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1 Introduction 

1.1 The skin 

The skin is an essential interface between the body and environmental surroundings 1. The 

primary role of the skin is to serve as a physical barrier resisting penetration by pathogenic 

organisms and potential toxins while keeping moisture and nutrients inside the body 2. This 

chapter centers on the structure of the skin, the skin penetration pathways, the skin barriers, 

and the physiochemical characteristics of the skin surface.  

 
Figure 1 Schematic skin structure and penetration pathways. 

1.1.1 Structure of the skin  

The skin comprises three major zones: the epidermis, the dermis, and the hypodermis (Figure 

1). The epidermis is mainly made up of keratinocytes and divided into the outermost stratum 

corneum (SC) and the viable epidermis (VE) beneath. Depending on keratinocytes at different 

stages of differentiation, the VE is divided into the stratum granulosum (SG), the stratum 

spinosum, and the stratum basale 3. From the stratum basale, keratinocytes proliferate and 

are pushed upward by newly formed cells into the SG and eventually become enucleated and 

flattened cells called corneocytes, which are terminally differentiated cells in the SC 4. The SC 

is stacked with 10-20 layers of corneocytes that are embedded in the intercellular lipids. The 

intercellular lipids are organized into lamellar bilayers which provide an important barrier to 

exogenous substances diffusing across the SC 5.  
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Hair follicles (HFs) are one group of skin appendages, which are mainly located in the dermis 

and hypodermis, ascend through the epidermis and open to the skin surface (Figure 1) 6. 

There are two principal types of human HFs� the terminal and the vellus HFs. A. Vogt et al. 

measured the histological sections of human HFs from the scalp and the retroauricular regions. 

They found that terminal HFs with an average length of 3864 µm extend into the hypodermis, 

while vellus HFs have a length of about 646 µm and extend into the dermis. Diameters of the 

openings of the terminal and vellus HFs are about 172 µm and 86 µm, respectively 7. The 

three regions of the HF from the skin surface to the deeper viable skin layers are infundibulum, 

the isthmus, and the bulb and suprabulb 8.  

1.1.2 Definitions related to dermal absorption 

Hereunder, definitions concerning dermal absorption are based on the guideline 

(SCCS/1358/10) published by the Scientific Committee on Consumer Safety. Skin penetration 

means the entry of a substance into a particular layer or structure of the skin. Skin permeation 

is the penetration through one layer into another, which is both functionally and structurally 

different from the first layer 9. 

1.1.3 Mechanisms and pathways of skin penetration  

The drug partitioning and diffusion through different skin layers are passive and follow a 

concentration gradient. When the skin is simplified as a homogenous membrane, the 

mechanism of skin penetration can be described by the Fick´s first law of diffusion (Equation 

1), which expresses the steady-state molecule flux (J) as a function of the area and the drug 

concentration gradient: 

! = # × %&
ℎ × ()(&

= # × %& × *
ℎ  (Equation 1) 

where D is the diffusion coefficient of the drug in the membrane, h is the diffusion path length 

across the membrane, Cv is the concentration of the drug dissolved in the vehicle, Sm and Sv 

are the solubilities of  the drug in the membrane and vehicle, respectively, and P is the partition 

coefficient of the drug between the membrane and vehicle 10. Therefore, strategies of 

increasing D, P, Cv, and Sm could enhance skin penetration of drugs. 
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Three potential penetration pathways of topically applied substances into the skin are well- 

accepted (Figure 1): intercellular, transcellular, and HF routes 10,11. The intercellular route is 

considered as the predominant pathway for most drugs across the SC, especially lipophilic 

chemicals 12. However, it is still debatable whether hydrophilic compounds prefer a 

transcellular route. Theoretically, a molecule penetrating via the transcellular route must 

experience multiple hydrophilic and lipophilic domains, namely corneocyte-lipid lamellae-

corneocyte, which is unfavorable for most drugs 13. H.E. Boddé et al. reported that for mercuric 

chlorite the intercellular route prevails while the transcellular route is also observed in the 

apical corneocytes after longer exposure time 14. So far, only a few chemicals have been 

investigated about their skin penetration pathways because of technological limitations 15,16.  

The HF penetration has recently received considerable attention 17-19. Even though the area 

of follicular orifices accounts for less than 0.1% of the total skin area, the internal surface area 

of HFs is greatly higher than 0.1%, which makes HFs a potential reservoir for dermal 

penetration 20. Studies nearly a decade ago mostly focused on how the physicochemical 

properties of drugs influence the HF penetration. E.A. Essa et al. reported that the HF route 

significantly contributes to the overall skin penetration of mannitol (hydrophilic) in aqueous 

solution, whereas it is negligible during the penetration of the saturated aqueous estradiol 

(lipophilic) solution 17. The study published by T. Ogiso et al. found that the penetration of 

hydrophilic fluorouracil dissolved in a mixture of propylene glycol and ethanol is positively 

correlated to the HF density 21. However, another study shows that the fluorescent substance 

Bodipy® 564/570 C5 of high lipophilicity was highly accumulated in HFs compared to Oregon 

Green® 488 of low lipophilicity. Both of the dyes were dissolved in a citric acid buffer 

containing 30% (V/V) ethanol 22. Therefore, the hydrophilicity of a drug does not always 

correlate to the HF penetrate. One reason could be the influence of different media used to 

dissolve the tested substances. Recently, using particle-based drug delivery systems to 

deliver drugs into HFs is gaining interest 23-25. For example, nanoparticles (NPs) have been 

shown their advantages in the HF penetration over conventional formulations such as gel and 

cream 24,25.  

1.1.4 Skin barriers 

The SC is a significant and first-line barrier to cutaneous penetration. In clinical practice, the 

amount of drugs penetrated skin only takes up 1-5% of the applied dose 26. Moreover, among 

the drugs penetrated in the skin, a considerable amount of drugs are localized in the SC, while 

a low amount of drugs diffuse across the SC and enter the VE 27,28. Therefore, the SC is often 
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regarded as a drug reservoir in skin penetration 29,30. Another skin barrier is the transition zone 

between the lipophilic SC and the hydrophilic VE. Even though lipophilic molecules can 

penetrate into the SC more easily, subsequent diffusion of these molecules into the hydrophilic 

VE is restricted. Therefore, drugs with intermediate logarithmic partition coefficients (log P) 

between 1 and 3 are optimal for skin penetration 31. 

Recently, tight junctions have been discovered in the VE. The tight junction seals the 

intercellular space of keratinocytes and impedes the transdermal diffusion of molecules across 

the VE 32. For instance, S. N. Andrews and coworkers found that the permeabilities of human 

skin without the epidermis to insulin and sulforhodamine are increased 11 and 7 folds, 

respectively, compared to that of the skin only without the SC 33. This study shows that the VE 

is a significant barrier to the transdermal penetration of these two drugs after removing the SC 

from the skin. The tight junctions in the VE may play a role in preventing the skin permeation 

of drugs. Another study used AT1002, a peptide that can open tight junctions in the SG, to 

successfully deliver siRNA into the AD mice skin while the vehicle without AT1002 failed 34. 

These studies reveal that the tight junction is a crucial barrier to overcome to realize 

transdermal drug delivery.  

For the HF penetration, substances often accumulate in the infundibulum of the HF, which is 

the upper segment of the HF from the orifice to the opening of the sebaceous gland 35. The 

storage capacity of the infundibulum underscores the importance of HFs in delivering drugs 

into skin 36. However, substances inside HFs are still on the outside of the body. The 

transfollicular penetration of substances into the VE and the dermis must overcome the barrier 

of the infundibulum. There are two kinds of barriers in the HF. The upper infundibulum is 

covered by the keratinized epidermis (i.e., the SC), posing a strong barrier; the lower 

infundibulum only has a thin horny layer that is fragile and imperfect, forming an inconspicuous 

barrier to the transfollicular penetration 37. This makes the HF a promising target that offers a 

shortcut to deliver drugs to the deep part of the viable skin layers and even the systemic 

circulation 31. 

1.1.5 Physiochemical characteristics of the stratum corneum 

The main physicochemical parameters of the SC barrier are skin surface pH, transepidermal 

water loss, skin hydration, and sebum excretion. A multicentre study measured the volar 

forearm of 330 subjects and reported that the average skin surface pH is 5.1 ± 0.56 (Table 1) 
38. This acidic nature of the skin surface originates from the lactic acid secreted by eccrine 

sweat, and free fatty acids generated from the bulk hydrolysis of epidermal lipids 38. The 
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electrode-based pH meter is commonly used to measure the skin surface pH. Besides, 

another approach using a pH sensor foil has been developed to measure the surface pH of 

skin equivalents 39,40. The total water loss from the skin includes water passively evaporating 

through the SC to the external atmosphere (transepidermal water loss, TEWL) and also water 

loss as a result of sweating 41. TEWL values are widely used to indicate the skin barrier 

function when there are no sweat gland activities 42. The retention of water in the SC is defined 

as the skin hydration, which depends on the intercellular lipids of the SC to form a barrier to 

the transepidermal water loss, as well as the natural moisturizing factors to bind and hold 

water molecules in corneocytes 43. The water content in the SC accounts for 15-20% of the 

total mass of the SC and accumulates mostly inside corneocytes. It sharply raises at the 

boundary between the SC and the SG 44. Sebum is a highly viscous fluid and a mixture of non-

polar lipids. It is produced by sebaceous glands and contributes to moistening the SC 41.  

The above four physiochemical parameters are interrelated and often altered due to skin 

diseases. Atopic dermatitis (AD) is the most common chronic inflammatory skin disease 

accompanied by an impaired skin barrier and characterized by intense itch 45. Many studies 

have found that the skin surface pH of AD patients is elevated, which is in a range of 5.5-6.1 
46-48. Besides, the AD skin exhibits significantly lower water content of the SC and sebum 

amount on the skin surface compared with those of healthy skin 49-51. The TEWL value of AD 

skin is found to be about 2-fold higher than healthy skin 52. These changes in the 

physicochemical characteristics of the SC could affect skin penetration. For example, the 

concentration of metronidazole in the dermis of the AD skin, sampled by microdialysis, was 

2.4-fold higher than that in the uninvolved skin 53. Children with AD who were frequently 

exposed to emollients containing low-molecular-weight phthalates had significantly higher 

urinary levels of the phthalate metabolites when compared to children without AD 54. Further 

studies show that compositions and organizations of the intercellular skin lipid in the AD skin 

are aberrant, which is directly related to the skin barrier function 55-57. 

1.2 Ex vivo barrier-disrupted skin models 

In vivo human skin is the targeted structure to evaluate the in vivo performance of dermal or 

transdermal drug delivery systems. However, it is generally not feasible during the initial 

development stage of a novel formulation or a new drug candidate. Therefore, excised human 

skin and isolated animal skin models are frequently used to improve our understanding of the 

skin penetration process, as well as to shorten and economize the process of drug 

development and minimize the number of human studies 58,59. However, these ex vivo skin 
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models are associated with limited tissue durability and do not have an intact physiologic and 

metabolic system present in in vivo models 60. With the awareness of animal welfare and new 

regulations in place (76/768/EEC, February 2003), reconstructed human skin equivalents 

have become an alternative to animal skins for skin absorption testing and toxicity studies 61.  

1.2.1 Ex vivo skin models 

Excised human skin is often obtained from plastic surgery, such as abdominal and breast skin. 

The in vivo human abdominal skin has 12.0 μm thick SC measured by two-photon microscopy 
62, and its vellus HF density is about 17 hairs/cm2 63,64. The diameter of the infundibulum 

opening of vellus HFs in the abdomen has not been investigated yet, but it could be referred 

to the value of retroauricular skin, which is 86-100 µm 7 (Table 1). A. Patzelt et al. reported 

that the follicular opening of excised human skin is constricted as the elastic fibers are cut 

during excision. Consequently, the amount of curcumin in HFs of excised skin after the topical 

application was reduced by more than 90% in comparison to the in vivo results. This study 

suggests that excised human skin is not a suitable skin model for studying the HF penetration, 

whereas porcine skin would be an alternative 65.  

However, the availability of excised human skin is limited, particularly diseased human skin. 

Therefore, animal skin models are frequently used, such as primates, porcine, mouse, rat, 

guinea pig and snake models 59. The use of primates is highly restricted and limited by cost 60. 

Porcine skin is readily available and regarded as a good animal model for human skin because 

of its physiological and anatomical similarities 66,67. Flank and ear are commonly used sites 

and their skin surface pH is in the range of 5.30-7.70, which is higher than the value of human 

skin 68,69. M. Dime et al. investigated the HF pH of ex vivo porcine ear using a pH-sensitive 

dendritic polyglycerol nanogel and found that the pH of HFs increases from 6.5 at the skin 

surface to 7.4 in deeper regions 70. The SC thickness of the porcine ear is determined to be 

18 µm using confocal Raman microscopy based on the water concentration profile along with 

the skin depth 71. The HF density of pig ear is about 20 hairs/cm2, and the orifice of the follicular 

infundibulum is 173-229 µm in diameter72. The lipids of porcine SC are packed predominately 

in a hexagonal lattice (more disordered), while the lipids of human SC is packed in a denser 

orthorhombic lattice 73 (Table 1). This may indicate a higher SC barrier function of human skin 

compared to that of porcine skin 74. 

The correlation of skin penetration and permeability of substance between porcine skin and 

human skin has been reported in several studies. A multicenter study conducted by M. 
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Schäfer-Korting and coworkers investigated the permeabilities of excised human epidermis 

and porcine skin to nine substances, covering a wide spectrum of physicochemical properties. 

The apparent permeation coefficient values obtained from both skin types correlate well 75,76. 

Besides the skin permeability, the correlation of skin penetration of drugs between human and 

porcine skin needs consideration too, especially when only skin is the target. However, 

thorough investigations including a sufficient number of drugs have not been conducted so far. 

Only a few publications report the skin penetration of specific drugs into human and porcine 

skin. For example, the hydrophilic antifungal drug climbazole, dissolved in propylene glycol or 

Transcutol® P, exhibited significantly higher skin penetration into porcine skin than human skin, 

whereas the skin permeation through both skin types was similar 77. For the hydrophilic 

compound niacinamide dissolved in propylene glycol or Transcutol® P, significantly more 

drugs permeated across the full-thickness porcine skin compared to the excised human skin, 

yet the drugs penetrated in porcine skin were much less than that in human skin 78. The 

explanation for the inconsistency of the results in these two studies needs further 

investigations. The difference of SC and HFs between the two skin types might play a role.  

Table 1 Comparison of in vivo human abdominal skin and ex vivo porcine ear 

Parameters Human abdominal skin  Porcine ear 
SC thickness (µm) 12 62 18 71 
pH of the SC surface 5.1 ± 0.56 38 5.30-7.70  68,69 
HF density (hairs/cm2) 17 63,64 20 72 
Infundibulum diameter (µm) 86-100 7 173-229 72 
Dominant lipid packing in SC Orthorhombic lattice 73 Hexagonal lattice 73 

Reconstructed human skin equivalents have been developed for the past three decades, and 

are categorized into epidermal and full-thickness models 61,79. The Organization for Economic 

Cooperation and Development has approved the use of reconstructed human epidermis for 

acute skin irritation and skin corrosion testing 80. However, the application of reconstructed 

human equivalents to skin absorption testing needs thorough validation. In a validation study 

published by M. Schäfer-Korting et al., three commercially-available reconstructed human 

epidermis models were compared with the ex vivo human epidermis 75. The permeation of the 

reconstructed human epidermis models to nine substances exceeded that of the human 

epidermis by 2-30 folds due to a less developed barrier function of the reconstructed human 

epidermis models 75,81. However, the ranking of the permeation of these nice substances 

through the three tested reconstructed skin models reflected the permeation results for the 

human epidermis. This study suggests that reconstructed human epidermis models could be 

suitable for the in vitro assessment of skin permeation and penetration of substances; however, 

product-specific overpredictability needs to be taken into account 75,76. Besides, reconstructed 
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human epidermis models do not possess HFs or sweat glands. Thus, the only relevant 

penetration pathways are inter- and transcellular.  

1.2.2 Ex vivo barrier-disrupted skin models 

Diseased skin often exhibits impaired barrier function and altered physicochemical 

characteristics of the skin surface, which could consequently affect the cutaneous penetration 

and permeation of drugs. Therefore, topical formulations that are designed for the treatment 

of skin diseases should be evaluated on diseased skin. However, it is impossible to test any 

formulation or drug directly on patients at an early pharmaceutical development phase. In 

recent years, a wide range of animal models of skin diseases have been reported spanning 

from mice, rats, rabbits, dogs, monkeys, and fishes 82,83. For example, AD mouse models can 

be induced by allergens or established by transgenic or gene knockout techniques 82. However, 

the drawbacks of animal models are long disease induction phase and limited reproducibility 
84. The reconstructed human skin equivalents emulating AD have a long viability period and 

good reproducibility, yet it is of high-cost and not easily accessible 85. In comparison, it would 

be an efficient strategy to induce an acute barrier disruption in ex vivo skin for preclinical 

assessment of novel dermal/transdermal drug delivery systems. 

Acute skin barrier disruption can be induced by physical and chemical approaches. Tape 

stripping (TS) and cyanoacrylate stripping (CS) are widely used physical methods 86-90. TS is 

an established procedure used in dermatopharmacology research for selectively removing the 

SC 87.  Generally, an adhesive film is pressed onto the test site of the skin, and then is abruptly 

removed, to which a certain amount of the SC adheres 91. The amount of SC removed by 

tapes is influenced by many factors, such as the type of tape, application pressure, and 

duration of the pressure 92. Cyanoacrylate is an FDA-approved tissue adhesive for wound 

closure 93. Besides, it is also introduced to collect the SC for further analyses of skin lipids and 

uptaken drugs 87,94. The liquid cyanoacrylate monomers polymerize into long chains and form 

a solid film upon the contact with water in the skin, leading to an adhesion of the film to the 

SC. Then the superficial layer of the SC is removed while removing the cyanoacrylate film with 

the sampling support such as polyethylene and glass 95.  

The skin barrier disruption induced by TS or CS is due to the removal of the SC. Several 

studies have employed these two methods to develop ex vivo barrier-disrupted skin models. 

A. Vogt et al. used excised human skin whose skin barrier was impaired by one CS for studying 

transcutaneous immunization 96. L. Simonsen et al. consecutively performed 25 tape strips on 
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porcine skin to simulate the AD skin. The increased TEWL value of the barrier-disrupted skin 

is in the range reported for the skin lesions of AD. Moreover, similar permeabilities of the 

barrier-disrupted skin model to fusidic acid and betamethasone in two formulations accord 

with the similar clinical effects of the two formulations on AD 97. Besides, the skin surface pH 

of barrier-disrupted skin induced by TS or CS could also simulate the elevated pH of AD skin 

because the pH value gradually increases with the SC depth 98,99.  

However, the correlation of the skin barrier function with the number of applied TS or CS has 

been scantly investigated 100. TEWL value is a frequently used indicator for skin barrier 

function. Yer, TEWL measurement is not sensitive enough. The increase of the TEWL value 

of in vivo human skin can only be detected after applying more than 20 consecutive tape strips 
92. In comparison, the absolute SC thickness remaining on the skin after being subjected to a 

certain number of TS or CS would directly reflect changes in the skin barrier function. 

Besides physical methods, the detergent sodium lauryl sulfate and the organic solvent acetone 

are typical chemicals used to induce acute skin barrier disruption, which results from the 

removal of intercellular lipids of the SC and structural changes of keratin in corneocytes 101,102. 

As evidenced, epidermal swelling and spongiosis are observed in the excised human skin 

exposed to 5% sodium lauryl sulfate for 4 h 103. However, it usually takes hours to reach a 

significant skin barrier disruption by using sodium lauryl sulfate 104. In comparison, a few 

minutes of exposure to acetone can remarkably increase the TEWL of human skin in vivo; 

meanwhile, the skin surface pH is unchanged 105. Using sodium lauryl sulfate and acetone is 

relatively hard to control and adjust the extent of skin barrier impairment. By contrast, the 

physical approaches, TS and CS, can easily realize different degrees of skin barrier disruption 

by adjusting the number of applied strippings; the induced barrier disruption is relatively 

reproducible when the TS and CS are performed under an established protocol. 

1.3 Topical dermal drug delivery systems 

The skin provides a promising site for the administration of substances for local or systemic 

therapies. Topical dermal formulations are mainly designed to target three sites according to 

the skin depth. First, the activities of some topical formulations are only limited to the skin 

surface without the SC penetration, such as sunscreen and repellents. Second, some 

formulations are aimed to deliver drugs into the viable skin layers while avoiding the systemic 

effect. For instance, topical corticosteroids are one of the most commonly prescribed 

medications for AD. Since AD is a chronic disease, long-term use of topical corticosteroids 
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could increase the risk of corticosteroids being absorbed into the bloodstream, which causes 

internal side effects such as decreased growth in children and Cushing's syndrome 106. 

Therefore, a cutaneous drug delivery system that mainly transports drugs into the viable skin 

layers and limits the entry of drugs into the systemic circulation can reduce the systemic side 

effects of corticosteroids. Lastly, the transdermal drug delivery system that delivers drugs 

through the skin and into the bloodstream not only avoids the hepatic first-pass metabolism 

and gastrointestinal tract exposure but also provides controlled and sustained administration 

of drugs 107,108. Thus, transdermal administration is a promising route to deliver drugs, such as 

its application in the treatment of Parkinson`s disease and contraception 109,110. Dermal and 

transdermal drug delivery systems which are highly required in the clinic need first to 

overcome the SC barrier. To improve skin penetration of drugs, the uses of chemical 

penetration enhancers and NP-based drug delivery systems are effective strategies 111,112. 

1.3.1 Chemical penetration enhancers  

Various kinds of chemical penetration enhancers have been utilized to improve skin 

penetration of drugs 113. This chapter only focuses on two simple and low toxic solvents: water 

and ethanol. Water is a natural and safe penetration enhancer; however, the mechanism by 

which water improves drugs entering skin is not clear. Under normal conditions, the SC has a 

water content of 15%-20% of its dry weight, which is supplied by the underlying viable tissue 
114. With skin occlusion, the SC hydration rises to 50% and the skin penetration of many 

compounds is increased 115. The exogenous water diffuse into the SC too, which is evidenced 

by the swelling of corneocytes when the SC hydration is above 70% 116. Therefore, a possible 

mechanism that water increases skin penetration of drugs is the SC hydration, which 

increases the partitioning of drugs from vehicles into the SC 113. 

Ethanol is a widely used topical penetration enhancer 117. The mechanisms of ethanol 

enhancing cutaneous penetration of drugs are still not clear. One proposed mechanism is: 

ethanol enters the skin and extracts appreciable amounts of lipid from the SC, which leads to 

a lowered skin barrier function and thus enhanced skin penetration of drugs 118,119. Some 

studies report that ethanol could alter the structures of skin lipids and keratin fibrils 120,121. 

Additionally, the permeation of drugs is found closely linked to the permeation of ethanol. Thus, 

one mechanism for ethanol as a skin penetration enhancer is suggested to be a so-called 'pull' 

or 'drag' effect 122-124.  
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The mixture of ethanol and water has been reported to synergistically enhance the skin 

penetration of several drugs 125-127. For example, among the ethanol concentrations ranging 

from 0% to 100 % V/V, the ionic molecule sodium salicylate dissolved in the 63% aqueous 

ethanol solution showed the highest permeation through the human SC 125. Using ethanol-

water mixtures at ethanol concentrations over 0-90% W/W, a maximum flux of the lipophilic 

drug estradiol through the human epidermis was observed at ethanol concentrations between 

40%-60% 127. Mechanisms of the synergistic skin penetration enhancement for ethanol-water 

mixtures have not been elucidated. 

1.3.2 Nanoparticles for dermal drug delivery 

Apart from the penetration enhancers, NPs are gaining much interest in the research of dermal 

and transdermal drug delivery. Major types of NPs currently developed for skin drug delivery 

are lipid-based, polymeric and inorganic NPs 128. According to the definition of the International 

Standards Organization, an NP is an object with at least one dimension below 100 nm. 

However, NPs in many published studies in the pharmaceutics and medicine field are in a size 

of 100-1000 nm, which should be categorized as sub-microparticles 25,129-135. Nevertheless, 

the term NP used in the context below is based on the cited literature.   

NPs have shown many advantages over conventional topical formulations such as creams, 

emulsions, gels, and ointments. i) NPs improve the skin penetration of physically-loaded 

therapeutics and model drugs 129,132,136. For instance, the cutaneous uptake of the lipophilic 

dye Nile red is increased about fourfold by using solid lipid NPs compared to the uptake 

obtained following the cream 129. The dendritic core-multishell (CMS) NP more efficiently 

delivers dexamethasone (Dx) into the epidermis of excised human skin compared to a 

commercially available Dx cream 132. ii) NPs can target HFs 24,25,137. The fluorescein loaded 

poly(D,L-lactide-co-glycolide) NPs penetrate much deeper into HFs of porcine skin than a 

fluorescein-containing hydrogel if a massage is applied 25. iii) NPs control the release of 

encapsulated drugs. By tuning the physicochemical properties of NPs, the drug release of 

NPs can be triggered by exogenous/endogenous factors such as temperature, light, pH, and 

enzyme 134,138. For example, NPs made of bovine serum albumin are deposited in HFs and 

the release of the loaded fluorescein isothiocyanate is triggered by protease which is delivered 

into HFs by CaCO3 NPs at the same time 139. 4) NPs could promote the cutaneous penetration 

of hydrophilic macromolecular drugs 140,141. Etanercept is a protein drug that reduces the 

inflammatory response; one of its indications is psoriasis. M. Giulbudagian and coworkers 

designed a polyglycerol nanogel to encapsulate etanercept for topical application to replace 
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the currently used subcutaneous injection. The nanogel was found to deliver a significant 

amount of etanercept to the VE, whereas etanercept in PBS failed to penetrate into the VE 140. 

5) NPs improve the chemical stability of drugs 142,143. The photolytic degradation of aciclovir 

that is incorporated into chitosan-tripolyphosphate NPs (suspension) is reduced compared to 

its aqueous solution 142. 

Despite decades of research, there are only a few NP-based dermal/transdermal drug delivery 

systems on the market 144. Estrasorb®, a nanoemulsion (about 125 nm in size), is designed to 

deliver estradiol to the blood circulation following topical skin application 145,146. Pevaryl 

Lipogel® containing 1% econazole is the first approved liposome for dermal application 147. 

However, its clinical efficacy in the treatment of tinea pedis is not superior to an econazole 

conventional Cream 1% 148. Many fundamental and mechanistic questions need to be 

addressed to promote the clinical translation of NP-based cutaneous/transdermal drug 

delivery systems. First, the mechanisms of enhanced skin delivery by NPs are still ambiguous. 

The improved skin penetration using solid lipid NPs could be due to the interaction of the NP 

lipids with the SC lipids, as well as the skin hydration as the lipid NPs form an occlusive film 

on the skin surface 130,131. The polymeric CMS NP is suggested to have interactions with the 

lipids or proteins of the SC, which favor the skin penetration of drugs 133. The interaction of 

NPs with the SC is the first step during skin penetration; however, little is known about the NP-

skin interaction because the complexity of the structures of both NPs and the SC makes it 

challenging to unveil this mystery. More advanced techniques are required. J. Dreier et al. 

employed two cutting-edge techniques, emission depletion microscopy and raster image 

correlation spectroscopy, and detected that the liposomes fuse with the outer lipid layers of 

the SC and then burst their cargoes 149.  

Second, the ultimate spatial localization of NPs after applied to the skin is still a controversial 

topic concerning whether NPs penetrate the skin. The fluorescent polystyrene NPs of size 20-

200 nm were observed to infiltrate the depth of 2-3 µm on porcine skin after 16 h exposure 150. 

The CMS NPs with a size below 20 nm remain exclusively in the SC of the excised human 

within 6 hours and then penetrate into the viable skin after 24 hours 133. However, these studies 

used the Franz diffusion cell approach in which the skin samples were excessively hydrated 

and their skin permeability could be significantly altered 151. In an in vivo study, both AD and 

psoriasis mice models were topically applied with CMS NPs (about 14 nm in size) for five 

consecutive days, and the NPs were exclusively found in the SC and no penetration in the VE 
152,153.  
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Next, the drug release from NPs is a prerequisite to exert therapeutic effects and thus to treat 

skin diseases. However, only a few studies have examined the role of drug release in the 

following skin penetration and permeation. The in vitro release of the molecular sunscreen 

oxybenzone from solid lipid NPs was decreased by 50% compared to that of an equally sized 

o/w emulsion; the in vivo skin penetration of oxybenzone using the solid lipid NPs was greatly 

lower than that using the emulsion 154. A liquid crystalline system that sustainably released the 

loaded drug celecoxib in vitro was found to significantly enhance the drug penetration into 

porcine ear skin, compared to a celecoxib propylene glycol solution at the same concentration 
155.  

Franz diffusion cells and artificial polymeric membranes have been often used to study the 

drug release of NPs 156,157. In this case, NPs are surrounded by abundant aqueous medium, 

which is far different from the limited water content in the skin surface. One study published 

by M. Schneider and coworkers was conducted on ex vivo skin. PLGA NPs of 290 nm in size 

were covalently labeled with fluorescein and physically loaded with the model drug Texas Red 

so that the localization of drugs and NPs can be distinguished by multiphoton microscopy. The 

results demonstrate that the NPs accumulated in the wrinkles of excised human skin and 

Texas Red was released and then penetrated into the skin 158.  

Furthermore, factors that influence the drug release of NPs have not been fully investigated. 

One factor is the drug-nanocarrier interaction, which may be a double-edged sword for 

dermal/transdermal drug delivery systems. The drug-nanocarrier interaction can be exploited 

to control the drug release for meeting clinical needs 159,160; however, it may also hinder the 

drug release and the subsequent skin penetration when the drug-nanocarrier interaction is too 

strong. For example, the positively charged drug tetracaine has a much stronger ionic 

interaction with a negatively charged carboxyl-modified polystyrene NP than with a silica NP. 

When the mixture of tetracaine and the negatively charged polystyrene NP was applied to the 

porcine epidermis, no tetracaine permeated through the epidermis. However, the addition of 

silica NPs to the tetracaine solution enhanced the skin permeation 161.  

Lastly, how NP properties influence their borne substances to enter the skin still needs further 

studies, such as size and surface properties 137,162-164. Liposomes of less than 300 nm in size 

were found to deliver both the hydrophilic dye carboxyfluorescein and lipophilic dye Dil into 

deeper skin layers to some extent, while liposomes in a size ≥ 600 failed 164. Studies about 

the HF penetration of a polymeric PLGA NP and a CaCO3 NP in different sizes were performed 

on ex vivo porcine ear and in vivo rat back, respectively. Both results demonstrate a deeper 

HF penetration for the particles in a size of around 600 nm 137,162. Surface properties of NPs 
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influence the skin penetration of loaded drugs too. For example, a polymeric NP whose 

surface is modified with oleic acid delivers much more ketoprofen into the excised human skin, 

as compared to the unmodified NP 165. Some studies report that positively charged 

nanoemulsions and polymeric Eudragit RS 100® NPs were superior to their corresponding 

negatively charged particles in delivering substances into the excised human skin 166,167. To 

understand the mechansims of the enhanced skin penetration by NPs, the complicated 

interplay between drug-nanocarrier interaction, NP-skin interaction and drug release of NPs 

need to be thoroughly invesitigated. 

1.4 Label-based techniques used to investigate skin penetration 

Various advanced microscopic and spectroscopic techniques have been employed to answer 

the above challenging questions. These techniques differ in sensitivity, resolution, depth of 

optical sectioning, requirements of skin sample preparation, etc. Herein, the techniques are 

categorized into: i) label-free techniques, including transmission electron microscopy, atomic 

force microscopy, soft X-ray spectromicroscopy, Raman scattering, and Fourier-transform 

infrared spectroscopy; ii) label-based techniques, including electron paramagnetic resonance 

(EPR) spectroscopy, confocal laser scanning microscopy (CLSM), two-photon microscopy 

(TPM) and fluorescence lifetime imaging microscopy (FLIM). They have been applied to 

investigate spatial localization of NPs and drugs in different skin layers and skin cells 24,168-173, 

NP-skin interactions 174,175, drug release of NPs on skin 158,176,177, quantification of drugs in skin 
136,171, characterization of NP properties, etc. 140 The following chapter focuses on the label-

based techniques of EPR, CLSM, and TPM about their principles, advantages, limitations, and 

applications. 

1.4.1 Electron paramagnetic resonance (EPR) spectroscopy  

EPR can detect systems containing unpaired electrons. As shown in Figure 2A, the intrinsic 

angular momentum of the unpaired electron is called spin, which generates a magnetic field 

due to the electron charge. The unpaired electron can be regarded as a little bar magnet with 

a magnetic moment. An external magnetic field B0 splits free unpaired electron spins into two 

energy levels: the unpaired electron’s magnetic moment parallel and antiparallel with the 

applied external magnetic field are the low and high energy levels, respectively (Figure 2B). 

This effect is called Zeeman Effect. Since the electron is a spin ½ particle, the parallel state is 

denoted as ms = -½ and the antiparallel state is ms = +½. The energy of each level is the 

production of the electron’s magnetic moment (µ) and B0 (E = µB0), and µ = msgeβ, where ge 
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is the spectroscopic g-factor of the free electron that approximately equals to 2.0023, and β is 

the Bohr magneton (9.274×10−24 J/T). Thus, the energies of the low and high levels are E-½ = 

-½geβB0 and E+½ = +½geβB0, respectively. The energy difference between the two levels is 

ΔE = geβB0. At the same time, E = hν, where ν is the frequency and h is the Planck’s constant. 

Therefore, the microwave whose frequency matches the energy difference ΔE will be 

absorbed by the spins in the low energy state. Then the spins will transit to the high energy 

state, which is called resonance (Figure 2B). Since any physical system prefers to be in a low-

energy state, the radiated electron will jump back to the low-energy state again and gives up 

its excess energy by re-emitting the electromagnetic radiation at the same frequency. The 

time of this process is called the electron relaxation time 178.  

 
Figure 2  (A) Free unpaired electron spins randomly distributed in the space. (B) Zeeman 
effect in which an externally applied magnetic field B0 splits the unpaired spins into the low 
and high energy levels. Only the electromagnetic radiation of a microwave with a certain 
frequency that matches the energy difference generated by Zeeman effect, can be absorbed, 
according to the equation of ΔE=hv=geβB0, where ΔE is the energy difference between the 
two levels, h is the Planck constant, v is the frequency of the microwave radiation, ge is the 
spectroscopic splitting factor, β is the Bohr magneton, and B0 is the external applied magnetic 
field. The absorption curve is often presented as its first derivative curve in commercial EPR 
spectrometers 178. (C) Chemical structure of 2,2,5,5-tetramethyl-1-pyrrolidinyloxy-3-carboxylic 
acid (PCA). 

Commercial continuous-wave EPR (cw-EPR) spectrometers hold the frequency of the 

radiation microwave constant while scanning the magnetic field. The absorption spectrum is 
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usually recorded in the form of its first derivative  (Figure 2B). Therefore, the signal intensity 

can be calculated by the double integral of the spectrum. The commonly used EPR 

frequencies in biomedicine are 9 GHz (X-band) and 1 GHz (L-band) 179. The L-band 

spectrometer is less sensitive than the X-band, while the penetration depth of the L-band 

microwave radiation into water-rich samples is about 5-10 mm, which allows in vivo 

measurements such as human arms 180. The penetration depth of the X-band microwave is 

limited to 0.5-1 mm in water-containing samples because water and polar lipids of the samples 

strongly absorbed the microwave energy. Usually, liquid samples and dermatomized skin 

biopsies can be measured 136.  

 
Figure 3 (A) The energy levels of the spin label PCA due to Zeeman effect and nuclear 
hyperfine interaction. The three different transitions of unpaired electrons between the two 
corresponding energy states under the microwave radiation are presented as three spectral 
lines in the EPR spectrum 181. (B) The EPR spectra of PCA dissolved in ethanol and water.  

There are several commercially available chemicals with stable unpaired electrons that are 

used as spin labels 182,183. The nitroxide spin label 2,2,5,5-tetramethyl-1-pyrrolidinyloxy-3-

carboxylic acid (PCA) is frequently used, which has a molecular weight of 186 g/mol and log 

P of -1.8 (Figure 2C) 184. Its carboxylic acid group can be labeled with drugs and polymers via 

an ester or amide bond 183,185. The unpaired electron of PCA is in the vicinity of the nitrogen 

nucleus (14N). The nucleus also has a magnetic moment that produces a local magnetic field 

at the electron. There are three possible orientations of the 14N nuclear magnetic field to the 

external applied magnetic field B0 since the nitrogen nucleus 14N has a nuclear spin of 1. 

Therefore, with the influences of Zeeman effect and nuclear hyperfine interaction, there exist 

three different transitions of unpaired electrons between the two corresponding energy levels 

under the microwave radiation, which are presented as three peaks in the EPR spectrum 

(Figure 3A) 181. The distance between the first and the second peak is the hyperfine splitting 

constant aN, which indicates the strength of the 14N nucleus magnetic influence. The unpaired 
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electron of PCA is very sensitive to small variations of the charge density caused by 

surrounding microenvironments. Thus, the microenvironmental changes around PCA-labeled 

substances can be reflected in the respective EPR spectra. As shown in Figure 3B, PCA 

molecules, which dissolve in ethanol and water, respectively, exhibit different spectral shapes 

and broadenings due to different solvent polarities. Spectral interpretations usually require 

simulations of the EPR spectra. Easyspin, a free toolbox supported by MATLAB, is widely 

used for simulating cw-EPR spectra 186. From the simulation, the parameters of aN, g-matrix, 

and rotational correlation time are obtained. High aN and low g-matrix indicate a hydrophilic 

microenvironment surrounding spin labels, while low aN and high g-matrix indicate a relatively 

lipophilic microenvironment. The rotational correlation time represents the mobility of spin 

labels, which indicates the microenvironmental viscosity 187. 

EPR has been widely used in chemistry, biology, pharmaceutics and medicine 188-190. For 

example, EPR is used to directly quantify the amount of drugs in the skin, for which the skin 

sample preparation is simple without homogenization and extraction 136. EPR has the potential 

to detect the drug release of formulations 191,192. In a study, the model drug PCA was dispersed 

in the egg albumin matrix. The EPR spectra of PCA in the matrix and released into the external 

medium are different. Thus, the mechanism of drug release from the matrix was elucidated 

based on the spectra 191. A hydrophilic spin probe 4 hydroxy-TEMPO was used as the model 

drug and encapsulated into pellets with different film coatings. The changes of the EPR 

spectra of 4 hydroxy-TEMPO from immobile to mobile reflected influences of the film coatings 

on the drug release of pellets 192. Besides, S.Saeidpour et al. recently employed EPR to 

investigate the localization of the PCA labeled Dx (DxPCA) in a CMS NP. The simulation 

results of the magnetic parameters ( aN and g-matrix) elucidate that DxPCA is located in the 

interface between the inner lipophilic shell and the outer hydrophilic shell of the CMS NP 193. 

These applications show that EPR not only enables quantitative investigations but also 

provides information about the microenvironments around spin-labeled drugs. EPR could be 

a useful technique for the investigation of skin penetration. 

1.4.2 Confocal laser scanning microscopy (CLSM) 

CLSM is a well-established technique for obtaining high-resolution images (lateral, ~200 nm; 

axial, ~1 µm) and has been extensively used to study the fates of NPs and the encapsulated 

drugs in the skin 194,195. CLSM is usually performed in either reflectance mode or fluorescence 

mode. The reflectance CLSM has been used for noninvasive diagnosis in the clinic, such as 

the in vivo assessment of melanocytic and non-melanocytic skin tumors 196. The fluorescence 
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CLSM provides images with higher contrast and allows investigations on the ex vivo and in 

vivo skin 194. However, fluorescent dyes approved for use in humans are very limited due to 

safety issues 197. The following content is focused on the fluorescence CLSM, in which one 

photon is needed to excite the fluorophore, and the absorbed energy is released as a photon 

of longer wavelength, referred to as a linear process 196.  

The optical sectioning of CLSM reaches the skin depth down to approximately 120 µm 198. The 

key element that enables the optical sectioning of CLSM is the pinhole which is an optical filter 

that only permits light in focus to pass through to the detector. This allows the acquisition of 

discrete horizontal optical sections of the specimen 199. Therefore, the spatial localization of 

fluorescent NPs or encapsulated drugs in different skin layers can be detected by CLSM. If 

skin layers deeper than 120 µm are of interest such as HFs, then the biopsies need to be 

prepared into frozen or paraffin sections 24. For instance, F. Sahle and coworkers covalently 

labled a nanogel with indodicarbocyanine and physically incorporated coumarin-6 into the 

nanogel. Different emission wavelengths of indodicarbocyanine and coumarin-6 enable 

investigating the localization of nanogels and the release of coumarin-6 in porcine HFs  200.  

The pinhole is a double-edged sword, which blocks the majority of the out-of-focus 

fluorescence emission light and increases the resolution of CLSM but also reduces the signal 

intensity. Therefore, more intense exposure of high-power laser light (excitation light) is 

required to attain sufficient signal. However, the high-intensity laser illumination of CLSM could 

be destructive to fluorophores and living tissues, resulting in photobleaching and phototoxicity. 

Therefore, the stability of fluorophores during CLSM measurements should be considered 196.  

1.4.3 Two-photon microscopy (TPM) 

TPM is a novel, non-invasive and in vivo imaging technique with a high spatial resolution 

(lateral, ~200 nm; axial, ~1 µm) and holds promise for both basic research and clinical 

pathology 201. Different from the single-photon CLSM, in TPM, two near-infrared photons in 

the spectral range of 800-1200 nm are absorbed simultaneously, and then the combined 

energy of the two photons is released. In this case, the wavelength of the fluorescence 

emission light will be shorter than the excitation light whereby the process is nonlinear. To 

realize this non-linear excitation, it needs a powerful form of femtosecond pulsed infrared light 

on the order of GW/μm2 within the excitation volume. So far, the commercial titanium (Ti): 

sapphire laser can meet this requirement. During the two-photon excitation process, only a 

very tiny volume of fluorophore in the focal point is excited, and there is no absorption above 
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or below the focal plane. Therefore, a pinhole is no longer required to realize the optical 

sectioning for TPM 199.  TPM can image many skin structures based on the intrinsic 

autofluorescent agents, such as reduced pyridine nucleotides, and oxidized flavin proteins in 

keratinocytes, and keratin in corneocytes 202. Besides the two-photon fluorescence excitation, 

the ultra-short near-infrared laser pulses also produce the non-linear polarization effect of 

second-harmonic generation from its interaction with non-centrosymmetric biological 

structures, such as collagen in the dermis. In this process, the combined energy of two 

photons is not absorbed but generated photons of exactly half the wavelength of the incident 

photons 203. Therefore, no dye is required when using TPM to image the morphological skin 

structure. 

TPM has several advantages over one-photon CLSM. i) TPM uses excitation wavelengths in 

a near-infrared spectral range that penetrate deeper into tissues; therefore, its optical 

sectioning reaches deeper skin areas than CLSM 204. ii) The excitation light is restricted to the 

focal point, and the out-of-plane region of a specimen is not affected. Thus, the photodamage 

of biological specimens and photobleaching of fluorophores is reduced. iii) TPM has a higher 

lateral resolution than CLSM when measuring the same skin biopsy 198. Both CLSM and TPM 

techniques require a fluorescent dye as a model drug or labeled to NPs when studying skin 

penetration of drug-loaded NPs.  

The aforementioned label-based techniques have both advantages and limitations. A 

combination of these techniques would draw strength on each technique and enable 

comprehensive and in-depth investigations on skin penetration. For example, EPR has 

strength in quantification but lacks spatial resolution. CLSM and TPM can visualize biological 

specimens at the subcellular level. Therefore, it would be a valuable strategy to combine EPR 

and CLSM/TPM when quantitatively studying the spatial localization of drugs. In a study 

published by S. Lohan et al., EPR and CLSM were utilized to quantify the skin penetration of 

DxPCA following the lipid NP application and visualize the localization of Nile red loaded NPs 

in HFs 136. However, only a few studies have employed two complementary techniques in skin 

penetration studies so far. More combinations of techniques need to be explored. 
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1.6 Objectives 

The SC barrier is the main challenge in dermal drug delivery. Many strategies have been used 

to enhance the penetration of drugs through this barrier. Among the approaches, NP-based 

drug delivery systems are superior in controllable and targeted drug release; the penetration 

enhancer of solvents is easily accessible, low-cost, and flexibly combinable. Besides, the 

comprised barrier function of diseased skin could also alter the skin penetration of drugs and 

vehicles. Although considerable progress has been made in enhancing skin penetration of 

drugs for decades, there are still many unanswered questions (see Chapter 2.2, 3.2 and 3.1). 

This thesis is aimed to study the roles of skin barrier function, a NP-based drug delivery system, 

and the solvents of water and ethanol in the cutaneous drug delivery. Three research areas 

will be investigated in this thesis (Figure 4). 

The first research area explores the feasibility of establishing ex vivo barrier-disrupted skin 

models that mimics AD skin to some extent by using the methods of TS and CS. AD is a highly 

prevalent skin disease across the world. It is of clinical significance to understand how the AD 

skin barrier influences the skin penetration of drugs and vehicles. The establishment of an ex 

vivo barrier-disrupted skin model would be useful in the early development of formulations and 

minimize the number of human studies. Specifically, the research objectives in this area are 

to i) quantitatively evaluate the efficiency of TS and CS for removing the SC, and ii) study the 

correlation of the SC thickness with the skin permeability.  

The second research area comprehensively investigates the influence of skin barrier on the 

penetration behavior of a DxPCA loaded pH-sensitive NP. AD skin lesions exhibit an elevated 

skin surface pH in the range of 5.5-6.1 compared to the healthy skin surface pH (5.1). 

Therefore, a NP whose drug release can be triggered at a pH value above 5.5 would mainly 

target AD skin lesions while greatly reduce drugs penetrating into healthy skin, thereby 

reducing the side effects of Dx. Accordingly, a pH-sensitive NP which is made of Eudragit® 

L100 has been designed by Dr. Fitsum Sahle et al. in the group of Prof. Roland Bodmeier 
205,206. The labeling of PCA to Dx (DxPCA) is for EPR measurements and has been completed 

by Dr. Karolina Walker et al. in the group of Prof. Rainer Haag 185. After these preparations by 

the collaborators, the important goals of this research area involve: i) characterization of the 

drug release of this pH-sensitive NP on ex vivo skin with either intact or disrupted SC barrier, 

and ii) investigation of the spatial localization of the drug DxPCA and the NP in the skin. 

The third research area investigates the role of solvents in the cutaneous penetration of drugs. 

Water and ethanol have low skin toxicity and are almost omnipresent in dermal formulations, 
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serving as dissolution media and penetration enhancers. Different concentrations of ethanol 

aqueous solvents have shown their influences on the permeation of drugs through the 

epidermis which is separated from the skin by heating 125-127. However, little is known about 

the effects of ethanol aqueous solvents on the skin penetration of drugs. This motivates the 

following objective of this research area: understanding the role of ethanol aqueous solvents 

at different concentrations in the cutaneous penetration of a hydrophilic model drug PCA, 

including the macroscopic localization of drugs in different skin layers and the microscopic 

localization of  drugs in the lipids and corneocytes of the SC at the cellular level (Figure 4).  

The investigations of the above three research areas will have the following contributions to 

the current research on cutaneous drug delivery: i) providing fundamental information about 

the relationship between the extent of skin barrier disruption with the number of applied TS or 

CS, ii) giving insight into the controlled and targeted drug release of the pH-sensitive NP on 

the barrier-disrupted skin and evaluating the feasibility of reducing the side effects of Dx in the 

treatment of AD by using pH-sensitive NPs as drug delivery systems, and iii) deepening the 

understanding of solvent effects on the skin penetration of drugs. 

 
Figure 4  The objectives of the doctoral thesis  



22 
 

2 Publications and Manuscripts 

In the following chapters, the published articles and submitted manuscripts are listed, and the 

contributions of the author are specified. 



23 
 

2.1 Barrier-disrupted skin: Quantitative analysis of tape and 
cyanoacrylate stripping efficiency by multiphoton tomography 

Authors: Pin Dong, Viktor Nikolaev, Marius Kröger, Christian Zoschke, Maxim E. Darvin, 

Christian Witzel, Jürgen Lademann, Alexa Patzelt, Monika Schäfer-Korting, Martina C. Meinke. 

Journal: International Journal of Pharmaceutics, 574 (2020), 118843. 

Available online: https://doi.org/10.1016/j.ijpharm.2019.118843 

Amount performed by Pin Dong: 

Design of experiments: 80% 

Practical, experimental part: 75% 

Data analysis: 95% 

Interpretation of results: 100% 

Writing: 95% 

 

  



33 
 

2.2 pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous 
penetration and drug release on the skin  

Authors: Pin Dong, Fitsum Feleke Sahle, Silke B. Lohan, Siavash Saeidpour, Stephanie 

Albrecht, ChristianTeutloff, Roland Bodmeier, Michael Unbehauen, Christopher Wolff, Rainer 

Haag, Jürgen Lademann, Alexa Patzelt, Monika Schäfer-Korting, Martina C. Meinke. 

Journal: Journal of Controlled Release, 295 (2019), 214-222. 

Available online: https://doi.org/10.1016/j.jconrel.2018.12.045 

Amount performed by Pin Dong: 
Design of experiments: 90% 

Practical, experimental part: 90% 

Data analysis: 90% 

Interpretation of results: 90% 

Writing: 90% 

 
  



43 
 

2.3 Solvent effects on the cutaneous penetration and distribution 
of the hydrophilic nitroxide spin probe PCA  

Authors: Pin Dong, Christian Teutloff, Jürgen Lademann, Alexa Patzelt, Monika Schäfer-

Korting, Martina C. Meinke. 

Journal: Cell Biochemistry and Biophysics (Submitted) 

Amount performed by Pin Dong: 

Design of experiments: 100% 

Practical, experimental part: 100% 

Data analysis: 100% 

Interpretation of results: 95% 

Writing: 95% 

 
 
 

 

  



Cell Biochemistry and Biophysics
 

Solvent effects on skin penetration and spatial distribution of the hydrophilic nitroxide

spin probe PCA investigated by EPR
--Manuscript Draft--

 

Manuscript Number: CBBI-D-19-00188

Full Title: Solvent effects on skin penetration and spatial distribution of the hydrophilic nitroxide

spin probe PCA investigated by EPR

Article Type: Original Article

Keywords: Corneocytes;  electron paramagnetic resonance;  small hydrophilic molecule;  skin

lipids;  skin pathway.

Corresponding Author: Martina Meinke, Dr. rer. nat.

Charite Universitatsmedizin Klinik fur Dermatologie Venerologie und Allergologie

Berlin, GERMANY

Corresponding Author Secondary

Information:

Corresponding Author's Institution: Charite Universitatsmedizin Klinik fur Dermatologie Venerologie und Allergologie

Corresponding Author's Secondary

Institution:

First Author: Pin Dong, Master

First Author Secondary Information:

Order of Authors: Pin Dong, Master

Christian Teutloff, Dr. rer. nat.

Jürgen Lademann, Dr. rer. nat.

Alexa Patzelt, Dr. med.

Monika Schäfer-Korting, Dr.

Martina C. Meinke, Dr. rer. nat.

Order of Authors Secondary Information:

Funding Information:

Abstract: Oxidative stress occurs in extrinsic skin aging processes and diseases when the

enhanced production of free radicals exceeds the homeostatic antioxidant capacity of

the skin. The spin probe, 3-(carboxy)-2,2,5,5-tetramethylpyrrolidin-1-oxyl (PCA), is

frequently used to study the cutaneous radical production by electron paramagnetic

resonance (EPR) spectroscopy. This approach requires delivering PCA into the skin,

yet solvent effects on the skin penetration and spatial distribution of PCA have not

been thoroughly investigated. Three solvents of ethanol, phosphate-buffered saline

(PBS) and ethanol-PBS (1:1) were studied. For both human and porcine skin ex vivo  ,

the amount of PCA in the SC was the lowest when using ethanol and very similar for

PBS and ethanol-PBS. The highest amount of PCA in the viable skin layers was

detected for ethanol-PBS, yet it only took up less than 5% of the total amount. The

majority of PCA was localized in the SC, among which PCA with high mobility was

predominantly distributed in the hydrophilic microenvironment of corneocytes and PCA

with lower mobility was mainly in the less hydrophilic microenvironment of intercellular

skin lipids. A higher ethanol concentration in the solvent could improve the distribution

of PCA in the hydrophilic microenvironments of the SC. The results suggest that

ethanol-PBS (1:1) is best-suited for delivering most PCA deep into the skin. This work

enhances the understanding of solvent effects on the skin penetration and distribution

of PCA and supports the utilization of PCA in studying cutaneous radical production.

Suggested Reviewers: Bernard Gallez, Dr.

Prof., Universite Catholique de Louvain Faculte des sciences de la motricite

bernard.gallez@uclouvain.be

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Prof. Gallez has experience with EPR method.

Albert W. Girotti, PhD

Prof., Medical College of Wisconsin

agirotti@mcw.edu

Prof. Girotti has experience of using EPR to study oxidative stress.

Ben-Zhan Zhu, PhD

Prof., University of the Chinese Academy of Sciences

bzhu@rcees.ac.cn

The research field of Prof. Zhu covers radical formation.

Izabela Sadowska-Bartosz, Dr.

Prof., Uniwersytet Rzeszowski

isadowska@poczta.fm

Prof. Sadowska-Bartosz has experience with EPR method.

Georg Thomas Wondrak, PhD

Prof., University of Arizona

wondrak@pharmacy.arizona.edu

The research field of Prof. Wondrak covers radicals.

Michael Rallis, Dr.

Prof., National and Kapodistrian University of Athens Faculty of Pharmacy

rallis@pharm.uoa.gr

The Research field of Prof. Rallis covers skin Penetration.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



1 
 

Solvent effects on skin penetration and spatial distribution of the hydrophilic 

nitroxide spin probe PCA investigated by EPR 
 
Pin Dong ab, Christian Teutloff c, Jürgen Lademann a, Alexa Patzelt a, Monika Schäfer-Korting b, Martina 

C. Meinke a. 

a Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-

Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and 

Allergology, Berlin, Germany 
b Freie Universität Berlin, Institute of Pharmacy, Pharmacology and Toxicology, Berlin, Germany  
c Freie Universität Berlin, Institute of Experimental Physics,  Department of Physics, Berlin, Germany  

 

Corresponding author: 

Prof. Dr. Martina Meinke 

Charité – Universitätsmedizin Berlin 

Department of Dermatology, Venereology and Allergology  

Center of Experimental and Applied Cutaneous Physiology 

Charitéplatz 1 

10117 Berlin, Germany 

Tel.: +49 (030) 450 518 244 

martina.meinke@charite.de 

  

Manuscript Click here to access/download;Manuscript;Manuscript.docx

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/cbbi/download.aspx?id=78736&guid=eb976f8a-32a0-4091-89b2-41915df0c8d6&scheme=1
https://www.editorialmanager.com/cbbi/download.aspx?id=78736&guid=eb976f8a-32a0-4091-89b2-41915df0c8d6&scheme=1


2 
 

Abstract 

Oxidative stress occurs in extrinsic skin aging processes and diseases when the enhanced production of 

free radicals exceeds the homeostatic antioxidant capacity of the skin. The spin probe, 3-(carboxy)-

2,2,5,5-tetramethylpyrrolidin-1-oxyl (PCA), is frequently used to study the cutaneous radical production 

by electron paramagnetic resonance (EPR) spectroscopy. This approach requires delivering PCA into 

the skin, yet solvent effects on the skin penetration and spatial distribution of PCA have not been 

thoroughly investigated. Three solvents of ethanol, phosphate-buffered saline (PBS) and ethanol-PBS 

(1:1) were studied. For both human and porcine skin ex vivo, the amount of PCA in the SC was the 

lowest when using ethanol and very similar for PBS and ethanol-PBS. The highest amount of PCA in 

the viable skin layers was detected for ethanol-PBS, yet it only took up less than 5% of the total amount. 

The majority of PCA was localized in the SC, among which PCA with high mobility was predominantly 

distributed in the hydrophilic microenvironment of corneocytes and PCA with lower mobility was 

mainly in the less hydrophilic microenvironment of intercellular skin lipids. A higher ethanol 

concentration in the solvent could improve the distribution of PCA in the hydrophilic 

microenvironments of the SC. The results suggest that ethanol-PBS (1:1) is best-suited for delivering 

most PCA deep into the skin. This work enhances the understanding of solvent effects on the skin 

penetration and distribution of PCA and supports the utilization of PCA in studying cutaneous radical 

production.   

Keywords  

Corneocytes; electron paramagnetic resonance; small hydrophilic molecule; skin lipids; skin pathway.  

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3 
 

Introduction 

Oxidative stress plays a significant role in extrinsic skin aging processes [1] and diseases [2]. It occurs 

when the production of oxygen and nitrogen radicals [3] overwhelms the homeostatic antioxidant 

capacity of the skin [4]. Radicals are molecules with unpaired electrons, which can be detected by 

electron paramagnetic resonance (EPR) spectroscopy [5, 6]. However, a direct EPR detection of 

endogenous free radicals in the skin under physiological conditions remains challenging due to their 

short lifetime [7]. Therefore, alternative approaches are utilizing spin traps and probes to investigate the 

free radical production in the skin [8].  

Spin traps scavenge reactive free radicals effectively and form more stable paramagnetic spin 

adducts to facilitate EPR measurements. Different radical species can be distinguished from their unique 

EPR spectra of spin adducts [9]. Spin traps are often influenced by impurity [10] and dissolving media 

[11]. They are also less sensitive and less reliable for the quantitative determination of radicals [12]. In 

comparison, spin probes are molecules with stable free radical character and can be reduced to EPR 

silent hydroxylamine by free radicals generated in the skin [13]. Therefore, the intensity reduction of 

spin probes correlates well with the production of free radicals. This approach is widely used to study 

skin oxidative stress [12-14]. The spin probe of 3-(carboxy)-2,2,5,5-tetramethylpyrrolidin-1-oxyl 

(PCA), with low toxicity and low irritation to the skin  [15], is often used in medical and cosmetic studies 

[16-19], such as photodynamic therapy [20, 21], light-induced radical production and sunscreen 

development [13, 18, 19, 22, 23]. In these in vivo studies, the skin was incubated with PCA solution 

from the outermost SC, and in some applications, test products were applied subsequently. Then the 

radical formation under light irradiation was investigated by EPR. Therefore, the prerequisite of this 

approach is to deliver PCA into the skin.  

In vivo application of PCA demands a formulation with simple and non-toxic compositions. Thus, 

PCA is often dissolved in phosphate-buffered saline (PBS), ethanol, or the mixture of PBS and ethanol 

[12, 18]. PBS is a non-toxic and well-suited solvent due to the hydrophilicity of PCA [24]. Ethanol is a 

widely used penetration enhancer [25]. The ethanol-PBS cosolvent system has been found superior to 

transport drugs into the skin compared to the unary solvents [26-29]. Yet, solvent effects on the skin 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 
 

penetration amount and depth of PCA, as well as the spatial distribution, have not been thoroughly 

investigated so far [13, 22].  In this work, the penetration of PCA on human and porcine skin delivered 

by the three solvents (ethanol, PBS, and ethanol-PBS 1:1) were quantified by EPR. Furthermore, the 

influences of these solvents on the spatial distribution of PCA in the skin were analyzed.  

Materials and methods 

PBS (GibcoTM) was purchased from ThermoFisher Scientific (Waltham, MA, USA). PCA (98%), 

ethanol (Uvasol®, for spectroscopy) and Triton X-100 (laboratory grade) were bought from Sigma-

Aldrich (Merck, Darmstadt, Germany). Cyclohexane (Rotisolv® HPLC) was bought from Carl Roth 

GmbH + Co. KG (Karlsruhe, Germany). 

Skin samples 

Excised human abdominal skin was donated by female volunteers with no medical history of 

dermatological diseases who underwent plastic surgery after informed written consent. The Ethics 

Committee of Charité-Universitätsmedizin Berlin approved the study in accordance with the principles 

expressed in the Declaration of Helsinki. After excision, the subcutaneous fatty tissue was removed 

from the skin specimen using a scalpel, and subsequently, the remaining skin samples were cleaned with 

PBS. 

Porcine ears were obtained from a local slaughterhouse with the approval of the Commission of 

Consumer Protection and Agriculture, District Dahme-Spreewald, Germany. The ears were cleaned with 

cold tap water and gently dried with paper towels. The hairs were carefully cut with scissors without 

damaging the SC. All human and porcine skin samples were stored at 4 oC and used within 24 h.  

PCA application and incubation protocol 

For human skin, each skin sample was stretched and fixed with needles on a styrofoam plate and stripped 

with one tape to remove fatty substances on the skin surface. Six areas of each skin sample (n = 8) and 

each area in the size of 3 × 7 cm2 were prepared. Each area was placed two stacked paper discs (Finn 

Chambers®, Φ 12 mm), leaving safety margins of about 9 mm to the skin border to avoid lateral 
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penetration. Then 100 µl of 0.4 % PCA solutions dissolved in ethanol, PBS, and ethanol-PBS 1:1 were 

pipetted onto the paper discs, respectively. Every solution was applied to two areas of each skin sample. 

After occlusion of the skin areas by Finn Chambers® (Φ 12 mm), the skin samples were incubated for 

40 min at 32 oC. This procedure was done in the same way as published in vivo studies [19, 23, 30]. For 

porcine ear skin, six areas of each pair (n = 6) were treated in the same procedure as for human skin. 

Skin sample preparation for EPR measurements 

After incubation, the paper discs were removed and subsequently all skin samples were subjected to 3 

tape strippings because the high amount of PCA accumulated on the skin surface resulted in the spin-

spin effect that depletes the EPR signal in EPR measurements [31]. Among the six areas of each skin 

sample, half of them exposed to the three PCA solutions, respectively, were removed the entire human 

stratum corneum (SC) by performing 4 times cyanoacrylate strippings (5 times for porcine skin) as 

previously described [32]. Afterward, all skin samples were dermatomed to a thickness of 300 µm 

(Aesculap, Tuttlingen, Germany) and punched into discs of 5 mm in diameter for EPR measurements. 

PCA in the non-stripped and cyanoacrylate-stripped skin samples represented the amount of PCA 

penetrated in the whole skin (i.e. the SC plus viable skin layers) and only in the viable skin layers, 

respectively. The difference between these two values was the amount of PCA in the SC. 

Incubation of PCA with skin lipids 

To obtain the EPR spectrum of PCA in skin lipids, they were extracted from porcine ear skin by using 

a mixture of cyclohexane and ethanol (4:1, V/V) [33]. A 15 ml FalconTM centrifuge tube with an area of 

2.27 cm2 was filled with 1 ml of the solvent mixture and then it was held firmly against the skin while 

being shaken for 1 min. About 30 skin areas were performed, and each area was extracted twice. The 

collected solvent was centrifuged at 10000 rpm (Hettich AG, Switzerland) for 10 min to remove a few 

exfoliated corneocytes (precipitates). After overnight evaporating under a fume hood, the skin lipids 

were collected. Afterward, the skin lipids and PCA were dissolved in cyclohexane-ethanol (4:1) and 

evaporated again to obtain samples of PCA in skin lipids at a concentration of 0.001% (W/W). 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 
 

Incubation of PCA with corneocytes 

Corneocytes were prepared by the detergent scrub method [34, 35]. A fresh porcine ear placed in a glass 

Petri dish was rubbed by a polyester sponge soaked with 0.1% Triton X-100 in PBS. Any skin area was 

scrubbed 50 times and the washed fluid was sub-packed into 2 ml tubes, which were subsequently 

centrifuged at 10000 rpm for 10 min. The supernatant was discarded, and the precipitated corneocytes 

in each tube were resuspended with 2 ml PBS. The procedure of centrifugation-resuspension was 

repeated 5 times to wash away Triton X-100 [36]. Afterward, the collected corneocytes were incubated 

with 200 µl of 0.4 % PCA in ethanol-PBS (1:1) for 40 min at 32 oC. After the incubation, PCA in the 

external medium was removed with PBS in the same way as removing Triton X-100, and the procedure 

was repeated ten times. The supernatant after each washing step and the precipitated corneocytes after 

10 times washing were measured by EPR.  

EPR measurements 

All measurements were conducted with an X-band EPR spectrometer (Elexsys E500, Bruker BioSpin, 

Karlsruhe, Germany) at ambient temperature. An SHQE resonator (E4122011SHQE, Bruker Biospin, 

Germany) and a TMHS resonator (E2044500TMHS, Bruker BioSpin) were used, which were matched 

to a sample holder of a capillary (2.0/1.0 mm in o.d./i.d., Hirschmann Laborgeräte, Germany) and a 

tissue cell (ER 162TC-Q, Bruker Biospin, ), respectively. The instrumental settings of microwave power 

(mW) and field modulation amplitude (mT) are summarized in Table 1. The field modulation frequency 

was 100 kHz in all measurements.  

(Please insert Table 1 here) 

The total numbers and concentrations of PCA were quantified by the Bruker device control software 

Xepr. EPR spectra of PCA in skin samples, skin lipids, and corneocytes were simulated using EasySpin 

[37], a toolbox package for Matlab (The MathWorks GmbH, Natick, MA, USA). The chili function [38] 

was used for the simulation, and the magnetic parameters of g-matrix and 14N hyperfine coupling 

constant were referred to the published values [39].  
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Statistical analysis 

Data are shown as mean ± standard error of the mean (SEM). Comparisons of the PCA transported into 

the human or porcine skin by the three solvents were evaluated by the nonparametric 2-related samples 

Wilcoxon test. The differences of PCA penetrated into human and porcine skin using the same solution 

were determined through the nonparametric 2-independent samples Mann-Whitney U test. The minimal 

significance level was set at p  ≤  0.05. 

Results and discussion 

Skin penetration of PCA 

The amounts of PCA transported into the SC and viable skin layers by ethanol, PBS and ethanol-PBS 

(1:1), respectively, are shown in Fig. 1a. For human skin, about 2.3 µg/cm2 PCA was found in the SC 

using ethanol, which is the lowest among the three solvents. Ethanol is a well-known penetration 

enhancer, whereas it showed little improvement for the skin penetration of PCA. This could be due to 

the fast evaporation of ethanol. Many white PCA precipitates were seen on the skin surface after the 

incubation, which were formed due to the evaporation of ethanol, even though an occlusive chamber 

was used to reduce the evaporation. The precipitation of PCA could hinder the cutaneous penetration of 

PCA. Thus, pure ethanol is not recommended to deliver PCA into the skin. In comparison, the amounts 

of PCA in the human SC were 4.5 times increased in both cases of PBS and ethanol-PBS (1:1). This is 

different from many published findings, which stated that the PBS-ethanol cosolvent was better than the 

pure solvents, e.g. ethanol or PBS [26-29]. PCA is a small hydrophilic molecule (186 g/mol) with a 

natural logarithmic partition coefficient of -1.8 [40]. With the hydration of the SC by PBS [41, 42], 

possibly the solubility of PCA in the SC was increased, and hence the penetration of PCA into the SC 

could be enhanced.  

In addition, the amount of PCA in the human viable skin layers was also quantified. Fig. 1b shows 

that the highest amount of PCA was delivered by ethanol-PBS (1:1). PBS facilitated slightly more PCA 

penetration into the viable skin compared to ethanol, even though there was no statistical significance 

in human skin due to high inter-donor variances. The results demonstrated the advantage of combining 
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ethanol with PBS to transport more PCA into the viable skin layers. The addition of PBS not only 

reduced the ethanol evaporation [43] but also hydrated the SC; while ethanol could extract appreciable 

amounts of lipids from the SC or influenced the structures of both corneocytes and skin lipid lamellar, 

and consequently may lower the skin barrier function [44, 45].  

(Please insert Fig. 1 here) 

For porcine skin, the amounts of PCA delivered into the SC by the three solvents were in the same 

order as human skin (ethanol-PBS ≈ PBS > ethanol). There was no difference in the amount of PCA in 

the SC between human and porcine skin subjected to the same PCA solution. This indicates that porcine 

skin could be a good substitute for human skin to study the skin penetration of PCA (Fig. 1a). The 

amounts of PCA in the porcine viable skin layers using the three solvents were in a similar order as 

human skin, i.e. ethanol-PBS > PBS > ethanol. However, the absolute values were lower than those of 

human skin, although there was no statistical difference between porcine and human skin treated with 

the same PCA solution. This might be the result of an enhanced transfollicular penetration in human 

skin since its hair follicles might have been impaired when removing the subcutaneous fat tissue before 

the penetration studies. By contrast, the penetration studies of porcine skin were performed on intact 

porcine ears without any skin separation. 

The fractions of the amount of PCA in the viable skin layers to the total amount of PCA in the skin 

are shown in Fig. 1c. For human skin, the fractions were in the range of 1.3% - 4.9% when using the 

three solvents, and no statistical differences were found within the solvents due to the high inter-donor 

variation. For porcine skin, the highest fraction was about 1.2% in the case of ethanol-PBS, while it was 

less than 1% when using ethanol and PBS.    

The above results show that PCA in the viable skin constituted less than 5% of the total penetration 

amount and more than 95% PCA accumulated in the SC. This is important information for studies of 

skin radical formation under light irradiation. First, PCA needs to be delivered to the depth of viable 

skin layers, because red light used in the photodynamic therapy and UVA to near-infrared light of the 

sun spectrum penetrate deep into the viable skin, meaning that free radicals would be induced in both 

the SC and viable skin layers [21, 46, 47]. If no PCA molecules penetrated into the viable skin layers, 
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free radicals produced there could not react with PCA. Consequently, the measured amount of free 

radicals would be lower than the actual amount of free radicals.  

This is particularly important for quantitative measurements of free radicals. The free radical 

threshold value in the human skin is about 3.5 × 1012 radicals/mg, beyond which all the endogenous 

antioxidants in the skin could be consumed [48]. External stimuli that induce oxidative stress in the skin, 

such as light irradiation, would generate free radicals above this threshold [12]. This means that more 

than 3.5 × 1012 of PCA molecules/mg should be delivered into the viable skin layers to ensure that most 

free radicals are reacted with PCA. By using ethanol, PBS and ethanol-PBS, the amount of PCA in the 

viable skin layers that normalized to the skin weigh was about 1× 1012, 5 × 1012 and 9 × 1012 radicals/mg, 

respectively, when 1g/cm3 was roughly taken as the density of the skin [49]. Therefore, the amount of 

PCA in the viable skin delivered by ethanol-PBS (1:1) could be enough to determine the threshold.  

Nevertheless, the amount of free radicals produced in the viable skin layers depends on the extent 

of applied external stimuli, such as the irradiation dose. A linear decay of PCA could be a good 

indication to assume that the amount of PCA transported into the skin is sufficient to detect all free 

radicals [23]. Otherwise, a few tape strippings can be used to slightly disturb the SC barrier before 

applying PCA solutions to human skin in vivo, through which the amount of PCA penetrating into the 

viable skin could be increased. Alternatively, longer incubation time and/or potent penetration enhancers 

could be possible strategies to enhance the skin penetration of PCA. However, for in vivo studies, long 

incubation time would be poorly compliant, and potent penetration enhancers could have an issue of 

skin toxicity. In contrast, PBS as a safe solvent and ethanol as an FDA-approved solvent for skin 

application, they are favored for in vivo studies. But it should be mentioned that viable skin cells (e.g. 

keratinocytes and fibroblasts) and reconstructed human skin models are sensitive to ethanol. The 

concentration of ethanol above 3% could make half of the cells die [50]. Therefore, when PCA is used 

for skin cells or reconstructed models, only PBS should be used as the solvent. 
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Distributions of PCA in skin 

Microenvironments of PCA in the whole skin layers 

Apart from the influences on the skin penetration amount and depth of PCA, solvent effects on the skin 

distribution of PCA were analyzed by interpreting the spectral shape with simulations of the EPR 

spectra. The magnetic and dynamic parameters obtained from the simulations could reveal the 

microenvironments around the PCA molecules in the skin, such as polarity and viscosity [51]. For both 

human and porcine skin, PCA in the whole skin (containing the SC and viable skin layers) exhibited 

different spectral broadening in the EPR spectra when using the three solvents (Fig. 2a and Fig. S1a of 

the supplementary material). The broadening decreased with the increase of ethanol concentration in the 

solvent. In contrast, PCA in the viable skin layers of both human and porcine skin showed similar EPR 

spectra among the cases of three solvents (Fig. 2b and Fig. S1b of the supplementary material). The 

results indicate that PCA had similar microenvironments in the viable skin layers regardless of the 

solvents because the SC barrier strongly prevented the solvents from entering the viable skin layers to 

alter the microenvironments of PCA there.  

We assume that the spectral broadening could be due to the partitioning of PCA in two different 

skin microenvironments. Therefore, the spectra were simulated considering two components to get 

magnetic and dynamic parameters, i.e. the hyperfine coupling matrix  (axx, ayy, azz) , the g-matrix (gxx, 

gyy, gzz), and the rotational correlation time (Tcorr), among which azz and gxx are sensitive to the changes 

of the microenvironmental polarity and Tcorr reveals the mobility of the spin probe [39]. A higher Azz 

together with a lower gxx indicates a hydrophilic microenvironment, whereas vice versa a less 

hydrophilic or lipophilic microenvironment is present. A decrease of Tcorr suggests higher mobility of 

the spin probe.  

(Please insert Fig. 2 here) 

The simulation of the EPR spectrum of PCA in the whole human skin treated with PCA PBS solution 

was shown as an example owing to the remarkable spectral broadening (Fig. 2c). The simulation 

revealed that the spectrum comprised two kinds of spectra. As shown in Table 1 and Fig. 2c, the narrow 

spectrum represents PCA with the Tcorr of about 0.1 ns, the higher hyperfine coupling constant of (15 15 
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106) MHz, and the lower g-matrix of (2.00805 2.00596 2.00212), which is attributed to PCA with high 

mobility in a hydrophilic microenvironment (PCAmobile). The broad spectrum represents PCA with the 

Tcorr of about 0.7 ns, the lower hyperfine coupling constant of (13 13 102) MHz, and the higher g-matrix 

of (2.00815 2.00596 2.00212), which belongs to PCA with less mobility in a less hydrophilic 

microenvironment (PCAless mobile). The estimated Tcorr of PCAmobile was close to the Tcorr of PCA in water 

(0.08 ns) [39]. Therefore, PCAmobile could be localized in the water domains of corneocytes, intercellular 

regions, cytoplasm, etc [41].  

(Please insert Table 2) 

Besides, the EPR spectrum of PCA in the viable skin layers was simulated (Fig. 2d), and PCA 

molecules were found to have the same Tcorr and magnetic parameters as PCAmobile. It means that PCA 

in the viable skin layer was of high mobility and in a hydrophilic microenvironment (Table 1). PCA is 

generally considered as a cell membrane-impermeable probe due to its hydrophilicity, [40]. However, 

several studies showed that PCA could enter cells, even though the intracellular amount was much lower 

than the intercellular one [52, 53]. Therefore, PCA in the hydrophilic microenvironment of the viable 

skin could be mostly distributed in the aqueous regions of the intercellular space and a few might be in 

the cytoplasm of the viable skin cells. As the above results have shown, PCA in the whole skin 

(containing the SC plus viable skin layers) comprised PCAmobile and PCAless mobile, and PCA in the viable 

skin layers only included PCAmobile. Thus, PCAless mobile can be assigned as PCA in the SC. 

Additionally, one of eight human skin samples and one of six porcine skin samples exposed to the 

PCA PBS solution could be simulated with three components, too (see Fig. S3 of the supplementary 

material). Besides PCAmobile and PCAless mobile, the third component had the same magnetic parameters 

as PCAless mobile, while its Tcorr was ten times slower than that of PCAless mobile (6.3 ns), indicating reduced 

mobility of PCA (PCAimmobile). Yet, the fraction of PCAmobile did not change whether the EPR spectrum 

was simulated with two or three components (see Fig. S3 in the supplementary materials). Considering 

the same magnetic parameters and similar reduced mobility, the fractions of PCAless mobile and PCAimmobile 

of the EPR spectra were summed up as the fraction of PCAless mobile in the following calculation. The 

occurrence of PCAimmobile might be explained by the dryness of the skin sample. The SC hydration could 
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be the most likely mechanism for PBS to deliver PCA into the skin [54]. In the time of sample processing 

after the incubation, PBS absorbed in the outmost layer of the SC might evaporate, leading to the 

immobilization of PCA in the upper SC layers.  

Quantification of PCA in different skin microenvironments 

The simulations of the EPR spectra of PCA in the whole skin provided the total fractions of PCAmobile 

and PCAless mobile, respectively. The fraction of PCAmobile in the viable skin layers was calculated by the 

amount of PCA in the viable skin layers and total PCA amount in the skin. Hence, the fraction of 

PCAmobile in the SC is the difference between the total fraction of PCAmobile and the fraction of PCAmobile 

in the viable skin layers. In Fig. 3a, the PCA composition in the whole skin is shown. It consisted of 

PCAmobile and PCAless mobile for both human and porcine skin samples after exposure to the three PCA 

solutions, respectively. Concerning the skin distribution of PCAmobile, the majority of PCAmobile was 

distributed in the SC, while only a few of PCAmobile was in the viable layers skin. All PCAless mobile were 

localized in the SC and the fraction of PCAless mobile among was increased with the decreased ethanol 

concentration in the solvent. From the solvent of ethanol to PBS, the fraction of PCAless mobile in the 

human SC increased from 37% to 74%. 

(Please insert Fig. 3 here) 

The Tcorr of PCAless mobile that indicates the mobility of PCAless mobile in the SC is shown in Fig. 3b. For 

both human and porcine skin, the Tcorr of PCAless mobile when using ethanol as the solvent was significantly 

higher than the value in the case of ethanol-PBS (1:1), meaning that PCAless mobile in the ethanol-treated 

SC had slower mobility. The evaporation of pure ethanol could cause dehydration of the SC, which 

could reduce the mobility of PCAless mobile in the surrounding microenvironments. For ethanol-PBS (1:1), 

the addition of PBS not only reduced the evaporation of ethanol but also hydrated the SC, through which 

the skin penetration of ethanol could be enhanced [55]. Therefore, the lower Tcorr of PCAless mobile in the 

SC that treated with ethanol-PBS (1:1) could be due to the penetrated ethanol might increase the fluidity 

of skin lipids, leading to the increased mobility of PCAless mobile [44, 56]. 
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Distributions of PCA in the SC 

As the above results showed, PCA in the SC took up more than 95% of the total amount of PCA in the 

whole skin (Fig. 1), including all the PCAless mobile and most PCAmobile (Fig. 2c-d and Fig. 3a). 

Corneocytes and intercellular skin lipids mainly constitute the SC. Thus, the distributions of PCAless- 

mobile and PCAmobile in corneocytes and skin lipids were further investigated. First, corneocytes from the 

porcine SC were obtained using the detergent scrub method [34, 35]. As illustrated in Fig. 4a, most 

corneocytes were nearly elliptical with the conjugate diameters of 35 µm and 28 µm, which were in 

agreement with the published corneocyte diameter of 32 µm [57].  

After incubation with 0.4% PCA ethanol-PBS (1:1), the corneocytes were washed with PBS ten 

times using centrifugation to remove the external PCA. In Fig. 4b, the EPR signal of PCA in the 

supernatant decreased with the number of washing cycles, indicating the removal of the external PCA. 

The supernatant from the 10th washing exhibited only a noise signal in its EPR spectrum, whereas the 

precipitated corneocytes after 10 times of washing showed a strong EPR signal of PCA. This indicates 

that PCA could diffuse into corneocytes. In Fig. 4c and Table 1, the simulation shows that PCA in 

corneocytes had the same hyperfine coupling constant and g-matrix as PCAmobile in the skin. This reveals 

that PCA could be in the hydrophilic microenvironment of corneocytes. The only difference was the 

Tcorr of PCA in corneocytes (0.03 ns), which was smaller than that of PCAmobile in the skin, meaning that 

the mobility of PCA in corneocytes was faster (Table 1). The reason could be that the separated 

cornoecytes used in this experiment were more hydrated than those in the intact SC [41]. Additionally, 

the detergent of Triton X-100 that was used to separate corneocytes might cause the structural changes 

of corneocytes, leading to an enhanced water diffusion into corneocytes.  

(Please insert Fig. 4 here) 

The EPR spectrum of PCA in the extracted skin lipids was also investigated to mimic the 

microenvironments of intercellular skin lipids of the SC [33]. In Fig.  4d, the simulation shows that PCA 

in the skin lipids could have two kinds of microenvironments. About 91% of PCA in skin lipids had the 

same hyperfine coupling constant and g-matrix as PCAless mobile in the SC (Table 1), indicating a less 

hydrophilic microenvironment. The Tcorr of this part of PCA in the skin lipids (1.6 ns) was slightly larger 
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than that of PCAless mobile in the SC (Table 1). This could be due to that the lamellar structure of the 

intercellular skin lipids in the SC could be destroyed for the extracted skin lipids and different lipid 

packing orders might result in different Tcorr values. The rest part of PCA in skin lipids (9%) were mobile 

in a hydrophilic microenvironment owing to the same magnetic parameters and Tcorr as PCAmobile in the 

skin. The hydrophilic microenvironments of the extracted skin lipids could be due to the water absorbed 

by the polar skin lipids, such as ceramide 1-3 and cholesteryl sulfate [58]. 

With the investigations of PCA in corneocytes and the skin lipids, PCAless mobile in the SC could be 

attributed to PCA distributed in the intercellular skin lipids, and PCAmobile in the SC could be 

predominately localized in corneocytes, as well as a few of them was in the intercellular skin lipids. 

Corresponding to the results in Fig. 3a, it could be deduced that with the increase of ethanol 

concentration in the solvent, the fraction of PCA in the less hydrophilic microenvironment of skin lipids 

(i.e. PCAless mobile) decreased, while the fraction of PCA in the hydrophilic microenvironments of 

corneocytes and skin lipids (i.e. PCAmobile) increased. Ethanol was found to perturb both the keratin 

structure of corneocytes and skin lipids, which might be the reason that ethanol facilitated the 

distribution of PCA in the hydrophilic microenvironments of corneocytes and skin lipids [59, 60]. 

Conclusions 

This work enhances the understanding of solvent effects on the skin penetration and spatial distribution 

of PCA. Poor skin penetration of PCA was observed when only ethanol was used, while it was increased 

4.5-fold for PBS or ethanol-PBS (1:1). Among the three solvents, ethanol-PBS (1:1) delivered the most 

PCA into the viable skin layers, which could be sufficient to detect most part of free radicals produced 

in the viable skin layers. Nevertheless, more than 95% of the total PCA amount in the whole skin was 

accumulated in the SC, among which PCA with high mobility was predominantly distributed in the 

hydrophilic microenvironment of corneocytes and PCA with lower mobility was mainly distributed in 

the less hydrophilic microenvironment of intercellular skin lipids. A higher ethanol concentration in the 

solvent could improve the distribution of PCA in the hydrophilic microenvironments of the SC. The 
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study not only suggests that ethanol-PBS (1:1) could be a suitable solvent to transport PCA into the skin 

but also provides valuable information for using PCA to study skin radical production. 
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Figures 

 

 

Fig. 1 The amount of PCA in the (a) SC, (b) viable skin layers and (c) the fraction of PCA in the viable 

skin to the total amount of PCA in the skin after applied 0.4% PCA solution dissolved in ethanol, PBS 

and ethanol-PBS (1:1, V/V) to human skin (n = 8) and porcine ear skin (n = 6), respectively. The area 

of every skin biopsy was 0.20 cm2. The total amount of PCA in the skin is the sum of the amount of 

PCA in the SC and viable skin layers. Mean ± SEM, * indicates p < 0.05. No significant difference was 

found between human and porcine skin treated with the same PCA solution. 
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Fig. 2 The averaged EPR spectra (n = 8) of PCA in (a) the whole skin containing the SC plus viable skin 

layers and (b) only viable skin layers of excised human skin after the treatment with 0.4 % PCA solution 

dissolved in ethanol, PBS and ethanol-PBS (1:1, V/V), respectively. The inset visualizes the broadening 

of the spectra in Fig. 2a. The EPR spectra of PCA in porcine skin are presented in Fig. S1 of the 

supplementary material. Simulation examples of the EPR spectra of PCA in (c) the whole skin consisting 

of the SC plus viable skin layers and (d) only viable skin layers of excised human skin exposed to 0.4 

% PCA PBS solution, from which the fractions of PCA with high mobility in a hydrophilic 

microenvironment (PCAmobile) and PCA with lower mobility in a less hydrophilic microenvironment 

(PCAless mobile) were derived. The hyperfine coupling matrices (axx, ayy, azz) of (15 15 106) and (13 13 

102) MHz, and the g-matrices (gxx, gyy, gzz) of (2.00805 2.00596 2.00212) and (2.00815 2.00596 

2.00212) for PCAmobile and PCAless mobile, respectively, were used for the simulations. The rotational 

correlation time Tcorr of PCAmobile was about 0.1 ns and Tcorr of PCAless mobile was different for the cases 

of three solvents. The simulations of the EPR spectra of PCA in the skin treated with PCA dissolved in 

ethanol and ethanol-PBS (1:1, V/V), respectively, are illustrated in Fig. S2 of the supplementary 

material. 
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Fig. 3 (a) Distribution of PCAless mobile and PCAmobile in the SC and viable skin after the application of 

0.4% PCA solution dissolved in ethanol, PBS and ethanol-PBS (1:1, V/V), respectively, to human (n = 

8) and porcine ear skin (n = 6), and (b) the rotational correlation time (Tcorr) of PCAless mobile in the SC. 

Mean ± SEM, * indicates p < 0.05. No significant difference was found between human and porcine 

skin treated with the same PCA solution. 
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Fig. 4 (a) The microscopic image of the morphology of corneocytes from porcine skin. Scale bar = 100 

µm. (b) The EPR spectra of the supernatant of PBS used to wash corneocytes, and the precipitated 

corneocytes, which were incubated with 0.4% PCA ethanol-PBS (1:1, V/V) for 40 min at 32 oC. The 

simulation of the EPR spectrum of PCA in (c) corneocytes and (d) skin lipids with the PCA 

concentration of 0.001% W/W. 
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Tables 
 

Table 1 EPR experiment settings 

Samples Sample holder Resonator EPR settings 

Skin containing SC plus viable skin layers Tissue cell TMHS 0.1 mT, 0.6 mW 

Skin containing only viable skin layers Tissue cell TMHS 0.3 mT, 6.3 mW 

PCA in skin lipids Tissue cell TMHS 0.3 mT, 20 mW 

PBS from the washing of corneocytes  Capillary SHQE 0.3 mT, 20 mW 

Corneocytes incubated with PCA Capillary SHQE 0.3 mT, 20 mW 
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Table 2 The EPR magnetic and dynamic parameters of PCA in different biological media obtained from 

the simulations a 

PCA in 
different 
biological 
media 

PCAmobile PCAless mobile 
Hyperfine 
coupling 
constant  
(axx, ayy, 
azz) MHz 

g-matrix  
(gxx, gyy, 
gzz) 

Rotational 
correlation 
time Tcorr (ns) 

Hyperfine 
coupling 
constant  
(axx, ayy, 
azz) MHz 

g-matrix  
(gxx, gyy, 
gzz) 

Rotational 
correlation 
time Tcorr (ns) 

PCA in whole 
skin b 

15  
15  
106 

2.00805  
2.00596  
2.00212 

0.1 
13  
13  
102 

2.00815  
2.00596  
2.00212 

1.0-0.5 

PCA in viable 
skin b 

15  
15  
106 

2.00805  
2.00596  
2.00212 

0.1 No  

PCA in 
corneocytes 

15  
15  
106 

2.00805  
2.00596  
2.00212 

0.03 No  

PCA in skin 
lipids c 

15  
15  
106 

2.00805  
2.00596 
2.00212 

0.1 
13  
13  
102 

2.00815  
2.00596 
2.00212 

1.6 

a These are only estimated results from the simulations and used for the relative comparison. 
b Skin samples were treated with 0.4% PCA solution dissolved in ethanol, PBS, and ethanol-PBS (1:1, 
V/V), respectively. 
c The concentration of PCA in skin lipids was 0.001%. 
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Fig. S1 The averaged EPR spectra (n = 6) of PCA in the (a) skin samples containing the SC plus viable 

skin and (b) viable skin of porcine ear skin after treated with 0.4 % PCA dissolved in ethanol, PBS and 

ethanol-PBS (1:1, V/V), respectively. The inset is a magnified spectral part. 

Supplementary Material
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Fig. S2 Simulation examples of the EPR spectra of PCA in the human skin samples containing the SC 

plus viable skin exposed to 0.4 % PCA dissolved in (a) ethanol and (b) ethanol-PBS (1:1, V/V) 

respectively, from which the fractions of PCA with high mobility in a hydrophilic microenvironment 

(PCAmobile) and PCA with less mobility in a less hydrophilic microenvironment (PCAless mobile) were 

derived. The hyperfine coupling matrices (axx, ayy, azz) of (15 15 106) and (13 13 102) MHz, and the g-

matrices (gxx, gyy, gzz) of (2.00805 2.00596 2.00212) and (2.00815 2.00596 2.00212) for PCAmobile and 

PCAless mobile, respectively, were used for the simulation. The rotational correlation time of PCAmobile was 

about 0.1 ns. 
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Fig. S3 The EPR spectrum of one human skin sample containing the SC and viable skin exposed to 

0.4% PCA PBS was simulated as (a) two components or (b) three components. The values in the brackets 

represent the fractions of the components. When simulating as two components, the hyperfine coupling 

matrices (axx, ayy, azz) of (15 15 106) and (13 13 102) MHz, the g- matrices (gxx, gyy, gzz) of (2.00805 

2.00596 2.00212) and (2.00815 2.00596 2.00212), the correlation time of 0.1 ns and 0.7 ns for PCAmobile 

and PCAless mobile, respectively, were used for the simulation. When including the third component, its 

magnetic parameters were the same as those of PCAless mobile, and only its rotational correlation time is 

6.3 ns. Thus, the third component can be regarded as PCA with slow mobility in the less hydrophilic 

microenvironment (PCAimmobile). Here, the summed up fraction of PCAless mobile and PCAimmobile was equal 

to the fraction of PCAless mobile when simulating the spectrum as two components. Therefore, the fraction 

of PCAmobile of did not change in both simulation strategies.  
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3 Discussions 

The study of a newly developed skin formulation has many aspects. Among them, the 

selection of skin models, the ways of topical application, and the evaluation of the applied 

product will be discussed in this thesis. The last one contains the quantification of drugs in 

different skin layers, the kinetics of drug release from the vehicles, and the spatial localization 

of drugs and vehicles in the skin. 

3.1 Selection of ex vivo barrier-disrupted skin models 

3.3.1 Ex vivo barrier-disrupted skin model simulating AD skin  

In the present thesis, the pH-sensitive Eudragit® L 100 NP is designed to selectively deliver 

Dx into the AD skin lesions. Therefore, it is the basic step to develop an ex vivo barrier-

disrupted skin model that simulates AD skin for evaluating the cutaneous drug delivery of the 

pH-sensitive NP at the initial stage of formulation development. Herein porcine ear skin 

subjected to 30 consecutive tape strips (Tesa ®) was used as the model. Porcine skin rather 

than excised human skin was chosen because the shrink of human HFs after excision 

underestimates the HF penetration of NPs 65. Besides, porcine skin is easily accessible and 

has a similar HF density to human skin (Table 1). The comparison between the barrier-

disrupted porcine skin model and the in vivo human AD skin is illustrated as follows: i) the skin 

surface pH of the model is about 5.9 (see chapter 2.2), which is close to the pH value of AD 

patients (5.5-6.1) 46-48; ii) the TEWL of the model is about 2.6-fold increased compared to the 

intact porcine skin, while the TEWL of AD skin is found 2-fold higher than that of healthy human 

skin 52,207; iii) the skin permeability of the model is significantly increased (see chapter 2.1), 

which is also evidenced in AD skin 53,54; iv) the SC thickness of the model is reduced to 5 µm, 

which resembles the fact that the AD skin has a thinner SC compared to healthy human skin, 

although the absolute SC thickness of the model is different from that of the AD skin 208-210. 

These similarities show that the ex vivo barrier-disrupted model could simulate the AD skin to 

some extent and could be useful for the evaluation of dermal formulations at the early 

development stage. 

Besides, the performance of 3 times CS resulted in a similar SC thickness left on the porcine 

ear skin. This indicates that the barrier-disrupted skin established by 3 times CS may have a 

similar skin surface pH and permeability compared to the skin model developed by 30 tape 
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strips. However, different from TS, CS has been reported to impair the infundibulum of HFs 

apart from removing the SC 87. The unpublished data of the present thesis show that the 

amount of the Rhodamine-labeled compound in the HFs of barrier-disrupted human skin was 

remarkably higher than that in the HFs of intact skin. Moreover, the transfollicular penetration 

of the dye was also observed in the HFs of barrier-disrupted skin (Figure 5). These results 

show that the impairment of HFs by CS could enhance the HF penetration of drugs and the 

following transfollicular penetration. Thus, CS could generate a comparable ex vivo barrier-

disrupted skin model as TS when the skin is bare of HFs. 

 
Figure 5 CLSM images of HFs of excised male human abdominal skin whose skin barrier was 
impared by 4 times CS (a-b) or intact (c-d) after application of a Rhodamine-labeled compound 
dissolved in PBS-DMSO (95/5, V/V) without massage and incubated for 2 h at 32 oC 
(unpublished data of the present thesis). 

3.3.2 Ex vivo skin models with different levels of barrier disruption  

Apart from establishing an ex vivo skin model to mimic AD skin, the efficiency of TS for 

removing the SC also provides a reference to inducing different levels of barrier disruption in 

excised human skin (see Chapter 2.1). The most ordered skin lipids are found at the depth of 

20-40% of the human SC, indicating the highest skin barrier function of this region211. With the 

performance of less than 10 tape strips (Tesa®), the SC region of the highest barrier function 

remains and thus the barrier disruption can be considered as a mild level (Figure 6). When 15 

tape strips are applied, the SC region of the highest barrier function is partly removed, resulted 

in medium skin barrier disruption. After being subjected to more than 20 tape strips, the SC 

region of the highest barrier function is already removed, leading to a strong barrier disruption. 

With 50 tape strips, the human skin model without the SC barrier can be attained. The above 

ex vivo skin models with different levels of barrier disruption could meet different experimental 

requirements. For example, a skin model with mild barrier disruption is suitable for delivering 

more PCA into the viable skin to study the skin radical formation, meanwhile avoiding the 

generation of radicals due to invasive treatments 212.  
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Figure 6 Ex vivo human skin with different levels of barrier disruption established by tape 
stripping (TS). The SC barrier function curve is referred to the publication by M. E. Darvin et 
al. 211 

 
Figure 7 A propsoed skin model with infundibulum disruption of HFs for studying the influence 
of the HF impairment induecd by CS on skin penetration of drugs. The black, whilte, and red 
dots represent intact HFs, impaired HFs and sealing material, respectively. The green shadow 
means cyanoacrylate glue. A and B are two skin areas from the same skin sample with the 
same HF density. 

3.3.3 Ex vivo skin model with follicular barrier disruption 

The ability of CS to impair HFs provides a strategy for studying the influence of HF disruption 

on skin penetration of drugs. As illustrated in Figure 7, the skin sample whose hairs are cut 
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shortly is divided into two parts (A and B), and their HF densities are similar. For part A, the 

HF sealing material is dropped beside each HF. For part B, all the HFs are sealed 213. The 

sealing material is a varnish-wax mixture that rarely affects the SC barrier 18,214. Subsequently, 

the cyanoacrylate glue is applied to the skin surface. By removing the solidified cyanoacrylate 

glue, the HFs of part A are impaired while the HFs of part B remain intact due to the protection 

of the sealing material. Later on, the difference in the skin penetration of drugs between 

samples A and B is accounted for the influence of HF disruption. In short, TS and CS have 

been shown their utilities in establishing different ex vivo barrier-disrupted skin models 

according to various experimental designs.   

3.2 Ways of topical application 

3.2.1 Occlusion and non-occlusion 

The application of formulations to the skin is classified into two ways according to whether an 

impervious-to-water covering is applied to after the topical administration, i.e., occlusion and 

non-occlusion. In the investigation of the cutaneous drug delivery of the pH-sensitive NP, the 

skin samples were incubated in a wet chamber with a humidity of RH 98% (see chapter 2.2). 

The wet chamber was used to mimic the occlusion condition since the area of the treated skin 

sites did not fit to the size of the commercial occlusion device, Finn Chamber. Another 

occlusive material, plastic film, is size-adjustable, yet it leads to overspread of the suspension 

to the untreated skin area. In the study of the solvent effects on the skin penetration of PCA, 

the skin samples were occluded by Finn Chamber to enhance the drug skin penetration (see 

chapter 2.3). However, H. Maibach et al. have reviewed seven original in vivo studies about 

the occlusion effect on the transdermal penetration of compounds and found that occlusion 

does not uniformly improve the drug flux across the skin, and a correlation between the 

octanol-water partition coefficient of a compound and its occlusion-induced enhancement has 

not been determined 115. Yet, this review neglects the influence of occlusion on vehicles, which 

also plays an important role in the skin penetration of drugs.  

The occlusion effects on vehicles are discussed in three aspects. i) When a formulation 

contains volatile solvents, the effect of occlusion could be two-edged. If drugs dissolved in a 

volatile solvent undergo recrystallization due to the evaporation of solvents under non-

occlusion, then occlusion could reduce the solvent evaporation and prevent the decrease of 

the concentration of drugs. This is evidenced in the skin penetration of PCA dissolved in 

absolute ethanol (see chapter 2.3). Although an aluminum Finn Chamber was used to cover 
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the treated skin areas, the sealing of the chamber is not effective enough to prevent the 

evaporation of ethanol, as reported previously 215. PCA at a concentration of 0.4% in absolute 

ethanol was observed to aggregate into while powders on the skin after 40 min at 32 oC. 

Consequently, the skin penetration of PCA was significantly low. If drugs dissolved in a volatile 

solvent and the solvent evaporation generates a supersaturated solution under non-occlusion, 

then occlusion could be unfavorable. Several studies have used the combination of volatile 

and non-volatile solvents to generate a supersaturation solution of drugs through the 

evaporation of the volatile solvents under the non-occlusive condition to enhance dermal 

absorption of drugs 216,217.  ii) When a formulation has the occlusive effect by itself such as 

ointment and lipid-based NPs, an extra occlusion by plastic film might be unnecessary 218. For 

example, J. Bouwstra et al. found that the non-occlusive method favored the lipophilic 

fluorescent dye that incorporated in liposomes penetrating into excised human skin compared 

with occlusion condition 219. Another study reported that the penetration of paraben esters into 

human epidermis following the commercial ointment was significantly decreased by occlusion 

in comparison to non-occlusion 220. The reasons might be the generation of the occlusive layer 

by formulations, changes of drug release kinetics and interactions of skin and formulations 

under non-occlusion condition 219,220. iii) When water loss affects the drug release of 

formulations, then occlusion is indispensable. Especially for some polymeric NPs, external or 

internal aqueous phases are crucial for the structure and drug release of NPs 221,222. Dryness 

due to non-occlusion should be avoided. For example, thermoresponsive nanogels release 

their incorporated molecules through the expulsion of inner water molecules upon volume 

phase transition 222. Therefore, occlusion may prevent the collapse of the nanogel structure. 

The drug release of NPs triggered by pH or enzymes needs an aqueous medium, otherwise, 

drugs are restricted inside NPs and hardly penetrate into the skin. Occlusion ascertains an 

aqueous environment for ion-exchange processes and enzymatic reactions, which is crucial 

for the drug release of pH- or enzyme-triggered NPs.  

3.2.2 Massage 

Using massage to apply the suspension of NPs onto the skin has been demonstrated to 

improve the HF penetration of NPs compared with the application without massage 25. In the 

present thesis, a 2 min-massage was used to spread the suspension of the pH-sensitive NP 

on porcine skin to evaluate the HF penetration of the NPs. The mechanism suggested by R. 

Netz et al. is that the oscillating radial hair motion generated by massage could transport NPs 

into HFs 223. However, this mechanism ignores the influence of the external medium in which 

NPs are dispersed. Moreover, the mechanism cannot be applied to the cases of liquid and 
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semi-solid formulations. Whether massage favors the HF penetration of drugs dissolved in 

liquid vehicles has not been answered. One evidence is the in vivo HF penetration of caffeine 

in ethanol-propylene glycol (3:7, V/V) without massage. In this study, the volunteers were not 

allowed to cover or touch the test skin areas, therefore the friction between the clothes and 

skin that might resemble the massage can be ignored 18. The unpublished data of the present 

thesis also show that a Rhodamine-labeled compound dissolved in Transcutol® HP freely 

diffuses into HFs of the excised abdominal human skin without any massage (Figure 8). The 

shared feature of the Transcutol® HP and the ethanol-propylene glycol is low surface tension 

(31 mN/m) 224,225. The surface tension is positively correlated to the contact angle of a drop of 

a solution on the skin surface 226. For example, the contact angles of water and ethanol on the 

skin surface are 88º and 0º, respectively, and their surface tension values are 72 mN/m and 

22 mN/m, respectively 227. Therefore, the contact angle or the surface tension is presumed to 

play a role in the HF penetration of liquid formulations.  

 
Figure 8 CLSM images of three vellus HFs (a-c) of the excised abdominal human skin whose 
SC was partially removed by 2 times CS that was applied a Rhodamine-labeled compound 
dissolved in Transcutol® HP (Gattefossé, France) without massage and incubated for 2 h 
under 32 oC. The upper row represents images obtained using the fluorescent channel, and 
the lower row represents the superimposed images obtained by transmittance and 
fluorescence modes. 

HF can be regarded as a capillary with one side closed. The influences of massage on the HF 

penetration of liquid formulations may be categorized into two cases. i) When a solution has 

a high contact angle to the skin surface, it hardly goes into HFs. An externally applied lateral 

vibration has been found to dynamically reduce or increase the contact angle of a water drop 

on a hydrophobic substrate 228. Therefore, massage may produce a lateral vibration on the 

drops of liquid formulations. When the dynamic contact angle of the drops to the skin surface 
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is reduced, the HF penetration of the drops might be facilitated. ii) When a solution has a very 

low contact angle to the skin surface, it may enter HFs without massage, as presented in 

Figure 8. The upper limit of the surface tension of a liquid formulation that does not need the 

massage to enter HFs needs further studies. A liquid formulation that targets HFs without 

massage is low-cost and easily applicable in the clinic compared to NPs. The experimental 

designs in chapter 2.2 and chapter 2.3 provoke thoughts on the necessities of using occlusion 

and massage to promote the skin drug delivery. 

3.2.3 Setups for studying skin penetration and permeation of drugs 

Although Franz diffusion cell approach has a drawback of excess skin hydration, it is 

undoubtedly an important method to study skin penetration and permeability of drugs in vitro 
75. In the present thesis, Franz diffusion cell approach was utilized to evaluate the levels of 

barrier disruption induced by TS by analyzing the skin permeability change (chapter 2.1). For 

the skin penetration studies of DxPCA loaded pH-sensitive NPs and PCA solutions, intact 

porcine ear with the whole skin structures and cartilage and full-thickness human skin were 

used to mimic in vivo skin conditions (chapter 2.2 and 2.3).  

3.3 Evaluation of dermal drug delivery systems 

A comprehensive evaluation of the cutaneous drug delivery of a formulation covers the drug 

release from vehicles, the quantification of drugs penetrated into the skin, and the spatial 

localization of drugs and vehicles. Besides, the evaluation cannot be fulfilled without 

appropriate techniques. The following discussions are centered on these four aspects, based 

on the investigations in this thesis. 

3.3.1 Drug release of formulations on skin 

Drug delivery system of pH-sensitive NP 

The pH-sensitive NP exhibited a burst drug release in vitro when the pH of the external 

medium is increased to 5.9. However, the drug release of the NPs on the intact porcine skin 

was hardly detectable by EPR and the release on the barrier-disrupted porcine skin was slow 

due to the limited water content on the skin surface (chapter 2.2). The difference in the drug 

release of the NPs between the intact and barrier-disrupted skin could be explained by the SC 

barrier function. The NP is formed via the precipitation of the carrier Eudragit® L100 when 
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Eudragit® L100 solution is added to a non-solvent. Re-dissolving or swelling of Eudragit® L100 

needs enough external aqueous medium, hydroxyl ions and buffer capacity 206. The intact 

porcine skin has a skin surface pH above 5.9, which meets the pH required to dissolve 

Eudragit® L100; however, the water content on the skin surface is very limited and hardly alters 

the NP structure. The barrier-disrupted porcine skin whose SC is partly removed permits an 

increased exchange between the endogenous liquid of the skin (~ pH 7.2) 229 and the external 

aqueous medium of the NP suspension (pH 4.1) 230. During the exchange, the pH of the 

external medium of NPs is gradually elevated, which could slowly change the NP structure to 

release the drugs. AD skin lesions also have a disrupted SC barrier and an increased skin 

surface pH (5.5-6.1) 46-48 and would allow the aforementioned medium exchange 46. Therefore, 

this pH-sensitive NP may hold promise for targeted drug release on AD skin lesions.  

 
Figure 9 EPR spectra of the pH-sensitive NPs before and after applied onto the surface of the 
artificial sebum layer for 4 h (unpublished data of the present thesis). The black solid and red 
dash lines are experimental and simulated spectra, respectively. The peak marked by the 
asterisk represents DxPCA outside the NPs. The percentage of DxPCA outside the NPs was 
obtaind from the simulation.  

Additionally, the transfollicular penetration of the model drug Nile red following the pH-

sensitive NPs indicates the drug release inside porcine HFs. The pH of the porcine HFs is 6.5-

7.4, which could theoretically trigger the NPs to release DxPCA 70. However, HFs are 

considerably dry but abundant in sebum which is secreted by the associated sebaceous gland. 

The unpublished data of the present thesis show that sebum could improve the drug release 

of the pH-sensitive NPs. As shown in Figure 9, the fraction of DxPCA outside the NPs was 

increased from 2% to 22% after the NPs were applied to the surface of an artificial sebum 

layer for 4 h. A. Vogt et al., reported a similar finding, showing that the retention of polylactic 

acid NPs in sebaceous glands was accompanied by the release of the loaded Nile red to the 



83 
 

viable epidermis 231. These results reflect that many endogenous components of the skin may 

influence the drug release of the pH-sensitive NPs.  

Besides HFs, sebum forms a lipid film with a thickness of 0-4 µm on the skin surface, which 

mainly comprises triglycerides, wax esters and squalene 232. In practice, this sebum film would 

be the first contact for any skin formulation. The influences of this sebum film on the skin 

penetration of drugs following different vehicles should be considered, such as changing the 

contact angle of a liquid formulation to the skin surface and the drug release of vehicles 233,234. 

Otherwise, the sebum film should be removed before applying a formulation onto the skin to 

avoid any influences of sebum.  

Penetration enhancer strategy by solvents 

Different from the pH-sensitive NP, no drug release exists for the PCA ethanol aqueous 

solutions applied on the skin (see chapter 2.3). Nevertheless, the cutaneous penetration of 

PCA could be adjusted by changing the compositions of the penetration enhancers of ethanol 

and water in the solvents 113. Physiochemical properties of the drug and influences of the 

penetration enhancers on the skin mainly determine the skin penetration of PCA. 

Both penetration enhancers and NPs have their respective advantages. Polymeric 

nanocarriers with outstanding characteristics endow NPs with tailored drug release and 

specified targeting. Moreover, NPs are promising vehicles to transport hydrophilic 

macromolecules into skin 140. Therefore, NP vehicles would be a superior choice when the 

aim is sustained or delayed or targeted drug delivery into skin, or improving the skin 

penetration of macromolecules 134,138,140. Penetration enhancers are easily accessible, low-

cost and flexible to make various combinations to meet different demands 235. Thus, 

penetration enhancers could be used when a high drug delivery into the skin is the main 

purpose and the respective cost is limited.  

3.3.2 Quantification of drugs in the skin 

Drug delivery system of pH-sensitive NP 

The pH-sensitive NP was found to deliver significantly more DxPCA into both intact porcine 

skin and barrier-disrupted skin compared to the reference cream (chapter 2.2). Possible 

reasons for the penetration enhancement of DxPCA by the pH-sensitive NP are discussed as 

follows. The concentration of DxPCA molecularly dispersed in the NPs (Cv) is increased, which 
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improves the flux of DxPCA into the skin, according to Fick´s first law of diffusion (Equation 1). 

DxPCA is a poorly water-soluble drug whose solubility in water is about 89 µg/ml. The total 

concentration of  DxPCA in the suspension of NPs is 320 µg/ml, which contains 2.4% of 

DxPCA in the external medium (equal as 7.68 µg/ml) and 97.6% of DxPCA encapsulated 

inside the NPs (Figure 10). With knowing the loading capacity of the NP (5.5%) 205 and the 

density of Eudragit® L100 (0.85 g/cm3), the concentration of DxPCA in the NPs is calculated 

as 46.75 mg/ml that is 525-fold higher than its water solubility. Despite the high concentration, 

DxPCA molecules inside the NPs are found in an amorphous state 205. This demonstrates that 

Eudragit® L100 has good compatibility with DxPCA 236. In contrast, the reference cream with 

the same concentration only had a few DxPCA dissolved and a majority of DxPCA aggregated 

(see chapter 2.2). The DxPCA aggregates have to dissolve first before entering into the SC. 

Similar amounts of DxPCA following the cream in both intact skin and barrier-disrupted skin 

indicate that the dissolution of DxPCA aggregates is a rate-limiting step for the cutaneous 

penetration of drugs from the cream. For the NPs, the release of DxPCA is a determinant for 

the skin penetration of drugs and no dissolution of DxPCA is needed. The controlled drug 

release of NPs might favor the skin penetration of DxPCA. However, the relationship of the 

drug release from NPs with the skin penetration of drugs needs further research.  

 
Figure 10 Proposed localization of the drug DxPCA in the suspension oft he pH-sensitive 
Eudragit® L100 NP. The blue background represents the external aqueous medium. 

Using the pH-sensitive NP, the amount of DxPCA delivered into the viable skin layers of the 

barrier-disrupted skin was doubled compared to that of the intact skin. This could be due to 

not only the increased skin permeability to DxPCA of the barrier-disrupted skin but also the 

more and faster drug release of the NPs on the barrier-disrupted skin (see chapter 3.3.1). The 

viable skin layers are the target for the treatment of AD. The higher amount of drugs delivered 

to the viable skin layers of the barrier-disrupted skin shows the possibility of using the pH-
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sensitive NP to selectively exert efficacy on the lesional skin sites and reduce the side effects 

of Dx on uninvolved skin of the AD patient.  

Now it raises the question about where the DxPCA molecules in the viable skin layers originate 

considering that the NP suspension contains both free and encapsulated DxPCA molecules. 

The NP suspension applied onto skin included 0.27 nmol/cm2 of free DxPCA and 11.20 

nmol/cm2 of encapsulated ones. The amount of DxPCA in the viable skin layers of barrier-

disrupted skin is 0.5 nmol/cm2, which is much higher than the amount of free DxPCA applied 

onto the skin. Therefore, it can be concluded that DxPCA in the viable skin layers of the barrier-

disrupted skin at least partly belongs to the encapsulated DxPCA which is released from the 

NPs before entering the viable skin layers. For the intact skin, 0.25 nmol/cm2 of PCA is found 

in the viable skin layers, which is similar to the applied amount of free DxPCA. Thus, it is 

difficult to determine the attribution of DxPCA in the viable skin layers of the intact skin only 

based on the amounts of drugs in the skin. However, the EPR spectrum of DxPCA in the viable 

skin layers of the intact skin indicates a restricted microenvironment around DxPCA, similar to 

that of DxPCA in the NPs (see chapter 2.2). Additionally, the CLSM results show that the NP 

penetrated into the HFs of the intact skin. Altogether, it could be concluded that part of DxPCA 

in the viable skin layers of the intact skin belongs to DxPCA from the NPs. 

Table 2 Comparsion of different NP-based drug delivery systems for delivering Dx into skin 

NP types Loading 
capacity a 

In vitro drug 
release in PBS b 
(Sink condition) 

Skin penetration 
enhancement c  
(Skin type) 

Ref. 

pH-sensitive 
Eudragit® L100 NP 5.5% ~90% in 4 h 

(Sink) 
~6.6-fold in 4 h 
(Whole porcine ear) 

205 

Solid lipid NP 0.75% ~20% in 4 h 
(Sink) 

~2-fold in 4 h 
(Whole porcine ear) 

136,237 

CMS NP 2-5% ~80% in 4 h 
(Non-sink) 

~3.9-fold in 6 h 
(Full-thickness human skin) 

132,238, 

239 

β-cyclodextrin 
decorated Nanogel 4.1% ~28% in 4 h 

(unknown) 
~4-fold in 4 h 
(Full-thickness human skin) 

240 

Nanocrystal 100% ~100% in 4 h 
(Sink) 

~2.7-fold in 6 h 
(Full-thickness human skin) 

241 

a Loading capacity is the ratio of the mass of loaded drugs to the mass of nanocarriers. 
b Percentage of drugs released from NPs compared with the applied dose. 
c The ratio of the total amount Dx delivered by NPs into skin to that of using a cream. 
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Penetration enhancer strategy by solvents 

The cutaneous penetration of hydrophilic drugs is not easy owing to the hydrophobic SC layer 
242. For instance, the hydrophilic caffeine formulated in a hydrogel is found only 1.66% of the 

applied dose to penetrate into the excised human skin after 24h exposure; whereas the 

amount lipophilic tocopherol delivered by the same hydrogel into the skin is 10.54% of the 

same applied dose 243. In the present thesis, PCA is used as a hydrophilic model drug. The 

amount of PCA transported into the excised human skin by ethanol-PBS (1:1) was the highest 

among the three solvents; however, it only accounted for 0.63% of the applied dose after 40 

min exposure, which is in line with the published literature 242,243.  

Water is the primary penetration enhancer for hydrophilic drugs; ethanol is a widely used 

penetration enhancer; both have simple molecular structures and are low toxic to the skin 113. 

In the present thesis, ethanol did not show its superiority in improving the skin penetration of 

PCA among the three solvents, ethanol, ethanol-PBS (1:1) and PBS. Evidenced by the white 

PCA aggregates on the skin surface, one reason could be that the concentration of PCA in 

ethanol is so high (0.4% W/V) that PCA crystallizes during the ethanol evaporation. Then the 

concentration of molecular PCA in the vehicle (Cv) is reduced and consequently the flux of 

PCA into the skin is reduced (Equation 1). Another reason could be that the dehydration of 

the SC by the absolute ethanol decreases the solubility of hydrophilic PCA in the skin 

membrane (Sm), which results in the decrease of PCA partitioning into the SC (Equation 1) 
126,244. The results reveal that using absolute ethanol to improve the skin penetration of drugs 

could be less controllable, namely the formation of supersaturation or crystallization of drugs 

due to the ethanol evaporation would lead to enhanced or reduced skin penetration of drugs. 

Therefore, ethanol should be combined with other penetration enhancers.  

The mechanisms that ethanol improves the skin penetration of drugs are still debatable 

concerning whether ethanol affects the SC barrier function by extracting the skin lipids or 

disordering the intercellular lipid bilayers 118,120. However, these conclusions strongly 

influenced by experiment designs, such as the type of skin samples (i.e. in vivo skin and the 

separated SC), duration of the exposure time and the sensitivity of the measurement 

techniques. Absolute ethanol was found to penetrate into human skin in vivo and extract 

appreciable amounts of lipid from the SC investigated by infrared spectroscopy 118. In the 

present study, the excised human skin was exposed to absolute ethanol for 40 min, therefore 

ethanol probably penetrated into the skin samples and removed a certain amount of skin lipids 

from the SC. At the molecular level by using synchrotron X-ray diffraction, ethanol is not 

observed to change the short or long lamellar spacing of the separated human SC after being 



87 
 

treated for 24 h 245, meanwhile, the structure change of the keratin fibrils in mice SC increases 

with the concentration of ethanol after 2 h exposure 120. Therefore, the keratin structure of the 

excised human skin might be altered in 40 min exposure to absolute ethanol.  

PBS was as good as ethanol-PBS (1:1) to deliver PCA into the skin, indicating that water could 

play an important role in promoting the skin penetration of hydrophilic drugs. In this PBS, water 

takes up more than 99% besides the potassium and sodium salts, therefore the effect of water 

on the skin is mainly considered, although potassium and sodium ions are reported to 

penetrate into the skin 246. With 40 min exposure, the SC hydration of the excised human skin 

could be increased to about 55% 247. The SC hydration, as a result of water uptake in 

corneocytes and the short lamellar lipid structure of the intercellular skin lipids 248, could 

facilitate hydrophilic PCA dissolving in the SC. Additionally, a drag effect imposed by the 

penetration of water might simultaneously enhance the skin penetration of PCA 249. 

Table 3 Ethanol concentrations of ethanol-water mixtures that better improves the 
percutaneous penetration of drugs. 

Drugs Skin types Ethanol concentration a Ref 

Ibuprofen Human epidermis 50-75% 235 

Melatonin Full-thicknes rat skin 50-60% 250 

Naloxone Full-thicknes rat skin 66% 251 

Nitroglycerin Human epidermis 50-70% 126 

Oestradiol Human epidermis 40-60% 127 

Sodium salicylate Human epidermis 63% 125 
a Among the ethanol concentrations of 0-100% 125,126,235,250,251 or 0-90% 127 in the ethanol-
water mixtures, the concentration that better improves the cutaneous penetration of drugs. 

Many studies have reported the synergetic effect of ethanol-water mixtures on improving the 

percutaneous penetration of both lipophilic and hydrophilic drugs (Table 3). Among the ethanol 

concentrations in the range of 0-100% or 0-90%, the ethanol-water mixtures at an ethanol 

concentration of 40-75% are generally observed to produce a higher drug flux across the skin 
125-127,235,250,251. The present investigation found that ethanol-PBS (1:1), namely the ethanol-

PBS at the ethanol concentration of 50%, delivered more PCA into the viable skin layers of 

both the human and porcine skin ex vivo compared to PBS and absolute ethanol, which is in 

line with the published studies. The synergetic effect of ethanol-water mixtures on enhancing 

the skin penetration drugs might be explained as follows. The skin uptake of ethanol increases 

with increasing the ethanol concentration in the ethanol-water mixtures, whereas up to a 

certain ethanol concentration the skin uptake of ethanol starts to decrease due to the SC 
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dehydration 125,126. Meanwhile, the skin uptake of water decreases with the increase of the 

ethanol concentration in the ethanol-water mixtures 127. Both water and ethanol uptaken into 

the skin could change the structures of lipids and corneocytes of the SC, pose solvent drag 

effect 249, and modify the partitioning of hydrophilic and lipophilic drugs between the solvent 

and the SC 120,127. Therefore, an ethanol-water mixture that maximizes the above effects for a 

certain drug could result in a synergetic effect on the skin penetration of this drug. 

3.3.3 Spatial localization of drugs and vehicles 

Drug delivery system of pH-sensitive NP 

The spatial localization of drugs and vehicles is of clinical significance: drugs in different skin 

layers or structures are related to the clinical efficacy; cutaneous penetration of vehicles is 

concerned about their skin toxicity. For the pH-sensitive NP, the loaded drug DxPCA was 

delivered into the SC and viable skin layers of both the intact and barrier-disrupted porcine 

skin. DxPCA in the SC could be localized in the intercellular skin lipids according to the finding 

by K. Yamamoto et al. using soft X-ray spectromicroscopy 252. DxPCA in the viable skin layers 

might be both inside the viable cells and in the intercellular space since Dx has been found to 

enter the viable keratinocytes and fibroblasts 253. As for the localization of the NP, the finding 

that DxPCA in the viable skin layers of the barrier-disrupted skin was outside the NP suggests 

that: i) the NPs of 303 nm in size do not readily penetrate across the disrupted SC barrier, let 

alone the intact SC barrier, which is consistent with the published literature 152,254; ii) the loaded 

drug DxPCA could be firstly released from the NPs and then penetrated into the viable skin 

not the other way around. Besides, CLSM observed the accumulation of the Nile red loaded 

NP in HFs of the intact porcine skin, demonstrating the localization of the NPs in HFs. 

Concerning the HF penetration, the NP showed no advantages over the reference cream in 

the depth of transporting Nile red into HFs; however, the cumulative intensity of Nile red in 

HFs following the NP was significantly higher than that of using the cream. The HF penetration 

depth has been often used as the parameter to assess the HF target of different formulations 
24,36. The present study reveals that the total amount of drugs in HFs is another important 

parameter. Moreover, the transfollicular penetration of Nile red from the NPs indicates that the 

pH-sensitive NP could serve as a reservoir where the drug Dx could be slowly released and 

the following transfollicular penetration could provide a shortcut to deliver Dx into deeper viable 

skin layers, i.e. the skin target to treat AD. Here the HF penetration of the NPs is driven by the 

oscillating radial hair motion due to the massage 223. Yet, the mechanism of the HF penetration 
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of semi-solid cream has not been reported. The relationship of the rheologic change of creams 

upon massage with the HF penetration would be interesting for future studies 255.  

Penetration enhancer strategy by solvents 

For the one-component solvents of water and ethanol, their skin penetration amount and depth 

largely depend on the exposure time. In the present study, excised human and porcine skin 

were exposed to the solvents for 40 min. Possible localization of the solvents in the skin are 

discussed as follows. The in vivo study from René M. Rossi found that the human SC is 

hydrated from the depth of 0 µm to 8 µm after 30 min exposure to water 247. Additionally, Joke 

A. Bouwstra et al. conclude that no free water is present in the deepest layers of the SC 

although the SC hydration reaches 300% 116. Therefore, it can be inferred that in the present 

study water could penetrate into the SC but may not reach the VE of the skin. An in vivo study 

using microdialysis found the transdermal penetration of absolute ethanol after 30 min. Thus, 

an appreciatable amount of ethanol could be expected to penetrate into the SC and viable 

skin layers of the ex vivo human and porcine skin. For the solvent of ethanol-PBS (1:1), ethanol 

could penetrate into the viable skin layers according to the finding that volunteers are 

measured ethanol in their blood after 10 min exposure to 55% ethanol solution 256; while the 

other component water may localize in the SC. Yet, in vivo dermal or transdermal penetration 

of water has not been investigated.   

 
Figure 11 Diffusion of PCA molecules (red dots) in the SC illustrated by i) black dash arrow: 
in the intercellular lipids (yellow-brown background); ii) green arrow: ethanol enhanced 
diffusion from the lipids to corneocytes (blue gray elipsoides); iii) grey dash arrow: a low-
possibility diffusion from corneocytes to the lipids. 

Regarding the localization of drugs, the amount of PCA in the SC by using PBS was higher 

than that of using ethanol-PBS (1:1), although the total amounts of PCA delivered by these 

two solvents into the skin were similar. This reflects that solvents could influence the 

macroscopic localization of drugs. In the microscopic view, PCA in the SC was found to 
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localize in both the intercellular lipids and corneocytes when using the three solvents. 

Moreover, the percentage of PCA in the intercellular lipids increased with the decrease of 

ethanol concentration in the vehicle (see chapter 2.3).  

The hypothesis about the solvent effects on the spatial localization of PCA in the SC is 

described in Figure 11 When the skin is exposed to PCA PBS solution, water molecules 

penetrate into the skin would first go into the skin lipids and then diffuse into corneocytes since 

corneocytes are embedded in the skin lipids 248. The diffusion of water into the intercellular 

lipids increases the partitioning of PCA from the solvent into the intercellular lipids and has a 

drag effect on the diffusion of PCA into the lipids 249. Subsequently, PCA may diffuse into 

corneocytes when the concentration of PCA in the intercellular lipids is high enough to drive 

this process. This could explain why a higher percentage of PCA is in the intercellular lipids 

when the solvent PBS is used. Besides, the natural moisture factors in corneocytes provide a 

more hydrophilic microenvironment, and the solubility of PCA in corneocytes is theoretically 

higher than that in the intercellular lipids. Thus, PCA molecules that diffuse into corneocytes 

may hardly diffuse out of the corneocytes. When the solvent contains ethanol, D. Horita et al. 

reported that ethanol induces structural changes in the short lamellar and the keratin fibrils 

with an increase in ethanol concentration 248. Thus, the diffusion of PCA from the intercellular 

lipids into corneocytes could be enhanced by ethanol. This could be why a higher ethanol 

concentration in the solvent results in a lower percentage of PCA in skin lipids. Above all, the 

intercellular pathway might be dominant for the skin penetration of the hydrophilic chemical 

PCA; meanwhile, the transcellular pathway might exist too. The coexistence of intercellular 

and transcellular pathways has been demonstrated by modeling and experiments 257,258. 

Additionally, PCA in the viable skin layers could be mostly in the intercellular space of viable 

skin cells because the cell membrane permeation of the hydrophilic PCA is very low 259. 

The skin penetration behaviors of the DxPCA loaded pH-sensitive NP and PCA dissolved in 

the ethanol-PBS (1:1) solvent are summarized in Table 4. The NP could control the release of 

DxPCA and exhibited an enhanced drug release on the barrier-disrupted skin, whereas the 

drug release of PCA was out of the reach of the ethanol-PBS solvent. Both the NP and the 

solvent transport drugs into the SC and the viable skin layers. However, two drugs have 

different spatial localization in the SC; DxPCA is demonstrated to be in the intercellular lipids 
252, while hydrophilic PCA could be in both the intercellular lipids and corneocytes. Concerning 

the localization of vehicles, the NP may only stay on the SC, while ethanol in the ethanol-PBS 

(1:1) probably goes into the SC and the viable skin layers 256. Besides, the high deposition of 

the NPs in HFs implies that HFs would be a potential reservoir for the transfollicular 
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penetration of drugs from NPs. The HF penetration of PCA dissolved in ethanol-PBS (1:1) 

needs further investigations.  

Table 4 Skin penetration behaviors of the DxPCA loaded pH-sensitive NP and PCA dissolved 
in the ethanol-PBS (1:1) solvent a.  

Formulations Drug 
release 

Spatial localization of drugs and vehicles 
SC Viable skin 

layers HFs Intercelluar 
lipids Corneocytres 

Drug Vehicle Drug Vehicle Drug Vehicle Drug Vehicle 
DxPCA 

loaded pH-
sensitive NP 

Yes Yes 
252 No No No Yes No Yes Yes 

PCA in 
ethanol-PBS 

(1:1) 
No Yes Yes Yes Yes Yes Yes NA NA 

a The skin samples were exposed to the DxPCA loaded pH-sensitive NPs and PCA dissolved 
in the ethanol-PBS (1:1) solvent for 4 h and 40 min, respectively. NA means not available. 

3.3.4 Techniques used in the skin penetration studies 

Tape stripping (TS) and cyanoacrylate stripping (CS) 

The application of TS and CS to establish barrier-disrupted skin models has been discussed 

in chapter 3.1. The following discussion is focused on the use of TS and CS in quantifying the 

skin penetration of drugs. TS is commonly used to harvest the whole SC for quantifying drugs 

in the SC. Yet, the number of TS needed to completely remove the SC is influenced by many 

factors such as brand, pressure and skin types 92. Moreover, TS is labor-intensive. For 

example, in the present study, it takes about 60 min to perform 100 tape stripes to remove the 

entire SC of porcine skin. In comparison, the CS method is efficient and every CS could 

remove 2-2.5 µm thick SC. This implies that drugs quantified from the consecutive number of 

CS could be approximately correlated to the skin depth.  

TS and CS methods are also combined to quantify drugs in HFs, namely differential tape 

stripping which is a direct, non-invasive approach to quantify drugs in HFs 87. In this approach, 

100 consecutive tape strips are applied to remove the SC, and then one CS is used to remove 

the infundibular part of HFs. The amount of drugs quantified from the second step (one CS) 

represents the amount of drugs in HFs. However, the present study demonstrates that CS 

removes not only HFs but also the viable skin layers. Therefore, the prerequisite of differential 

tape stripping approach is that no drugs penetrate into the viable skin layers, otherwise this 
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approach would overestimate the amount of drugs in HFs. For example, differential tape 

stripping can be conducted immediately when skin samples are applied to a test formulation 

because drugs are impossible to transiently diffuse across the SC and enter the VE. Besides, 

it is not clear about whether one CS is enough to collect all drugs in HFs. Hence, a new 

approach for studying the role of HFs in skin penetration of drugs is proposed in Figure 12 

based on the present findings that CS removes the SC, viable skin layers and HFs. Two skin 

areas of A and B from the same skin sample with similar HF densities are selected. The HFs 

of sample B are sealed by a varnish-wax mixture 18,214, while the sealing material is placed 

next to the HFs of sample A. After a certain exposure time, the unabsorbed substances on the 

skin surface are removed. Subsequently, CS is performed to collect drugs in the skin. The 

number of CS required to collect all drugs in HFs needs further studies. The difference in the 

amount of drugs penetrated into the skin between sample A and B represents drugs in HFs. 

 
Figure 12 A proposed strategy for studying the role of HFs in the skin penetration of drugs. 
The black and red dots represent HFs and sealing material, respectively. The green shadow 
means the applied formulation. A and B are two skin areas from the same skin sample with 
the same HF density. n is the number of cyanoacrylate stripping needed to remove a certain 
part of the HF. 

Two-photon microscopy (TPM) 

In the present study, TPM was utilized to measure the thickness of the remaining SC after the 

skin is subjected to a certain number of TS or CS. The transition zone between the SC and 

the SG makes it hard to define the endpoint of the SC. TPM makes use of the autofluorescence 

of endogenous substances in the skin to visualize different skin structures along with the skin 
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depth. From the tomographic TPM images, the SC can be distinguished from the SG. Among 

the tomographic images of a skin sample, the image in which the area of corneocytes accounts 

for less than 50% while viable keratinocytes take up more than 50% of the area is defined as 

the endpoint of the SC. Based on the setting of 50% for the SC boundary, the SC thickness 

of the excised abdominal human skin and porcine ear skin were quantified as 12 µm and 16 

µm, respectively, which is consistent with the published data 62,71, The present study provides 

a new non-invasive and high-resolution method to measure the SC thickness method by using 

TPM.  

Currently, in vivo imaging techniques of optical coherence tomography, reflectance confocal 

microscopy, and confocal Raman microscopy are widely used to noninvasively analyze the 

SC thickness 260. Conventional optical coherence tomography has a limited spatial resolution 

to distinguish the SC from the SG with the exception of the palm and plantar region. Even 

though the high-definition optical coherence tomography has an increased axial resolution, its 

lateral resolution is still not enough to allow cellular-level imaging 261. Reflectance confocal 

microscopy has a high axial and lateral resolution and provides a 3D cellular-level structure of 

the SC for determining the thickness 260. Confocal Raman microscopy measures the SC 

thickness based on the water-, lipid-, and DNA-based concentration profiles, respectively 262. 

However, for the barrier-disrupted skin and reconstructed skin models, their increased TEWL 

leads to difficulty in determining the SC thickness based on the water concentration profile. 

Lipids in the SC of AD skin differ substantially in compositions from healthy skin, thus lipid-

based concentration profiles are not suitable  263. In comparison, the SC thickness 

measurement is less affected using confocal Raman microscopy based on the DNA 

concentration profile. Both reflectance confocal microscopy and TPM have the advantage of 

high spatial resolution to differ the SC from the SG. 

Electron paramagnetic resonance (EPR) 

The present study employed EPR to i) quantitatively investigate the localization of drugs inside 

NPs and in the external suspension medium; ii) directly quantify the amount of spin-labeled 

drugs in the skin samples without complicated sample preparation; iii) detect the drug release 

of NPs on the ex vivo porcine skin, which can be hardly realized by other techniques because 

it is challenging to distinguish drugs encapsulated inside NPs and drugs distributed in the skin; 

iv) study the microscopic localization of PCA in the intercellular skin lipids and corneocytes by 

analyzing the EPR spectra of PCA in the skin, extracted skin lipids and separated corneocytes. 

These applications highlight the potential of EPR in skin penetration studies. The label-free 

technique X-ray spectromicroscopy that has a nanoscopic lateral resolution has also been 
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used to quantify the drug concentrations in the SC and viable skin. However, this technique 

cannot directly distinguish drugs in the skin from drugs inside CMS NPs through the oxygen 

1s-absorption spectra 264. Another technique FLIM with high lateral resolution (subcellular level) 

could detect the drug release of NPs in situ because fluorescence lifetime is the characteristic 

property for a fluorophore and often sensitive to the local environment around the fluorophore 
265. Thus, using a fluorescent dye as the model drug, changes in the fluorescence lifetimes of 

the model drug in NPs and skin can reveal the drug release. Yet, FLIM can hardly make 

absolute quantification of drugs in the skin.  

 
Figure 13 EPR spectra of porcine skin and excised human skin (Fitzpatrick skin type 4) that 
incubated for 4 or 24 h at 32 oC (unpublished data of the present thesis). 

Additionally, the duration of the skin penetration experiment and skin types should be 

considered when using EPR. As shown in Figure 13, a single narrow biological peak was 

observed in the EPR spectrum of porcine skin that was incubated for 24 h at 32 oC, while no 

interference peak appeared after a shorter incubation time of 4 h. The origin of the narrow 

biological EPR peak needs further investigation. For excised human skin, the EPR spectra of 

the skin before and after 24 h incubation remained similar. The broad single peak is attributed 

to melanin in the human skin. The high intensity of the melanin peak is because the skin 

sample belongs to Fitzpatrick skin type 4, while the procine ear skin used in the present thesis 

is in white and its melanin content is very low, invisible to human eyes. Both the biological 

peak and melanin peak overlap the EPR spectrum of PCA or PCA-labeled drugs, which 

influences the quantification of PCA-labeled drugs in the skin. Therefore, Caucasian skin with 

low melanin content and 4 h of the incubation time were used in the present studies. 
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Confocal laser scanning microscopy (CLSM) 

In the present study, CLSM was employed to visualize the spatial localization of drugs, 

especially drugs in HFs by imaging cryo-sectioned skin samples. This technique requires 

drugs to be fluorescent. Thus, the lipophilic dye Nile red was used as the model drug. The 

penetration of Nile red into the intact porcine skin following the NPs was at the depth of 160 

µm (the dermis), which is in line with the EPR result that the drug DxPCA was transported into 

the viable skin layers. The physicochemical properties of drugs play a role in skin penetration. 

Different labelings, i.e. the fluorescent label for CLSM measurements and the spin marker for 

EPR quantifications, may change the physicochemical properties of the tested drug. This may 

lead to the inconsistency in the skin penetration results investigated by different techniques. 

Nile red has the molecular weight of 318 g/mol, the water solubility of <1 µg/ml 266  and logP 

of 5 267, which can somewhat simulate Dx whose molecular weight is 392 g/mol, water 

solubility is 89 µg/ml 268 and logP is 1.83 269. Nevertheless, the correlation between CLSM and 

EPR results in the skin penetration of drugs needs further studies. 

In conclusion, this project established the ex vivo barrier-disrupted skin models with different 

extents of barrier function for various experimental requirements. The pH-sensitive NP was 

demonstrated to have a controlled drug release, and improved skin penetration of the drug 

DxPCA on the barrier-disrupted skin, showing that the NP could be promising to reduce the 

side effects of Dx during the treatment of AD. Besides the NP, solvent effects on the skin 

penetration of hydrophilic PCA were investigated too. The ethanol aqueous solutions at the 

ethanol concentrations of 0%, 50%, and 100% were found not only affect the amount and 

depth of PCA penetrated into the skin, but also the spatial localization of PCA in the 

intercellular lipids and corneocytes. EPR, as the main technique employed in this project, has 

shown its high usefulness in the study of cutaneous drug delivery. 



97 
 

4 Outlook  

4.1 Ex vivo barrier-disrupted skin models 

The application of CS to the skin impairs the HFs 87,96, yet no investigations have been 

conducted regarding the percentages of the HF content are removed by different numbers of 

CS. Therefore, future studies need to focus on these questions, which is crucial for sampling 

drugs penetrated in HFs because the follicular infundibulum is the main target of many NPs, 

and the number of applied CS has to be sufficient to remove the infundibulum part to make 

sure that most drugs in the HFs are collected (Figure 12). Besides, the difference of the ex 

vivo barrier-disrupted skin models established by TS and CS, and the influences of the HF 

impairment (Figure 7) on the skin penetration of drugs need further investigations.  

4.2 Further investigations about topical formulations 

The pH-sensitive NP makes use of the enteric property of Eudragit® L100 to realize the 

controlled drug release of DxPCA. Apart from Eudragit® L100, NPs made of other enteric 

polymers such as cellulose acetate phthalate and hydroxypropyl methylcellulose phthalate are 

worth investigating their cutaneous drug delivery so that an optimal nanocarrier could be 

screened according to the clinical need. Furthermore, the correlation between the drug release 

of NPs on the skin ex vivo or in vivo and the skin penetration of drugs is of great interest. In 

addition, NPs are initially dispersed in an aqueous medium after the preparation, i.e. NP 

suspension. However, the dosage forms of cream and gel are favored in the clinic because of 

their good adhesion and spreadability on the skin. Thus, the combination of NPs with cream 

or gel, namely NPs dispersed in cream or gel, is a growing trend in the development of topical 

dermal formulations. Dispersing the pH-sensitive NPs into cream or gel could reduce the 

dryness of formulations and brings in the occlusion effect. Besides, the combination of two 

kinds of NPs with fast and delayed drug release could be a feasible strategy to optimize the 

skin penetration of drugs by adjusting the drug release from NPs, such as nanocrystals with a 

fast drug release and the pH-sensitive NPs with a delayed drug release. Therefore, in the 

future, it is worth studying the skin penetration of drugs by using NPs dispersed in cream/gel 

or the combination of different kinds of NPs, and the corresponding mechanisms and 

advantages.  
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Rather than one incubation time, the penetration of the lipophilic drug DxPCA and the 

hydrophilic model drug PCA in different skin layers over time, namely the dermal 

pharmacokinetics, need further investigations.  

The relationship of the surface tension or the contact angle of a liquid topical formulation on 

the skin surface with the HF penetration of drugs would be an interesting topic (Figure 5). 

The skin lipid film that covers the outmost skin layer SC cannot be ignored when studying the 

interaction of NPs with the skin surface. Artificial sebum can be used as a substitute for this 

skin lipid film, and the influences of artificial sebum on the NP structure and its drug release 

need to be thoroughly studied. 

4.3 Techniques for studying skin penetration  

The CLSM technique used for studying the HF penetration of NPs requires cryo-sectioning 

the skin biopsies, which is invasive, time-consuming, and labor-intensive. Moreover, CLSM 

cannot investigate the same HF at different time points. Thus, the drug release of NPs in HFs 

over time is difficult to investigate by CLSM. TPM with high resolution and deep optical 

sectioning could be a better technique to study HF penetration. N. Döge et al. employed wide-
field TPM to monitor the HF penetration of NPs in situ, in which the skin sample is placed in a 

lateral position 270. It seems promising to use wide-field TPM to monitor the drug release of 

NPs in HFs real-time and in situ.   

The imaging modality of FLIM that spatially detects fluorescence lifetime can report on the 

surroundings of a fluorescent molecule at the subcellular level 265. EPR quantifies the amounts 

of spin-labeled drugs in different microenvironments but gives no information on spatial 

localization. Therefore, it would be useful to demonstrate the feasibility of quantifying the 

spatial localization of drugs in the skin by the combination of FLIM and EPR.  
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5 Summary 

It is challenging to overcome the stratum corneum (SC) barrier to deliver drugs into the skin. 

Nanoparticle (NP)-based drug delivery systems show the advantages of cutaneous 

penetration improvement and controllable and targeted drug release. Besides, solvents, as a 

big group of penetration enhancers, provide another strategy, which is easily accessible, low-

cost, and flexibly changeable in components. Apart from the skin penetration enhancement 

based on formulations, the disrupted barrier of diseased skin could change the skin 

penetration of drugs too. Thus, the present thesis investigated the influences of the SC barrier 

function, a pH-sensitive Eudragit® L00 nanoparticle, and the solvents of water and ethanol on 

cutaneous drug delivery. 

To determine the influence of the SC barrier on drug delivery, the SC thickness remaining on 

the skin after different numbers of tape stripping (TS) or cyanoacrylate stripping (CS) were 

quantified using two-photon microscopy, and the correlation of the SC reduction with the skin 

permeability changes was studied. The amount of SC removed by each tape decreased along 

with the skin depth, while a nearly constant SC thickness was removed by each CS. CS can 

remove the SC, viable skin layers and the hair follicle (HF), while TS can only remove the SC. 

Nevertheless, the removal of the entire human SC can be attained by both TS and CS, which 

were 4 times CS or 50 tape strips. The skin permeability to the model drug PCA linearly 

increased with the reduction of the SC thickness on the skin. These findings provide useful 

references to separating different skin layers for the quantification of drugs in the skin and 

establishing ex vivo barrier-disrupted skin models with different extents of barrier disruption. 

Especially, the barrier-disrupted skin, obtained by performing 30 tape strips on the intact 

porcine ear skin, could simulate atopic dermatitis (AD) skin to some extent. This ex vivo skin 

model could be used for evaluating dermal formulations in the initial development stage and 

reduce the number of animal and human studies. 

Next, the influences of the SC barrier on the skin penetration behavior of DxPCA-loaded pH-

sensitive Eudragit® L100 NPs were investigated by EPR and CLSM using intact and barrier 

disrupted porcine skin. The pH-sensitive NP exhibited a triggered drug release in vitro at a pH 

above 5.9. When applied to the skin, the drug DxPCA was slowly released from the NPs in 

the case of the barrier-disrupted skin, whereas this was under the EPR detect limited for the 

intact skin. The disrupted SC barrier increased the exchange of the endogenous fluid of the 

skin with the external medium of the NP dispersion. Due to the exchange, the pH of the 

external medium of the NPs was increased, leading to the change in the NP structure and 
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thus to the drug release. The improved drug release of the NPs is part of the reason for the 

higher drug penetration into the viable skin layers of the barrier-disrupted skin compared to 

the intact skin. These results indicate the feasibility of using this pH-sensitive NP to realize the 

targeted drug release and enhanced drug delivery into the viable skin layers of the AD skin 

lesions so that the side effects of the drug Dx could be reduced. Concerning the spatial 

localization of the NP, the EPR results indicate that the pH-sensitive NPs cannot pass through 

the disrupted SC of the skin, let alone the intact SC barrier. Besides, the accumulation of Nile 

red-loaded NPs in HFs and the transfolliclular penetration of Nile red was observed, which 

indicates that HFs can serve as a reservoir where drugs are sustained released from the NPs 

and provide a shortcut for drugs to penetrate across the HF into the deep viable skin layers. 

The drug release of the pH-sensitive NPs inside HFs may be due to the high sebum content 

and the high HF pH.  

Lastly, water and ethanol are omnipresent in topical formulations, serving as dispersion media 

for NPs, low-toxic dissolution media, and penetration enhancers. The solvent effects of ethanol, 

PBS and the cosolvent ethanol-PBS (1:1, V/V) on the penetration of the hydrophilic model 

drug PCA into the excised human skin and porcine ear skin were investigated by EPR. 

Absolute ethanol showed poor ability to deliver PCA into the skin due to the crystallization of 

PCA caused by ethanol evaporation. PBS and the cosolvent are superior to ethanol, delivering 

a similar high amount of PCA into the skin. Despite a similar total amount of PCA in the skin, 

the cosolvent delivered more drugs into the viable skin compared to PBS. This shows the 

solvents effects on the macroscopic localization of drugs in the skin. Nevertheless, more than 

95% of the penetrated drugs accumulated in the SC regardless of the solvents, showing that 

the SC is a predominant barrier and the main reservoir for the skin penetration of hydrophilic 

PCA. Furthermore, the solvents influenced the microscopic localization of PCA in the SC. PCA 

distributed in both the intercellular skin lipids and corneocytes when using the three solvents. 

From PBS to ethanol, with more ethanol in the solvent, the fraction of PCA distributed in the 

intercellular lipids decreased from 74% to 37%. The reason may be that ethanol enhances the 

diffusion of PCA from the intercellular lipids into the corneocytes, implying the coexistence of 

intercellular and transcellular skin pathways for PCA. 

In conclusion, the studies conducted in this thesis i) provide correlation of the extent of the SC 

barrier disruption with the number of applied TS or CS and show the feasibility of using TS to 

establish an ex vivo barrier-disrupted skin model that mimics AD skin to some degree; ii) give 

insights of the influence of the SC barrier on the drug release of NPs on the skin and the 

following skin penetration of drugs, and show the promising application of the pH-sensitive NP 

in reducing the side effects of Dx for the treatment of AD; iii) expand the knowledge of solvent 
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effects on the spatial localization of drugs in the SC and give a hint for the skin pathway of 

hydrophilic drugs. 
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Zusammenfassung 

Die Barriere des Stratum Corneums (SC) stellt beim Transport von Wirkstoffen in die viable 

Haut eine große Herausforderung dar. Es wurden viele unterschiedliche Ansätze gemacht, 

um eine Penetration von Wirkstoffen durch die Hautbarriere zu verbessern. Im Vergleich zu 

anderen penetrationsverstärkenden Methoden haben nanopartikelbasierte 

Wirkstofftransportsysteme den Vorteil, dass sie eine kontrollierte und gezielte 

Wirkstofffreisetzung ermöglichen. Daneben kommen häufig Lösungsmittel zum Einsatz, die 

als Penetrationsverstärker agieren und die Löslichkeit des Wirkstoffes verbessern. Weiterhin 

ist diese Strategie kostengünstig, leicht realisierbar sowie flexibel an die jeweiligen 

Anforderungen anpassbar. Eine penetrationsverstärkende Wirkung kann nicht nur bei einer 

gezielten Verwendung geeigneter Formulierungen, sondern auch bei einer gestörten 

Barrierefunktion von erkrankter Haut beobachtet werden. In der vorliegenden Arbeit wurden 

die Einflüsse der SC-Barrierefunktion, eines pH-sensitiven Eudragit® L00-Nanopartikels 

sowie der Lösungsmittel Wasser und Ethanol auf die kutane Wirkstoffabgabe untersucht. 

Zur Untersuchung der SC-Dicke wurde zunächst das SC mittels unterschiedlicher Anzahl an 

Tape Stripping (TS) oder Cyanoacrylat Stripping (CS) entfernt und im Anschluss wurde das 

auf der Haut verbliebene SC mittels der Zwei-Photonen- Mikroskopie quantifiziert und die 

Korrelation der SC-Reduktion mit den Veränderungen der Hautpermeabilität untersucht. 

Während das TS mit jeder Anwendung zu einer Abnahme der SC-Dicke führte, blieb die Dicke 

beim CS nahezu konstant. Weiterhin können mit dem CS das SC, lebensfähige Hautschichten 

und Haarfollikel (HF) entfernt werden, während das TS nur das SC entfernen kann. Es wurde 

herausgefunden, dass das Entfernen des gesamten menschlichen SC durch beide Methoden 

erzielt werden kann. Hierzu werden entweder vier CS oder 50 TS benötigt. Die 

Hautpermeabilität für das Modellpräparat PCA stieg linear mit der Abnahme der SZ-Dicke auf 

der Haut. Diese Ergebnisse liefern zur Trennung verschiedener Hautschichten bei der 

Quantifizierung von Wirkstoffen in der Haut und zur Etablierung von ex vivo Barrierestörungen 

in Hautmodellen mit unterschiedlichem Ausmaß an Barrierestörungen nützliche Erkenntnisse. 

Darüber hinaus wurde barrieregestörte Haut als Modell für die atopische Dermatitis (AD) 

verwendet, indem 30 Klebestreifen-Abrisse (TS) von intakter Schweineohrhaut entfernt 

wurden. Dieses Ex-vivo-Hautmodell könnte für die Bewertung von dermalen Formulierungen 

in der ersten Entwicklungsphase verwendet werden und die Anzahl der Tier- und 

Humanstudien reduzieren. 
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Anschließend wurden die Einflüsse der SC-Barriere auf das Hautpenetrationsverhalten von 

DxPCA-beladenen pH-sensitiven Eudragit® L100 NPs mittels EPR und CLSM untersucht. Die 

pH-sensitiven NPs zeigten in vitro eine gesteigerte Wirkstofffreisetzung bei pH-Werten über 

5,9. Bei der ex vivo-Applikation auf Schweinehaut wurde das DxPCA auf der barrieregestörten 

Haut langsam aus den NPs freigesetzt, während eine Wirkstofffreisetzung bei intakter Haut 

kaum zu sehen war. Die gestörte SC-Barriere erhöhte den Austausch der körpereigenen 

Flüssigkeit der Haut mit dem externen Medium der NP-Dispersion. Durch den Austausch 

wurde der pH-Wert des externen Mediums der NPs erhöht, was zu einer Veränderung der 

NP-Struktur und damit einer vermehrten Wirkstofffreisetzung sowie einer tieferen 

Wirkstoffpenetration von DxPCA in die lebensfähigen Hautschichten der barrieregestörten 

Haut im Vergleich zur intakten Haut führt. Diese Ergebnisse deuten darauf hin, dass mit 

diesem pH-sensitiven NP eine gezielte Wirkstofffreisetzung und verbesserte Wirkstoffabgabe 

in die lebensfähigen Hautschichten der AD-Hautläsionen möglich ist. Dadurch könnten die 

Nebenwirkungen von Dexamethason verringert werden. Hinsichtlich der räumlichen 

Lokalisation der NP deuten die EPR-Ergebnisse darauf hin, dass die pH-sensitiven NPs die 

gestörte SC der Haut gestörte und intakte Barriere der Haut nicht passieren können. 

Außerdem wurde die Anhäufung von Nilrot-beladenen NPs in den HFs und die transfollikuläre 

Penetration von Nilrot beobachtet, was darauf hinweist, dass die HFs als Reservoir dienen 

können. Dadurch können die Wirkstoffe aus den NPs nachhaltig freigesetzt und eine 

Reduktion für das Eindringen von Wirkstoffen über die HF in die tiefen lebensfähigen 

Hautschichten erzielt werden. Die Wirkstofffreisetzung der pH-empfindlichen NP innerhalb der 

HFs kann auf den hohen Talggehalt und den hohen HF-pH-Wert zurückgeführt werden.  

Schließlich wurde der Einfluss der Lösungsmittel PBS, Ethanol und deren Mischung (1:1, V/V) 

auf die Hautpenetration des hydrophilen Modellwirkstoffs PCA in die exzidierte menschliche 

Haut und in die Schweineohrhaut mittels EPR untersucht. Diese Lösungsmittel dienen als 

Dispersionsmedien für NPs, besitzen penetrationsverstärkenden Eigenschaften sowie 

geringen Toxizität. Ethanol transportierte nur geringe Mengen an PCA in die Haut, da die 

Verdampfung des Ethanols zu der Kristallisation der PCA führte. Obwohl bei der Verwendung 

von PBS und der PBS-Ethanol-Mischung ähnliche Gesamtmengen an PCA in der Haut 

gefunden wurden, war der Anteil der PCA in der viablen Epidermis und Dermis bei der PBS-

Ethanol-Mischung höher. Dennoch sammelten sich mehr als 95% der penetrierten Wirkstoffe 

unabhängig von den Lösungsmitteln im SC an, was zeigt, dass das SC eine vorherrschende 

Barriere und das Hauptreservoir für die Hautpenetration hydrophiler PCA bildet. Darüber 

hinaus beeinflussten die Lösungsmittel die räumliche Verteilung der eingedrungenen PCA im 

SC. Bei der Verwendung der drei Lösungsmittel verteilte sich die PCA sowohl in den 

interzellulären Hautlipiden als auch in den Korneozyten. Eine erhöhte Ethanolkonzentration 
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im Lösungsmittel führte zu einer Abnahme des PCA-Anteils in den interzellulären Lipiden von 

74 % auf 37 %, während in den Korneozyten eine Steigerung festgestellt wurde. Der Grund 

für diese Abnahme könnte eine Verstärkung der Diffusion der PCA von den interzellulären 

Lipiden in die Korneozyten durch das Ethanol sein, was auf die Koexistenz von interzellulären 

und transzellulären Hautwegen für die PCA hindeutet. 

Zusammenfassend wurden in diesem Projekt ex vivo Hautmodelle mit unterschiedlich starker 

Barrierestörung etabliert, um verschiedene experimentelle Anforderungen zu untersuchen. Es 

hat sich zeigt, dass die in dieser Arbeit durchgeführten Studien: i)  eine Korrelation des 

Ausmaßes der Störung der SC-Barriere mit der Anzahl der angewandten TS oder CS liefern 

sowie die Etablierung eines ex-vivo-Barriere-gestörtes Hautmodell mittels TS ermöglichen, 

das die AD-Haut bis zu einem gewissen Grad nachahmt; ii) Einblicke bezüglich des Einflusses 

der SC-Barriere auf die Wirkstofffreisetzung von NPs auf der Haut und die anschließende 

Hautpenetration von Wirkstoffen geben und die vielversprechende Anwendung der pH-

sensitiven NP bei der Reduzierung der Nebenwirkungen von Dx zur Behandlung von AD 

zeigen; iii) das Wissen über die Lösungsmittelwirkungen auf die räumliche Verteilung von 

Wirkstoffen im SC erweitern und einen Hinweis auf den Hautpfad von hydrophilen Wirkstoffen 

geben. 
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