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Majorana dimers and holographic quantum error-correcting codes
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Holographic quantum error-correcting codes have been proposed as toy models that describe key aspects
of the anti-de Sitter/conformal field theory (AdS/CFT) correspondence. In this work, we introduce a versatile
framework of Majorana dimers capturing the intersection of stabilizer and Gaussian Majorana states. This picture
allows for an efficient contraction with a simple diagrammatic interpretation and is amenable to analytical study
of holographic quantum error-correcting codes. Equipped with this framework, we revisit the recently proposed
hyperbolic pentagon code (HyPeC). Relating its logical code basis to Majorana dimers, we efficiently compute
boundary-state properties even for the non-Gaussian case of generic logical input. The dimers characterizing
these boundary states coincide with discrete bulk geodesics, leading to a geometric picture from which properties
of entanglement, quantum error correction, and bulk/boundary operator mapping immediately follow. We also
elaborate upon the emergence of the Ryu-Takayanagi formula from our model, which realizes many of the
properties of the recent bit thread proposal. Our work thus elucidates the connection among bulk geometry,
entanglement, and quantum error correction in AdS/CFT and lays the foundation for new models of holography.
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I. INTRODUCTION

The holographic principle—the idea that certain theories of
gravity are dual to lower dimensional quantum field theory—
has had wide-ranging applications within theoretical physics.
In particular, the AdS/CFT correspondence has changed our
understanding of theories of both (quantum) gravity and
quantum field theory by giving a specific relationship be-
tween gravity on (d+1)-dimensional negatively curved anti–
de Sitter spacetime (AdS) and d-dimensional conformal field
theory (CFT) [1,2]. A number of simple models capturing key
aspects of holography have been constructed [3–8], largely
relying on tensor network descriptions of bulk AdS geom-
etry and boundary states. Tensor networks have long been
understood as describing a state in terms of its entanglement
structure [9], thus serving as an ideal tool to study holography
in terms of notions of quantum information theory [10–14].
The basis of this work is the tensor network construction of
the hyperbolic pentagon code (HyPeC), a class of holographic
models often named HaPPY codes after the authors’ initials
[5]. These codes explicitly realize holographic quantum error
correction [3] by providing an error-correctable mapping from
bulk to boundary degrees of freedom, reproducing many of
the features of AdS/CFT. However, the boundary states of
the HyPeC differ from other tensor network models specifi-
cally designed to produce physical CFTs, such as the multi-
scale entanglement renormalization ansatz (MERA) [15]. For
computational basis bulk inputs, where the tensor network
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becomes Gaussian and efficiently contractible, earlier studies
revealed a pairwise correlation structure in terms of boundary
Majorana modes [16]. As we show in this work, HyPeC states
are in fact a special case of a Majorana dimer model and can
be described by entangled fermionic pairs. Majorana dimers
have previously been used to describe superconducting phases
on lattices [17,18] as instances of tensor networks that have a
fermionic component [19–23]. We show that the contraction
of dimer-based tensor networks is equivalent to combining
entangled Majorana pairs, replacing the computational dif-
ficulties of contraction by simple rules on dimer diagrams.
This graphical language directly visualizes parities, physical
correlations, and the entanglement structure of quantum states
spanning the entire fermionic Hilbert space. By deriving the
holographic properties of the HyPeC merely from emergent
entangled pairs, we connect to recent proposals of AdS/CFT
models based on bit threads [24,25]. Thus, our work is also
an important step toward integrating discrete tensor network
models of AdS/CFT into a unified setting.

II. A SIMPLE MODEL OF HOLOGRAPHY

Consider the boundary and bulk Hilbert spaces denoted
by H∂ and Hbulk respectively. A holographic quantum error-
correcting code is formed by an encoding isometry E from
the logical states in Hbulk to boundary states in Hcode ⊂ H∂ .
Indeed, EE† is the projector onto the code Hcode of the
boundary Hilbert space H∂ . Any bulk operator O acting on
the states in Hbulk can be represented by at least one operator
O∂ acting on |ψcode〉 ∈ Hcode with the property E†O∂E = O
while preserving the code subspace ([O∂ , EE†] = 0). The
specific form of such a mapping from bulk to boundary is
the holographic dictionary obtained in continuum AdS/CFT
by equating bulk and boundary partition functions [2], which
is equivalent to considering boundary CFT operators O∂ as
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FIG. 1. Continuous (left) and discretized (right) reconstruction
of an AdS bulk operator O along two (causal) wedges W[A] and
W[B] [3], leading to two boundary operators OA and OB with support
on boundary regions A and B. The AdS time slice is projected onto
the Poincaré disk, with the AdS boundary corresponding to the black
outer circle. The discretization is a {5, 4} tiling.

limits of fields on the gravitational AdS background [26]. As
we visualize in Fig. 1 (left), oftentimes O∂ acts nontrivially
only on a subregion of the total boundary. Given a subregion
A on the boundary, one can perform the so-called AdS-Rindler
reconstruction [26–31] to associate to any boundary operator
OA a corresponding bulk operator O acting within the wedge
W[A] which is a subset of the bulk.

Because of the computational difficulties in studying con-
tinuum AdS/CFT, discrete toy models often provide an eas-
ier approach to understanding its properties. These models
usually consider a spacelike slice of the full AdS spacetime,
discretized by a tiling whose open boundary edges correspond
to the AdS boundary. Subsets of these open edges are then
identified with subregions of the boundary CFT (see Fig. 1,
right).

What properties should the discretized boundary states in
Hcode fulfill? As a bulk operator can be represented equiva-
lently on different parts of the boundary, e.g., two regions A
and B, we are led to the condition

OA|ψcode〉 = OB|ψcode〉, (1)

where OA and OB are boundary representations on A and B
of an operator O inserted somewhere in the bulk. For this
condition to hold for any O and any suitable A and B, the states
in Hcode must necessarily possess multipartite and nonlocal
entanglement to allow for operators that act equivalently on
distant parts of the boundary.

In this work, we show that the holographic pentagon code
implements these properties through an underlying fermionic
structure. To motivate the use of fermions in the context of
holographic quantum error correction, consider a simple toy
model of entangled fermionic modes. Throughout, we denote
fermionic canonically anticommuting operators by f j satis-

fying f †
j fk + fk f †

j = δ j,k and distinguish the vacuum state

vector |∅〉 satisfying f j |∅〉 = 0 for any j. The counterpart of
a Bell pair for fermions is the so-called BCS state which has
the form

|ψBCS〉 = (1 + f †
j f †

k )|∅〉. (2)

By a simple calculation, we find that

f j |ψBCS〉 = f †
k |ψBCS〉 = f †

k |∅〉, (3)

which implies that if j, k are boundary indices, we found a
mapping between boundary operators that resembles (1). For
holographic quantum error correction, however, this mapping
is insufficient: After acting with the operator, the result (3) is
an unentangled Fock state vector f †

k |∅〉, which is no longer
in the desired code space of entangled states. Furthermore,
|ψBCS〉 does not exhibit any multipartite entanglement nec-
essary for holography [32]. Fortunately, both problems can
be resolved by fermionic mode fractionalization by means of
Majorana dimers. Consider the action of Majorana operators,
defined as

γ2k−1 = f †
k + fk , γ2k = i ( f †

k − fk ), (4)

and fulfilling {γ j, γ k} = 2δ j,k , on the BCS state vector (2) as

γ2 j−1 |ψBCS〉 = −i γ2k |ψBCS〉 = ( f †
j + f †

k )|∅〉, (5)

γ2k−1 |ψBCS〉 = i γ2 j |ψBCS〉 = ( f †
j − f †

k )|∅〉. (6)

This shows that a mapping between Majorana operators,
unlike one relying on standard fermionic operators as in
Eq. (3), can be performed without destroying entanglement.
To achieve multipartite entanglement, BCS-type states are
insufficient. However, a suitable model is provided by the
hyperbolic pentagon code (HyPeC). Let us briefly review its
construction: The HyPeC is an isometry between bulk and
boundary degrees of freedom. An AdS time slice is discretized
by a finite tiling of M pentagons, the Poincaré disk projection
of which is shown in Fig. 1. Each pentagon is associated with
one logical qubit, i.e., one bulk degree of freedom, encoded
in five spins (the pentagon edges) via the [[5, 1, 3]] quantum
error-correcting code. This code can be expressed by a six-leg
tensor, with one “bulk” leg corresponding to the logical qubit
and the remaining five to the physical spins. The tiling is
connected by tracing out spins on the edges of two adjacent
pentagon tiles, i.e., by contracting the corresponding tensor
indices. This contraction can be understood as a projection of
the spins on the two connected edges onto a Bell pair. In this
paper, we will usually consider this setup with each bulk input
fixed to a certain state. Before contraction, the bulk is then
effectively composed of a product state of M local quantum
states on five spins each. Contraction locally entangles the
spins with each other, thus leading to a larger entangled state
on the remaining N spins at the boundary of the pentagon
tiling. If we consider instead an arbitrary bulk input on each
pentagon,1 contraction combines the local five-spin Hilbert
spaces into a larger N-spin Hilbert space that defines our code
space Hcode.

By merit of the [[5, 1, 3]] code, the five spins on the edges
of each pentagon are absolutely maximally entangled. A pure
state of n qubits is absolutely maximally entangled if all of its
reductions to �n/2� subsystems are maximally mixed [33–35]
and hence the states are maximally entangled over all such
cuts. The isometric properties of the code follow from this
construction.

1For the purposes of this paper, bulk inputs between different
pentagons are assumed to be unentangled.
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A useful approach to understanding these states is to rep-
resent this spin picture of the HyPeC in terms of Majorana
fermions [16]. This is achieved by a Jordan-Wigner transfor-
mation between L spins and 2L Majorana modes:

γ2k−1 = Z1Z2 . . . Zk−1Xk,

γ2k = Z1Z2 . . . Zk−1Yk, (7)

where we have used the k-site Pauli operators defined as

Xk := 12
⊗(k−1) ⊗ σx ⊗ 12

⊗(L−k),

Yk := 12
⊗(k−1) ⊗ σy ⊗ 12

⊗(L−k),

Zk := 12
⊗(k−1) ⊗ σz ⊗ 12

⊗(L−k),

(8)

in terms of the Pauli matrices σx, σy, σz. It will be useful to
define the total parity operator

Ptot = Z1Z2 . . . ZL = (−i)L γ 1 γ 2 . . . γ2L . (9)

In the HyPeC, we take L = 5 spins for each pentagon. The
logical eigenvectors |0̄〉 and |1̄〉 of the [[5, 1, 3]] code have
Ptot eigenvalues +1 and −1, respectively, corresponding to
even and odd fermionic parity. For fixed bulk input (and thus
parity), the stabilizers are quadratic in Majorana operators.
Thus, |0̄〉 and |1̄〉 are ground-state vectors of a Hamiltonian
describing free Majorana modes, given by

H = i
L=5∑
j=1

(Ptot )
jγ jγ j+5, (10)

where Ptot = ±1 is the eigenvalue of Ptot and indices follow
periodic boundary conditions. If we replace Ptot → Ptot , we
recover the original [[5, 1, 3]] stabilizer Hamiltonian with
its twofold degenerate ground state. Before considering con-
tractions of these fermionic code states, we now develop a
comprehensive framework for Majorana dimers that allows us
to study the fermionic HyPeC in detail.

III. MAJORANA DIMERS

A. Definition

Majorana dimers are effectively a reordering of the vacuum
state in terms of Majorana modes. The L-fermion vacuum
state vector is defined by being annihilated by all of the
fermionic annihilation operators fk for k ∈ {1, 2, . . . , L} as

fk |∅〉 = 1
2 (γ2k−1 + i γ2k )|∅〉 = 0. (11)

Thus, the vacuum state effectively relates L pairs of Majorana
modes (2k−1, 2k) in an operator equation. By permuting
Majorana indices, we can generalize this state to any pairing
of modes. Such a Majorana dimer state is determined via L
conditions on distinct pairs ( j, k) (choosing j < k as conven-
tion) of Majorana operators

(γ j + ip j,k γ k )|ψ〉 = 0. (12)

The dimer parities p j,k ∈ {−1, 1} give each pair an “orienta-
tion” with respect to the index ordering. We refer to pj,k = 1
as “even” and p j,k = −1 as “odd.” To restate this, a Majorana
dimer state is defined to be a (normalized) state vector of
L fermionic modes which is annihilated by L independent

conditions of the form (12). Note that we have fixed a vacuum
state which under the Jordan-Wigner transformation corre-
sponds to a product state in spins, but nontrivial Majorana
dimer states can be highly entangled, as we shall see.

Equivalently, we may characterize Majorana dimer state
vectors |ψ〉 as ground states of specific quadratic Hamilto-
nians: Multiplying (12) with its Hermitian conjugate from the
left yields

〈ψ |(2 + 2 i p j,k γ j γ k )|ψ〉 = 0, (13)

which implies that the Hermitian operator i γ j γ k has expec-
tation value −p j,k . We can now construct the Hamiltonian

H = i

2

∑
( j,k)∈�

p j,k γ j γ k, (14)

where we sum over all L Majorana dimers � = {( j, k)}. H is
a parent Hamiltonian of |ψ〉, meaning that |ψ〉 is the unique
ground-state vector of H with energy −L, being in the −1
eigenspace of all the summands.

These two equivalent characterizations are most intu-
itively visualized through a diagrammatic notation. Consider
L fermionic modes, ordered as a chain visualized by an Lgon,
with the Majorana modes shown as dots on the edge (mode).
Arrows between the Majorana modes represent the pairing.
For example, for L = 5, the state visualized by

(15)

is the ground state of the Hamiltonian

H = i

2
(γ1 γ2 + γ3 γ6 − γ4 γ5 + γ7 γ9 + γ8 γ10). (16)

An arrow j → k along the index orientation ( j < k, blue)
corresponds to a dimer parity pj,k = +1, while an arrow
against it ( j > k, orange) corresponds to pj,k = −1. Note
that these diagrams only specify the state up to a scalar
c ∈ C, as c affects neither the ground-state property nor the
dimer conditions (12). A particularly symmetric case is the
aforementioned vacuum |∅〉 represented by a diagram

(17)

for L = 5. Unsurprisingly, |∅〉 is also the ground-state vector
of the Hamiltonian H0 = ∑

k nk with the local number oper-
ators nk = f †

k fk = (1 + i γ2k−1 γ2k )/2. We can construct any
Majorana dimer state from the vacuum by applying swap op-
erators S j,k := Ptot (γ j − γ k )/

√
2 onto |∅〉, with Ptot being the

total parity operator defined in the last section. For example,

033079-3



A. JAHN, M. GLUZA, F. PASTAWSKI, AND J. EISERT PHYSICAL REVIEW RESEARCH 1, 033079 (2019)

the state expressed by diagram (15) is given by S8,9S4,6|∅〉. It
should be noted that while these swap operators violate the
fermionic superselection rule in an actual fermionic systems,
we are merely interested in Majorana dimers as an effective
representation of spins (such as the HyPeC).

As Majorana dimer states are Gaussian, all expectation
values are determined by the entries of the covariance matrix
with entries

�
ψ

j,k = i

2
〈ψ |[γ j, γk]|ψ〉. (18)

We can read off �
ψ

j,k directly from the corresponding diagram:
As |ψ〉 is constructed from |∅〉 by acting with a product S of
swap operators mapping each index k to an index S(k), �

ψ

j,k is

simply �∅
j,k with interchanged rows and columns:

�
ψ

j,k = i

2
〈∅|S†[γi, γ j]S|∅〉 (19)

= i

2
〈∅|[γ S(i), γ S( j)]|∅〉 = �∅

S( j),S(k). (20)

The only nonzero entries of the vacuum covariance matrix
are �∅

2k,2k−1 = −�∅
2k−1,2k = 1. We can thus infer �

ψ

j,k from its
diagram using the rules

�
ψ

j,k =
⎧⎨
⎩

−1 for an arrow j → k
1 for an arrow k → j
0 if no arrow connects j and k

. (21)

For example, the covariance matrix for diagram (15) is

(22)

with color-coded entries (orange = +1, blue = −1). Note that
we have chosen the colors to match with the dimer parities
when reading the entries above the main diagonal ( j < k). We
assume that the state vector |ψ〉 is normalized. Equivalently,
we can think of the swap operators as acting on the Hamilto-
nian, yielding Hψ = S H0 S†. Clearly, the spectrum of Hψ is
simply a permutation of the spectrum of H0, consistent with
the covariance matrix picture.

By Eq. (10), the [[5, 1, 3]] code states are ground states of
Hamiltonians quadratic in Majorana operators and can thus

be represented as Majorana dimers. As diagrams, they are
given by

, (23)

. (24)

As we will see in the next section, the code distance d = 3
between these two states in terms of Pauli operations can be
shown graphically.

B. Pauli operations and total parity

As the Majorana operators are obtained from spin op-
erators through a Jordan-Wigner transformation, local Pauli
operations in the spin picture generally act nonlocally on the
Majorana dimers. Specifically, the reverse transformation of
(7) is given by

Xk = (−i)k−1
2k−1∏
j=1

γ j,

Yk = (−i)k−1

⎛
⎝2k−2∏

j=1

γ j

⎞
⎠ γ2k, (25)

Zk = −i γ2k−1 γ2k .

A Majorana operator γ k acting on a Majorana dimer state flips
the parity of the dimer ending on site k. We show this by
noting that if a state vector |ψ〉 is annihilated by the operator
γ a + i pγ b (with dimer parity p ∈ {−1,+1} and a �= b), then
both γ a |ψ〉 and γ b |ψ〉 are annihilated by γ a −i pγ b:

(γa − i pγb)γa|ψ〉 = γa(γa + i pγb)|ψ〉 = 0, (26)

(γa − i pγb)γb|ψ〉 = −γb(γa + i pγb)|ψ〉 = 0. (27)

All other dimer conditions remain unaffected. As a graphical
notation, we highlight the affected edges of the state in red.
Some examples of these operations on a Majorana dimer state
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vector |ψ〉 are shown here:

, (28)

, (29)

. (30)

When both ends of a dimer are acted upon with a Majorana
operator, the local parity stays the same. Note that Zk opera-
tions only affect the kth edge, while Xk and Yk combine a local
Majorana operation with a Z string on the first k−1 edges.
Using this graphical calculus, we can now see that it requires
three Pauli operations to map (23) into (24) or each into itself.
These correspond to bit flip (e.g., i γ 1 γ 3 γ 5 = X1Y2X3) and
phase flip errors (e.g., i γ 1 γ 6 = Y1Z2Y3), respectively.

Now consider the total parity operator Ptot = ∏
i Zi, which

affects all Majorana sites at once. Clearly, acting with Ptot

leaves the state invariant (up to the parity eigenvalue), which
implies that all Majorana dimer states have definite total parity
ptot. In fact, this parity is given by

ptot = (−1)Nc
∏
( j,k)

p j,k, (31)

depending on the dimer parities pj,k of all dimers ( j, k) as well
the number Nc of crossings between dimers. This statement
can be proven inductively: We start with the vacuum |∅〉
with ptot = +1. It corresponds to a diagram with pk = +1
for all dimers k and no crossings. We can now construct
any state vector |ψ〉 from |∅〉 by applying swap operators
S j,k = Ptot (γ j − γ k )/

√
2. Since Si, j anticommutes with Ptot,

each swap inverts ptot. To see that (31) reflects this, consider
how a swap S j,k affects the pairs ending in j and k for each
possible initial configuration as

. (32)

Up to mirroring, relabeling, and relative shifting of indices,
all possible swaps belong to one the four categories shown
above. The first two swaps flip one local parity but create no
additional crossings; the last two either add or remove one
crossing while flipping an even number of parities. Thus, (31)
is always satisfied. Note that we are free to move around the
dimer curve between the fixed endpoints, which means we can
make two (or more) paths overlap. However, this will always
change the number of crossings by an even number. For
example, the logical 0̄ state of the [[5, 1, 3]] code corresponds
to both of the following diagrams (each with ten crossings):

. (33)

As expected, (31) tells us that this state has positive parity.
For a fixed dimer configuration but variable dimer parities
pk , only the second factor of (31) is relevant. Thus, we find
that acting with an Xk or Yk operator, which changes an odd
number of dimer parities, also flips the total parity. A Zk error,
which always flips two dimer parities, leaves the total parity
invariant.

C. Contracting dimers

We will now show how the notion of tensor network
contraction applies to Majorana dimer states. To begin with,
consider a state of N spins

|ψT 〉 =
∑

j∈{0,1}×N

Tj1,..., jN | j1, . . . , jN 〉. (34)

Here, the amplitudes Tj1,..., jN = 〈 j1, . . . , jN |ψ〉 can be viewed
as a tensor T which fully specifies the state vector |ψT 〉. A
tensor network is a means of specifying a tensor describing a
state of a large number of spins through multiple contractions
of tensors of a smaller rank. Specifically, the contraction of
two tensors S and T of ranks NS and NT between the last index
of S and the first index of T is defined to be a new tensor U of
rank NU = NS + NT − 2, with entries

Uk1,k2,...,kNU
= Sk1,k2,...,kNS−1,0 T0,kNS ,kNS+1,...,kNU

+ Sk1,k2,...,kNS−1,1 T1,kNS ,kNS+1,...,kNU
. (35)

We see that by contracting the respective tensors, this opera-
tion allows us to merge two state vectors |ψS〉 and |ψT 〉 into a
larger one |ψU 〉 given by

|ψU 〉 =
∑

k∈{0,1}×N ′
Uk1,k2,...,kN ′ |k1, . . . , kN ′ 〉. (36)

A tensor network state can thus describe a large state by the
relatively few entries of its contracted tensors. This process
can be generalized to fermions by identifying the spin basis
with a fermionic one as

| j1, . . . , jN 〉 ↔ ( f †
1 ) j1 ( f †

2 ) j2 . . . ( f †
N ) jN |∅〉. (37)

In this picture, tensors are associated with pure fermionic
states. As these expressions only use creation operators, they
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obey a Grassmann algebra. The tensor contraction (35) can
then be expressed by a Grassmann integration over fermionic
degrees of freedom [36]. Specifically, a contraction of two
fermionic state vectors |φ〉 and |ψ〉 into a state vector |ω〉 over
the same indices as in Eq. (35) has the form

|ω〉 =
∫

d f †
M+1d f †

M (1 + f †
M f †

M+1)|φ〉|ψ〉 (38)

=
∫

d f †
M+1d f †

M e f †
M f †

M+1 |φ〉|ψ〉, (39)

where we have used the Grassmann integration
∫

d f †
k f †

k
n =

δn,1 (for more information, see Refs. [36–39]). Note that∫
d f †

k acts like an annihilator fk on a fermionic state, with a
subsequent projection onto the fermionic subspace excluding
the kth mode. This requires a relabeling of the remaining
degrees of freedom and a truncation of the Jordan-Wigner
string in the corresponding spin representation.

We can now apply this machinery to Majorana dimer
states. In our graphical language, tensor contraction is equiv-
alent to connecting two polygon edges and integrating out the
four Majorana modes on them. What happens to the dimers
of the original states? It is easy to see that dimers ( j, k) of a
state vector |φ〉 not connected to the contracted edges remain
dimers, i.e., if (γ j + i p j,k γ k )|φ〉 vanishes, we also find

(γ j + i p j,k γ k )
∫

d f †
M+1d f †

M e f †
M f †

M+1 |φ〉|ψ〉

=
∫

d f †
M+1d f †

M e f †
M f †

M+1 (γ j + i p j,k γ k )|φ〉|ψ〉 = 0,

(40)

as γ j and γ k commute with the integration. We now claim
that the dimers connected to the contracted edge become new
dimers of the contracted state ω. This leads to the following
statement.

Theorem 1 (Contractions of Majorana dimer states). The
contraction of two Majorana dimer state vectors |φ〉 and |ψ〉
yields either a new Majorana dimer state vector |ω〉 or zero.

An example for the contraction of two pentagon state
vectors |φ〉 and |ψ〉 is given by

. (41)

We have visualized the contraction by a pair of dashed lines.
In this example, dimers not connected to the contracted edges
are omitted. The upper diagram corresponds to the conditions

(γ 4 − i γ 10)|φ〉 = 0, (γ 11 + i γ 19)|ψ〉 = 0, (42)

(γ 5 − i γ 9)|φ〉 = 0, (γ 12 − i γ 15)|ψ〉 = 0. (43)

We now prove that (42) implies (γ 4 − i γ 19)|ω〉 = 0 for the
contracted state vector |ω〉, i.e., that the two original dimers
fuse into a larger one:

(γ4 − i γ 19)|ω〉

=
∫

d f †
6 d f †

5 e f †
5 f †

6 (γ 4 − i γ 19)|ψ〉|φ〉

=
∫

d f †
6 d f †

5 e f †
5 f †

6 (i γ 10 + γ 11)|ψ〉|φ〉

=
∫

d f †
6 d f †

5 e f †
5 f †

6 (− f †
5 + f †

6 + f5 + f6 )|ψ〉|φ〉

=
∫

d f †
6 d f †

5 (− f †
5 + f †

6 − f †
6 f †

5 f5 + f †
5 f †

6 f6 )|ψ〉|φ〉
= 0, (44)

where we have used the identities
∫

d f †
k fk = 0 and

{ fk , f †
l } = δk,l . A similar proof using (43) leads to (γ5 +

i γ 15)|ω〉 = 0.
The full proof for all possible dimer contractions is given

in Appendix A. The resulting rules are the following:
(1) Contracting neighboring edges k and k+1 removes

the Majorana modes {2k − 1, 2k, 2k + 1, 2k + 2}. The dimers
ending on 2k − 1 and 2k + 2 as well as 2k and 2k + 1 are
fused into larger dimers.

(2) The dimer parity pj,k of a fused dimer is the product
of parities of the original dimers. In addition, every crossing
of the path of a contracted dimer with itself reverses p j,k .

(3) Every contraction that creates closed loops leads to a
vanishing contracted state if at least one loop has an odd dimer
parity.

The last case refers to diagrams such as the following:

(45)

Loops with even total dimer parity only change the contracted
state by a nonzero constant.

D. Ordering and cyclic permutations

As fermionic operators anticommute, defining a chain of
fermionic sites requires a definite ordering of the site indices.
This is also true for the Majorana modes that make up Ma-
jorana dimer states. For convention, we assume clockwise-
oriented indices starting from an initial index which we call
the pivot and mark by a little circle in the following diagrams.
Shifting the pivot corresponds to a cyclic permutation of all
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indices:

. (46)

How does this transformation affect the dimer parities? First,
let us interpret (46) as a cyclic permutation of Majorana
indices through an operator M4 acting on Majorana modes.
For example, in the initial labeling we find (γ5 + i γ 7)|ψ〉 =
0. After a cyclic permutation |ψ〉 �→ |ψ ′〉 = M4|ψ〉 with
M4 γ k M−1

4 = γ (k+4) mod 10, it follows that

(γ9 + i γ 1)|ψ ′〉 ∝ (γ1 − i γ 9)|ψ ′〉 = 0. (47)

Hence, while a cyclic permutation of Majorana operators does
not change the direction of the arrows, it flips the local parities
of dimers ending on the edges between the initial and final
pivot (with indices i, i + 1, . . . , f ), effectively acting like a
product of all Majorana operators γ2i−1, γ2i, . . . , γ2 f on these
edges.

However, in our use of Majorana dimers as a description
of the HyPeC, the underlying physical system is one of spins,
where (Pauli) operators on different sites commute. Hence, we
are interested in cyclic permutations not of Majorana modes
but of the underlying spin degrees of freedom. This modifies
the previous result, as each spin permutation effects a different
Jordan-Wigner transformation. Consider an initial spin state
vector

|ψ〉 =
∑

k∈{0,1}×N

Tk1,k2,...,kN |k1, k2, . . . , kN 〉. (48)

A permutation i �→ σ (i) of indices i gives rise to the spin
state vector |ψ̃〉 = Sσ |ψ〉, where Sσ is the spin-picture unitary
permutation operator. Explicitly,

|ψ̃〉 =
∑

k∈{0,1}×N

Tk1,k2,...,kN |σ (k1), σ (k2), . . . , σ (kN )〉

=
∑

j∈{0,1}×N

T̃j1, j2,..., jN | j1, j2, . . . , jN 〉 (49)

with

T̃j1, j2,..., jN = Tσ−1( j1 ),σ−1( j2 ),...σ−1( jN ). (50)

In terms of fermionic operators, the initial- and final-state
vectors |ψ〉 and |ψ̃〉 are identified as

|ψ〉 =
∑

k∈{0,1}×N

Tk1,k2,...,kN ( f †
1 )k1 ( f †

2 )k2 . . . ( f †
N )kN |∅〉, (51)

|ψ̃ 〉 =
∑

k∈{0,1}×N

T̃k1,k2,...,kN ( f̃ †
1 )k1 ( f̃ †

2 )k2 . . . ( f̃ †
N )kN |∅〉. (52)

The operators f †
k and f̃ †

k are fermionic operators defined
by the respective Jordan-Wigner transformations. Consider a
one-step cyclic spin permutation i �→ (i + 1) mod N through
a permutation operator S+1. The Majorana operators trans-
form as γ k �→ S+1 γ k S†

+1 and explicitly as

γ 1 = X1 �→ X2 = Z1 γ̃ 3,

γ 2 = Y1 �→ Y2 = Z1 γ̃ 4,

γ 3 = Z1X2 �→ Z2X3 = Z1 γ̃ 5,

. . . (53)

γ 2N−2 = Z1 . . . ZN−2YN−1 �→ Z2 . . . ZN−1YN = Z1 γ̃ N ,

γ 2N−1 = Z1 . . . ZN−1XN �→ X1Z2 . . . ZN = −Z1 γ̃ 1 Ptot,

γ 2N = Z1 . . . ZN−1YN �→ Y1Z2 . . . ZN = −Z1 γ̃ 2 Ptot.

Hence, the transformed Majorana operators are not the Ma-
jorana operators defined by the new Jordan-Wigner transfor-
mation. Instead, under the cyclic permutation S+1, all γ k for
k < 2N − 1 transform as γ k �→ Z1 γ̃ k+2, while γ2N−1 and γ2N
transform with an additional total parity Ptot = Z1Z2 . . . ZN .
This changes the dimer conditions: If the state vector |ψ〉 is
annihilated by the operator γ j + i p j,k γ k (with j < k), then
this operator changes under cyclic spin permutation to

(γ j + i p j,k γ k )|ψ〉 �→ S+1(γ j + i p j,k γ k )S†
+1S+1|ψ〉

= (S+1 γ j S†
+1 + i p j,k S+1 γ k S†

+1)|ψ̃〉.
(54)

Let us distinguish this result by the parity of |ψ̃〉. For even
parity Ptot|ψ̃〉 = |ψ̃〉, we find

(S+1 γ j S†
+1 + i p j,k S+1 γ k S†

+1)|ψ̃〉 =

⎧⎪⎨
⎪⎩

Z1(γ̃ j+2 + i p j,k γ̃ k+2)|ψ̃〉, j, k < 2N − 1,

Z1(γ̃ j+2 − i p j,k γ̃ k+2−2N )|ψ̃〉, j < 2N − 1, k � 2N − 1,

−Z1(γ̃1 + i p j,k γ̃ 2)|ψ̃〉, j = 2N−1, k = 2N.

(55)

For odd parity Ptot|ψ̃〉 = −|ψ̃〉, the result is given by

(S+1 γ j S†
+1 + i p j,k S+1 γ k S†

+1)|ψ̃〉 =

⎧⎪⎨
⎪⎩

Z1(γ̃ j+2 + i p j,k γ̃ k+2)|ψ̃〉, j, k < 2N − 1,

Z1(γ̃ j+2 + i p j,k γ̃k+2−2N ) |ψ̃ 〉, j < 2N − 1, k � 2N − 1,

Z1(γ̃1 + i p j,k γ̃ 2) |ψ̃ 〉, j = 2N − 1, k = 2N.

(56)

For odd-parity states, we thus find from (56) that the dimer
parities flip as one dimer endpoint moves past the pivot, just as

in Eq. (47). However, for an even-parity state, (55) tells us that
the dimer parities remain invariant under spin permutations.
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This is the only difference between cyclic permutations of
Majorana modes and of the underlying spin sites. Omitting
arrows and showing only dimer parities, spin cyclic permuta-
tion correspond to diagrams such as

, (57)

.

(58)

These two diagrams illustrate a more general observation.
Namely, the upper diagram shows a parity-even Majorana
dimer state, where changing the index labeling (i.e., shifting
the pivot) does not change the dimer parities. The lower one,
however, is parity odd: The red-shaded edges, following the
path along which the pivot was moved, represent Majorana
operators on the edges that flip the connected dimer parities.
Note that there are two possible paths (clockwise and anti-
clockwise) between the initial and final position of the pivot
and that both lead to the same final state up to a total sign.

As a special case, consider the behavior of the logical code
state vectors |0̄〉5 and |1̄〉5 of the [[5,1,3]] code under cyclic
permutations (here, for a clockwise shift of two edges):

, (59)

.

(60)

We see that a cyclic permutation of these states is equivalent
to a rotation of its dimer parities, which is simply a rotation
of the corresponding diagram. This is because the tensors
T corresponding to these states are invariant under cyclic
permutations of indices, i.e., Ti, j,k,l,m = Tm,i, j,k,l . The explicit
construction of these states can be easily performed using
matchgate tensors [16].

E. Computing entanglement

The entanglement entropy SA = −trA(ρA log ρA) of a sub-
system A and its corresponding reduced density matrix

ρA = trAC (ρtot ) can be evaluated diagrammatically. Given the
2M × 2M Majorana covariance matrix �A of the subspace
belonging to A (i.e., the rows and columns of the full 2L × 2L
covariance matrix � whose Majorana modes are contained
in A), we can perform a special orthogonal transformation
�A = Q�̃AQT to the form

�̃A =
M⊕

i=1

(
0 λi

−λi 0

)
, (61)

where ±iλk are the eigenvalues of �A, some of which may be
zero. From this form, the entanglement entropy follows as

SA =
M∑

i=1

(
−1 + λi

2
log

1 + λi

2
− 1 − λi

2
log

1 − λi

2

)
. (62)

As we have found in Sec. III, the covariance matrix entries
� j,k of Majorana dimer states can only be ±1 or zero.
Consider the jth row (or column) of the submatrix �A: The
dimer connected to Majorana mode j ends on another mode k
(with 1 � k � 2L). If j, k ∈ A, the j and kth row will jointly
contribute to a λi of ±1, i.e., zero entanglement entropy.
However, if j ∈ A, k �∈ A, the jth row of �A will be zero. As
the number of such “dimer leaks” must be even, each pair
contributes to a vanishing λi. Thus, each dimer connecting A
with its complement AC contributes an entanglement entropy
of 1

2 log 2, i.e., half of an EPR pair, a maximally entangled
pair of qubits. Graphically, the entanglement entropy reduces
to counting such dimers

SA = (# dimers between A and AC) × log 2

2
. (63)

Consider the following example state:

. (64)

The subsystem A comprises four edges with the Majorana
modes 9 to 16. As four dimers connect A with AC, the
entanglement entropy is given by SA = 2 log 2. Effectively,
SA counts the number of dimers across the cut γA separating
A from AC (shown as a dashed line). For contracted states,
SA � |γA| log 2, where |γA| is the length of the shortest cut
through the contracted network. Thus, we recover the tensor
network interpretation of the Ryu-Takayanagi surface γA,
which appears in continuum AdS/CFT in the holographic
entanglement entropy formula [40]

SA = |γA|
4 GN

, (65)

which expresses SA in terms of the area of the minimal surface
γA, denoted |γA|, and Newton’s constant GN . In our two-
dimensional bulk space, γA is simply a geodesic and |γA| is
its length. We will see later how the discrete analog of (65),
where 1/(4GN ) → log 2, is saturated in the HyPeC.
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The definition of entanglement entropy SA can be ambigu-
ous under a mapping from spins to fermions, as fermionic
operators on different sites do not commute. As long as we
consider connected subsystems A, such a mapping (37) yields
the same SA, as both are related only by cyclical permutation
of fermionic sites, which only leads to a sign flip along the
permuted rows and columns of the covariance matrix �. For
a region A composed of disconnected parts, SA is generally
not preserved by a mapping from spins to fermions. If, as in
the HyPeC model, we want to compute the spin entanglement
entropy in the effective fermionic picture, we first need to
permute the spin degrees of freedom so that A becomes
connected and then apply the mapping to fermions. However,
such a spin transposition usually breaks the Majorana dimer
structure, as it leads to fermionic states that are not ground
states of Hamiltonians quadratic in Majorana operators. Thus,
(63) describes fermionic entanglement that remains valid in
the spin picture only for connected regions A.

In the fermionic picture, we can easily generalize (63) to
disjoint subsystems, such as the mutual information

I (A : B) = SA + SB − SAB

= (# dimers between A and B) × log 2. (66)

Compared to (63), each dimer in Eq. (66) is counted twice.
In terms of the geometry of the dimer graph itself, (66)
corresponds to a system with an exact area law [41]. One of
the properties of this form of the mutual information is an
always vanishing tripartite information [42]

I3(A : B : C) = I (A : B) + I (A : C) − I (A : BC)

= 0. (67)

This implies that Majorana dimer models are compatible with
holographic theories, where I3 � 0 [43]. Furthermore, as we
show in Appendix B, the spectrum of Rényi entropies

S(n)
A = 1

1 − n
log tr

(
ρn

A

)
(68)

is flat, a property of the underlying stabilizer state structure
[44]. We show in Appendix B that this property also follows
from the Majorana dimer picture for arbitrary local superposi-
tions of bulk input in the HyPeC under certain constraints on
the (compact) boundary region considered.

To clarify the connection between Majorana dimers and
EPR pairs, we can explicitly construct Bell states from pairs
of dimers. Consider the following two even-parity dimers
connecting edges j and k (with j < k) without crossing:

. (69)

This corresponds to two conditions on the total state
vector |ψ〉,

(γ2 j−1 + i γ2k )|ψ〉 = ( f †
j + f j − f †

k + fk )|ψ〉 = 0,

(γ2 j + i γ2k−1)|ψ〉 = i ( f †
j − f j + f †

k + fk )|ψ〉 = 0. (70)

As no entanglement between edges j and k and the rest of the
system exists, |ψ〉 should be factorizable with regards to these

TABLE I. Bell states expressed as Majorana dimers.

degrees of freedom:

|ψ〉 ∝ (a + b f †
j + c f †

k + d f †
j f †

k )(. . . )|∅〉, (71)

where (. . . ) includes terms containing creation operators
f †
i with i �= j, k. Up to a complex phase, the parameters

a, b, c, d ∈ C can be fixed using (70), which leads to b = c =
0 and a = d = 1/

√
2 (assuming normalization). This corre-

sponds to a Bell state vector |
+〉 = (|0〉|0〉 + |1〉|1〉)/
√

2 on
sites j and k. This analysis can be repeated for all possible
dimer configurations, yielding Table I. Conveniently, this
allows us to form superpositions of dimers, for example,

. (72)

Each diagram in this expression corresponds to a normalized
Majorana dimer state. Note that this diagram confirms our in-
tuition that a contraction, which is the sum of projections onto
|0〉 and |1〉, is equivalent to connecting pairs of Majoranas via
dimers. In a mild abuse of notation, we may thus write

(73)

to express a contraction (dashed lines). This also allows us to
fix relative factors that appear through contraction, such as in
the following projection of (72) onto a |0〉 state vector:

. (74)

The second term vanishes from the condition 〈0|1〉 = 0, in
agreement with the rule that loops of total odd parity vanish
[compare Eq. (45)]. Note that the arrow orientation of the
dimer for 〈0| is reversed, as it is used in its adjoint form
〈0| (more on Hermitian conjugates in the next section). Pro-
jections like (74) can be evaluated for each of the entries in
Table I, always leading to a resulting factor of 1/

√
2. This

result is heavily used in Appendix B, where we study the
entanglement properties of superpositions of HyPeC code
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states, where norms of Majorana dimer states become rele-
vant.

F. Orthogonality and completeness

Our diagrammatic notation can also express inner products.
Consider the bra 〈ψ | corresponding to a ket |ψ〉. Clearly,
if (γ j + i γ k )|ψ〉 = 0 then 〈ψ |(γ j − i γ k ) = 0 holds for the
adjoint. Thus, we can visualize adjoints by inverting all arrows
and corresponding parities, for example (omitting labels):

, . (75)

The inner product 〈ψ |ψ〉 is a contraction between |ψ〉 and 〈ψ |
over all indices, expressed as

. (76)

The right-hand side, showing a “flipped” 〈ψ |, represents a
Choi-Jamiolkowski isomorphism expressing 〈ψ | in the same
Hilbert space as |ψ〉. This involves an inversion of the ori-
entation which flips all dimer parities. As all diagrams are
defined for normalized state vectors that satisfy 〈ψ |ψ〉 = 1.
Furthermore, we can easily evaluate whether two diagrams
correspond to orthogonal states as a contraction 〈ψ |φ〉 of |ψ〉
and |φ〉 vanishes for any odd-parity loop (see Appendix A). In
particular, |ψ〉 and |φ〉 are orthogonal if they share the same
correlation structure (i.e., pairing of Majorana modes) but
differ in at least one dimer parity. This allows us to construct
the complete Hilbert space with Majorana dimer states on
N edges by fixing a correlation structure and then flipping
through all 2N possible dimer parities, resulting in 2N mutu-
ally orthogonal state vectors. Since the Hilbert space is also 2N

dimensional, we can express any state in it by a superposition
of Majorana dimer states under the given correlation structure.
This is equivalent to obtaining a orthogonal stabilizer state
basis by considering all 2N sign combinations of N stabilizer
generators.

IV. THE HYPEC WITH MAJORANA DIMERS

A. Overview

As we saw in the previous section, the computational basis
logical code states of the [[5, 1, 3]] quantum error-correcting
code can be expressed as Majorana dimers. Furthermore,
we showed that identifying Majorana dimer states as tensors
and contracting them yields new Majorana dimer states and
that these contractions are easy to evaluate diagrammatically.
Because the HyPeC is built from tensors each representing the
[[5, 1, 3]] code, we find the following key result.

Theorem 2 (Representing the HyPeC with Majorana
dimers). The hyperbolic pentagon code (HyPeC) with logical
bulk input fixed to local basis states 0̄ or 1̄ yields a Majorana

dimer state on the boundary. Each input corresponds to a
(unique) pattern of dimer parities on the boundary state.

While fermionic modes require an explicit ordering, we
show in Appendix C that different contraction orderings lead
to equivalent boundary states. We will now show how the ge-
ometry of the dimers in the HyPeC determines its properties,
using the tools developed in the previous section.

B. Dimers and entanglement structure

First, we will consider the physical properties of the HyPeC
for logical inputs fixed locally to 0̄ or 1̄. The code is con-
structed from a hyperbolic {5, 4} tiling,2 with each tile now set
to (23) or (24) (the full HyPeC also allows for superpositions
between the two). As the model consists of asymptotically
infinite tiles, we have to define a UV cutoff at which the tiling
is truncated. We do this by starting with a central tile and itera-
tively adding tiles on all free edges. The number n of iterations
thus gives the graph distance between each boundary tile and
the center, determining the cutoff. Such a series of iterations
for an all-0̄ bulk input is visualized in Fig. 2.

The contracted dimers are drawn as geodesics in the
Poincaré disk. This is not an arbitrary choice, as the dimers
follow discrete geodesics (i.e., shortest paths) in the {5, 4}
tiling. Figure 3 shows the n → ∞ limit both for an example
of two dimers and the whole contraction. Because of the
particular property of the {5, 4} tiling that the pentagon edges
connect to continuous geodesics, the asymptotic endpoints of
a contracted dimer are also endpoints of such a geodesic.3

Tracing this geodesic back into the bulk, we see that it passes
along all tiles that contained the uncontracted dimer pieces.
Furthermore, as Fig. 3 also shows, there are always two dimers
with the same pair of asymptotic boundary points, resulting
in a bulk geodesic that is dual to a boundary Bell state.
While Fig. 3 only shows a uniform 0̄ bulk input, the dimer
parities generally differ with the input. The dimer pairs then
correspond to different types of Bell states, as in Table I. Note
that the Majorana modes composing the effective fermions of
these Bell states are located on neighboring boundary edges
at any finite cutoff. This elucidates the code’s error-correction
properties: Any product of pairs of Majorana operators i γ j γ k
acting on dimer endpoints ( j, k) can only change the state up
to a total sign and is thus a representation of a logical parity
operation in the bulk. While single Majorana operators are
nonlocal in terms of spins, pairs of Majorana operators on
neighboring sites can be expressed by a local pair of Pauli
operators [compare (25)]. For each pair of HyPeC dimers,
there then exists a boundary operator O of weight |O| = 4,
i.e., consisting of four Pauli operators acting on the boundary,
which represents a logical bulk operation. Thus, even for an
infinitely large number of HyPeC tiles, the code distance d
never exceeds d = 3, as such an O represents an error on the
code space.

2This Schläfli symbol denotes a polygon tiling with four pentagons
at each vertex.

3In the dual {4, 5} tiling, each four-sided tile contains an intersec-
tion of two such geodesics meeting at right angles.
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FIG. 2. Iterative contraction of the HyPeC for fixed bulk inputs of |0̄〉5 state vectors, with a cutoff after 3 iterations. Each step involves
contracting a further layer of tiles, starting from the center at n = 0. The asymptotic boundary of the Poincaré disk is drawn as a black circle.

Given this picture of pair entanglement on the boundary
through bulk geodesics, the dependence of the entanglement
entropy SA on the boundary subsystem size |A| = � can be
explicitly computed. Clearly, the position of this subsystem
affects the value of SA, as the distribution of entangled pairs in
Fig. 3 does not respect translation invariance on the boundary.
Thus, we consider the average expectation value E�(S) of the
entanglement entropy instead. The results in Fig. 4 show an
approximate logarithmic growth SA ∝ log �, as expected of a
critical theory. Fitting against the expected logarithmic scaling
expected for a CFT [45],

SA = c

3
log

(
L

πε
sin

π�

L

)
� c

3
log

�

ε
+ O((�/L)2), (77)

we find a central charge c ≈ 4.2 (dashed line in Fig. 4). For
a finite system of boundary size L, SA reaches its maximum
at � = L/2, in agreement with the full form of (77). Each
iteration preserves the entanglement entropy scaling of the
previous one up to � ≈ L/4. We already observed this behav-
ior in a previous analysis using matchgate tensors [16].

The logarithmic entanglement entropy scaling saturates the
bound we observed in Eq. (64): The maximum entanglement
between two boundary regions A and AC is proportional to
the maximum number of dimers that can connect them, or
equivalently, the number of edges |γA| of a minimal cut γA

through the bulk separating A from AC. Because of the hy-
perbolic geometry of the {5, 4} tiling, |γA| ∝ log |A|. As γA is
a geodesic in this discrete geometry, no other geodesic—and
thus no dimer—can pass through it twice (up to cases such as
in Fig. 6), turning the upper bound into an equality:

SA = |γA| log 2 ∝ log �. (78)

Clearly, this result is the same for each computational basis
state input, as changing this input only changes dimer parities,
leaving SA invariant.

We can modify the infrared (IR) structure of our boundary
states by modifying the central tiles. There are two possible
approaches: One is the replacement of the dimer structure
in these tiles, and the other is the complete removal of the
tiles. In the first case, we simply reconnect the dimers with
each other, so that they no longer follow geodesics. This
breaks the conditions for the saturation of the bound (78),
so that we reduce the entanglement of the boundary states.
The more tiles in the center are changed [e.g., to the vacuum
(17)], the further long-range entanglement is suppressed, so
that we approach a gapped boundary state with constant (i.e.,
area-law) entanglement.

The second case was already considered in the original
HyPeC model: When removing entire tiles, auxiliary bulk de-
grees of freedom (open edges, or open legs in tensor network
language) are opened up. The usual interpretation of this setup
is that of a black hole, or when extending the open edges
to a noncontracted auxiliary system, that of a wormhole. In
both cases, the boundary state of this setup should exhibit
an additional thermal entropy, which the Ryu-Takayanagi
formula interprets as a deformation of geodesics around the
horizon. In the language of Majorana dimers, this additional
entropy is explained by dimers ending on the open edges:
Following (62), any dimer in a region A that connects to a site
outside of A contributes log(2)/2 to the entanglement entropy
SA. When A becomes large, this entropy contribution scales
with the “horizon area” of the black hole, i.e., the number of
fermionic modes on the open edges. As we increase the radius
of the black hole, SA will begin to grow linearly with the size
of A, as expected of a thermal CFT.

FIG. 3. Left: A Majorana dimer pair in an infinitely large contraction of HyPeC tiles. The endpoints of both dimers meet at the asymptotic
boundary, and thus the dimer pair can be drawn as a double geodesic. Right: Full contraction for a 0̄ input on all tiles, with all dimers pairing
up.
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FIG. 4. Entanglement entropy scaling with the size � of the sub-
system block for successive iterations n of the contraction. Dashed
line is a logarithmic fit of the n → ∞ limit.

As we show in Appendix B, the entanglement entropy SA

of compact subsystems A of the HyPeC for logical bulk input
can be generalized to arbitrary local input, i.e., superpositions
of 0̄ and 1̄ that factorize between the tiles. Without additional
entanglement between bulk sites, SA is independent of the
specific bulk input, as long as the boundary regions A and
its complement AC are reducible to the same discrete bulk
geodesic γA via the greedy algorithm [5], which can be
completely rederived using Majorana dimers. This algorithm
iteratively removes tiles with three or four open edges (see
Fig. 5), deforming A into a region A′ further in the bulk, while
keeping SA = SA′ invariant. Figure 6 illustrates how some
boundary regions B are not reducible to the same geodesic
γB as their complement regions BC. In these cases, no cut
along the pentagon edges can completely separate dimers
with endpoints in B from those with endpoints in BC, leaving
dimers in a residual bulk region. While (63) still holds if local
bulk inputs are fixed to basis states 0̄ or 1̄, the entanglement
entropy SB for local superpositions can generally be larger, as
there is additional input-dependent entanglement between the
residual dimers. For example, in the setup of Fig. 6 (bottom),

FIG. 5. The greedy algorithm: The boundary region A is pushed
into the bulk to a new region A′ by removing pentagon tiles with
three (top) and four (bottom) open edges. Each pentagon can be in
an arbitrary local superposition of 0̄ and 1̄, shown as gray-shaded
dimers.

FIG. 6. Reducing boundary regions in the HyPeC with the
greedy algorithm, for two boundary regions A and B. A reduces to
the same geodesic γA = γAC as its complement AC, while B does not.
On the left-hand side, the corresponding “greedy wedge” is shaded
in the same color as the boundary regions. The residual dimers are
shaded in red.

SB can be up to log 2 larger than the fixed-input result (see
Appendix B for details).

C. Scaling and RG flow

As we saw in Fig. 3, contracting the HyPeC produces effec-
tive boundary EPR pairs connected along geodesics through
the bulk. This allows for a naive interpretation in terms of
IR/UV scaling: Longer geodesics that probe deeper into the
bulk are then associated with the IR scale, while short-range
geodesics close to the boundary correspond to UV modes.
The iteration of contractions in Fig. 2 is then interpreted as
a renormalization group (RG) flow, with each new iteration
adding additional degrees of freedom. As each tile connects
to either one or two tiles of the previous iteration, there are
two possible local scaling steps, both of which are shown in
Fig. 7. Thus, either one or three new dimers are added in each
local step.

FIG. 7. Each tile in the HyPeC can act as a mapping of 1 → 4
edges (left) or 2 → 3 edge (right). Arrows distinguish between “in-
put” (IR) and “output” (UV) edges. Dimers extended from previous
tiles are drawn as dashed curves, while new ones are drawn as solid
curves. The dimer parities depend on the actual logical input on the
tile.
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FIG. 8. Iterative contraction of the HyPeC, with Majorana dimers belonging to decoupled fermionic subsystems drawn in different colors.
The number of such subsystems increases with iteration number n.

This IR → UV renormalization step has a well-defined
UV → IR inverse constructed from the Hermititian conjugate
of a specific tile. Consider the 2 → 3 step from Fig. 7: The
IR → UV step consists of contracting the edges 1 and 2 of
|ψ〉 = α|0̄〉5 + β|1̄〉5 (with |α|2 + |β|2 = 1) onto the bound-
ary state. To inverse this operation, we trace out the edges
3,4,5 of |ψ〉〈ψ |, which we can express using Majorana dimers
[full calculation (B10) in Appendix B]:

(79)

Note the representation of the identity as a set of dimers
directly connecting two pairs of edges: Any Majorana dimer
state is left invariant by contraction with such a state, and
hence any other state, which we can always express in a dimer
basis, as well. We can similarly find that tr(2,3,4,5) |ψ〉〈ψ | =
12/2. The inverse renormalization step is thus simply the
reversal of Fig. 7: Some dimers are closed into loops, thus
tracing out the associated degrees of freedom. In fact, this
result is closely related to the perfect tensor property of the
HyPeC, whereby any pentagon tile can act as an isometry of
k → 5 − k edges as long as k � 5 − k. We also use it in Ap-
pendix B to prove the greedy algorithm with Majorana dimers.

While we saw that Majorana dimers form effective EPR
pairs in the asymptotic limit of infinitely many contractions,
we can also observe a separation of the boundary into separate
fermionic subsystems at finite cutoff. The physical fermion
corresponding to each uncontracted edge can be coupled
to at most two other fermions or edges via the dimers it
contains. These two fermions are again coupled to further
fermions, so we end up with a—necessarily closed—chain of
fermions, each only coupled to its two nonlocal “neighbors.”
However, as we contract more tiles, we find that our boundary
fermions are separated into an increasing number of indepen-
dent chains. This is shown in Fig. 8 for the first few iterations,
where the dimers are colored according to the decoupled
fermionic chain they belong to. The appearance of additional
decoupled subsystems at larger iterations is another sign of an
RG flow: Increasing the number of iterations encodes more
subsystems of varying sizes on the boundary. For the full
HyPeC beyond basis-state input, correlations between these
subsystems can be nonzero. As we will show next, however,
such correlations can only be captured by n-point correlators
with n > 2.

D. Correlation functions for general bulk input

By counting the dimers by the boundary distance over
which they reach, the average correlation falloff of the Ma-
jorana covariance matrix � defined in Eq. (18) can be deter-
mined. For fixed input, this leads to a polynomial � j,k ∝ | j −
k|−1 falloff of two-point correlations [16], again resembling
a CFT scaling. Naively, this holds only for the case of a
fixed logical input 0̄ or 1̄ on each tile, as superpositions of
Majorana dimer states are generally non-Gaussian and have a
complicated two-point correlation structure.

However, we will now show that two-point correlations for
the HyPeC with general bulk input, where local superpositions
of 0̄ and 1̄ inputs are allowed, are surprisingly similar to
the fixed-input case. First, consider the dimer parity structure
caused by local 1̄ inputs. As we showed in Fig. 2, using
even-parity 0̄ input over the entire bulk leads to a simple
contracted state, where all resulting dimer parities are even.
When contracting over odd-parity 1̄ inputs, index permuta-
tions necessary during the contraction process can lead to
additional dimer parity flips caused by Z operators on some
of the pentagon edges. After going through the contraction
process, which is laid out in Appendix C, we find that these
dimer parity flips can be grouped into strings of Z operators
between the tiles with 1̄ input. Possible configurations are
shown in Fig. 9 for two and four 1̄ insertions. While neither the
pairing of 1̄ tiles with Z strings nor the paths of these strings
are unique, we can freely deform them without changing the
boundary state (bottom diagrams in Fig. 9). Furthermore, we
can freely add closed Z loops around a set of tiles with an
even number of 1̄ tiles in it, as this is equivalent to evaluating
the total (even) parity of the contained tiles. Intriguingly, we
can relate this to physical rotations of tiles: While the dimer
parities of 0̄ tiles are invariant under cyclic permutations (in
the spin picture), we showed in Eq. (60) that a rotation of a
tile with 1̄ input is equivalent to tracing the shifted endpoint
of the local ordering with a Z string. A full “rotation” (leading
to a closed Z loop around a 1̄ tile) changes the state by a total
minus sign. In other words, as shown in Fig. 9, Z string loops
around tiles with an even number of 1̄ insertions leave the state
invariant. Thus, it is tempting to interpret the 0̄ tiles as local
fermionic vacua and the 1̄ tiles as logical fermions, emergent
from the underlying spin degrees of freedom.

The set of boundary states for all possible basis-state bulk
inputs (0̄ or 1̄ on each tile) gives us a basis set for the states
of the full HyPeC. In general, boundary n-point functions
for an arbitrary input can have a correlation structure com-
pletely different from the dimer structure we saw for logical
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FIG. 9. Top: Inserting two (left) and four (right) 1̄ tiles in the
HyPeC. Beyond the local dimer parity flips in each tile, pairs of 1̄
tiles are connected by Z strings (red lines), which flip dimer parities
nonlocally. The endpoints of these strings (red dots) set the local
orientation of the 1̄ tiles connected to it. Bottom: Equivalent Z string
configuration of the upper two states.

basis-state input, and overlaps between different basis states
can change the entanglement structure. Fortunately, as we
show in Appendix C, the HyPeC boundary states for different
basis inputs are all distinct by an operator of Majorana weight
w>2, i.e., at least three Majorana operators γ k are required to
map one basis state to another. This leads us to the following
conclusion:

Theorem 3. For a contraction of N pentagon tiles of the
HyPeC, two-point correlation functions of the boundary states
are convex combinations of the covariance matrices for any
logical basis input.

Proof. We denote by |b〉 := |b1, b2, . . . , bN 〉 the state vec-
tor for a fixed basis-state input bk on the kth pentagon. A
general HyPeC boundary state vector is given by the super-
position

|ω〉 =
∑

b∈{0̄,1̄}×N

cb|b〉, (80)

with cb ∈ C. A fermionic two-point correlation function with
entries

G(2)
j,k = i

2
〈ω|[γ j, γ k]|ω〉 (81)

=
∑

b,b′∈{0̄,1̄}×N

i c�
bcb′

2
〈b|[γ j, γ k]|b′〉 (82)

is generally a sum of 22N terms. However, we assumed that
two boundary states for different basis-state inputs b and b′
are separated by a w > 2 operator, i.e., fulfill the conditions

〈b|b′〉 = 0, (83)

〈b| γ j |b′〉 = 0, (84)

〈b| γ j γ k |b′〉 = 0. (85)

In other words, the expectation values of operators with
Majorana weight w � 2 are diagonal in the logical basis. This
implies

G(2)
j,k =

∑
b∈{0̄,1̄}×N

i c∗
bcb

2
〈b|[γ j, γ k]|b〉

=
∑

b∈{0̄,1̄}×N

|cb|2 �b
j,k, (86)

where �b
j,k = i〈b|[γ j, γ k]|b〉/2 are the covariance matrices for

the Gaussian boundary state for a basis-state input b. �
This enormously simplifies the computation of fermionic

two-point correlation functions. For example, consider the
contraction of only two pentagon states: There are four pos-
sible fixed logical bulk inputs, with a 0̄ or 1̄ input on either
pentagon. When contracted, these lead to the “boundary” state
vectors |0̄, 0̄〉8, |0̄, 1̄〉8, |1̄, 0̄〉8, and |1̄, 1̄〉8 on eight edges.
Now consider a general logical input, i.e., a state vector
α1|0̄〉5 + β1|1̄〉5 on the first tile and α2|0̄〉5 + β2|1̄〉5 on the
second (with |αk|2 + |βk|2 = 1). As tensor contraction is a
linear operation, the contracted state vector is given by

|ω〉 = α1α2|0̄, 0̄〉8 + β1β2|1̄, 1̄〉8 (87)

+α1β2|0̄, 1̄〉8 + β1α2|1̄, 0̄〉8. (88)

In dimers, the explicit basis-state contractions are

(89)

(90)

(91)

(92)

Note that in this labeling, the first pentagon is on the right. As
we can see, each of these state vectors is distinguished from
the others by at least three dimer parity flips; i.e., it requires
more than two Majorana operators to map between them. As
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a result, G(2) only contains four diagonal terms,

G(2)
j,k = |α1|2|α2|2 �0̄,0̄

j,k + |β1|2|β2|2 �1̄,1̄
j,k

+ |α1|2|β2|2 �0̄,1̄
j,k + |β1|2|α2|2 �1̄,0̄

j,k , (93)

with the covariance matrix �
b1,b2
j,k containing two-point corre-

lations for the basis state vector |b1, b2〉8.
This example, as well as the general case of Theorem 3,

implies that two-point functions G(2) preserve the correlation
structure of the fixed-input covariance matrices �, whose en-
tries only differ by signs (i.e., dimer parities). Hence, if � j,k =
0 for a fixed logical input (no dimer connecting Majorana
modes j and k), then two-point correlations between the two
modes vanish for any bulk input. This is even true for the case
of superpositions with entangled bulk input, where G(2) is still
a convex sum. Higher order correlation functions separate into
a Gaussian part that follows Wick’s theorem and has the form
of products of dimer terms, and a non-Gaussian part which
contains contributions from overlaps between boundary states
for different logical inputs. To illustrate, consider a single
pentagon with arbitrary logical input, described by |ψ〉 =
α|0̄〉5 + β|1̄〉5 (with |α|2 + |β|2 = 1). The n-point correlators
G(n) until n = 4 are given by

G(1)
j = 〈ψ | γ j |ψ〉 = 0, (94)

G(2)
j,k = i 〈ψ | γ [ j γ k] |ψ〉 = |α|2 �0̄

j,k + |β|2 �1̄
j,k, (95)

G(3)
j,k,l = −i 〈ψ | γ [ j γ k γ l] |ψ〉

= −i α�β〈0̄| γ [ j γ k γ l] |1̄〉 + H.c., (96)

G(4)
j,k,l,m = 〈ψ | γ [ j γ k γ l γ m] |ψ〉

= |α|2 (
�0̄

i, j�
0̄
k,m − �0̄

i,k�
0̄
j,m + �0̄

i,m�0̄
j,k

)
+ |β|2 (

�1̄
i, j�

1̄
k,m − �1̄

i,k�
1̄
j,m + �1̄

i,m�1̄
j,k

)
. (97)

We have used square brackets around indices to denote an-
tisymmetrization. Gaussian contributions can occur only for
even n, as only pairs of Majorana operators can map a dimer
state onto itself. As |0̄〉5 and |1̄〉5 are mapped to each other
by a w = 3 operator, the non-Gaussian part appears at n = 3:
The correlator G(3)

j,k,l can have nonzero entries for j ∈ {1, 6},
k ∈ {3, 8}, l ∈ {5, 10} and its permutations, corresponding to
the dimers differing between both input states [compare (23)
and (24)]. As the exact entries of G(3) depend on the complex
phases with which we define |0̄〉5 and |1̄〉5, they are not
determined by the Majorana dimer structure.

Our example generalizes to large HyPeC contractions: The
Gaussian part of n-point correlations G(n) is described by a
convex combination of Gaussian covariance matrices, while
all boundary states for fixed logical input that differ by n dimer
parities contribute to its non-Gaussian part. We can think of
the latter as an “interaction” between code words that depends
on how much the logical bulk input is in a superposition of the
basis state vectors 0̄ and 1̄. For a completely classical version
of the code, no non-Gaussianity appears.

V. GENERALIZED CODES WITH MAJORANA DIMERS

A. Other stabilizer codes

We have extensively focused on the [[5, 1, 3]] stabilizer
code as the building block of the HyPeC. However, we can
construct Majorana dimer models for states on other ngons,
i.e., more general [[n, 1, d]] stabilizer codes. We now show
that these have properties very similar to the n = 5 case.

We set a number of requirements to such generalizations:
(I) Stabilizer code: We require n − 1 stabilizers (com-

muting products of Pauli operators) that lead to a twofold
degenerate ground state, stabilizing one logical qubit.

(II) Majorana dimer representation: All stabilizers should
be products of two Majorana operators, up to a total parity
operator Ptot .

(III) Rotational symmetry: All stabilizers Sk should be
cyclic permutations of S1.

We may also wish to construct n-qubit codes that corre-
spond to perfect tensors. For fixed input b̄ with b ∈ {0, 1}, this
requires an isometric reduced density matrix

ρA = trAC |b̄〉n〈b̄|n ∝ 12|A| (98)

for any subset A of sites with size |A| � n/2. To hold for
arbitrary input (i.e., superpositions of 0̄ and 1̄), it is also
necessary that 0̄ and 1̄ are partially orthogonal on AC, i.e.,

trAC |0̄〉n〈1̄|n = trAC |1̄〉n〈0̄|n = 0, (99)

again assuming |A| � n/2. Unfortunately, perfect tensors for
qubits require states that are maximally entangled for any
subdivision of sites, a condition which cannot be satisfied for
n = 4 or any n > 6 [46,47]. As n < 3 does not correspond to
a physical tile and we already covered the n = 5 case, this
leaves only n = 3 and n = 6 to be studied with Majorana
dimers. However, as we will see below, none of the corre-
sponding Majorana dimer codes can be perfect for arbitrary
bulk input.

Let us start with the n = 3 case. We can easily find a
stabilizer code that conditions I–III. The stabilizers S are

Y1Y2 = i γ 1 γ 4, Y1Y3 = iPtot γ 2 γ 5, Y2Y3 = i γ 3 γ6.

(100)

The twofold degenerate ground state of the stabilizer Hamil-
tonian H = −∑

k Sk is spanned by one parity-even and one
parity-odd Majorana dimer state with pairing between modes
on opposite sites. Furthermore, for a fixed logical input 0̄ or 1̄
(but not its superpositions), the boundary state is described by
a perfect tensor. This implies that adding such triangular tiles
into the pentagon code preserves its entanglement structure
only for logical basis-state input. Note that this code is equiv-
alent to a repetition code under Yk → Zk . We will explore the
connection to GHZ states in the next section. Contrary to the
pentagon code, embedding the states of this “triangle code”
into a regular {3, k} bulk tiling does not lead to interesting
bulk/boundary relations, as the dimers close into loops.

Similarly, we can consider a “square code” for n = 4,
where we find yet another stabilizer code with similar prop-
erties. The following stabilizers lead to a familiar Majorana
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form:

X1X2Z3Z4 = −iPtot γ 1 γ 4, Z1X2X3Z4 = −iPtot γ 3 γ 6,

Z1Z2X3X4 = −iPtot γ 5 γ 8, X1Z2Z3X4 = −i γ 2 γ7. (101)

Note that by applying a total parity operator, we can
map this to an equivalent code with stabilizers S =
〈Y1Y2, Y2Y3, Y3Y4, Y1Y4〉 (which again highlights the GHZ-
type entanglement). As in the triangle code, Majorana dimers
at a distance of three Majorana sites are paired up. Again, this
implies trivial bulk loops of dimers for a regular {4, k} tiling.
Furthermore, this code does not lead to a perfect tensor for any
logical input, as this is impossible to achieve with four-leg
tensors. One may be tempted to construct a stabilizer code
with S = 〈X1Z2X3, X2Z3X4, X1X3Z4, Z1X2X4〉, where each el-
ement of S can also be written as a product of two Majorana
operators on opposite edges (see Table II). However, this
choice of S only stabilizes a single state instead of a full qubit,
as the ground state is nondegenerate. Interestingly, this ground
state does fulfill the perfect tensor property for connected
subsets of the boundary legs.

Beyond the familiar n = 5 case (with permutations of
X1Z2Z3X4 as stabilizers), we can construct another code
by exchanging Xk ↔ Yk , which is equivalent to exchanging
γ2k−1 ↔ γ2k and leads to the stabilizers

Y1Y3Z4Z5 = iPtot γ 2 γ 5, Y1Z2Z3Y4 = i γ 1 γ 8,

Z1Y2Y4Z5 = iPtot γ 4 γ 7, Y2Z3Z4Z5 = i γ 3 γ 10,

Z1Z2Y3Y5 = iPtot γ 6 γ9.

(102)

Naturally, this code inherits the properties of the original
[[5, 1, 3]] code, including the perfect tensor property for any
logical input.

Attempting to generalize to n = 6, we find the following
choice for the elements of S:

X1X4Z5Z6 = −iPtot γ 1 γ 8, X1Z2Z3X4 = −i γ 2 γ 7,

Z1X2X5Z6 = −iPtot γ 3 γ 10, X2Z3Z4X5 = −i γ 4 γ 9,

Z1Z2X3X6 = −iPtot γ 5 γ 12, X3Z4Z5X6 = −i γ 6 γ11.

(103)

The n = 6 case resembles the n = 3 result, as partial traces
trAC |0̄〉〈1̄| do not usually vanish. Contrary to the n = 3 case,
it is also possible to form subsystems A of size |A| � n/2 that
are disjoint. In both cases, the reduced density matrix ρA is
not an isometry. In other words, this code is only perfect for
basis-state inputs and connected subsystems A.

We find similar properties for n > 6 codes: While it is
impossible to construct a perfect tensor for all (possibly
disjoint) boundary regions A, we can always construct a
Majorana dimer code with basis states 0̄ and 1̄ that are each
perfect for connected subsystems A by connecting Majorana
dimer modes on opposite edges. For n = 4k+1, k ∈ N, this
construction even leads to codes where trAC |0̄〉〈1̄| = 0 for a
connected subsystem A with |A| � n/2. Such a block perfect
code leads to an isometric ρA for superpositions of bulk input
for any connected A. The n = 9 case, whose stabilizers are
permutations of X1Z2Z3Z4Z5X6, is visualized in Table II. Note

TABLE II. Possible generalizations of the [[5, 1, 3]] pentagon
code (fourth row) to an ngon code. All stabilizers are cyclic per-
mutations of the one given in the second column. The last column
indicates whether boundary states lead to block perfect tensors (�)
or fully perfect tensors (��).

that block perfect holographic codes can also be constructed
from Calderbank-Shor-Steane (CSS) codes [48].

While we would expect a bulk tiling of each of the two
n = 5 codes to lead to similar boundary properties, it would
be interesting to investigate codes built from combinations of
perfect and block perfect tensors.
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B. GHZ states

The n = 3 code considered previously possesses a peculiar
property: The logical eigenstates are GHZ states in the Y
basis, i.e., |0̄〉3 = |Y +〉GHZ

3 and |1̄〉3 = |Y −〉GHZ
3 , using the

definition

|Y +〉GHZ
n = 1√

2
(|y+〉⊗n − |y−〉⊗n),

|Y −〉GHZ
n = 1√

2
(|y+〉⊗n + |y− 〉⊗n), (104)

where |y±〉 are the eigenstates of σ y with σ y|y±〉 = ±|y±〉.
This is because |±〉GHZ

n is in the +1 eigenspace of the stabi-
lizer S1 = Y1Y2 and its permutations, and thus in the ground-
state space of corresponding stabilizer Hamiltonian. The to-
tal parity Ptot|±〉GHZ

n = ±|±〉GHZ
n follows from the relation

σz|y±〉 = −|y∓〉.
We can easily generalize these Y -basis GHZ states to

higher n. Using (25), we find YkYk+1 = i γ2k−1 γ2k+2 for k <

n and Y1Yn = iPtot γ2 γ2n−1. This fixes the Majorana dimers
for any n to a (2k+2 mod 2n) �→ (2k−1) pairing (k ∈
{1, . . . , n}), with the last dimer parity flipped in the Y − state.
For example, the GHZ state vectors on a pentagon are

(105)

(106)

Similarly, we can construct n-qubit GHZ states in the X basis:
As XkXk+1 = −i γ2k γ2k+1 and X1Xn = iPtot γ 1 γ2n, we find a
2k → 2k+1 mod 2n pairing, with the last dimer flipped in
the X+ state. For the n = 5 case, the corresponding diagrams
are

(107)

(108)

As a general rule, the positive-parity GHZ states are rota-
tionally invariant in dimer parities, while the negative-parity
GHZ states are rotationally invariant in dimer orientation (i.e.,
direction of arrows). As shown in Sec. III D, this means that
the underlying spin degrees of freedom are invariant under

a cyclic permutation of indices of the tensors specifying the
GHZ states.

In the Majorana dimer language, we can also see that the
[[5, 1, 3]] logical code states are extensions of GHZ states:
All have a completely symmetric entanglement structure,
but whereas the X± and Y ± GHZ states connect Majorana
modes at a distance of d = 1 and d = 3 modes, respectively,
the 0̄ and 1̄ logical eigenstates pair modes five sites apart.
While an even d cannot lead to rotational symmetry, we can
systematically construct all of these states by considering all
odd d . For example, the n = 9 case in Table II corresponds to
a d = 9 pairing.

C. Majorana dimers and Majorana codes

So far, we have only discussed quantum error correction in
a system of spins which we effectively described by fermionic
degrees of freedom. Another approach is to build quantum
error correction in fundamentally fermionic systems and then
describe the actions of Majorana operators in such codes [49].
While superficially similar to our treatment of the HyPeC,
there are fundamental differences: The advantage of actual
Majorana codes is the use of fermion super-selection to reduce
the occurrence of logical errors by encoding them in operators
that are odd in Majorana operators and thus cannot occur if
the system is in a purely bosonic environment. However, our
Majorana dimer model encodes the 0̄ and 1̄ states in different
fermionic parity sectors, superpositions of which would thus
be forbidden in a system composed of actual fermions. It
follows that our Majorana dimer description of the [[5, 1, 3]]
stabilizer code is different from the Bravyi-Terhal-Leemhuis
prescription to turn stabilizer into Majorana codes, which
uses four Majorana modes to encode one spin degrees of
freedom. However, Majorana dimers can still be a useful
tool for studying Majorana codes. Consider a simple Kitaev
chain [50] of 2N Majorana modes in the ground state of the
stabilizer Hamiltonian

H = −i
N−1∑
k=1

γ2k γ2k+1. (109)

The ground state is twofold degenerate but can be spanned by
two Majorana dimer state vectors |±〉N . Explicitly for N = 6,

(110)

(111)

From (31), we immediately see that |±〉N has fermionic parity
±1. While the logical code states can be easily mapped into
each other by applying the operator γ 1 or γ 12 (which flips the
parity of the 1 → 12 dimer), any physical error has to respect
fermion parity and locality and is therefore restricted to the
form γ k γ k+1, i.e., even nearest-neighbor terms. Thus, a phase
error requires a string γ 1 γ 2 . . . γ 12 of Majorana operators
with w = 2N , endowing the ground state of the Kitaev chain
with topological protection. Clearly, this approach can be
generalized to any Majorana dimer state of 2N Majorana
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modes: By fixing N−k dimers, we leave a k-dimensional
logical qubit subspace on the remaining k possible dimers.
If these remaining k modes are far apart, then they will be
robust against errors that are both even and local in Majorana
operators.

Furthermore, we can express Majorana stabilizer codes
with dimers even if the stabilizer generators are not
quadratic in Majorana operators. Consider N = 4 edges
with eight Majorana modes under the stabilizers S =
〈−γ1 γ 3 γ 5 γ 7, − γ 2 γ 4 γ 6 γ 8〉. The +1 eigenspace of each
Sk is spanned by two Majorana dimer states on the corre-
sponding modes, one where both dimer parities are even and
one where they are odd. We can thus define the logical 2-qubit
state vectors |b̄1, b̄2〉 as follows:

(112)

If we again assume physical errors to correspond to even
nearest-neighbour Majorana operators, we find a code dis-
tance d = 2 with regards to these errors. Explicitly, two such
operators are required for both bit-flip and phase-flip errors,
e.g., γ 1 γ 2 γ 2 γ 3 = γ 1 γ 3 for a phase flip and γ 3 γ 4 γ 5 γ 6 for
a bit flip. We identify these types of errors by the Majorana
dimers whose parity differs between the logical code states:
In the former case, we identify operators acting on both ends
of one of these dimers, while the latter case corresponds to
operators on one endpoint of each of them. We can thus
systematically evaluate the error correction properties of any
Majorana stabilizer code by expressing its logical basis in
Majorana dimers.

VI. MAJORANA DIMERS AND BIT THREADS

Our model bears close resemblance to the bit thread pro-
posal [24], a model for holographic states that rederives the
Ryu-Takayanagi (RT) formula by postulating that such states
are composed by a flow of EPR pairs between boundary
regions. In this proposal, the entanglement entropy SA of a
boundary region A is then equivalent to the maximal flow
of EPR pairs between A and AC through the bulk, which is
equivalent to the area of the minimal surface γA in the standard
RT prescription.

Clearly, this picture is satisfied by the Majorana dimer de-
scription of the HyPeC for compact regions A [for which (63)
holds]. While each dimer only carries half the entanglement
of an EPR pair, the phenomenological behavior is identical:
SA is determined by the number of dimers between A and AC,
which is restricted by the minimal cut through the bulk tiling
from the endpoints of A. The HyPeC leads to a special dimer

FIG. 10. Effective bit thread picture in the asymptotically large
HyPeC: All dimers are paired along bulk geodesics and any boundary
region A has a maximal flow of bit threads (dimer pairs) through
the Ryu-Takayanagi surface γA. The threads that pass γA, each
contributing log 2 to the entanglement entropy SA, are highlighted.
Note that both the number of such threads and SA are UV divergent.

configuration in which this bound is saturated for any compact
region A (up to degenerate cases shown in Fig. 6). It thus
defines a global bit thread configuration, i.e., one independent
of the choice of A. A special property of this configuration
is that the dimers and bit threads follow discrete geodesics
through the bulk, so that the bulk metric is emergent from the
entanglement structure. Note that in the asymptotic limit of
infinitely many tiles, shown in Fig. 10, each geodesic can be
identified with a pair of dimers, thus forming an effective EPR
pair. Curiously, the resulting entanglement entropy resembles
a classical fracton models on a {4, 5} tiling, where the Shan-
non entropy scales with the number of dual geodesics, each
doubling the ground-state degeneracy [51].

However, global bit thread configurations are generally not
sufficient to reproduce the RT formula for disjoint subsystems;
in such cases, the bit thread flow must differ according to the
choice of the subsystems to reproduce the correct holographic
multipartite entanglement [25]. This cannot be fulfilled with
fermionic dimers, as the global entanglement structure is fixed
for a specific state. However, the HyPeC is only a Majorana
dimer model effectively, with its underlying spin degrees of
freedom converted to fermionic modes through a Jordan-
Wigner transformation. Thus in general, when considering
disjoint subsystems, the entanglement entropy cannot be de-
termined by a dimer counting. It is an interesting future ques-
tion whether the entanglement between disjoint subsystems
(or equivalently, for transpositions of boundary regions) leads
to a multipartite entanglement of the HyPeC also resembling
the bit thread picture.

VII. DISCUSSION

In this work, we have studied the intersection of stabilizer
states and fermionic Gaussian states, both efficiently describ-
able classes of quantum states with a wide range of appli-
cations in quantum information theory and both condensed-
matter and high-energy physics. For this purpose, we have
introduced a graphical formalism for describing Majorana
dimer states, free fermionic states characterized by entangled
Majorana modes. These can describe stabilizer states such
as those of the [[5, 1, 3]] quantum error-correcting code. We
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applied this formalism to the recently constructed hyperbolic
pentagon code (HyPeC), a discrete toy model of the AdS/CFT
correspondence [5]. For logical bulk input fixed to code basis
states, the HyPeC was found to correspond to Majorana
dimers along discrete bulk geodesics. With the bulk geometry
thus encoded in boundary-state entanglement, we reproduced
the logarithmic scaling of the entanglement entropy SA with its
subsystem size for connected subsystems A, reproducing the
Ryu-Takayanagi formula through a calculation that sharply
resembles the recent bit thread proposal. We also extended
our results to bulk inputs containing local superpositions on
each pentagon tile. For this case, where boundary states are
generally non-Gaussian, Majorana dimers quantify the depen-
dence of the entanglement entropy on residual bulk regions.
We also provided a method for computing non-Gaussian n-
point correlations function of the HyPeC for arbitrary bulk
input, finding that the Majorana dimer structure—i.e., bound-
ary correlations only between pairs of Majorana modes—is
preserved for n = 2, a feature related to the quantum error-
correcting properties of the code. Furthermore, we showed
that Majorana dimers can describe a range of entangled states,
including GHZ states and models such as the Kitaev chain,
while also allowing for complicated non-Gaussian states by
expansion in a Majorana dimer basis. Finally, tensor net-
works based on Majorana dimers provide a particularly simple
model of an RG flow, where an IR → UV transformation is
interpreted as an addition of new dimer degrees of freedom
upon contraction.

As this work has focused on the specific Majorana dimer
structure of the [[5, 1, 3]] code and the HyPeC that is built
upon it, we have only glimpsed the general relationship be-
tween Majorana fermions and stabilizers. While our graphical
formalism for Majorana dimers can be used to describe a
wide range of entangled quantum states, including generalized
stabilizer codes, only a subset of these could be covered here.
As this formalism allows for the construction of quantum
states from their entanglement symmetries, a more systematic
study of Majorana dimer states and their symmetries would
be useful in the future. With our approach allowing for a
direct analytical contraction of dimer-based tensor networks
through simple graphical rules and a possible description
of non-Gaussian states through dimer superpositions, there
appears to be a vast number of potential applications. Within
the Gaussian setting, an interesting question is the deforma-
tion of Gaussian stabilizer states. As each Majorana dimer
state can be expressed by a matchgate tensor [16], one may
consider smooth deformation of the HyPeC (and other stabi-
lizer models) while retaining an efficiently contractible tensor
network. Under such deformations, it is conceivable that a
picture with some effective degrees of freedom localized to
geodesics is retained. For example, there exists a possible
connection to ribbon operators [52] which appear in the
study of topological phases of matter away from fixed point
models. This would also involve exploring the similarities
between Majorana dimers and anyon models. One may also
wish to address the actual recovery rates of logical qubits
in holographic codes, which have been studied both in the
original HyPeC proposal [5] and in extensions such as the
Calderbank-Shor-Steane (CSS) holographic heptagon code
[48]. Their remarkable property of a resilience of logical

qubits further in the bulk may be studied more directly with
Majorana dimers, where an explicit mapping between bulk
and boundary degrees of freedom is provided. While the toy
models studied here are inherently discrete, the many proper-
ties of the HyPeC resembling a conformal field theory (CFT)
motivate further studies on its continuum limits, analogous
to continuous MERA [53,54]. While rigorous studies of the
continuum quantum fields corresponding to lattice models are
ongoing [55], the quasiregular symmetries expected on the
boundary of regular hyperbolic bulk tilings [56] may require
a different notion of a CFT for regular discretizations than
the familiar continuum formulation. We hope that the present
work stimulates further endeavors in this direction.
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APPENDIX A: DIMER CONTRACTION RULES

We will now prove the contraction rules from the main text
by considering all possible Majorana dimer configurations
that can be contracted, showing that they either result in a
new Majorana dimer state or vanish. As the Majorana dimer
diagrams are defined as an effective representation of spins,
we define contractions in the Majorana picture to be consis-
tent with the result obtained by reversing the Jordan-Wigner
transformation, contracting the corresponding spin degrees of
freedoms, and applying a new Jordan-Wigner transformation
on the remaining ones. This is equivalent to always con-
tracting the first two fermionic degrees of freedom under the
given ordering, as this requires no reordering when projecting
onto the |0, 0〉 and |1, 1〉 subspaces in the spin picture during
contraction.

Note that any contraction is equivalent to a self-
contraction. For example, when contracting two state vec-
tors |φ〉 and |ψ〉 over some fermionic degree of freedom,
we can simply view this as a self-contraction of the tensor
product |φ〉|ψ〉. By using cyclic permutations, we can relate
the contraction of any edge index pair ( j, k) with j < k to
the canonical case (i, j) = (1, 2). Equivalently, as we will
consider below, we can apply the contraction rules to the last
two edges under a given ordering (which avoids renumbering
all the edges). As we will see throughout this section, the
contraction rules rely purely on the dimer parities of dimers
connected to contracted edges, so changing the index ordering
for states with even total parity does not affect the result, as
dimer parities are left invariant. To see that the same logic
holds for parity-odd states, consider the following reordered
versions of the contraction (41) from the main text, where we
assume the product state vector |φ〉|ψ〉 to have odd total parity,
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and again omit dimers that are not connected to the contracted edge:

. (A1)

The two diagrams on the left correspond to the contraction (41) proved in the main text. Cyclic permutations relate this to a
self-contraction of the first two fermions (Majorana modes 1 to 4, center) and alternatively of the two last fermions (Majorana
modes 17 to 20, right). The pivot of the permutation is again represented by a small circle. As we see, applying the dimer
contraction rules from the main text leads to equivalent results under cyclic permutations. Note, however, that forming product
state vectors |φ〉|ψ〉 requires an ordering of the modes in |φ〉 before the ones in |ψ〉, which can still lead to additional parity
shifts when contracting in parity-odd states. We resolve these ambiguities in Appendix C.

Let us now prove the general case of the previous diagram, written as a self-contraction of an arbitrary Majorana dimers state
(of which a product state is only a special case). We start with contractions of the form

. (A2)

We start with an N-fermion state vector |χ〉 [N = 7 in Eq. (A2)] that obeys the Majorana dimer conditions

(γa + i pa,2N γ2N )|χ〉 = 0, (γb + i pb,2N−3 γ2N−3)|χ〉 = 0, (A3)

(γc + i pc,2N−1 γ2N−1)|χ〉 = 0, (γd + i pd,2N−2 γ2N−2)|χ〉 = 0, (A4)

where we assume for now that a < b and c < d , so that the dimer lines do not cross [a = 1, b = 9, c = 3, d = 5 in Eq. (A2)].
We claim that after contraction, the contracted state vector |ω〉 is again a Majorana dimer state with conditions

(γa + i pa,2N pb,2N−3 γ b)|ω〉 = 0, (A5)

(γc + i pc,2N−1 pd,2N−2 γ d )|ω〉 = 0, (A6)

which means that the parities along a contracted path are multiplied. We write these conditions as Ok|ω〉 = 0 with k ∈ {1, 2}
denoting the two cases. Using the tools developed in Sec. III C, we will now prove them simultaneously:

Ok|ω〉 = Ok

∫
d f †

N d f †
N−1 e f †

N−1 f †
N |χ〉

=
∫

d f †
N d f †

N−1 e f †
N−1 f †

N

{
(γ a +i pa,2N pb,2N−3 γ b)|χ〉 for k = 1

(γ c +i pc,2N−1 pd,2N−2 γ d )|χ〉 for k = 2
. (A7)
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Using (A3) and (A4), we can rewrite this purely in terms of operators acting locally on the contracted edges:

Ok|ω〉 =
∫

d f †
N d f †

N−1 e f †
N−1 f †

N

{
pa,2N (γ2N−3 − i γ2N )|χ〉 for k = 1

pc,2N−1(γ2N−3 − i γ2N−1)|χ〉 for k = 2

∝
∫

d f †
N d f †

N−1 e f †
N−1 f †

N

{
( fN−1 + f †

N−1 − fN + f †
N )|χ〉

( fN−1 − f †
N−1 + fN + f †

N )|χ〉

=
∫

d f †
N d f †

N−1

{
( f †

N−1 + f †
N − f †

N f †
N−1 fN−1 − f †

N−1 f †
N f )|χ〉

(− f †
N−1 + f †

N − f †
N f †

N−1 fN−1 + f †
N−1 f †

N fN )|χ〉

=
∫

d f †
N d f †

N−1

{
( fN−1 f †

N−1 f †
N + f †

N−1 fN f †
N )|χ〉

( fN−1 f †
N−1 f †

N − f †
N−1 fN f †

N )|χ〉 = 0. (A8)

We previously assumed a < b and c < d . What happens if, e.g., c > d? As the condition (A6) for the contracted state vector |ω〉
still hold, we just multiply both sides by −i pc,2N−1 pd,2N−2, yielding

(γd − i pc,2N−1 pd,2N−2 γ c)|ω〉 = 0. (A9)

In other words, contracting out two Majorana dimers that cross each other flips the parity of the resulting dimer. For our example,
the corresponding diagram has the form

. (A10)

Self-contractions also allow for special cases involving dimers on the contracted edge itself, which we will now prove, as
well. First, consider the case where one of the contracted edges contains a local dimer, such as the contraction

. (A11)

The contracted path contains contributions from three parities. Without loss of generality, we assume that the local dimer is
located on the N th edge, so that we start with the conditions

(γ2N−1 + i p2N−1,2Nγ2N )|χ〉 = [(1 − p2N−1,2N ) f †
N + (1 + p2N−1,2N ) fN ]|χ〉 = 0, (A12)

(γa + i pa,2N−2 γ2N−2)|χ〉 = 0, (γb + i pb,2N−3 γ2N−3)|χ〉 = 0. (A13)

In our example (A11), a = 2 and b = 7. The first line simply becomes f †
N |χ〉 = 0 for p2N−1,2N = −1 and fN |χ〉 = 0 for

p2N−1,2N = +1. The latter case implies that
∫

d f †
N |χ〉 = 0 as well, as Grassmann integrations and annihilators act equivalently.

We now prove that these assumptions for the uncontracted |χ〉 imply that

(γa + i pa,2N−2 p2N−1,2N pb,2N−3 γ b)|ω〉 = 0 (A14)

for the contracted |ω〉, similar to (A5) and (A6). The proof is similar to the previous setup:

(γa + i pa,2N−2 p2N−1,2N pb,2N−3 γ b)|ω〉 =
∫

d f †
N d f †

N−1 e f †
N−1 f †

N (γa + i pa,2N−2 p2N−1,2N pb,2N−3 γ b)|χ〉

= pa,2N−2

∫
d f †

N d f †
N−1 e f †

N−1 f †
N (p2N−1,2N γ2N−3 − i γ2N−2)|χ〉
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= 2pa,2N−2

∫
d f †

N d f †
N−1 e f †

N−1 f †
N

{
− fN−1|χ〉 for p2N−1,2N = −1

f †
N−1|χ〉 for p2N−1,2N = +1

= 2pa,2N−2

{
− ∫

d f †
N d f †

N−1 f †
N−1 f †

N fN−1|χ〉∫
d f †

N d f †
N−1 f †

N−1|χ〉

= 2pa,2N−2

{∫
d f †

N d f †
N−1 f †

N−1 fN−1 f †
N |χ〉∫

d f †
N−1 f †

N−1

∫
d f †

N |χ〉
= 0. (A15)

Again, crossing the two initial paths so that a > b introduces an additional minus sign to the contracted parity. The next case to
consider contains a Majorana pair across the two contracted edges, such as in the diagram

. (A16)

Note that this kind of contraction always contains a crossing. Again without loss of generality, we assume that the dimer on the
contracted edges connects Majorana modes 2N − 3 and 2N . The full conditions for the uncontracted state are

(γ2N−2 + i p2N−2,2N γ2N )|χ〉 = [i ( f †
N−1 − fN−1) − p2N−2,2N ( f †

N − fN )]|χ〉 = 0, (A17)

(γa + i pa,2N−1 γ2N−1)|χ〉 = 0, (γb + i pb,2N−3 γ2N−3)|χ〉 = 0, (A18)

with a = 3 and b = 7 in Eq. (A16). The first condition can be rewritten into the form

(p2N−2,2N f †
N−1 + i f †

N )|χ〉 = (p2N−2,2N fN−1 + i fN )|χ〉. (A19)

We now prove the contracted state fulfills

(γa − i pa,2N−1 p2N−2,2N pb,2N−3 γ b)|ω〉 = 0. (A20)

Note that additional minus sign in comparison to (A14) due to the crossing. The proof is given by

(γa − i pa,2N−1 p2N−2,2N pb,2N−3 γ b)|ω〉 =
∫

d f †
N d f †

N−1 e f †
N−1 f †

N (γ a −i pa,2N−1 p2N−2,2N pb,2N−3 γ b)|χ〉

= −pa,2N−1

∫
d f †

N d f †
N−1 e f †

N−1 f †
N (p2N−2,2N γ2N−3 + iγN2−1)|χ〉

= −2pa,2N−1

∫
d f †

N d f †
N−1 e f †

N−1 f †
N (p2N−2,2N f †

N−1 + i f †
N )|χ〉

= −2pa,2N−1

∫
d f †

N d f †
N−1 (p2N−2,2N f †

N−1 + i f †
N )|χ〉

= −2pa,2N−1

∫
d f †

N d f †
N−1 (p2N−2,2N fN−1 + i fN )|χ〉

= 0. (A21)

033079-22



MAJORANA DIMERS AND HOLOGRAPHIC QUANTUM … PHYSICAL REVIEW RESEARCH 1, 033079 (2019)

Finally, consider contractions that involve paths that get completely removed by contraction. Up to parities, there are two
possible dimer configurations for such contractions:

, (A22)

(A23)

Clearly, such contractions can only affect the state on the remaining edges by an overall constant C. Unless C = 0, this constant
can be absorbed into an appropriate normalization. But when does C = 0 occur? Let us consider the first diagram (A22), which
can be generalized to the conditions

(γ2N−3 + i p2N−3,2N−2 γ2N−2)|χ〉 = 0, (A24)

(γ2N−1 + i p2N−1,2N γ2N )|χ〉 = 0. (A25)

We claim that the contracted state vector |ω〉 vanishes if (p2N−3,2N−2, p2N−1,2N ) ∈ {(1,−1), (−1, 1)}. These two cases
correspond to either fN−1|χ〉 = 0 and f †

N |χ〉 = 0 or f †
N−1|χ〉 = 0 and fN |χ〉 = 0. It is easy to see that the contraction

|ω〉 =
∫

d f †
N d f †

N−1 e f †
N−1 f †

N |χ〉 =
∫

d f †
N d f †

N−1 |χ〉 +
∫

d f †
N d f †

N−1 f †
N−1 f †

N |χ〉 (A26)

is annihilated in either case (recall that integrals
∫

df †
k act like annihilation operators fk). The second diagram (A22),

corresponding to the conditions

(γ2N−3 + i p2N−3,2N γ2N )|χ〉 = 0, (A27)

(γ2N−2 + i p2N−2,2N−1 γ2N−1)|χ〉 = 0, (A28)

is more involved. We seek to prove that |ω〉 vanishes if (p2N−3,2N , p2N−2,2N−1) ∈ {(1,−1), (−1, 1), (−1,−1)}, i.e., for at least
one odd parity. In terms of creation and annihilation operators, these three cases can be rewritten as

fN−1|χ〉 =

⎧⎪⎪⎨
⎪⎪⎩

fN |χ〉 for (p2N−3,2N , p2N−2,2N−1) = (1,−1)

fN |χ〉 for (p2N−3,2N , p2N−2,2N−1) = (−1, 1)

− f †
N |χ〉 for (p2N−3,2N , p2N−2,2N−1) = (−1,−1)

, (A29)

f †
N−1|χ〉 =

⎧⎪⎪⎨
⎪⎪⎩

f †
N |χ〉 for (p2N−3,2N , p2N−2,2N−1) = (1,−1)

− f †
N |χ〉 for (p2N−3,2N , p2N−2,2N−1) = (−1, 1)

fN |χ〉 for (p2N−3,2N , p2N−2,2N−1) = (−1,−1)

. (A30)

For the first two cases, the contraction (A26) turns into

|ω〉 =
∫

d f †
N d f †

N |χ〉 ±
∫

d f †
N d f †

N−1 f †
N−1 f †

N−1|χ〉 = 0. (A31)

For the third case, we get

|ω〉 =
∫

d f †
N d f †

N−1 (1 − f †
N fN )|χ〉 =

∫
d f †

N d f †
N−1 fN f †

N |χ〉 = 0. (A32)

To summarize, we see that a self-contracted loop leads to vanishing contracted state if the total parity of the loop is odd, as
postulated in the main text. Even-parity loops contribute an overall constant C �= 0 to the contracted state.

033079-23



A. JAHN, M. GLUZA, F. PASTAWSKI, AND J. EISERT PHYSICAL REVIEW RESEARCH 1, 033079 (2019)

APPENDIX B: GRAPHICAL COMPUTATION OF ENTANGLEMENT ENTROPIES

In this section, we derive formula (63) for the entanglement entropy SA of a Majorana dimer state using diagrammatic tools
and extend it to the computation of Rényi entropies S(n)

A . Furthermore, we generalize these proofs to full the HyPeC with arbitrary
bulk input, recovering previously known conditions on the boundary regions A [5]. Following (75), we can visualize a density
matrix ρ = |ψ〉〈ψ | of some Majorana dimer state vector |ψ〉 as

. (B1)

Here we are effectively using a Choi-Jamiolkowski isomorphism, representing a density matrix as a state in a doubled Hilbert
space. In order to produce a reduced density matrix ρA of some subsystem A, we sum over a complete set of states projected onto
the edges that are part of AC (the complement of A), which we saw in Eq. (72) to be equivalent to a contraction. For instance, the
green-shaded subsystem A in the following example leads to a reduced density matrix of the form

.

(B2)

We have omitted Majorana labels for clarity. In the first step, we used (72) to relate partial trace and contraction, and then applied
(74) in the second, yielding proper normalization factors. The third step merely uses (72) in reverse. In summary, we see that
normalization (requiring trρA = 1 at each step) leads to a simple rule: Each contraction that glues two pairs of dimer together
produces a factor of 1/

√
2.

The entanglement entropy now follows from the eigenvalue spectrum of ρA. We can compute the eigenstates by projecting a
full basis of Majorana dimer states onto the contracted edges of |ψ〉. For simplicity, we choose the basis of local Fock states, i.e.,
with dimers only between the Majorana modes on each edge. As two edges are contracted out, there are four such basis states,
of which only two are nonvanishing. These eigenvectors |ψA,1〉 and |ψA,2〉 are given by

, . (B3)
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Here, both diagrams represent normalized states. To see that our construction indeed yields eigenstates of ρA, consider the
eigenvalue equation for the second eigenvector |ψA,2〉:

2

. (B4)

With a similar diagram for ρA|ψA,1〉 it is found that both eigenvalues are 1/2. Thus, the entanglement entropy is given by

SA = −trA ρA log ρA = − 1
2 log 1

2 − 1
2 log 1

2 = log 2. (B5)

We find that evaluating SA reduces to counting the dimers connecting the “ket” edges with the “bra” edges, which determines
how mixed ρA is. In general, any reduced density matrix contains 2m “mixing dimers” that span an eigenspace of 2m orthogonal
dimer states (whose diagrammatic representation is not unique for m > 1). The entanglement entropy follows as

SA = −2m

(
1

2m
log

1

2m

)
= m log 2. (B6)

Equivalently, as 2m dimers connect A with the complementary (contracted) region AC, each dimer contributes 1
2 log 2 to the

entanglement entropy SA, as in Eq. (63).
Using a similar strategy, we can compute the Rényi entropy S(n)

A = log(trρn
A)/(1−n). This requires evaluating the nth power

of the reduced density matrix ρA. As an example, consider the square of (B2):

(B7)

Thus, it follows that ρn
A = ρA/2n−1, and hence S(n)

A = log(trρA/2n−1)/(1−n) = log 2. This property of a “flat Rényi spectrum,”
i.e., S(n)

A = SA, holds for any Majorana dimer state. For a generic ρA, (B7) involves n − 1 contractions of 2m mixing dimers,
leading to the following analog of (B6) for Rényi entropies:

S(n)
A = 1

1 − n
log trρn

A = 1

1 − n
log

trρA

2m(n−1)
= m log 2 = SA. (B8)

Note that this property of a flat entanglement spectrum is a proven feature of stabilizer codes states [44], thus making
Majorana dimers ideal for the study of stabilizers. Contrary to the stabilizer picture, however, we can also diagrammatically
evaluate the entanglement entropy for classes of superpositions, as we will now see. First, we take a look at superpositions
of input states of the HyPeC. Consider a single tile of the [[5, 1, 3]] code. For arbitrary bulk input, the boundary state is
given by

. (B9)

On the right-hand side, we have used a new notation for superpositions of [[5, 1, 3]] computational basis states with complex
factors α and β. Normalization requires |α|2 + |β|2 = 1. We now show that the reduced density matrix ρA of this superposition
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becomes an identity on the subsystem A when it consists of only two edges [A = (1, 2)] or one edge [A = (1)]:

(B10)

(B11)

Note that the actual values for α and β do not change ρA, and thus the entanglement spectrum is the same for any superposition
of the [[5, 1, 3]] logical code states. As we can easily see, S(1) = log 2 and S(1,2) = 2 log 2, identical to the result for the
logical code states. The corresponding eigenstates are simply a complete basis of Majorana dimers on one or two edges,
respectively.

Let us now consider the |A| = 3 case. We easily find the entanglement entropy SA = SAC = 2 log 2. The eigenstates of ρA can
be found, as in Eq. (B3), by starting with the state vector |ψ〉 and contracting a complete basis on the edges in AC, yielding four
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eigenstates. We compute the first one explicitly:

(B12)

The remaining three eigenstates are given by

(B13)

To see that these are eigenstates, we do not need to actually evaluate these contractions. Instead, using (B10), we compute the
eigenvalue equation for the first eigenvector as follows:

(B14)

The equations for the other eigenstates follow equivalently, leading to an entanglement entropy SA = 2 log 2 (i.e., m = 2). For
more than one tile, we can generalize (B14) for local superpositions, i.e., superpositions that factorize along the tiles. As an
example, consider a |ψ ′〉 resulting from contracting two states of the form (B9):

(B15)

Here we have defined the contraction operator Cj↔k contracting the jth edge of the first dimer state on the kth edge of the
second. We can now show that (B14) generalizes if we extend region A → A′ onto a neighboring pentagon tile. The reduced
density matrix becomes

(B16)

Note that a normalization factor of 2 appears as a result of the unresolved contraction within both |ψ ′〉 and 〈ψ ′|. To see that the
eigenvalue spectrum of ρ ′

A′ is the same as that of ρA, we simply extend the eigenvectors (B12) and (B13) onto the region A′ by
contracting them with the first pentagon, which is equivalent to contracting a complete basis on the extended vector |ψ ′〉. For the
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first eigenvector, we thus find

(B17)

The complete eigenvalue equation can be resolved by applying (B10) and (B11) successively:

(B18)

Again, this procedure holds for all eigenstates, leading to the same eigenvalue spectrum as for ρA. Thus, we see that “gluing”
[[5, 1, 3]] tiles onto a region A on an original tile only projects the eigenvalues onto a larger space of Majorana dimer states,
leaving their eigenvalues invariant. This procedure can also be extended to cases where a subsystem B and its complement BC
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both cover different tiles, as in the following example:

. (B19)

Here, we have rotated the configuration (B15) for easier visualization; as before, the adjoint part of ρ ′
B is on the right. Even in

this configuration, we can construct a set of eigenvectors by projecting a complete dimer basis onto BC:

(B20)

Explicitly, the eigenvalue equation for |ψ0,0,0
B 〉 is given by

(B21)

Again, after repeating this procedure for all eight eigenstates, we find that the entanglement entropy corresponds to the result
for a fixed logical input, SB = 3 log 2. An important condition for computing reduced density matrix eigenstates in this way is
that when projecting a complete basis of eigenvectors onto |ψ〉, the resulting states must be orthogonal. This is always the case
when no dimers connect sites within region AC. If they do, we can still simplify the reduced density matrix to an effective density
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matrix of a reduced state, as in the following example for a region C:

(B22)

(B23)

Instead of 2|CC| = 32 eigenstates, as in the previous example, we now only find 2|γC | = 8, where γC is the complement region of
C after simplifying ρC (with ∂γC = ∂C; here, γC = C). This is because a basis set contracted onto CC of the original state does
not lead to fully orthogonal states, for example,

(B24)

Thus, we conclude that if by applying (B10) and (B11) a reduced density matrix ρA can be simplified so that no dimers connect
sites within γA, then there are 2|γA| eigenstates with equal eigenvalues and an entanglement entropy SA = |γA| log 2. When such a
simplification is not possible, the entanglement entropy can depend on the bulk input. If we extend the region C → D onto half
of the two-pentagon system, we cannot apply (B10) and (B11):

(B25)
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Because of a dimer connecting Majorana modes within D, an eigenbasis projected onto its edges becomes mixed. Indeed, the
reduced density matrix ρD separates into a sum of parity-even and parity-odd terms, as cross-terms between both vanish:

(B26)

We can thus write

ρD = trDC (α1α2|0̄, 0̄〉 + β1β2|1̄, 1̄〉)(α�
1α

�
2〈0̄, 0̄| + β�

1β
�
2〈1̄, 1̄|) + trDC (α1β2|0̄, 1̄〉 + β1α2|1̄, 0̄〉)(α�

1β
�
2〈0̄, 1̄| + β�

1α
�
2〈1̄, 0̄|)

≡ trDC |ψ+〉〈ψ+| + trDC |ψ−〉〈ψ−|. (B27)

We have defined as |ψ±〉 the parity-even and parity-odd part of the total state vector |ψ〉. For each of the two states, we can
still apply our previous approach of finding the eigenbasis by projecting a complete dimer basis on the state itself, yielding
SD(ψ+) = SD(ψ−) = 3 log 2, as three dimers connect D and DC . Following the rules for the entanglement of superpositions for
biorthogonal states [57], we can now compute the entanglement entropy of the full state as

SD = 〈ψ+|ψ+〉SD(ψ+) + 〈ψ−|ψ−〉SD(ψ−) + h2(〈ψ+|ψ+〉)

= 3 log 2 + h2(|α1α2|2 + |β1β2|2) � 4 log 2, (B28)

where we have used the binary entropy function x �→ h2(x) := −x log x − (1 − x) log(1 − x). We are thus in a position to
compute the entanglement entropy even for complicated superpositions of dimer states.

Assuming a boundary region A that can be simplified using (B10) and (B11), however, we can easily compute the
entanglement entropy of the full HyPeC independent of the bulk input. For this, we follow the steps laid out in Eqs. (B18), (B21),
and (B22) for the construction of reduced density matrices and their eigenstates. Using our previous notation for superpositions,
an example is given by

(B29)
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The normalization depends on the number NC of internal contractions. We omitted the superposition labels α, β for clarity, but
still assume only local superpositions within each tile. Given a boundary region A, we first simplify the reduced density matrix
ρA as in Eq. (B22), being left with a wedge W bounded by minimal cut (or “bulk geodesic”) γA:

(B30)

Here, NC,W is the number of (still unresolved) contractions in the wedge W . The eigenstate basis of ρA can again be constructed
by projecting a complete basis of dimer states onto the edges of γA, leading to a 2|γA|-dimensional space of states, where |γA| is
the number of edges along the cut. For illustration, we consider the eigenstate with all-even projections:

(B31)
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The eigenvalue equation can be evaluated with the same techniques that we have used for reducing (B18) and (B21),

(B32)

Thus, we find the same entanglement entropy as for the case of fixed logical input states, SA = |γA| log 2 (with |γA| = 5). Our
procedure is equivalent to the greedy algorithm [5], which in dimer language is manifested through the reduction steps (B11)
and (B10). As for the greedy algorithm, our approach only applies when both A and its complement AC are reduced to the same
γA after simplification. In that case, we can draw the following conclusion about the reduced density matrix:

(B33)
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As a result, we find a flat spectrum of Rényi entropies S(n)
A = SA = |γ | log 2. When reductions from A and AC are not equivalent,

i.e., when the greedy algorithm does not converge to a geodesic, dimers will be “lost” during each power of ρA, and S(n)
A will

decrease with n.

APPENDIX C: CONTRACTION ORDER

Contracting Majorana dimer states on a given tiling can give rise to ambiguities regarding contraction order: Before
contraction, each tile has its own ordering of indices, some of which are contracted out and some remain on the edges of
the final geometry. We consider here the HyPeC with its underlying spin tensor network description, of which the Majorana
dimers form an effective representation. Let us start with the simplest case of a 0̄ (read: “logical zero”) input everywhere in the
bulk and a successive contraction of neighboring tiles, starting from the center:

(C1)

As all tiles have been filled with even-parity input states, the dimer parities of the fully contracted state is entirely independent
of the initial ordering: As shown in Eq. (59), any cyclic permutation (i.e., pivot shifts) of the initial tiles or at intermediate
contraction steps would have left the dimer parities invariant. For a general bulk input, however, the initial index labeling does
matter: The 1̄ input has odd parity and its dimer parities thus change under cyclic permutations, as shown in Eq. (60). Thus,
whenever a 1̄ tile is contracted in, the total parity of the contraction changes, and while the total parity is odd, any cyclic
permutation leads to a string of Z edge operator, as discussed in Sec. III D. This leads to the following contraction rule for
arbitrary fixed bulk input:

Lemma 4 (Dimer parities of the fixed-input HyPeC). Contracting fixed [[5, 1, 3]] code states on a pentagon tiling is equiva-
lent to multiplying dimer parities of contracted dimer pairs (regardless of the initial orientation of tiles) and adding Z strings
between the pivots of pairs of tiles with 1̄ input. If the number of 1̄ inputs is odd, then an additional Z string connects the pivot
of the unpaired 1̄ tile with the pivot of the full contraction.

Proof. Without loss of generality, consider a particular contraction order and initial tile orientation. Whenever the total parity
of the contraction at any step is even, contracting a 1̄ tile will cause pivot shifts in all following contraction steps to produce Z
strings, until another 1̄ tile is reached and total parity becomes even again. The starting and end points of these Z strings are the
pivots of the first and second 1̄ tiles. If the number of 1̄ tiles is even, then the final contraction will contains Z strings between
each successive pair of 1̄ tile pivots. If it is odd, then the Z string from the last 1̄ tile will continue until the boundary of the full
contraction. Consider the previous contraction for a pair of 1̄ tiles, with pivots of the odd tiles (whose orientation is now relevant)
shown by a small circle:

(C2)
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During the first iteration of contractions, the last contraction involves the first 1̄ tile and makes the contraction parity odd. We
thus need to mark it with a pivot, which is simply the pivot of the original 1̄ tile. To contract the other 1̄ tile, a pivot shift is
required, which produces a Z string (red line):

(C3)

The contraction is now again parity even (the pivots “cancel each other out”), and the rest of the contraction can be performed
without worrying about orientations:

(C4)

This result is independent of the ordering of the previous contraction, as we can freely deform the Z strings through the 0̄ tiles:

(C5)

To indicate the action of the Z strings on the full contraction, we have omitted the spaces between tiles in the previous diagram.
Furthermore, the result is independent of the initial orientations of the 1̄ tiles, as rotating these is equivalent to extending or
shortening the Z strings, as we have found in Eq. (59):

(C6)
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Contracting more than two 1̄ tiles will create Z strings between pairs of them, in the order in which we contracted. This ordering,
however, also does not affect the final contraction, as we can change this pairing using the same rules:

(C7)

The same rules apply if we have an odd number of 1̄ tiles in the bulk. As the entire contraction now has odd parity, it also requires
a pivot, which pairs up with the last 1̄ tile in the ordering. Again, this choice of a “last” tile does not change the outcome:

(C8)

Note that in the last step, we pushed Z strings through two pentagon tiles. Consistent with the lemma above, moving the boundary
pivot of the full contraction extends the Z string attached to it along the boundary, which is the expected behavior for a cyclic
permutation of an odd-parity dimer state. �

Lemma 4 now allows us to make some statements on the distance between Majorana boundary states for different bulk inputs.
Let us define the Majorana weight w as the number of Majorana operators (i.e., dimer parity flips) required to transform one
state into another. Given a boundary state vector |0̄, 1̄, 1̄, 0̄, . . .〉 for an arbitrary bulk input, what is the lowest wmin with respect
to a state with any other bulk input? We claim the following:

Lemma 5 (Majorana distance of HyPeC boundary states). The boundary states of the HyPeC for fixed logical input in the
bulk have a code distance w > 2 between any two inputs.

Proof. We will now show that starting from any fixed-input HyPeC boundary state, no number of logical input flips in the
bulk can lead to a state which is closer that w = 3 to the original one. This bound is clearly saturated for such an input flip 0̄ ↔ 1̄
of a tile on the boundary, which flips three dimer parities. If we instead push the input flip further into the bulk, we will produce
a Z string from the boundary (or annihilate one, if the original contraction is parity odd). The further in the bulk the flip occurs,
the longer the Z string grows, increasing w. Because of the hyperbolic geometry, there is also no way that the dimer flips by
neighboring 1̄ insertions can cancel each out. For neighboring pairs of 1̄ insertions, we always find w > 3:

, (C9)
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. (C10)

We have defined w relative to the all-0̄ input, but the result clearly holds for insertions on any fixed code input. When non-
neighboring pairs are added, the resulting Z strings cause additional dimer flips:

. (C11)

Similarly, adding even more pairs to make two Z strings “cancel” out does not bring down w:

. (C12)

As a result, it is impossible to produce Majorana dimer states on the boundary of the fixed-input HyPeC that can be mapped to
each other with less than w = 3 Majorana operators. The underlying reason for this can be found in the geometrical construction:
The number of possible boundary configurations 2M on L boundary edges increases much faster than the 2N configurations on
the N bulk tiles, as the geometry is hyperbolic. �

The property w > 2 resembles the code properties of the HyPeC: Because the tiles corresponding to [[5, 1, 3]] code states, it
requires three Pauli-type operations (“errors”) to map one code state to another. Thus, it requires at least three Pauli errors on the
boundary to map any HyPeC state to another one. Here, we found that it also requires at least three “Majorana errors” to perform
such a mapping. This is not a trivial result, as the number of Pauli operations corresponding to just two Majorana operations
already grows in the distance between the two sites on which the Majorana operators act. For example,

γ 2 γ2k−1 = i X1Z2Z3 . . . Zk−1Xk . (C13)

In general, applying two Majorana operators γ j and γ k at some distance on the boundary produces a Z string between the edges
on which γ j and γ k act. Fortunately, the [[5, 1, 3]] code states upon which the HyPeC are built allow for the expression of long
Z strings as an action of just two Pauli operators as

(C14)
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(C15)

Here, we have used the 0̄ input for illustration. The relative sign between the left- and right-hand side of these equations changes
when using the 1̄ input instead, corresponding to a “phase flip” in the language of quantum error correction. We conclude that a
pair of Majorana operators on the boundary of the HyPeC is related, up to a complex phase, to no more than two Pauli operators
acting on tiles on the boundary. As each of these tiles corrects one Pauli errors, no overlap between states for different bulk
inputs can be produced with such an operation, supporting our earlier geometrical explanation.
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