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Abstract: Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat
electronic bands and forms a strongly correlated electronic platform. Here, we use scanning tunneling
microscopy to probe local properties of highly tunable twisted bilayer graphene devices and show that
the flat bands strongly deform when aligned with the Fermi level. At half filling of the bands, we observe
the development of gaps originating from correlated insulating states. Near charge neutrality, we find a
previously unidentified correlated regime featuring a substantially enhanced flat band splitting that we
describe within a microscopic model predicting a strong tendency towards nematic ordering. Our results
provide insights into symmetry breaking correlation effects and highlight the importance of electronic
interactions for all filling factors in twisted bilayer graphene.
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Electronic properties of metals, insulators, and semiconductors are frequently described in the framework
of non-interacting electrons. This description works remarkably well when the kinetic energy of electrons
at the Fermi energy, as set by the dispersion of the electronic bands, is large compared to the Coulomb
interaction. However, the kinetic energy is quenched in materials with almost non-dispersive (flat) bands.
In these materials, interactions between electrons may give rise to the formation of novel strongly
correlated electronic phases. Twisted bilayer graphene (TBG) has recently emerged as a highly tunable
and surprisingly simple platform for the experimental investigation of such strongly correlated phases (1—
3). Two layers of graphene are stacked with a twist angle of 8 and form a periodic moiré pattern (Fig. 1A),
localizing electronic wave functions (4—7) in regions in which carbon atoms are stacked on top of each
other (AA stacking).

While monolayer graphene is well described in terms of free Dirac electrons (8), in a bilayer hybridization
significantly alters the electronic band structure — particularly when the layers are twisted by a small angle
0 < 3 ° (9-17). In this case, interlayer hybridization results in the formation of two low energy bands
separated by a gap from the higher energy dispersive bands (Fig. 1B and 1C) (5-7, 18-20). The resulting
van Hove singularities (vHs) generate maxima in the local density of states and can be probed directly
using scanning tunneling microscopy (STM) (10). As the twist angle is reduced, the vHs move closer
together. Finally, close to the magic angle value 8 =1.1° (5) the bands become flat.

Near the magic angle, electron-electron interactions dramatically modify the electronic properties of TBG
due to the quenching of kinetic energy. Interaction effects have been observed in recent transport
experiments (1-3, 17), which reveal the existence of correlated insulating and superconducting states.
The strong correlations along with the large number of atoms in a moiré unit cell pose substantial
challenges to a microscopic understanding of this system. Local probes such as STM can thus provide
invaluable information, both on the electronic band structure and correlation effects.

Figure 1D shows a sketch of the experimental setup. The starting point is a van der Waals structure
consisting of twisted bilayer graphene placed on top of a thin boron nitride (BN) layer. An approximately
10 nm thick metallic graphite multilayer is placed underneath the BN and serves as a back gate. The
twisted bilayer and the back gate are contacted separately using predefined gold electrodes. The main
difference with previous STM measurements (14-16) on gated bilayer graphene is our careful alignment
of the graphene layers close to the magic angle and the use of a graphite back gate that is shown to reduce
disorder effects (3, 21). Unlike the samples used for transport studies, the TBG in our experiments is not
covered by BN; see Fig. 1E and (22) section 1. In line with previous experiments (3, 14, 23), we find that
our TBG is not uniform across the entire sample, forming domains with different local twist angles. We
show results from two devices with domains exhibiting angles in the range 1° <6 <2° measured at an
effective temperature of T=1.5K as calibrated on the superconducting gap of a lead crystal.

Figures 1F and 1G show topographies of two devices with distinct moiré superlattice periodicities of Ly =
7nm (Fig. 1F, device D1) and Lm = 13nm (Fig. 1G, device D2). We estimate a local twist angle 6 from the
area of the moiré unit cell and find =1.92" and 8 =1.01°, respectively. The topographies show an apparent
periodic height increase of approximately 3-8A which reflects the increased local density of states of the
AA stacking regions, confirming the formation of a moiré lattice (6). We typically observe that the moiré
superlattice is not strictly threefold symmetric as the periods in the three directions can differ by
approximately 5-10%.



Figures 1H and 11 show the observed point spectra for the non-magic twist angle 8=1.92" at various back
gate voltages Vgg. All point spectra are taken on AA regions where the flat bands predominately localize.
The two peaks in the local tunneling density of the states (TDOS) are identified as vHs separated by
approximately 150meV. This splitting is consistent with previous STM results for similar angles (10).
Changing the position of the Fermi level relative to the vHs via the back gate shifts the positions of the
two peaks in bias voltage, but leaves their separation and overall line shape approximately unchanged.
This is consistent with a simple band-structure picture (see (22), section 2, for data at larger 6).

For regions near the magic angle (6 =1.01°), the observed spectra differ qualitatively (Figs. 1) and 1K).
Here, the overall peak shapes change dramatically as they approach the Fermi energy (Vsias = 0OmV). The
peak approaching the Fermi level sharpens and increases in height, signaling a rapid decrease in lifetime
broadening. This feature is seen for both electron and hole doping. Moreover, the splitting between the
peaks is highly sensitive to Vg, (see also Fig. 2 and the corresponding discussion) indicating that electronic
correlations cause deviations from a simple band-structure picture of the flat bands.

The detailed evolution of the local TDOS as a function of electron density for device D1 (6=1.04") is shown
in Fig. 2A. Higher doping levels could be accessed in device D1 due to a slightly thinner gate dielectric.
When the electronic flat bands sit below the Fermi level (3.8V< Vgg <10V), the completely filled bands shift
linearly as Vg is reduced. The slope of AVeg/AVeias = 1V/5mV is directly proportional to the density of states
(DOS) An/Ap at the Fermi level in the regimes where electronic correlations are weak (with n being the
carrier concentration and p the chemical potential). When the DOS is high, the slope AVge/AVsis is large
as substantial changes in back-gate voltage are needed to shift the chemical potential. In the opposite
limit, when the Fermi level passes through a gapped region, the slope AVgg/AVsis is close to zero. The
linear shift of the peaks for 3.8V< Vg < 10V indicates a constant DOS as expected when the Fermi level is
located in the non-flat (dispersive) bands, as illustrated in Fig. 2B.

The slope is reduced in the gate range 2.7V< Vg < 3.8V (Fig. 2A, orange line) just before the flat bands
start to cross the Fermi level. This observation indicates a gap between the flat and the upper dispersive
band, of approximately 25meV according to the total shift in the chemical potential over this range of Vg,
. The finite slope in this region signals a remnant density of subgap states that likely originates from
localized states often observed in STM measurements (9, 10, 16). We also find that the gap decreases for
smaller twist angles (Fig. 2C) as predicted theoretically (24). The extracted gap values strongly suggest
that the additional bands become increasingly important as the angle drops below 1° (5), thus setting a
lower bound on the twist angle for observing correlated insulating states.

For -9V< Vg <2.7V, the bands become significantly distorted due to electronic correlations. We observe
several suppressions of the TDOS at the Fermi level, and the slope AVggs/AVsias changes repeatedly. First,
the slope is large as the upper flat band with its large DOS crosses the Fermi level (-1V< Vgg < 3V). In this
region, suppressions of the TDOS near Vgias = 0OmV are observed, as discussed in more detail in Fig. 4. As
the upper flat band is depopulated, the slope AVge/AVsias Of the upper vHs peak sharply decreases, while
the slope of the lower peak barely changes, enhancing the apparent splitting between the bands. At Vg =
-3V, the splitting becomes maximal. Changing Vs, further, the splitting of the peaks diminishes (for -6V<
Vgg <-3V) and then peak corresponding to the lower flat band passes through the Fermi level exhibiting
several TDOS suppressions (for -9V< Vg <-6V). The total range of AVsg = 13V over which the two flat bands
cross the Fermi level is expected to change the charge density by Aq = 8e /A = 1.6e-19Cx5.46e12 cm? (A
is the measured area of this moiré unit cell) corresponding to filling of the two bands by a total of 8



electrons. This matches the change in charge density extracted experimentally based on the gate
capacitance for a BN thickness dsn = 40nm as measured by AFM, and a dielectric constant egny = 3. The
relation between the Vg, range and a density change of 8e’/A is accurate to within 7-10% and allows us to
reliably determine Vgg values corresponding to fractional fillings of the flat bands.

One of the surprising results of the experiment is the enhanced splitting between TDOS peaks around the
charge neutrality point (CNP) compared to the splitting of the fully occupied bands Acne = 15+5meV, Figs.
2D and 2E. This enhancement only stands out in a full bias-versus-back gate density map and hence has
not been reported in transport measurements, which are only sensitive to energy scales of a few meV
from the Fermi level. Exchange interactions are plausible origin of the enhanced splitting at the CNP in
analogy with quantum Hall ferromagnetism (25, 26). In this scenario, the strong exchange interaction
pushes the bands apart when one of the flat bands is completely filled and the other completely empty.
Two important differences distinguish TBG from quantum Hall systems. First, no external field is needed
as flat bands are already present at zero field; and second, the exchange interaction may not open a hard
gap. Certain points in the Brillouin zone (away from the flat regions of the band causing the vHs) may
remain gapless as a result of the preserved symmetries (27, 28).

We support this interpretation by calculations within the framework of a ten-band model for TBG
developed in Ref. (29). The model captures the non-interacting band structure of magic-angle TBG and
incorporates all relevant symmetries. Although its overall bandwidth for the flat bands and the vHs peak
splitting (7meV and 1mV, respectively) are small compared to our observations, the model provides
qualitative guidance on interaction effects, including broken symmetries. To account for interaction
effects, we have added a symmetry-preserving short-range interaction of strength E. (see (22), section 5,
for details) and solved the model self-consistently within mean-field theory assuming that the symmetry
between the four flavors (spin and valley) remains unbroken. We find several nearly degenerate broken-
symmetry states (see (22), section 5, for additional discussion). The solution breaking Cs symmetry
qualitatively reproduces the observed splitting near the CNP (Fig. 3). Other features such as the overall
broadening of the bands near CNP are also qualitatively captured. The resulting solution shows that the
peaks in the LDOS are split by an amount set by E.. For 1< E./W <2, with W being the bandwidth of the
non-interacting model, the relative increase in the splitting matches well with our experimental
observations (Fig. 3A-C). The competitive energy of the Cs-breaking solution suggests a high susceptibility
towards nematicity (30, 31); effects such as sample strain and unaccounted electronic correlations can
plausibly stabilize this order as the unique ground state. Figures 3D and 3E show the corresponding band
structure across the Brillouin zone indicating the presence of two Dirac points protected by C,J symmetry.
Moreover, the model predicts that the breaking of the C3 symmetry is spatially most pronounced in the
LDOS at the bridges connecting different AA sites for energies close to vHs peaks, as calculated in Fig. 3F.

Consistent with these theoretical findings, spatially resolved TDOS maps taken on sites within the most C;
symmetric moiré regions show strongly anisotropic TDOS profiles near the CNP (Fig. 3G). Experimentally,
the most pronounced anisotropy is observed near the Fermi level when the TDOS at AA sites is
suppressed, thus highlighting the bridge areas. Small energy-dependent variations for different directions
are however noticeable even when the TDOS at AA sites is larger, signaling competition between the
effects of strain and electronic correlations. Notably, the most pronounced bridge direction changes
dependent on whether Vgia, is adjusted to probe the lower or upper flat-band peak as expected from the
model calculations (Fig. 3F). We note that the moiré periodicities in this particular area are Lma = 13.8 nm;
Lve = 13.7nm; and Luc = 14.2nm, indicating the presence of only 0.1%-0.2% of uniaxial heterostrain (32,

4



33). These values of external strain correspond to energy scales of 0.1-0.5meV which is much smaller than
the energies corresponding to TBG lattice relaxation effects (24) or electronic correlations measured here.
This implies that strain alone is unlikely to explain the measured anisotropies and suggests the formation
of a nematic ground state of TBG near the CNP.

Finally, we focus on the states near half filling of the flat bands (Fig. 4). Figure 4A shows the point
spectroscopy as a function of Vg, for a moiré site with a local twist angle 8 = 1.01° (D2). In addition to the
interaction-enhanced splitting at the CNP, a suppression in TDOS is observed near half filling both for
electrons and holes, signaling the emergence of correlated gaps. Line cuts close to half filling (Fig. 4B and
4C) show gap values between 2 and 4 meV that are slightly higher than the values extracted from thermal
activation in transport experiments (1, 3). We suspect that this difference reflects effective disorder
averaging over the sample area in transport measurements which naturally reveals a reduced gap.

To better resolve the dependence on the flat-band filling, we plot the zero-bias TDOS as a function of Vg,
in Fig. 4D. The trace shows local minima of the zero-bias TDOS for half filling of the flat bands, consistent
with correlated ground states at these fillings. The observed gaps typically occur near half filling, although
they are sometimes offset, presumably due to local electrostatic disorder, strain, or tip-related effects.
Occasionally the less developed states at one-quarter and three-quarter filling may also be resolved (black
arrows in Fig. 4D). These observations strongly indicate that the measured gaps originate from correlated
states at commensurate fillings and are distinct from other effects such as the Coulomb gap (34) that can
also suppress the TDOS near the Fermi level in 2D systems with strong electronic correlations (35-40).

Our results provide a local, spatially resolved picture of the electronic phases of TBG near the magic angle.
We found that the band structure of the flat bands is considerably broader than anticipated and
comparable to the Coulomb interaction energy scale. At half filling, we observed gaps for both electrons
and holes which are consistent with the emergence of correlated insulating states. Our results show that
these interaction effects are robust against small deviations (of the order of 0.1°) from the magic angle.
This suggests that strain and disorder play more important roles for the observability of correlated states
than an extremely precise angle alignment. For twist angles below 0.9°-1°, however, the band gap
between the dispersive and flat bands becomes considerably smaller (24). This sets a lower bound on the
twist-angle range for which correlated flat band physics can be accessed, as the additional bands become
relevant for smaller angles (5, 24). At charge neutrality, our results indicate that the ground state exhibits
nematic order and breaks C3 symmetry due to exchange interactions. Theoretically, one would expect that
a similar exchange-driven mechanism opens a hard gap at fractional fillings when spin and valley degrees
of freedom are taken into account (25, 41). How superconductivity emerges from such symmetry broken
correlated insulating states remains an open question.

Note added: During preparation of this manuscript, we become aware of related work (arXiv:1812.08776).
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Figure Captions:

Figure 1: Twisted bilayer graphene (TBG). (A) The twist angle 8 in TBG gives rise to the formation of a
triangular moiré lattice of regions corresponding to AA stacking (blue circles) with period Ly separated by
AB and BA stacking regions (see green circle and the corresponding inset). Large density of states is
expected to be localized on the AA regions (4-6). (B, C) Schematics of the TBG band structure and the
corresponding density of states showing vHs peaks. For angles close to 8 = 1.1° correlations are expected
to deform the vHs peaks (marked in red). (D) Schematic of the experiment: TBG is placed on top of an
atomically smooth dielectric (boron nitride, BN) and back gated by an approximately 10nm thick graphite
layer. (E) Optical image of the sample. Dashed areas correspond to two graphene layers. Scale bar
corresponds to 20um. (F) Topography showing the moiré pattern for 6=1.92° area of device D1. Note that
Lm is not identical for the different directions (Lwa = 7.1nm; Lug = 7.6nm; Luc = 7.3nm) indicating small
external strain in the sample. Set point conditions: Vs=-200mV and Is= 50pA. (G) Topography for 6=1.01"
area of device D2 (Lwa = 13.8nm; Lug = 13.7nm; Lvc = 14.2nm). Set point conditions: Vs= 500mV and |s=
50pA. (H, 1) Spectroscopy on an AA site for slight electron (H, Vsg= -0.6V) and hole (I, Vg; = -4.6V) doping
induced by a back gate voltage Vgg, for 6 = 1.92°. (J, K) Spectroscopy on an AA site for slight electron (J,
Vg =-0.7V) and hole (K, Vg = -3.6V) doping close to the magic angle 6=1.01".

Figure 2: Evolution of the TBG point spectrum with back-gate voltage. (A) Point spectra on an AA site as
a function of Vgg, which tunes the overall charge density and therefore the position of the Fermi level. The
data allow identification of different regimes indicated by the colored horizontal lines. Green — Fermi level
in the dispersive bands; orange — Fermi level in the gap between the flat and dispersive band; red — Fermi
level in the top flat band; gray — Fermi level in the bottom flat band. (B) Schematics of the TBG band
structure with colors indicating the different regimes shown in (A). (C) Gap between the electron flat band
and the upper dispersive bands vs angle as extracted from similar data for different angles. (D) Line traces
from (A) for fully occupied bands (red, Vez = 9V) and close to the CNP (blue, Vgg = -3V). (E) Difference Acnp
between the combined bandwidth at the CNP and away from the CNP as a function of angle 6.

Figure 3: Model calculations and breaking of C; symmetry. (A) Density of states as a function of energy
and filling for a single flavor ten band model with short range Coulomb interactions. The value of E./W=1
is chosen to qualitatively match the experiment upon a scaling factor of approximately 15. (B, C) Line cuts
at the CNP and at filling ni=-1 showing enhanced splitting at the CNP and broadening of the peaks
compared to the non-interacting model. (D) Calculated band structure across the Brillouin zone showing
the position of the Dirac points at the CNP. (E) Band structure obtained from the Cs-broken state for
different filling factors (left to right n=-0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75). Upper (lower) panels
correspond to the electron (hole) flat band. (F) Calculated local density of states (LDOS) profiles at the
bridges connecting different AA sites, represented with lines of width directly proportional to the LDOS
(see (22), section 5, for more details). (G) Spatially resolved TDOS maps near the CNP highlighting
anisotropy at different bias voltages Vaias (With Vg = -4.5V). From the upper left corner to the lower right:
-18mV; -12mV, upper panels; -8mV; O0mV, central panels; 8mV; 12mV, lower panels.

Figure 4: Spectroscopy at half-filling of the flat bands. (A) Waterfall plot showing the evolution of point
spectra as a function of Vgg around the CNP for an AA site in an area with 8=1.01". Line cuts corresponding
to half filling on the electron and hole side are shown in (B) and (C). (D) Conductance at the Fermi level
(Veias=0mV) showing dips in the TDOS near half filling on both the electron and hole side as indicated by
green and magenta rectangles. The black arrows indicate the expected positions corresponding to one
quarter and three quarter filling. Blue areas correspond to the charge neutrality and the onset of the
upper dispersive band.
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Materials and methods
The measurements are performed in a Unisoku USM 1300J Scanning Tunneling

Microscopy/Atomic Force Microscopy system in STM mode. We use a Pt/Ir tip prepared on a
silver (Ag) crystal by observing quasiparticle interference and a spectrum that shows the Ag(111)
surface state. Before approaching the TBG sample, we verify that the density of states of the tip
is featureless in the range of +/-200mV by taking spectra of the gold electrodes before and after
the measurements. We have measured in total five devices and three of them showed a moiré
pattern with a period close to 13nm corresponding to a twist angle 8 = 1.1°. Two of these devices
were gate tunable in the range between +/- 10V. The effective electron temperature of the
system T = 1.5K is calibrated on the superconducting gap of a lead Pb(110) crystal mounted in a
similar measurement configuration as the twisted bilayer graphene. The lock-in parameters are:
excitation voltage Vac = 400uV-1mV and frequency f = 433Hz. The scanner calibration and the
topography data are verified on the Pb(110) crystal.

Supplementary Text

Section 1 - Sample fabrication and measurement details

Figure S1 outlines the fabrication steps for twisted bilayer graphene (TBG). We used the tear-
and-twist technique following similar procedures outlined in Refs (1, 15, 17). After picking up a
30-50nm-thick boron nitride flake using Polydimethylsiloxane (PDMS) coated with a
Poly(bisphenol A carbonate) (PC) polymer, the graphene is torn into two parts which were
subsequently picked up while controlling the twist between the parts. The entire stack is then
transferred onto a separate PDMS film in order to flip the order of the layers (Fig. S1 left panel).
In this step, PC is dissolved in a N-Methyl-2-pyrrolidone (NMP). Afterwards the PDMS with the
inverted stack structure is transferred onto a prepared silicon oxide chip with prepatterned
electrodes and a 10nm thick metallic graphene multilayer that is used as the back gate (Fig. S1
right panel). The twisted bilayer graphene (TBG) is then contacted to the gold electrodes using
additional few layer graphene contacts. During device fabrication special care is taken so that the

temperature of the sample never exceeds 150°C to avoid untwisting of the TBG (1).



[PDMS : [PDMS | Figure S1. Critical steps of device fabrication
— o

= s sequence. After picking up the BN and graphene

BN , :
TBG : =
[PDMS | i flakes, the stack is transferred and flipped onto a
i |Si/sio2
second PDMS stamp that is used for a second

transfer onto the graphite back gate. In a separate step, a few-layer graphene is transferred to

contact TBG with a bias electrode.

Section 2 - Data on 4.8nm moiré pattern

Fig. S2 shows a dl/dV map for the Lw= 4.8nm (device D2) moiré pattern. The charge neutrality
point and both vHs peaks move in parallels following the quadratic relation between charge
density n and chemical potential i, |n| = a p? (up to an offset in Vaias and Vgg ). This suggests that
in this regime the density of states between the vHs peaks follows approximately a linear
dispersion as expected for large twist angles. The vertical offset between the two branches is a
consequence of tip-induced gating, which is explained in the following section. We note that this
effect may explain the apparent small increase in the distance between the van Hove singularities
at the CNP observed in Ref. (14). Importantly, the relative enhancement of the peak splitting for

angles close to the magic angle value is too large to be explained by this effect.

10 -
Z
— =
= o
=& %
5
-10 0
-200 Vg (mV) 200

Figure S2. Spectroscopy of the AA sites for 6=3°, device D2. Dashed lines correspond to a fit
|n|=au? where W is u = -eVgias and n= Cgg Veg. The small vertical offset of the two branches that
gives rise to a small enhancement in splitting in the Vgias direction is due to tip gating as discussed

in following section.



Section 3 - Tip related effects

Dynamic strain effects

Occasionally we observe topographies with pronounced hysteresis, especially for parameters
when the STM tip-sample distance is reduced (for example Vgias=£200mV, set point current
100pA or more). Similar STM-tip-induced strain effects have been previously reported for moiré
patterns in single layer graphene/ boron nitride heterostructures (42) as well as in graphene on
silicon oxide (43). The intuitive understanding of this effect is that when the interaction between
the tip and the sample is strong, the tip can slightly displace the carbon atoms as it scans over
the surface and consequently shift the moiré pattern boundaries. We have performed a similar
analysis as in Ref. (42) and have obtained strain maps illustrating this effect (see Fig. S3). In
addition to these strain related effects, we have also observed other signatures of tip-graphene

interaction, such as hysteresis in the current vs height relation I(z).
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Figure S3. (a) Topography of the strained region close to the magic angle (Lm = 13nm) in device
D1 and the corresponding strain map (b). The map represents the local lattice constant obtained
by coarsening the topography grid into discrete pixels and performing a Fourier analysis of the
3nmx3nm area around each pixel and selecting one particular direction. Other directions show a

similar dependence. Scale bar is 10nm for both plots.

The dynamic strain effects are not observed consistently throughout both samples. The strain is

typically observed in areas close to the magic angle in device D1 and in certain areas away from



the magic angle in device D2. Also in regions close to the magic angle in device D2, the moiré
superlattice is more uniform and there is overall less strain. From these observations we conclude
that the presence of intrinsic external strain is needed in order to observe the dynamic tip
induced strain effect. Also different STM microtips may have different sensitivities to these
effects. Importantly, we do not see a qualitative difference in the spectroscopy data between the
two devices indicating that these effects do not play a significant role in determining the local
density of states. This is consistent with the previously reported observations in Ref. (42). While
this effect produces artifacts in the topography, it does not change it permanently so the distance

between AA sites and hence the twist angle 8 can still be obtained accurately.

Effects of the tip screening

Due to the close proximity between the STM tip and the sample, one might expect that the
presence of metallic objects will facilitate screening of electronic correlations. In this section, we
give estimates of the strength of the electron-electron interaction in this system. Indeed, in the
presence of the metal tip which provides additional screening the interaction energy scale can
be greatly suppressed compared to the pristine unscreened case. A naive estimate for the
electrostatic energy for two electrons placed Lm=13nm apart is given by e?/(4neepnLm) = 36meV.
This estimate is enhanced further to approximately 50meV if we consider that we have the boron
nitride dielectric only on one side. However, in the presence of a metallic tip this interaction is
locally screened considerably. For a tip-sample distance of 1nm (taken as an upper limit), the
Coulomb-energy scale would scale as (1/Ly — 1/V(L3, + 4zt2ip)) resulting in an interaction
energy of 0.5meV for Lm=13nm. More precise estimates for the decay of the Coulomb interaction
are presented in Figure S4 as obtained by electrostatic simulations that take into account the
presence of the metallic tip and the surrounding dielectric. The values of ~ 10mV extracted from
comparing our experimental results to the model calculations presented in the main text are

consistent with these estimates.
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Figure S4. (a) 3D Electrostatic simulation of the potential that takes into account the tip sample
geometry. Blue circle represents a metallic tip with the fixed potential V=0 and the rectangle
corresponds to the dielectric slab. The small circle was charged by 1.6e-19C and the slice
represents the decay of the potential along the y-z direction. (b) Decay of the potential as a
function of distance. Different lines correspond to numerical calculations with and without the

tip as well as theoretical estimates corresponding to 1/d decay and (1/d-1/v(d?+4z:p?)) decay.

Tip induced gating and work function difference between TBG and the tip

It is established that the STM tip can change the local potential in semiconducting samples due
to a finite screening length as observed in InAs (44) and monolayer and bilayer graphene in
magnetic field (40) as well as other semiconducting systems. We have systematically observed
the formation of quantum dots in the regions close to the magic angle indicative of the formation
of insulating states. The induced quantum dots introduce a series of sharp resonances observed

as almost horizontal lines crossing the features in Vaias vs Vgg conductance maps.

The observed resonance can be utilized to characterize the electrostatic properties of the
guantum dot and determine the capacitance of the tip Crip and the work function difference
between the tip and the twisted bilayer graphene. In order to do this, we take measurements at
different tip heights, i.e. different set points. Figure S5 shows a typical spectrum on an AA site for
two different set currents of 100pA and 1nA. Lines (indicated by arrows) mark some of the
resonances originating from the quantum dots. The slope of the lines directly measures the ratio

between the tip and the back-gate capacitances Crip/Cgg, and it is approximately 20 for device D2.



The tip capacitance changes when the tip moves closer to the sample. This is reflected in a change
of the Vgias/Veg slope. Another effect observed is the overall shift of the positions in point
spectroscopy Vaias Vs. Vg plots for which the upper flat band touches the Fermi level and also the
position of charge neutrality. The shift of these points indicates that tip-induced-gating changes
of the electron density underneath the tip, which is tip-sample distance dependent. This effect is
a consequence of a difference between the work functions of the metallic tip and the twisted
bilayer graphene.
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Figure S5: Spectroscopy of the AA site of device D2 for 100pA (a) and 1nA (b). Black arrows
indicate resonances originating due to tip-induced quantum dot. Note that the overall position
of the point where the flat bands start crossing the Fermi level (Vgias = OmV line) as well as the

charge neutrality point shift towards more negative back gate voltages.

In a simple model, the charge density of the TBG underneath the tip can be written as:

n(r,z) = Cgq (VBg - VBias) — Crip (r,2) (Vpiqs — AP),

where 4 is the work function difference between the tip and the sample. Specifically, when the
tip moves closer, the charge neutrality point moves towards more negative voltages (Vsg=-6.8 V
at CNP for 100pA setpoint and Vgg=-8.6 V at CNP for 1nA). Also, the slope of the lines changes
reflecting a change in the capacitance (Crip/Csg = 20 for 100pA setpoint and 24 for 1nA setpoint).
By solving the equation for the charge density at charge neutrality for two setpoints, one gets an
estimate for 4@ = 150-200mV. We note that the STM tips in our measurements are prepared on
a silver crystal that has a smaller work function compared to graphene which results in the

observed n-type doping.



Section 4 - Areas with different twist angle
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Figure S6. Examples of different areas of device D2 with the twist angle 6 = 2.92° (a); 6 = 1.31°
(b); ©6=0.97° (c); 6 =1.07° (d). Set point conditions: Vs=-200mV and Is= 30pA (a,b); Is= 100pA (c,d). In
all samples we would typically find small clean areas with the lateral size of 50nm for which the

angle 8 is constant. Larger scale areas show significant amount of fabrication residues and strain.



Section 5 - Theoretical Modeling

In this section we describe the theoretical model used to study the exchange effects in twisted
bilayer graphene. We begin by reviewing the non-interacting Hamiltonian that serves as our start-
ing point, before introducing Coulomb interactions and deriving a mean field Hamiltonian. We

next present our results, and close with a brief discussion.

A. Ten-band model for magic-angle bilayer graphene

Here, we briefly describe the ten-band model for magic-angle bilayer graphene, which was
first introduced in Ref. (29). It has been shown (27,28) that the flat bands of magic-angle bilayer
graphene cannot be captured by any minimal tight-binding model involving only the flat bands
while retaining all symmetries. However, a tight-binding description is able to fully respect the
symmetries of the system without fine-tuning when including additional bands.

In particular, the (effective) symmetries of the twisted bilayer graphene system are triangular
lattice translations, Cs rotations by 27 /6, mirror symmetry Mo, (which takes y — —y, but actually
represents a layer-exchanging 180° rotation in 3d about the z-axis), and time-reversal 7.

Further, because the momentum difference between the K,, and K|, points of the (large)
Brillouin zone (denoted “lbz”) of the microscopic graphene lattice is large compared to the moiré
scale for small twist angles, states originating from each valley are effectively decoupled. This
results in an effective U, (1) valley symmetry, which enables us to focus on the electronic degrees
of freedom in a single valley; the ten-band model of Ref. (29) takes advantage of this fact. However,
given that both Cg and 7 interchange the two valleys, only the combination Cs7T is a proper
symmetry of a single-valley theory. It follows that the spatial symmetries of the ten-band model
are generated entirely by CsyT, Cs, and M,

Finally, the flat bands we wish to describe possess two Dirac cones (per spin, per valley) at the
K and K’ points of the (moiré) Brillouin zone. (We reserve K, K', T, etc. to describe the points
of the small moiré BZ.) The masslessness of the cones is ensured by C57 symmetry, while their
location at K and K’ is protected by Cs.

Before introducing interactions between electrons, we note that an overall scaling factor be-
tween the ten-band model and the actual physical system must be included. This factor can be

obtained by comparing the flat bandwidth of the ten-band model and the separation of van Hove
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singularities measured in the tunneling DOS in the energy regime far away from the CNP, where
electron-interaction effects are presumably less important. We estimate this factor to be around
15. In all that follows, we keep the units set by the ten-band model, only scaling by ~ 15 when

comparing against experiment.

1. Non-interacting Hamiltonian

The ten-band model is defined on a triangular lattice with basis vectors a; = (v/3/2, —1/2)
and a; = (0,1). We write the Bravais lattice sites as 7 = 1 a; + m2as or simply as 7 = (r1,73),
where 1 o € Z. Within each unit cell, there are ten orbitals which are distributed on three dif-
ferent sites, as indicated by the different colors in Fig. S7. Explicitly, there are three orbitals,
p., P+, and p_, on every triangular lattice site (red). Each of the three kagome sites (black)
within a unit cell hosts an s orbital. Finally, both A and B sublattices of the honeycomb sites
(blue) have p, and p_ orbitals. Throughout this work, these ten orbitals are ordered as ¢, =
(Tams Ty Ty Ky K2y K200y A+ 5 1A= s B4 773_7,1)T, where 7, , and 7) respectively denote
operators on the triangular, kagome, and honeycomb sites.

The Bloch Hamiltonian of the ten-band model can be written as
10
H = Z Z CZkHij(k>cjk7 (Sl)
kE ij=1

where k is the Bloch momentum, 4, j are the orbital indices, and ¢;(k) annihilates an electron
on orbital 7 at momentum k. In our conventions the real-space and momentum-space electron
operators are related via ¢; . = >, exp(ik - 7)ci(k)/v/V, with V the area of the system.

The 10x 10 Hamiltonian matrix H (k) is defined as a sum of two terms
H(k) = Ho(k) + V (k). (S2)

The first term, Hy(k), describes hoppings from the honeycomb sites to the triangular and kagome

sites; this piece takes the form

Ho(k) =t Ooxs (k) : ($3)
h(k)T Oxs

10



Figure S7. Lattice and orbitals for the ten-band model. The red solid circles denote the triangular sites
with p,, p+, and p_ orbitals. The black solid circles correspond to the three types of kagome sites, labeled
as (1), (2), and (3). On each of these kagome sites, there is an s orbital. The blue empty circles indicate the

honeycomb sites, either type A or type B, with p4 and p_ orbitals on each of them.

with
(14 ¢nuw* + ¢nw)¢*a —(w + Pnuw* + do1)¢*a —(w + 10 + gnuw*)Ca (W + drow™ + ¢11)Ca
(14 ¢11 + go1)c (W* + 11w + ¢o1)Cb (14 10+ du)e (W + drow + ¢11)¢*0
h(k) = (1 + woi1 + w*do1)Ch (1+ ¢11 + do1)c (W* + d10 + o11w)C*b (14 d1o + P11)c
—idiod —idod id id
—iw*d —iwd w*d twd
— i wd —1ppw*d iwd w*d
(S4)

where ¢y, = exp(—i(lky + mky), ki = k - a;, £ = —{, and w = exp(i27/3).

The remaining tunneling amplitudes are included in the second term, V' (k), which can be writ-

ten as
Mpz C]T’:l:pz O 0
Vi(k) = Cpip. Hps + pipiloxo Clpz 0 (S5)
O Cnpz MK]I3X3 O
0 0 0 H,
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Table I. Parameters for the ten-band model.

to a b c d ty Hp. tpy lpaps Mpr M lpip: t:pi s

130.0 meV 0.110 0.033 0.033 0.573 32.5 meV —0.1¢, 0.003t, 0.004t, 3t,, 0.11t, 0.016t, 0.016t, —0.016t,

Here I denotes the identity matrix, and we have defined

H, — tor (P01 + @11+ @10+ hec) tpp, (o1 +w*dr1 + weio) (s6)

tpips (P01 + W11 + W Ptg) tpy (o1 + P11+ P10 + hec.)

to describe the p orbitals on the triangular sites and

0 11+ @1 +
=1, Utontow ) gy, (s7)

—i(1 4 ¢o1 + ¢10) 0

to describe the honeycomb orbitals. Moreover, the coupling between the p. and p,, orbitals on the
triangular sites, and the coupling between s orbitals of the kagome sites and p.. of the triangular

sites, are respectively described by

Go1 + P1IW + Prow”

Cpipz = itpipz (S8)
—(¢o1 + Pp11w* + P1ow)
and
®10 011 b11 P10
Cops = iy, | O™ w —lep, | W' oW |- (S9)
W Prow” Prow  w*

Table | lists the parameters for the ten-band model.

2. Symmetries

As we discussed above, the model introduced in the previous section preserves the symmetries
twisted bilayer graphene should possess at small angles: Cy7, Cs, and My, In the following, we
explicitly describe the action of these on the degrees of freedom in our model.

a. CST: Under CyT, the basis vectors transform as

CQTI a, — —aq, a; — —asg, 1 — —1i. (510)

12



It follows that the orbitals become

7-Z’I"

CQT :

T_A,.;,-

T_p

NA+r

nA—,r

T_A,_)»,-/

NB— ' —a1—az

B+, —ai1—as

with ' = (=71, —73). In momentum space, we find

CQT :

where the unitary matrix Mc,7(k) is given by

b. Cg.'

Cg:

C — MCQT(k)Ck,

1
01
10

P21

a, — asq,

b1

$10

R1,r
Kog | —
R3,r
B+,r _)
NB—r
0 0 0
0 0 ¢n
0 ¢un O
¢1n 0 0

Under rotation by 27/3, the basis vectors transform as

as; — —a; — as.

We can show that Cj takes the electron annihilation operators to

TZ,'I"

031

13

Tz
W*TJ’_,TJ 9

WT_ p

*
w hA-i—,'r"—al —as

WhAf,r/fal —as

R1,r
R -

R3,r

hB—i—,r
_>

th r

K)l,r’f2a17a2
R2.r'—a1—as )

K3r'—ay

7]A—,r’—a1—a2

(S11)
77A+,'r’—a1—a2
1 — —1 (512)
(513)
b1
0
0
0
(S14)
/{2,1"—0,1
/{3,1“’—0,1 )
Hl,r/—al
w*h r—
B+, al (515)

Wth,r’fal



with ' = (—ry, 71 — 13). This can be summarized in momentum space as
03 : Cr — M03<k>ck’7 K = (—kl — kz, kl)

where k = (ky, ks), k; = k - a; and

1
w*
w
0 ¢, O
0 0 ¢
MCs(k) QS* 0 81 )
11
W*¢31
w¢81
W*¢>1k1

Wy

With ¢, = itk mks)

c. My, The mirror symmetry transforms of the lattice vectors are

ng : a; — aj + as, a,; — —Qs.

We can show that this acts on the orbitals of the 10-band model as

Tzr — Tz Ri,r K1
MQy . T+’7, — T—,’l'/ y /{2,,,. — /{3’,’,/ y
T Tt ! R3,r Ko
hA+,r hA—,r/—ag hB+,r hB—,r/
— s —
hA—,r hA-i—,r’—az hB—,r hB-i—,r’

with 7' = (r1,71 — r3). In momentum space, this looks like

ng : Cr, — Msz(k)Ck’> K = (kl + 1{32, —]{52) s

14
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(S17)

(S18)

(S19)

(S20)



where

01
10

01
My, (k) = o . (521)

0 oo

$o1 O
01
10

B. Local Coulomb interaction and mean-field theory

We now supplement the ten-band model with symmetry-preserving electron-electron interac-
tions, the form of which is determined by several factors. Motivated by the presence of screening
from the STM tip, we consider a minimal short-range interaction. Microscopic calculations demon-
strate that the flat-band wavefunctions are primarily weighted on the triangular-lattice “AA” sites
of the moiré pattern (4,7,17). Accordingly, Po et al. (29) demonstrate that the majority of the
spectral weight lies on the triangular lattice sites in the ten-band model. In spite of this, the over-
all charge density computed from more microscopically faithful models is nearly uniform (25). We
therefore consider an on-site Coulomb interaction of the form (n, — (n,.))?, where n,. is the elec-
tron density and (n,.) is the uniform background. Finally, since we are interested in correlation
physics arising from partial filling of the flat bands, for simplicity we restrict the on-site Coulomb

interaction to the 7-orbitals:

Ho=EcY. < > e - (nw,)]> (522)

T pn=z,%t

where n, , = TIIJ,TM,T. We will consider neither valley nor spin symmetry breaking, so additional
flavour indices need not be included.

The magnitude of the interaction E is the only free parameter in our theory aside from the
overall scaling factor needed to match the ten band model with experimental data in the weakly-

15



interacting regime. We set E- = 1 meV since it returns results reasonably similar to the experi-
mental DOS shown in the main text.

To proceed, we perform a Hartree-Fock mean-field decoupling of the interaction H. By virtue
of subtracting the uniform density in our definition of H, the Hartree term is completely can-

celled, leaving only a Fock Hamiltonian:

HC]\/[F__2ECZ Z Ver'r>T TI/’!‘+ECZ Z Tp,, j;frTl/,’r‘>

r prv=z=+t r pr=zt
10
= —2F¢ Z Z Li; <c;frch> ¢ Cir + Ec Z Z Li; <cwcﬂ> <c cw> , (523)
r 1,j=1 r ,7=1

where we have defined the 10 x 10 matrix

111
111

L= . (S24)
111

O7x7

It is convenient to write this in momentum space as

10
1
Heyr = Z CZkWijCjk B, Z <CIkWij(k)Cjk>
ij—1 k
2F.,

k

Note that we have implicitly assumed that no translational symmetry breaking occurs.
The total mean field Hamiltonian is a sum of the non-interacting Hamiltonian, H, of Sec. A 1

and this mean field term:

HMF = H + HC,MF == ZCZk]:‘Iij(k)cjk — % Z <tr <CLWCk>> s
k k

H;ij(k) = Hij(k) + W;;. (S26)
We diagonlize (k) with the matrices U,;(k):

Z H' (k) Usy (k) = bapea(k). (527)
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The matrix I is obtained by substituting c;x, = > Uia(k) fak:

-2 Z Z LU} fiofow) Un(p) = e Z Z LijUia(p (p))U,L- (p)

(528)

where n(¢) is the Fermi distribution. Importantly, the modes f.x and the corresponding unitary
matrices are implicitly functions of ;. Self-consistency requires that for a given electron filling
fraction, ny, Wj; is returned when the right-hand side of Eq. (528) is calculated using the matrices
which diagonalize H=H+W.

Numerically, we solve this iteratively for every filling n; under consideration. We start with
HO)(k) = H(k). Diagonalizing, we obtain the energies () (k) and matrices U (k), allowing
us to determine the chemical potential ,u(o) corresponding to the desired filling ny. With this,
we can then compute W (. We subsequently define a new mean field Hamiltonian H™® (k) =
H(k) + W, Again, we diagonalize to obtain new energies and rotation matrices, ¢ (k) and
U (k), allowing us to determine the chemical potential, 1Y), corresponding to n;. Inserting this
data into the right-hand-side of Eq. (528), we find a new matrix WM, If [ — WO = 0 up
to some threshhold, we have found the mean field solution. If not, we repeat these steps until
[[W ) — Wr=D|| = 0 is satisfied.

In general more than one self-consistent solution W exists. Further, some of these solutions
result in ground states which spontaneously break some of the symmetries of the Hamiltonian.
To take these into account, we alter the non-interaction Hamiltonian in the first step, FI(O)(k) =
H(k)+0H (k), where § H (k) transforms non-trivially under one or more of the symmetries. While
dH (k) is not included in any subsequent step, initializing in this fashion allows the simulation to
find symmetry-broken solutions should they exist.

More explicitly, this perturbation takes the form
k)= acOu(k) (529)
€]

where (G is a symmetry group element, g are small numbers relative to the flat bandwidth, and
O¢ (k) are the momentum components of an operator, or “order parameter,” which transforms
nontrivially under the symmetry GG and trivially under all others. Ideally, we would like to restrict
to the generators of the symmetry group: G = C57, C3, Ms,. However, it turns out that the
best way to seed (s 7 symmetry-breaking is through a joint CyT, My, order parameter. Because
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the flat band wavefunctions are primarily located on the triangular lattice sites, we consider order

parameters located on these sites as well. In particular, the ones we use are:

OCZT'MQU = Z (Tl,r7-+7yn - 7'17,,.7',77“) = Z (Tj’-_’k7-+7k — Tj’k’?'f,k) y
k

T

OCg = Z (T—J{-,r+a2 + T—T—,T‘—a1—a2 + 7'177__’_&1) T_p + h.c.

r

= Z (Go1 + 10 + O11) TL kT + hoc
k

_ ST T * T
O, = E ) <7’+m+a1 + W piay T W TH pay—ay | T-r T hec.

r

=Y i (o1 + wro +wbn) ok + hc (530)
k

where ¢y, = e~ (thitmkz),

C. Results

At certain n ¢, we find a number of different solutions to the mean field equation, and these can
be classified by their symmetry-breaking behaviour. There are three general classes: those which
preserve all the symmetries, those which break C'3 but preserve C;7 and M,, and those which
break Cy7 and M, (we find that these two symmetries are always broken together). There are
further distinctions within each class. For instance, for those solutions with C's symmetry breaking,
two distinct symmetry breaking patterns are found — one of these is shown in Fig. 3 of the main
text. Similarly, for the solutions which break C57 and M, there are two solutions which also

break C5 and one which does not.

The ground state at a filling n is given by the solution with the lowest energy. In Fig. S8(a), we
show the ground state energy Fj per unit cell per flavour as a function of filling n for these six
solutions. Forny < —0.5andny 2 0.5, we see that the energies converge to a single value. Close
to charge neutrality, the energies of the symmetry-broken states dip below that of the symmetric
state in a non-trivial fashion. The difference between the ground state energy of the symmetry-

broken solutions and the symmetric solution is displayed in Fig. S8(b).
We now discuss each of these solutions in turn.
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Figure S8. (a) Ground state energy per unit cell per flavour as a function of filling ns for the three general
classes of solutions. The yellow dotted line plots the energy of the symmetric solution. The two blue lines
display the energies of the two solution with C3-breaking only, while the three red lines plot the energies of
the CyT -broken solutions (including those which also break C3). (b) The difference is ground state energies

between the symmetry-broken solutions and the symmetric solution.

1.  Fully symmetric

When we initialize with  H = 0, no symmetry-breaking can occur. We will refer to this solution
as S.sym. The resulting density of states as a function of filling and energy is shown in Fig. S9(a)
while linecuts of the density of states at ny = 0 and ny = 1 are shown in (b). Both (a) and (b)

indicate that the density of states changes very little as a function of filling.

2. (Cs3 breaking only

By initializing our Hamiltonian with 0 H = a¢,O¢, (O, is given in Eq. (530)), depending on the
sign of a, we choose, two distinct Cs-breaking solutions are obtained close to charge neutrality.
When a¢, < 0, we obtain the density of states shown in Fig. S10(a). Unlike the symmetric case,
there is significant splitting between the peaks close to charge neutrality. This is further empha-
sized by Fig. S10(b), where linecuts of the DOS at ny = 0 and ny = 1 are shown. We refer to this
set of solutions as S.C3(1). (We note that these figures have already been shown in Figs. 3(A)-(C)
of the main text.)

Conversely, when o, > 0, a separate set of solutions, termed §.C'5(2), is obtained. The result-
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Figure S9. (a) Local density of states of the symmetry-preserving solution. (b) A linecut of the density at
the charge neutrality point, ny = 0, (solid line) and with a fully-filled flat band, ny = 1 (dashed line). The

linecut at ny = 1 has been shifted so the Dirac points occur at zero energy.

ing DOS is shown in Fig. S10(e) and alinecutatny = 0 and 1 is provided in (f). Aswith S.C'3(1), both
peak broadening and peak separation are observed in the region surrounding charge neutrality.
Compared to Fig. S10(e), the splitting of the lower-band peak (left side of plot) is substantially less
pronounced than it is for the S.C3(1) solution in (a). This is also clear from the density linecuts in
Figs. S10(b) and (f).

We verify that the differences between Figs. S10(a) and (e) on the one hand and the DOS of the
symmetric solution in Fig. S9(a) on the other can be accounted for by (5 breaking by plotting the
absolute values of the expectation values of the three order parameters in Eqg. (530). The results

are shown in Figs. S10(c) and (g) for S.C'5(1) and (2) respectively. In both,

(Oc, 711, )| vanishes
for all ns, while [(Oc,)| is nonzero for —0.5 < ny < 0.5. The conservation of C,7 and Ms, and
the breaking of ('3 has also been explicitly demonstrated by studying the symmetry transformation
properties of the corresponding mean field Hamiltonians. We conclude that within the interval
—0.5 S ny < 0.5, only Cy is broken and that outside of it, all symmetries are preserved.

These results are in conjunction with the observation that the density of states in Figs. S10(a)
and (e) and Fig. S9(a) are identical whenny < —0.50rny 2 0.5. Analogously, in Fig. S8 the ground
state energies of S.C3(1) and (2) converge to the same value as the symmetric solution for these
fillings.

At charge neutrality, both §.C'5(1) and S.(C'5(2) are lower in energy than the symmetric solution
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Figure S10. Plot of Cs-breaking solutions which preserve M, and C>7T. (a)-(d) correspond to S.C3(1),
while (e)-(h) correspond to S.C5(2). (a),(b) Density of states as a function of filling and energy. (b),(f)
Linecut at ny = 0 (solid) and ny = 1 (dashed). The linecut at ny = 1 has been shifted so the Dirac points
occur at zero energy. (c),(g) Magnitude of the C'3 and CyT - M>,, order parameter expectation values. (d),(h)
Mean field band structure within the moiré BZ obtained at charge neutrality. The top plot corresponds to

the flat band and the bottom plot to the lower flat band. The Dirac points are indicate by the black dots.

by ~ 0.05 meV. While Fig. S8 shows that when ny > 0, §.C3(1) is preferred over §.C5(2) and
vice versa for ny < 0, the two solution are always very close in energy, with a maximal energy
difference of ~ 0.01 meV. Given that strain is expected to be of order 0.03 meV (taking into account
the scaling factor of 15), we should not attempt to distinguish the two based on energetics.
Since neither symmetry nor ground state energy can differentiate S.C5(1) and (2), we plot the
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band structures obtained at charge neutrality in Figs. $10(d) and (h). As mentioned above, the Cs7T
symmetry protects the Dirac cones, while (5 protects their location. Accordingly, as indicated by
the black dots, the Dirac cones remain but are no longer located at the K and K’ points. Here, a
clear difference between S§.C5(1) and (2) is observed: The Dirac cones of S.C5(1) lie close to the
y-axis and are interchanged under )5, but those of S.C'3(2) are on the z-axis, and so are mapped
to themselves under M,,.

While both solutions are clearly My, symmetric, the solution S.C5(2) cannot be continuously
connected to the non-interacting band structure without breaking the M, symmetry. This was
our primary motivation for choosing to show the density of states given by §.C5(1) in the main
text.

a. Spatial map of local density of states One way to probe C5 breaking experimentally is to
map out the spatial profile of the local density of states in real space at a given bias voltage by the
STM tip. Theoretically, this local density of states p(r; E) at location r and bias voltage Vi = E
is encoded in the imaginary part of the real-space local Green’s function, G(E;r, )

1
= —= lim G(E +in;r,7). $31
plr) == lim G(E+in;r,7) ($31)

For a tight-binding model, such as the ten-band model used in this work, only the local density
of states of a particular orbital on a given sublattice is well-defined. For a system with translational
invariance with periodic boundary condition, the real-space local Green function for the ten-band

model with mean-field-decoupled interaction is given by
1 N ~1
G(E) =5, ; [E - H(k:)} , (532)
which is a 10 x 10 matrix in the basis of the 10 orbitals within a unit cell. Note that G(FE) is defined
within a single unit cell and it will be the same in every unit cell across the whole system, due to
translational invariance.
The local density of states p,, of a particular orbital a within a unit cell is defined as

pa(E) = =~ lim GealE). (533)

T n—0+

Although the spectral weight of the flat bands is mainly located on the triangular sites, the p, (F)
with « corresponding to the three kagome sites does contain information on whether C'; symme-

try is present in the system. This is due to the fact that under (s, the three orbitals on the kagome
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sites transform as k; — kg, ko — K3, and k3 — k1, and so do the p,(F) on these orbitals. Thus,
the local density of states will be the same on the three types of kagome sites in our ten-band
model when C3 symmetry is present. However, when Cj is broken but M, is preserved, as in
the case of Fig. 3 of the main text, p., (F) can differ from p,,(E) and p.,(E), while the latter
two are the same because of M, symmetry. It is worth mentioning that, at least to some extent,
the local density of states at the three kagome sites simulates the local density of states measured
experimentally in between two moiré (triangular) sites, which are oriented along three directions.
In Fig. 3F of the main text, we have plotted the p, as widths of the bonds between triangular sites,

which can be compared with the experimental map of the local density of states.

3. CyT/M>y breaking

We find three distinct solutions which break both the C57 and My, symmetries. Note that
C5T -broken phases at neutrality were also found very recently in a continuum model with realistic
Coulomb interaction (25). While the sign of ac,7.11,, does not affect the state, different results
are obtained depending on whether C’ is allowed to break and, if so, the sign of a(,. The density
of states obtained by initializing with ac, < 0, @, > 0, and o, = 0 are respectively shown in
Figs. S11(a), (b), and (c). We refer to these solutions as S.Cy7.C5(1), S.C5,T .C5(2), and S.C5T.
(Since My, is broken whenever C57 is, for notational simplicity we do not include it in our naming
convention.)

As observed in the previous section, away from charge neutrality, ny 2 0.50rny < —0.5, all
three solutions converge to the symmetric solution S.sym. Figures. S11(d) and (e) both demon-
strate that for these fillings, the C5 and Cy7 - My, order parameters vanish. Explicit study of the
mean field Hamiltonians supports the conclusion that all solutions fully preserve the symmetries
at these fillings.

We focus first on §.C,7.C3(1) and (2). Moving closer to charge neutrality, both Figs. S11(a)
and (b) enter regions reminiscent of those found in Figs. S10(a) and (b). For —0.5 < ny < —0.2
and 0.2 < ny < 0.5, only Cs is broken, as indicated in Figs. S11(d) and (e). In this region, it turns
out that S.C57T .C5(1) and (2) are in fact identical to S.Cy7.C3(1) and (2) respectively. Around

ny ~ £0.25, however, <OC2T.sz>| becomes nonzero [Fig. S11(d)]. With C';7 broken, the Dirac

points cease to be protected, and Fig. S11(f) shows a gap opening at this point. Continuing to-
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Figure S11. (a),(b),(c) Density of states for solutions S.C57 .C3(1), S.C2T .C5(2), and S.C>T respectively.
(d) Magnitude of C3 order parameter expectation values as a function of filling. (e) Magnitude of C>7 - Mo,
order parameter expectation values as a function of filling. (f) Gap as a function of filling. (g) Linecut at

ny = 0and ny = 1. For these fillings, the three solutions in (a)-(c) are identical. The linecut at ny = 1 has

been shifted so the Dirac points occur at zero energy.

wards charge neutrality, Figs. S11(d) and (e) plots the C5 and C57 order parameter expectation
values decreasing and increasing, respectively, and we conclude that the C'5 and C57T orders are

competing. Eventually, very close to charge neutrality, C'3 symmetry is completely restored in
both SCQTCg(].) and (2)

Turning to the remaining solution, S.C5 T, the plot of the magnitude of the C5 order parameter
in Fig. S11(d) confirms that the C3 symmetry is not broken for any filling fraction studied. Without
having to compete with the C5 order, the C;7 symmetry is able to break further from charge
neutrality, close to ny ~ £0.5 as indicated in Fig. S11(e). Again, this coincides with the opening
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of the gap in (f).
Finally, at charge neutrality, all three solutions are identical and a gap is found. This is shown

in Fig. S11(g).

D. Discussion

Based on the ten-band model with local Coulomb interaction, and within a Hartree-Fock mean-
field approximation, we have found various symmetry-broken solutions. Although the C57-
broken gapped solutions are lower in ground state energy per unit cell by about 0.05 meV, the
gapless ('3-broken solutions seem to be most consistent with experiment since no gap at charge
neutrality is observed. The emergence of the gapless solution in experiment is plausible even
when taking into account the scaling factor ~ 15 between our model and the physical system.
With this factor, the energy difference translates into ~ 7 K, which should be smaller than the
error incurred by approximating the physical system with a simple ten-band model and a specific
local interaction. Finally, in a real system the (5 symmetry is presumably broken explicitly be-
cause of strain in the sample, which may make the C3-broken solution more likely. On the other
hand, breaking Cy7 explicitly may be much harder than C3. Suppose that the system exhibits
long-range, T -preserving disorder. In this case CyT can only be explicitly broken if the disorder
violates C5. Crucially, Cy map the valleys K,, and K, of the microscopic honeycomb system
to one another, and, as emphasized above, these are separated by a very large momentum com-
pared to the flat-band scales. Hence lifting C'; symmetry requires atomic-scale deformations,

whereas disorder on the moiré lattice scale would be sufficient to break C3 symmetry.
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