Modifikation des morphologischen Scores DES-OSA zur präklinischen Einschätzung einer Obstruktiven Schlafapnoe

zur Erlangung des akademischen Grades
Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät
Charité – Universitätsmedizin Berlin

von

Lisa Kristin Prochnow
aus Simmern

Datum der Promotion: 06.03.2020
Inhaltsverzeichnis

Abstract Englisch .. 4
Abstract Deutsch ... 5
1. Einleitung .. 6
 1.1. Definition obstruktive Schlafapnoe ... 6
 1.2. Epidemiologie OSA ... 7
 1.3. Pathophysiologie OSA .. 9
 1.4. Diagnostik von OSA ... 12
 1.5. Schlaf ... 13
 1.5.1. Atmung und Schlaf ... 13
 1.5.2. Häodynamik und Schlaf ... 14
 1.6. Morbidität und Mortalität OSA ... 15
 1.6.1. Klinik und Symptomatik von OSA ... 15
 1.6.2. Hypertonie .. 15
 1.6.3. Herz-Kreislauf erkrankungen ... 16
 1.7. Therapiemöglichkeiten von OSA ... 17
 1.8. Scores zur präklinischen Früherkennung von OSA 19
 1.9. DES-OSA Score ... 22
 1.10. Sleep Apnea Global Interdisciplinary Consortium 23
 1.11. Wissenschaftliche Fragestellung ... 23

2. Methodik .. 25
 2.1. Setting der Studie und Teilnehmer ... 25
 2.2. Durchführung der Studie ... 26
 2.2.1. Anthropometrische Messungen ... 26
 2.2.2. Fragebogen SAGIC ... 27
 2.2.3. Polygraphie und Polysomnographie .. 27
 2.2.4. Faziale Fotographie ... 29
 2.3. Auswertung der fazialen Fotographie ... 32
 2.4. Statistik .. 34

3. Ergebnisse .. 36
 3.1. Übersicht über das Kollektiv Berlin ... 36
 3.2. Korrelationen zum AHI ... 41
 3.3. Der M-DES-OSA Score ... 45
 3.4. Anwendung des M-DES-OSA Scores zur Prädiktion einer schweren OSA ... 47
 3.5. Anwendung des M-DES-OSA Scores zur Prädiktion einer milden bis mittelschweren OSA .. 51
 3.6. Anwendung des M-DES-OSA Scores zum Ausschluss von OSA 53
 3.7. Geschlechtspezifische Unterschiede des M-DES-OSA Scores 56
 3.8. Anwendung des M-DES-OSA Scores in einer Validierungsgruppe 58
 3.9. Anwendung des M-DES-OSA Scores auf ein Vergleichskollektiv aus Taiwan 64

4. Diskussion .. 69
 4.1. Zusammenfassung .. 69
 4.2. Stärken und Einschränkungen der Studie ... 70
 4.3. Offene Forschungsfragen ... 73
 4.4. Fragen zur Pathophysiologie von OSA ... 73
 4.5. Fragen zur Diagnostik von OSA ... 74
 4.6. Fazit ... 77

5. Literaturverzeichnis ... 79

6. Abkürzungsverzeichnis ... 89
7. Eidesstattliche Erklärung ... 90
8. Tabellarischer Lebenslauf ... 92
9. Publikationsliste ... 93
10. Danksagung .. 94
Abstract Englisch

Introduction: Many obstructive sleep apnea (OSA) prescreening instruments use subjective ratings. The objective of this scientific work was to adapt and validate a fairly new OSA prediction score (DES-OSA) that is based solely on anthropometric measures and facial structures.

Methods: The adapted morphologic score was developed with 150 German participants from a multicenter clinical trial called SAGIC (Sleep Apnea Global Interdisciplinary Consortium) and validated with an independent cohort of 50 German SAGIC participants. Its predictive abilities were tested for severe OSA (AHI ≥ 30/h), mild-to-moderate OSA (5/h ≤ AHI < 30/h), as well as the exclusion of OSA (AHI < 5/h). Gender differences were also analysed, especially due to the huge imbalance in the prevalence of OSA between men and women. Additionally, the score was applied to 150 Asian SAGIC participants for the purpose of ethnical comparison and to reveal possible limits of the score.

Results: The adapted score involved five variables: body mass index, neck circumference, male gender, an adapted Friedman Scale, and waist circumference. For women only, age was included. The adapted score (≥ 8 points) predicted severe OSA with a sensitivity of 82%, a specificity of 82%, and a ROC- (Receiver Operating Characteristic) AUC (area under curve) of 0.899. The adapted score (5-7 points) predicted mild-to-moderate OSA with a sensitivity of 68%, a specificity of 73%, and a ROC-AUC of 0.886. The score (≤ 4 points) was able to exclude OSA with a sensitivity of 62%, a specificity of 95%, and a ROC-AUC of 0.886. The adapted score was successfully validated with similar results. Gender analyses revealed that the score was weak to predict severe OSA for women and to predict exclusion of OSA for men. The application with an Asian cohort failed.

Conclusion: The morphologic OSA prediction score DES-OSA was adapted successfully. The new score (M-DES-OSA Score) includes, inter alia, a completely new variation of the Friedman Scale. It best predicted severe OSA, especially important due to its high risk of cardiovascular disease, but also predicted the exclusion of OSA. However, the results imply that the score needs to be adjusted for gender specific results and international application.
Abstract Deutsch

Methode: Die Modifizierung wurde mit 150 deutschen Patienten aus einer multizentrischen Studie (SAGIC, Sleep Apnea Global Interdisciplinary Consortium) vorgenommen und mit einer Gruppe von 50 deutschen SAGIC-Patienten validiert. Die Stärke des Scores wurde separat getestet für die Vorhersage der schweren OSA (AHI ≥ 30/h), der milden bis mittelschweren OSA (5/h ≤ AHI < 30/h) und für den Ausschluss von OSA (AHI < 5/h). Zusätzlich wurde der Score an einem Kollektiv von 150 asiatischen SAGIC-Patienten getestet, um einen ethnischen Vergleich darzustellen und mögliche Grenzen des Scores aufzuzeigen.

Ergebnisse: Der modifizierte Score besteht aus fünf Variablen: Body Mass Index, Halsumfang, männliches Geschlecht, eine modifizierte Friedman Scale und Taillenumfang. Nur für Frauen wurde zusätzlich das Alter in den Score integriert. Der Score (≥ 8 Punkte) zeigte bei der Vorhersage der schweren OSA eine Sensitivität von 82%, eine Spezifität von 82% und eine ROC (Receiver Operating Characteristic) AUC (area under the curve) von 0,899. Der Score (5 bis 7 Punkte) zeigte für die Prädiktion der milden bis mittelschweren OSA eine Sensitivität von 68%, eine Spezifität von 73% und eine ROC-AUC von 0,886. Der Score (≤ 4 Punkte) konnte OSA mit einer Sensitivität von 62% und einer Spezifität von 95% und einer ROC-AUC von 0,886 ausschließen. Der modifizierte Score konnte in der Validierungsgruppe mit gleichen Resultaten bestätigt werden. Geschlechteranalysen ergaben eine Schwierigkeit in der Diagnostik der schweren OSA bei Frauen und dem OSA-Ausschluss bei Männern. Der Score versagte bei der Anwendung in der asiatischen Kohorte.

Zusammenfassung: Der modifizierte DES-OSA Score (M-DES-OSA Score) konnte erfolgreich angewendet werden, unter anderem durch die Integration einer adaptierten Friedman Scale. Stärken zeigt der Score hinsichtlich der Prädiktion der schweren OSA, was für die damit verbundenen kardiovaskulären Erkrankungen besonders wichtig ist. Auch für den Ausschluss von OSA liefert der Score gute Ergebnisse. Es besteht noch Forschungsbedarf für die Anwendung des Scores nach Geschlecht und in anderen ethnischen Bevölkerungsgruppen.
1. Einleitung

1.1. Definition obstruktive Schlafapnoe

Die Unterscheidung zwischen OSA und OSAS hat in der Vergangenheit auch zu Verunsicherung geführt, sodass es fortlauend zu Überarbeitungen der Definitions kriterien kommt. Eine Arbeit zu Änderungen der Terminologie von 2011 sieht vor, dass nicht länger zwischen OSA und OSAS unterschieden wird und ein OSA definiert wird als ein AHI ≥ 5/h mit typischer Symptomatik (ausgeprägte Tagesschläfrigkeit, Konzentrationsstörungen) oder ein AHI ≥ 15/h auch ohne jede klinische Erscheinung (2).

In dieser Arbeit werde ich bei der eingangs geschilderten Zuordnung von OSA und OSAS verbleiben, wie ich sie auch im Zeitraum der Datenerhebung verwendet habe. Diese entspricht den

1.2. Epidemiologie OSA
Spätestens seit den 1990er Jahren ist OSA besser bekannt und die Bedeutung nimmt mit steigender Prävalenz weiter zu.
Randomisierte und populationsbasierte Studien, wie die 1988 begonnene Wisconsin Sleep Cohort Study, haben die Prävalenz von OSA erstmals offengelegt. 9% der Frauen und 24% der Männer erreichten in dieser Studie einen AHI ≥ 5/h, wobei 2% der Frauen und 4% der Männer dabei das OSA-typische Symptom der Tagesschläfrigkeit zeigten und somit auch der Definition für OSAS entsprachen. Dabei wurden die Polysomnographien (PSG) von 602 Teilnehmern analysiert (5).
1997 folgte eine weitere Studie aus Wisconsin und schätzte anhand von 1090 untersuchten Teilnehmern die Zahl der nicht diagnostizierten OSA-Fälle auf 93% der Frauen und 82% der Männer mit einer mittelgradigen bis schweren OSA. Für die milde Schlafapnoe lagen die Zahlen bei 98% der Frauen und 90% der Männer ohne Diagnose (6).
In Europa stellt die HypnoLaus Studie eine wichtige Referenz dar, um die Prävalenz von OSA einzuschätzen. Die Datenerhebung dieser randomisierten, populationsbasierten Studie erfolgte

Zunehmend werden auch Daten zur Prävalenz von OSA in anderen Regionen der Welt bekannt. Die Entwicklung, wie sie zunächst für die westliche Gesellschaft in Europa und in den USA beschrieben wurde, ist auch im asiatischen Raum festzustellen (14). Ergebnisse einer Metaanalyse, die sich mit Populationsstudien (Zeitraum 1993 bis 2013) zu OSA aus den USA, China, Spanien, Indien, Korea, Japan und Schweden befasst, zeigt eine Prävalenz von OSA (AHI ≥ 5/h) bei 22% der Männer und 17% der Frauen. In dieser Analyse ist auch der Anstieg der Prävalenzen innerhalb der letzten Jahre zu erkennen (15).

Steigene Prävalenzen dürfen demnach nicht nur auf die zunehmende Verbreitung von Adipositas zurückgeführt werden, welche einen wesentlichen Risikofaktor für OSA darstellt (16).

1.3. Pathophysiologie OSA

Im Hinblick auf die Pathophysiologie erklären sich auch die Risikofaktoren, die für OSA bisher identifiziert wurden. Dazu gehört in erster Linie Adipositas, bei der es auch zu einer verstärkten Deposition von Fettgewebe in der oropharyngealen Muskulatur und in der Zunge kommt. Dies wiederum verengt direkt die oberen Atemwege. Im Vergleich zu gleich stark übergewichtigen Menschen leiden jene mit verstärkter Fettansammlung in der Zunge auch vermehrt an OSA (21). Weiterhin steht eine zentrale Fettansammlung im Zusammenhang mit einer Verengung der oberen Atemwege und einem erhöhten Risiko für OSA (22). Eine Ansammlung von Bauchfettgewebe reduziert das Lungenvolumen, was die Kollapsneigung der oberen Atemwege verstärken kann (23). Männer neigen verstärkt zu einer solchen androgenen Fettverteilung, was möglicherweise die viel höhere Prävalenz von OSA im Vergleich zu Frauen erklärt. Insgesamt stellt Fettleibigkeit den größten Risikofaktor für OSA dar und es konnte gezeigt werden, dass eine Gewichtsabnahme von 10% des Körpergewichts eine Reduktion des AHI um 26% bewirkt (24).

Bezüglich der ethnischen Zugehörigkeit zeigten Studien, dass für Afroamerikaner und Asiaten im Vergleich zu Kaukasiern ein höheres Risiko besteht, an OSA zu erkranken (30-32).

Das Wissen bezüglich der Risikofaktoren für OSA erweitert sich stetig und es bleibt zu erforschen, welche Faktoren besonders oder in Kombination die Pathogenese befördern. Es bedarf angesichts der hohen Zahl an verschiedenen Risikofaktoren mehr Orientierung, die in der medizinischen Praxis die Entscheidungen über Diagnostik und Therapie erleichtern und beschleunigen könnte.
1.4. Diagnostik von OSA

Anhand von Anamnese und Fragebögen lässt sich die Diagnose oft nicht zweifelsfrei herleiten. Zu wenige Patienten zeigen die typischen Anzeichen, wie zum Beispiel Tagesschläfrigkeit oder Konzentrationsstörungen. Meist ergeben sich durch die Fremdanamnese Hinweise auf eine OSA, was aber nicht immer möglich ist.

Vor allem bei kardiologischer Komorbidität sind die Beschwerden zu wenig spezifisch und die Symptomatik lässt sich kaum eindeutig dem Spektrum der SBAS zuordnen (3). Die Vorhersagewerte dieser Verfahren ist daher bei kardiologischen Patienten entsprechend gering und falsch negative Befunde wahrscheinlich (34-37). Auch für Patienten ohne kardiologische Vorbelastung sind die Fragebögen nicht verlässlich genug. So wurden beispielsweise für die Epworth Sleepiness Scale (ESS) eine geringe Sensitivität (53,2%), dies entspricht der Rate an richtig positiven Testergebnissen, und eine niedrige Spezifität (58,8%), d.h. die Rate an richtig negativen Testergebnissen, ermittelt. Für den Berlin Questionnaire (BQ) wurde eine gute Sensitivität (93,1%), jedoch eine sehr schlechte Spezifität (16,2%) errechnet (38). Kombinationen der Fragebögen in der Diagnostik haben die Aussagekraft nicht signifikant verbessert (39). Keinesfalls kann demnach bei fehlender Symptomatik eine OSA ausgeschlossen oder bei offenbar typischer Symptomatik bestätigt werden. Im Abschnitt zur präklinischen Früherkennung (Kapitel 1.8) werden die Fragebögen und Scores ausführlicher beschrieben.

1.5. Schlaf

Der Mensch verbringt ein Drittel seiner Lebenszeit mit Schlaf. Durchschnittlich sechs bis acht Stunden schlafen wir täglich. Im Schlaf hat der Körper ausreichend Gelegenheit für Regenerierung und verschiedene Stoffwechselprozesse: Dazu gehört die Regulierung von Fett- und Glukosemetabolismus (45, 46), die Energieversorgung des Gehirns (47) und zelluläre Reparaturmechanismen (48). Weiterhin findet im Schlaf Gedächtniskonsolidierung statt, insbesondere im Tiefschlaf (slow wave sleep, SWS) (49, 50). Synaptische Verbindungen werden im Schlaf nicht nur auf- sondern auch abgebaut, was als synaptische Homöostase bezeichnet wird (51). Auch das Immunsystem wird reguliert, während wir schlafen (52).

In der Nacht senkt sich der Blutdruck physiologisch um mindestens 10% des Tagesdurchschnitts; dies geschieht allerdings nur in den NREM-Schlafphasen (non-rapid eye movement) (53). Im Traumschlaf (rapid eye movement, REM) nähern sich die Werte für den Blutdruck denen der ruhigen Wachphase an (54). Der Blutdruckabfall im 24h-Profil ist wichtig, weil er das kardiovaskuläre Risiko senkt und gleichsam der stärkste prognostische Parameter ist für kardiovaskuläre Morbidität und Mortalität (55).

1.5.1. Atmung und Schlaf

Im Wachzustand regulieren drei verschiedene Mechanismen die Atmung. Die autonome Beeinflussung erfolgt über biochemische Signale. Periphere Chemorezeptoren in Carotissinus und Aorta registrieren den arteriellen Sauerstoffpartialdruck im Blut, dadurch können sie eine Hypoxie erkennen. Zentrale Chemorezeptoren der Medulla oblongata hingegen erkennen sowohl pH-Wert als auch Kohlendioxidgehalt des Blutes und sind somit die Empfänger für den stärksten biochemischen Atemanreiz, die Hyperkapnie. Der Kortex erlaubt zudem eine willentliche

1.5.2. Hämodynamik und Schlaf

Es sind bislang nur Teilaspekte zur biologischen Funktion des REM-Schlafs bekannt. Auch eine psychologische Erholung und die Verarbeitung von erlebten Ereignissen und Emotionen wird vermutet. Insgesamt bleiben diese Funktionen noch spekulativ (59) und sollen an dieser Stelle nicht weiter vertieft werden.
1.6. Morbidität und Mortalität OSA

1.6.1. Klinik und Symptomatik von OSA

1.6.2. Hypertonie

Die arterielle Hypertonie ist in Deutschland eine der häufigsten Erkrankungen. Sie wird eingeteilt in primäre und sekundäre Hypertonie, je nach zugrunde liegender Ursache. Es ist wichtig, dass eine Hypertonie erst dann als primär klassifiziert werden darf, wenn eine OSA ausgeschlossen werden konnte. In internationalen Leitlinien wird OSA als die häufigste Ursache sekundärer Hypertonie genannt (64, 65). Patienten mit Hypertonie haben häufig zusätzlich eine SBAS (66).

Arterielle Hypertonie wiederum ist Ausgangslage für eine Reihe weiterer Herz-Kreislauf-Erkrankungen und somit dringend behandlungsbedürftig. Wir sprechen von einer Hypertonie, wenn der systolische Blutdruck \(\geq 140 \) mmHg und der diastolische \(\geq 90 \) mmHg beträgt. Für die Langzeitmessung über 24 Stunden reicht ein Durchschnittswert von \(\geq 130/80 \) mmHg für die Diagnose. Auch die pulmonale Hypertonie, definiert als chronisch erhöhter pulmonal-arterieller Mitteldruck > 25 mmHg, kann auf der Basis von OSA begründet werden (3), beziehungsweise durch das Fortbestehen der nicht behandelten OSA auf Dauer zu einer Verschlechterung und in der Folge zur Rechtsherzbelastung (Cor pulmonale) führen (67). In der Nizza-Klassifikation (68) wird die pulmonale Hypertonie durch SBAS der Kategorie drei zugeordnet, wo Lungenkrankheiten und Hypoxämie als Ursachen genannt werden.
Die Therapie der arteriellen Hypertonie erfolgt in der Regel medikamentös nach Stufenschema, je nach Schweregrad und Begleiterkrankung. Eine therapieresistente Hypertonie wird definiert als ein Zustand nicht ausreichend eingestellter Blutdruckwerte trotz antihypertensiver Therapie mit Dreifachkombination, darunter mindestens einem Diuretikum. In bis zu 71% der Fälle von therapieresistenter Hypertonie kann eine SBAS als Ursache festgestellt werden (64, 69).

Gleichsam konnte gezeigt werden, dass in zahlreichen Fällen von therapierefraktärer Hypertonie durch die Therapie mit CPAP-Maske (Continuous Positive Airway Pressure) eine Reduktion der Blutdruckwerte erzielt werden konnte (70). Die nächtliche Überdruck-Beatmung mit CPAP gilt als Standardtherapie der OSA, sie sollte jedoch nicht alleinig zur Behandlung einer Hypertonie eingesetzt werden. Die chronische Druckerhöhung im Pulmonaliskreislauf bei OSA ist meist jedoch so gering, dass für die Therapie der pulmonalen Hypertonie die Beatmung mit CPAP ausreichend ist (71). Diese Ergebnisse beschreiben sehr deutlich den Stellenwert von OSA in der Diagnostik und in der Behandlung der arteriellen und der pulmonalen Hypertonie.

1.6.3. Herz-Kreislauffehlerkrankungen

Akute Myokardinfarkte sind die Folge von Arteriosklerose und Hypertonie und sie treten bei Patienten mit OSA häufiger nachts auf, was die Schlafapnoe als Ursache wahrscheinlich macht (82). Insgesamt erleiden Patienten mit vor allem schwerer OSA öfter einen Herzinfarkt, wobei Patienten durch adäquate CPAP-Therapie das Herzinfarktrisiko deutlich reduzieren können (83).

Letztendlich ist OSA häufig als unabhängiger Risikofaktor für diese und weitere Erkrankungen des Herz-Kreislauf-Systems bestätigt worden, was ihr insgesamt eine große Bedeutung zukommen lässt. Viele dieser Erkrankungen bedingen einander und sind in sich komplex verwoben. Prävention und Früherkennung von OSA könnten ein Schlüsselkonzept sein, gerade im Hinblick auf die Rolle der Schlafapnoe für die Pathophysiologie der genannten Erkrankungen und angesichts der beschriebenen Therapieerfolge von Herz-Kreislauf-Erkrankungen – allein durch die Behandlung der zugrundeliegenden oder koexistierenden OSA.

1.7. Therapiemöglichkeiten von OSA

Unabhängig von Komorbiditäten wird die CPAP-Überdruckbeatmung als Standardtherapie für Patienten mit symptomatischer OSA empfohlen (88). Auch bei kardiovaskulärer Erkrankung und
je nach Schwere der OSA ergibt sich ein Behandlungsbedarf, auch ohne Symptomatik (89). Ziel ist es, durch die Überdruckbeatmung mit CPAP einen AHI < 5/h und eine Sauerstoffsättigung von > 90% zu erreichen – auch im REM-Schlaf und in Rückenlage (3). Neben den geschilderten positiven Effekten auf die kardiovaskulären Komorbiditäten, kann durch diese Therapie die Tagesschläfrigkeit reduziert und die Lebensqualität gesteigert werden (90).

Es ist sehr wichtig, dass die ersten Tage nach Anpassung der Maske und Einleitung der Therapie gut verlaufen. Dies ist für die weitere Compliance der Patienten entscheidend. Probleme mit Maskensitz und Schlafkomfort sind als Nebenwirkung der Therapie häufig und sollten schnell geklärt werden. Verlaufskontrollen sind jährlich indiziert (3).

Die Gewichtsabnahme ist eine mögliche kausale Therapie, im Unterschied zur Maskenbeatmung. Wie bereits im Abschnitt zur Pathophysiologie beschrieben, kann durch Gewichtsverlust ein enormer Rückgang des AHI erreicht werden (24).

Protrusionsschienen für die Vorschübung der Mandibula und die daraus resultierende Öffnung der pharyngealen Enge sind bei leichter und mittelschwerer OSA als Alternative zur Überdruckbeatmung von Bedeutung (3).

1.8. Scores zur präklinischen Früherkennung von OSA

Im Folgenden werden die bekanntesten sowie auch einige der weniger etablierten Scores vorgestellt und ihr Stellenwert in der gegenwärtigen Patientenversorgung erläutert. Die Liste der genannten Verfahren beansprucht keine Vollständigkeit.

Einige Vor- und Nachteile der beschriebenen Scores werden angedeutet, die ausgiebigere Diskussion darüber soll allerdings erst am Ende der Arbeit Platz einnehmen (Kapitel 4).

Sleep Apnea Clinical Score (SACS): Dieser Score wurde 1994 von Flemons, Whitelaw und Brant in Calgary (Kanada) entwickelt und basiert auf vier Prädiktoren für OSA (94): Halsumfang (NC), Body Mass Index (BMI), Hypertonie und Schnarchen oder Schnaufen während des Schlafs. Besonders der NC war den Forschern wichtig, da sie darin den wichtigsten unabhängigen Prädiktor für den AHI sahen und sich dabei auch auf andere Studien beriefen (95).

Für die Bewertung des Scores wurden die positiven Wahrscheinlichkeitsverhältnisse (positive likelihood ratio, LR+) dargestellt, die für einen Punktewert ab 5 im SACS eine LR+ 0,25 und ab 15 Punkten eine LR+ von 5,17 ergeben. Die LR+ entspricht dem Quotienten der Wahrscheinlichkeit eines positiven Testergebnisses bei erkrankten Personen geteilt durch die
Wahrscheinlichkeit für ein positives Testergebnis bei Gesunden. Hingegen beschreibt eine negative LR (LR-) das Verhältnis der Wahrscheinlichkeit eines negativen Tests bei Erkrankten zur Wahrscheinlichkeit eines negativen Tests bei gesunden Personen. SACS basiert auf einem Punktesystem von 0 bis 110, wobei gemäß der angegebenen Werte für die LR+ ab 5 Punkten von einem erhöhten und ab 15 Punkten von einem stark erhöhten Risiko für Schlafapnoe auszugehen ist. Hier ist zu beachten, dass Schlafapnoe als AHI > 10/h und schwere Schlafapnoe als AHI > 20/h definiert werden.

Morphometrische Formel: Für die im Folgenden dargestellte Formel von 1997 (96) wurden kraniofaziale Strukturen mitberücksichtigt, denn in der Missachtung dieser anatomischen Einflussfaktoren in vorherigen Modellen liegt auch die Kritik der Forscher Kushida, Efron und Guilleminault begründet. Berechnet wird in deren Modell der RDI, der zusätzlich zu den Apnoen und Hypopnoen pro Stunde Schlaf auch die respiratorischen Arousals mit einbezieht, die durch die Atemanstrengungen entstehen. Die errechnete Formel lautet: \(P + (M_x - M_n) + 3 \times OJ + 3 \times (\max(M_{\text{BMI}} - 25; 0)) \times (N_{\text{C}}/B_{\text{MI}}) \).

\(P \) bedeutet „palatal height“ und beschreibt die Höhe des Gaumens in Millimetern. \(M_x \) ist die Distanz zwischen den beiden zweiten Molaren der Maxilla, \(M_n \) die zwischen den zweiten Molaren der Mandibula. \(OJ \) steht für „overjet“, den Überbiss in Millimetern. \(N_{\text{C}} \) (Halsumfang) und \(B_{\text{MI}} \) (Body Mass Index) sind aus anderen Scores bekannt. Die Formulierung „\(B_{\text{MI}} - 25 \) oder 0“ bedeutet, dass dieser Teil der Berechnung nur bei Übergewichtigen eine Bedeutung hat, da für Normalgewichtige das Ergebnis negativ und damit gleich null zu setzen ist.

Das morphometrische Modell zeigt mit einer Sensitivität von 97,6% und einer Spezifität von 100% enorm gute Ergebnisse, wenn es um die Vorhersage der Wahrscheinlichkeit für OSA geht. Die Zahlen erlauben allerdings nur die Aussage, ob eine Person OSA hat oder nicht. Entsprechende Skalenniveaus für eine Einordnung nach Schweregrad liegen nicht vor. Weiterhin bleibt zu bewerten, ob die aufwendigen intraoralen Messungen mit einem Caliper sich als standardisiertes Verfahren etablieren können.

Berlin Questionnaire (BQ): Dieser Fragebogen aus dem Jahr 1999 von Netzer et al. (97) hat das Ziel, Schlafapnoe zu erkennen und er ist mit dieser Absicht konkreter als die ESS. Es werden anhand von drei Kategorien die Risikofaktoren von Schlafapnoe erhoben. Zur ersten Kategorie gehören Fragen mit Bezug zum Schnarchen (Wie laut? Wie oft? Stört es eine andere Person?). Die zweite Kategorie umfasst Fragen zu Müdigkeit oder Fatigue am Tage und die dritte bezieht sich auf das Vorhandensein von arterieller Hypertonie und/oder Adipositas. Wenn weniger als zwei
der Kategorien erfüllt sind, ist von einem geringen Risiko für Schlafapnoe auszugehen; darüber hinaus gehört man bereits zur Hochrisikogruppe.

Die Autoren erreichten in ihrer Studie eine Sensitivität von 86% und eine Spezifität von 77% für die mittelschwere OSA (AHI 15-29/h). Andere Studien belegen eine wesentlich geringere Spezifität (37,8% (98), 32,6% (39)) für diesen Bereich und es könnte zu vielen falsch positiven Verdachtsfällen mit unnötiger und kostspieliger Weiterbehandlung kommen.

OSA50: Dieser Fragebogen von 2011 (101) ist weniger bekannt. Er basiert auf vier Fragen und den entsprechenden Grenzwerten für die gefragte Variable: Männer erhalten für einen Taillenumfang (WC) größer 102 cm und Frauen für einen WC größer 88 cm jeweils 3 Punkte; für lautes und störendes Schnarchen gibt es nochmal 3 Punkte; für beobachtete Atmepausen oder ein Alter über 50 Jahre nochmals je 2 Punkte. Der NC ist in dieser Konstellation zwar auch signifikant, aber den anderen Prädiktoren unterlegen. Im Anschluss an den Fragebogen wird eine Messung der Sauerstoffsättigung nachts in häuslicher Umgebung durchgeführt, als Alternative zur vollen PSG im Schlaflabor. Die Gruppe um Chai-Coetzer und Kollegen hat für ihr zweiphasiges Modell OSA50 eine Sensitivität von 97% und eine Spezifität von 87% errechnet, beides im Bezug auf die
Vorhersage einer mittelschweren oder schweren OSA. Diese Berechnungen unterscheiden sich erheblich, wenn man nur den Fragebogen allein betrachtet: Ohne die Oxymetrie verbleibt eine Sensitivität von 100% bei eher geringer Spezifität von 29% für die Prädiktion eines AHI ≥ 15/h.

1.9. DES-OSA Score

Tabelle 1: Der DES-OSA Score

<table>
<thead>
<tr>
<th>MP</th>
<th>1 Punkt</th>
<th>2 Punkte</th>
<th>3 Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTC (cm)</td>
<td>> 6</td>
<td>5-6</td>
<td>< 5</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>> 28</td>
<td>> 39</td>
<td>> 41</td>
</tr>
<tr>
<td>NC (cm)</td>
<td>> 37</td>
<td>> 42</td>
<td>> 48</td>
</tr>
<tr>
<td>Sex</td>
<td>Männliches Geschlecht</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*MP = modifizierter Mallampati Index, DTC = Distanz zwischen Schildknorpel und Kinn, BMI = Body Mass Index, NC = neck circumference (Halsumfang). Darstellung in Anlehnung an Deflandre et al. (102)
Mit diesem Messinstrument gelingt ein Kompromiss zwischen Sensitivität und Spezifität, was in den bisher dargestellten Scores oft ein Problem gewesen ist. Entsprechend der Schwellenwerte für den AHI von > 5/h, > 15/h und > 30/h ergeben sich Sensitivitäten von 75-82,7% mit den dazugehörigen Spezifitäten von 72,4-76,9%.

Der DES-OSA Score hat eine besondere Bedeutung für die vorliegende Arbeit. Er inspiriert durch Einfachheit und die Fokussierung auf rein objektivierbare Faktoren und erfüllt damit viele Erwartungen, die an ein solches Messinstrument gerichtet werden.

1.10. Sleep Apnea Global Interdisciplinary Consortium

1.11. Wissenschaftliche Fragestellung

 o Kann der morphologische DES-OSA Score durch Modifikation vereinfacht werden und wie wirken sich die Veränderungen auf die Stärke des Scores hinsichtlich Sensitivität und
Spezifität aus? Kann durch eine Neugliederung des Scores die Unterscheidung zwischen schwerer OSA, milder bis mittelschwerer OSA und dem Ausschluss von OSA umgesetzt werden?

- Welche Variablen eignen sich für eine Modifikation? Wie kann insbesondere die Bewertung der intraoralen Einsehbarkeit in den Rachenraum und die oberen Atemwege modifiziert werden?
- Gibt es Unterschiede bezüglich der Anwendung und der Stärke des neuen M-DES-OSA Scores in den Subgruppen der Frauen und Männer?
- Kann der neue M-DES-OSA Score in einer unabhängigen Validierungsgruppe mit vergleichbaren Ergebnissen bestätigt werden?
- Ist der M-DES-OSA Score in einer anderen ethnischen Gruppe valide und erzielt er in einer Vergleichsgruppe aus Taiwan vergleichbare Ergebnisse (Sekundärfragestellung)?

Die Fokussierung in der Arbeit auf den DES-OSA Score hat zwei Gründe: Zum einen erreicht der Score ein gutes Verhältnis von Sensitivität und Spezifität, was oft problematisch ist. Zum anderen konzentriert er sich auf rein anthropometrische Messungen und faziale Strukturen und vermeidet dadurch Probleme, die bei der subjektiven Einschätzung der Symptome durch die Patienten selbst entstehen können. Dennoch stellen sich Fragen bei der Realibilität des DES-OSA Scores: Zum einen ist es die DTC, die Distanz zwischen Schildknorpel und Kinn, die kritisch zu beurteilen ist. Dieser Parameter, oft auch TMD (thyromental distance) genannt, wird in der Literatur unterschiedlich bewertet und erhält bislang insgesamt keine große Aufmerksamkeit als eigenständiger Risikofaktor für OSA (104, 105). Zudem ergeben sich Probleme bei der Erhebung der DTC, da der Schildknorpel oftmals nicht gut tastbar ist und sich durch einen hohen Fettgewebsanteil am Hals die Messung erheblich erschwert. Es ist fraglich, ob sich eine standardisierte Messung etablieren kann und von praktizierenden Ärzten als effizient und zeitlich machbar beurteilt wird.

24
2. Methodik

2.1. Setting der Studie und Teilnehmer

Rekrutiert wurden Patienten im Schlaflabor und in der schlafmedizinischen Ambulanz, wonach sich für die Datenerhebung bereits eine erste Vorselektion ergab. Die Studie ist eine prospektive Observationsstudie und die Kohorte umfasst Patienten mit vielfältigen Symptomen aus der Schlafmedizin. Es wurden Patientinnen und Patienten zur Studienteilnahme eingeladen, die über Tagesmüdigkeit, Erschöpfung sowie nicht erholsamen Schlaf klagten und bei denen der Verdacht auf eine OSA als Differentialdiagnose bestand. Eingeschlossen wurden Patienten ab 18 Jahren, die keinerlei Therapie einer eventuell schon bekannten Schlafapnoe erhalten oder in der Vergangenheit erhalten hatten. Eine bereits im Voraus diagnostizierte Schlafapnoe ohne entsprechende Therapie war für die Teilnahme an der Studie kein Hindernis. Ausgeschlossen wurden Therapiekontrollen, meist therapiert mit CPAP. Das Ausschlusskriterium Therapie einer OSA ist nicht gültig für die SAGIC-Studie im Ganzen, sondern wurde nur speziell für meine Patienten­kohorte angewendet, entsprechend der Fragestellung und gerade im Hinblick auf die Bewertung von Risikofaktoren für OSA.

soll die Anwendung des M-DES-OSA in einer anderen ethnischen Gruppe erfolgen und mögliche Unterschiede oder Schwierigkeiten sollen aufgedeckt werden (Sekundärfragestellung).

2.2. Durchführung der Studie

2.2.1. Anthropometrische Messungen

Der Body Mass Index wurde im Anschluss mit folgender Formel berechnet:

\[\text{BMI} = \frac{\text{Körpergewicht in Kilogramm}}{\text{Körpergröße in Metern}^2} \]

Die waist-hip-ratio (WH-Ratio) als Parameter wurde anhand der Werte für den Taillen- und Hüftumfang wie folgt berechnet:

\[\text{WH} - \text{Ratio} = \frac{\text{Taillenumfang in cm}}{\text{Hüftumfang in cm}} \]
2.2.2. Fragebogen SAGIC

2.2.3. Polygraphie und Polysomnographie

Bei jedem Teilnehmer wurde entweder eine PG in der Ambulanz oder eine PSG im Schlaflabor durchgeführt. Verwendet wurden ausschließlich die Messungen der Diagnostiknächte. Die anthropometrischen Messungen wurden alle maximal sechs Stunden vor bis maximal 12 Stunden nach der verwendeten PG oder PSG erhoben, sodass keine Veränderung der Messwerte bezüglich NC, WC, HC und BMI in der Zwischenzeit zu erwarten waren.

PG und PSG wurden zunächst automatisch von der jeweiligen Software ausgewertet und visuell durch einen Arzt und Somnologen validiert. Verwendet wurden für die PSG im Schlaflabor die

In dieser Studie wurden aus den Aufzeichnungen die Apnoe- und Hypopnoephasen bestimmt. Dabei unterscheiden sich die beiden Verfahren PSG und PG erheblich, wobei beide Methoden für die Bestimmung des AHI geeignet sind. Wie bei der PSG können auch in der PG zwar die Apnoen und Hypopnoen festgestellt werden, aber dabei kann die PG anders als die PSG nicht zwischen Schlaf- und Wachzustand oder gar den verschiedenen Schlafstadien unterscheiden (33). Das heißt, dass der AHI von der PG nur geschätzt werden kann, da die Aufzeichnungszeit nie exakt die tatsächliche Schlafzeit repräsentiert. Abbildung 2 zeigt einen Ausschnitt aus einer PSG; dargestellt ist eine Apnoe entsprechend der AASM-Kriterien (rote Markierung in der Atemfluss-Kurve).

2.2.4. Faziale Fotographie

Für die faziale Fotographie wurden in jedem Institut, das sich an SAGIC beteiligt, ähnliche Kamera- und Stativsysteme verwendet. Im einheitlichen Protokoll „Digital Morphometrics – Equipment and Setup SOP“ der Universität Pennsylvania und der Universität Sydney werden Material und Prozedere erläutert. Bei dem empfohlenen Kameramodell handelt es sich um eine Canon Powershot SX120 IS, Canon Inc., Japan. Diese wird auch am Standort Berlin verwendet. Am Stativ ist ein 4,0 bis 5,0 Milliwickt Lasermodul befestigt, dessen grüne Lichtstrahlen im Abstand von 1,5 cm parallel zueinander Laserpunkte auf die Hautoberfläche des Patienten projizieren (Abbildung 3). Damit kann unabhängig von der Entfernung, aus der die Bilder aufgenommen wurden, eine maßstabsgerechte Vermessung erfolgen. Empfohlen werden dennoch 40 cm Abstand vom Patienten, um bestmögliche Aufnahmen zu erzielen.

Im Vorfeld der Aufnahmen werden bestimmte anatomische Kennpunkte ertastet und mit einem abwaschbaren Stift auf der Haut des Patienten markiert. Sie werden in Abbildung 4 dargestellt. Die markierten Strukturen beziehen sich auf:

- **Gonion Profile (Go)** = Verbindung von Ramus mandibulae und Corpus mandibulae
- **Condylon (Co)** = Durch Öffnen und Schließen des Mundes wird das Articulatio temporomandibularis tastbar mit dem Caput mandibulae (Processus condylaris) als Gelenkkopf und der Fossa mandibularis des Os temporale als Gelenkpflanne. Dieser Punkt liegt auf etwa gleicher Höhe des äußeren Gehörgangs.
- **Orbital rim (Or)** = äußerer Orbitaunterrand mit einer tastbaren Kante hin zur lateralen Orbitawand.
Gnathion (Gn) = prominentester Vorsprung des Kinns. Eine zweite Markierung, Gnathion profile (Gnp) erfolgt auf gleicher Höhe lateral, sodass diese auch in der Profilansicht erkennbar ist.

Gion Neck Extended (GoR/GoL) = Diese beiden Punkte werden palpiert, wenn der Patient den Hals maximal rekliniert. Der Punkt am meisten posterior und inferior des Unterkieferwinkels (Übergang Ramus zu Corpus mandibulae) wird beidseits markiert und in der Ansicht von ventral sichtbar, wenn der Patient den Kopf überstreckt.

Abbildung 4: Anatomische Kennzeichnung „landmarks“. Zeichnung in Anlehnung an das Protokoll „Digital Morphometrics – Equipment and Setup SOP“ der Universitäten Pennsylvania und Sydney für die Forschungsgruppe SAGiC.

Die Patienten sollten auf einer Bank oder einem Stuhl möglichst ohne Rückenlehne und in neutraler Position mit dem Rücken zu einer weißen Wand sitzen. Die Kopfposition des Patienten sollte neutral sein, d.h. die jeweils entsprechende Haltung darstellen, als ob der Patient geradeaus in einen Spiegel schaue.

Es werden insgesamt elf Fotos von jedem Patienten gemacht. Das erste Bild wird frontal aufgenommen, mit dem Patienten in Neutralposition und mit geschlossenem Mund und Blick geradeaus, das zweite mit maximal rekliniertem Hals (Abbildung 5; rechts und links). Danach folgen in frontaler Ansicht die intraoralen Fotos, wobei es hierbei um die Darstellung der Atemwege geht. Hierzu soll der Proband mit entspannter Zunge hinter der unteren Zahnreihe den

In frontaler Ansicht erfolgen zwei weitere Bilder. Eines mit offenem Mund und entspannter, extendierter Zunge und eines mit maximal weit extendierter Zunge (Abbildung 8, links) bei geöffnetem Mund.

Die letzten drei Bilder werden im Profil gemacht. Ein Foto erfolgt in Neutralposition (Abbildung 5, mittig), eines mit offenem Mund und entspannter, extendierter Zunge und ein Letztes mit offenem Mund und maximal weit extendierter Zunge (Abbildung 8, rechts).

2.3. Auswertung der fazialen Fotographie

Da es jedoch bei Anwendung der beiden Verfahren zu einer geringen Variabilität der Werte gekommen wäre, sollte eine individuelle und neue Bewertung durchgeführt werden. Für die MC und die FTP lägen in der Kohorte die meisten Teilnehmer im Auswertungsbereich von III oder IV. Dies war ein wichtiger Beweggrund, eine andere Skalierung vorzunehmen und somit auch die Werte I und II innerhalb der Gruppe zu vergeben.

Für die Kategorisierung I bis IV wurden unterschiedliche intraorale Ansichten genutzt und folgende Bewertung bei der Betrachtung der Fotos vorgenommen:

Kategorie I: Sichtbarkeit von Uvula (Ansatz oder gänzlich) und Sichtbarkeit mindestens des Arcus palatoglossus (vorderer Gaumenbogen) ohne Phonation und ohne Herunterdrücken der Zunge.

Kategorie II: Sichtbarkeit von Uvula (Ansatz oder gänzlich) und Sichtbarkeit mindestens des Arcus palatoglossus erst bei Phonation möglich.

Kategorie IV: Sichtbarkeit von Uvula oder Arcus palatoglossus kann in keiner Position und weder durch Phonation noch Depression der Zunge erreicht werden.
In Abbildung 10 sind die vier verschiedenen Kategorien der adaptierten Friedman Scale anhand von Beispielen aus dem Patientenkollektiv dargestellt. Den Kategorien wird ein Punktwert zugeordnet, analog zum ursprünglichen DES-OSA Score. Mit dieser neuen Bewertungsskala, genannt Friedman Modified Scale (FMS), soll die faziale Komponente als Risikofaktor im M-DES-OSA repräsentiert werden.

2.4. Statistik

Es wurden für die statistische Auswertung folgende Variablen verwendet: NC, WC, HC (alle in Zentimetern), WH-Ratio, BMI, Größe (in Metern), Gewicht (in Kilogramm), AHI und das Alter (in Jahren). Weiterhin wurden für die Analysen das Geschlecht sowie die Auswertung der fazialen Fotographie (FMS) verwendet.

Zunächst wurden in der Gruppe der 150 Patienten aus Berlin für die deskriptive Statistik Mittelwerte (MW), Standardabweichung (SD), Range (Min und Max) und Häufigkeiten berechnet. Die Messwerte wurden im Bezug auf Geschlechterunterschiede untersucht, dazu wurde der Mann-Whitney Test für nicht parametrische Variablen durchgeführt und bei Normalverteilung der t-Test angewendet.

Anschließend wurden für die Variablen NC und WC, WH-Ratio, BMI, FMS, Alter und männliches Geschlecht die Pearson-Korrelationskoeffizienten zum AHI berechnet. Die zur Modifikation

Der M-DES-OSA Score wurde in einem Kollektiv mit 150 Patienten aus Berlin angepasst. Es wurden für den Test zur Vorhersage der verschiedenen Schweregrade von OSA Vierfeldertafeln erstellt und jeweils Sensitivität (SEN), Spezifität (SPE), ROC-Kurve (Receiver-Operating-Characteristic), Likelihood-Ratios (LR+ und LR-) sowie Positive Predictive Values (PPV) und Negative Predictive Values (NPV) und jeweils das dazugehörige 95%-Konfidenzintervall (CI) berechnet.

Für die deutsche Validierungsgruppe von 50 Patienten erfolgte zunächst eine deskriptive Statistik, wie sie auch für das Berechnungs-Kollektiv der 150 Patienten angewendet wurde. Der M-DES-OSA Score wurde anschließend an dieser unabhängigen Kontrollgruppe getestet und die gleichen Berechnungen (SEN, SPE, ROC-Kurve, LR+, LR-, PPV, NPV, CI) wurden vorgenommen.

Für die Beantwortung der Sekundärfragestellung, die Anwendung auf das Kollektiv aus Taiwan, erfolgte ein identisches Vorgehen mit deskriptiver Statistik und Anwendung des neuen Scores. Das Signifikanzniveau wurde auf p < 0,05 festgesetzt, was einer Irrtumswahrscheinlichkeit von 5% entspricht.

3. Ergebnisse

3.1. Übersicht über das Kollektiv Berlin

Eingangs soll das Kollektiv der 150 Patienten mittels deskriptiver Statistik vorgestellt werden. Mit diesem Kollektiv wird der Hauptteil der Analysen, die Modifikation des Scores, berechnet.

Unter den 150 Patienten sind 60 weiblich und 90 männlich, was einer prozentualen Verteilung von 40% zu 60% entspricht. Der Mittelwert liegt bei 57,47 Jahren (± 12,26) und das Alter ist bei Männern und Frauen normalverteilt. Im Schnitt ist das Kollektiv übergewichtig bis adipös mit einem BMI von 30,24 kg/m² im Mittel (± 7,16), wobei Frauen etwas schlanker sind als Männer. Für den Halsumfang als Risikofaktor für OSA sind die Unterschiede zwischen Mann und Frau größer. Insgesamt liegt der NC bei 40,6 cm (± 4,93), bei den Männern liegt der Mittelwert bei 43,37 cm (± 3,84) und bei Frauen hingegen bei 36,43 cm (± 3,84). Der AHI erreicht insgesamt einen Mittelwert von 19,65/h (± 21,96) und entspricht damit einer mittelschweren OSA. Zusätzlich wurde wegen der fehlenden Normalverteilung für den AHI neben dem Mittelwert auch der Median bestimmt. Im gesamten Kollektiv lag dieser bei 11,05/h (4,58-27,98/h). Teilt man das Kollektiv wiederum nach Geschlecht, so wird abermals eine unterschiedliche Verteilung deutlich: Männer haben im Mittel einen AHI von 25,87/h (± 23, 78), Frauen hingegen liegen mit einem AHI von 11,82/h (± 23, 78) eher im Bereich der milden OSA. Die Mediane sind entsprechend 17,25/h (7,13-36,73/h) bei den Männern und 6,85/h (1,93-14,5/h) bei den Frauen. Weitere Variablen mit Range, Mittelwert und Standardabweichung sind in den Tabellen 2 und 3 zusammengefasst.

Tabelle 2: Range (Min und Max), Mittelwert (MW) und Standardabweichung (SD) im Testkollektiv

<table>
<thead>
<tr>
<th>N=150</th>
<th>Min</th>
<th>Max</th>
<th>MW</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (J)</td>
<td>24</td>
<td>87</td>
<td>57,47</td>
<td>12,26</td>
</tr>
<tr>
<td>Größe (m)</td>
<td>1,52</td>
<td>1,94</td>
<td>1,74</td>
<td>0,09</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>50</td>
<td>250</td>
<td>91,88</td>
<td>25,39</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>18</td>
<td>73,1</td>
<td>30,24</td>
<td>7,16</td>
</tr>
<tr>
<td>NC (cm)</td>
<td>28</td>
<td>58</td>
<td>40,6</td>
<td>4,93</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>70</td>
<td>184</td>
<td>107,78</td>
<td>18,63</td>
</tr>
<tr>
<td>HC (cm)</td>
<td>90</td>
<td>169</td>
<td>112,65</td>
<td>13,7</td>
</tr>
<tr>
<td>WH-Ratio (WC/HC)</td>
<td>0,71</td>
<td>1,28</td>
<td>0,96</td>
<td>0,11</td>
</tr>
<tr>
<td>FMS</td>
<td>1</td>
<td>4</td>
<td>2,79</td>
<td>0,92</td>
</tr>
<tr>
<td>AHI (/h)</td>
<td>0</td>
<td>115</td>
<td>19,65</td>
<td>21,96</td>
</tr>
</tbody>
</table>
Tabelle 3: Range (Min und Max), Mittelwert (MW) und Standardabweichung (SD) im Testkollektiv aufgeteilt nach Geschlecht

BMI = Body Mass Index, NC = neck circumference (Halsumfang), WC = waist circumference (Taillenumfang), HC = hip circumference (Hüftumfang), WH-Ratio = waist-hip-ratio (Verhältnis von Taillen- und Hüftumfang), FMS = Friedman Modified Scale, AHI = Apnoe Hypopnoe Index. Dargestellt ist die Kohorte der 150 Patienten aufgeteilt nach Geschlecht.

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>MW</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Männer (N=90)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter (J)</td>
<td>24</td>
<td>87</td>
<td>57,16</td>
<td>12,54</td>
</tr>
<tr>
<td>Größe (m)</td>
<td>1,64</td>
<td>1,94</td>
<td>1,79</td>
<td>0,62</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>61</td>
<td>250</td>
<td>100,14</td>
<td>26,73</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>20,7</td>
<td>73,1</td>
<td>31,13</td>
<td>7,89</td>
</tr>
<tr>
<td>NC (cm)</td>
<td>34</td>
<td>58</td>
<td>43,37</td>
<td>3,84</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>77</td>
<td>184</td>
<td>114,4</td>
<td>18,15</td>
</tr>
<tr>
<td>HC (cm)</td>
<td>93</td>
<td>169</td>
<td>112,67</td>
<td>14,63</td>
</tr>
<tr>
<td>WH-Ratio (WC/HC)</td>
<td>0,73</td>
<td>1,28</td>
<td>1,01</td>
<td>0,89</td>
</tr>
<tr>
<td>FMS</td>
<td>1</td>
<td>4</td>
<td>2,76</td>
<td>0,94</td>
</tr>
<tr>
<td>AHI (/h)</td>
<td>0</td>
<td>115</td>
<td>25,87</td>
<td>23,78</td>
</tr>
<tr>
<td>Frauen (N=60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alter (J)</td>
<td>34</td>
<td>85</td>
<td>57,93</td>
<td>12,54</td>
</tr>
<tr>
<td>Größe (m)</td>
<td>1,52</td>
<td>1,82</td>
<td>1,66</td>
<td>0,62</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>50</td>
<td>122</td>
<td>79,5</td>
<td>26,73</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>18</td>
<td>41,2</td>
<td>28,91</td>
<td>7,89</td>
</tr>
<tr>
<td>NC (cm)</td>
<td>28</td>
<td>43</td>
<td>36,43</td>
<td>3,84</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>70</td>
<td>128</td>
<td>97,84</td>
<td>18,15</td>
</tr>
<tr>
<td>HC (cm)</td>
<td>90</td>
<td>145</td>
<td>122,67</td>
<td>14,63</td>
</tr>
<tr>
<td>WH-Ratio (WC/HC)</td>
<td>0,71</td>
<td>1,11</td>
<td>0,87</td>
<td>0,88</td>
</tr>
<tr>
<td>FMS</td>
<td>1</td>
<td>4</td>
<td>2,85</td>
<td>0,94</td>
</tr>
<tr>
<td>AHI (/h)</td>
<td>0,2</td>
<td>93,2</td>
<td>11,82</td>
<td>23,78</td>
</tr>
</tbody>
</table>

Die Verteilung des Alters wird nachfolgend als Balkendiagramm dargestellt (Abbildung 11). Die Teilnehmer erfassen einen Altersrahmen von 24 bis 87 Jahren, wobei sowohl bei Männern wie auch bei Frauen nahezu 50% im Bereich 51 bis 65 Jahre liegen. Das Alter zeigt hierbei eine Normalverteilung insgesamt sowie in den beiden Untergruppen der Männer und Frauen separat betrachtet. Es gibt hinsichtlich der Mittelwerte im Vergleich keine signifikanten Unterschiede zwischen den Geschlechtern (t-Test für unverbundene Stichproben).
Abbildung 11: Das Balkendiagramm zeigt die Altersverteilung für das Kollektiv. Die unterschiedliche Farbgebung dient der separaten Darstellung der Geschlechter sowie der Abgrenzung zum Gesamtkollektiv. Auf der x-Achse stehen die Altersangaben in fünf verschiedenen Gruppen, die y-Achse zeigt die dazu gehörige Prozentangabe.

Zur Verdeutlichung zeigt die folgende Tabelle die Verteilung des AHI nach Schweregrad für Männer und Frauen und für das Gesamtkollektiv.

Tabelle 4: Verteilung des AHI nach Schweregrad insgesamt und nach Geschlecht im Testkollektiv

<table>
<thead>
<tr>
<th>AHI (Apnoe-Hypopnoe-Index) nach Geschlecht und im gesamten Testkollektiv</th>
<th>Männer (N=90)</th>
<th>Frauen (N=60)</th>
<th>Gesamt (N=150)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHI < 5/h</td>
<td>15 (16,7)</td>
<td>23 (38,3)</td>
<td>38 (25,3)</td>
</tr>
<tr>
<td>AHI 5-14,99/h</td>
<td>27 (30)</td>
<td>23 (38,3)</td>
<td>50 (33,3)</td>
</tr>
<tr>
<td>AHI 15-29,99/h</td>
<td>21 (23,3)</td>
<td>7 (11,7)</td>
<td>29 (18,7)</td>
</tr>
<tr>
<td>AHI ≥ 30/h</td>
<td>27 (30)</td>
<td>7 (11,7)</td>
<td>34 (22,7)</td>
</tr>
</tbody>
</table>

Geschlechterspezifische Unterschiede der Höhe des AHI und die entsprechenden Häufigkeiten sind in der Tabelle zu erkennen und werden nachfolgend mittels Boxplot grafisch dargestellt (Abbildung 12). Die unterschiedliche Höhe des AHI im Geschlechtervergleich ist auf einem Niveau von 0,01 signifikant (Mann-Whitney-U-Test).
Abbildung 12: Boxplot zur Darstellung der Unterschiede zwischen Männern und Frauen in der deutschen Testgruppe bei der Höhe des AHI (Apnoe-Hypopnoe-Index).

Tabelle 5: Gruppierte Werte für Halsumfang, Taillenumfang, waist-hip-ratio und Body Mass Index nach Geschlecht und im Gesamtkollektiv

Die Messwerte der Variablen wurden in Gruppen gegliedert und die jeweiligen Anteile in absoluten Zahlen und in Prozent (in Klammern) zugeordnet. NC = neck circumference (Halsumfang), WC = waist circumference (Taillenumfang), WH-Ratio = waist-hip-ratio, BMI = Body Mass Index.

<table>
<thead>
<tr>
<th>NC in cm</th>
<th>Männer (N=90)</th>
<th>Frauen (N=60)</th>
<th>Gesamt (N=150)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-35,00</td>
<td>1 (1,1)</td>
<td>22 (36,7)</td>
<td>23 (15,3)</td>
</tr>
<tr>
<td>35,01-37,00</td>
<td>1 (1,1)</td>
<td>13 (21,7)</td>
<td>14 (9,3)</td>
</tr>
<tr>
<td>37,01-39,00</td>
<td>9 (10)</td>
<td>15 (25)</td>
<td>24 (16)</td>
</tr>
<tr>
<td>39,01-41,00</td>
<td>17 (18,9)</td>
<td>7 (11,7)</td>
<td>24 (16)</td>
</tr>
<tr>
<td>41,01-43,00</td>
<td>25 (27,8)</td>
<td>3 (5)</td>
<td>28 (18,7)</td>
</tr>
<tr>
<td>43,01-45,00</td>
<td>13 (14,4)</td>
<td>0 (0)</td>
<td>13 (8,7)</td>
</tr>
<tr>
<td>45,01-48,00</td>
<td>15 (16,7)</td>
<td>0 (0)</td>
<td>15 (10)</td>
</tr>
<tr>
<td>48,01-53,00</td>
<td>8 (8,9)</td>
<td>0 (0)</td>
<td>8 (5,3)</td>
</tr>
<tr>
<td>>53</td>
<td>1 (1,1)</td>
<td>0 (0)</td>
<td>1 (0,7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WC in cm</th>
<th>Männer (N=90)</th>
<th>Frauen (N=60)</th>
<th>Gesamt (N=150)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-80,00</td>
<td>1 (1,1)</td>
<td>9 (15)</td>
<td>10 (6,7)</td>
</tr>
<tr>
<td>80,01-90,00</td>
<td>2 (2,2)</td>
<td>8 (13,3)</td>
<td>10 (6,7)</td>
</tr>
<tr>
<td>90,01-95,00</td>
<td>7 (7,8)</td>
<td>6 (10)</td>
<td>13 (8,7)</td>
</tr>
<tr>
<td>95,01-100,00</td>
<td>12 (13,3)</td>
<td>9 (15)</td>
<td>21 (14)</td>
</tr>
<tr>
<td>100,01-105,00</td>
<td>9 (10)</td>
<td>7 (11,7)</td>
<td>16 (10,7)</td>
</tr>
<tr>
<td>105,01-110,00</td>
<td>11 (12,2)</td>
<td>9 (15)</td>
<td>20 (13,3)</td>
</tr>
<tr>
<td>110,01-120,00</td>
<td>19 (21,1)</td>
<td>10 (16,7)</td>
<td>29 (19,3)</td>
</tr>
<tr>
<td>120,01-130,00</td>
<td>11 (12,2)</td>
<td>2 (3,3)</td>
<td>13 (8,7)</td>
</tr>
<tr>
<td>130,01-140,00</td>
<td>10 (11,1)</td>
<td>0 (0)</td>
<td>10 (6,7)</td>
</tr>
<tr>
<td>>140</td>
<td>8 (8,9)</td>
<td>0 (0)</td>
<td>8 (5,3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WH-Ratio</th>
<th>Männer (N=90)</th>
<th>Frauen (N=60)</th>
<th>Gesamt (N=150)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,7-0,80</td>
<td>1 (1,1)</td>
<td>14 (23,3)</td>
<td>15 (10)</td>
</tr>
<tr>
<td>0,81-0,90</td>
<td>7 (7,8)</td>
<td>33 (55)</td>
<td>40 (26,7)</td>
</tr>
<tr>
<td>0,91-1,00</td>
<td>38 (42,2)</td>
<td>10 (16,7)</td>
<td>48 (32)</td>
</tr>
<tr>
<td>1,01-1,10</td>
<td>29 (32,2)</td>
<td>2 (3,3)</td>
<td>31 (20,7)</td>
</tr>
<tr>
<td>1,11-1,20</td>
<td>14 (15,6)</td>
<td>1 (1,7)</td>
<td>15 (10)</td>
</tr>
<tr>
<td>>1,20</td>
<td>1 (1,1)</td>
<td>0 (0)</td>
<td>1 (0,7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BMI (kg/m²)</th>
<th>Männer (N=90)</th>
<th>Frauen (N=60)</th>
<th>Gesamt (N=150)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-25,0</td>
<td>18 (20%)</td>
<td>17 (28,3)</td>
<td>35 (23,3)</td>
</tr>
<tr>
<td>25,1-30,0</td>
<td>30 (33,3)</td>
<td>18 (30)</td>
<td>48 (32)</td>
</tr>
<tr>
<td>30,1-35,0</td>
<td>22 (24,4)</td>
<td>15 (25)</td>
<td>37 (24,7)</td>
</tr>
<tr>
<td>35,1-40,0</td>
<td>9 (10)</td>
<td>7 (11,7)</td>
<td>16 (10,7)</td>
</tr>
<tr>
<td>40,1-45,0</td>
<td>8 (8,9)</td>
<td>3 (5)</td>
<td>11 (7,3)</td>
</tr>
<tr>
<td>45,1-50,0</td>
<td>1 (1,1)</td>
<td>0 (0)</td>
<td>1 (0,7)</td>
</tr>
<tr>
<td>>50</td>
<td>2 (2,2)</td>
<td>0 (0)</td>
<td>2 (1,3)</td>
</tr>
</tbody>
</table>
Abschließend soll auf die Friedman Modified Scale (FMS) eingegangen werden, die als Abwandlung der Friedman Scale als Beurteilungsinstrument für die Auswertung der Fotos verwendet wurde. Das Balkendiagramm in Abbildung 13 mit den dargestellten Häufigkeiten zeigt eine der DES-OSA Studie vergleichbare Verteilung (102). Insgesamt erreichen wenige (7,3%) die Kategorie I, während sich der Rest annähernd gleich auf die Kategorien II, III und IV verteilt. Frauen weisen hierbei eher eine FMS von III auf als Männer, diese liegen mehr im Bereich FMS II. Die Unterschiede sind jedoch nicht signifikant (Mann-Whitney-U-Test).

Abbildung 13: Die Friedman Modified Scale (FMS) als Instrument zur Beurteilung der Einsicht intraoral in den Pharynx. I bezeichnet die Sichtbarkeit der Uvula und des Arcus palatoglossus ohne Phonation oder Herunterdrücken der Zunge, II steht für die Sichtbarkeit beider Strukturen bei Phonation, bei III muss zur Einsicht beider Strukturen die Zunge zusätzlich (mit oder ohne Phonation) mit einem Spatel heruntergedrückt werden, bei IV sind die genannten Strukturen nicht erkennbar durch Phonation und/oder Herunterdrücken der Zunge.

3.2. Korrelationen zum AHI

Für die einzelnen Messwerte wurden jeweils die Korrelationskoeffizienten zum AHI berechnet. Folgende Variablen zeigen eine Korrelation auf einem Signifikanzniveau von 0,01 (2-seitig):

- Taillenumfang (WC) und AHI: \(r = 0,615 \)
- Body Mass Index (BMI) und AHI: \(r = 0,567 \)
- waist-hip-ratio (WH-Ratio) und AHI: \(r = 0,540 \)
- Halsumfang (NC) und AHI: \(r = 0,494 \)
- Friedman Modified Scale (FMS) und AHI: \(r = 0.403 \)
- Männliches Geschlecht und AHI: \(r = 0.292 \)

Damit können die getesteten anthropometrischen Messwerte als Risikofaktoren für einen erhöhten AHI bestätigt werden, wobei die jeweilige Gewichtung der Korrelation interessant ist. In diesem Kollektiv zeigt der Taillenumfang die stärkste Korrelation zum AHI und eignet sich somit als Variable, die für den neuen Score als Abwandlung verwendet werden kann. Auch der Body Mass Index, männliches Geschlecht und der Halsumfang sollen im neuen Score weiter berücksichtigt werden. Die Friedman Modified Scale erreicht in ihrer wohl ersten Anwendung dieser Art in der Studie eine ausreichend hohe Korrelation zum AHI, um im neuen Score den Modified Mallampati Index zu ersetzen. Die Korrelation wird in Abbildung 14 grafisch dargestellt.

Die nachfolgenden Streudiagramme in Abbildung 15 geben einen Überblick über die getesteten metrischen Variablen und ihre Korrelation zum AHI:

Für die dargestellten Korrelationen soll die oben benannte Verletzung der Normalverteilung des BMI durch einen Ausreißer keine Einschränkung sein, jedoch muss für den Pearson-Korrelationskoeffizienten mitbedacht werden, dass solche Extremwerte die Kurve beeinflussen können. Um die Einheitlichkeit für die Berechnungen zu bewahren und diese der gängigen Literatur anzupassen, soll der parametrische Pearson-Korrelationskoeffizient auch für den BMI betrachtet werden. Es wurde auch die Spearman-Korrelation für den BMI berechnet und sie lässt keine andere Aussage zu als die parametrische Korrelation. Somit sei auf den formalen Umstand hingewiesen, jedoch gleichzeitig eine Problematik bei der weiteren Analyse dadurch ausgeschlossen.
Eine komplizierte Einordnung als Risikofaktor ergibt sich indes für das Alter: Hier liegt der Koeffizient nach Pearson insgesamt bei 0,011 und ist nicht signifikant.

In Abbildung 14 fällt ein Ausreißer auf, der mit einem AHI von 115/h der FMS-Kategorie II zugeordnet ist. Bei diesem Patienten handelt es sich um einen 41 Jahre alten und adipösen Mann (BMI 37kg/m²) mit einer diagnostizierten bradykarden Herzrhythmusstörung und einem Herzinfarkt in der Krankheitsgeschichte. Auch eine Ronchopathie wurde diagnostiziert. Bei einem AHI in dieser Größenordnung muss hinterfragt werden, wie lange die einzelnen Apnoen andauern. Möglicherweise hat die Herzrhythmusstörung bereits einen Einfluss auf die Pumpfunktion des Herzens und führt auf längere Sicht bis hin zu einer Herzensinsuffizienz. Vor allem die Herzensinsuffizienz kann die Länge der Apnoen verkürzen, womit diese dann insgesamt häufiger auftreten. Es bleibt dann fraglich, ob es die Dauer der Apnoen oder die Gesamthöhe des AHI ist, welche die Schwere der OSA charakterisiert und ausschlaggebend für eventuelle Konsequenzen ist.
In Abbildung 16 sind zwei Ausreißer zu erkennen (51 und 58 Jahre alt). Beide Frauen haben mit 93/h und 66/h einen extrem hohen AHI, sodass auch hier die Dauer der einzelnen Apnoen betrachtet werden muss. Mit jeweils einem hohen BMI von 36kg/m² und 39kg/m² zeigen beide einen deutlichen Risikofaktor für OSA, der allerdings die Abgrenzung zu den anderen untersuchten Personen nicht erklärt. Für die Teilnehmerin mit dem AHI von 66/h ist eine chronische diastolische Linksherzinsuffizienz beschrieben worden (NYHA III) und nächtliche Blutdruckentgleisungen bei bestehender arterieller Hypertonie. Bei der Patientin mit dem AHI von 93/h sind keine kardiovaskulären Erkrankungen bekannt, aber eine chronische Insomnie, Fibromyalgie und ein chronisches Schmerzsyndrom. Es müsste für diesen Fall weiter abgeklärt werden, welche Faktoren zu dieser Erhöhung des AHI beitragen können.

Abbildung 16: Das Streudiagramm zeigt den Zusammenhang von Alter und Apnoe-Hypopnoe-Index (AHI) bei Frauen. Die Korrelation ist auf einem Niveau von 0,05 (2-seitig) signifikant.

3.3. Der M-DES-OSA Score

Entsprechend der Korrelationen zum AHI wurde mittels WC, FMS und Alter (speziell für Frauen) der DES-OSA Score modifiziert und mit entsprechenden Grenzwerten für die Vergabe der Punkte angepasst.

Der modifizierte Score übernimmt aus dem ursprünglichen Modell die Variablen männliches Geschlecht, NC und BMI. Die Korrelationen zum AHI konnten für diese Parameter auch in der vorliegenden Population bestätigt werden. Die Distanz zwischen Schildknorpel und Kinn (DTC)
und der modifizierte Mallampati Index wurden ersetzt. Das Punktevergabesystem wurde an den DES-OSA Score angepasst und die Scala von 0 bis maximal 13 möglichen Punkten übernommen. Da das Punktevergabesystem mit der Zuordnung von 1 bis 3 Punkten für jede OSA-Kategorie bekannt war, konnten durch das Testen verschiedener Grenzwerte für den Taillenumfang die Cut-offs dieser neuen Variable angepasst werden. Es zeigte sich für die Vergabe von einem Punkt ein nützlicher Grenzwert von WC > 95 cm, für 2 Punkte ein WC > 110 cm und für die Vergabe von 3 Punkten ein WC > 125 cm.

Analog wurden für Frauen Altersgrenzen getestet, welche die Prädiktion von OSA verbessern. Demnach werden ein Punkt ab 60 Jahren, 2 Punkte ab 65 und 3 Punkte ab 80 Jahren vergeben.

Tabelle 6: Der M-DES-OSA Score

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>1P</th>
<th>2P</th>
<th>3P</th>
</tr>
</thead>
<tbody>
<tr>
<td>männliches Geschlecht</td>
<td>> 28</td>
<td>> 39</td>
<td>> 41</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMS</td>
<td>II</td>
<td>III/IV</td>
<td></td>
</tr>
<tr>
<td>NC (cm)</td>
<td>> 37</td>
<td>> 42</td>
<td>> 48</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>> 95</td>
<td>> 110</td>
<td>> 125</td>
</tr>
<tr>
<td>Alter (Jahre)</td>
<td>Frauen ≥ 60</td>
<td>Frauen ≥ 65</td>
<td>Frauen ≥ 80</td>
</tr>
</tbody>
</table>

Das Punktevergabesystem im ursprünglichen DES-OSA Score beabsichtigt mit der Zuordnung von > 5, > 6 und > 7 Punkten die Einordnung entsprechend in die Kategorien AHI > 5/h, > 15/h und > 30/h. Hier wurde die Zuordnung der erreichten Punktzahl in zweierlei Hinsicht verändert: Zum einen sind die Grenzen den offiziell definierten Werten für milde, mittelschwere und schwere OSA angeglichen, die jeweils die Werte AHI ≥ 5/h, ≥ 15/h und ≥ 30/h (3) bezeichnen. Zum anderen soll im M-DES-OSA Score eine Einteilung in die drei Kategorien milde OSA, milde bis mittelschwere OSA und Ausschluss von OSA erfolgen:

Tabelle 7: Das modifizierte Punktevergabesystem im M-DES-OSA Score und die Zuordnung zu einer OSA-Kategorie

OSA = Obstruktive Schlafapnoe, AHI = Apnoe-Hypopnoe-Index, M-DES-OSA Score = modifizierter DES-OSA Score.

<table>
<thead>
<tr>
<th>0-4 Punkte</th>
<th>5-7 Punkte</th>
<th>8 oder mehr Punkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine OSA (AHI < 5/h)</td>
<td>AHI 5 – 29,99/h</td>
<td>AHI ≥ 30/h</td>
</tr>
</tbody>
</table>

3.4. Anwendung des M-DES-OSA Scores zur Prädiktion einer schweren OSA

Der neue Score wird nachfolgend auf das Kollektiv der 150 Patienten angewendet, mit denen auch die Modifizierung durchgeführt wurde. In Kapitel 3.8 erfolgt die Anwendung auf ein unabhängiges Patientenkollektiv.

Analog zur Testung des ursprünglichen Scores wurden die ROC-Kurven zur Bewertung der Stärke des Scores in der Gruppe berechnet. Für die drei Zustandsvariablen kein OSA, milde bis mittelschwere OSA und schwere OSA wurden jeweils die ROC-Kurven ermittelt und die Grenzwerte für die Punktevergabe statistisch berechnet. Die ROC-Kurven basieren auf den Werten von Sensitivität und Spezifität für die einzelnen Punktwerte eines Testverfahrens. Die Diagonale in den Darstellungen der ROC-Kurven stehen für die absolute Ratewahrscheinlichkeit von 50% und stellen damit das schlechteste Ergebnis für einen Test dar. Dementsprechend ist ein Test umso besser, je größer die Fläche unter der Kurve ist. Diese sollte mindestens 0,7 betragen, wobei ab 0,8 erst von einem wirklich guten Test ausgegangen werden kann. Zunächst die Ergebnisse des M-DES-OSA Scores für die Vorhersage einer schweren OSA mit einem AHI ≥ 30/h.
Abbildung 17: Receiver-Operation-Characteristic Kurve (ROC) für den Test zur Prädiktion der schweren Obstruktiven Schlafapnoe mit einem Apnoe-Hypopnoe-Index (AHI) ≥ 30/h. Entlang der x-Achse ist der Wert 1-Spezifität abzulesen, d.h. je kleiner der Wert, desto besser die Spezifität. Auf der y-Achse steht entsprechend die Sensitivität des Testsverfahrens.

Tabelle 8: Fläche unter der Kurve – Variablen für das Testergebnis des M-DES-OSA Scores zur Einschätzung einer schweren OSA (AHI ≥ 30/h) in der Testgruppe

<table>
<thead>
<tr>
<th>Fläche</th>
<th>Standardfehler<sup>a</sup></th>
<th>Asymptotische Signifikanz<sup>b</sup></th>
<th>Asymptotisches 95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td>0,899</td>
<td>0,028</td>
<td>0,844</td>
</tr>
<tr>
<td></td>
<td>0,000</td>
<td>0,954</td>
<td>0,954</td>
</tr>
</tbody>
</table>

Die Fläche zwischen der Diagonalen und der Kurve, die area under the curve (AUC), beschreibt die Wahrscheinlichkeit, mit der eine Testperson anhand des Scores richtig eingeschätzt wurde als eine Person mit schwerer OSA und entsprechend einem AHI ≥ 30/h.
Tabelle 9: Cut-offs für den M-DES-OSA Score zur Vorhersage einer schweren OSA (AHI ≥ 30/h)

Die linke Spalte listet die Mittelwerte der möglichen Punktwerte im modifizierten DES-OSA Score (M-DES-OSA Score) auf und ordnet entsprechende Sensitivität und 1-Spezifität zu. Die gefetteten Werte zeigen den besten Kompromiss von Sensitivität und Spezifität bei einem Score von 8 Punkten.

<table>
<thead>
<tr>
<th>Positiv, wenn kleiner oder gleich(a)</th>
<th>Sensitivität</th>
<th>1 – Spezifität</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1,0000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>1,0000</td>
<td>1,000</td>
<td>0,991</td>
</tr>
<tr>
<td>2,5000</td>
<td>1,000</td>
<td>0,931</td>
</tr>
<tr>
<td>3,5000</td>
<td>1,000</td>
<td>0,853</td>
</tr>
<tr>
<td>4,5000</td>
<td>1,000</td>
<td>0,750</td>
</tr>
<tr>
<td>5,5000</td>
<td>1,000</td>
<td>0,603</td>
</tr>
<tr>
<td>6,5000</td>
<td>0,912</td>
<td>0,319</td>
</tr>
<tr>
<td>7,5000</td>
<td>0,824</td>
<td>0,181</td>
</tr>
<tr>
<td>8,5000</td>
<td>0,647</td>
<td>0,069</td>
</tr>
<tr>
<td>9,5000</td>
<td>0,382</td>
<td>0,026</td>
</tr>
<tr>
<td>10,5000</td>
<td>0,294</td>
<td>0,017</td>
</tr>
<tr>
<td>11,5000</td>
<td>0,206</td>
<td>0,009</td>
</tr>
<tr>
<td>12,5000</td>
<td>0,059</td>
<td>0,000</td>
</tr>
<tr>
<td>14,0000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>

\(a\). Der kleinste Trennwert ist der kleinste beobachtete Testwert minus 1, und der größte Trennwert ist der größte beobachtete Testwert plus 1. Alle anderen Trennwerte sind Mittelwerte von zwei aufeinander folgenden, geordneten beobachteten Testwerten.

Der Test erreicht mit der angegebenen Fläche unter der Kurve in dieser Gruppe ein gutes Ergebnis. Das Signifikanzniveau liegt bei 0,01. Der Punktwert von 8 als Grenze zur schweren OSA kann anhand der ROC-Statistik bestätigt werden (Tabelle 9). Nachfolgend werden für diesen Grenzwert, der ein positives Testergebnis bezeichnet, die Vierfeldertafel mit SEN, SPE, LR+ und LR-, PPV und NPV vorgestellt.

Tabelle 10: Vierfeldertafel für ein positives Testergebnis mit ≥ 8 Punkte im M-DES-OSA Score zur Vorhersage einer schweren OSA in der Testgruppe

In den Feldern sind in absoluten Zahlen aufgelistet die richtig positiven (rp), die falsch negativen (fn), die falsch positiven (fp) und die richtig negativen (rn) Testergebnisse. D+ = positive Diagnose, D- = negative Diagnose; S-OSA = schwere Obstruktive Schlafapnoe, definiert als AHI ≥ 30/h, M-DES-OSA Score = modifizierter DES-OSA Score.
Anhand der Vierfeldertafel lassen sich weitere Berechnungen durchführen. Die bereits in Tabelle 8 fett markierten Werte für SEN und SPE können mit Berechnungen aus der Vierfeldertafel bestätigt werden:

- $\text{SEN} = \frac{rp}{(rp + fn)} = 0,82 = 82\%$ (95%CI: 64,5-93,2)
- $\text{SPE} = \frac{rn}{(rn + fp)} = 0,82 = 82\%$ (95%CI: 73,7-88,4)

Anhand von PPV und NPV können weiterhin Aussagen darüber getroffen werden, welcher Anteil der Patienten mit positivem Testergebnis auch wirklich erkrankt ist (PPV), beziehungsweise welcher Anteil der Patienten mit negativem Testergebnis tatsächlich gesund ist (NPV). Genauer gesagt geben diese beiden Parameter die jeweiligen Anteile der korrekt als positiv oder korrekt als negativ gewerteten Ergebnisse an den Gesamtheiten der als positiv oder negativ klassifizierten Ergebnisse an. PPV und NPV sind nur dann auf ein anderes Kollektiv (zum Beispiel die Bevölkerung im Allgemeinen) übertragbar, wenn dort die Prävalenz der positiven Fälle, also die Häufigkeit der Erkrankung, dieselbe ist wie in der Testgruppe. PPV und NPV im vorliegenden Kollektiv lassen sich auch anhand der Vierfeldertafel errechnen:

- $\text{PPV} = \frac{rp}{rp + fp} = 0,57 = 57\%$ (95%CI: 46,8-66,9)
- $\text{NPV} = \frac{rn}{rn + fn} = 0,94 = 94\%$ (95% CI: 88,4-97,1)

Stärker auf die Allgemeinheit bezogene Werte liefern die populationsunabhängigen Likelihood-Ratios. Sie geben an, mit welcher Wahrscheinlichkeit ein Patient mit schwerer OSA ein positives Testergebnis erhält ($\text{LR}+$) geteilt durch die Wahrscheinlichkeit, dass auch ein Gesunder ein positives Testergebnis erhält. Entsprechend ist die Wahrscheinlichkeit für einen Erkrankten mit negativem Testergebnis geteilt durch die Wahrscheinlichkeit für einen Gesunden mit negativem
Testergebnis gleichzusetzen mit der LR-. Dabei werden wieder Sensitivität und Spezifität mit in die Berechnungen einbezogen:

- \(LR^+ = \frac{SEN}{1 - SPE} = 4,55 \) (95%CI: 3-6,9)
- \(LR^- = \frac{1 - SEN}{SPE} = 0,22 \) (95%CI: 0,1-0,45)

Eine LR+ ab 4 wird als aussagekräftig gewertet, wobei Werte ab 10 für eine besonders große Wirksamkeit des Tests sprechen. Für die LR- sollte mindestens der Wert 0,3 unterschritten werden, um den Test als allgemein nützlich zu bestätigen. Je niedriger die LR-, desto besser. In der vorliegenden Statistik wird dann erwartet, dass in der allgemeinen Bevölkerung eine Person mit schwerer OSA einen M-DES-OSA Score ≥ 8 Punkte erreicht. Für eine gesunde Person wäre entsprechend ein negatives Testergebnis statistisch wahrscheinlicher.

3.5. Anwendung des M-DES-OSA Scores zur Prädiktion einer milden bis mittelschweren OSA

Im folgenden Abschnitt wird der M-DES-OSA Score für die Vorhersage einer milden bis mittelschweren OSA im gleichen Kollektiv der 150 Patienten angewendet. Die Analyse erfolgt analog zu der im vorherigen Kapitel für die schwere OSA.

Tabelle 11: Fläche unter der Kurve – Variablen für das Testergebnis des M-DES-OSA Scores zur Prädiktion von OSA (AHI ≥ 5) in der Testgruppe

Area under the curve = AUC, M-DES-OSA Score = modifizierter DES-OSA Score

a. nicht parametrische Annahme
b. Nullhypothese: Wahrscheinlichkeit = 0,5

c. Fläche AUC Standardfehler\(^a\) Asymptotische Signifikanz\(^b\) Asymptotisches 95% Konfidenzintervall

<table>
<thead>
<tr>
<th>Fläche AUC</th>
<th>Standardfehler(^a)</th>
<th>Asymptotische Signifikanz(^b)</th>
<th>Untergrenze</th>
<th>Obergrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,886</td>
<td>0,030</td>
<td>0,000</td>
<td>0,828</td>
<td>0,944</td>
</tr>
</tbody>
</table>

Für den Cut-off zur Vorhersage eines AHI von 5 oder höher liegen die nachfolgenden Wertepaare für Sensitivität und 1-Spezifität vor (Tabelle 12). Es zeigen sich hierbei zwei mögliche Grenzwerte, anders als bei der schweren OSA. So kommen sowohl 5 Punkte als Grenzwert wie auch 6 Punkte in Betracht.

Tabelle 12: Cut-offs für den M-DES-OSA Score zur Vorhersage einer OSA mit einem AHI ≥ 5

Die linke Spalte listet die Mittelwerte der möglichen Testergebnisse des modifizierten DES-OSA Scores (M-DES-OSA Score) auf und ordnet entsprechende Sensitivität und 1-Spezifität zu. Die gefetteten Werte zeigen den besten Kompromiss von Sensitivität und Spezifität bei einem Score von 5 oder 6 Punkten.

<table>
<thead>
<tr>
<th>Positiv, wenn kleiner oder gleich(^a)</th>
<th>Sensitivität</th>
<th>1 – Spezifität</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000</td>
<td>0,974</td>
</tr>
<tr>
<td>2,500</td>
<td>1,000</td>
<td>0,795</td>
</tr>
<tr>
<td>3,500</td>
<td>0,982</td>
<td>0,615</td>
</tr>
<tr>
<td>4,500</td>
<td>0,955</td>
<td>0,385</td>
</tr>
<tr>
<td>5,500</td>
<td>0,838</td>
<td>0,282</td>
</tr>
<tr>
<td>6,500</td>
<td>0,595</td>
<td>0,051</td>
</tr>
<tr>
<td>7,500</td>
<td>0,432</td>
<td>0,026</td>
</tr>
<tr>
<td>8,500</td>
<td>0,270</td>
<td>0,000</td>
</tr>
<tr>
<td>9,500</td>
<td>0,144</td>
<td>0,000</td>
</tr>
<tr>
<td>10,500</td>
<td>0,108</td>
<td>0,000</td>
</tr>
<tr>
<td>11,500</td>
<td>0,072</td>
<td>0,000</td>
</tr>
<tr>
<td>12,500</td>
<td>0,018</td>
<td>0,000</td>
</tr>
<tr>
<td>14,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>

\(^a\) Der kleinste Trennwert ist der kleinste beobachtete Testwert minus 1, und der größte Trennwert ist der größte beobachtete Testwert plus 1. Alle anderen Trennwerte sind Mittelwerte von zwei aufeinander folgenden, geordneten beobachteten Testwerten.

Aufgrund der angegebenen Wertepaare muss ein Kompromiss erfolgen, ob auf Kosten von Sensitivität oder Spezifität der Grenzwert festgelegt wird. Es wurden 5 Punkte als Grenzwert für ein positives Testergebnis zur Prädiktion des AHI ≥ 5/h festgesetzt, zugunsten einer höheren Sensitivität mit weniger falsch negativen Testergebnissen.

Tabelle 13: Vierfeldertafel für ein positives Testergebnis von 5 bis 7 Punkten im M-DES-OSA Score zur Vorhersage einer milden bis mittelschweren OSA in der Testgruppe

<table>
<thead>
<tr>
<th></th>
<th>MoM-OSA (D+)</th>
<th>Keine MoM-OSA (D-)</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test positiv (T+)</td>
<td>52 (rp)</td>
<td>20 (fp)</td>
<td>72 (rp+fp)</td>
</tr>
<tr>
<td>Test negativ (T-)</td>
<td>25 (fn)</td>
<td>53 (rn)</td>
<td>78 (fn+rn)</td>
</tr>
<tr>
<td>Summe</td>
<td>77 (rp+fn)</td>
<td>73 (fp+rn)</td>
<td>150</td>
</tr>
</tbody>
</table>

Daraus ergeben sich eine Sensitivität von 68% (95%CI: 55,9-77,7) und eine Spezifität von 73% (95%CI: 60,9-82,4). Der Test zur Erkennung der milden bis mittelschweren OSA als AHI von 5 bis maximal 29,99/h ist damit etwas schlechter als der zur Vorhersage der schweren OSA. Da sich aus den beiden Parametern die Likelihood Ratios zusammensetzen, sind diese auch deutlich schwächer mit einer LR+ von 2,52 (95%CI: 1,65-3,69) und einer LR- von 0,47 (95%CI: 0,31-0,64). Positiver (PPV) und negativer (NPV) Vorhersagewert liegen indes bei 72% (95%CI: 63,4-79,6) und 68% (95%CI: 59,9-75,1). Der PPV ist damit sogar besser als im vorherigen Test für die schwere OSA. Dies erklärt sich aus der Abhängigkeit der Vorhersagewerte von Prävalenz und Prätestwahrscheinlichkeit, wie oben bereits beschrieben. Der Test zur Vorhersage der milden bis mittelschweren OSA ist zwar signifikant auf dem Niveau 0,01 und zeigt mit einer AUC von 0,886 auch in der vorliegen Population ein gutes Ergebnis, doch populationsunabhängig ergeben sich mit den Likelihood Ratios schlechtere Werte für diesen Test im Vergleich zur Vorhersage der schweren OSA.

3.6. Anwendung des M-DES-OSA Scores zum Ausschluss von OSA

Analog zu den Analysen für milde bis mittelschwere, beziehungsweise für die schwere OSA, folgt nun auch die Bewertung des M-DES-OSA Scores hinsichtlich der Fähigkeit, OSA auszuschließen. Als positiv wird der Test angesehen, wenn weniger als 5 Punkte erreicht werden. Die Zielvariable ist ein AHI < 5/h und damit der Ausschluss von OSA.

Der Test zeigt hinsichtlich der Receiver-Operation-Characteristic (ROC) Statistik und der Fläche unter der Kurve (AUC) erwartungsgemäß die gleichen Werte wie der Test zur Prädiktion eines AHI ≥ 5/h, da statistisch dieselbe Grenze berechnet wird.

Tabelle 14: Fläche unter der Kurve – Variblen für das Testergebnis des M-DES-OSA Scores zum Ausschluss von OSA (AHI < 5/h) in der Testgruppe

<table>
<thead>
<tr>
<th>Fläche</th>
<th>Standardfehler<sup>a</sup></th>
<th>Asymptotische Signifikanz<sup>b</sup></th>
<th>Asymptotisches 95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,886</td>
<td>0,030</td>
<td>0,000</td>
<td>0,828</td>
</tr>
</tbody>
</table>

Tabelle 15: Cut-offs für den M-DES-OSA Score zum Ausschluss von OSA (AHI <5/h)

Die linke Spalte listet die Mittelwerte der möglichen Testergebnisse des modifizierten DES-OSA Scores (M-DES-OSA Score) auf und ordnet entsprechende Sensitivität und 1-Spezifität zu. Die gefetteten Werte zeigen den besten Kompromiss von Sensitivität und Spezifität bei einem Score von 5 Punkten.

<table>
<thead>
<tr>
<th>Positiv, wenn kleiner oder gleich(a)</th>
<th>Sensitivität</th>
<th>1 – Spezifität</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1,0000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>1,0000</td>
<td>0,026</td>
<td>0,000</td>
</tr>
<tr>
<td>2,5000</td>
<td>0,205</td>
<td>0,000</td>
</tr>
<tr>
<td>3,5000</td>
<td>0,385</td>
<td>0,018</td>
</tr>
<tr>
<td>4,5000</td>
<td>0,615</td>
<td>0,045</td>
</tr>
<tr>
<td>5,5000</td>
<td>0,718</td>
<td>0,162</td>
</tr>
<tr>
<td>6,5000</td>
<td>0,949</td>
<td>0,405</td>
</tr>
<tr>
<td>7,5000</td>
<td>0,974</td>
<td>0,568</td>
</tr>
<tr>
<td>8,5000</td>
<td>1,000</td>
<td>0,730</td>
</tr>
<tr>
<td>9,5000</td>
<td>1,000</td>
<td>0,856</td>
</tr>
<tr>
<td>10,5000</td>
<td>1,000</td>
<td>0,892</td>
</tr>
<tr>
<td>11,5000</td>
<td>1,000</td>
<td>0,928</td>
</tr>
<tr>
<td>12,5000</td>
<td>1,000</td>
<td>0,982</td>
</tr>
<tr>
<td>14,0000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

\(a\). Der kleinste Trennwert ist der kleinste beobachtete Testwert minus 1, und der größte Trennwert ist der größte beobachtete Testwert plus 1. Alle anderen Trennwerte sind Mittelwerte von zwei aufeinander folgenden, geordneten beobachteten Testwerten.

Tabelle 16: Vierfeldertafel für ein positives Testergebnis von maximal 4 Punkten im M-DES-OSA Score zum Ausschluss von OSA in der Testgruppe

In den Feldern sind in absoluten Zahlen aufgelistet die richtig positiven (rp), die falsch negativen (fn), die falsch positiven (fp) und die richtig negativen (rn) Testergebnisse. D+ = positive Diagnose, D- = negative Diagnose. Der Test ist positiv, wenn weniger als 5 Punkte erreicht werden. OSA = Obstruktive Schlafapnoe. Der Ausschluss von OSA wird definiert durch einen AHI < 5/h, M-DES-OSA Score = modifizierter DES-OSA Score.

<table>
<thead>
<tr>
<th>Test positiv (T+)</th>
<th>Keine OSA (D+)</th>
<th>OSA (D-)</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 (rp)</td>
<td>5 (fp)</td>
<td>29 (rp+fp)</td>
<td></td>
</tr>
<tr>
<td>Test negativ (T-)</td>
<td>15 (fn)</td>
<td>106 (rn)</td>
<td>121 (fn+rn)</td>
</tr>
<tr>
<td>Summe</td>
<td>39 (rp+fn)</td>
<td>111 (fp+rn)</td>
<td>150</td>
</tr>
</tbody>
</table>

Die Festlegung des Grenzwertes bei maximal 4 Punkten hat ihre Konsequenzen hinsichtlich Sensitivität (62%, 95%CI: 44,6-76,6) und Spezifität (96%, 95%CI: 89,8-98,5). Allerdings soll bedacht werden, dass ein Ausschluss von OSA mit hoher Spezifität wichtig ist, damit bei möglichst wenigen tatsächlich Erkrankten die milde oder mittelschwere OSA nicht diagnostiziert und behandelt wird.

Mit einer Fläche unter der Kurve (AUC) von 0,886 ist der Test innerhalb der Kohorte gut geeignet, um OSA auszuschließen. Das Signifikanzniveau liegt auch für diesen Test bei 0,01. Die positiven und negativen Vorhersagewerte sind mit 83% (PPV, 95%CI: 66,3-92,13) und 88% (NPV, 95%CI: 82,6-91,3) gut und auch die populationsunabhängigen Likelihood Ratios sind weit besser als bei den Tests zur Prädiktion der verschiedenen OSA-Schweregrade in den oberen Abschnitten. Mit diesem Test zum Ausschluss von OSA wäre es abseits dieser Test-Population möglich, zumindest mit hoher Spezifität OSA auszuschließen. Die LR+ liegt bei 13,66 (95%CI: 5,6-33,3) und spricht Patienten ohne OSA eine deutlich höhere Wahrscheinlichkeit für ein positives Testergebnis zu als Patienten mit OSA. Die LR- erreicht entsprechend der schwächeren Sensitivität des Tests einen Wert von 0,4 (95%CI: 0,27-0,6).

3.7. Geschlechtspezifische Unterschiede des M-DES-OSA Scores

Die Unterschiede zwischen Frauen und Männern sind in der deskriptiven Statistik bereits veranschaulicht worden. Die Risikofaktoren fallen bei den Geschlechtern somit unterschiedlich ins Gewicht, da beispielsweise der Halsumfang bei Frauen selten Werte über 43 cm erreicht, was hingegen bei Männern keine Seltenheit ist. Weiterhin ist das Alter als Risikofaktor für einen höheren AHI speziell bei Frauen dargestellt worden. Zwar kann aufgrund der begrenzten Teilnehmeranzahl keine Evaluation der Risikofaktoren separat für beide Geschlechter inklusive Cut-off-Werten erfolgen, dennoch soll anhand der nachfolgenden Analysen verdeutlicht werden,
dass eine stärkere Fokussierung auf Subgruppen in der Diagnostik sinnvoll sein kann. Der Score wurde analog zu den obigen Analysen auf Frauen und Männer separat angewandt und es wurden folgende Unterschiede festgestellt:

Die Prädiktion der schweren OSA bei Männern durch den M-DES-OSA Score bleibt auf einem Niveau von 0,01 signifikant, die Sensitivität verbessert sich im Vergleich zur Anwendung im gesamten Kollektiv auf 93% (95%CI: 75,7-99,1), die Spezifität verschlechtert sich hingegen leicht und beträgt 71% (95% CI: 58,7-82,1). PPV und NPV ändern sich entsprechend und liegen bei 58% (PPV, 95%CI: 48,1-67,6) und 96% (NPV, 95%CI: 85,5-98,9). Die Likelihood Ratio wird für die LR+ schwächer mit 3,21 (95%CI: 2,2-4,9). Die LR- verbessert sich auf 0,1 (95%CI: 0,03-0,4).

Tabelle 17: Vierfeldertafel für ein positives Testergebnis ≥ 8 Punkte im M-DES-OSA Score zur Prädiktion der schweren OSA in der Männergruppe (N=90)

In den Feldern sind in absoluten Zahlen aufgelistet die richtig positiven (rp), die falsch negativen (fn), die falsch positiven (fp) und die richtig negativen (rn) Testergebnisse. D+ = positive Diagnose, D- = negative Diagnose. S-OSA = schwere Obstruktive Schlafapnoe, definiert als AHI ≥ 30/h, M-DES-OSA Score = modifizierter DES-OSA Score. Der Test ist positiv, wenn ≥ 8 Punkte erreicht werden.

<table>
<thead>
<tr>
<th></th>
<th>S-OSA (D+)</th>
<th>Kein S-OSA (D-)</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test positiv (T+)</td>
<td>25 (rp)</td>
<td>18 (fp)</td>
<td>43 (rp+fp)</td>
</tr>
<tr>
<td>Test negativ (T-)</td>
<td>2 (fn)</td>
<td>45 (rn)</td>
<td>47 (fn+rn)</td>
</tr>
<tr>
<td>Summe</td>
<td>27 (rp+fn)</td>
<td>63 (fp+rn)</td>
<td>90</td>
</tr>
</tbody>
</table>

Für Frauen allein betrachtet erreicht der Test zur Vorhersage der schweren OSA keine Signifikanz mehr, was möglicherweise an der zu geringen Teilnehmerzahl liegt. 11,7% der 60 Frauen mit OSA erreichen einen AHI ≥ 30/h, was für die Analyse möglicherweise nicht ausreicht. Bei den Berechnungen fällt eine geringe Sensitivität von 43% (95%CI: 9,9-81,6) auf, was auf andere Risikofaktoren hindeutet, die für Frauen in der Diagnostik von OSA eine Rolle spielen könnten. Zur Bestätigung dieser Vermutung müsste die Analyse in einer größeren Frauengruppe erfolgen.

Der Test zur Prädiktion der milden und mittelschweren OSA bleibt für beide Geschlechter signifikant, bei Männern auf dem Niveau 0,05 und bei Frauen auf dem Niveau 0,01. Generell wird der Test schwächer, wenn die Teilnehmerzahl kleiner wird. Allerdings ist der Test hinsichtlich Sensitivität (80%, 95%CI: 61,4-92,3), Spezifität (77%, 95%CI: 57,7-90,1) bei 60 Frauen besser als bei 90 Männern. Auch PPV (77%, 95%CI: 63,6-87,1), NPV (79%, 95%CI: 64,6-89) und die Likelihood Ratios (LR+ = 3,48 und LR- = 0,26; 95%CI: 1,8-6,7 und 0,1-0,6) sind bei Frauen in diesem Test besser.

Der Test zum Ausschluss von OSA bleibt für Frauen auf dem Niveau 0,01 signifikant. Männer erreichen in diesem Test aufgrund der geringeren Anzahl nicht erkrankter Personen keine
Signifikanz. Hier fällt die sehr geringe Sensitivität von 24% auf, die zu vermehrten falschen Verdachtsfällen führen würde. Zur Bestätigung dieser Beobachtung müsste die Analyse mit einer höheren Teilnehmerzahl wiederholt werden. Frauen hingegen erreichen für den Ausschluss von OSA gute Ergebnisse mit dem Verfahren. Die Sensitivität beträgt 87% (95%CI: 66,4-97,2), die Spezifität 92% (95%CI: 78,1-98,3). Ein PPV von 87% (95%CI:69-95,2) und ein NPV von 92% (95%CI: 79,7-97) bedeuten eine Verbesserung im Vergleich zum Test im Gesamtkollektiv. LR+ und LR- als populationsunabhängige Parameter betragen 10,88 (LR+, 95%CI: 3,6-32,1) und 0,14 (LR-, 95%CI: 0,1-0,4).

3.8. Anwendung des M-DES-OSA Scores in einer Validierungsgruppe

Unabhängig von der Testgruppe, anhand der die Modifikation des Scores vorgenommen wurde, soll das neue Verfahren in einer unabhängigen Validierungsgruppe (N=50) angewendet werden.

Tabelle 18: Range (Min und Max), Mittelwert (MW) und Standardabweichung (SD) in der Validierungsgruppe

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>MW</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (J)</td>
<td>41</td>
<td>86</td>
<td>59,7</td>
<td>12,39</td>
</tr>
<tr>
<td>Größe (m)</td>
<td>1,16</td>
<td>1,91</td>
<td>1,72</td>
<td>0,5</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>53</td>
<td>120</td>
<td>87,2</td>
<td>14,82</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>20,20</td>
<td>59,5</td>
<td>29,92</td>
<td>6,68</td>
</tr>
<tr>
<td>NC (cm)</td>
<td>33</td>
<td>47</td>
<td>40,6</td>
<td>3,8</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>74</td>
<td>131</td>
<td>107,22</td>
<td>13,94</td>
</tr>
<tr>
<td>HC (cm)</td>
<td>94</td>
<td>146</td>
<td>112,5</td>
<td>9,95</td>
</tr>
<tr>
<td>WH-Ratio (WC/HC)</td>
<td>0,7</td>
<td>1,19</td>
<td>0,95</td>
<td>0,09</td>
</tr>
<tr>
<td>FMS</td>
<td>1</td>
<td>4</td>
<td>2,84</td>
<td>0,84</td>
</tr>
<tr>
<td>AHI (/h)</td>
<td>0,1</td>
<td>114,2</td>
<td>28,23</td>
<td>24,48</td>
</tr>
</tbody>
</table>

Abbildung 21: Receiver-Operation-Characteristic Kurve (ROC) für den Test zur Prädiktion von schwerer OSA mit einem Apnoe-Hypopnoe-Index (AHI) ≥ 30/h. Entlang der x-Achse ist der Wert 1-Spezifität abzulesen, d.h. je kleiner der Wert, desto besser die Spezifität. Auf der y-Achse wird entsprechend die Sensitivität des Tests angezeigt.

Tabelle 19: Fläche unter der Kurve – Variablen für das Testergebnis des M-DES-OSA Scores zur Prädiktion von schwerer OSA mit einem AHI ≥ 30/h in der Validierungsgruppe

<table>
<thead>
<tr>
<th>Fläche AUC</th>
<th>Standardfehler a</th>
<th>Asymptotische Signifikanz b</th>
<th>Asymptotisches 95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,887</td>
<td>0,051</td>
<td>0,000</td>
<td>0,788 un 0,987</td>
</tr>
</tbody>
</table>

Die ermittelten Grenzwerte entsprechen denen in der Analysegruppe. Für die ROC-Statistik in der Validierungsgruppe konnten 8 Punkte als bester Cut-off für die Prädiktion der schweren OSA bestätigt werden. Der Test ist mit einer Fläche unterhalb der ROC-Kurve von 0,887 auf einem Niveau von 0,01 signifikant.
Tabelle 20: Vierfeldertafel für ein positives Testergebnis ≥ 8 Punkte im M-DES-OSA Score zur Vorhersage einer schweren OSA in der Validierungsgruppe (N=50)

In den Feldern sind in absoluten Zahlen aufgelistet die richtig positiven (rp), die falsch negativen (fn), die falsch positiven (fp) und die richtig negativen (rn) Testergebnisse. D+ = positive Diagnose, D- = negative Diagnose. S-OSA = schwere Obstruktive Schlafapnoe, definiert als AHI ≥ 30/h, M-DES-OSA Score = modifizierter DES-OSA Score. Der Test ist positiv, wenn ≥ 8 Punkte erreicht werden.

<table>
<thead>
<tr>
<th></th>
<th>S-OSA (D+)</th>
<th>Keine S-OSA (D-)</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test positiv (T+)</td>
<td>15 (rp)</td>
<td>4 (fp)</td>
<td>19 (rp+fp)</td>
</tr>
<tr>
<td>Test negativ (T-)</td>
<td>3 (fn)</td>
<td>28 (rn)</td>
<td>31 (fn+rn)</td>
</tr>
<tr>
<td>Summe</td>
<td>18 (rp+fn)</td>
<td>32 (fp+rn)</td>
<td>50</td>
</tr>
</tbody>
</table>

Die Sensitivität beträgt 83% (95%CI: 58,6-96,4), die Spezifität 88% (95%CI: 71-96,5). Positiver und negativer Prädiktionswert erreichen 79 % (PPV, 95%CI: 59,4-90,6) und 90% (NPV, 95%CI: 76,7-96,4) und erzielen damit vergleichsweise bessere Werte als die Analysegruppe. Vor allem der PPV verbessert sich in der Validierungsgruppe bei der Vorhersage der schweren OSA. Die Likelihood Ratios sind hier im Vergleich auch stärker als in der Analysegruppe, mit den Werten 6,9 für die LR+ (95%CI: 2,6-17,1) und 0,2 für die LR- (95%CI: 0,1-0,5). Nachfolgend werden die Analysen für den Test zur Vorhersage einer milden bis mittelschweren OSA dargestellt.

Mit einer Fläche unterhalb der ROC-Kurve von 0,96 (Tabelle 21) ist dieser Test auf einem Niveau von 0,01 signifikant. Der Cut-off von 5 Punkten für einen positiven Test zur Vorhersage eines AHI von mindestens 5/h oder mehr konnte statistisch mittels ROC-Analyse bestätigt werden.

<table>
<thead>
<tr>
<th>Fläche AUC</th>
<th>Standardfehler^a</th>
<th>Asymptotische Signifikanz^b</th>
<th>Asymptotisches 95% Konfidenzintervall Untergrenze</th>
<th>Obergrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,96</td>
<td>0,030</td>
<td>0,001</td>
<td>0,902</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Im Anschluss folgt die Vierfeldertafel für ein positives Testergebnis von 5 bis 7 Punkten zur Prädiktion eines AHI von 5/h bis maximal 29,99/h – definiert als milde oder mittelschwere OSA.

Tabelle 22: Vierfeldertafel für ein positives Testergebnis mit 5 bis 7 Punkten im M-DES-OSA Score zur Vorhersage einer milden bis mittelschweren OSA in der Validierungsgruppe

<table>
<thead>
<tr>
<th>MoM-OSA (D+)</th>
<th>Keine MoM-OSA (D-)</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test positiv (T+)</td>
<td>21 (rp)</td>
<td>4 (fp)</td>
</tr>
<tr>
<td>Test negativ (T-)</td>
<td>6 (fn)</td>
<td>19 (rn)</td>
</tr>
<tr>
<td>Summe</td>
<td>27 (rp+fn)</td>
<td>23 (fp+rn)</td>
</tr>
</tbody>
</table>

Entsprechend der Vierfeldertafel in Tabelle 22 zur Vorhersage eines AHI von 5-29,99/h ergeben die Zahlen für die Validierungsgruppe in diesem Test eine Sensitivität von 78% (95%CI: 57,7-91,4) und eine Spezifität von 83% (95%CI: 61,2-95,1). Positiver und negativer Vorhersagewert erreichen 84% (PPV, 95%CI: 67,8-92,9) und 76% (NPV, 95%CI: 60,4-86,8) und sind damit etwas besser als in der Analysegruppe. Die populationsunabhängigen Likelihood Ratios entsprechen für diesen Test einem Wert von 4,47 (LR+, 95%CI: 1,8-11,2) und 0,28 (LR-, 95%CI: 0,1-0,6) und damit sind beide im Vergleich zur Analysegruppe (LR+ 2,52 und LR- 0,47) etwas stärker.

Nachfolgend werden die Berechnungen und ROC-Analysen für den Test zum Ausschluss von OSA in der Validierungsgruppe dargelegt.

<table>
<thead>
<tr>
<th>Fläche AUC</th>
<th>Standardfehlera</th>
<th>Asymptotische Signifikanzb</th>
<th>Asymptotisches 95% Konfidenzintervall</th>
<th>Obergrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,96</td>
<td>0,030</td>
<td>0,001</td>
<td>0,902</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Tabelle 23: Fläche unter der Kurve – Variablen für das Testergebnis des M-DES-OSA Scores zum Ausschluss von OSA (AHI < 5/h) in der Validierungsgruppe

Area under the curve = AUC, M-DES-OSA Score = modifizierter DES-OSA Score

a. nicht parametrische Annahme
b. Nullhypothese: Wahrheitsfläche = 0,5
Tabelle 24: Vierfeldertafel für ein positives Testergebnis von maximal 4 Punkten im M-DES-OSA Score zum Ausschluss von OSA in der Validierungsgruppe

In den Feldern sind in absoluten Zahlen aufgelistet die richtig positiven (rp), die falsch negativen (fn), die falsch positiven (fp) und die richtig negativen (rn) Testergebnisse. D+ = positive Diagnose, D- = negative Diagnose. OSA = Obstruktive Schlafapnoe, M-DES-OSA Score = modifizierter DES-OSA Score. Der Ausschluss von OSA wird definiert als AHI < 5/h, was einem positiven Testergebnis entspricht.

<table>
<thead>
<tr>
<th></th>
<th>Keine OSA (D+)</th>
<th>OSA (D-)</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test positiv (T+)</td>
<td>4 (rp)</td>
<td>2 (fp)</td>
<td>6 (rp+fp)</td>
</tr>
<tr>
<td>Test negativ (T-)</td>
<td>1 (fn)</td>
<td>43 (rn)</td>
<td>44 (fn+rn)</td>
</tr>
<tr>
<td>Summe</td>
<td>5 (rp+fn)</td>
<td>45 (fp+rn)</td>
<td>50</td>
</tr>
</tbody>
</table>

Entsprechend der Vierfeldertafel in Tabelle 24 wurden die weiteren Berechnungen durchgeführt. Sensitivität (80%, 95%CI: 28,4-99,5) und Spezifität (96%, 95%CI: 84,9-99,5) sind im Vergleich zur Analysegruppe besser, vor allem kann die Sensitivität von 62% auf 80% vergleichsweise stark zulegen. Der PPV beträgt 67% (95%CI: 32,5-89,3) und ist damit im Vergleich zur Analysegruppe schwächer, was mit der geringen Anzahl der Teilnehmer (N=50) zusammenhängen kann, da die Vorhersagewerte mit höherer Teilnehmerzahl tendenziell steigen. Der NPV zeigt mit 98% (95%CI: 88,2-99,6) eine Verbesserung im Vergleich zum vorherigen Kollektiv. Die LR+ ergibt den Wert 18,2 (95%CI: 4,3-74,8) und übertrifft damit das Testergebnis in der vorherigen Analysegruppe (13,66). Die LR- beträgt indes 0,21 (95%CI: 0,04-1,2) und ist damit in der vorliegenden Validerungsgruppe auch stärker als in der Analysegruppe (0,4).

Insgesamt kann sich der modifizierte Score in der Validierungsgruppe behaupten und er erfährt auf allen Ebenen, dem Test zur Vorhersage der schweren OSA, der milden bis mittelschweren OSA und für den Ausschluss von OSA eine Verbesserung in der angewandten Statistik. Dennoch kann der Test an der Validierungsgruppe nur im Hinblick auf die Teilnehmerzahl von N = 50 Personen bewertet werden und eine weitere unabhängige Stichprobenuntersuchung mit höherer Teilnehmerzahl könnte genauere Informationen hervorbringen.

3.9. Anwendung des M-DES-OSA Scores auf ein Vergleichskollektiv aus Taiwan

Das Projekt SAGIC bietet die Möglichkeit zum Vergleich unter den teilnehmenden Ländern. Es soll in diesem Abschnitt auf weitere offene Forschungsfragen eingegangen werden, die sich mit den Unterschieden der verschiedenen Ethnien und Obstruktiver Schlafapnoe befassen. Der M-DES-OSA Score wird dazu auf ein Kollektiv aus Taiwan angewendet, das für die SAGIC-Studie rekrutiert wurde. Der Datensatz umfasst 150 Patienten, darunter 111 Männer und 39 Frauen.
Tabelle 25: Range (Min und Max), Mittelwert (MW) und Standardabweichung (SD) in der Vergleichsgruppe aus Taiwan

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>MW</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter (J)</td>
<td>21</td>
<td>77</td>
<td>47,09</td>
<td>11,24</td>
</tr>
<tr>
<td>Größe (m)</td>
<td>1,45</td>
<td>1,82</td>
<td>1,66</td>
<td>0,09</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>48</td>
<td>137</td>
<td>78,41</td>
<td>16,48</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>19,60</td>
<td>46,30</td>
<td>28,27</td>
<td>5,16</td>
</tr>
<tr>
<td>NC (cm)</td>
<td>29,50</td>
<td>50,00</td>
<td>39,07</td>
<td>4,03</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>71</td>
<td>156</td>
<td>97,19</td>
<td>12,32</td>
</tr>
<tr>
<td>HC (cm)</td>
<td>85,00</td>
<td>133,00</td>
<td>104,38</td>
<td>8,89</td>
</tr>
<tr>
<td>WH-Ratio (WC/HC)</td>
<td>0,76</td>
<td>1,68</td>
<td>0,93</td>
<td>0,08</td>
</tr>
<tr>
<td>FMS</td>
<td>1</td>
<td>4</td>
<td>2,9</td>
<td>1,23</td>
</tr>
<tr>
<td>AHI (/h)</td>
<td>1,60</td>
<td>115,30</td>
<td>51,26</td>
<td>26,18</td>
</tr>
</tbody>
</table>

Abbildung 24: Boxplot zur Darstellung der Unterschiede bezüglich des AHI zwischen Männern und Frauen in der deutschen Analysegruppe (oberste Grafik), in der Kohorte aus Taiwan (mittlere Grafik) und der Vergleich der Ethnien untereinander (untere Grafik).

Tabelle 26: Fläche unter der Kurve – Variablen für das Testergebnis des M-DES-OSA Scores zur Prädiktion von schwerer OSA (AHI ≥ 30/h) in der Vergleichsgruppe aus Taiwan

<table>
<thead>
<tr>
<th>Fläche AUC</th>
<th>Standardfehlera</th>
<th>Asymptotische Signifikanzb</th>
<th>Asymptotisches 95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,666</td>
<td>0,049</td>
<td>0,004</td>
<td>0,570</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,762</td>
</tr>
</tbody>
</table>

Tabelle 27: Fläche unter der Kurve – Variablen für das Testergebnis des M-DES-OSA Scores zur Prädiktion von OSA (AHI ≥ 5/h) in der Vergleichsgruppe aus Taiwan

<table>
<thead>
<tr>
<th>Fläche AUC</th>
<th>Standardfehlera</th>
<th>Asymptotische Signifikanzb</th>
<th>Asymptotisches 95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,737</td>
<td>0,090</td>
<td>0,106</td>
<td>0,560</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,914</td>
</tr>
</tbody>
</table>

Tabelle 28: Fläche unter der Kurve – Variablen für das Testergebnis des M-DES-OSA Scores zum Ausschluss von OSA (AHI < 5/h) in der Vergleichsgruppe aus Taiwan

<table>
<thead>
<tr>
<th>Fläche AUC</th>
<th>Standardfehlera</th>
<th>Asymptotische Signifikanzb</th>
<th>Asymptotisches 95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,737</td>
<td>0,090</td>
<td>0,106</td>
<td>0,560</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,914</td>
</tr>
</tbody>
</table>
4. Diskussion

4.1. Zusammenfassung

In der Validierungsgruppe konnte der M-DES-OSA Score bestätigt werden mit einer Sensitivität von 83% und einer Spezifität von 88% bei der Vorhersage der schweren OSA. Für die Vorhersage der milden bis mittelschwere OSA wurden eine Sensitivität von 78% und eine Spezifität von 83% erreicht. Der OSA-Ausschluss gelang in der Validierungsgruppe mit einer Sensitivität von 80% und einer Spezifität von 96%.

Neben Sensitivität und Spezifität wurden auch die positiven und negativen Vorhersagewerte sowie die Likelihood Ratios für jeden Test ermittelt. Zusammenfassend ergaben diese Analysen eine Überlegenheit des Scores für den Ausschluss von OSA, sowohl in der Analysegruppe als auch in der Validierungsgruppe. Dabei wurde eine LR+ von 13,66 (Analysegruppe) bis 18,2 (Validierungsgruppe) erreicht und eine LR- von 0,4 (Analysegruppe) bis 0,21 (Validierungsgruppe). Die positiven und negativen Vorhersagewerte für den Test zum Ausschluss von OSA ergaben 83% und 67% PPV sowie 88% und 98% NPV (erstgenannte sind jeweils die Ergebnisse der Analysegruppe). Der Test zur Vorhersage der schweren OSA erreicht in der Analysegruppe eine LR+ von 4,55 und eine LR- von 0,22 und kann damit allgemein als gut bewertet werden. Die Vorhersagewerte liegen bei 57% PPV und 94% NPV. In der Validierungsgruppe werden die Ergebnisse für den Test auf jeder Ebene übertroffen. Die Werte betrugen für den Test zur Prädiktion der schweren OSA 6,9 (LR+), 0,2 (LR-), 79% (PPV) und 90% (NPV). Die Ergebnisse für den Test zur Erkennung der milden bis mittelschwere OSA betrugen für die Analysegruppe zusammengefasst: 2,52 (LR+), 0,47 (LR-), 72% (PPV) und 68% (NPV). In der Validierungsgruppe erreicht der Test folgende Werte: 4,47 (LR+), 0,28 (LR-), 84% (PPV) und 76% (NPV).

Die Anwendung in einem Patientenkollektiv aus Taiwan offenbart die Grenzen des M-DES-OSA Scores in der Vorhersage einer OSA und des Schweregrades. Der Test konnte auf keiner Ebene (schwere OSA, milde bis mittelschwere OSA, Ausschluss OSA) ein positives Ergebnis erzielen und die Anwendung des Scores kommt in dieser Gruppe nahe an die absolute Ratewahrscheinlichkeit von 50%.

4.2. Stärken und Einschränkungen der Studie

Das Ziel dieser Arbeit, die Anpassung des DES-OSA Scores, erreichte sehr zufriedenstellende Ergebnisse in der Analysegruppe wie auch in der Validierungsgruppe. Die ROC-Statistik und die Berechnungen aus den Vierfeldertafeln (Sensitivität, Spezifität, negativer und positiver Vorhersagewert, Likelihood Ratio) sind vergleichbar mit vorherigen Screening-Methoden und Scores (99). Für den DES-OSA Score konnte auch eine Vereinfachung realisiert werden, denn sowohl Taillenumfang als auch die FMS sind in ihrer Durchführung etwas leichter und weniger
Zeitintensiv als die Messung von DTC und die Bestimmung des modified Mallampati Index. Darüber hinaus konnte eine Reduktion auf rein objektivierbare Untersuchungsbefunde beibehalten werden, was ebenfalls ein gewichtiges Argument für die Fokussierung auf den DES-OSA Score gewesen ist.

Für das rein auf morphologischen Kriterien basierte Model von Kushida, Efron und Guilleminault finden sich keine Vergleichswerte im Bezug auf Likelihood Ratios. Von den Autoren wurden für Sensitivität (97,6%) und Spezifität (100%) sehr überzeugende Werte angegeben (96) und die Nützlichkeit des Verfahrens konnte unabhängig davon bestätigt werden (111). Es gelang bisher allerdings nicht, anhand dieses Models eine Risikoevaluation nach OSA-Schweregraden vorzunehmen (112), was neben der aufwendigen Erhebung der Daten womöglich die noch immer geringe Bedeutung des Models in der Praxis erklärt.

und nur im Zweifel nachgemessen. Das könnte eine Fehlerquelle darstellen oder zumindest die Genauigkeit der Aussagen beeinflussen.

Für die erstmalige Anwendung der FMS in dieser Arbeit gilt, dass die Beurteilung der Fotos von Untersucher zu Untersucher stets individuell verschieden sein kann. Auf Erfahrungswerte diesbezüglich konnte in dieser Arbeit nicht zurückgegriffen werden, sodass hierbei die Methode selbst noch einer externen Validierung bedarf. Wenn auch die FMS in der vorliegenden Studie zufriedenstellende Ergebnisse liefern konnte, so kann bei einer Teilnehmerzahl von 150 Patienten in der Analysegruppe und 50 Patienten in der Validierungsgruppe keine allumfassende Aussage über ihre eventuell zukünftige Anwendung gemacht werden.

4.3. Offene Forschungsfragen

Es ergeben sich zahlreiche offene Forschungsfragen unmittelbar aus dieser Arbeit heraus und auch solche, die über das Thema der Arbeit hinausgehen. Zu diesen zählen: die allgemeine Eignung der FMS und der Einfluss des Alters auf einen höheren AHI bei Männern; beziehungsweise, ob das Alter tatsächlich besonders bei Frauen ein Risiko für OSA birgt und somit nur bei Patientinnen eine Prädiktion von Schlapapnoe zulässt.

Replikationsstudien müssten durchgeführt werden, um die Validität der FMS und des M-DES-OSA Scores zu bewerten.

Die Abhängigkeit der Ergebnisse von der ethnischen Zugehörigkeit der Probanden verlangt weitere Analysen, um die möglichen Ursachen dieser ethnischen Unterschiede zu erklären. Detaillierte Berechnungen zur ethnischen Verschiedenheit der Kollektive sollten in dieser Arbeit nicht erfolgen, sie könnten jedoch im Hinblick auf den dargelegten Forschungsansatz aufschlussreich sein.

Es lassen sich darüber hinaus verschiedene Teilaspekte abgrenzen, für die es jeweils weitere Hypothesen zu erforschen gibt. Dies betrifft vor allem die Pathophysiologie von OSA und deren Diagnostik in der Zukunft.

4.4. Fragen zur Pathophysiologie von OSA

Neben der individuellen Prädisposition wird die Aktivität des GG zusätzlich vermindert durch vorbestehende arterielle Hypertonie, da unter anderem über Barorezeptoren die Ansteuerung des N. Hypoglossus vermindert wird (117). Dies wirft die Frage auf, inwiefern die arterielle Hypertonie als Risikofaktor und nicht bloß als Folge für die Entstehung von OSA bewertet werden muss.

4.5. Fragen zur Diagnostik von OSA

unabhängig vom Körpergewicht (120). Für die Diagnostik könnten diese Variablen durchaus hilfreich sein, zumal der Halsumfang allein gerade ein Drittel der Variabilität des AHI erklären kann (121). Der in der Einleitung dargestellte sleep apnea clinical score (SACS) kombiniert beispielsweise Faktoren aus der Krankheitsgeschichte der Patienten (Hypertonie) mit anthropometrischen Messungen (Halsumfang) und der Anamnese und Fremdanamnese (Schnarchen, Atemaussetzer, Schnaußen). Damit erreicht dieses Verfahren sehr gute Ergebnisse hinsichtlich SPE (91,3%), PPV (95,2%) und LR+ (5,6). Die Zahlen beziehen sich auf die Vorhersage eines AHI ≥ 5/h und sprechen insgesamt für eine hohe Erkennungswahrscheinlichkeit einer OSA durch die Kombination dieser Risikofaktoren. Im Vergleich zur ESS, dem BQ, dem STOP-Bang und dem OSA50 zeigt der SACS für die genannten statistischen Parameter eine eindeutige Überlegenheit. Hier muss allerdings wieder auf eine entsprechend geringere SEN (48,8%), einen schwächeren NPV (33,3%) und eine LR- von 0,6 hingewiesen werden (98).

Auch in der vorliegenden Arbeit gestaltete sich die Diagnostik der schweren OSA bei Frauen und der Ausschluss von OSA bei Männern als schwierig und es bleibt offen, ob nicht sogar für beide Geschlechter ein jeweils separater Risikoscore effizienter sein könnte.

Die in Abschnitt 3.2 beschriebenen Ausreißer mit abnormal hohen Werten für den AHI werfen die Frage auf, wonach sich die Schwere einer OSA bemisst. Ist es tatsächlich die Anzahl der Apnoen und Hypopnoen pro Stunde oder doch deren Dauer? Die Länge der Apnoen bestimmt beispielsweise die damit verbundene Sauerstoffsättigung und konsekutiv auch Hypoxämie und Hyperkapnie, was die Stresssituation für den Körper verstärkt.

So ist es nachweislich nicht der AHI, der mit einem erhöhten HbA1c einhergeht, sondern das Ausmaß der Hypoxie im Blut. Das bedeutet, dass die Verschlechterung eines Diabetes Typ 2 bei Vorliegen einer OSA mehr durch den Sättigungsabfall im Schlaf beeinflusst wird als durch die Anzahl der Apnoen und Hypopnoen pro Stunde (124).

Die prozentuale Abweichung der höchsten und tiefsten Werte für die Herzfrequenz hängt ebenso von der Dauer der Apnoephase ab wie auch der arterielle Blutdruck und der zerebrale Blutfluss. Alle bedingen insgesamt die Entstehung von kardiovaskulären Folgeerkrankungen wie zum Beispiel Schlaganfall. (125, 126).

Allgemeiner ließ sich auch feststellen, dass die OSA-assoziierte Verschlechterung der Lebensqualität nicht durch den AHI bestimmt wird (127).

Die Diskussion über die Bedeutung oder zumindest die Aussagekraft des AHI muss angesichts dieser Ergebnisse geführt werden. Auch in dieser Arbeit waren bei zwei Ausreißern
kardiovaskuläre Erkrankungen bekannt, die möglicherweise die extrem hohen Werte für den AHI verursacht haben. Damit ließe sich nicht zweifelsfrei die Schwere der OSA bewerten. Es bleibt abzuwarten, welche Alternativen in Zukunft für diese Beurteilung vorgebracht werden und Bedeutung erlangen in der wissenschaftlichen und ärztlichen Praxis.

4.6. Fazit

5. Literaturverzeichnis

6. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHI</td>
<td>Apnoe-Hypopnoe-Index = Anzahl der Apnoen und Hypopnoen pro Stunde Schlaf</td>
</tr>
<tr>
<td>AUC</td>
<td>area under the curve</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index = Körpergewicht (kg) / Körpergröße (m)²</td>
</tr>
<tr>
<td>BQ</td>
<td>Berlin Questionnaire</td>
</tr>
<tr>
<td>CI</td>
<td>Konfidenzintervall</td>
</tr>
<tr>
<td>CPAP</td>
<td>Continuous Positive Airway Pressure</td>
</tr>
<tr>
<td>DTC</td>
<td>Distanz zwischen Schildknorpel und Kinn, auch thyromental distance genannt</td>
</tr>
<tr>
<td>ESS</td>
<td>Epworth Sleepiness Scale</td>
</tr>
<tr>
<td>FMS</td>
<td>Friedman Modified Scale</td>
</tr>
<tr>
<td>FTP</td>
<td>Friedman Tongue Position</td>
</tr>
<tr>
<td>GG</td>
<td>M. genioglossus</td>
</tr>
<tr>
<td>HC</td>
<td>hip circumference, Hüftumfang (cm)</td>
</tr>
<tr>
<td>KHK</td>
<td>Koronare Herzerkrankung</td>
</tr>
<tr>
<td>LR-</td>
<td>negative Likelihood-Ratio</td>
</tr>
<tr>
<td>LR+</td>
<td>positive Likelihood-Ratio</td>
</tr>
<tr>
<td>MC</td>
<td>Mallampati Classification</td>
</tr>
<tr>
<td>M-DES-OSA Score</td>
<td>modifizierter DES-OSA Score</td>
</tr>
<tr>
<td>NC</td>
<td>neck circumference, Halsumfang (cm)</td>
</tr>
<tr>
<td>NPV</td>
<td>Negativer Vorhersagewert (Negative Predictive Value)</td>
</tr>
<tr>
<td>NREM</td>
<td>Non Rapid Eye Movement</td>
</tr>
<tr>
<td>OSA</td>
<td>Obstruktive Schlafapnoe</td>
</tr>
<tr>
<td>PG</td>
<td>Polygraphie</td>
</tr>
<tr>
<td>PPV</td>
<td>Positiver Vorhersagewert (Positive Predictive Value)</td>
</tr>
<tr>
<td>PSG</td>
<td>Polysomnographie</td>
</tr>
<tr>
<td>REM</td>
<td>Rapid Eye Movement</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver-Operating-Characteristic</td>
</tr>
<tr>
<td>SEN</td>
<td>Sensitivität</td>
</tr>
<tr>
<td>SPE</td>
<td>Spezifität</td>
</tr>
<tr>
<td>STOP-BANG</td>
<td>OSA-Screening Fragebogen (Snoring, Tiredness, Observed you stop breathing, Blood Pressure, BMI, Age, NC, Gender)</td>
</tr>
<tr>
<td>WC</td>
<td>waist circumference, Taillenumfang (cm)</td>
</tr>
<tr>
<td>WH-Ratio</td>
<td>waist-hip-ratio = Verhältnis von Taillen- zu Hüftumfang</td>
</tr>
</tbody>
</table>
7. Eidesstattliche Erklärung

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§156,161 des Strafgesetzbuches) sind mir bekannt und bewusst.“

Datum Unterschrift
Die vorliegende Arbeit ist hinsichtlich der Durchführung und ihrer Ergebnisse unabhängig von der im Vorfeld verfassten Hausarbeit zum Thema „Prädiktoren für Obstruktive Schlafapnoe. Anthropometrische Messungen und ihre Aussagekraft“. Die Ergebnisse der Hausarbeit wurden im Juni 2016 in der Fachzeitschrift Somnologie der Deutschen Gesellschaft für Schlafforschung und Schlafmedizin (DGSM) veröffentlicht:

8. Tabellarischer Lebenslauf

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.
9. Publikationsliste

10. Danksagung

