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Abstract 

(englisch) 

 

Roughly three decades ago, Goodale and Milner proposed the highly influential Two streams 

hypothesis, which separates visual processing into ventral "vision for perception" and dorsal 

"vision for action" pathways.  According to the theory, the latter distinguishes itself by its 

capability to process visual content without awareness. Information on object category is found 

in both pathways and enables targeted functional imaging of neural object processing with 

appropriate stimulus images. A substantial branch of research has examined how object 

processing in each stream differs when stimuli are suppressed from awareness, most often in 

dichotomous visible-versus-invisible designs using a specific method of interocular 

suppression, Continous flash suppression (CFS). A few studies have reported intact processing 

of suppressed information in the dorsal pathway. Yet overall, the evidence regarding differences 

between the pathways under CFS has been inconclusive. In a renewed approach we aimed to 

exlude method-specific effects and adopted an alternative means of stimulus degradation. 

Applying visual noise to modulate stimulus information of tools and faces parametrically, we 

conducted a functional magnetic resonance imaging (fMRI) experiment, testing for differential 

processing of degraded stimuli in the two visual pathways. Our multivariate results and 

Bayesian statistical analysis supported a linear association of stimulus signal and functional 

activity in both visual pathways, albeit with lower absolute measures of stimulus encoding in 

dorsal regions. In line with the current notions of interaction and integration in the realm of 

high-level visual processing, the noise paradigm used in this study provided no evidence for 

differences in degraded object processing between the two visual pathways.  
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Zusammenfassung  

(deutsch) 

 

Vor etwa drei Jahrzehnten stellten Goodale und Milner die einflussreiche Theorie der zwei 

visuellen Pfade auf, die eine Aufteilung der visuellen Verarbeitung in einen ventralen ("Sehen 

zur Wahrnehmung") und einen dorsalen Pfad ("Sehen zur Handlung") beschreibt. Laut ihrer 

Theorie zeichnet sich letzterer dadurch aus, dass die Verarbeitung visueller Inhalte auch 

unbewusst ablaufen kann. Informationen über Objektkategorien finden sich in beiden Pfaden, 

sodass eine gezielte funktionelle Bildgebung mit geeigneten Stimuli ermöglicht wird. Ein 

beachtlicher Forschungsbereich untersucht Unterschiede in der Objektverarbeitung zwischen 

den beiden Pfaden, wenn die bewusste Wahrnehmung der Stimuli unterdrückt wird. Die hierbei 

am häufigsten genutzte Methode ist interokuläre Suppression, insbesondere Continous Flash 

Suppression (CFS), wobei Stimuli meist dichotom als sichtbar oder unsichtbar gelten. Bisherige 

CFS-Studien lieferten bezüglich potentieller Differenzen zwischen den Pfaden, vornehmlich 

der intakten Verarbeitung unterdrückter Information ausschließlich im dorsalen Pfad, 

uneinheitliche Ergebnisse. Um die beobachteten Unterschiede unabhängig von der bisherigen 

Methode zu prüfen, verwendeten wir in dieser Studie eine alternative Suppressionsmethode. 

Mittels Bildrauschen modulierten wir Bildinformation von Werkzeug- und Gesichtstimuli in 

parametrischen Abstufungen und führten eine neue fMRT-Studie durch, um Unterschiede in 

der Verarbeitung von degradierten Stimuli zwischen den beiden Pfaden zu eruieren. Unsere 

multivariaten Ergebnisse und die bayesianische statistische Analyse zeigten in beiden visuellen 

Pfaden eine lineare Abhängigkeit der funktionellen Aktivität vom Stimulussignal, wobei 

dorsale Regionen geringere absolute Werte der Stimulusverarbeitung aufwiesen. Im Einklang 

mit der gegenwärtigen Tendenz zur Interaktion und Integration im Bereich der höheren 

visuellen Verarbeitung, konnte dieses Paradigma bezüglich der Verarbeitung von 

Objektkategorien keinen Nachweis für Unterschiede zwischen den beiden visuellen Pfaden 

erbringen. 
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1. Introduction 

Vision, widely considered the dominant human sense in Western society (Classen, 1997, San 

Roque et al., 2015), occupies a central role both in our perception of the world and in 

neuroscientific research. In our fellow primate, the macaque, the proportion of overall cerebral 

cortex dedicated to visual processing was estimated at 52% (Felleman and Van Essen, 1991). 

It is likely that our own cortex devotes a similarly impressive fraction of processing power to 

this complex sensory modality. Therefore, investigating the structure and function of these 

manifold cortical areas is a major goal in cognitive neuroscience. Current expansive fields 

include research on extrastriate retinotopic processing, on visual attention, visual memory and 

intricate abilities such as object processing. 

In this latter field, the influential ‘Two visual streams 

hypothesis’ (TVSH) was proposed by Goodale and Milner 

(1992) roughly three decades ago. Based on prior work by 

Ungerleider and Mishkin (1982), they postulated that the 

higher-order visual system is split into two functional 

pathways with different purposes. The occipito-temporal or 

ventral stream was termed ‘vision for perception’, 

determining the ‘what’ of our conscious vision (figure 1A). 

The occipito-parietal or dorsal ‘vision for action’ stream tells 

us ‘where’ or 'how'. The latter enables spatial visual attention 

in the viewer's reference frame, and thus movements like 

grasping or eye saccades. Crucially, they deemed that 

processing in this pathway could remain unconscious. This 

phenomenon was exemplified by patient DF, who had 

bilateral lesions in regions within the ventral stream (figure 

1B) and could grasp objects accurately without consciously 

perceiving them (Goodale et al., 1991).  

Both streams can be targeted experimentally by presenting 

certain object categories. The fusiform face area is a classic 

example of a category-selective area in the ventral stream 

(Kanwisher et al., 1997). Visual presentation of faces, 

regardless of orientation, characteristics or current task, reliably 

induces activity in this region (Kanwisher, 2010). Dorsal areas 

Figure 1. A) Visualisation of 
the ‚Two visual streams 
hypothesis’ proposed by 
Goodale and Milner (1992). B) 
Lesions in Patient DF’s ventral 
pathway (James et al., 2003). 
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have also demonstrated processing of object categories. Since these areas have been 

characterised as action-related, manipulable objects such as tools are favoured in this instance 

(Culham et al., 2003). As in the ventral pathway, dorsal object processing does not rely on 

specific orientations or shapes, but rather on category itself, though activity patterns varied with 

different tasks such as viewing, grasping and reaching (Macdonald and Culham, 2015, Freud 

et al., 2016). 

To examine one of the most interesting discrepancies between the streams, namely the 

dissociation of dorsal processing from awareness, a multitude of studies have used various 

methods to degrade or “hide” visual input from consciousness and measure residual processing. 

In the ventral pathway, the relationship between conscious perception and functional activity is 

approximately linear and highly consistent. A decrease in visibility such that conscious 

perception is diminished results in weaker cortical representation of category information 

(Grill-Spector et al., 2000, Tjan et al., 2006). 

In the dorsal stream however, a number of authors have shown preserved functional activity 

when participants viewed tool stimuli rendered invisible by interocular suppression (Fang and 

He, 2005, Tettamanti et al., 2017), a method in which each eye receives different visual input. 

The specific method employed in these studies was Continuous Flash Suppression (CFS), 

which shows a dynamically flashing and highly salient mask to one eye, such that conscious 

perception of a low-contrast stimulus shown to the other eye is disrupted. In line with lesion 

patient DF, dorsal content could be processed and affected participants' behaviour without 

reaching conscious perception. Yet several studies found no such dissociation with similar 

suppression techniques (Fogelson et al., 2014, Hesselmann and Malach, 2011). Even patient 

DF’s accurate hand opening during grasping has been criticised as relying on haptic feedback 

rather than unconscious dorsal visual processing (Schenk, 2012). Reasons for these diverging 

patterns of results have remained unclear. Arguably, suppression techniques may have been too 

dissimilar between studies, allowing for residual liminal conscious perception to reach 

participants’ higher visual cortices in some instances (Hesselmann et al., 2018).  

Recently, a further study tackled this topic in a more nuanced manner. Utilising the above-

mentioned method, CFS, Ludwig et al. (2016) modulated object perception parametrically, 

rather than dichotomously. With six different mask contrasts, they examined the relationship 

between stimulus information, as correlated with subjective awareness, and neural activity 

across a broad range of visibility. As expected, ventral activity displayed a linear dependency 

on mask contrast. Dorsal areas on the other hand revealed a non-linear relationship, which 
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resembled a step-like function. At a particular 

mask contrast, decoding accuracy, as an indirect 

measure of category-specific functional activity, 

dropped to chance performance (see figure 2). 

Though this finding did not match studies which 

had found intact dorsal processing without any 

awareness, these differences in the shape of the 

visibility response function (i.e. linear versus 

step-like) piqued our interest. Might there be an 

all-or-nothing principle in action-related visual 

perception, whereby liminal visual input is cut 

off at a certain point? Could some studies have set their contrasts just beyond this cut-off point, 

whereas others had used stimuli that failed to reach this threshold? 

To answer these questions, we designed a further study with a parametrical approach regarding 

stimulus information. However, rather than using interocular suppression, we decided to 

explore an alternative method of stimulus degradation. While highly effective at disrupting 

awareness, interocular suppression is unlikely to arise in the natural world. More commonly, 

everyday objects are binocularly viewed in noisy settings, e.g. in bad lighting, partially 

obstructed or for short durations. Still, human capacity for object recognition and action 

adaptation in dynamic situations remains remarkably robust.  

In this functional magnetic resonance imaging (fMRI) study, we employed a more natural 

viewing paradigm and used visual noise to modulate stimulus information and obtain a 

distribution of subjective and objective recognisability, focusing on the threshold of awareness. 

We aimed to compare functional representations of stimulus categories in the two pathways 

across the visibility scale, from pure noise to fully recognisable object. In the following text, 

unless otherwise specified, the word "visibility" denotes recognisability of an object in noise. 

 

2.  Methods 

2.1  Participants & Setup 
Twenty-one participants (14 females, mean age 25, range 20-32, 17 right-handed), recruited via 

a student mailing list, took part in the fMRI experiment. Following this first experiment, a 

subset of fourteen participants completed an additional psychophysical experiment with the 

Figure 2. Linear and step-like models of 
stimulus signal (e.g. mask contrast) versus 
functional activity as observed by Ludwig et al. 
(2016). 
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same procedure, except for an added category discrimination task. Before initiation, the study 

was approved by the ethics committee of the German Psychological Society (DGP). Particpants 

were naïve to the purpose of the study and reported understanding the task. None fell asleep or 

showed signs of repeated non-response during the fMRI scanning session. Realignment 

parameters showed negligible movement in the scanner (max. displacement 5 mm, max. 

rotation 3.8°) for all participants. Hence, no participants were excluded. 

We created the visual stimuli (see below) and both the experimental and analytical scripts using 

Matlab 7.9.0 (MathWorks Inc., Natick, MA). Stimuli were presented with The Psychophysics 

Toolbox (http://psychtoolbox.org/). In the behavioural experiment, images were shown on a 

19” CRT screen with a resolution of 1280x960 and a refresh rate of 60 Hz, whereby participants 

placed their heads on a chinrest. Within the scanner, images were presented on a 

NordicNeuroLab 32” LCD-Monitor with a resolution of 1024x768 pixels and an image refresh 

rate of 120 Hz. Viewing distance from the eyes to the screen was 154 cm within the fMRI 

scanner. Thus, each pixel subtended roughly 0.012° of visual angle. 

We acquired functional data via T2*-weighted gradient-echo echo-planar imaging on a 3T MRI 

scanner (Tim Trio, Siemens, Erlangen), recording 214 volumes in each of the six runs. 

Anatomical images were acquired using a T1- weighted MPRAGE sequence. 

 

2.2  Stimuli 
We chose our stimuli with the goal of targeting the two pathways, while controlling for possible 

confounds. Face and tool stimuli were the most obvious and well-tested categories, though the 

variance of shape (i.e. oval faces versus elongated tools) was a potential confound. Therefore, 

we balanced the typically elongated tool stimuli with non-elongated manipulable objects. 

Altogether, we collected thirty grayscale stimuli from prior sets used in our lab. They consisted 

of ten faces, ten elongated and ten non-elongated manipulable objects. To balance the number 

of exemplars per category, face stimuli were doubled. A second potential confound were low-

level image statistics, such as contrast and luminance.  

To start from a balanced baseline before applying noise, all thirty stimuli underwent low-pass 

2D Gaussian filtering, and matching with the SHINE toolbox (see figure 3). 
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In order to generate a spectrum of object information available to the viewer, we then applied 

visual noise to our stimulus images. Beyond manipulating contrast and introducing noise on top 

of an image, one can use Fourier transformations to manipulate image statistics more delicately. 

We chose to adapt a method employed by Roth and Zohary (2015), and first Fourier-

transformed our thirty images to extract each individual phase spectrum. As demonstrated by 

Piotrowski and Campbell (1982), this image statistic most determines recognition of natural 

images. We then generated five noise images per original image with an amplitude spectrum of 

1/f and extracted their phase spectra, too. This type of noise, also called “pink noise”, is 

customary for natural images, e.g. scenes in nature. The power spectrum of an image is the 

second piece of information gained from a Fourier transformation. The total power spectrum 

determines image contrast, and thus variations can compromise low-level image statistics. 

Therefore, we calculated an average power spectrum across all thirty images. We then inversely 

transformed the original image phase spectra and the pink noise phase spectra together with the 

overall average power spectrum. To create a distribution of stimulus information, signal-to-

noise ratios (SNRs) were set at six logarithmically spaced intervals between 10% and 30% 

(image-to-noise). These ratios were found to target the threshold of recognisability in a brief 

behavioural piloting experiment (N=7).  

We decided on a high number of visibility levels to catch artefacts within linearity that might 

suggest a non-linear function due to a shortage of data points. We added one condition of pure 

noise (no signal) and one highly visible ratio at 75%, thus yielding eight noise ratios.  

 

Figure 3. Original thirty stimulus exemplars. They include ten faces, ten elongated and ten non-elongated 
manipulable objects are shown after low-level adjustment with the SHINE toolbox. These images without 
noise were shown to participants once prior to the experiment to ensure recognition of object identity. 
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Luminance histograms, root mean square contrasts and Fourier amplitude spectrums across 

noise levels were similar or almost identical, due to magnitude averaging (see figure 4). We 

used five different noise images for each of the 30+10 stimuli (20 tools, 10 faces + 10 faces) at 

eight image noise ratios to create 1600 images prior to the experiment. They were accessed via 

a fresh randomization matrix for each subject. 

 

2.3  Procedure 
After a short introduction acquainting participants with the stimuli and ensuring comprehension 

of the task and awareness scale (see Fig. 5A), participants were tested on object recognition. 

They obtained printed examples of all thirty stimulus exemplars and were asked to simulate 

using the manipulable objects or to identify an individual’s gender. 

In the main experiment, there were six runs, which consisted of 64 trials and lasted 

approximately eight minutes each. During the trial, participants were shown the stimulus image 

for one second. After a jitter (i.e. variable delay) of 1-3 seconds they were asked to give a 

perceptual awareness scale (PAS) response within 1.5 seconds. In their right hand, participants 

held a response console with four keys in a row, which corresponded to their four fingers 

(excluding the thumb) and mirrored the four circles shown on the response screen. Pressing one 

of the keys changed the circle to an ‘x’ to confirm response registration. The next trial started 

Figure 4. Noise image properties. Sample set of the noisy images at eight visibility levels, with signal-to-noise 
ratios ranging from 0% to 75%. In between, there were six logarithmically spaced intervals to target the 
threshold of object recognition (10-30%). The three rows below display a few important image statistics. In 
order, they are the Fourier amplitude spectra, luminance histograms and root mean square (RMS) contrast. 
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after a jitter of 2-4 seconds. The procedure of the trials is visualized in figure 5B. Altogether, 

the duration of scanning in the main experiment lasted roughly 60 minutes. 

 

 

 
 

All fourteen participants who agreed to the psychophysical experiment had previously attended 

the fMRI experiment. Though constructed to approximate the original fMRI session, this new 

experiment included one crucial addition. Participants were presented with a randomly assigned 

instruction screen at the start of each run, outlining the association of arrow keys with category, 

e.g. “right” for “object” and “left” for “face” (see figure 4C). Rather than passively viewing the 

stimulus at the beginning of each trial, participants were instructed to categorize the object as a 

tool or a face in advance of the perceptual awareness rating (see trial procedure in figure 5D). 

As before, there were six runs of 64 trials. Since participants could reduce presentation 

durations by giving responses, the psychophysical experiment was shorter and lasted roughly 

30 minutes. 

Figure 5. Procedure. Stimulus images in panels B and D are examples, shown here with their SNR. A) 
Instructions for subjective ratings on the perceptual awareness scale. B) Trial procedure inside scanner. After 
a variable delay of 2-4s, the target stimulus was shown for one second. Following another variable delay of 1-
3s, four circles appeared, mirroring participants’ response buttons in their right hand. On button press, the 
corresponding circle turned to a cross. The response screen was shown for up to 1.5 seconds. C) Instruction 
screen shown to participants before each run in the behavioural experiment, persisting until participants 
pressed a button to initiate the run. Here, the left arrow corresponded to “object”, while the right arrow denoted 
the “face” category. Directions were balanced among participants. D) Trial procedure outside the scanner. 
Constructed to approximate the fMRI experiment, this procedure included an additional task while the stimulus 
image was presented: participants were told to categorise the stimulus. 
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2.4 Analysis 

2.4.1 Behavioural analysis 

To analyse participants’ behavioural measures, we averaged responses given during the 

psychophysical and fMRI experiments across participants and plotted them at each visibility 

level. We also report the standard error of the mean (SEM), denoted by the use of “±”. As stated 

above, objective responses (discrimination performance) were collected only in the 

psychophysical experiment. In the plots, the lowest and highest visibility levels stand apart from 

the other data points, since they are not part of the logarithmic scale. Furthermore, the lowest 

level contained no signal, such that categorisation was based solely on a pre-assigned category 

within the code of the noise procedure outlined above. This prior allocation was used to 

approximate a baseline at which one would expect chance performance. 

Since we aimed to compare perceived stimulus information and functional processing between 

the two pathways, it was essential to show a strong correlation of our physical measure of 

stimulus signal (i.e. visibility level or SNR) with subjective awareness (i.e. PAS ratings). 

Therefore, we performed a correlation analysis of mean PAS per SNR and SNR alone. Using a 

Fisher transformation, we report this correlation coefficient, averaged across participants.  

 

2.4.2 FMRI analysis 

Preprocessing, including realignment, slice-timing, coregistering the images to anatomical 

scans and smoothing with 4 mm full width at half-maximum (FWHM) isotropic Gaussian 

kernels was performed in SPM 12 (http://www.fil.ion.ucl.ac.uk/spm) within Matlab 

(MathWorks Inc., Natick, MA). In each condition, activation was quantified via a general linear 

model (GLM) with the haemodynamic response basis function in a block design. It contained 

sixteen regressors (two stimulus categories at eight visibility levels) and six realignment 

parameters in both univariate and multivariate analyses. 

Regarding our regions of interest (ROIs), we decided on a partially data-driven approach. We 

decoded accuracy-minus-chance maps at the highest visibility level for each participant. 

Subsequently, we performed spatial smoothing with a 6 mm Gaussian kernel and normalised 

the maps to MNI space. Via group analysis we estimated a statistical parametric map (SPM) 

across participants, which retained the freedom of setting the activation threshold. We then 

combined these statistical maps with anatomical probability maps from “The Anatomy 

Toolbox” (Eickhoff et al., 2005) using Marsbar (http://marsbar.sourceforge.net/). At the default 

SPM threshold setting, namely family-wise error (FWE) 0.05, ventral regions in the posterior 

fusiform gyrus showed sufficiently strong activation, while some dorsal areas were left with 
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single digit voxel counts. Thus, we used a more liberal, uncorrected threshold of 0.0001 for the 

SPM maps in dorsal ROIs and combined them with the probability maps from the toolbox. For 

both univariate and multivariate analyses, ROIs were transformed into participants’ native 

space. ROIs are rendered in figure 8B. 

Univariate analysis of the data was performed with averaged parameter estimates, which 

quantify mean activation within a defined ROI. The mean beta value was calculated across runs 

and then group-wise per visibility level and for each category in the associated cortical regions, 

i.e. faces in ventral and tools in dorsal areas.  

We conducted multivariate pattern analysis (MVPA) in participants’ native space in each ROI 

in a leave-one-run-out cross-classification approach for tools versus faces using a linear support 

vector machine with The Decoding Toolbox (Hebart et al., 2014),. This kind of analysis is 

suited to decode more distributed information, rather than large-scale, homogenous activity. 

Even without strong mean activation and regardless of positive or negative directionality, it 

remains sensitive to task-relevant patterns of activity (Haynes and Rees, 2006). We performed 

two further MVPA analyses. In the first, we investigated differences between the left and right 

hemispheres by splitting our regions of interest along the midline. The other required 

restructuring of conditions at the level of our GLM, in order to sort our conditions based on 

behavioural responses (PAS ratings) rather than predefined stimulus signal (SNR). In this 

analysis, we attempted a more direct examination of functional processing as related to stimulus 

awareness. 

 

2.4.3 Statistical analysis 

We tested for linearity across visibility levels 2-7, as level 1 and 8 were not on the logarithmic 

scale but rather floor and ceiling values. We performed standard repeated-measures analyses of 

variance (rm-ANOVA) in SPSS (IBM Corp. Released 2015. IBM SPSS Statistics for Windows, 

Version 23.0. Armonk, NY). 

We added a Bayes factor analysis to characterise the relationship between stimulus signal and 

functional activity in the main MVPA analysis. Bayesian analysis computes probabilities of 

various competing hypotheses, based on prior knowledge. These odds are described by the 

Bayes Factor (BF), with any value above 1 supporting the hypothesis, while lower values point 

towards the null or a competing hypothesis. In general, BF above 3 are considered “substantial 

evidence”, BF higher than 10 are “strong” and values over 100 are “decisive” (Kass, 1995). In 

this case, we aimed to compare two models of brain activity in relation to visibility level. We 

tested for a linear as well as a non-linear, or more specifically, step-like model, as in the study 
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outlined in the introduction (Ludwig et al., 2016). The linear model was formulated as 

“accuracy ~ level + participant”, while the non-linear model was formulated as “accuracy ~ 

step + participant”. The values of the level vector corresponded to the six logarithmically scaled 

SNRs ranging from 10% to 30%. We set the value of the step vector at the largest increase in 

decoding accuracy across all six levels. Each model was compared to the null model, resulting 

in a BFL (linear) and a BFS (step). Finally, simply by dividing competing models, we calculated 

a linear-versus-step-like Bayes factor (BFLS). Results > 1 therefore indicate that the data are 

more consistent with the linear model as compared with the step-like model. We performed 

these calculations using the BayesFactor package version 0.9.12-2 by Morey (2015) in R 

(Version 3.3.2; www.r-project.org; R-Studio Version 1.0.136; www.rstudio.com) with the 

factor “participant” as random effect. 

To increase readability, statistical results within this manuscript are reported as p-values only. 

Full statistical details can be found in the published journal article (Darcy et al., 2019). 

 

3. Results 

3.1 Behavioural results 
3.1.1 Subjective 

During the experiment, we asked participants to rate their awareness of the objects and faces in 

noise. Overall, stimulus signal had a considerable effect on subjective ratings, regardless of 

object category and in both experimental settings (p < .001 both inside and outside the scanner, 

see figure 6A-B). Linearity was also observed inside and outside the scanner (both p <.001). 

Subjective ratings cover a comparable range in both behavioural and functional experiments 

across the visibility spectrum. The ceiling and floor values showed consistent minimum and 

maximum ratings at the lowest and highest visibility levels respectively, with an average of 

1.29 (SEM ± 0.05) and 3.79 (± 0.05) outside the scanner and 1.12 (± 0.02) and 3.82 (± 0.04) 

inside the scanner. In a direct rm-ANOVA, we observed slightly higher overall subjective 

visibility ratings in the psychophysical setting (mean: 2.08), compared with the fMRI setting 

(mean: 1.89; p = .05). Both PAS measures and statistical results were similar for each category, 

though faces were rated more visible than tools in the logarithmically spaced levels of 2-7 in 

both experiments. On average, ratings for faces were 0.53 (± 0.04) higher inside and 0.51 (± 

0.04) higher outside the scanner. 



15 
 

 

 
 

3.1.2 Objective 

In the behavioural experiment, we asked participants to give a discrimination response 

regarding stimulus category (i.e. “face” or “tool”). As for subjective ratings, objective 

discrimination performance was also modulated by the factor “signal” (p <.001), and showed a 

significant linear trend, increasing with stimulus signal (p <.001, see figure 6C). At zero percent 

signal, category discrimination approximated chance level (52.2%). As outlined above (2.4.1), 

these stimuli contained no signal, such that categorisation could be neither correct nor incorrect. 

Still, we report these results according to prior allocation during the noise procedure. At the 

Figure 6. Behavioural results (N=21) of fMRI (panel A) and behavioural experiments (panels B-D). Mean 
results are plotted for each visibility with standard error of the mean (SEM) bars. Ceiling (level 8, 75% SNR) 
and floor (level 1, 0% SNR) values are separated from the logarithmically spaced values in between. 
Additionally, the results are split into image categories tools (blue) and faces (yellow). A) Subjective visibility 
in the main fMRI experiment, as measured by the perceptual awareness scale (PAS) of 1-4. B) Analogously 
plotted subjective visibility in the behavioural experiment outside the scanner. C) Objective discrimination 
performance, as a percentage of correct responses plotted against visibility level. Data points at 0% SNR are 
outlined, because their category was randomly assigned. D) Proportion of responses given to each category at 
each visibility level, excluding non-responses (blue = tool, face = yellow). These were plotted to investigate 
the divergence of discrimination performance at low visibility levels. 
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next level (SNR 10%), though participants had rated stimuli between “barely visible” and 

“invisible (mean PAS = 1.49), their performance reached significance (65%, p <.001). From 

the fifth level (SNR 19%) upwards, discrimination performance was reliably above 90%. 

When split into the two stimulus 

categories, the discrimination task 

presented an unanticipated finding. 

There appeared to be a considerable 

bias towards tool categorization at 

lower visibility levels. At 0% signal 

(pure noise), 77% of stimulus images 

were categorised as tools (figure 6D). 

To quantify category discrimination 

bias according to signal detection 

theory, we estimated the sensitivity 

index dprime (d’) and the decision 

criterion C. Arbitrarily, we defined tool 

stimuli as “signal present”, and face 

stimuli as “signal not present”. Then we subtracted Z-scores of false alarms (tool categorisation 

of a face) from the Z-scores of hit rates (tool categorisation of a tool) at each visibility level. 

Figure 7 plots sensitivity index dprime (d’) and decision criterion C relative to the zero bias 

location per SNR. At low visibility levels, discrimination sensitivity (d’) decreases. Calculated 

relative to the zero bias location in units of standard deviation, decision criterion C displays a 

similar shape. In this case, negative values point towards a “yes” response, i.e. categorisation 

of a stimulus image as “tool”. As seen in the figure, lower signal levels biased participants 

towards the response “tool” by roughly one unit of standard deviation. 

 

3.2 FMRI results 
3.2.1 Main multivariate pattern analysis 

Mean results of multivariate pattern analysis for faces versus tools are plotted in figure 8. 

Chance-performance of the classifier is at 50% decodability, since there were two categories. 

At visibility levels one (0% SNR) and two (10% SNR), decoding accuracies were roughly at 

chance in both pathways (range 47.9% - 50.3%). At higher levels, both ventral and dorsal 

decoding accuracies increased. A notable difference concerned maximum decoding accuracies. 

Figure 7. Discrimination response bias. Sensitivity 
index d‘ (grey) and decision criterion C (black, in units 
of standard deviation from zero bias reference line) 
plotted per SNR. Since category “tool” was arbitrarily 
defined as “signal present”, values of C < 0 indicate a 
bias towards a “yes” response, i.e. tool categorisation. 
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While the ventral region reached ceiling decoding accuracies of roughly 80% (max. 81.2%, 

level 8), the strongest results in dorsal ROIs, though significantly above chance, remained 

around 60%. At the highest SNR, intraparietal sulcus showed 61.0% (± 2.79  SEM) decodability 

and superior parietal cortex reached 61.2% (± 2.52 SEM). Maximal mean decoding accuracy 

in inferior parietal cortex was at 62.7% (± 1.25 SEM) at visibility level 7. 

Classical statistics confirmed significant effects of signal on decodability in all ROIs and 

strongly favoured linearity. Apart from IPS, where results were nonetheless significant (p = 

.005), p-values were below 0.001 in all regions of interest. 

We added a Bayesian analysis to quantify probabilities of various models of the decodability 

function as related to stimulus signal (for details of the procedure, see 2.4.3). Both the linear 

Figure 8. Decoding results (N=21). Mean decodability of tools versus faces plotted for each visibility level 
(1-8) with bars denoting standard error of the mean (SEM). Chance performance is at 50%, since there were 
two image categories. Fusiform gyrus is depicted in yellow, while dorsal ROIs are coloured light blue 
(intraparietal sulcus), blue (inferior parietal cortex) and purple (superior parietal cortex). A) Overall decoding 
results in both hemispheres. B) ROIs projected on ventral (FG) and dorsal views (IPS, IPC, SPC) of flattened 
surface maps of the brain. C) Decodability in left and right hemispheres. In right SPC, N=20.  
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BF /null (BFL) and linear BF / step-like BF (BFLS) showed evidence for linearity as the most 

likely hypothesis in all regions. The strongest results were obtained in fusiform gyrus, where 

BFL over 100 supported a linear over a null hypothesis. With the step set between visibility 

levels 4 and 5, a further decisive result (BFLS > 100) also favoured a linear over a step-like 

shape. The same trend was observed in dorsal ROIs. Linearity over a null hypothesis was 

favoured decisively (BF > 100) in IPS and IPC, with SPC showing substantial evidence (BFL 

= 23). With the largest increments between levels 2 and 3 (IPS, IPC) or 6 and 7 (SPC), Bayes 

factors supported a linear over a step-like model in all three dorsal ROIs (IPS = 9, IPC > 100, 

SPC = 96). 

 

3.2.2 Hemispheric analysis 

Using Marsbar (http://marsbar.sourceforge.net/) to split regions of interest along the midline, 

category-selective regions of interest could be defined in both hemispheres, with the sole 

exception of superior parietal cortex in one subject. Their superior PC was empty and thus not 

included in this analysis. As depicted in figure 8C, results in each of the hemispheres were quite 

similar in all ROIs, apart from SPC. Here, results differed strongly, with 61% decoding 

accuracy in left superior parietal cortex versus a chance performance of 50% in right SPC (t(19) 

= 5.04, p < 0.001) at visibility level 8. The most likely explanation for this discrepancy is the 

size of SPC in the right hemisphere. The mean number of voxels across participants was 6 (SD 

= 2), which would have resulted in highly noisy data. As outlined in the analysis section (2.4.2), 

ROIs were combinations of anatomically defined functional probability maps and group-level 

activity for stimuli at the highest signal level. Left superior PC was far larger than its 

counterpart, at a mean of 190 voxels. As previous studies have described category specific 

dorsal regions as left-lateralised (Brandi et al., 2014), ROI asymmetry in this experiment was 

in line with the literature. 

 

3.2.3 Univariate analysis 

Mean beta values at each visibility level are plotted in figure 9. Results were estimated for face 

stimuli in ventral regions and tool stimuli in dorsal regions. There was a clear upward trend in 

both ventral and dorsal ROIs across the visibility spectrum. Repeated-measures ANOVA 

results showed significant effects of signal on beta values and strongly favoured linearity in all 

ROIs but IPC. Both an effect of signal and a linear relationship with visibility level were highly 

significant in FG and IPS (p ≤ 0.001 in all cases), demonstrable in in SPC (p ≤ 0.016), but not 

significant in IPC (peffect = 0.83, plinear = 0.71). 
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Compared to MVPA results, univariate data show a notable discrepancy in inferior parietal 

cortex (IPC). In this region, SNR had no effect on parameter estimates. Univariate analysis is 

most sensitive to large-scale, ideally homogenous activity across a certain region, since mean 

activity gives rise to the parameter estimate. IPC, the largest dorsal ROI in this experiment, 

contained 665 voxels on average, whereas the other two dorsal ROIs, intraparietal sulcus (IPS) 

and superior parietal cortex (SPC) consisted of only 228 and 195 voxels. If a substantial number 

of voxels within IPC were not involved in category processing, these inactive voxels would 

have lowered the mean parameter estimate. Results of multivariate analyses on the other hand, 

are not diminished by these “inactive” voxels. MVPA is capable of decoding more distributed 

activity and retaining sensitivity to task-related patterns, regardless of mean activation or 

positive or negative directionality (Mur et al., 2009, Haynes and Rees, 2006). Therefore, it is 

better suited to reveal “distributed multidimensional effects” of functional brain activity (Davis 

et al., 2014, Kriegeskorte et al., 2006, Jimura and Poldrack, 2012, Friston, 2009). 

 

 
 
 
3.2.5 Awareness analysis 

In this study, our goal was to characterise the relationship between the visual perception of 

noisy stimuli and functional activity in the two pathways. Yet, the results we presented so far 

were plotted against visibility level, rather than direct measures of awareness. In this section, 

we provide our reasoning for this choice. 

As stated above (2.4.1), this study was based on noisy objects intended to target a spectrum of 

visibility around the threshold of awareness. It was therefore paramount that subjective ratings 

of awareness and visibility level (i.e. stimulus signal) were highly correlated. To quantify this 

Figure 9. Univariate results 
(N=21). Average beta values in 
arbitrary units obtained for 
each ROI for its associated 
category (see brackets) plotted 
per visibility level. Yellow 
depicts the ventral region of 
interest, fusiform gyrus. Dorsal 
ROIs are intraparietal sulcus 
(light blue), inferior (dark blue) 
and superior parietal cortex 
(purple). Error bars plot 
standard error of the mean 
(SEM). 
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link, we performed a correlation analysis. The mean Fisher-transformed correlation coefficient 

comparing subjective visibility ratings (PAS) at each SNR and SNR alone was 99.15 % (± 

0.13), indicating a strong correlation. 

Nonetheless, given that we collected subjective measures of awareness during the experiment, 

a direct analysis without predefined measures of stimulus information (SNR) may also be of 

interest. We did indeed perform this analysis and additionally quantified the distribution of PAS 

ratings given by participants during the fMRI experiment (see figure 10). Three participants 

could not be included due to a lack of trials in some conditions and therefore insufficient viable 

runs (3 out of 6). All remaining participants (N=18) retained at least five runs for the analysis. 
 

 

 

As expected from the robust correlation result above, the results demonstrated a clear increase 

of decodability with higher PAS ratings in all ROIs. Most regions clearly exceeded chance 

decodability (50%) at PAS rating 2 (“barely visible”), with the exception of superior parietal 

cortex, which reached robust decoding accuracy at a rating of 3 (“almost clear”). Interestingly, 

at the highest PAS rating, both IPC and particularly SPC revealed a drop in decoding accuracy. 

Performed anlogously to those in the main experiment, ANOVAs confirmed statistical effect 

of awareness rating and linearity in all cases (p ≤ .001 in all regions but IPS, where p ≤ .022). 

Figure 10. Decodability of tools versus faces per PAS rating and overall distribution of ratings (N = 18). 
Yellow depicts the ventral region of interest, fusiform gyrus. Dorsal ROIs are intraparietal sulcus (light blue), 
inferior (blue) and superior parietal cortex (purple). Error bars plot standard error of the mean (SEM). The 
percentages in the pie chart of PAS ratings relate to the proportion of ratings given during the whole fMRI 
experiment (one response per trial), averaged across participants. Non-responses occurred when participants 
did not respond within the allotted time frame (1.5 seconds). 
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This result demonstrated that category processing showed a linear dependency in both 

pathways, even as a direct function of awareness. 

However, since the interesting part of this function was contained within a narrow window at 

the threshold of object recognition, we argue that behavioural ratings of awareness are 

insufficient, particularly since there were only four. Furthermore, subjective intervals between 

ratings were likely somewhat distributed, as evidenced by the large standard errors of the mean 

at the two intermediate ratings. A far more detailed awareness rating task would be required 

and likely overwhelm participants. In addition, an analysis with unequal numbers of ratings is 

not balanced (see figure 10) and therefore more susceptible to noise. For these reasons, we 

concluded that assessing the shape of this function was not sufficiently reliable and therefore 

reported our results in relation to stimulus signal, rather than awareness ratings. 

 

4. Discussion 

4.1 Summary of results 
We successfully modulated both subjective awareness and discrimination accuracy of visually 

presented object categories by applying visual noise. Functional data of twenty-one participants 

who viewed these stimuli, demonstrated a linear correlation between signal-to-noise-ratio and 

decoding accuracy in both visual pathways. Both classical and Bayesian statistical analysis 

verified this relationship. As one might expect, the noisier the stimulus, the weaker the 

associated functional activity in the brain. We confirmed this pattern of results both in a 

univariate analysis and in hemispheric multivariate analyses. The sole exception, the superior 

dorsal region in the right hemisphere, was composed of too few voxels to be considered reliable. 

Further, the linear relationship to functional activity persisted in direct correlation with 

awareness ratings, rather than stimulus information. 

 

4.2 Relation to previous findings 
This study cannot confirm prior work that found behavioural differences or extant dorsal brain 

activity even though participants were unaware of seeing objects (Fang and He, 2005, 

Tettamanti et al., 2017). We found neither preserved activity, nor a step-like reduction at a 

certain noise level (Ludwig et al., 2016). However, there are important methodological 

distinctions, particularly regarding suppression technique, that could provide an explanation for 

deviating results. The studies mentioned above used interocular rivalry, which might allow 
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visual information presented to one eye to extend into higher visual cortices without conscious 

perception. This could not occur with application of visual noise to binocularly viewed images. 

It is therefore possible that the persistence of dorsal processing is contingent on this specific 

suppression method. However, even within this field, results are inconsistent (Hesselmann and 

Malach, 2011, Ludwig et al., 2015, Fogelson et al., 2014). Future studies, perhaps using further 

methods of stimulus degradation, will need to address this matter. 

A recent study by Binder et al. (2017) observed an unanticipated finding regarding dorsal 

activity at higher levels of stimulus information. In their event-related fMRI study, it appeared 

that activity was highest not when stimuli were most recognisable, but at intermediate levels. 

In the present study, a similar pattern emerges in our analysis of activity dependent on 

perceptual awareness ratings in both IPS and SPC (figure 9). The theory examined by the above-

mentioned authors was the “Level-of-Processing hypothesis” proposed by Windey et al. (2013). 

It describes a transition of awareness type along the visual hierarchy, ranging from 

parametrically distributed awareness of low-level visual features (e.g. colour) to an all-or-

nothing principle of visual awareness for high-level features (e.g. enumeration). Testing 

whether these differences in awareness were reflected in activity, they found the highest levels 

of activity at intermediate PAS ratings in areas involved in conscious visual processing, which 

included fronto-parietal and insular regions. These “NCC ROIs” (neural correlates of 

consciousness, NCC), they suggested, might be related to attentional resources recruited due to 

task difficulty, which were not required for invisible nor highly visible stimuli. This establishes 

a link between attentional control networks and conscious visual perception (Corbetta and 

Shulman, 2002), perhaps modulated by expectations (Melloni et al., 2011) and task affordances 

(Bracci et al., 2017). 

Undoubtedly, the dissociation of perceptual processing and “prerequisites and consequences” 

(Aru et al., 2012) of NCC remains challenging, particularly when consciousness research is 

dependent on participants’ report of percept. 

 

4.3 Secondary observations and limitations 
A notable result in our behavioural data regarded category discrimination performance in the 

behavioural experiment, which surpassed chance performance at the lowest level containing 

any signal (level two, SNR 10%, see figure 5). Both PAS ratings (mean: 1.49; halfway between 

“pure noise” and “barely visible”) and decoding accuracies (mean: 49.44 %) did not indicate 

category-related perception nor activity. In search of an explanation, one hypothesis rested on 
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generally higher subjective awareness of faces (mean: +0.52) and the tool bias observed in the 

discrimination task (see figure 6). Possibly, very weak impressions of faces resulted in correct 

identification in some instances, even at low visibility levels. In the others, participants were 

prone to select the tool category, even when they did not see anything. This could lead to an 

above-average performance. To correct for this discrepancy, one would require an adjustment 

to the signal-to-noise-ratios of faces to match those of tool stimuli. On the other hand, 

participants may be predisposed towards predicting that they possess comparatively stronger 

face recognition abilities. This assumption could offer an alternative explanation for the tool 

bias at low signal levels, but it does not clarify the strong categorisation performance at low 

signal levels. 

A further observation pertained to the substantial discrepancy in peak decoding accuracies in 

the two pathways. As opposed to the ventral visual stream, targeting dorsal areas with two-

dimensional images can prove a challenge. A photograph of a tool is not the ideal substrate to 

excite the dorsal visual system, which is typically implicated in visual processing related to 

real-world actions. Studies have shown that activity is altered and often stronger in parietal 

regions when objects are three-dimensional or when there are associated tasks such as reaching 

or grasping, even when these are only imagined (Freud et al., 2018, Cavina-Pratesi et al., 2007, 

Jeong and Xu, 2016, Fabbri et al., 2016). Without affordances for real action, activity in dorsal 

regions is likely not at full capacity. On the other hand, it might be difficult to compare the two 

streams adequately, if three dimensions and possibly real objects and actions are introduced. 

Practically speaking, experimental settings with real tools or faces within an fMRI scanner 

could prove rather challenging. Balancing experiments by requiring actions with ventrally 

processed objects would present its own difficulties and possibly alter activity patterns. 

Approaches gaining traction are augmented and virtual reality. In combination with imaging or 

electrophysiological technology, these methods could deliver highly realistic experimental 

setups within a confined space and offer exciting opportunities for vision research. 

 

4.4 Connectivity and temporal dynamics 
If higher-level dorsal activity is indeed unique in its relation to awareness, one would assume 

at least partial segregation from the ventral pathway, allowing functional autonomy. Yet 

increasingly, research on the two visual pathways is rejecting the hypothesis of functional 

independence. Rather, the two streams appear to interact and support each other in their 

respective capabilities. One of the originators of the two-streams hypothesis, David Milner, 
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recently reviewed examples of this process (Milner, 2017). He proposed that ventral processes 

could assist the dorsal system in complex visuomotor behaviour plans, while dorsal processing 

may support three-dimensional visual perception in ventral regions (see figure 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reviewing functional and behavioural data of healthy subjects and neuropsychological 

evidence from patients, several authors have demonstrated these interactions (Schenk and 

Mcintosh, 2010, Cloutman, 2013, van Polanen and Davare, 2015). Further important 

contributions emerge from anatomical data, e.g. histological studies on non-human primates or 

diffusion MRI in humans (Martinaud, 2017, Binkofski and Buxbaum, 2013, Budisavljevic et 

al., 2018, Felleman and Van Essen, 1991). Together with functional studies (Takemura et al., 

2016, Rokem et al., 2017), these have shown extensive reciprocal connections between the two 

pathways at multiple levels.  

A further dimension to consider is time, in which the two pathways likely play different but 

complementary roles, e.g. in upholding visual spatial constancy (Wu, 2014). A recent study by 

Erlikhman et al. (2016) used multivariate fMRI to investigate the construction of 

spatiotemporally dynamic object identities. Discussing patterns of activity found both in early 

motion-sensitive and higher-level parietal regions such as IPS, they argued that the visual 

pathways cooperate to integrate spatiotemporal object representations. 

 

Figure 11. An updated version of the two-visual-streams hypothesis with a 
list of potential capacities for inter-stream interaction as outlined by David 
Milner (2017). 
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4.5 Updated theories and future considerations 
The TVSH, as proposed thirty years ago, has been an important driver in the investigation of 

higher visual processing. Though one can no longer support a strict purpose-led divergence of 

visual processing, nor be certain that dorsal processing can operate in an isolated, non-conscious 

sphere, it remains highly influential. The observations of patients with apperceptive agnosia, 

such as DF, await further efforts to update our understanding of visual object processing. 

As is often the case, the more a natural phenomenon is studied, the more complex it seems to 

become. To keep up, the general trend in biological and particularly neuroscience has moved 

towards computational modeling. The hope is that the gap between theory-based “top-down” 

science and empirical behavioural, functional and physiological data can be bridged.  

Future studies on higher-level visual processing would do well to consider attentional and task-

related affordances of stimulus objects, ideally incorporating activity due to attentional control 

networks in their models (Bracci et al., 2017, Bugatus et al., 2017). In differentiating and 

characterising subcomponents of the two visual streams, it would appear that sophisticated and 

possibly connectivity-attuned methods, e.g. MVPA, representational similarity analyses and 

dynamic causal modelling, are appropriate. Temporal characteristics and dynamics may be 

better characterised with electrophysiological methods that allow high temporal resolution, 

such as magneto- or electro-encephalography. Furthermore, transcortical magnetic or electrical 

stimulation can be applied to better infer causality by selectively disrupting cortical activity. 

Particularly regarding the dorsal stream, virtual reality may prove valuable in enabling three-

dimensional, dynamic and possibly interactive experimental settings, thus bearing a much 

closer resemblance to the environment in which the human visual system developed.  
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