, 46 In almost all cases, the dithionite-reduced 

state was principally detected, even in the as-obtained state following reconstitution.  

This can be expected, since the reconstitution employed reducing conditions using 

dithionite as a reductant. Similarly, minor differences in the dithionite-reduced 

spectrum relative to previous reports may be due to overlapping H2-reduced enzyme, 

since samples were prepared anaerobically in a H2-containing Coy chamber. 

It should be noted that the spin quantity of Mo(V)-associated signal is minor relative 

to the excess Cu(II) detected, particularly in the as-obtained state. The large quantity 

Cu(II)-derived spin in the as-obtained enzyme likely amounts to the amount of protein 

that lacks a loaded MCD cofactor, by which vacancy of the MCD cofactor likely 

results in oxidation of the delivered Cu(I) upon reconstitution to Cu(II) and that upon 

treatment of dithionite is cycled back to Cu(I). However, overall the heterologously 

expressed CODH in its dithionite-reduced state shows a similar coordination 

environment to that reported for natively expressed CODH, validating the employed 

reconstitution method and showing that the MCD-[MoO2S-Cu] cofactor  in the 

recombinant enzyme has identical features to the wild-type enzyme from O. 

carboxidovorans.  
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The successful establishment of a heterologous expression system in E. coli enabled 

us to perform site-directed mutagenesis of conserved amino acid residues at the active 

site. In particular we focused on the residues Glu763, Phe390 and Cys388. The 

exchange of Phe390 to a valine or proline in the active-site loop VAYRCSF390R 

resulted in the inability of the enzyme to oxidize CO or H2. However, the loading of 

the enzyme with the MCD cofactor was also influenced by these amino acid 

exchanges. The X-ray structure of CODH showed that the inner side of the substrate 

access channel of CODH is flanked by hydrophobic residues8, 22 with Phe390 being 

located at the inner end of the channel in close proximity to active-site molybdenum 

and copper (7.4 and 5.9 Å, respectively). Phe390 was proposed to contribute to the 

dynamic flexibility of the enzyme, but also to sterically block the access of the 

substrates to the binuclear center.27 Exchange of Phe390 to a valine replaces the 

aromatic phenylalanine by a short, non-aromatic and hydrophobic residue, which 

results in a disruption of the aromatic π-stacking between Phe390 and Phe355 and 

might thereby disturb the access of CO to the active site. Rokhsana et al.28 reported by 

a theoretical approach on the interaction of Phe390 to be involved in the positioning 

of a water molecule to the Cu(I) center. The position of Phe390 was proposed to 

influence the nature of the Cu-OH2 interaction and thereby to affect substrate binding 

and product release.28 The exchange of phenylalanine by a valine conclusively might 

influence substrate binding and/or product release by resulting in a different active-

site structure. Similar structural influences can be proposed for the F390P variant. 

Here the exceptional conformational rigidity of proline might also have an effect on 

the overall fold of the active-site loop. In contrast, the F390Y variant showed a 

residual activity for CO and H2 oxidation, while the negative effect on CO oxidation 

was stronger than H2 oxidation. Tyrosine is structurally related to phenylalanine with 
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the OH group in the para-position of the aromatic residue being the only difference. 

Thus, the F390Y variant allows the CO molecules to access the active site. Assuming 

the same orientation of the Tyr390 and the Phe390 residue in the active site, the 

additional OH group of tyrosine might interfere with Tyr568 that is located in close 

proximity (3.8 Å) on the G564LGTY568G569SRS loop. Consequently, this interference 

might displace Gly569 from its position in the active site. Gly569 is in close 

proximity (2.6 Å) to the equatorial oxo ligand of the molybdenum atom and might be 

involved in the stabilization of the oxo ligand.28 Displacement of Gly569 from its 

position might further disturb this stabilizing effect and further influence the CO and 

H2 oxidizing activities.  

Cysteine in position 388 is part of the unique active-site loop (VAYRC388SF390R) and 

together with the µ-sulfido ligand, Cys388 ligates the Cu atom in the active-site of 

CODH.8 Deletion of Cys388 resulted in an inactive enzyme with an additional low 

saturation of the MCD cofactor. The deletion of Cys388 might also result in a shift of 

the active-site loop, thereby displacing the position of important residues for catalysis. 

However, the copper saturation of this variant was very high and might imply an 

unspecific copper accumulation of the enzyme, that might result in a not correctly 

assembled [MoO3-S-Cu] cluster. The inactivity of the variant shows the importance of 

Cys388 for both CO and H2 oxidation. Since we deleted the cysteine residue, we were 

unable to dissect the different role of the cysteine for CO and H2 oxidation as 

predicted by by Breglia et al..52 Here, the authors speculated that upon protonation of 

the cysteine, H2 binding to copper is favored. In future studies, we plan to dissect the 

role of the cysteine for both substrate oxidation reactions in more detail. 

Further, Glu763 is in close proximity (3 Å) to the equatorial hydroxo ligand of the Mo 

atom.8 During conversion of CO to CO2, Glu763 was proposed recently by a 
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computational study to act as a base catalyst in deprotonation of a Mo-OH group 

further leading to a MoO2 core and a protonated glutamate.27 The Glu763 variant 

revealed to be completely inactive, while the MCD cofactor saturation was 

comparable to the WT enzyme. The essential role of this glutamate residue for CODH 

is consistent with the role of this highly conserved glutamate for other members of the 

XO family. So far, for all family member enzymes this glutamate residue was proven 

to be essential.  

The data obtained in this work for the role of the amino acids Glu763, Phe390 and 

Cys388 for CO oxidation are summarized in Figure 11 and are consistent with the 

recent data by Rokhsana et al.28, Breglia et al.52, the proposed mechanism by Stein 

and Kirk24 and the mechanism suggested in Figure 5D of Hille et al.27. After this 

model Glu763 might abstract a proton from water and produces the OH- group, that 

then attacks the molybdenum-copper coordinated CO-intermediate at the active site 

(Figure 11A). However, the model initially proposed by Siegbahn and Shestakov 

(2005)29  also can be applied with the essential role of Glu763 observed in this study 

(Figure 11B). In their proposed mechanism, Glu763 was suggested to have a key role 

at the very beginning of a proton transfer pathway essential for catalysis. Glu763 

might abstract a proton from the Mo-OH group, as proposed for other enzymes of the 

xanthine oxidase family. After binding of CO to the CuI, a nucleophilic attack by the 

Mo-O- group to the activated CO results in an initial intermediate as predicted before.  
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Figure 11: Role of active-site amino acid residues for CO oxidation in CODH. A, 
The CO-bound intermediate is shown in the active site after the mechanism described 
by Stein and Kirk.24 A role of Glu763 is predicted in abstracting a proton from water 
that then acts as an OH- intermediate. B, In the model proposed by Siegbahn and 
Shestakov (2005)29 Glu763 was suggested to have a key role at the very beginning of 
the reaction. After this mechanism, Glu763 might abstract the proton from the Mo-
OH group. After binding of CO to the CuI, a nucleophilic attack by the Mo-O- group 
to the activated CO results in an initial intermediate. In both mechanisms, Phe390 
might be involved in binding and positioning the substrate at the active-site. 
 

Phe390 thereby is likely involved in binding and positioning of the substrate in the 

active-site. Alternatively, Glu763 might also be involved in modulating the redox 

potential of the active site, or also might have a structural role in assisting the 

assembly of the [MoO2S-Cu] active site. More details of the exact roles of the amino 

acid residues have to be investigated in future studies by a combination of X-ray 

crystallography and various spectroscopic methods. 
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expressed from different gene combinations in E. coli. 

Table S2: Quantification of metals, cofactors and specific activities of CODH active-

site variants.  
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Table S1: Quantification of metals and cofactors of CODH expressed from different 

gene combinations in E. coli. 

E. coli 
strain 

Expressed 
genes 

Yield in 
mg/L 

culturea 

Saturation in % 

Moa,b Fea,b Cua,b Sa,b FADa,c CMPa,c 

RK5200 
(DE3) 

coxMSLDEFG 
+ coxHI 

5.9 11 
±4 

106 
±10 

59 
±7 

40 
±0.5 

89 
±7 

15 
±0.8 

TP1000 
(DE3) 

coxMSLDEFG 
 

7.1 22 
±4 

91 
±12 

43 
±5 

28 
±1.3 

80 
±1 

12 
±1 

TP1000 
(DE3) 

coxMSLDEFG 
+ coxHI 

5.9 41 
±7 

104 
±8 

48 
±7 

65 
±12 

79 
±7 

54 
±10 

TP1000 
(DE3) 

coxMSLDEFG 
+ coxH 

5.8 23 
±6 

88 
±12 

44 
±9 

52 
±2 

91 
±10 

40 
±2 

TP1000 
(DE3) 

coxMSLDEFG  
+ coxI 

5.3 26 
±7 

104 
±4 

58 
±3 

68 
±4 

96 
±6 

58 
±3 

 
aMolybdenum (µM Mo⁄µM CODH), iron (µM 2x[2Fe2S]⁄µM CODH) and copper (µM Cu⁄µM 
CODH) contents were determined by ICP-OES (see Materials and Methods) and related to a fully 
saturated enzyme. The concentration of the terminal sulfur ligand of Moco (µM SCN)⁄µM CODH) 
was determined spectrophotometrically as an iron-thiocyanate complex at 420 nm as described in 
Materials and Methods. Potassium thiocyanate was used as a standard curve. FAD was quantified 
spectroscopically after TCA precipitation of the protein as described in Experimental procedures. The 
CMP content (µM CMP⁄µM CODH) was analyzed after release of CMP from MCD by heat treatment 
under acidic conditions, as described in Materials and Methods. 
bDetermined before in vitro reconstitution of the purified enzyme with copper and sulfide.  
cDetermined after in vitro reconstitution of the purified enzyme with copper and sulfide.  
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Table S2: Quantification of metals, cofactors and specific activities of CODH active-site 

variants.  

CODH 
variant 

Yield in 
mg/L 

culturea 

Saturation in % Specific 
activity in 
mU/mga Moa,b Fea,b Cua,b Sa,b FADa,c CMPa,c 

CO H2 

E763Q 6.1 63 
±9 

110 
±10 

69 
±3 

51 
±10 

86 
±1 

58 
±8 

n.d. n.d. 

F390P 2.3 14 
±4 

99 
±4 

64 
±5 

46 
±4 

87 
±3 

26 
±8 

n.d. n.d. 

F390V 2.5 8 
±1 

97 
±6 

125 
±12 

48 
±8 

76 
±1 

38 
±12 

n.d. n.d. 

F390Y 6.7 17 
±0.1 

97 
±5 

67 
±5 

59 
±7 

 76 
±1 

46 
±9 

40±
3 

15±1 

∆C388 4.1 28 
±17 

97 
±2 

99 
±13 

33 
±7 

96 
±16 

43 
±8 

n.d. n.d. 

 
aSpecific enzyme activities (U/mg) are defined as the oxidation of 1 µmol substrate/mg enzyme. Molybdenum 
(µM molybdenum⁄µM CODH), iron (µM 2x[2Fe2S]⁄µM CODH) and copper (µM copper⁄µM CODH) contents 
were determined by ICP-OES (see Materials and Methods) and related to a fully saturated enzyme. The 
concentration of the terminal sulfur ligand of Moco (µM SCN)/µM CODH) was determined 
spectrophotometrically as an iron-thiocyanate complex at 420 nm as described in Materials and Methods. 
Potassium thiocyanate was used as a standard curve. FAD was quantified spectroscopically after TCA 
precipitation of the protein as described in Experimental procedures. The CMP content (µM CMP⁄µM CODH) 
was analyzed after release of CMP from MCD by heat treatment under acidic conditions, as described in 
Materials and Methods. 
bDetermined before in vitro reconstitution of the purified enzyme with copper and sulfide.  
cDetermined after in vitro reconstitution of the purified enzyme with copper and sulfide.  
n.d.: no activity detectable 
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Figure S1: 17% SDS-PAGE of CODH proteins purified after expression in E. coli. 
Lane 1: Ni-NTA purification after expression of coxMSL from pPK1 at 16 °C. Lane 2: Ni-
NTA purification after expression of coxMSLDEFG from pPK2 at 16 °C. Lane 3: Ni-NTA 
purification after coexpression of coxMSLDEFG with coxH and coxI from pPK2 and pPK3 at 
16 °C. Lane 4: Ni-NTA purification after coexpression of of coxMSLDEFG with coxH and 
coxI from pPK2 and pPK3 at 30 °C. Proteins were stained with Coomassie brilliant blue. 
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