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1. Abstract  
 

Background: Inflammation has been associated with major depressive disorder (MDD). Meta-

analytic evidence has shown increased levels of circulating pro-inflammatory cytokines in 

groups of patients with MDD. However, little is known about the cellular source of these 

inflammatory signals. Recent studies have suggested that innate and adaptive immunity may be 

differentially affected in MDD. Neuroendocrine pathways tightly regulate cellular inflammation 

via glucocorticoids, such as cortisol. While some studies have found neuroendocrine 

disturbances in MDD, it has remained unclear whether impairments in glucocorticoid signalling 

are cell-specific. Therefore, we interrogated phenotype and glucocorticoid signalling of key 

innate (monocytes) and adaptive (T cells) immune cell populations in patients with MDD and 

healthy controls (HC). 

Methods: 35 well-characterized antidepressant-free patients with MDD and HC individually 

matched for age, sex, smoking status and body mass index were enrolled. All participants were 

free of immunomodulatory medications or significant medical illness and non-pregnant. 

Immunophenotyping was performed by flow cytometry following established guidelines. Cell-

specific steroid signalling was determined by mRNA expression of pre-receptor regulation (11β-

hydroxysteroid dehydrogenase type 1 [11β-HSD1]), receptor expression (glucocorticoid [GR] 

and mineralocorticoid receptor [MR]), and its main downstream target (glucocorticoid-induced 

leucine-zipper [GILZ]). Salivary cortisol (collected on two consecutive days at 8 a.m. and 10 

p.m.) and serum levels of IL-6, IL-1ß and TNF-α were analysed with ELISA. 

Paired-samples t-tests were used for continuous variables and McNemar’s Test for dichotomous 

variables. Repeated-measures ANOVA was used for cortisol values. Effects sizes were 

calculated as Hedges’ g. 

Results: In patients with MDD, we observed a shift in monocyte repertoire towards elevated 

frequencies of non-classical monocytes (p < 0.01; Hedges’g = 0.88). In contrast, frequency and 

phenotype of major lymphocyte subsets were similar (ps > 0.05). Furthermore, monocytes but 

not T cells from patients with MDD showed lower expression of GR (p = 0.018; Hedges’g = 

0.21) and GILZ (p = 0.045; Hedges’g = 0.39), indicative of steroid resistance. Finally, altered 

monocyte phenotype and steroid gene expression occurred against the backdrop of unchanged 

salivary cortisol (p = 0.32) and serum cytokine levels (ps > 0.05). 

Conclusion: Our results suggest that in MDD regulatory mechanisms of inflammation are 

affected in a cell-specific manner. More specifically, we found a shift towards a pro-
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inflammatory phenotype and gene expression consistent with steroid resistance that was 

restricted to monocytes and occurred without neuroendocrine alterations. Our results could 

outline avenues for tailored cell-specific treatments to target aberrant inflammation in MDD. 
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2. Abstract (German) 

 

Hintergrund: Entzündliche Prozesse stehen mit der Pathophysiologie von Depression (MDD) in 

Verbindung. Meta-Analysen deuten auf erhöhte Spiegel von zirkulierenden pro-

inflammatorischen Zytokinen in Patientengruppen hin. Bisher ist nur wenig über den zellulären 

Ursprung dieser entzündlichen Signale bekannt. Jüngere Untersuchungen konnten zeigen, dass 

adaptive und angeborene Immunität bei MDD differentiell beeinträchtigt sein könnte. 

Glukokortikoide wie Cortisol sind potente neuroendokrine Regulatoren von Inflammation. Eine 

veränderte neuroendokrine Regulation ist bei Patienten mit MDD beschrieben worden, allerdings 

ist unklar, ob diese neuroendokrinen Veränderungen zell-spezifisch auftreten. Das Ziel dieser 

Arbeit ist es, Phänotyp sowie Steroidregulation von Monozyten und T-Zellen, den wichtigsten 

Zellpopulationen von angeborenem und erworbenem Immunsystem, bei Patienten mit MDD und 

gesunden Kontrollen (GK) zu untersuchen. 

Methoden: 35 Antidepressiva-unmedizierte Patienten mit MDD und 35 GK (individuell 

parallelisiert nach Alter, Geschlecht, Raucherstatus und Body-Mass-Index) wurden für die 

Studie rekrutiert. Alle Probanden waren frei von immunmodulatorischer Medikation, ohne 

signifikante medizinische Begleiterkrankungen und nicht-schwanger. 

Immunophänotypisierung wurde mithilfe von Durchflusszytometrie gemäß etablierter Standards 

durchgeführt. Zell-spezifische Steroidregulation wurde anhand der mRNA-Expression auf Ebene 

von prä-Rezeptor- (11β-hydroxysteroid dehydrogenase type 1 [11β-HSD1]), Rezeptor- 

(Glukokortikoid- [GR] und Mineralokortikoidrezeptor [MR]) sowie post-Rezeptor-Ebene 

(glucocorticoid-induced leucine-zipper [GILZ]) bestimmt. Speichel-Cortisol zweier konsekutiver 

Tage (8:00 und 22:00 Uhr) sowie IL-6, IL-1ß und TNF-α-Serum-Spiegel wurden mittels ELISA 

analysiert. Kontinuierliche Variablen wurden mittels des t-Tests für verbundene Stichproben, 

dichotome Variablen mit McNemar’s Test und Speichel-Cortisol mit einer messwiederholten 

Varianzanalyse ausgewertet. Hedges’ g wurde als Maß der Effektstärke berechnet. 

Ergebnisse: Bei Patienten mit MDD zeigte sich eine signifikante Verschiebung des Monozyten-

Repertoire hin zu einer erhöhten Frequenz von nicht-klassischen Monozyten (p < 0.01; Hedges’ 

g = 0.88). Dem gegenüber gab es keine Gruppenunterschiede in Frequenz oder Phänotyp 

wichtiger Lymphozyten-Populationen (ps > 0.05). In Einklang hiermit zeigten nur Monozyten, 

nicht aber T-Zellen, von Patienten mit MDD geringere mRNA-Level von GR (p = 0.018; 

Hedges’ g = 0.21) und GILZ (p = 0.045; Hedges’ g = 0.39) als Monozyten von Kontrollen, was 
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auf Steroidresistenz hindeutet. Diese Veränderungen waren unabhängig von Speichel-Cortisol- 

(p = 0.32) und Serum-Zytokin-Spiegeln (ps > 0.05). 

Conclusio: Unsere Ergebnisse deuten darauf hin, dass die Regulation von Inflammation bei 

Patienten mit MDD auf zell-spezifische Weise beeinträchtigt ist. Es zeigte sich eine 

Verschiebung hin zu einem pro-inflammatorischen Phänotypen gekoppelt mit einer Monozyten-

spezifischen Genexpression, die mit Steroidresistenz konsistent ist. Diese Veränderungen traten 

bei depressiven Patienten ohne Erhöhung der Speichel-Cortisol-Spiegel auf. Diese Ergebnisse 

könnten Hinweise für zukünftige zell-spezifische Behandlung von entzündlichen Prozessen im 

Rahmen von MDD liefern. 



8 

 

3. Major depressive disorder, the immune system and stress hormones  
 

3.1 Background 

Major depressive disorder (MDD) is a highly prevalent mental illness that is associated 

with severe mortality and morbidity (1). Several hypotheses about its pathobiology have been 

put forward, including alterations in (monoaminergic) neurotransmission (2,3), physiological 

stress systems such as the hypothalamus-pituitary-adrenal (HPA) axis (4) or neurotrophic factors 

(5). More recently, links between MDD and aberrant immune processes have been suggested (6). 

For example, observational studies found that infectious illnesses increase the risk of developing 

MDD (7). Reversely, an MDD diagnosis is a risk factor for major somatic illnesses and 

infections (8–10). Animal studies and preclinical work has lent further support to the role of 

immune deregulation in depression. Inflammatory stimuli, such as typhoid vaccines, reliably 

evoke symptoms reminiscent of MDD, including fatigue, anhedonia and sleep disturbances, in 

healthy volunteers (11). Termed “sickness behaviour”, these effects are likely mediated by the 

actions of pro-inflammatory molecules on central nervous system pathways that strongly overlap 

with MDD-associated networks (12).  

Meta-analyses have strengthened earlier reports that levels of circulating pro-inflammatory 

cytokines, such as interleukin-6 (IL-6) or tumour necrosis factor α (TNF-α), are raised in a 

subgroup of patients with MDD (13,14). However, little is known about their specificity and 

cellular origin. In fact, a wide range of immune-competent cells secrete inflammatory cytokines, 

including T cells, monocytes, macrophages and natural killer (NK) cells. As it is now 

increasingly recognised that these cells may play different roles in the aetiology of MDD, their 

inflammatory signals are likely to underpin different biological functions. To illustrate this point 

further, MDD does not seem to be underlined by uniform immune (de)activation, but more 

subtle disturbances in adaptive and innate immunity (15,16). For example, evidence in support of 

innate immune activation in MDD has accrued, including upregulated expression of pro-

inflammatory genes by monocytes (17,18), elevated levels of circulating pro-inflammatory 

cytokines (13,14) and a link with allelic variations for pro-inflammatory cytokine genes (19). 

Conversely, adaptive immunity and especially T cells function seems to be impaired (16,20–22).  

Thus, not all immune branches may be impaired equally. One pathway that could explain this 

specificity is the HPA axis. Glucocorticoids (GCs), such as cortisol, are potent regulators of 

inflammation. They exert anti-inflammatory effects primarily by binding to glucocorticoid 

receptors (GR) on leukocytes. When liganded, the GR translocates from the cytoplasm to the 
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nucleus of the target cell, where it regulates transcription of several inflammation-related genes. 

For example, GCs modulate T cell trafficking, apoptosis, proliferation and cytokine production 

(23) and favour differentiation of monocytes with anti-inflammatory features (24). Interestingly, 

there is some evidence of blunted responsiveness to GCs in T cells from patients with MDD (25–

28). These deficits have mostly been interpreted as blunted GR functioning. Likewise, initial 

evidence suggests that monocytes and peripheral blood mononuclear cells (PBMCs, a cell 

population that contains lymphocytes, monocytes and a small fraction of dendritic cells) show 

similar alterations (17,18,29,30). Thus, cell-specific GC dysfunction provides an attractive 

framework that integrates deregulations in certain immune compartments and the HPA axis.  

Previous studies have largely focused on GR function, disregarding other levels of regulations 

that individually or collectively may bear relevance to MDD. In fact, GC signals in lymphocytes 

and monocytes are transmitted along a cascade of pre-receptor, receptor and post-receptor 

regulation. For example, on a pre-receptor level, immunocompetent cells regulate the conversion 

of biologically inactive cortisone to cortisol via 11ß-hydroxysteroid dehydrogenase type 1 (11ß-

HSD1) (31). Genetic ablation of 11ß-HSD1 was linked with an antidepressant-like phenotype in 

an animal model of depression (32), supporting its possible relevance. Cortisol’s main biological 

signals are transmitted via stimulation of the GR and mineralocorticoid receptor (MR), two 

nuclear receptors that reside in cytoplasm. Upon ligand binding, they translocate to the cell 

nucleus and suppress or enhance the transcription of target genes. As mentioned above, liganded 

GR induces a breadth of anti-inflammatory effects via the suppression of pro-inflammatory (e.g., 

interleukin-1) (33) and the stimulation of anti-inflammatory gene expression (e.g., interleukin-

10) (34). A host of preclinical and clinical studies also supports the immunomodulatory role of 

MR stimulation (35) and there is evidence to suggest that MR function may be impaired in MDD 

(36). Finally, most of the anti-inflammatory signals of GCs are mediated by the glucocorticoid-

induced leucine zipper (GILZ), a protein induced upon GR stimulation (37). Interestingly, 

several observations (38,39) have independently linked GILZ to MDD, although not yet in a 

cell-specific manner. 

In the context of MDD, GR function has mainly been assessed in single cell populations (mostly 

lymphocytes), lacking appropriate comparator populations. This means that whether differences 

in GR function occur in a cell-specific manner has not been conclusively investigated. Given 

accruing evidence that MDD is underpinned by subtler imbalances between immune 

compartments, however, this might have overlooked cell-specific differences. Finally, MDD is a 

highly heterogeneous illness that is associated with a width of comorbid diseases, unfavourable 
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demographical characteristics and behaviours (1). As many of these characteristics affect 

immune function, they need to be carefully considered in participant selection. As a case in 

point, smoking (40) and body mass index (41) affect a diffuse set of immune parameters and, on 

average, patients with MDD have a higher prevalence of smoking (42) and higher body mass 

indices (1) than the general population.  

To sum up, several strains of evidence suggest that in MDD impaired regulation of inflammation 

may be limited to certain immune branches. This divergence could be mediated by cellular 

alterations in GC function. However, a rigorous examination of this hypothesis is still missing. 

The aim of this thesis was to characterise the phenotype and GC-related gene expression of 

monocytes and T cells, key mediators of innate and adaptive immunity.  

3.2 Participants and methods  

3.2.1 Participants and study assessment  

Patients with MDD were recruited either from on-site psychiatrist referral, Charité 

Campus Benjamin Franklin Clinic for Psychiatry and Psychotherapy inpatient ward or via online 

advertisements. Healthy controls were exclusively recruited via online advertisements. Main 

exclusion criteria for both groups were significant medical illness (e.g., diabetes, autoimmune or 

infectious illnesses), current immunomodulatory treatment or pregnancy. MDD patients 

unanimously had a psychiatrist-confirmed MDD diagnosis, no antidepressant treatment for at 

least two weeks and no other psychiatric disorders except milder anxiety disorders (cf. Table 1). 

Healthy controls were free of any psychiatric illness (including subclinical depressive symptom) 

and were not permitted to have a first-degree relative with any affective disorder. A total of 35 

patients with MDD and healthy controls satisfied all criteria and were enrolled in the study.  

All participants completed several self-report questionnaires including Beck Anxiety Inventory 

(BAI) (43), Beck Depression Inventory II (BDI-II) (44) and Childhood Trauma Questionnaire  

(CTQ) (45). A psychiatric interview (Mini-International Neuropsychiatric Interview) (46) was 

then conducted before participants’ depression severity was rated using the Montgomery Asberg 

Depression Rating Scale (MADRS) (47). these steps were all performed by a single trained rater 

(the author of this thesis). Sample characteristics including routine blood works performed by an 

affiliated diagnostic lab (Labor Berlin—Charité Vivantes GmbH, Germany) are elaborated in 

Table 1. An individual overview over all study participants is given on pages 58-60.  

For biological analyses, patients with MDD and healthy controls were matched on age, BMI, sex 

and smoking status to create “twin pairs” that minimize the impact of confounding variables. 
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  MDD HC p 

Demographic 

parameters 

Age  31.7  11.2 years 31.7  10.2 years > 0.99 

BMI 23.9  3.6 kg/m2 23.5  3.2 kg/m2 > 0.05 

Females  25 (71.4 %) 25 (71.4 %) > 0.99 

Smokers 12 (34.3 %) 12 (34.3 %) > 0.99 

Clinical 

parameters 

MADRS  24.9  5.3 1.2  1.8 < 0.01† 

BDI-II 29.9  6.5 2.9  3.4 < 0.01† 

BAI 20.7  12.4 3.8  2.9 < 0.01† 

CTQ*  40.9  15.9 32.9  9.8 0.03† 

Comorbid anxiety disorder  10 (28.6 %) - - 

Inpatients 18 (51.4 %) - - 

Recurrent disease course 28 (80 %) - - 

Previous episodes 3.8  1.7 - - 

Blood count Lymphocytes  1.9  0.7 /nl 1.9  0.5 /nl 0.56 

Monocytes 0.5  0.2 /nl 0.5  0.2 /nl 0.67 

Eosinophils 0.2  0.2 /nl 0.2  0.2 /nl 0.66 

Basophiles 0.04  0.03 /nl 0.05  0.03 /nl 0.14 

Neutrophils 3.3  1.5 /nl 3.6  1.8 /nl 0.42 

CRP 1.6  1.7 mg/dl 1.4  1.5 mg/dl 0.54 

Table 1. Demographic, clinical and blood count parameters for patients with MDD (n=35) and healthy controls 

(n=35) 

BAI: Beck Anxiety Inventory, BDI-II: Beck Depression Inventory II, BMI: body mass index, CTQ: Childhood 

Trauma Questionnaire, HC: healthy control, MADRS: Montgomery Asberg Depression Rating Scale, MDD: 

patients with major depressive disorder 

Values represent mean  standard deviation for continuous variables and n (%) for dichotomous variables. Blood 

count is shown in cells / nl or mg / dl. Paired-samples t-test was used for continuous and McNemar’s test for 

dichotomous variables. * CTQ total score †significant at p < 0.05 
 

3.2.2 Sample collection and handling 

For biological analyses, all participants provided 70ml of venous blood that was collected 

in heparinized tubes for immune cell-specific analyses and serum separator tubes for cytokine 

assessment. A strict 12h fasting regiment prior to sampling was required for all participants and 

all samples were drawn between 8.00 a.m. and 9:30 a.m. to minimize circadian confounding. 

Participants also provided diurnal saliva samples from two days chosen to resemble typical 

weekdays (i.e., excluding with extraordinary events such as exam or stressful medical 

interventions). Handling and analysis of all biological material followed protocols optimized in 

our lab for the specific readouts of this study. Detailed explanation of all steps including cell 

isolation, sample handling and storage is provided on pages 48-50). Finally, all experimental and 

study parameters were equalized between groups to achieve maximum internal validity. 

3.2.3 Flow cytometry  

Samples were prepared for flow cytometry analyses using a pre-tested, optimized 

protocol that is described together with all antibody panels and clones on pages 49 and 57, 
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respectively. Identification of leukocyte subpopulations followed state-of-the-art 

recommendations for general immunophenotyping in humans (48). Briefly, we identified 

lymphocytes by forward and sideward scatter properties, followed by exclusion of doublets and 

dead cells. Next, we selected T cells based on CD3 positivity and non-T cells based on CD3 

negativity. T cells were further subdivided into CD4+ T helper and CD8+ cytotoxic T cells. 

Finally, among CD4+ T cells, we  used the expression of the CD25 and CD127 to define 

regulatory T cells as CD4+CD25+CD127 (49). Among non-T cells, B cells were identified using 

CD20, a common pan-B cell marker. Next, among CD20- cells, pan-natural killers cells were 

defined as CD56 positive and CD14 negative. Lastly, among natural killer (NK) cells, we 

defined cytotoxic NK cells (NKc) as CD56+CD16+ and NK cells with a putatively regulatory 

phenotype (NKreg) as CD56+CD16dim/-  as suggested by (48).  

While there is a certain consensus regarding gating strategies for lymphocytes, accurate 

monocyte subtype identification can be more challenging (50). Therefore, we used an optimized 

monocyte identification approach for reliable detection of classical, non-classical and 

intermediate monocytes (Figure 1). 

 

Figure 1. Identification of classical, intermediate and non-classical monocytes  

Monocytes were identified by forward (FSC) and sideward scatter (SSC), followed by exclusion of doublets, dead 

cells, remaining T cells, B cells (CD20+) and natural killer (NK) cells (CD56+) as well as CD14−/HLA-DR− cells 

(e.g., neutrophils). Monocytes were classified as either non-classical (A: CD14+CD16++), intermediate (B: 

CD14++CD16+) or classical (C: CD14++CD16-) following established guidelines (51).  

Manual gating is subject to significant inter-individual and inter-lab variability (48). To the 

author’s knowledge, this thesis is among the first to employ automated analysis to flow 

cytometry data in the context of MDD. More specifically, CITRUS (cluster identification, 

characterization, and regression) offers an automated, data-driven method for highly reliable cell 

subsets identification in flow cytometry (52). Briefly, CITRUS first identifies clusters of cells 
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that are phenotypically similar in an unsupervised manner by using hierarchical clustering. Next, 

it extracts biologically relevant features of each cluster on a per-sample basis and feeds them into 

a regularized regression model for predictive or correlative purposes.  

Visualization of t-distributed stochastic neighbor embedding (viSNE) is an algorithm that 

provides a two-dimensional categorized map representation of multi-parameter single cell data. 

There are several parameters that allow further fine-tuning of viSNE maps, including perplexity, 

theta and number of iterations. Perplexity refers to the degree of spatial separation of events on 

the viSNE map and was set to 50 to provide a distinct distribution of cell populations. Theta is a 

measure of balance between and accuracy in the viSNE map and was set to 0.5. Number of 

iterations was set to 5000 to provide adequate resolution of the cellular populations on the two-

dimensional viSNE map. We used equal sampling with 104 events per sample. The input 

population (either CD3+ T cells and/or CD3- non-T cells) as well as the selection of clustering 

channels depended on the flow cytometry panel that was analysed. For non-T cells, cell 

populations were pre-gated to exclude debris, doublets, dead cells as well as CD3+ T cells. 

CD14, CD16, HLA-DR, CD45RA and CD20 were selected as clustering channels.  

Next, a cluster identification, characterization, and regression (CITRUS) analysis was conducted 

using the same input populations. In the case of non-T cells, minimum cluster-size threshold 

(MCST, i.e. the minimum frequency of total input events that the smallest clusters must contain) 

was set to 1.5% to ensure that all populations identified via manual gating were included in the 

analysis. The false discovery rate (FDR) was generally set to 1%. To determine stratifying 

features between the study groups, we decided to run a correlative association model 

(significance analysis of microarrays = SAM), which created a list of clusters whose abundance 

is associated with the experimental (MDD) group.  

3.2.4 T Cell and monocyte purification and RT-qPCR 

To study cell-specific gene expression, live T cells and monocytes were purified from 

PBMCs using magnetic activated cell sorting (MACS) with CD3 and CD14 MicroBeads 

(Miltenyi Biotec GmbH, Bergisch Gladbach, Germany). Briefly, MicroBeads are antibody-

coated magnetic nanoparticles that bind to specific cell surface markers that can be either 

expressed on the cell population of interest (positive selection) or unwanted cells (negative 

selection). After incubation with the MicroBeads, the cell suspension is applied to a separator 

column on a magnet, allowing the unlabelled cell populations to pass through while the 
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population of interest is retained in the column. With our protocol, we achieved a mean cell 

purity (± SD) of 96.5% (±1.2%) for T cells and 92.3% (±1.7%) for CD14+ monocytes (n=5). 

RNA was isolated from purified T cells and monocytes using the Qiagen RNeasy Plus Mini Kit 

(Qiagen GmbH, Hilden, Germany) following manufacturer’s instruction. In line with established 

guidelines, only samples with adequate purity were transcribed to complementary DNA (cDNA). 

cDNA was synthesised from RNA without intermittent freezing using random hexamer primers 

and the RevertAid H Minus First Strand cDNA Synthesis Kit (ThermoFisher Scientific, 

Germany). cDNA was then used as a template to study the expression of key genes along the GC 

signalling cascade with a TaqMan Gene Expression Assay (ThermoFisher Scientific, Darmstadt, 

Germany). Target genes included the glucocorticoid receptor (GR; Hs00353740_m1), 

mineralocorticoid receptor (MR; Hs01031809_m1), glucocorticoid-induced leucine zipper 

(GILZ; Hs00608272_m1) and 11β-hydroxysteroid dehydrogenase type 1 (11ßHSD-1; 

Hs01547870_m1). Real-time reverse transcription-polymerase chain reaction (RT-qPCR) was 

used to quantify messenger (m)RNA levels. Gene expression was referenced to two internal 

controls, importin 8 (IPO8; Hs00183533_m1) and TATA Box Binding Protein (TBP; 

Hs00427620_m1), that are invariantly expressed in both T cells (53) and monocytes (54)s.  

3.2.5 Enzyme-linked Immunosorbent Assay (ELISA) 

ELISA was used to quantify saliva cortisol and serum levels of interleukin-6 (IL-6), 

interleukin-1ß (IL-1ß) and tumour necrosis factor alpha (TNF-α). A competitive enzyme-linked 

immunosorbent assay (IBL, Germany) was used for the analysis of saliva cortisol. Serum 

cytokines were analysed with high-sensitivity sandwich ELISA (R&D Systems Europe, UK). All 

ELISAs were conducted following manufacturer-optimized instructions with matched MDD/HC 

pairs on the same microplate. All mean inter- and intra-assay coefficients of variations were  

<10%. For detection limits and technical specifications, see page 50. 

3.2.6 Statistical analyses  

Cell populations identified via flow cytometry were expressed as percentage of a suitable 

reference population or, where possible, shown as absolute cell counts. SPSS version 21 (IBM 

Inc., USA) and GraphPad Prism version 7 (GraphPad Software Inc., USA) were used for 

statistical analyses. FlowJo version 10.1 (Treestar Inc., USA) and Cytobank analysis software 

(Cytobank Inc., USA) were used for the analysis of flow cytometry data.  

Because of the close matching of patients with MDD and healthy controls (Table 1), paired-

samples t-test was used for the analysis of continuous and McNemar’s test for the analysis of 
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dichotomous variables statistics (55). A repeated-measures analysis of variance (ANOVA) was 

run to assess differences in cortisol between groups (two levels, MDD vs. HC) and time (four 

levels, day 1 8:00 am vs. day 1 10:00 pm vs. day 2 8:00 am vs. day 2 10:00 pm). Hedges’ g was 

calculated a measure of effect size for t-tests and partial eta2 (ηp2) for ANOVA, respectively. To 

assess linear relationships between variables of interest, we used Spearman's correlation 

coefficient to account for non-normal data distribution (for brevity, results from correlation 

analyses are depicted on pages 61-62).  

3.3 Results and discussion – A role for monocytes in MDD? 

3.3.1 Patients with MDD show a shift towards non-classical monocytes 

Patients with MDD showed a significantly higher relative frequency of non-classical  

(p < 0.0001) and intermediate (p = 0.02) monocytes and a down-regulation of classical 

monocytes (p < 0.0001). This shift in monocyte subset composition was present in 82% of 

patient control pairs. When referenced to absolute monocyte counts, it became evident that this 

shift was driven by an expansion of non-classical (p < 0.01) and intermediate monocytes (p = 

0.02). Reversely, there were no changes in major T cell or natural killer (NK) cell subpopulation 

(all p values > 0.05; Table 2). The same pattern was reproduced using an unsupervised clustering 

algorithm (CITRUS), which showed group differences in the abundance of only those clusters 

that were consistent with intermediate and non-classical monocytes expressing CD16 (Figure 2).  

  MDD HC p* g+ 

Monocytes 

 

Classical      

   Relative frequency 83.3  7.9 % 88.8  4.4 % < 0.01† 0.79 

   Absolute cell count 0.42  0.16 /nl 0.42  0.14 /nl 0.89 0.03 

Intermediate     

  Relative frequency 5.8  3.4 % 4.2  1.7 % 0.02† 0.58 

  Absolute cell count 0.03  0.02/nl 0.02  0.01 /nl 0.02† 0.66 

Non-classical       

   Relative frequency 10.9  6.4 % 7.0  3.4 % < 0.01† 0.81 

   Absolute cell count 0.05  0.03 /nl 0.03  0.02 /nl < 0.01† 0.87 

Lymphocytes CD4+ T cells  61.8  10.5 % 63.7  11.3 % 0.45 0.17 

CD8+ T cells 30  7.9 % 29.3  8.9 % 0.69 0.09 

TRegs 6.6  1.7 % 6.7  1.5 % 0.65 0.09 

NKc cells 13.9  9.1 % 10.9  5.5 % 0.13 0.4 

NKReg cells 0.8  0.6 % 0.8  0.3 % 0.84 0.05 

B cells 7.4  2.9 % 6.9  2.9 % 0.57 0.17 

Table 2. Frequencies of monocyte and lymphocyte subpopulations (mean  standard deviation) 

HC: healthy controls; MDD: patients with major depressive disorder; NKc cells: cytotoxic natural killer cells; 

NKReg cells: regulatory natural killer cells; TRegs: Regulatory T cells. Relative frequency was determined using 

flow cytometry as described in 3.2.3. Absolute cell count was only available for monocytes. 

* calculated using paired-samples t-test + Hedges’g  †significant at p < 0.05 
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Human monocytes are generally short-lived and transition from classical (CD14++CD16-) via 

intermediate (CD14++CD16+) to mature non-classical (CD14+CD16++) monocytes. Monocyte 

subtypes are characterised by significant functional heterogeneity. While classical monocytes are 

mostly phagocytic (expressing high levels of the scavenger receptors CD36 and CD163) and 

devoid of inflammatory features, non-classical monocytes are highly pro-inflammatory (50). For 

example, they are potent producers of pro-inflammatory cytokines and underlie a wide range of 

conditions characterised by chronic inflammation, including obesity (56), cardiovascular illness 

(57,58), neuromyelitis optica spectrum disorder (59) and arteriosclerosis (60).  

 
Figure 2. Identification of monocyte subtypes using CITRUS (A) and comparison of abundance of clusters 

representing monocytes expressing CD16 (B)  

A:  CITRUS hierarchical clustering of cellular populations based on phenotypical similarity. CD3− cells were used 

as input population (after removal of debris, doublets and dead cells) and HLA-DR, CD56, CD20, CD14 and CD16 

were chosen as clustering channels to identify monocyte subpopulations (104 events sampled per file, minimum 

cluster size threshold of 1.5%.). Clusters likely representing classical (CD14++/CD16-), intermediate 

(CD14++/CD16+) and non-classical monocytes (CD14+/CD16++) are highlighted in red.  

B: Abundance of clusters 1, 2 and 3, previously identified as being consistent with monocytes expressing CD16 (A) 

per sample. Values shown as mean  standard error of the mean. Group differences were evaluated using paired-

samples t-tests and were all significant at p < 0.01. No group difference in any other cluster reached statistical 

significance (p < 0.05: results not shown). 

 

This study is the first to directly demonstrate a role of non-classical monocytes in the 

pathophysiology of MDD. This assumption receives support from several converging lines of 

research. First, convincing evidence suggests that they underlie conditions of persistent low-

grade inflammation (see above) and a chronically inflamed milieu has also been observed in 

MDD patients (11). Interestingly, several of these conditions show a high comorbidity with 

MDD, suggesting inflammation may a common disease pathway (1). Second, non-classical 

monocytes are the main source of monocytic TNF-,  pro-inflammatory cytokine associated 
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with MDD (13), also independently of medical illness (61). Third, both MDD as well as pro-

inflammatory monocytes have been associated with chronic stress (62,63). Fourth, a similar 

expansion in non-classical monocytes was recently observed in paediatric obsessive-compulsive 

disorder (64), a condition whose neurobiology strongly overlaps with MDD (65). What is more, 

among patients, those treated with an antidepressant had intermediate levels of non-classical 

monocytes between untreated patients and healthy controls. Fifth, non-classical monocytes have 

been associated with mood disturbances in women with HIV infection (66). Thus, there are good 

grounds to assume that monocyte subsets play a role in MDD.  

This thesis is in contrast to earlier investigations (67–69). In one of the first studies, Schlatter and 

colleagues (67) found similar frequencies of CD14+ and CD16+ cells among individuals with 

MDD, dysthymia and healthy controls. Monocytes are highly heterogeneous and accurate 

monocyte subtype identification can be challenging as CD16 (the constituent marker of 

intermediate and non-classical monocytes) is also expressed on other cells, including neutrophils 

and Nk cells. CD14+ and CD16+ are thus insufficient for reliable characterisation of monocyte 

subtypes. What is more, the study by (67) had a relatively small sample size and was likely not 

matched on several important parameters of immune function, including BMI (70) and smoking 

(40).  

There are good grounds for assuming that the significant clinical heterogeneity of MDD is 

mirrored in its underlying pathobiology. The results by Duggal and colleagues (68) are likely to 

provide an example of this. More specifically, they found that elderly hip fracture patients 

(minimum enrolment age was 60 years) who developed mild symptoms of depression following 

surgery did not have an altered monocyte subset distribution compared to controls. Besides the 

differences in age, it should be noted that the patients had generally low, sub-clinical levels of 

depression and had not received a formal diagnosis (in fact, lifetime diagnosis of MDD was 

exclusion criteria). For these reasons, a direct comparison to our findings is challenging. 

Finally, Suzuki and colleagues (69) reported similar levels of classical and non-classical 

monocytes accompanied by changes in lymphocyte populations in patients with MDD and 

healthy controls. While their design was similar, several explanations could account for the 

differences to our results. First, our participants met stricter inclusion criteria and were free of 

significant medical illness, recent vaccinations or medications with known immunomodulatory 

effects (including non-steroidal anti-inflammatory drugs). Second, and in a similar vein, the 

patients with MDD studied by Suzuki and colleagues had a significantly higher BMI compared 

to the control group. In fact, with 29.6 kg/m2 the average BMI in the MDD group was close to 
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the established obesity cut-off. This may be important because differences in BMI are associated 

with significant variation on immune parameters, including major lymphocyte (41) and 

monocyte populations (70). Given the complexity of the immune system, statistically controlling 

for these using linear procedures (e.g., analysis of covariance) may be inadequate. Finally, more 

than half of MDD patients in their study were either mildly depressed (n=11) or in partial 

remission (n=18). Conversely, the cohort studied in this thesis consisted of well-characterised 

individuals (mild episode: n=7; moderate episode: n= 27; severe episode: n=1) who were largely 

inpatients (n=18) with a recurrent disease course (n=28).  

Taken together, the results of this thesis are the first to suggest that non-classical and 

intermediate monocytes may be a prominent factor in MDD. While our results are among the 

first to support such a link, our rigid methodology and the high effect sizes strengthen the 

relevance of studying CD16 expressing monocytes in MDD. Considering the results by (69), 

they may be particularly relevant for more severe forms of MDD in otherwise relatively healthy 

individuals. In these cases, contributions from other immune cells, such as lymphocytes, may be 

secondary (see below). This is consistent with accumulating evidence that, in MDD, cellular 

immunity can be differentially affected and that this is likely to vary across patient 

characteristics (15).  

Unlike monocytes, the distribution of major lymphocyte subsets (Nk cells, CD4+, CD8+ and 

regulatory T cells) was similar in patients with MDD and healthy controls. CD4+ T cells can be 

divided into regulatory T (Treg) cells and conventional T cells. Tregs are crucial in limiting 

adaptive immunity and maintaining self-tolerance (71). Decreased Treg percentages have been 

linked with subgrade chronic inflammation in stress-related conditions, such as post-traumatic 

stress disorder (72). Interestingly, the role of Tregs in MDD has remained poorly understood as 

both decreases (73,74) and increases (69) in Treg frequencies have been reported. Possibly 

important for subclinical forms of MDD, a study with older participants found that higher Treg 

frequency was associated with more depressive symptoms and lower mental health (75). What is 

more, antidepressant treatment has been shown to increase circulating Treg percentages, 

although it has remained unclear if this important for mediating antidepressant effects (74,76). 

Both increases and decreases in Tregs fit with various findings for MDD. For example, given 

their immunosuppressive role, a reduced Treg frequency would be consistent with the chronic 

low-grade inflammation observed in some patients with MDD (20). Reversely, because Treg 

percentages increase with age (77), excessive frequencies would also be consistent with accounts 

of accelerated cellular aging found in MDD (78). Conceptually integrating these findings is thus 
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challenging. Together with the results of this thesis, it could be argued that enumerative changes 

in Tregs may underlie only some patients with MDD. In fact, it has long been recognised that 

immune suppression, activation or a mix thereof is present in only a proportion of patients. 

Future studies stratifying for important clinical and demographical variables will need to 

investigate whether there is a homogenous patient group characterised by Treg alterations. 

In line with similar Treg percentages, there were no differences in the frequencies of 

conventional (CD4+ and CD8+) T cells between patients with MDD and healthy controls. Little 

is known about the role of these cell subtypes in the pathophysiology of MDD. The results of 

this thesis are consistent with some (69,74,79), but not all previous studies (80). Interestingly, a 

higher CD8+ T cells count was associated with non-response to antidepressants in one study (74) 

and several studies have linked CD8+ T cells with comorbid depression among patients with 

medical illnesses, such as HIV (81), multiple sclerosis (82) or liver cirrhosis (83). Together, 

these findings suggest that CD8+ T cells may be more closely associated with MDD in the 

context of underlying medical illnesses or antidepressant response which we did not study. 

NK cells can be divided into cytotoxic (NKc; CD56+CD16+) and putatively immunoregulatory 

(NKReg; CD56+CD16dim/- ) subtype. NKc cells are the main NK population and mediate early 

innate responses against a host of different pathogens. Impaired NK cytotoxicity has been 

advanced as one reason why patients with MDD show poorer prognosis for cancer and infectious 

diseases (8,84). Reversely, NKReg cells produce a wide range of immunoregulatory molecules 

to maintain cellular homeostasis (85,86), making them functionally similar to Tregs (87). From 

this perspective, unchanged regulatory NK cell frequencies in this thesis are consistent with the 

fact that patients with MDD and healthy controls showed comparable Treg percentages.  

The results from this thesis do not support a universal role for NKC cells in the pathobiology of 

MDD. Reduced NK cytotoxicity is one of the most commonly reported findings in MDD (88), 

although later studies have tended to be more heterogeneous (15). Possibly reconciling these 

inconsistencies, the NK system is closely linked with variations on demographical and lifestyle 

factors that tend to be overrepresented in patients with MDD (89), including female sex (90), 

larger BMI (91), smoking (92) and psychiatric comorbidity, such as alcohol dependence (93,94). 

The results of this thesis integrate previous inconsistencies by highlighting the role of 

moderating factors in the involvement of the lymphocyte system in MDD. Together with other 

research, this suggests that in “pure” forms of MDD (i.e., without significant medical illness or 

psychiatric comorbidity), enumerative and functional changes in the lymphocyte system might 

not be prominent disease pathways. This theory does not necessarily argue against alterations in 
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other aspects of immunity (in fact, decreased NK cytotoxicity can co-occur with increased 

inflammation in individuals with MDD (95)), but will need to be evaluated by future studies.  

Finally, while patients with MDD showed higher level of (pro-inflammatory) non-classical 

monocytes, levels of serum cytokines commonly secreted (50) by those cells (i.e., IL-6, IL-1ß 

and TNF-α; all p values > 0.05; page 53) were not elevated. This is not surprising considering 

that these cytokines are produced by several different cell populations. Considering that non-

classical monocytes constitute <10% of monocytes (which make up 10-30% of human PBMCs), 

significantly larger samples would be needed to detect such an effect. Such a mechanism would 

be highly consistent with the fact that patients with MDD showed strikingly increased 

frequencies of non-classical monocytes, a monocyte subtype that secretes high levels of pro-

inflammatory molecules when activated. 

3.3.2 Altered gene expression in monocytes from patients with MDD  

The second finding of this thesis is that altered gene expression indicative of GC 

resistance occurred in a cell-specific manner (Table 3). More specifically, monocytes from 

patients with MDD showed significantly lower mRNA levels of GR (p = 0.018) and GILZ  

(p =  0.045) compared to healthy controls. Consistent with the results obtained by flow 

cytometry, this was not found in T cells (all p values > 0.05). Importantly, this occurred against 

the backdrop of similar circadian cortisol profiles in both groups, a common index of HPA axis 

functioning (group x time: F(3;84)=1.19, p = 0.32, ηp² = 0.04; page 66). 

 
T cells (CD3+) Monocytes (CD14+) 

 MDD HC p* g+ MDD HC p* g+ 

GR 3.7  1.6 3.6  1.3 0.43 0.05 4.1  1.9 4.6  2.1 0.02† 0.21 

MR 0.9  0.3 1.0  0.4 0.16 0.25 0.1  0.1 0.1  0.1 0.51 0.09 

GILZ 13.9  8.2 15.5  8.4 0.29 0.19 12.5  5.7 14.8  5.9 0.04† 0.39 

11ß-HSD1  0.1  0.2 0.1  0.2 0.34 0.04 2.7  4.3 2.4  3.9 0.35 0.06 

Table 3. Cell-specific expression of steroid-related genes in purified T cells and monocytes 

11ß-HSD1: 11ß-hydroxysteroid dehydrogenase type 1; GILZ; glucocorticoid-induced leucine zipper; GR: 

glucocorticoid receptor; HC: healthy controls; MDD: patients with major depressive disorder; MR; 

mineralocorticoid receptor.  

Gene expression (mRNA) is indicated as fold change relative to TBP and IPO8 (housekeeping genes). Values are 

shown as mean  standard deviation.  

* calculated using paired-samples t-test + Hedges’g †significant at p < 0.05 

 

Chronic stress (including stress caused by mental illness) has long been known to affect gene 

expression and behaviour of various immune cells, including monocytes (63,96,97). In 

depression, accumulating evidence has pointed to a reduction in monocyte GR expression as 

clinically relevant (17,18). The results of this thesis expand our understanding of the GC system 
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in monocytes from MDD patients in several significant ways. First, we included a suitable 

reference population (T cells) that allowed us to investigate whether impairments occurred in a 

cell-specific manner rather than systemically. This is particularly relevant considering that cell-

mediated immunity does not seem to be uniformly affected in MDD (15). Second, mirroring the 

biological complexity of GC signalling, the scope of this thesis included key steps in the cellular 

steroid signalling cascade beyond receptor expression. This allowed us to consider reduced GR 

expression in a broader context. In this vein, probing HPA axis functioning further increased the 

specificity of our findings by discounting higher cortisol exposure as a possible explanation.    

Taken together, this thesis suggests that rather than a consequence of MR dysfunction, altered 

conversion of cortisol (by 11ß-HSD1) or hyperactive HPA axis, impaired cell-specific GC 

regulation is likely attributable to GR dysfunction. This highlights pathways beyond classic HPA 

signalling, such as direct effects of inflammatory molecules, as contributing factors to cellular 

GR resistance. In fact, some pro-inflammatory cytokines have been shown to modulate GR 

phosphorylation, translocation, binding to promoter DNA, and stimulate expression of the 

inactive GRß isoform (98). Conceptually, these pathways together may bear relevance for a more 

complete understanding of monocyte behaviour and its contribution to MDD (see below). 

Monocytes from patients with MDD showed reduced mRNA levels of GILZ, a GR-inducible 

protein that exerts most GR-mediated anti-inflammatory effects. Little is known about the role of 

GILZ in the pathophysiology of MDD. However, its relevance is supported by several 

independent strains of evidence. First, reduced expression of GILZ in whole blood was 

associated with smaller hippocampal volumes among patients with MDD in one study (38). This 

is consistent with links between GC signalling, immune deregulation and selective brain atrophy 

in MDD (99). Second, microglia from chronically stressed mice (an animal model of MDD) 

showed a link between down-regulated GILZ expression and up-regulation of inflammatory 

markers (39). Third, GILZ inhibits key inflammatory pathways, including NF-kB, p38 MAPK 

and JNK, that have been implicated in MDD (89,100–102). Fourth, reduced GR and GILZ 

mRNA levels have been found in PBMCs from fibromyalgia patients, a condition that has a high 

comorbidity of depression (103). Together with the results from this thesis, mounting evidence 

implicates GILZ in the pathophysiology of MDD. As discussed below (3.5), together with future 

mechanistic studies, this knowledge may prove relevant to treatment.   

The results of this thesis suggest that, in MDD, GR function is more prominently affected in 

monocytes than T cells. This may shed new light on older reports of blunted GR sensitivity in 

lymphocytes from patients with MDD. For the most part, these relied on proliferation assays that 
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measured how GC administration affected cell proliferation by PBMCs or whole blood in 

response to mitogens, such as lipopolysaccharides (LPS). Rather than using purified T cells, it 

was assumed that since only T cells proliferate, the extent to which GCs modulated proliferation 

reflected their GR function. However, such an assumption ignores several key observations. For 

example, this thesis agrees with other investigations in showing that evidence for reduced GR 

expression in peripheral immune cells in MDD is heterogeneous (104). In addition, and 

consistent with our gene expression findings in monocytes, indirect effects from other immune 

cells contained in PBMCs or whole blood warrant consideration. T cell proliferation occurs in 

the context of other cells, including monocytes. As a case in point, upon stimulation by agents 

commonly used in proliferation assays (e.g., LPS), monocytes secrete a host of different 

cytokines that steer T cell responses (105), including proliferation (106). It therefore remains to 

be tested if functional GC insensitivity in patients with MDD can be replicated with purified T 

cells and whether there are contributing influences from molecular alterations beyond the major 

components of the steroid cascade (11-HSD-1, GR, MR, GILZ).   

3.3.3 Integration of results  

GR signalling is an important regulator of cellular inflammation whose role in MDD has 

been the subject of intense study. This thesis has found that patients with MDD showed a shift 

towards a pro-inflammatory monocyte phenotype, reduced GR and GILZ gene expression 

specific to monocytes and no HPA axis hyperactivity or increases in serum levels of commonly 

measured pro-inflammatory cytokines (IL-6, IL-1ß, TNF-α). Together with other research, these 

findings imply that in MDD GCs such as cortisol exert impaired control over monocyte 

differentiation because of diminished GR availability. A key consequence of this is blunted 

transcription of pleiotropic anti-inflammatory factors, such as GILZ, removing the “brakes” on 

inflammation. This is likely to go hand in hand with an expansion of pro-inflammatory cells, 

such as non-classical monocytes (24,107), whose actions further blunt monocyte GR function 

(98). While a scarcity of samples prevented us from studying this possibility, it could be 

speculated that these cells show a particularly high degree of steroid resistance and pro-

inflammatory activity in patients with MDD. Tantalisingly, this scenario receives preliminary 

support from animal and human studies on chronic stress (62,63,108). In the long term, these 

pathways are likely to become increasingly independent of physiological feedback mechanisms, 

such as the HPA axis. Ultimately, perturbed immune-neuroendocrine interactions might extend 

to other parts of the body, such as the central nervous system (CNS). Already there are studies 
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showing that (non-classical) monocytes can be recruited from the periphery to the CNS during 

stress (109), where they are likely to exacerbate neuroinflammatory signalling (110).  

The aim of this study was to provide a first glimpse into cell-specific steroid gene expression in 

MDD and to inform future studies with a broadened research arsenal. As such, this thesis has 

highlighted, in the medium to long term, mechanistic targets for future interventions as well as 

preclinical and clinical research (see below).  

3.4 Possible clinical and translational implications  

A significant number of patients with MDD does not satisfactorily benefit from 

conventional pharmacological treatments (111,112). This underlines the need for a broader and 

possibly more individually tailored treatment arsenal. Mounting evidence has highlighted the 

relevance of neuroendocrine and immunological targets in this context (113). As a case in point, 

several attempts have been made to use available immunomodulatory agents, such as non-

steroidal anti-inflammatory drugs or cytokine inhibitors, in the treatment of MDD (114). While 

initial results have been promising, there is significant demand for more customised mechanism-

based approaches. This thesis highlights the role of cell-specific alterations in monocyte 

phenotype and GR pathways in MDD, reiterating earlier calls for studies into agents that boost 

monocyte GR function (62). Taking this one step further, this thesis outlines GILZ as a possible 

intermediate target for further investigation in the context of MDD.  

GILZ mediates the majority of anti-inflammatory effects associated with GR stimulation (101) 

and was recently shown to be a feasible target for treating inflammatory illness. More 

specifically, Srinivasan and colleagues (115) synthesised a GILZ mimetic (GILZ-P) that binds 

the p65 subunit of NF-kB and exerts anti-inflammatory effects in vivo. Excitingly, GILZ-P 

suppressed many of the clinical symptoms in experimental autoimmune encephalomyelitis, an 

animal model of multiple sclerosis. Considering preliminary evidence for a role of GILZ hypo- 

expression in MDD (38,39,100,103), future studies should evaluate the potential of GILZ-P in 

animal models of depression, especially those involving inflammatory pathways.  

Preclinical research has identified several other possibilities of modulating GILZ signalling, for 

example modifying transcription factors activity (116). In-depth analyses (e.g., using structure-

function analyses) of interaction targets are likely to unravel further “druggable” mechanisms. 

As demonstrated by GILZ-P, this could broaden the clinical scope for mimetic agents (115). 

Promising targets in this vein are the NF-kB and phosphatidylinositol 3-kinase/protein kinase B 

(PI3K/Akt) signalling pathways that have both been implicated in MDD (117,118).  
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Other studies have examined compounds that modify GR function. Such agents include partial 

GR agonists and selective GR modulators, which have been developed to separate “beneficial” 

immunoregulatory effects of GCs from their unwanted side effects (119,120). What is more, a 

host of studies has linked cAMP/protein kinase A (PKA) pathways with GR function (reviewed 

by (113)). Interestingly, stimulation of PKA has been shown to inhibit NF-kB signalling by 

binding to the p65 subunit in a manner similar to GILZ-P (121). This means that c-AMP/PKA 

pathways converge on simultaneous boosting of GR function and inhibition of inflammation, 

making them particularly attractive pharmacological options (122). However, until confirmed by 

future trials, their therapeutic utility remains theoretical.  

Via inhibition of major inflammatory pathways such as NF-kB, GILZ modulates monocyte 

differentiation and phenotype (123,124). This suggest that GILZ could help to normalise the 

phenotypical shift among monocytes in patients with MDD that were observed in this thesis. 

This is supported by preliminary evidence that GCs induce an anti-inflammatory monocyte 

phenotype (24) in vitro and may even selectively deplete non-classical monocytes in vivo 

(107,125). Although not specifically tested, considering its inhibition of major pathways of 

inflammation, it seems plausible that a substantial part of this effect is mediated by GILZ (101).  

In this context, it would be exciting to study if antidepressant treatment reverses the monocyte-

specific alterations described in this thesis. In fact, several classes of antidepressants including 

the commonly prescribed selective serotonin reuptake inhibitors modulate immune (126,127) 

and GR function (128). To the author’s knowledge, the extent to which their effects are mediated 

by monocytes is not known. Interestingly, a study with paediatric obsessive-compulsive disorder 

(OCD) patients found that antidepressant treatment was associated with a monocyte subset 

distribution more similar to healthy controls than unmedicated OCD patients (i.e., lower 

frequency of non-classical and intermediate monocytes) (64). In this context, the robust 

biological signatures that we found underline the potential for biomarker research (30,129). This 

may be conducive to the identification of more homogenous patient groups and, ultimately, 

treatment choice (74,130). Given that a significant share of non-responders to conventional 

treatments show immune disturbances (131,132), such improved biomarkers are direly needed.  

Finally, the question of how to specifically modulate GR function in monocytes is likely 

complex and will require substantial additional research. Interestingly, while the anti-

inflammatory features of vitamin D are well-known (133), recent evidence suggests that a key 

mechanism behind this may be boosted monocytic GR function (134). Highlighting its potential 

clinical relevance, this effect was also found in patients with steroid insensitivity (135). Some 
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studies have found lower vitamin D levels in patients with psychiatric disorders, including MDD 

(136), and given the low costs and risks associated with adjuvant vitamin D treatment, it would 

be an interesting first step to explore. Ideally, this would be linked with assessment of monocyte 

subtype distribution and GR function.  

An improved understanding of the molecular pathways underlying impaired regulation of 

inflammation and neuroendocrine stress regulation in patients with MDD will propel future 

research and, ultimately, personalised treatments. With GILZ, this thesis has highlighted one 

possible mechanism-informed approach that might prove relevant to future investigations. 

Preclinical studies and clinical trials will need to establish how the theoretical attractiveness of 

GILZ-related pathways can translate into practical benefits for patients with MDD.  

3.5 Future research and outlook 

This thesis has examined major monocyte and lymphocyte populations based on strong a-

priori hypotheses. However, a plethora of other immune-competent cells also bear relevance for 

MDD. High-throughput experimental techniques (e.g., mass cytometry) allow a more filigree 

immunophenotyping and will broaden our understanding of the biological heterogeneity behind 

MDD. Such investigations should also reach beyond traditional markers of functionality (i.e., 

cytokine production) and examine cell-specific expression of markers related to exhaustion (e.g., 

PD-1), senescence (e.g., CD57) or antigen-specific responses (e.g., to EBV) (137). Together with 

fully automated data analysis techniques, such as CITRUS, mass-scale immunophenotyping is 

set to induce a long overdue “knowledge spill-over” into other determinants of immune cell 

function (e.g., T receptor function). Together, this will help us unravel the myriad links between 

MDD and immunity likely integrate other findings into a coherent picture.  

Peripheral inflammatory signals can reach the brain in several ways where they modulate diffuse 

mood circuitries (113), suggesting that resolving peripheral inflammation could also ameliorate 

CNS pathology. Monocytes can be recruited from the periphery to the CNS where they augment 

inflammatory signals (109) during periods of stress. Microglia are CNS-resident cells that share 

many characteristics with monocytes and whose role in MDD is just starting to be understood 

(138,139). Based on the findings of this thesis, excessive infiltration of pro-inflammatory 

peripheral monocytes may be one reason for the particularly pronounced CNS inflammation and 

adverse microglia behaviour seen in neuropsychiatric illnesses such as MDD (110). This view is 

tentatively supported by an animal study (140) that found that microglia from mice suffering 

repeated social defeat actively recruited pro-inflammatory monocytes to the brain. There, they 

showed enhanced production of IL-1ß (a cytokine also prominently produced by human non-



26 

 

classical monocytes (50)) which has been linked with inducing anxiety. Such links between 

peripheral monocyte subtype and CNS cells provides and interesting perspective that will need to 

be evaluated in future studies. 

This thesis has examined key steps in cellular steroid signalling – yet a plethora of other factors 

modulate the translation of cortisol signals and remain to be fully elucidated. Next steps may 

include cell-specific investigation of chaperones and co-chaperones of the cytosolic GR 

multiprotein complex (e.g., FKBP5), transcriptional regulation via factors such as AP-1 and 

post-translational modifications, such as altered GR phosphorylation or impaired ability of the 

GR complex to interact with its transcriptional targets (such as the GILZ promoter). 

Interestingly, evidence (62,63,96,97) suggests that chronic stress leaves a transcriptional 

signature on human monocytes that is consistent with acquired GR insensitivity. Given that early 

adversity is a risk factor for MDD, similar patterns seem probable. Such hypotheses could be 

investigated using in-depth interrogation of cell-specific transcription signatures, for example 

RNA sequencing (141). In a similar vein, cell-specific epigenetic alterations, such as methylation 

in the GR gene (NR3C1), are likely to provide further clues on the molecular link between life 

adversity, inflammation and the development of depression (142,143). In fact, similar alterations 

were recently described in T cells from patients with post-traumatic stress disorder (144).  

It has been recognised that metabolism is a crucial determinant of immune cell phenotype and 

function (145,146). For example, T cells and monocytes show a pronounced switch from 

oxidative phosphorylation to glycolysis when activated. Several lines of evidence have 

converged on the relevance of metabolic changes in MDD. For example, metabolic illness is 

highly prevalent in this population (1), earlier theories have linked mitochondrial dysfunction to 

MDD (147) and unfavourable peripheral lipid ratios in MDD patients have been reported (148). 

Finally, impaired energy metabolism has been found in PBMCs (149) and thrombocytes (150) 

from depressed individuals. These studies can now be extended with sophisticated instruments 

such (e.g., Seahorse XFe96) that allow measurement of metabolic changes in live cells. 

3.6 Conclusion 

 This thesis highlights the importance of cell-specific immune deregulations in MDD. 

More specifically, we showed that changes in phenotype and gene expression were restricted to 

monocytes and did not occur in lymphocytes. As discussed above, these findings could provide 

the starting point for further research into cell-specific therapeutics and, ultimately, will bring us 

one step closer to the goal of individually tailored treatments.   
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