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1 Introduction 

1.1 Nitrate is the main nitrogen source available to 

plants 

Nitrogen (N), quantitatively the most abundant macroelement for all living organisms, 

is involved in the building of nucleotides, amino acids, proteins, chlorophyll, 

phytohormones, phospholipids and secondary metabolites. In plants, N constitutes up 

to 5% of dry matter (Chen et al. 2012; Marschner 2012) and approximately 16% of 

total protein mass (Frink et al. 1999). N availability affects carbon (C) allocation 

(Scheible et al. 1997), leaf growth (Ma et al. 1997; Vos et al. 2005), root branching 

(Walch-Liu et al. 2006), flowering time (Ma et al. 1997), seed development and yield 

(Wetherell and Dougall 1976). 

N is present in soil solutions in the form of organic and inorganic N. Organic N including 

soluble proteins, peptides, urea and amino acids constitutes more than 98% of the 

total N (Dechorgnat et al. 2011). Even though various studies have indicated that plants 

are capable of absorbing organic N such as amino acids from soil (Falkengren-Grerup 

et al. 2000; Thornton and Robinson 2005; Jamtgard et al. 2008), most of organic N is 

not directly available to plants.  

With the assistance of soil microorganisms, organic N can be converted to inorganic 

forms such as ammonium (NH4
+) and nitrate (NO3

-) (Crawford and Glass 1998) which 

are main sources of N absorbed by plant roots. Compared with NH4
+, NO3

- is more 

mobile and can reach plant roots more quickly (Miller and Cramer 2005). In regular 

agricultural soils, concentration of NO3
- (1-5 mM) is generally much higher than that of 

NH4
+ (20-200 µM) (Owen and Jones 2001). Thus, in agricultural systems, NO3

- is the 

major N source that plants can take up directly. 
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1.2 Nitrate transport mediated by nitrate transporters 

Since NO3
- is the major N source that plants can take advantage of, highly efficient 

transport of NO3
- into and between different compartments of plants is of great 

importance for plant growth. NO3
- uptake from soil and subsequent translocation into 

various tissues rely on the function of nitrate transporters. Affected by soil properties 

like pH, microbial activity and moisture, NO3
- concentration varies dramatically in 

different soil types (Robinson et al. 1994) by up to four orders of magnitude (Crawford 

and Glass 1998). To better cope with the big fluctuation in NO3
- availability, plants have 

evolved two classes of nitrate transport systems, so-called High Affinity Transport 

System (HATS) and Low Affinity Transport System (LATS), respectively. HATS 

operates at low external NO3
- concentrations (KM in µM range), whereas LATS works 

predominantly when NO3
- concentration is in mM range (Sun et al. 2014).  

So far, 27 genes encoding nitrate transporters have been characterized from 

Arabidopsis thaliana (Table 1). They belong to four gene groups: (1) the Nitrate 

Transporter 1 (NRT1)/Peptide transporter Family (NPF) (Leran et al. 2014), (2) the 

Nitrate Transporter 2 (NRT2) family, (3) Chloride Channels (CLC) and (4) Slow-type 

Anion Channel-Associated 1/Homologues (SLAC1/SLAHs).  

The NRT1 family is the biggest nitrate transporter family which consists of 53 members 

in Arabidopsis. NRT1 proteins are predicted to have short N- and C- terminal ends and 

12 transmembrane domains, and the first six transmembrane domains are separated 

from the second six by a long loop (Varshney and Koebner 2006). Except NRT1.1 

which has dual affinity through the phosphorylation of an intracellular threonine Thr 

101 (Liu and Tsay 2003), all other characterized nitrate transporters from this family 

are LATS transporters.  

The NRT2 family is a subclade of the major facilitator superfamily (MFS) of transporters 

and it has seven members in Arabidopsis. All characterized NRT2 members belong to 

HATS and NO3
- is their only substrate. Except NRT2.7, all other Arabidopsis NRT2 

members are predominantly expressed in roots (Okamoto et al. 2003) and require an 
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additional small protein Nitrate Assimilation Related protein (NAR2.1, also known as 

NRT3.1) (Okamoto et al. 2006; Kotur et al. 2012) to fulfill the HATS function for nitrate 

transport. NRT2 and NAR2.1 probably form a tetramer through an unknown 

mechanism (Yong et al. 2010).  

The Arabidopsis CLC family contains seven members (a-g). Up to now, only CLCa has 

been demonstrated as a major protein that affects NO3
- storage in vacuoles 

(Monachello et al. 2009). NO3
- transport function of CLCb was demonstrated in 

Xenopus laevis oocytes, however, it is still unclear whether it is indeed involved in 

nitrate transport in planta (von der Fecht-Bartenbach et al. 2010). The anion transport 

mechanism and selectivity of the other five CLC members have not been characterized 

yet (Barbier-Brygoo et al. 2011).  

The Arabidopsis SLAC1/SLAHs family has five members, which are SLAC1, the first 

identified guard cell S-type anion channel, and its four homologues SLAH1 to SLAH4. 

The five members demonstrated distinct tissue-specific expression patterns (Negi et 

al. 2008). SLAC1 is exclusively expressed in guard cells. SLAH1 and SLAH4 are 

mainly expressed in the root vascular system. SLAH2 is expressed in lateral root 

primordia and tap root tips. SLAH3 is expressed in the whole plant tissues including 

guard cells (Negi et al. 2008; Geiger et al. 2011; Zheng et al. 2015). SLAC1 and SLAH3 

are permeable for both chloride (Cl-) and NO3
- (Negi et al. 2008). SLAH3 is deemed as 

a NO3
- efflux channel because it exhibits about 20-fold stronger selectivity for NO3

- over 

Cl- (Geiger et al. 2011). Recently, Cubero-Font et al. (2016) showed SLAH1 is co-

expressed with SLAH3 in xylem-pole pericycle cells. SLAH1 itself is a silent anion 

channel subunit, however, SLAH1 could specifically activate SLAH3 and modifies the 

Cl- conductance of SLAH3 in both oocyte and guard cell protoplasts independent of 

NO3
- and phosphorylation. By this means that Cl- root-to-shoot transfer was decreased 

in slah1 knockout mutant. Different from SLAC1, SLAH1 and SLAH3, SLAH2 is a NO3
- 

specific channel impermeable for Cl- (Maierhofer et al. 2014). 
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Table 1. Summary of characterized Arabidopsis thaliana nitrate transporters and their 

substrates.  

Adapted from Corratgé-Faillie and Lacombe (2017). AGI: Arabidopsis Genome Initiative. 

Gene Gene family AGI Substrates References 

NPF6.3/NRT1.1 NPF At1G12110 NO3
- (Tsay et al. 1993) 

   IAA (Krouk et al. 2010) 

NPF4.6/NRT1.2 NPF At1G69850 NO3
- (Huang et al. 1999) 

   ABA (Kanno et al. 2012; Chiba 

et al. 2015) 

NPF6.2/NRT1.4 NPF At2G26690 NO3
- (Chiu et al. 2004) 

NPF7.3/NRT1.5 NPF At1G32450 NO3
- (Lin et al. 2008) 

   K+ (Li et al. 2017) 

NPF2.12/NRT1.6 NPF At1G27080 NO3
- (Almagro et al. 2008) 

   GA1/3 (Chiba et al. 2015) 

NPF2.13/NRT1.7 NPF At1G69870 NO3
- (Fan et al. 2009) 

   4MTB (Nour-Eldin et al. 2012) 

   GA1/3/4, JA-Ile (Chiba et al. 2015) 

NPF7.2/NRT1.8 NPF At4G21680 NO3
- (Li et al. 2010) 

   K+ (Li et al. 2017) 

NPF2.9/NRT1.9 NPF At1G18880 NO3
- (Wang and Tsay 2011) 

   4MTB (Nour-Eldin et al. 2012) 

NPF2.11/GTR2 NPF At5G62680 NO3
-, 4MTB (Nour-Eldin et al. 2012) 

   4MTB, 8MTO (Andersen et al. 2013) 

   GA3 (Tal et al. 2016) 

NPF2.10/GTR1 NPF At3G47960 NO3
-, 4MTB (Nour-Eldin et al. 2012) 

   4MTB, 8MTO (Andersen et al. 2013) 

   4MTB (Saito et al. 2015) 

   GA1/3/4, JA-Ile (Chiba et al. 2015) 

   GA3, JA-Ile (Saito et al. 2015) 

NPF1.2/NRT1.11 NPF At1G52190 NO3
- (Hsu and Tsay 2013) 

   GA1/3/4, JA-Ile (Chiba et al. 2015) 

   GA3 (Kanno et al. 2016) 

NPF1.1/NRT1.12 NPF At3G16180 NO3
- (Hsu and Tsay 2013) 

   ABA, GA1/3/4, 

JA-Ile 

(Chiba et al. 2015) 

NPF3.1/Nitr NPF At1G68570 NO3
-, NO2 (Pike et al. 2014) 

   ABA, 

GA1/3/4/8/20 

(Tal et al. 2016) 

   GA1/3, JA-Ile (Chiba et al. 2015) 

   GA1/3/4/8/19 (David et al. 2016) 

NPF2.7/NAXT1 NPF At3G45650 NO3
- (Segonzac et al. 2007) 

   GA1/3/4, JA-Ile (Chiba et al. 2015) 

NPF5.5 NPF At2G38100 NO3
- (Leran et al. 2015) 
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NPF5.10 NPF At1G22540 NO3
- (Leran et al. 2015) 

NPF2.3 NPF At3G45680 NO3
- (Taochy et al. 2015) 

   GA1/3/4 (Chiba et al. 2015) 

NRT2.1 NRT2 At1G08090 NO3
- (Filleur et al. 2001) 

NRT2.2 NRT2 At1G08100 NO3
- (Cerezo et al. 2001) 

NRT2.4 NRT2 At5G60770 NO3
- (Kiba et al. 2012) 

NRT2.5 NRT2 At1G12940 NO3
- (Lezhneva et al. 2014) 

NRT2.7 NRT2 At5G14570 NO3
- (Chopin et al. 2007) 

CLCa CLC At5G40890 NO3
- (Monachello et al. 2009) 

CLCb CLC At3G27170 NO3
- (von der Fecht-Bartenbach 

et al. 2010) 

SLAC1 SLAC1/SLAH At1G12480 NO3
-, Cl- (Negi et al. 2008) 

SLAH2 SLAC1/SLAH At4G27970 NO3
- (Maierhofer et al. 2014) 

SLAH3 SLAC1/SLAH At5G24030 NO3
-, Cl- (Negi et al. 2008) 

1.2.1 Nitrate uptake by roots 

Plants take up NO3
- from soil solution. The Arabidopsis root is composed of different 

cell layers including epidermis, cortex, endodermis, pericycle and stele (Dolan et al. 

1993). Nitrate transport from soil to endodermis can be accomplished by two pathways: 

apoplast pathway and symplast pathway (Figure 1). 

 

Figure 1. Diagrammatic representation of apoplastic and symplastic ion transport across higher 

plant roots.  

The apoplastic pathway (dashed arrows) conducts ion movement through the cell wall matrix 

as far as the outer cell walls of the endodermis, since the Casparian strip blocks movement of 

ions to the stele. Consequently, ions are taken up into the symplasm (shaded area) at the 

plasma membranes of the epidermis or cortex or the outer face of the endodermis. Symplastic 



Introduction 

6 

movement of ion (solid arrows) to the stellar symplasm occurs via the plasmodesmata. Release 

of the ions into the stellar apoplasts (and ultimately the xylem vessels) occurs across the 

plasma membrane of the stellar cells (Roberts and Snowman 2000). 

By apoplastic transport in the intracellular space, driven by diffusion or mass flow, NO3
- 

can enter the root as deep as to the endodermis (Marschner 2012). For symplastic 

transport, NO3
- must transit different cell layers (epidermis, cortex or endodermis) 

before being loaded into pericycle cells. In this process, specific nitrate transporters 

located at the plasma membrane of root cells are involved (Parker and Newstead 

2014). To date, in Arabidopsis, two NPF transporters (AtNPF6.3/NRT1.1, 

AtNPF4.6/NRT1.2) and three NRT2 transporters (AtNRT2.1, AtNRT2.2 and AtNRT2.4) 

have been functionally identified as key players in NO3
- uptake (Krapp et al. 2014) 

(Figure 2).  

NPF6.3/NRT1.1 (hereafter NRT1.1) is the first characterized nitrate transporter from 

Arabidopsis (Tsay et al. 1993). NRT1.1 is NO3
- inducible and is primarily expressed in 

epidermis cells close to root tips as well as in cortex and endodermis, but not in the 

central cylinder, which suggests it is directly involved in NO3
- uptake (Huang et al. 1996). 

Indeed, an in vivo study demonstrated that NO3
- uptake in nrt1.1 knockout mutant 

plants was significantly reduced compared to wild type (Huang et al. 1996). NRT1.1 is 

the only dual affinity nitrate transporter among 53 NRT1 members. Under low NO3
- 

concentrations, Calcineurin B-like interacting protein kinase 23 (CIPK23) 

phosphorylates threonine 101 (T101), which converts NRT1.1 to a high affinity nitrate 

transporter (Liu and Tsay 2003). Therefore, in addition to nitrate transport function, 

NRT1.1 also works as a NO3
- sensor. This mechanism will beneficial for plants when 

NO3
- availability in soil is fluctuating. A recent crystal structure study further showed 

that dephosphorylation/phosphorylation of T101 is critical for the formation/decoupling 

of NRT1.1 homodimer (Sun et al. 2014). The key residue histidine 356 was shown to 

play an important role in NO3
- binding to NRT1.1 (Parker and Newstead 2014). 

AtNPF4.6/NRT1.2 has surprisingly low similarity (36% amino acid identical) with 

NRT1.1, which can be attributed to the long loop connecting the sixth and seventh 

transmembrane domains (Huang et al. 1999). It is expressed in root hair and epidermal 
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cells of root tip and mature root regions, which is consistent with its role in nitrate 

uptake. In contrast to NRT1.1, the expression of AtNPF4.6/NRT1.2 is not induced by 

NO3
- and is constant during different root developmental stages. Antisense 

NPF4.6/NRT1.2 transgenic plants exhibited reduced nitrate uptake activities (Huang et 

al. 1999).   

NRT2.1 is the best characterized member of the Arabidopsis NRT2 family (Orsel et al. 

2002). It is expressed in epidermis, cortex and endodermis of mature roots, but not in 

young root parts (Nazoa et al. 2003). In addition, its expression is induced by low NO3
- 

concentration and is repressed by amino acids (Nazoa et al. 2003). nrt2.1 T-DNA knock 

out mutant plants were impaired in high affinity nitrate uptake, whereas the low affinity 

uptake activity was not affected (Filleur et al. 2001). Compared to AtNRT2.1, 

expression of AtNRT2.2 is substantially lower in roots (Zhuo et al. 1999; Orsel et al. 

2002). Disruption of both AtNRT2.1 and AtNRT2.2 reduced nitrate uptake and shoot 

NO3
- level of mutant plants grown under N deprivation (Orsel et al. 2004). AtNRT2.4 is 

expressed in epidermis of lateral roots and its expression is also induced by N 

starvation (Kiba et al. 2012). Interestingly, AtNRT2.4 also has a role in maintaining 

shoot NO3
- level under N starvation (Kiba et al. 2012). AtNRT3.1 (NAR2.1) itself could 

not transport NO3
- directly, but it was indispensable for NO3

- transport function of 

AtNRT2.1 through directly interacting with AtNRT2.1 on the plasma membrane (Yong 

et al. 2010).  

1.2.2 Nitrate root-to-shoot translocation 

To reach the foliar chloroplasts where the NO3
- assimilation preferentially occurs, after 

absorption by roots, NO3
- must be loaded into xylem vessels of the vascular stele 

before being transferred towards the aerial parts of plants. Root xylem loading is a key 

control point for delivering nutrients to the shoot (Glass et al. 2001; Herdel et al. 2001). 

Suberin on endodermal cells acts as a barrier to block NO3
- across endodermis (Baxter 

et al. 2009). Therefore, transporters and channel proteins are involved in rectifying the 

outward transport of NO3
- into the xylem (Figure 2).  
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Figure 2. Localization and function of the Arabidopsis nitrate transporters from the NPF and 

the NRT2 family.  

The functions depicted are: root uptake (influx/efflux), loading/unloading of the xylem, 

loading/unloading of the phloem, accumulation in seed vacuoles, and transport into the embryo. 

At the cellular level, all proteins are localized at the plasma membrane, except NRT2.7 localized 

at the tonoplast. Except for NRT2.7, all NRT2 proteins are assumed to interact with NAR2.1 to 

be functional. cHATS, constitutive high-affinity transport system; iHATS, inducible high-affinity 

transport system (O'Brien et al. 2016). 

1.2.2.1 NPF7.3/NRT1.5 is the main nitrate transporter for nitrate 

xylem loading 

To date, NPF7.3/NRT1.5 (hereafter NRT1.5) is the most pivotal nitrate transporter 

involved in NO3
- xylem loading in Arabidopsis (Figure 2). Lin et al. (2008) found that 

NRT1.5 is located to the plasma membrane and is mainly expressed in root pericycle 

cells adjacent to xylem. Electrophysiological studies demonstrated that NRT1.5 can 

transport NO3
- in Xenopus oocyte cells, both inwardly and outwardly, depending on the 

pH value. The nitrate export activity of NRT1.5 in oocytes was mediated by a proton-

coupled mechanism. The shoot-to-root ratio of NO3
- was decreased in nrt1.5 plants 
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compared to wild-type plants, suggesting NRT1.5 is responsible for the root-to-shoot 

long distance transport of nitrate. However, the nitrate transport from roots to shoots is 

not completely abolished in nrt1.5 mutants, indicating more proteins are involved in the 

nitrate xylem loading process. Interestingly, Lin et al. (2008) also observed a nitrate-

dependent reduction in K+ root-to-shoot transport in nrt1.5 mutants. Since the nitrate 

export by NRT1.5 was not coupled with K+, they hypothesized that there exists a 

regulatory loop to maintain the balance of NO3
- and K+ xylem loading.  

Recently, NPF2.3, a member of the nitrate excretion transporter (NAXT) subgroup 

within the NPF family, was also suggested to contribute to root-to-shoot transfer of 

NO3
-, but only under salt stress condition (Figure 2). NPF2.3 is expressed in root 

pericycle cells and localized to plasma membrane. Expression of NPF2.3 in oocyte 

cells failed to demonstrate NO3
- transport activity, but bacteria-expressed NPF2.3 

protein exhibited nitrate transport activity in soybean proteoliposomes (Taochy et al. 

2015). Unlike NRT1.5 whose expression was strongly repressed by salt stress, 

expression of NPF2.3 was barely altered by salt stress. Disruption of NPF2.3 in knock 

out mutants generated no phenotype under control conditions, however, mutants 

showed lower shoot NO3
- content and decreased tolerance under salt stress conditions 

(Taochy et al. 2015). Interestingly, similar to what has been observed in nrt1.5 mutants, 

K+ translocation was also decreased in npf2.3 mutant (Taochy et al. 2015). This 

observation supports the hypothesis that there is a strong interaction between the 

secretion of K+ and NO3
- into the xylem sap.  

Recently, it has been observed that NRT1.1 and AtNPF6.2/NRT1.4 were also capable 

of mediating bidirectional transport of NO3
- in Xenopus oocytes (Leran et al. 2013). 

Nitrate supplied to roots was more slowly transferred to shoots in nrt1.1 mutants (Leran 

et al. 2013). These observations indicated that NRT1.1 and AtNPF6.2/NRT1.4 might 

also contribute to NO3
- root-to-shoot transfer process. However, this speculation needs 

to be further verified.  

In addition, SLAH2 and SLAH3 from SLAC/SLAH family have been suggested to be 

putatively involved in the NO3
- root-to-shoot transport. Especially SLAH2, which is 
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localized in the root stele and is a nitrate specific channel, may contribute to specific 

NO3
- xylem loading (Hedrich and Geiger 2017).  

1.2.2.2 NPF7.2/NRT1.8 is responsible for nitrate unloading from 

xylem 

Among 53 Arabidopsis NRT1 members, AtNPF7.2/NRT1.8 (hereafter NRT1.8) shares 

the highest similarity with NRT1.5 (Li et al. 2010; Leran et al. 2014). Opposite to the 

NO3
- xylem loading function of NRT1.5, NRT1.8 plays a role in removal of NO3

- from 

xylem sap to parenchyma cells (Figure 2). In accordance with its function, NRT1.8 is 

mainly expressed at vascular tissues including parenchyma cells abutting xylem 

vessels (Li et al. 2010). Interestingly, it was shown that NRT1.5 and NRT1.8 were 

oppositely regulated by stresses (Li et al. 2010).  

Another nitrate transporter that negatively affects NO3
- root-to-shoot transport is 

AtNPF2.9/NRT1.9, which is expressed in the companion cells of root phloem. It 

facilitates loading of NO3
- into the root phloem to enhance the downward transport of 

NO3
- in roots. Root-to-shoot transport of NO3

- was therefore enhanced in nrt1.9 

mutants under high NO3
- supply (Wang and Tsay 2011).  

1.2.2.3 Ethylene and jasmonic acid signaling pathway converge to 

regulate NRT1.5 and NRT1.8  

Under normal growth conditions, most NO3
- is supposed to undergo long distance 

transport from root to shoot for NO3
- assimilation in chloroplasts. However, under 

adverse growth conditions such as heavy metal and low light, Stress-Initiated Nitrate 

Allocation to Roots (SINAR) is induced, which might be a common response to 

stresses (Gojon and Gaymard 2010; Li et al. 2010). By this means, retaining of NO3
- 

to roots benefits plants to cope with stresses. It has been shown that SINAR is 

mediated by NRT1.5 and NRT1.8. The nrt1.8-1 mutant showed a NO3
--dependent 

cadmium (Cd2+) sensitive phenotype, and NO3
- proportion allocated to roots was 
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decreased in the nrt1.8-1 mutant compared to the wild type (Li et al. 2010). Opposite 

to that of NRT1.8, transcription of NRT1.5 was repressed by various stresses such as 

salt, drought and Cd2+ in roots. Remarkably, nrt1.5 knockout mutants are more 

resistant to these stresses, which is possibly attributed to more retained NO3
- in mutant 

plants’ roots under stress conditions (Chen et al. 2012).  

The signaling pathways of the plant hormones ethylene (ET) and jasmonic acid (JA) 

control the balance between plant growth and stress tolerance (Achard et al. 2003; 

Yang et al. 2012). Recently, Zhang et al. (2014) demonstrated that the NRT1.8 

promoter region could bind ethylene responsive factors (ERF) including 

OCTADECANOID-RESPONSIVE ARABIDOPSIS AP2/ERF59, while ETHYLENE 

INSENSITIVE3 (EIN3) binds to NRT1.5 promoter (Zhang et al. 2014). Through a series 

of physiological studies, they revealed that ET and JA signaling pathways converge at 

EIN3/EIN3-Like 1 (EIL1) to regulate the downstream communication between SINAR 

and the environment through controlling the expression of NRT1.5 and NRT1.8 (Zhang 

et al. 2014).  

1.2.3 Nitrate distribution in aerial tissues 

Transport and remobilization of NO3
- throughout the plant is of great importance for 

plant growth and the improvement of nitrogen use efficiency (NUE). NUE is defined as 

utilization of available N in different forms in order to maximize grain yield (Gupta et al. 

2012). AtNPF6.2/NRT1.4 plays a role in regulating NO3
- distribution in leaves (Figure 

2). It is primarily expressed in the leaf petioles and mid-rib (Chiu et al. 2004). In nrt1.4 

mutant, NO3
- content of the petiole is reduced but leaves are wider compared to wild 

type (Chiu et al. 2004), indicating that AtNPF6.2/NRT1.4 can affect leaf development 

through influencing NO3
- content. NO3

- also influences seed development, even though 

NO3
- is not the main N form in seeds (Alboresi et al. 2005). AtNPF2.12/NRT1.6, which 

only shows expression in the vascular bundles of the siliques and the funiculi, plays a 

role in translocating NO3
- to developing seeds (Almagro et al. 2008). Therefore, mature 

seeds of nrt1.6 mutant accumulated less NO3
-, and the seed abortion rate was 
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increased (Almagro et al. 2008). In addition to AtNPF2.12/NRT1.6, NRT2.7, located at 

the tonoplast, is also involved in NO3
- accumulation in seeds through importing NO3

- 

into the vacuole (Chopin et al. 2007). Efficient remobilization of NO3
- from sink to 

source tissues is vital for improving NUE. AtNPF2.13/NRT1.7, NRT2.4, 

AtNPF1.1/NRT12 and AtNPF1.2/NRT11 participate in this process via phloem loading 

(Krapp et al. 2014) (Figure 2). AtNPF2.13/NRT1.7 is involved in remobilizing NO3
- from 

older to younger growing leaves through loading NO3
-
 into minor veins (Fan et al. 2009). 

Expression of AtNPF2.13/NRT1.7 is induced by N starvation and nrt1.7 mutants 

showed growth retardation under low N supply (Fan et al. 2009). The nrt2.4 mutant 

also showed decreased NO3
- concentration in the phloem sap under N starvation (Kiba 

et al. 2012). However, the interplay of those two nitrate transporters in NO3
- 

remobilization has not been investigated (Krapp et al. 2014). In the nrt1.11/nrt1.12 

double mutant, less NO3
- was transferred via phloem to the youngest tissues, instead, 

more NO3
- accumulated in the mature and larger expanded leaves (Hsu and Tsay 

2013), suggesting these two members are important for redistributing root-derived 

NO3
- to sink tissues.  

1.3 Other substrates of Arabidopsis NPF proteins 

Apart from nitrate transport function, recently, more and more nitrate transporters are 

reported to be able to transport other substrates including phytohormones and 

secondary metabolites (Table 1).  

Auxin transport function of Arabidopsis NRT1.1 in a NO3
--dependent manner was 

investigated by Krouk et al. (2010). When external NO3
- concentration is low (< 1 mM), 

rather than transporting NO3
-, NRT1.1 mainly favors the basipetal transport of auxin in 

lateral roots (LRs), thus preventing the accumulation of auxin at the LR tip, which 

explains the “more LR” phenotype of nrt1.1 mutants under low NO3
- supply. Yet, when 

at least 1 mM NO3
- was present, auxin transport function was suppressed and thus 

nrt1.1 behaved like the wild type (Krouk et al. 2010). Through using a modified yeast 

two-hybrid (Y2H) system, Kanno et al. (2012) identified four members of the NPF 
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family (NPF4.1/AIT3, NPF4.2/AIT4, NPF4.5/AIT2 and NPF4.6/NRT1.2/AIT1) as 

abscisic acid (ABA) importer candidates. Interestingly, besides ABA, NPF4.1/AIT3 

could also transport gibberellin (GA; GA3) (Kanno et al. 2012). The ABA import function 

of NPF4.6/NRT1.2/AIT1 was confirmed by phenotypical analysis of nrt1.2 mutants and 

overexpression lines (Kanno et al. 2012). Different from NRT1.1, ABA transport activity 

of NPF4.6/NRT1.2/AIT1 is not inhibited by high amount of NO3
- (Kanno et al. 2013).  

Recently, Chiba et al. (2015) screened 45 NPF members for their GA and jasmonoyl-

isoleucine (JA-Ile) transport function by using modified Y2H systems. They found ten 

of them can transport ABA, 18 of them transport GA1, 15 of them transport GA3 and 13 

of them can transport JA-Ile in yeast (Table 1). However, in vivo hormone transport 

functions of these NPF members still need to be further confirmed. Very recently, the 

in vivo GA transport function of NPF3.1/Nitr was reported. Tal et al. (2016) showed that 

NPF3.1/Nitr is expressed in the root endodermis and its expression is repressed by 

GA. NPF3.1/Nitr could efficiently transport fluorescently labeled GAs across cell 

membranes in vivo.  

In addition to phytohormones, several NPF members are capable of transporting the 

secondary metabolite gluocosinolate. For instance, NPF2.10/GTR1 and 

NPF2.11/GTR2 are characterized as high-affinity glucosinolate specific transporters 

which contribute to glucosinolate accumulation in seeds, through controlling 

glucosinolate loading from apoplasm into phloem (Nour-Eldin et al. 2012).  

1.4 Nitrate serves as a signal molecule 

In addition to being an essential nutrient, NO3
- also functions as a signal molecule 

controlling leaf development (Rahayu et al. 2005), regulating root architecture (Zhang 

and Forde 2000) and breaking seed dormancy (Alboresi et al. 2005). Moreover, NO3
- 

also coordinates the expression of up to 1000 genes including genes encoding nitrate 

transporters and nitrate assimilation related enzymes rapidly (within minutes), which is 

called primary nitrate response (Wang et al. 2000). In contrast to the well characterized 

molecuar mechanism of nitrate transport, the signaling components in nitrate 
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responses are pooly understood. No global nitrate-responsive promoter elements have 

been identified so far, which might be attributed to the fact that nitrate responsive 

cascades comprise a large number of molecular players and are in cross-talk with 

other signaling cascades (Krapp et al. 2014). 

Transcription factors are expected to be key molecular players in the primary nitrate 

response. The Nodule Inception-Like Protein 7 (NLP7) belong to the RWP-RK 

transcription factor family, has been reported to be involved in NO3
- starvation 

responses through binding to 851 genes in Arabidopsis (Marchive et al. 2013). The 

NLP7 is delocalized from the nucleus to the cytosol under N starvation condition, 

however, resupply of NO3
- leads to its rapid nuclear accumulation by an unknown 

mechanism (Marchive et al. 2013). Two Calcineurin B-like (CBL)-interacting protein 

kinase (CIPK), CIPK8 and CIPK23 are involved in the primary nitrate response.  

CIPK8, rapidly induced by nitrate, has been demonstrated as a positive regulator of 

primary nitrate responsive genes (Hu et al. 2009). Unlike CIPK8, CIPK23 negatively 

regulates this process. Independent of its nitrate uptake function, NRT1.1 also works 

as a nitrate sensor. In response to low nitrate concentrations, NRT1.1 is 

phosphorylated by CIPK23 at residue T101, which then reduces the primary nitrate 

response (Ho et al. 2009). Recently, the role of calcium as a second messenger in 

nitrate signaling pathway has been explored. Riveras et al. (2015) monitored in vivo 

cytoplasmic Ca2+ accumulation after NO3
- treatments, which is necessary for regulating 

expression of some primary response genes. They proposed a model of nitrate 

signaling: NO3
- is sensed by NRT1.1 and activates the phospholipase C which triggers 

an increase in cytoplasmic Ca2+ level. By this means that expression of nitrate 

responsive genes is activated (Riveras et al. 2015).  

1.5 Potassium uptake and translocation in Arabidopsis 

Potassium ion (K+), the most abundant cation in the cytosol, plays crucial roles in plant 

growth and development. It is involved in regulating enzyme activity, stabilizing protein 

synthesis as well as neutralizing negative charges. Apart from that, through influencing 
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cation-anion balance and osmoregulation, K+ also affects pH homeostasis, membrane 

potential, xylem and phloem transport as well as cellular turgor (Maathuis 2009; 

Sharma et al. 2013). K+ is the most abundant counterion for NO3
- in long-distance 

transport in the xylem and for storage in vacuoles (Marschner 2012). Cation deficit 

caused by K+ deficiency limits NO3
- transport in the xylem, thereby forcing plants to 

transport amino acids as substitute (Forster and Jeschke 1993).  

In plants, K can constitute 2-10% of dry weight (Leigh and Jones 1984). The typical K 

concentration in regular soil is 0.1-1 mM (Maathuis 2009), which is about three to four 

orders of magnitude lower than within plants (100 mM). Electrical gradient and proton 

motive force established by H+-ATPase provides energy for plants to transport K+ 

throughout the plant via low and high-affinity transport systems. Channel proteins from 

three families: Shaker, TPK (tandem-pore K+) and Kir (K+ inward rectifier), and 

transporters from HAK/KUP/KT (High-Affinity K+/K+ UPtake/K+ Transporter), HKT 

(High-Affinity Potassium Transporter), NHX (Na+/H+ antiporter) and CHX (cation:proton 

antiporters) families are responsible for K+ transport in plants. 

1.5.1 Potassium acquisition from soil 

AKT1 (Arabidopsis K+ Transporter 1) and HAK5 (High Affinity K+ Transporter 5) are two 

main proteins responsible for K+ uptake by roots. AKT1 is predominant in this process 

when external K+ concentrations ([K+]ext) are between sub-millimolar and millimolar 

ranges (Rubio et al. 2010; Nieves-Cordones et al. 2014), whereas HAK5 is more 

important when [K+]ext is lower than 10 μM (Rubio et al. 2010). When [K+]ext is in the 

range of 10-200 µM, both of them contribute to the K+ uptake (Ragel et al. 2015).  

In agreement with its K+ uptake function, AKT1 is preferentially expressed in root 

epidermis, cortex and endodermis (Lagarde et al. 1996). The akt1 mutant plants grew 

indistinguishably from the wild-type plants under K+ sufficient conditions, but their 

growth was significantly impaired on the low K+ medium in the presence of ammonium 

(Hirsch et al. 1998). Expression of AKT1 is not regulated by low K+ at the transcriptional 

level (Lagarde et al. 1996), however, several studies revealed its post-transcriptional 
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regulation. Under low K+ conditions, AKT1 is phosphorylated and activated by CIPK23 

with the help of Calcineurin B-like protein (CBL) CBL1 and CBL9 (Li et al. 2006; Xu et 

al. 2006). In addition to CIPK23-CBL1/CBL9 complex, AKT1 is also activated by 

multiple CIPKs (CIPK6 and CIPK16) together with multiple CBLs (CBL2, CBL3 and 

CBL5), and the ankyrin repeat domain of AKT1 is responsible for the interaction with 

CIPKs (Lee et al. 2007). Opposite to the activation effect by the CIPK-CBL network, 

AKT1 activity is strongly inhibited by the PP2C protein AIP1 (AKT1 interacting PP2C 

1) through physical interaction, which suggests that CIPK kinase and PP2C could 

modify AKT1 activity through phosphorylation and dephosphorylation (Lee et al. 2007). 

Recently, one CIPKs-independent regulatory mechanism of AKT1 has been reported. 

It was shown that CBL10 can directly interact with AKT1, and may compete with 

CIPK23 for the binding to AKT1, therefore, AKT1 activity was impaired by CBL10 (Ren 

et al. 2013). Moreover, under low K+ conditions, AKT1 was also negatively regulated 

by KC1, the shaker K+-channel α-subunit. KC1 itself did not have any K+ transport 

activity, however, through the formation of heteromeric K+ channels, it inhibited the 

AKT1-mediated inward K+ transport (Wang et al. 2010). Through KC1 serving as a 

bridge, AKT1, KC1 and membrane vesicle trafficking protein (SNARE) SYP121 can 

form a heterotrimeric complex and enhance the gating of AKT1 channel (Honsbein et 

al. 2009).  

Transcriptional regulation of HAK5 has been intensively studied. Under ample K+ 

supply, HAK5 was expressed weakly only in the root vasculature. However, upon K+ 

deprivation treatment, it was strongly induced at the transcriptional level and was 

expressed in root epidermis and stele of the main root (Armengaud et al. 2004; Shin 

and Schachtman 2004; Gierth et al. 2005). Induction of HAK5 by low K+ was attributed 

to the hyperpolarized membrane potential and subsequent increase in ethylene and 

reactive oxygen species (ROS) production (Shin and Schachtman 2004; Nieves-

Cordones et al. 2008; Jung et al. 2009; Kim et al. 2010), but this induction effect was 

inhibited by the presence of ammonium (NH4+) (Qi et al. 2008). HAK5 expression was 

also strongly depressed by salinity stress (Nieves-Cordones et al. 2010). Several 
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transcription factors regulating the HAK5 expression have been identified (Hong et al. 

2013), and also the post-transcriptional regulation of HAK5 has been reported in the 

recent study of Ragel et al. (2015). Similar to AKT1, HAK5 can also be activated by 

the CIPK-CBL complex. More specifically, CIPK23 and CBLs including CBL1, CBL8, 

CBL9 and CBL10 are involved in the activation of HAK5 function in Saccharomyces 

cerevisiae (Ragel et al. 2015).  

Very recently, KUP7 was characterized as another crucial protein contributing to the 

K+ uptake in Arabidopsis. KUP7 is strongly expressed in roots and it is localized at the 

plasma membrane. Expression of KUP7 is able to complement the K+ uptake 

deficiency of yeast mutant R5421. kup7 plants exhibit a low K+ sensitive phenotype. 

Phosphorylation on S80, S719 and S721 is critical for maintaining K+ uptake function 

of KUP7 (Han et al. 2016).  

In addition to AKT1, HAK5 and KUP7, when external K+ is sufficiently high, it was 

suggested that unknown mechanisms and non-selective cation channels (NSCCs) 

might also contribute to unspecific K+ uptake in plants (Nieves-Cordones et al. 2014). 

1.5.2 SKOR is responsible for potassium root-to-shoot translocation 

After taken up by roots, K+ is translocated into xylem vessels for long distance transport 

to the shoots. SKOR (Stelar K+ Outward Rectifier), a voltage-dependent channel 

protein belonging to the Arabidopsis Shaker channel family, is the major K+ channel 

protein contributing to this process. SKOR was mainly expressed in root pericycle cells 

and in parenchymal cells surrouding the xylem vessels, and its transcription was 

strongly inhibited by hormone ABA (Gaymard et al. 1998). Xenopus oocytes injected 

with SKOR cRNA demonstrated K+ permeability. T-DNA knockout mutant skor1 had no 

alteration in root K content, but exhibited an approximate 50% decrease in shoot K 

content which was likely resulted from the reduced root-to-shoot translocation rate of 

K+ via xylem. The reduced K content in leaves was compensated with the accumulation 

of calcium (Ca) (Gaymard et al. 1998).  

The gating of SKOR has been intensively studied since two decades. SKOR activity is 
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sensitive to pH. The decrease of internal and external pH in Xenopus oocytes strongly 

impaired the SKOR current (Lacombe et al. 2000). In contrast, hydrogen peroxide 

(H2O2) treatment led to an increase in the SKOR outward currents and a decrease in 

its half activation time (Garcia-Mata et al. 2010). The opening or closure of SKOR 

channel was also modulated by [K+]ext. Under high [K+]ext, the Pore (P) domain of SKOR 

was occupied with K+, which caused the conformational change of the C terminus of 

two S6 subunits, therefore, the SKOR channel was closed and more energy input was 

required for the opening of the channel (Johansson et al. 2006). Moreover, SKOR was 

activated by the increase in intracellular K+ ([K+]i), which was a voltage-independent 

process. The C-terminal cytoplasmic domain of SKOR is important for this internal K+ 

sensing (Liu et al. 2006).  

Besides SKOR, the recently characterized KUP7 may be also involved in root-to-shoot 

translocation of K+. Under low K+ availability, kup7 mutant plants demonstrated 

significantly lower shoot/root K ratio and lower K content in xylem sap compared to 

wild-type control. No significant difference was observed when K+ supply was sufficient 

(Han et al. 2016). These findings indicated that KUP7 may contribute to K+ xylem 

loading under low K+ growth conditions.  

Apart from SKOR and KUP7, other K+ unspecific transporters and channels like AtCCC 

(Cation Chloride Cotransporter) and NORC (Non-selective Outwardly Rectifying 

Current) are also suggested to facilitate K+ efflux into xylem sap (Colmenero-Flores et 

al. 2007; Zepeda-Jazo et al. 2008).   

1.5.3 NRT1.5 affects potassium root-to-shoot translocation at limited 

nitrate supply 

Before the nitrate transport funcion of NRT1.5 was characterized by Lin et al. (2008), 

the early study in our group has found that NRT1.5 is one of the NRT1 members which 

is highly upregulated during the leaf senescence (van der Graaff et al. 2006). This 

expression pattern of NRT1.5 prompted us to investigate its function and the role in 

leaf senescence. Our subsequent studies found an early leaf senescence phenotype 
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of nrt1.5 mutant plants, which occured after bolting when growing on low fertilized soil. 

The more detailed phenotypical analysis showed that nrt1.5 mutants had a pleiotropic 

reduction in rosette fresh weight, anthocyanins, seed yield, seed weight and seed oil 

content compared to wild-type plants growing on low fertilized soil (Drechsler et al. 

2015). Interestingly, the development of those pleiotropic symptoms of nrt1.5 mutants 

were diminished or even abolished when 10 mM KNO3 was supplied. Even though 

NRT1.5 has been reported to be involved in NO3
- xylem loading, neither NO3

- nor total 

N content in nrt1.5 plants was significantly differed from the levels in wild-type plants. 

This finding suggested that the low K conccentration might account for the early 

senescence phenotype of nrt1.5 plants. Moreover, Chen et al. (2012) did not observe 

the similar leaf senescence phenotype when growing nrt1.5 plants in hydroponic 

culture with high NO3
- concentration (4-12.5 mM), which implies the early leaf 

senescence phenotype of nrt1.5 plants observed in our study might also depend on 

the low NO3
- availability.  

To access to the root material, nrt1.5 mutants and wild-type plants were cultivated in 

hydroponic solutions with low NO3
- concentration (0.1 mM). Both NO3

- and total N 

content in rosette leaves were even higher in nrt1.5 than in the wild-type plants, which 

is consistent with the previous result from soil experiments. K concentration in roots of 

nrt1.5 and wild type was comparable. Strikingly, the K concentrations in aerial parts of 

nrt1.5, including rosette leaves and infloresence stems, were significantly reduced 

compared to the wild-type level (Drechsler et al. 2015). These results suggested that 

the K+ translocation from root to shoot was blocked in nrt1.5 at NO3
- deprivation.  

In addition to our study, a recent study by Meng et al. (2016) also reported the similar 

observations of nrt1.5 mutants. They concluded that NRT1.5 can prevent the leaf 

senesence provoked by low NO3
- availability through modulating foliar K+ level. 

1.6 The intersection of nitrate and potassium transport 

Physiological studies since the 1960s have described a close relationship between 

NO3
- and K+ in respect of their uptake, translocation and recycling. It was often 
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observed that the acquisition and xylem translocation of NO3
- and K+ are commonly 

positively correlated, which might be attributed to the improved charge balance (Rufty 

et al. 1981; Siebrecht and Tischner 1999; Zhang et al. 2010). K+ can also activate 

nitrate assimilation enzymes (Balkos et al. 2010), therefore enhancing crop yields 

(Zhang et al. 2010). The internal translocation and cycling of both ions can be well 

explained by the ‘Dijkshoorn-Benzioni model’. NO3
- is transported from root to shoot in 

xylem, accompanied with K+ as a counterion. In shoot, NO3
- is reduced and assimilated 

into amino acids in the form of organic acids like malate. Then, organic acids are further 

transferred to root via phloem with K+ as a counterion. In root, organic acids are 

decarboxylated and release negative charged HCO3
-.  

1.6.1 Co-regulation of transporters at the molecular level 

Except physiological studies, however, to date, little is known about the crosstalk of 

NO3
- and K+ at the molecular level. ROS elevation is observed in plant roots by NO3

- 

and K+ deficiency treatment, indicating that ROS serve as a common signal component 

in NO3
- and K+ signaling pathways (Shin et al. 2005). Recently, gene expression 

studies indicate a close relationship between nitrate and potassium transport at the 

transcriptional level. On the one hand, K+ deficiency not only positively regulates the 

expression of potassium transporter genes like HAK5, but also inhibits the transcription 

of nitrate transporters involved in nitrate uptake (NRT2.1) and nitrate translocation 

(NRT1.5) (Figure 3), even though after K+ resupply their transcription was quickly 

recovered (Armengaud et al. 2004; Lin et al. 2008). On the other hand, NO3
- availability 

also regulates the expression of potassium transporters/channels. For instance, SKOR 

transcription was significantly downregulated by NO3
- deprivation (Menz et al. 2016), 

and HAK5 was strongly induced by NO3
- (Wang et al. 2001). Based on the observation 

that the root-to-shoot translocation of K+ was reduced in nrt1.5 mutants (Lin et al. 2008), 

it was speculated that K+ root-to-shoot translocation conducted by SKOR may be 

dependent on the nitrate transport activity of NRT1.5 (Wang and Wu 2013). 

Interestingly, the knockout mutant of recently identified nitrate exporter NPF2.3 also 
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showed decreased K+ root-to-shoot translocation (Taochy et al. 2015). This 

observation corroborates that the root-to-shoot K+ transport is influenced by the root-

to-shoot transport of its counterion NO3
-.  

1.6.2 CIPK23: a common regulator for nitrate and potassium 

transport 

Recently, CIPK23, which is regulated by CBL1 and CBL9 under both NO3
- and K+ 

deficiencies, was identified as one important node in controlling uptake of both NO3
- 

and K+. At low NO3
- concentrations, once activated by CBL9, CIPK23 phosphorylates 

nitrate transporter NRT1.1 at Thr101 to convert its nitrate uptake mode from low affinity 

to high affinity (Ho et al. 2009). Similarly, low K+ stress also leads to the activation of 

CIPK23 by CBL proteins. As a consequence, the two potassium inward transporters 

AKT1 and HAK5 are activated via phosphorylation (Xu et al. 2006; Ragel et al. 2015), 

which will eventually benefit plants to taking up more K+ under K+ deficiency.  

 

Figure 3. Schematic model of the crosstalk between K+ and NO3- signaling responses to K+ 

and NO3- deficiencies in Arabidopsis.  

K+ deficiency enhances HAK5 and CIPK23 transcription but reduces NRT2.1 and NRT1.5 

transcription. NO3- deficiency induces NRT2.1 and NRT1.5 transcription but downregulates 

NRT1.1 and SKOR expression. The increased CIPK23 regulates activities of AKT1, HAK5 and 

NRT1.1 by phosphorylation, which coordinately modulates K+ uptake and NO3- uptake. NRT1.5-

mediated NO3- translocation may also affects the root-to-shoot K+ translocation conducted by 
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SKOR. Modified from (Wang and Wu 2013). 

1.6.3 Protein-protein interaction between nitrate and potassium 

transporters 

Interestingly, recent studies showed that members of the SLAC1/SLAH family can 

influence the activity of Shaker channels through their physical protein-protein 

interaction. SLAC1 and its homologue SLAH3 which have NO3
- permeability, can 

negatively affect inward K+ rectifying channel proteins KAT1 (K+ channel in Arabidopsis 

thaliana 1) through the direct protein-protein interaction, which then impairs light-

induced K+ import and consequently prevents stomatal opening under light in 

Arabidopsis. This inhibition effect of KAT1 by SLAC1 and SLAH3 is a different 

mechanism than the inhibition of KAT1 by KC1 (Zhang et al. 2016). In addition to KAT1, 

SLAH1, SLAH2 and SLAH4 are also able to interact with AKT2 (Arabidopsis potassium 

transporter 2) which mediates both K+ influx and efflux activity, but only the AKT2-

mediated K+ influx is inhibited by the interaction with SLAHs. In addition, all four SLAHs 

can significantly reduce the KAT2 (K+ channel in Arabidopsis thaliana 2) mediated 

inward K+ channel currents. These observations indicated that the protein-protein 

interaction between inward K+ rectifiers from Shaker channel and S-type anion 

channels could be a general molecular mechanism to coordinate the movement of 

anions and K+ in plants (Yao et al. 2017).  

1.7 The influence of nitrate and potassium on root 

plasticity of Arabidopsis 

It is well known that besides plant hormones, nutrient availability also has a profound 

impact on root system architecture (RSA) of plants by influencing parameters including 

number, length, angle and diameter of roots (Malamy 2005). The influence of NO3
- on 

RSA has been intensively studied with respect to both uniformly supplied NO3
- or 

locally concentrated NO3
- supply. In the former experiments, Arabidopsis plants were 

grown with a range of uniformly supplied NO3
- concentrations to examine their RSA. In 
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the latter experiments, Arabidopsis plants were first grown on agar plates with low NO3
- 

to produce NO3
--starved plants. The plants were then transferred to agar plates divided 

into three segments. The upper and lower segment contained low NO3
- level, while the 

middle segment contained high NO3
- concentration (Zhang and Forde, 1998; Linkohr 

et al. 2002). Alternatively, agar plates were simply separated into two segments with 

either low or high NO3
- supply (Remans et al. 2006).  

High concentration of NO3
- (>10 mM) applied uniformly to whole plants had little effect 

on primary root (PR) elongation, whereas it repressed lateral root (LR) development at 

the specific stage when LRs just emerged from the PR and before maturation. The 

suppression is due to an effect on LR elongation rather than on initiation (Zhang and 

Forde, 1998). This repression is systemic and is caused by NO3
- itself rather than its 

metabolites (Zhang et al. 1999). Signora et al. (2001) found that ABA is involved in 

mediating this systemic inhibitory effect of LR elongation by high NO3
-(Signora et al. 

2001).The similar inhibitory effect of high NO3
- on LR growth was also found by Linkohr 

et al. (2002). They observed that LR density remained unchanged while LR elongation 

was suppressed by uniformly high NO3
- supply. In addition, Linkohr et al. (2002) found 

PR of Arabidopsis plants was shorter with increasing NO3
- supply. 

In contrast to uniform NO3
- supply, locally concentrated NO3

- supply had no influence 

on PR length of Arabidopsis plants (Zhang and Forde 1998; Linkohr et al. 2002). 

Similar observations were also reported in other organisms like barley and maize 

(Drew et al. 1973; Granato and Raper 1989). The increase in LR density was induced 

by locally high NO3
- supply (Linkohr et al. 2002). Moreover, LR elongation within NO3

-

-rich patch (the segment of agar plates with locally high-NO3
- concentration) was 

induced, whereas the growth of LR outside the NO3
--rich patches was suppressed 

(Drew et al. 1973; Granato and Raper 1989; Sattelmacher et al. 1993; Zhang and 

Forde 1998; Linkohr et al. 2002). This stimulatory effect was triggered by the function 

of NO3
- as a signal rather than by its nutritional properties (Zhang and Forde 1998). 

The ANR1 MADS-box transcription factor is involved in this localized NO3
- stimulation 

effect because anr1 knockdown mutant failed to colonize in NO3
--rich zones (Zhang 
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and Forde 1998). Based on observations that nrt1.1 mutant plants have a similar 

phenotype like anr1 and ANR1 expression is reduced in nrt1.1 mutants, it was 

suggested that NRT1.1 is located upstream of ANR1 in the local stimulation pathway 

(Remans et al. 2006). Moreover, so far it is not clear whether auxin is involved in this 

stimulation effect. Zhang et al. (1999) observed that the stimulation effect of NO3
- on 

LR proliferation was abolished in arx4 (Auxin resistant 4) mutant, suggesting an 

overlap between auxin and nitrate response pathways (Zhang et al. 1999). In contrast, 

Linkohr et al. (2002) observed the wild-type responses of axr4 mutant inside and 

outside NO3
--rich patches.  

Armengaud et al. (2004) observed that K+ deficiency reduced LR length. Shin and 

Schachtman (2004) observed that low K+ supply decreased LR length and LR numbers 

rather than affecting PR length. However, Gruber et al. (2013) found that K+ deficit 

mainly affected total root length by decreasing PR length and the 1° (first-order) lateral 

roots length, but the 1° LR density remained unchanged. In agreement with this 

observation, the PR length of athak5 knockout mutant plants was significantly 

decreased compared to wild-type control under K+ deficient growth conditions (Qi et al. 

2008). Inhibition of LR growth in K+ starved plants may be due to the elevated ethylene 

level, even though genes related to ethylene metabolism and signaling were not 

activated during this development response (Armengaud et al. 2004). Moreover, it has 

been observed that K+ availability affected root gravitropic behavior and auxin 

distribution within root tip (Vicente-Agullo et al. 2004), indicating that auxin might also 

be involved in regulation of RSA by low K+ availability. 

1.8 Aim of the present study 

In our previous study, it has been demonstrated that the transcription level of NRT1.5 

was strongly upregulated during the leaf senescence (van der Graaff et al. 2006), 

which prompted us to presume that the impairment in NRT1.5 would change the 

senescence development pattern of nrt1.5 mutant plants. Indeed, subsequent studies 

of our group (Drechsler et al. 2015) and Meng et al. (2016) discovered an early leaf 
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chlorosis phenotype of nrt1.5 mutants only under low NO3
- availability, which turned 

out to be provoked by the low K level in rosette leaves of nrt1.5. However, as a nitrate 

transporter, how does NRT1.5 affect K+ root-to-shoot translocation, is still poorly 

understood. The main aim of the present work is to elucidate the role of NRT1.5 in 

potassium transport process, either through its potassium transport function or through 

influencing other potassium transport proteins.  

Since NRT1.5 is mainly expressed in root pericycle cells, to explore the role of NRT1.5 

in the root morphological adaptions to NO3
- and K+ availability, the root phenotype of 

nrt1.5 mutants will be examined under various NO3
- and K+ supplies on plates. 

Moreover, to investigate the role of NRT1.5 in potassium transport, on the one hand, 

the potassium transport function of NRT1.5 will be examined in Saccharomyces 

cerevisiae mutant cells which are deficient in either K+ uptake or export function, 

respectively. On the other hand, the in vivo protein-protein interaction between NRT1.5 

and its interacting partners will be investigated in tobacco by using bimolecular 

fluorescence complementation (BiFC) methods. Subsequently, to analyze the 

physiological meaning of the protein-protein interactions, the double mutants of 

NRT1.5 and prospective interacting partners will be generated by crossing and used 

for phenotypical analysis under various nutrient supplies. Plant material will be 

harvested for elemental analysis by Inductively Coupled Plasma Optical Emission 

Spectrometry (ICP-OES) to examine the composition of K and other elements. In the 

last, qRT-PCR will be employed to analyze the expression pattern of several important 

nitrate and potassium transporter genes including NRT1.5 in response to hormone 

treatments. These results will shed a light on understanding how ion transport 

processes are controlled by phytohormones, which might act as the subsequent 

signals of nutrient deficiency. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals 

The chemicals used in this study were purchased from the companies Carl Roth 

(Karlsruhe, Germany), Duchefa (Haarlem, Netherlands), Formedium (Hunstanton, 

United Kingdom), Merck (Darmstadt, Germany), Serva (Heidelberg, Germany) and 

Sigma-Aldrich (Taufkirchen, Germany). 

Without special indications, deionized (dH2O) or double deionized water (ddH2O) (Milli-

Q Water System, Merck Millipore, Billerica, USA) was used for solutions and reaction 

preparation. The solutions and medium were autoclaved at 121°C (1.2 bar) for 15 min 

or filter (Sarstedt, Nümbrecht, Germany, pore diameter 0.2 μm) sterilized. Customary 

solutions and buffers in molecular biology have been described in Molecular cloning 

(3rd edition) (Sambrook and Russell 2001). 

2.1.2 Enzymes and Kits 

All restriction enzymes used in this study were purchased from company Thermo 

Fisher Scientific (Waltham, USA) or New England Biolabs (Frankfurt am Main, 

Germany).  

Without special indications, self-made Taq DNA polymerase was applied to all regular 

PCR reactions. Preparation of self-made Taq DNA polymerase is according to Desai 

and Pfaffle (1995). Phusion Hot Start II High-Fidelity DNA Polymerase (Thermo Fisher 

Scientific, Waltham, USA) and Q5 High-Fidelity DNA Polymerase (New England 

Biolabs, Frankfurt am Main, Germany) were applied for the high-proof amplification of 

DNA for cloning purpose.  

All commercial kits used in this study were listed as follow: 

o NucleoSpin® Gel and PCR Clean-up (MACHEREY-NAGEL, Düren, Germany) 
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o Power SYBR® Green PCR Master Mix (Thermo Fisher Scientific, Waltham, USA) 

2.1.3 Ladders 

λ-PstI-DNA-Marker, GeneRuler 1 kb DNA Ladder (Thermo Fisher Scientific, Waltham, 

USA) and 2-Log DNA ladder (New England Biolabs, Frankfurt am Main, Germany) 

were used for estimating the sizes of DNA fragment on agarose gel.  

2.1.4 Oligonucleotides 

All oligonucleotides were synthesized by Thermo Fisher Scientific (Waltham, USA) or 

Eurogentec Deutschland GmbH (Köln, Germany). Oligonucleotides for qRT-PCR are 

listed in Table 2. Oligonucleotides for cloning are listed in Table 3. Oligonucleotides for 

genotyping PCR and RT-PCR are listed in Table 4. 

Table 2. Oligonucleotides used for qRT-PCR.  

Without special indications, the sequences of the qRT-PCR oligonucleotides were generated 

by the Quantprime software (Arvidsson et al. 2008). The amplicon lengths were between 60-

262 bp. fw and rv represent forward and reverse primers, respectively.  

Gene name Gene ID Forward and reverse sequence (5'-3') 

AtNRT1.5 At1g32450 
fw: TGCTGGCATCGTCATTCTTCTG  

rv: AGCACCAAGTTCACTCCAACTCC  

AtNRT1.8 At4g21680 
fw: AGCAAGTTTCGTTGCAGGGTTG  

rv: ACTCCACAACCACTTGGTTCAAGC  

AtNRT1.1 At1g12110 
fw: GCCACACACTGAACAATTCCGTTC 

rv: ATTCGAGGTAACTCCCGCTTCC 

AtSKOR At3g02850 
fw: AGCTGGAGGTGACCCGAATAAG  

rv: TCTAGAGGCTGCAAGATGCAAAGG 

AtHAK5 At3g02850 
fw: GGCAGGCTGCGTACCTAACTAAAC 

rv: TGTTGGCCAGTATAACGGATCAGG 

AtCIPK9 At1g01440 
fw: GGAAGAAACCGCAAAGCCATTAGG 

rv: ATGGCGCCACTTCAAACACCTC 

AtSLAH1 At1g62280 
fw: ATCTTCATGTCCCTGGTCTGTAGG 

rv: AGAACCGACCGGATCTTTCACC 

AtSLAH3 At5g24030 
fw: CCATGCCTGTGGACCGTTACTATG 

rv: ACGATCTCTTCTTGAGGCCGTAGG 

AtARF7 At1g19050 
fw: TCAAGGTCACAGTGAGCAAGTCG 

rv: TGTGGAGCATGCATATGAGCTTGG 

AtARF8 At5g37020 fw: AGGGTCACAGTGAACAGGTAGC 
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rv: TGGTGGTAGGCTTGGGTAATTGG 

AtARF19 At1g19220 
fw: ACAGCTCGAAGATCCGCTAACC 

rv: TGCACGCAGTTCACAAACTCTTC 

AtLBD29 At3g58190 
fw: ACTGGAAGTTCTGGGACGGTTC 

rv: ATGCCTGAGGAGGTTTCGTTGTG 

AtPIN1 At1g73590 
fw: GGCATGGCTATGTTCAGTCTTGGG 

rv: ACGGCAGGTCCAACGACAAATC 

AtPIN2 AT5g57090 
fw: TCACGACAACCTCGCTACTAAAGC 

rv: TGCCCATGTAAGGTGACTTTCCC 

AtPIN5 AT5g16530 
fw: ATGGCCATCGGCTCTATTGTCC 

rv: AGCAGCCTGAATGATGGCTACG 

AtARR5 AT3g48100 

fw: AGTTCGGTTGGATTTGAGGATCTG 

rv: TCCAGTCATCCCAGGCATAGAG 

AtARR7 AT1g19050 

fw: AGGTCATGAGGATGGAGATTCCC 

rv: ATCGACGGCAAGAACATGCAAC 

AtARR10 AT4g31920 
fw: TGATGGCTTCTGATGCTGGTTCC 

rv: TCAGATTGGCTCTGTTCCTGTGTC 

AtMYB77 AT3g50060 
fw: AGGAGTTACATGGCGGAAATGCAG 

rv: TGCCGCCGGATTCGTATAAACC 

AtIAA4 AT5g43700 
fw: GTTGGTGATGTTCCTTGGGAGATG 

rv: GGTTTGTTAAAGACCACCACAACC 

AtSAUR41 AT1g11803 
fw: TCCGCTCAAGAATACGGTTACGC 

rv: AAACACGATGACGTGGCAAGGG 

AtSAUR AT1g16510 
fw: TTTCGAGAGCGAGTCAAGGTTTG 

rv: GGTATCTTCAGGACAAGGAATCGC 

 

Table 3. Oligonucleotides used for conventional cloning and Gateway® cloning.  

Restriction enzyme sites and Gateway® attachment sites attB1, attB2 and attB3 (highlighted 

and italic nucleotides) were integrated into the forward (fw) and reverse (rv) oligonucleotide 

sequences for amplification of coding DNA sequence (CDS). 

Gene ID Amplification Forward and reverse sequence (5'-3') 

Oligonucleotides for cloning of yeast complementation constructs 

At3G02850 SKOR CDS (SpeI/BamHI) fw: GACTAGTATGGGAGGTAGTAGCGGCGG 

  rv: CGGGATCCTTATGTTTCAACAGCCAAATAC 

At1G32450 NRT1.5 CDS (BamHI/HindIII) fw: CGGGATCCATGTCTTGCCTAGAGATTTATA 

  rv: CCCAAGCTTTTAGACTTTAGAATCCTTCTC 

At5G46240 KAT1 CDS (BamHI/HindIII) fw: CGGGATCCATGTCGATCTCTTGGACTCG 

  rv: CCCAAGCTTGCTCTATAAATGAAGTCGAG 

At4G21680 NRT1.8 CDS (BamHI/HindIII) fw: CGGGATCCATGGATCAAAAAGTTAGACAG 

  rv: CCCAAGCTTTCAGACTTCCTCCTCTTC 

At1G30270 CIPK23 CDS (SpeI) fw: CCGACTAGTATGGCTTCTCGAACAACGC 

  rv: CCGACTAGTTTATGTCGACTGTTTTGCA 
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At1G01140 CIPK9 CDS (SpeI/BamHI) fw: CCGACTAGTATGGGTTGTTTCCATTCCAC 

  rv: CGGGATCCTCACGTCGCAATCTCGT 

At4G17615 CBL 1CDS (SpeI/BamHI) fw: CCGACTAGTATGGGCTGCTTCCACTCAAAG 

  rv: CGGGATCCTCATGTGGCAATCTCATCGA 

At4G26570 CBL3 CDS SpeI/BamHI) fw: CCGACTAGTATGTCGCAGTGCATAGACG 

  rv: CGGGATCCTCAGGTATCTTCCACCTGC 

At5G47100 CBL9 CDS (SpeI/BamHI) fw: CCGACTAGTATGGGTTGTTTCCATTCCAC 

  rv: CGGGATCCTCACGTCGCAATCTCGT 

At4G13420 HAK5 CDS (SpeI/BamHI) fw: CCGACTAGTATGGATGGTGAGGAACATCA 

  rv: CGGGATCCTTATAACTCATAGGTCATGCC 

Oligonucleotides for cloning of 35Sp::NRT1.5 construct 

At1G32450 NRT1.5 CDS (BamHI/PstI) fw: CGGGATCCATGTCTTGCCTAGAGATTTATAAC 

  rv: AACTGCAGTTAGACTTTAGAATCCTTCTC 

Oligonucleotides for cloning of pDOE08 system 

At1G32450 NRT1.5 CDS (BamHI/SpeI) fw: CGGGATCCATGTCTTGCCTAGAGATTTA 

  rv: GGACTAGTTTAGACTTTAGAATCCTTCTC 

At1G62280 SLAH1 CDS (RsrII/PmlI) fw: ATGCGGTCCGAAATTCCGAGGCAAGA 

  rv: CGCACGTGCTAGTTTTGGTTAGTCGCAT 

At5G24030 SLAH3 CDS (RsrII/PmlI) fw: ATGCGGTCCGAGGAGAAACCAAACTATGTG 

  rv: CGCACGTGTTATGATGAATCACTCTCTTG 

At5G62680 NRT1.10 CDS (RsrII/PmlI) fw: ATGCGGTCCGAGAGAAAGCCTCTTGA 

  rv: CGCACGTGTCAGGCAACGTTCTTGTCTTG 

At4G30190 AHA2 CDS (RsrII/PmlI) fw: ATGCGGTCCAATCGAGTCTCGAAGATATCAAG 

  rv: CGCACGTGCTACACAGTGTAGTGACTG 

Oligonucleotides for Gateway® cloning 

At1G30270 attB1-CIPK23-fw fw: GGGGACAAGTTTGTACAAAAAAGCAGGCTTG 

  ATGGCTTCTCGAACAACGC 

 attB2-CIPK23-rv (with stop rv: GGGGACCACTTTGTACAAGAAAGCTGGGTT 

 codon） TTATGTGCACGACTGTTTT 

At4G17615 attB1-CBL1-fw fw: GGGGACAAGTTTGTACAAAAAAGCAGGCTTG 

  ATGGGCTGCTTCCACTCAAAG 

 attB2-CBL1-rv (with stop rv: GGGGACCACTTTGTACAAGAAAGCTGGGTT 

 codon) TCATGTGGCAATCTCATCGA 

At5G47100 attB1-CBL9-fw fw: GGGGACAAGTTTGTACAAAAAAGCAGGCTTG 

     ATGGGTTGTTTCCATTCCAC 

 attB2-CBL9-rv (with stop rv: GGGGACCACTTTGTACAAGAAAGCTGGGTT 

 codon) TCACGTCGCAATCTCGTCC 

Oligonucleotides for cloning of pBiFC-2in1 system 

At4G30190 attB2-AHA2-rv (with stop rv: GGGGACCACTTTGTACAAGAAAGCTGGGTT 

 codon) CTACACAGTGTAGTGACTGGGAG 
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Table 4. Oligonucleotides used for genotyping PCR and RT-PCR to check the transcript in T-

DNA insertion lines. 

Primers sequences for genotyping PCR to identify mutants were obtained from T-DNA primer 

Design (http://signal.salk.edu/tdnaprimers.2.html) 

Primer name Sequence (5'-3') 

GAPC 
fw: CACTTGAAGGGTGGTGCCAAG 

rv: CCTGTTGTCGCCAACGAAGTC 

LB_Gabi CCATTTGGACGTGAATGTAGACAC  

LBb1.3 ATTTTGCCGATTTCGGAAC 

LP_nrt1.8 GATGTGCACCATGAAGAGTTG   

RP_nrt1.8 TGTTGGAACTGTGGAATCAAC   

LP_slah1 TCAGCAAATATGCACCATGAC   

RP_slah1 CGATATGAATTTCTTGCCTCG   

LP_nrt1.9 AAAACTGATGGAAAAACATGAGG   

RP_nrt1.9 ACGAGTTATGCTGTGAATGGG   

LP_slah3 AAAGCGGTAATGGTGATGATG   

RP_slah3 GGTCGGTAGCCTTTGGTAGAG   

LP_aha2 TGACAAAACCGGGACACTAAC 

RP_aha2 ATCACCACCTTTGCAATGAAC 

LP_nrt1.5-5 CTCGAAGATTGCGTTTTTCAG  

RP_nrt1.5-5 CCCGATGAGTGAGTATTGTGG 

LP_skor2 TATGAACCGAAACAAACTCGG  

RP_skor2 ACACGATCATTCCCATTCTTG  

LP_skor3 CCCATATCTCACTGGTTCACC  

RP_skor3 CCAAACTTCAGCGAAACAGAG 

NRT1.8-RTPCR 
fw: GTTCGTTGTGCAAGGAGCAG 

rv: AAACCACGAAATCAGCAGCG 

SLAH3-RTPCR 
fw: GGCACCAAACCGGAATAACC 

rv: CTCGTTGGTCGGTAGCCTTT 

SKOR-RTPCR 
fw: CTCTCTTTCGCGGATGCTCA  

rv: GTCACCTCCAGCTCGAATCA  

NRT1.5-RTPCR 
fw: GGTCGCTGCAACGAAGAAATC  

rv: CAAAGCGACGCTAAGGATGTC  

2.1.5 Plasmids 

Plasmids acquired commercially or obtained from other studies are listed in Table 5, 

and plasmids newly constructed in this work are listed in Table 6. 
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Table 5. Plasmids acquired commercially or obtained from other studies.  

Listed are the plasmids which were purchased from commercial companies or obtained from 

other studies. Respective selection markers in bacteria (B), plants (P) and yeasts (Y) were 

abbreviated as following: SpecR - spectinomycin resistance; KanR - kanamycin resistance; 

AmpR - ampicillin resistance, CamR - chloramphenicol resistance; LeuA - Leucine auxotrophic 

marker; TrpA - tryptophan auxotrophic marker; UraA - uracil auxotrophic marker. The detail 

description of each plasmid is listed in Table S1.   

Plasmid name Selective marker Reference 

pPTKan3 SpecR (B), KanR (P) Guillaume Pilot (Virginia Tech 

  Blacksburg, USA) 

p425 AmpR (B), UraA (Y) Mumberg et al., 1995 

p426 AmpR (B), LeuA (Y) Mumberg et al., 1995 

pDONRTM222 KanR (B) Thermo Fisher Scientific (Waltham, 

  MA, USA) 

pDONR221_p3-p2 KanR (B) Thermo Fisher Scientific (Waltham, 

  MA, USA) 

pDONR221_p3-p2_SLAH1 mit Stopp KanR (B) Navina Drechsler (Freie Universität 

  Berlin, DE) 

pDONR221_p3-p2_SLAH3 mit Stopp KanR (B) Navina Drechsler (Freie Universität 

  Berlin, DE) 

pDONR221_p3-p2_CBL3 mit Stopp KanR (B) Navina Drechsler (Freie Universität 

  Berlin, DE) 

pDONR221_p1-p4_NRT1.5 mit Stopp KanR (B) Navina Drechsler (Freie Universität 

  Berlin, DE) 

pBT3-N_AtNRT1.5 KanR (B), LeuA (Y) Navina Drechsler (Freie Universität 

  Berlin, DE) 

pBiFC-2in1-NN SpecR (B), KanR(B) Grefen and Blatt, 2012 

pDOE-08 KanR (B) Gookin and Assmann, 2014 

pNubI-X-HA AmpR (B), TrpA (Y) ABRC stock(1) #CD3-1737 

pNubG-X-HA AmpR (B), TrpA (Y) ABRC stock(1) #CD3-1739 

pNubG-AtDMP2 AmpR (B), TrpA (Y) Alexis Kasaras (Freie Universität 

  Berlin, DE) 

pNubG-AtDMP7 AmpR (B), TrpA (Y) Alexis Kasaras (Freie Universität 

  Berlin, DE) 

pNubG-KAT1 AmpR (B), TrpA (Y) Alexis Kasaras (Freie Universität 

  Berlin, DE) 

pAG426GPD-ccdb/p14156 AmpR (B), CamR (B), Susan Lindquist;  

 UraA (Y) Addgene(2) plasmid #14156 

(1) http://abrc.osu.edu/; (2) http://www.addgene.org/ 
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Table 6. Plasmids newly constructed in this work.  

Plasmid name Description Selective marker 

Plasmids generated for BiFC and split-ubiquitin study 

pDONR221_p3-p2_AHA2 

mit Stopp 

Gateway® donor vector with AtAHA2  

full length coding sequence 

KanR (B) 

pDONR222_CIPK23 Gateway® donor vector with AtCIPK23 

full length coding sequence  

KanR (B) 

pDONR222_CBL1 Gateway® donor vector with AtCBL1 

full length coding sequence  

KanR (B) 

pDONR222_CBL9 Gateway® donor vector with AtCBL9 

full length coding sequence  

KanR (B) 

pBiFC-2in1-NN_NRT1.5/- pBiFC-2in1: nYFP fused to N- terminus of HA tag  

and cYFP fused to N- terminus of NRT1.5 

SpecR (B) 

pBiFC-2in1-

NN_NRT1.5/SLAH1 

pBiFC-2in1: nYFP fused to N-terminus of SLAH1 

and cYFP fused to N- terminus of NRT1.5 

SpecR (B) 

pBiFC-2in1-

NN_NRT1.5/SLAH3 

pBiFC-2in1: nYFP fused to N terminus of SLAH3 

and cYFP fused to N-terminus of NRT1.5 

SpecR (B) 

pBiFC-2in1-

NN_NRT1.5/AHA2 

pBiFC-2in1: nYFP fused to N-terminus of AHA2 

and cYFP fused to N-terminus of NRT1.5 

SpecR (B) 

pDOE-08-NRT1.5 NmVen210 fused to N-terminus of NRT1.5  

and unfused CVen210 

KanR (B) 

pDOE-08-NRT1.5/SLAH1 NmVen210 fused to N- terminus of NRT1.5 

and CVen210 fused to N- terminus of SLAH1 

KanR (B) 

pDOE-08-

NRT1.5/NRT1.10 

NmVen210 fused to N- terminus of NRT1.5 

and CVen210 fused to N-terminus of NRT1.10 

KanR (B) 

p14156-CBL1 yeast expression vector with CBL1 CDS AmpR (B), CamR 

(B), UraA (Y) 

p14156-CBL9 yeast expression vector with CBL9 CDS AmpR (B), CamR 

(B), UraA (Y) 

pNubG-CIPK23 yeast expression vector with NubG-CIPK23-HA  

fusion construct 

AmpR (B), TrpA 

(Y) 

Plasmids for gain of function study in Arabidopsis 

pYZ1204 pPTbar+ (NptII cassette of pPTKan3 was replaced 

with nos-Bar cassette) 

SpecR (B), 

BastaR (P) 

p35Sp::NRT1.5 express NRT1.5 under the control of 35S 

promoter in PYZ1204  

SpecR (B), 

BastaR (P) 

Plasmids for functional study in yeast 

pYZ10 express NRT1.5 under the control of TEF 

promoter in yeast expression vector p426 

AmpR (B), UraA 

(Y) 
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pYZ11 express SKOR under the control of TEF promoter  

in yeast expression vector p425 

AmpR (B), LeuA 

(Y) 

pYZ13 express KAT1 under the control of TEF promoter   

in yeast expression vector p426 

AmpR (B), UraA 

(Y) 

p426-NRT1.8 express NRT1.8 under the control of TEF 

promoter in yeast expression vector p426 

AmpR (B), UraA 

(Y) 

2.1.6 Bacteria and yeast strains 

Escherichia coli, Agrobacterium tumefaciens and Saccharomyces cerevisiae strains 

used in this work are listed in Table 7. 

Table 7. Bacteria and yeast strains used in this work. 

Strain Genotype Reference 

Escherichia coli   
DH10BTM  F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

ΔlacX74 recA1 endA1 araD139 Δ(ara,leu)7697 

galU galK rpsl nupG λ- 

Thermo Fisher Scientific, 

Waltham, USA 

Agrobacterium tumefaciens  
GV3101::pMP90 Rifampicin and Gentamycin resistant  Koncz and Schell 1986 

Saccharmyces cerevisiae  
BY4741 MATa his3Δ leu2Δ met15Δ ura3Δ Euroscarf, Frankfurt am 

  Main, Germany 

BYT45 BY4741 nha1Δ::loxP ena1-5Δ::kanMX Borovikova et al., 2014 

BYT12 BY4741 trk1Δ::loxP trk2Δ::loxP Petrezselyova et al., 2010 

31019b MATa ura3 mep1Δ mep2Δ::LEU2 mep3Δ:: Marini et al., 1997 

 KanMX2  

23344c MATa ura3 Grenson, M. 

  unpublished data 

THY-AP4 MATa ura3 leu2 his3 trp1 ade2 lexA::lacZ Obrdlik et al., 2004 

 lexA::HIS3 lexA::ADE2  

2.1.7 Plant material 

In this work, Arabidopsis wild type control is the ecotype Columbia-0 (Col-0). The T-

DNA insertion lines used as well as the generated overexpression lines are listed in 

Table 8. All single T-DNA insertion lines used in this work were obtained from the 

Arabidopsis Biological Resource Center. Double mutants were generated through 

crossing two homozygous single T-DNA insertion mutants.  
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Table 8. Arabidopsis thaliana lines used and generated in this work. 

Arabidopsis thaliana lines Description and reference 

Col-0 wild type 

nrt1.5-4 NRT1.5 knockout line, SALK_063393 (Li et al., 2010) 

nrt1.5-5 NRT1.5 knockout line, GABI_347B03 (Drechsler et al., 2015) 

skor-2 SKOR knockout line, GABI_391G12 (Drechsler et al., 2015) 

skor-3 SKOR knockout line, SALK_097435 (Drechsler et al., 2015) 

slah3 SLAH3 knockout line, GABI_317G03 

nrt1.8 NRT1.8 knockout line, GABI_756D01 

aha2 AHA2 knockout line, GABI_219D04 

CAB2p:NRT1.5 shoot complementation line of nrt1.5-5 (Drechsler, Dissertation 2016) 

PHO1p:NRT1.5 root complementation line of nrt1.5-5 (Drechsler et al., 2015) 

nrt1.5-5/skor-2 the double mutant of nrt1.5-5 and skor-2 (generated in this work) 

nrt1.5-5/slah3 the double mutant of nrt1.5-5 and slah3 (generated in this work) 

nrt1.5-5/nrt1.8 the double mutant of nrt1.5-5 and nrt1.8 (generated in this work) 

nrt1.5-5/aha2 the double mutant of nrt1.5-5 and aha2 (generated in this work) 

35Sp::NRT1.5 NRT1.5 overexpression lines under the control of CaMV 35S  

 promoter in Col-0 background (generated in this work) 

2.1.8 Database and Software 

All the database and software used in this work are listed in Table 9. 

Table 9. Database and software applicated in this work. 

Name Application Reference 

ABRC Order Arabidopsis T-DNA insertion lines http://abrc.osu.edu/ 

AB 7500 Software v2.0.6 qPCR analysis Thermo Fisher Scientific 

  (Waltham, MA, USA) 

CorelDRAW 2014 Creation of figures and tables Corel corporation 

  (Ottawa, Canada) 

eFP Browser Gene expression study Winter et al., 2007 

Excel Calculation and creation of diagram Microsoft corporation 

  (Redmond, USA) 

NCBI PubMed, BLAST, Primer design Geer et al., 2010 

ImageJ 1.40 Primary root measurement http://rsb.info.nih.gov/ij/ 

Leica LAS AF Microscope imaging Leica Microsystems 

  (Wetzlar, Germany) 

Quantprime Design of qPCR primers Arvidsson et al., 2008 

TAIR Information of Arabidopsis gene sequence Berardini et al., 2015 

Vector NTI 9.0 Gene sequence analysis and contig Thermo Fisher Scientific 

 assemble (Waltham, MA, USA) 
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2.1.9 Sequencing 

DNA sequencing was done by GATC Biotech (Konstanz, Germany) or LGC Genomics 

(Berlin, Germany). 

2.1.10 Medium and selection 

2.1.10.1 Medium for cultivating bacteria 

For the standard growth of E. coli and A. tumefaciens, LB medium (70 g/l, pH 7.0) 

(Roth, Karlsruhe, Germany) was used. To produce solid medium, 1.5% agar was 

added before autoclave. To select the recombinant bacteria, the media were 

supplemented with the corresponding antibiotic stock solutions (Table 10) after 

autoclave. For the blue-white selection, 60 μl X-gal solution (40 μg/ml) and 30 μl IPTG 

solution (0.1 M) were spread on top of the solid LB plates contained Spectinomycin. E. 

coli was generally grown at 37°C and A. tumefaciens at 28°C. 

Table 10. Antibiotic stock solution for selecting recombinant bacteria. 

Antibiotic 

(Chemical) 
Stock solution (1000x) Dissolved in 

Ampicillin 100 mg/ml H2O 

Kanamycin 50 mg/ml H2O 

Spectinomycin 75 mg/ml H2O 

Gentamycin 25 mg/ml H2O 

Rifampicin 50 mg/ml DMSO 

Phosphinothricin 15 mg/ml H2O 

2.1.10.2 Medium for cultivating Saccharomyces cerevisiae 

The general cultivation of S. cerevisiae was carried out with YPAD liquid or solid 

medium (50 g/l of YPAD Broth and 70 g/l of YPAD agar) (Formedium, Hunstanton, 

United Kingdom) at 30°C. For the selection of recombinant yeast cells, the Synthetic 

Defined (SD) minimal media supplemented with 2% glucose and without indicated 

auxotrophic amino acids were used (Table 11). To support the growth of BYT12 mutant 

(Petrezselyova et al. 2010), 100 mM KCl was added to YPAD medium or SD medium. 
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In the split-ubiquitin assay, to inhibit the autoactivation, 3-amino-1,2,4-triazole (3-AT, 

competitive inhibitor of the HIS3 gene product) was additionally added to the SD 

medium in various concentrations. The pH of media was adjusted with NaOH to 5.9-

6.0. To make solid medium, 2% Agar (Roth, Karlsruhe, Germany) was added before 

autoclave.  

Table 11. Selective yeast media used in this work. 

Yeast medium Composition 

SD minimal medium 6.9 g/l Yeast Nitrogen Base with (NH4)2SO4, without amino acids 

(1); 20 g/l glucose 

YNB -Ura SD minimal medium; 0.77 g/l CSM Drop Out (-Ura) (2) 

YNB -Ura, -Leu SD minimal medium; 0.67 g/l CSM Drop Out (-Ura, -Leu) (2) 

SD- Leu, -Trp SD minimal medium; 0.64 g/l CSM Drop Out (-Leu, -Trp) (2) 

SD- Leu, -Trp, -Ura SD minimal medium; 0.57 g/l CSM Drop Out (-Ade, -His, -Leu, -

Trp, -Ura, -Met) (2) ; 

20 mg/l Adeninsulfat; 20 mg/l L-Histidine; 20 mg/l L-methionin 

SD- Leu, -Trp, -His, -Ade SD minimal medium; 0.59 g/l CSM Drop Out (-Ade, -His, -Leu, -

Trp, -Met) (2) ; 20 mg/l L-methionin 

SD- Leu, -Trp, -His, -Ade, -Ura SD minimal medium; 0.57 g/l CSM Drop Out (-Ade, -His, -Leu, -

Trp, -Ura, -Met) (2) ; 20 mg/l L-methionin  
(1) Yeast Nitrogen Base without amino acids (Formedium, Hunstanton, GB) 

(2) Complete Supplement Mixture Drop Out (Formedium, Hunstanton, GB) 

2.1.10.3 Medium for cultivating Arabidopsis thaliana 

For gemination of Arabidopsis seeds, 1/2 MS (Murashige-Skoog) medium containing 

1% (w/v) sucrose and 0.3% (w/v) Gelrite (pH 5.8) was used.  

For observation of root growth by various hormone treatment, seedlings were vertically 

growing on 1/2 MS medium containing 1% (w/v) sucrose and 0.6% (w/v) Gelrite (pH 

5.8) supplemented with corresponding phytohormone stock solutions (Table 12).  

For gene expression profile study by hormone treatment, liquid 1/2 MS medium 

containing 1% (w/v) sucrose supplemented with corresponding phytohormone stock 

solutions was used (Table 12).  

For growth test under various NO3
− and K+ concentrations, seedlings were transferred 

to modified 1/2 MS plates (0.6% [w/v] agarose, 1.5 mM CaCl2, 1 mM MgSO4, 0.5 mM 
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NaH2PO4, 0.05 mM H3BO3, 0.05 mM MnSO4, 0.05 mM FeNaEDTA, 15.0 µM ZnSO4, 

2.5 µM KI, 0.5 µM Na2MoO4, 0.05 µM CuSO4, 0.05 µM CoCl2, 1/2 MS vitamins, 0.5 g/l 

MES, 1% [w/v] sucrose, pH 5.8). K+ and NO3
− were added to the indicated 

concentrations with KCl and Ca(NO3)2, respectively.  

Table 12. Phytohormone stock solution used in this work. 

Phytohormone Stock solution (1000x) Dissolved in 

Brassinazole 2 mM DMSO 

Brassinolide 1 mM DMSO 

Jasmonic acid 50 mM EtOH 

Methyl jasmonate 50 mM EtOH 

Abscisic acid 10 mM EtOH 

Salicylic acid 500 mM EtOH 

6-Benzylaminopurine 1 mM EtOH 

Indole-3-acetic acid  5 mM EtOH 

Gibberellic acid 10 mM DMSO 

2.2 Methods 

2.2.1 Transformation into bacteria, yeast and Arabidopsis 

2.2.1.1 Escherichia coli transformation  

50 μl aliquots of E. coli chemical competent cells were thawed on ice, followed by 

mixing with 5 μl ligation product or required amount of target DNA mixture. After 20 to 

30 min incubation on ice, cells were heat shocked at 42°C for 45-90 s in water bath 

and immediately chilled on ice for 2 min. 450 µl LB was added then cell were incubated 

at 37°C for 1 hour by shaking at 220 rpm. 200 μl cell culture was plated on LB plates 

with corresponding antibiotics (Table 10), and the plates were inversely incubated at 

37°C overnight.        
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2.2.1.2 Agrobacterium tumefaciens electroporation 

A. tumefaciens competent cells were taken out from - 80°C freezer and thawed on ice. 

100-200 ng plasmid DNA was mixed with 50 μl competent cells and incubated on ice 

for 10 min. The mixture was then transferred to a pre-chilled cuvette followed by 

electroporation at 2.2 kV for 5 ms. After that, the cells were immediately transferred 

into a new Eppi containing 950 μl LB medium and then cultured at 28°C for 2 h at a 

speed of 220 rpm. 20-30 µl culture was plated on LB plates within required antibiotics 

(Table 10) and incubated at 30°C for 2 days.  

2.2.1.3 Saccharomyces cerevisiae transformation and culture 

One S. cerevisiae single colony was inoculated in 10 ml YPAD medium and was 

cultured overnight by shaking at 30°C, 220 rpm. After OD600 measurement, the second 

cell culture was made in 50 ml fresh YPAD medium to OD600 to 0.2, followed by 

culturing to final OD600 to 0.8 by shaking at 30°C, 220 rpm. Cell culture was centrifuged 

at 3000 g for 5 min at room temperature. Cell pellet was resuspended in 25 ml sterile 

deionized H2O. Centrifugation step was repeated at 3000 g for 5 min at room 

temperature. Supernatant was removed, and pellet was resuspended in 400 µl 0.1 M 

LiAc. For transformation, 240 µl 50% PEG4000, 36 µl 1 M LiAc, 50 µl ssDNA (1 µg/µl) 

and 500-1000 ng plasmid (in 25 µl sterile H2O) were added into 50 µl competent cells, 

followed by vortex. Competent cells were then incubated at 30°C for 30 min and 

another 20 min at 42°C. Cells were centrifuged 30 s at 3300 g. Pellet was resuspended 

in 600 µl sterile H2O. 50-150 µl cells were plated on agar selective medium and 

followed by an incubation at 30°C for 2 to 4 days.  

2.2.1.4 Arabidopsis thaliana transformation  

Arabidopsis plants were transformed with constructs described above by the floral-dip-

method (Clough and Bent 1998).  

Two hundred ml recombinant A. tumefaciens overnight culture was centrifuged at 4000 

rpm at room temperature. The pellet was resuspended in freshly prepared infiltration 
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medium (1/2 MS with 44 nM 6-Benzylaminopurine, 0.005% Silwet L-77 [v/v], and 5% 

sucrose [w/v], pH 5.8). Three to four single plants or a big pot with approximately 20 

plants were dipped in medium with A. tumefaciens for about 5 s. Infiltrated plants were 

placed in dark overnight and then were put back to light condition in greenhouse and 

grew further for seed harvesting. 

2.2.2 Cultivation of Arabidopsis thaliana plants 

2.2.2.1 Sterilization of seeds 

A. thaliana seeds were surface sterilized with 70% (v/v) ethanol for 2 min, followed by 

10% NaClO (v/v) and 1% (w/v) SDS for 3 min, and then washed 3 times in autoclaved 

double deionized water for 3 min. 0.1% (w/v) agarose solution was added into seeds, 

and seeds were plated on solid medium. Plates were sealed with Parafilm and seeds 

were stratified in darkness at 4 to 8°C for two days, followed by transferred to a climate 

chamber or light room. Standard long-day growth conditions were 16-h/8-h light-dark 

cycle, 21°C/18°C day-night cycle, and 120 mmol m-2 s-1 (Weigel and Glazebrook 2002).  

2.2.2.2 Cultivation of Arabidopsis seedlings on plates 

For phenotypical analysis on plates, 5 DAS (days after sowing) Arabidopsis seedlings 

with comparable size were transferred on growth medium containing either indicated 

hormones, antibiotics or various nutrition supplies, and grew vertically on plates in the 

growth chamber under the long-day condition for 6-7 days further.  

2.2.2.3 Cultivation of Arabidopsis seedlings with liquid medium 

To get access to both root and shoot material for gene expression study after hormone 

treatment, ten Arabidopsis Col-0 seedlings were cultured in 50 ml flask with 15 ml 1/2 

MS liquid medium as one biological replicate. The flasks were sealed with aluminum 

foil and placed on a shaker in the climate chamber (light intensity 120 μmol m-2 s-1, 

relative humidity 55-70%) under 12-h/12-h light-dark cycle and 21°C/18°C day-night 

temperature cycles. The liquid medium of shaking cultures was renewed after 6 days 
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and seedlings were grown for further 2 to 3 days. Phytohormone stock solutions were 

added to liquid medium for 24 h. Then the root and shoot material of the seedlings 

were harvested separately and frozen in liquid N2. 

2.2.2.4 Cultivation of Arabidopsis on soil  

For propagation of Arabidopsis, a 1:1 mixture of commercial type P soil and unfertilized 

type 0 soil was used (the nutrient compositions of both soil types were listed in Table 

S2).  

For growing Arabidopsis on soil with various N/K regimes, seeds were sowed on 

commercial type P soil. 10-15 DAS seedlings with comparable size were singled out 

on unfertilized type 0 soil. 500 ml various modified 1/2 MS nutrient solutions (Table S3) 

were supplemented firstly once per week, and then twice per week in the late growth 

stage of plants. Plants were cultivated in a growth chamber under long-day conditions 

with a light intensity of 120 mmol m-2 s-1 and a relative humidity of 55% to 70%. 

2.2.3 Analysis of Arabidopsis root architecture traits 

Primary root length was measured on digital images of the plates using ImageJ 1.40 

software (http://rsb.info.nih.gov/ij/). The number of emerged lateral roots was counted 

using a binocular. The number of lateral root primordia was determined using a Zeiss 

Axioskop microscope. LRP density was shown as numbers of LRPs per centimeter 

primary root and LR density was shown as numbers of emerged LRs per centimeter 

primary root.  

2.2.4 Crossing of Arabidopsis plants 

The crossing operation was carried out by using a Zeiss binocular. Immature anthers 

were released from buds just before flowering. Mature stamen from male plants were 

pollinated with pistils from female plants. Crossed plants were then grown in the 

greenhouse under long-day conditions until seeds were harvested.  
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2.2.5 Transient expression in Nicotiana benthamiana 

For the transient expression of proteins in N. benthamiana, glycerol stocks of 

GV3101::pMP90 agrobacteria transformed with the respective plasmid constructs 

were streaked on the LB plates with appropriate antibiotics and incubate at 28°C for 2 

days. Then, several colonies of agrobacteria from plates were inoculated in 5 ml liquid 

LB medium with appropriate antibiotics and grown in a shaker at 28°C, 220 rpm 

overnight. To prevent the onset of post-transcriptional gene silencing, the construct of 

interest was coexpressed with a plasmid which carries the coding sequence of p19 

protein from tomato bushy stunt virus (Voinnet et al. 2003). The agrobacteria with p19 

construct were cultured as above mentioned.  

Two ml overnight culture were harvested by centrifugation at 4000 rpm for 5 min at 

room temperature. Pellet was washed at least one time with infiltration buffer (50 mM 

MES [pH 5.7], 10 mM MgCl2, 100 µM Acetosyringone, 0.5% [w/v] glucose). Cells were 

10-fold diluted with infiltration buffer for OD600 measurement. Subsequently, cells were 

diluted with infiltration buffer to a final OD600 of 0.05 for construct of interest and for p19 

cells as well. After the incubation for one to two hours at room temperature, the cell 

mixture of construct of interest and p19 were infiltrated into N. benthamiana leaves 

with syringe.  

2.2.6 Live-cell imaging using confocal laser scanning microscopy 

(CLSM) 

Constructs with cloned genes were introduced into tobacco abaxial epidermis cells by 

A. tumefaciens-mediated transformation. BiFC assays were performed at three days 

post infiltration (dpi) by CLSM. CLSM was performed on a Leica TCS-SP5 AOBS 

confocal laser scanning microscope equipped with water immersion objectives. 

Simultaneous excitation of YFP and mRFP in rBiFC assays was performed using the 

514 nm line of the argon laser and the 561 nm line of the diode-pumped solid-state 

laser, respectively. YFP and mRFP emissions were recorded using the bandwidths 520 
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nm-545 nm and 585 nm-655 nm, respectively. Post-acquisition image processing and 

fluorescence quantification was performed using the Leica LAS AF software. 

2.2.7 Molecular biological methods 

Methods of general molecular biological experiments followed the instructions in 

Molecular cloning (3rd edition) (Sambrook and Russell 2001). 

2.2.7.1 Cloning of constructs  

All PCR amplifications described in this work were performed by using either the 

Phusion® High-Fidelity DNA Polymerase or the Q5® High-Fidelity DNA Polymerase 

according to the manufacturer's instructions (NEB, Ipswich, USA). The NucleoSpin® 

gel and PCR clean-up kit (Macherey-Nagel, Düren, Germany) was used for the 

purification and extraction of DNA from agarose gels. All cloned sequences were 

verified by sequencing. 

2.2.7.1.1 Cloning of constructs for yeast complementation 

The full-length CDS of NRT1.5, SKOR, KAT1 and NRT1.8 gene was amplified with the 

oligonucleotides listed in Table 3. To amplify NRT1.5 and SKOR, Arabidopsis root 

cDNA was used as PCR template. To amplify KAT1 and NRT1.8, leaf cDNA was used 

as PCR template. The amplified gene products were then successively ligated into the 

yeast expression vector p426TEF or p425TEF via the restriction sites mentioned in 

Table 3. 

2.2.7.1.2 Cloning of 35Sp::NRT1.5 construct 

The NptII cassette of binary vector pPTKan3 was replaced with nos-Bar cassette to 

generate pPTbar+. The full-length CDS of the NRT1.5 gene was amplified with the 

oligonucleotides listed in Table 3. The amplification product was ligated to the 

cauliflower mosaic virus (CAMV) 35S promoter of pPTbar+ via the BamHI and PstI 

sites. 
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2.2.7.1.3 Gateway® cloning of the pBiFC-2in1 constructs 

All potential NRT1.5 interacting candidates were amplified and cloned into the 

Gateway® vector pDONR221 p3-p2 via BP reaction. For this purpose, the 

corresponding Gateway® attachment sites attB3/attB2 were integrated into the 

oligonucleotides used for the PCR amplifications (Table 3). Then pDONR221 p1-p4-

NRT1.5 (constructed by Dr. N. Drechsler) and pDONR221 p3-p2 contains interacting 

candidates were cloned into destination vector pBiFC-2in1-NN by LR reaction.  

2.2.7.1.4 Gateway® cloning to generate the split-ubiquitin prey constructs 

All potential NRT1.5 interacting candidates were amplified as full-length CDS 

constructs with the stop codon and cloned into the Gateway® Entry Clone pDONR222 

via a BP reaction. For this purpose, the corresponding Gateway® attachment sites 

attB1 and attB2 were integrated into the oligonucleotides used for the PCR reactions 

(Table 3). N-terminal NubG-CIPK23 fusion were then generated by an LR reaction 

between the generated entry clones and the Gateway®-compatible yeast expression 

vector pNubG-X-HA. CBL1 and CBL9 were cloned into yeast expression vector 

p14156 by an LR reaction.  

2.2.7.1.5 Cloning of pDOE-08 constructs 

The full-length CDS of NRT1.5 was amplified with the oligonucleotides listed in Table 

3 and ligated into the empty pDOE-08 vector through ligation of BamHI and SpeI 

restriction enzyme sites to generate construct pDOE-08-NRT1.5. Afterwards, the full-

length CDS of SLAH1, SLAH3, NRT1.10 and AHA2 genes was amplified with the 

oligonucleotides listed in Table 3. The amplified CDS of each gene were digested with 

RsrII and PmlI, and pDOE-08-NRT1.5 was digested with RsrII and SandI. The 

amplified gene products of interacting partners were then successively ligated into the 

pDOE-08-NRT1.5 vector.  
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2.2.7.2 Genomic DNA isolation     

Genomic DNA of Arabidopsis was extracted by CTAB protocol (Murray and Thompson 

1980).  

Arabidopsis materials were ground into fine powder with liquid N2 by a ball mill (Retsch 

MM 400). 600 µl pre-warmed (65°C) Buffer B (100 mM Tris-Cl pH 8.0, 1.4 M NaCl, 20 

mM EDTA, and 2% [w/v] CTAB) was added into Eppi with ground material and mixed 

by vortex, followed by an incubation at 65°C for 20 min. Eppis were inverted every 5 

min and were centrifuged at room temperature for 5 min at 13500 rpm. Clear 

supernatant was transferred to a new Eppi. One volume chloroform:isoamyl alcohol 

(24:1) was added and mixed well by inverting, followed by centrifuging at 13500 rpm 

for 5 min. The upper phase was then transferred into a new Eppi and the 

chloroform:isoamyl alcohol extraction step was repeated. One volume Buffer C (50 mM 

Tris-Cl pH 8.0, 10 mM EDTA, and 1% [w/v] CTAB) and one volume isopropanol was 

added to the supernatant and mixed, followed by incubating at room temperature for 

10 min. Precipitated DNA was obtained by centrifuging at 12000 rpm for 5 min. Pellet 

was resuspended in 400 µl STE (10 mM Tris-Cl pH 8.0, 100 mM NaCl, 1 mM EDTA, 

20 µg/ml RNase A) and incubated at 65°C for 5 min. 600 µl ethanol was added, 

followed by centrifuging at 13500 rpm for 10 min at room temperature to precipitate 

DNA. The pellet is then washed twice with 70% ethanol, air dried and resolved in 30 

µl TE (10 mM Tris-Cl pH 8.0, 1 mM EDTA). 

2.2.7.3 RNA extraction  

Total RNA of Arabidopsis materials was isolated by using either the TRISureTM reagent 

(Bioline GmbH, Berlin, Germany) extraction protocol or by using Hot-Phenol method 

(Verwoerd et al. 1989). 

Hot-Phenol protocol:  

Arabidopsis materials were collected in 1.5 ml Eppi and frozen in liquid N2. Materials 

were ground into fine powder by a ball mill (Retsch MM400). 1 ml pre-warmed (80°C) 

Phenol solution was added to the Eppi, thawed at room temperature, and then 
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vortexed for 30 s to homogenize material. 500 µl chloroform:isoamyl alcohol (24:1) 

was added, vortexed for 30 s, and then centrifuged for 40 min at 4000 rpm. Upper 

phases were transferred into new Eppi and kept on ice from now on. 1 volume 4 M 

LiCl was added and well mixed by shaking. Samples were kept at - 20°C overnight. 

On the next day, the samples were thawed at room temperature. Eppis were mixed by 

inverting, and then centrifuged for 20 min 16000 g at 4°C. The pellet was dissolved in 

450 µl DEPC-treated ddH2O. 1/10 volume 3 M NaOAc (pH 5.2) and 2 volume pre-cold 

100% ethanol were added and were well mixed and incubated at -80°C for 30-60 min. 

Followed by a centrifugation for 20 min at 16000 g at 4°C, pellet was washed with 80% 

pre-cold ethanol. After air drying, the pellet was dissolved in 30 µl DEPC-treated ddH2O.  

TRISure reagent protocol: 

Protocol of TRISureTM reagent was described in the product sheet (BIO-38032). 

Concentrations and purity of RNAs were analyzed by using Nanodrop ND-1000 

spectrophotometer (Thermo Fisher Scientific, Waltham, USA). 

2.2.7.4 cDNA synthesis 

2 μg DNase I (Thermo Fisher Scientific, Waltham, USA) digested (37°C for 1 h) total 

RNA from each sample was used for cDNA synthesis. 1μl SuperScript® III Reverse 

Transcriptase (Thermo Fisher Scientific, Waltham, USA) or RevertAid Reverse 

Transcriptase (Thermo Fisher Scientific, Waltham, USA) was used in 20 μl cDNA 

synthesis reaction. To examine whether cDNA has genomic DNA contamination, 

primers span the intron of glyceraldehyde-3-phosphate dehydrogenase C subunit 1 

(GAPC) (Table 4) were used to carry on a standard PCR.  

2.2.7.5 Quantitative real time PCR 

Applied Biosystems® 7500 Fast Real-Time PCR System (Thermo Fisher Scientific, 

Waltham, USA) was used for qRT-PCR. Each 5 μl reaction contained 2.5 μl Applied 

Biosystems® Power SYBR® Green PCR Mastermix (Thermo Fisher Scientific, 

Waltham, USA), 0.5 μl cDNA, and 2 μl forward and reverse primers mix (0.5 μM each). 
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The qRT-PCR procedure is as follows: 95°C for 10 min; 95°C 15 s → 60°C 60 s (40 

cycles); melting curve analysis. All qRT-PCR assays were performed with three 

biological replicates and two technical replicates. Data analysis was performed using 

the Applied Biosystems® SDS 2.2.1 software (Thermo Fisher Scientific, Waltham, 

USA). The expression values of the individual genes were normalized to the CT value 

of the reference gene UBIQUITIN10 (At4g05320). All qRT-PCR oligonucleotides used 

are listed in Table 2. 

2.2.8 Total C and N concentration measurement 

The total C and total N analysis was performed using the Euro EA3000 Single 

Elemental Analyzer (EuroVector, Redavalle, Italy) according to the manufacturer's 

instructions. 1.5 to 2.5 mg of homogenized and dried plant material (48 h at 80°C.) 

were used for each measurement. Data analysis was carried out using the EuroVector 

Callidus 5.1 software. 

2.2.9 Elemental analysis  

The dried plant material was weighed into polytetrafluorethylene digestion tubes. After 

adding HNO3, the plant material was digested under pressure using a microwave 

digester (ultraCLAVE 4, MLS GmbH, Leutkirch, Germany). ICP-OES analyzes were 

done by using the iCAP 6500 Dual OES Spectrometer (Thermo Fisher Scientific, 

Waltham, USA). The certified Standard Reference Material 1515 Apple Leaves 

(National Institute of Standards and Technology, Gaithersburg, USA) was used as the 

quality control. 

2.2.10 Cooperation 

The ICP-OES measurements was carried out in cooperation with Prof. Dr. N. von 

Wirén at the Leibniz Institute of Plant Genetics and Crop Plant Research in 

Gatersleben. 

The C/N analyses were carried out by Sabine Artelt und Gabriele Erzigkeit (FU Berlin, 
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Institute of Biology, Ecology of Plants). 

The constructs pNubG-DMP2, pNubG-DMP7, pNubG-KAT1 and pNubG-StSUT1 used as 

controls in split-ubiquitin study were generated by Dr. A. Kasaras (Kasaras, 

Dissertation 2012). Plasmid pBT3-N_AtNRT1.5 for split-ubiquitin study, and constructs 

pDONR221_P1P4_NRT1.5, pDONR221_P3P2_SLAH1 and 

pDONR221_P3P2_SLAH1 for BiFC study were generated by Dr. N. Drechsler 

(Drechsler, Dissertation 2016 and unpublished data).  
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3 Results 

3.1 Phenotypical analysis of nrt1.5 knockout mutants 

Part of the subsequent results reported in 3.1.1, 3.1.2 and 3.1.3 has been published in 

the publication: Zheng, Y., Drechsler, N., Rausch, C. and Kunze, R. (2016). The 

Arabidopsis nitrate transporter NPF7.3/NRT1.5 is involved in lateral root development 

under potassium deprivation. Plant Signaling & Behavior 11(5). 

3.1.1 Comparable root growth of nrt1.5 mutants as wild type at 

various nitrate concentrations 

Our group reported the pleiotropic shoot phenotype and early leaf senescence 

symptoms of nrt1.5 mutants caused by K deficiency in rosettes (see section 1.5.3). 

However, the NRT1.5 gene is mainly expressed in the root pericycle cells (Lin et al. 

2008). Therefore, it was tempting to investigate whether nrt1.5 mutants also exhibit an 

altered root development in response to various nitrate or potassium concentrations. 

To test how NO3
- amount affects root development, wild type Col-0 and two T-DNA 

insertion knockout mutants nrt1.5-4 and nrt1.5-5 were grown vertically on petri dishes 

with various NO3
- concentrations (constant 1 mM K+ supply). At 0 mM NO3

-, all plant 

lines demonstrated impaired shoot growth, decreased chlorophyll biosynthesis and the 

accumulation of anthocyanins (Figure 4A). When external NO3
- concentration was 

elevated to 2 mM, shoot growth of all lines was restored, however, no morphological 

abnormalities in root development of nrt1.5 mutants were observed. Compared to Col-

0, nrt1.5 mutants gained slightly less shoot and root fresh weight under various NO3
- 

concentrations from 0.2 to 2 mM (Figure 4B). However, when either 0 mM or 1 mM 

NO3
- was supplied, neither primary root (PR) length nor lateral root (LR) density was 

altered in nrt1.5 plantlets in comparison to Col-0, except the reduced PR length of 

nrt1.5-5 at 0 mM NO3
- (Figure 4C). The results showed that different NO3

- 

concentrations cannot cause the root morphological changes of nrt1.5 mutants.  
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Figure 4. Nitrate supply does not lead to visible root phenotypes of nrt1.5 mutants.  

(A) Nitrate-dependent phenotype of wild type Col-0 and nrt1.5 mutant seedlings. Col-0 and the 

two knockout lines nrt1.5-4 and nrt1.5-5 were grown on plates containing 0 mM or 2.0 mM NO3- 

(constant 1.0 mM K+). (B) Shoot and root fresh weight of nrt1.5 seedlings grown on plates 

containing increasing concentrations of NO3- from 0 to 2 mM (constant 1.0 mM K+). Four 

seedlings were pooled as one biological replicate. Results are displayed relative to the FW of 

Col-0 (means ± SD; n ≥ 8). (C) Primary root length and lateral root density (means ± SD; n ≥ 

30) of seedlings grown on plates containing 0 mM or 1 m NO3- (constant 1.0 mM K+). ** indicates 

a statistically significant difference (Student’s t-test) between mutants and Col-0 with P < 0.01. 

Representative results from one out of three independent experiments are shown. 

3.1.2 Impaired lateral root development of nrt1.5 mutants under 

potassium deficit 

To investigate whether K+ supply has an influence on root phenotype development of 

nrt1.5 mutants, Col-0, nrt1.5-4 and nrt1.5-5 were grown vertically on plates with various 

K+ concentrations (constant 1 mM NO3
- supply). Compared to 2 mM K+ supply, all plant 

lines gained less lateral root numbers and smaller rosettes at 0 mM K+ supply (Figure 

5A). When the K+ concentration was decreased below 1 mM, the fresh weight of roots 

and shoots of nrt1.5 mutants was only 50% and 60% relative to Col-0, respectively. At 

2 mM K+, the reduction of shoot and root FW relative to Col-0 were diminished in nrt1.5 
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mutants (Figure 5B). Notably, the root architecture of nrt1.5 mutants was 

conspicuously altered under K+ deficiency in comparison to wild type. The primary 

roots were slightly but still significantly shorter, and the lateral root density of nrt1.5 

mutants was significantly reduced to approximately 60% of Col-0 (Figure 5C). When 

2 mM K+ was provided, the root growth of nrt1.5 mutants restored as Col-0 (Figure 5A). 

 

Figure 5. Potassium deficiency affects root development of nrt1.5 mutant seedlings. 

(A) Potassium-dependent phenotype of wild type Col-0 and nrt1.5 mutant seedlings. Col-0 and 

two knockout lines nrt1.5-4 and nrt1.5-5 were grown on plates containing 0 mM or 2 mM K+ 

(constant 1 mM NO3-). (B) Shoot and root FW of nrt1.5 seedlings grown on plates containing 

increasing concentrations of K+ from 0 to 2 mM (constant 1 mM NO3-). Three seedlings were 

pooled as one biological replicate. Results are displayed relative to the Col-0 FW (means ± SD; 

n = 12). (C) Primary root length and lateral root density (means ± SD; n ≥ 30) of seedlings 

grown on plates containing 0 mM and 1 mM K+ (constant 1 mM NO3-). * and ** indicate 

statistically significant differences (Student’s t-test) between mutants and Col-0 with P < 0.05 

and P < 0.01, respectively. Representative results from one out of three independent 

experiments are shown. 

To further investigate whether the inhibition of LR growth in nrt1.5 mutants is 

dependent on the presence of NO3
-, 1 mM ammonium, instead of 1 mM NO3

-, was 

supplied. When ammonium was used as the sole N source, LR density of nrt1.5-4 and 

nrt1.5-5 was still significantly reduced than that of Col-0 (Figure 6A), suggesting NO3
- 
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is not needed for the development of the root phenotype of nrt1.5 mutants. At high 

NO3
- concentration (5 mM), nrt1.5 mutants also demonstrated the same reduced LR 

density phenotype (Figure 6B). Therefore, the reduced LR density phenotype of nrt1.5 

mutants was only caused by the low K+ availability and was independent of the NO3
- 

amount.  

 

Figure 6. Reduced lateral root density in nrt1.5 mutants by K+ starvation is independent of NO3- 

supply.  

(A) Lateral root density was reduced in nrt1.5 mutants on NO3--free medium. LR density of Col-

0 and two knockout mutant lines nrt1.5-4 and nrt1.5-5 grown on plates containing 1 mM 

ammonium and 0 mM K+ were measured (means ± SD, n ≥ 30). (B) Lateral root density was 

reduced in nrt1.5 mutants on medium with high NO3- concentration. LR density of Col-0 and 

two knockout mutant lines nrt1.5-4 and nrt1.5-5 grown on plates containing 5 mM NO3- and 0 

mM K+ were measured (means ± SD, n ≥ 30). ** indicate statistically significant differences 

(Student’s t-test) between nrt1.5 mutants and Col-0 with P < 0.01. 

Either impairment of lateral root primordia (LRP) initiation or elongation can cause the 

reduced LR density. To identify the block in which step is responsible for the reduced 

LR density phenotype in nrt1.5 mutants, LRP density was examined for Col-0 and 

nrt1.5-5 growing on medium with 0 mM K+ and 1.0 mM NO3
-. LR density of nrt1.5-5 

was significantly reduced at this growth condition (Figure 7A). However, LRP density 

of nrt1.5-5 was not decreased, instead, it was rather significantly higher than that of 

Col-0 (Figure 7B). These results indicate the reduced LR density in nrt1.5 mutants can 

be attributed to the handicap in LRP elongation instead of LRP initiation.  
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Figure 7. The impairment of lateral root density and lateral root primordia density of nrt1.5-5 by 

K+ starvation. 

(A) Lateral root density of Col-0 and nrt1.5-5 (means ± SD, n ≥ 12). (B) Lateral root primordia 

density of Col-0 and nrt1.5-5 (means ± SD, n ≥ 12). Seedlings of nrt1.5-5 and Col-0 grown 

seven days vertically on plates containing 1.0 mM NO3- and 0 mM K+ were used for analysis. * 

and ** indicate statistically significant differences (Student’s t-test) between nrt1.5-5 and Col-0 

with P < 0.05 and P < 0.01, respectively.  

3.1.3 Restoration of lateral root growth in nrt1.5 complementation 

lines  

Expressing NRT1.5 driven by the shoot specific CAB2 (Chlorophyll A/B-binding protein 

2) promoter in nrt1.5-5 background led to the overexpression of NRT1.5 in shoots, 

whereas NRT1.5 was still absent in roots (Drechsler, Dissertation 2016). It has been 

reported that the shoot-derived signal, for example shoot nitrate accumulation, may 

affect root growth (Sheible et al. 2002). Therefore, CAB2p::NRT1.5 (in nrt1.5-5) lines 

which have higher NRT1.5 expression in shoots were also included in this study. At K+ 

deprivation conditions, all three independent CAB2p::NRT1.5 (in nrt1.5-5) lines 

demonstrated the similar inhibited LR growth phenotype like nrt1.5-5 seedlings (Figure 

8), indicating the expression of NRT1.5 in shoots do not influence the development of 

the LR phenotype in nrt1.5 mutants.  
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Figure 8. The root development of CAB2p::NRT1.5 lines under K+ deprivation.  

Wild type Col-0, nrt1.5-5 and three independent transgenic lines CABp2::NRT1.5 (in nrt1.5-5 

background) which have increased NRT1.5 transcripts in shoots were firstly germinated on 1/2 

MS medium, then were transferred on plates containing 1 mM NO3- and 0 mM K+ for growing 7 

days.  

The expression of NRT1.5 under the control of the root specific PHOSPHATE1 (PHO1) 

promoter in nrt1.5-5 successfully complemented the K+ deficiency phenotype in nrt1.5-

5 plants (Drechsler et al. 2015). To confirm the reduced LR density phenotype of nrt1.5 

mutants is indeed caused by loss-of-function mutation in NRT1.5, root growth of two 

independent PHO1p::NRT1.5 (in nrt1.5-5) complementation lines was examined on 

plates with 0 mM K+ and 1.0 mM NO3
- supply. Compared to the wild type, nrt1.5-5 

seedlings showed smaller rosettes and reduced LR numbers at 0 mM K+ supply, 

whereas PHO1p::NRT1.5 #1 and #3 showed comparable rosette size and lateral root 

growth as that of wild type (Figure 9A). The LR density of both PHO1p::NRT1.5 lines 

was nearly identical to that of wild-type seedlings (Figure 9B). These results 

demonstrate that the NRT1.5 expression in roots is indeed required and important for 

the LR development under K+ limiting conditions. 
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Figure 9. The K+ deficiency dependent root phenotype of nrt1.5-5 is complemented by root 

specific NRT1.5 expression. 

(A) Root morphology of wild type Col-0, nrt1.5-5 and two independent PHO1p::NRT1.5 lines 

(in nrt1.5-5) grown on medium containing 1 mM NO3- and 0 mM K+. (B) Lateral root density of 

seedlings grown vertically on medium with 1 mM NO3- and 0 mM K+ (means ± SD; n ≥ 25). ** 

indicates a statistically significant difference (Student’s t-test) between nrt1.5-5 and Col-0 with 

P < 0.01. 

3.1.4 Auxin and cytokinin related genes were not deregulated in 

nrt1.5-5 roots at limited K+ supply 

The reduced LR density phenotype of nrt1.5 by K+ deprivation resembles that of myb77 

mutant, which lacks the auxin signaling-modulating transcription factor MYB77 whose 

expression is repressed by K+ deprivation (Shin et al. 2007). Since it is well established 

that phytohormones like auxin and cytokinin play an important role in regulating LR 

development in Arabidopsis, it was intriguing to examine whether the auxin or cytokinin 

status in nrt1.5 roots under K+ limiting condition is changed or not in comparison to 

Col-0. In this study, expressions of auxin and cytokinin responsive and transporter 

genes were analyzed in roots of nrt1.5-5 and Col-0 grown at 0 mM K+ supply. nrt1.5-5 

had similar expression level of MYB77 as Col-0, demonstrating that nrt1.5-5 phenotype 

is not caused by the inhibition of MYB77. Genes encoding auxin-responsive proteins 
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IAA4, Small Auxin-Upregulated RNA (SAUR) and SAUR41, Auxin Response Factors 

(ARF) ARF7, ARF9, ARF11, LATERAL ORGAN BOUNDARIES DOMAIN 29 (LBD29), 

as well as genes encoding auxin transporter PIN-FORMED (PIN) proteins PIN1, PIN2, 

PIN5 and NRT1.1 were not significantly deregulated in nrt1.5-5 (Figure 9). These 

results indicate that auxin level in nrt1.5-5 roots is not changed. In addition, cytokinin 

response genes Arabidopsis thaliana Response Regulator (ARR) ARR5, ARR7 and 

ARR10 were also stably expressed in nrt1.5-5 (Figure 10). Consequently, it is unlikely 

that the reduced LR density phenotype of nrt1.5-5 is due to the change of auxin and 

cytokinin level. However, it is also possible that those hormone related genes are only 

deregulated in specific root parts like LR, therefore, using the whole root material for 

expression study could not correctly reflect the real hormone status. 

 

 
Figure 10. Expression level of auxin and cytokinin related genes in roots of nrt1.5-5 at K+ 

starvation condition by qRT-PCR. 

The wild type Col-0 and nrt1.5-5 seedlings were transferred on modified 1/2 MS medium with 

1 mM NO3- and 0 mM K+ after growing four days on 1/2 MS medium. Root materials of each 

line were harvested after growing 7 days. Roots from five seedlings were pooled as one 

biological replicate for qRT-PCR. Gene expression in nrt1.5-5 samples was shown as the 

relative level (2-ΔΔCT) to that of Col-0 samples (means ± SD, n = 3). UBQ10 was used for 

normalization.  
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3.1.5 35Sp::NRT1.5 lines phenocopied nrt1.5 at low K+ availability 

To better understand the role of NRT1.5 in root development under low K+ conditions, 

besides nrt1.5 knockout mutants, 35Sp::NRT1.5 overexpression lines (in Col-0 

background) were generated under the control of the constitutive CaMV 35S promoter. 

qRT-PCR was used to check the NRT1.5 expression in 35Sp::NRT1.5 lines. Three 

independent homozygous T3 lines 35Sp::NRT1.5 #4-1, 35Sp::NRT1.5 #8-2 and 

35Sp::NRT1.5 # 18-3 were shown to have enhanced NRT1.5 level in both shoots and 

roots compared to wild type (Figure 11A), therefore these three lines were further used 

for root assays. The growth patterns of these three overexpression lines as well as 

Col-0 were examined under K+ starvation conditions (0 µM and 10 µM K+). Surprisingly, 

all three 35Sp::NRT1.5 lines demonstrated smaller rosettes and more severe leaf 

chlorosis than wild type under low K+ concentrations. Moreover, three overexpression 

lines showed reduced LR numbers compared to wild type (Figure 11B). These growth 

patterns of 35Sp::NRT1.5 lines resemble nrt1.5 mutants at K+ deprivation (Figure 5A). 

It is interesting to note that complementation lines of nrt1.5-5 (PHO1p::NRT1.5) which 

have the wild-type level NRT1.5 expression restored the LR growth to the wild type 

(Figure 9), however, the overexpression of NRT1.5 in three 35Sp::NRT1.5 lines led to 

the similar reduced LR phenotype as nrt1.5 mutants.   
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Figure 11. Expression of NRT1.5 in Col-0 and 35Sp::NRT1.5 lines and their growth at K+ 

deficiency conditions. 

(A) The NRT1.5 transcript level in shoots and roots of Col-0 and three T3 homozygous 

35Sp::NRT1.5 line. Five days after germination (DAG) on 1/2 MS agar plates, seedlings were 

transferred to liquid 1/2 MS medium for cultivating further 10 days. Material from eight seedlings 

were pooled as one biological replicate. The relative transcript level [2-CT] was measured by 

qRT-PCR (means ± SD, n ≥ 2). The NRT1.5 level in Col-0 was set as 1.0. The gene UBQ10 

was used for normalization. (B) Morphology of three 35Sp::NRT1.5 lines and Col-0 at K+ 

deficiency condition. Seeds of all lines were germinated at 1/2 MS agar plates, then 5 DAG 

seedlings were transferred on modified 1/2 MS agarose plates containing 1mM NO3- and either 

0 µM K+ or 10 µM K+ for growing seven days vertically.  
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3.1.6 The nrt1.5-5 and 35Sp::NRT1.5 lines had higher K 

accumulation in roots 

Besides phytohormones, external and intrinsic nutrition amount could also affect the 

root morphology of Arabidopsis. To investigate whether alterations of macro or micro 

elements composition contribute to the reduced LR density phenotype in nrt1.5 

mutants and 35Sp::NRT1.5 lines, root and shoot material were separately harvested 

from seedlings growing vertically on modified 1/2 MS medium with 10 µM K+ for 

elemental analysis by Inductively Coupled Plasma Optical Emission Spectrometry 

(ICP-OES). In agreement with the smaller rosettes and more severe leaf chlorosis 

(Figure 11B), K concentration in shoots of nrt1.5-5 and all three 35Sp::NRT1.5 lines 

was reduced compared to that of Col-0, although the difference between 

35Sp::NRT1.5 #4-1 and Col-0 was not statistically significant (Table 13). Besides K, 

shoot phosphorus (P) concentration in nrt1.5-5 and 35Sp::NRT1.5 lines was also 

significantly lower than in Col-0. The higher accumulation of Calcium (Ca) was 

occurred in shoots of nrt1.5-5, but not in the overexpression lines. No higher 

accumulation of Magnesium (Mg) was observed in shoots of nrt1.5-5 nor in the 

overexpression lines. Microelement manganese (Mn) was significantly decreased in 

shoots of nrt1.5-5 and in overexpression lines. Surprisingly, unlike in shoots, except 

Ca, all other macroelements including K, Mg, P and S had a significantly higher 

accumulation in roots of nrt1.5-5 and in three 35Sp::NRT1.5 lines in comparison with 

that of Col-0. Interestingly, root K concentration in three 35Sp::NRT1.5 lines was 

relatively lower than that in nrt1.5-5. Furthermore, root sodium (Na) concentration in 

nrt1.5-5 and 35Sp::NRT1.5 lines was lower compared to Col-0. Except iron (Fe), all 

other microelements were accumulated more in roots of nrt1.5-5 and three 

35Sp::NRT1.5 lines compared to that in wild type, although the difference was not 

statically significant for some lines. These results lead to the speculation that under the 

low K+ availability, the root-to-shoot transfer of various macroelements including K, as 

well as that of some microelements, is blocked in the roots of nrt1.5-5 and 
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35Sp::NRT1.5 lines, and this block might account for the decreased LR density 

phenotype. 

Table 13. Elemental analysis in Col-0, nrt1.5-5 and three 35Sp::NRT1.5 lines growing vertically 

on plates with 10 µM K+.  

Five days after germination on 1/2 MS medium, seedlings were transferred on modified 1/2 MS 

medium with 10 µM K+ and 1 mM NO3- and grew vertically for ten days. Roots and shoots from 

40 seedlings were separated and were pooled as one biological replicate. Concentration of 

elements was analyzed by ICP-OE. Macroelements and microelements were shown as [mg/g 

DW] and [µg/g DW] (means ± SD, n = 8), respectively. The orange color indicates elements 

that were significantly deceased compared to wild-type level. The green color indicates 

elements that were significantly increased compared to wild-type level. * and ** indicates a 

statistically significant difference (Student’s t-test) between nrt1.5-5 (or 35Sp::NRT1.5 lines) 

and Col-0 with P < 0.05 and P < 0.01, respectively.  

 

Col-0 nrt1.5-5 35Sp::NRT1.5  #4-1 35Sp::NRT1.5  #8-2 35Sp::NRT1.5  #18-3
Macroelements

mg/g DW

K 6.13 ± 0.31 4.96 ± 0.29** 5.85 ± 0.27 4.87 ± 0.32** 5.34 ± 0.50*

Ca 25.00 ± 0.88 26.06 ± 1.06* 26.00 ± 0.89 22.57 ± 0.29** 25.82 ± 1.92

Mg 7.63 ± 0.32 7.72 ± 0.36 7.83 ± 0.20 7.02 ± 0.10* 7.58 ± 0.62

P 11.07 ± 0.59 10.29 ± 0.36** 9.71 ± 0.34 8.96 ± 0.32** 9.94 ± 0.07*

S 11.70 ± 0.52 12.12 ± 0.66 11.30 ± 0.31 11.03 ± 0.20 12.15 ± 0.77

Na 6.93 ± 0.53 6.50 ± 0.69 6.54 ± 0.35 6.02 ± 0.25* 6.99 ± 0.46
Microelements

µg/g DW

Fe 66.98 ± 8.42 85.99 ± 18.91* 71.17 ± 7.55 71.48 ± 2.38 110.99 ± 43.87*

B 33.15 ± 1.47 30.72 ± 3.21 31.24 ± 2.10 28.93 ± 1.29** 33.03 ± 2.83

Mn 520.19 ± 19.56 617.62 ± 35.67** 559.39 ± 28.55* 544.73 ± 27.16** 589.81 ± 46.03**

Zn 191.43 ± 15.14 197.12 ± 19.33 171.12 ± 7.85* 198.31 ± 6.10 198.98 ± 14.99

Col-0 nrt1.5-5 35Sp::NRT1.5  #4-1 35Sp::NRT1.5  #8-2 35Sp::NRT1.5  #18-3
Macroelements

mg/g DW

K 11.67 ± 0.39 17.20 ± 1.21** 14.91 ± 0.44** 14.64 ± 0.66** 14.67 ± 1.03**

Ca 9.12 ± 0.36 8.57 ± 0.73 9.18 ± 0.24 9.63 ± 0.43 9.82 ± 0.21*

Mg 6.40 ± 0.62 7.22 ± 0.61* 7.34 ± 0.36** 7.92 ± 0.24** 7.73 ± 0.51**

P 4.87 ± 0.18 5.29 ± 0.27** 5.27 ± 0.15* 5.79 ± 0.14** 5.51 ± 0.05**

S 6.31 ± 0.14 7.22 ± 0.49** 6.67 ± 0.15** 7.63 ±  0.21** 7.17 ± 0.26**

Na 1.40 ± 0.10 1.16 ± 0.14** 1.17 ± 0.12** 1.20 ± 0.05** 1.33 ± 0.09
Microelements

µg/g DW

Fe 306.64 ± 24.36 357.87 ± 78.96 265.09 ± 22.41* 308.70  ± 49.51 344.27 ± 23.76*

B 29.60 ± 0.96 30.64 ± 2.37 31.24 ± 1.35* 31.11 ± 0.39* 32.29 ± 1.87**

Mn 302.87 ± 26.80 334.06 ± 105.07 318.63 ± 39.25 392.61 ± 29.87** 476.01 ± 65.65**

Zn 207.66 ± 20.81 243.02 ± 54.05 189.36 ± 15.09 285.40 ± 59.68** 266.51 ± 47.78*

Shoots

Roots
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3.1.7 Root growth retardation in nrt1.5 mutants by brassinazole 

treatment 

Expression data from Genevestigator (https://www.genevestigator.com/gv/index.jsp) 

(Zimmermann et al. 2004) show that NRT1.5 is strongly upregulated in BREVIS RADIX 

(brx) knockout mutant which is defective in brassinosteroids (BRs) biosynthesis 

(Mouchel et al. 2006). This suggests NRT1.5 might be regulated by BRs. It is well 

known that BRs play pivotal roles in many plant growth development processes 

including cell elongation and cell division (Wei and Li 2016). To explore the possible 

phenotype of nrt1.5 knockout mutants when BRs synthesis is blocked, the BR 

synthesis inhibitor brassinazole (Asami et al. 2000) was utilized to treat Col-0 and 

nrt1.5 seedlings. nrt1.5 mutants showed the comparable growth like wild type Col-0 on 

1/2 MS plates. Brassinazole (BZ) treatment inhibited the root growth of all lines. 

However, after growing vertically on 1/2 MS plates containing brassinazole for 6-7 days, 

both nrt1.5-4 and nrt1.5-5 demonstrated retarded root growth compared to Col-0 

(Figure 12A). Moreover, nrt1.5 mutants also showed mild gravitropic changes in 

response to brassinazole treatment. In agreement with the exhibited root morphology, 

the primary root length of both nrt1.5 mutants was significantly reduced compared to 

wild type by 500 nM brassinazole treatment (Figure 12B). It is known that mutants 

impaired in BR biosynthesis or signaling transduction display a short-root phenotype 

(Li et al. 1996; Mussig et al. 2003). Therefore, the more sensitive response to 

brassinazole treatment of nrt1.5 might indicate the lower BRs biosynthesis level in 

nrt1.5 mutants.  
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Figure 12. Brassinosteroid biosynthesis inhibitor brassinazole resulted in a stronger root 

retardation in nrt1.5 seedlings. 

(A) Root morphology of Col-0, nrt1.5-4 and nrt1.5-5 by 100 nM and 500 nM brassinazole 

treatment. (B) Primary root length of nrt1.5 mutants was reduced by brassinazole (means ± SD; 

n = 18). Seedlings were grown on 1/2 MS medium supplemented with indicated concentrations 

of brassinazole for seven days. ** indicates a statistically significant difference (Student’s t-test) 

between mutants and Col-0 with P < 0.01. 

3.1.8 Smaller shoot size of nrt1.5 mutants by Jasmonic acid 

treatment 

To investigate whether phytohormone treatment can generate any different 

morphological responses in nrt1.5 mutants, Indole-3-acetic acid (IAA), abscisic acid 

(ABA) and jasmonic acid (JA) were used to treat seedlings growing on 1/2 MS agar 

plates. No morphological changes of nrt1.5 mutants compared to wild type were 

observed by IAA and ABA treatments (data not shown). Root length of all plant lines 

were comparable in response to JA treatment. However, shoots of nrt1.5 mutants were 

apparently smaller than that of Col-0 by 10 µM JA treatment (Figure 13A). In 

comparison with Col-0, supplementation of 10 µM and 20 JA µM significantly reduced 

the shoot fresh weight gain of nrt1.5-5 (Figure 13B). The similar trend was also shown 

for nrt1.5-4 by 10 µM JA, though the difference was not statistically significant. The 

fresh weight differences between Col-0 and nrt1.5 mutants was attenuated by the 
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increment of JA concentration to 30 µM JA, which might because this concentration is 

too high to generate the different responses. These results showed the stronger 

sensitivity of nrt1.5 mutants to JA treatment, which might be caused by the higher JA 

production in nrt1.5 mutants. This observation is supported with the finding that nrt1.5-

5 plants growing at soil produced more JA and jasmonoyl-isoleucine (JA-IlE) in rosettes 

compared to Col-0 (Drechsler, Dissertation 2016). 

 

Figure 13. Arabidopsis nrt1.5 mutant seedlings are more sensitive to jasmonic acid treatment. 

(A) Morphology of Col-0, nrt1.5-4 and nrt1.5-5 growing on 1/2 MS medium supplemented with 

10 µM JA. (B) Rosette fresh weight (FW) of Col-0, nrt1.5-4 and nrt1.5-5 by JA treatment. 

Rosettes of three seedlings grown on 1/2 MS medium (untreated) or 1/2 MS medium containing 

JA (10, 20 or 30 µM) were pooled as one biological replicate for FW measurement. Results 

displayed here is the relative fresh weight ratio of JA treatment seedlings/untreated seedlings 

(means ± SD; n = 16). * indicates a statistically significant difference (Student’s t-test) between 

mutants and Col-0 with P < 0.05.  

3.2 Functional analysis of NRT1.5  

The subsequent work presented in section 3.2.1, 3.2.3, Figure 17A and Figure 18A has 

been published as a part of the publication: Drechsler, N., Zheng, Y., Bohner, A., 
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Nobmann, B., von Wirén, N., Kunze, R. and Rausch, C. (2015). Nitrate-dependent 

control of shoot K homeostasis by the Nitrate Transporter1/Peptide Transporter Family 

member NPF7.3/NRT1.5 and the stelar K+ outward rectifier SKOR in Arabidopsis. 

Plant Physiology 169: 2832-2847. 

3.2.1 Potassium import assay of NRT1.5 in Saccharomyces 

cerevisiae 

To functionally test whether NRT1.5 itself can directly mediate K+ uptake in the 

heterologous expression system, the coding sequence (CDS) of NRT1.5 was cloned 

into yeast expression vector p426TEF and was subsequently introduced into 

Saccharomyces cerevisiae mutant BYT12 cells which lack two important potassium 

transporters Trk1 and Trk2. Arabidopsis inward rectifier K+ channel KAT1 was cloned 

into the same vector and was transformed into BYT12 cells as a positive control. 

BYT12 cells transformed with empty vector p426 showed normal growth like wild-type 

BY4741 cells transformed with empty vector p426 when 100 mM KCl was 

supplemented to Yeast nitrogen base (YNB) medium (Figure 14A, lower panel). 

However, without additional KCl supply, BYT12 cells with empty vector p426 cannot 

grow properly on YNB medium which contains only about 7 mM K+ (Figure 14A, upper 

panel). Expression of KAT1 greatly promoted the growth of BYT12 cells on YNB 

medium (Figure 14A, upper panel). However, two independent transformants with the 

expression of NRT1.5 were not able to restore the growth retardation of BYT12 cells 

on YNB medium (Figure 14A, upper panel). Since the regular YNB medium contains 7 

mM K+, to determine whether NRT1.5 facilitates the uptake of potassium only in the 

high affinity range, another yeast performance test was conducted on modified K+-free 

YNB medium supplemented with only 1 mM K+. Yet, no complementation in growth of 

BYT12 cells by expression of NRT1.5 was observed (Figure 14B, upper panel). These 

results suggested that NRT1.5 itself cannot directly mediate K+ inward transport in the 

yeast system used in this study.  
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Figure 14. Potassium uptake capacity analysis of NRT1.5 in Saccharomyces cerevisiae. 

(A) K+ uptake capacity of NRT1.5 was analyzed in yeast mutant BYT12 (trk1Δ trk2Δ) cells 

grown on YNB medium. (B) K+ uptake capacity of NRT1.5 was analyzed in yeast mutant BYT12 

(trk1Δ trk2Δ) cells grown on K+-free YNB medium. Yeast wild type strain BY4741 and mutant 

strain BYT12 were transformed with the expression constructs indicated on the left of the figure. 

Dilution series of 20 µl cell suspensions (OD600 from 1.0 to 10-5) were dropped on YNB (-Ura) 

agar plates with (upper panel) or without (lower panel) 100 mM KCl. p426 is the empty vector 

control. KAT1 and NRT1.5 are coding sequences of the respective Arabidopsis genes cloned 

in p426 vector. 1 and 2 indicate two independent yeast transformants. 

3.2.2 Ammonium uptake assay of NRT1.5 in Saccharomyces 

cerevisiae 

It is known that ammonium (NH4
+) inhibits potassium uptake systems (Coskun et al. 

2015). In S. cerevisiae cells lacking Trk genes, K+ might enter cells through the activity 

of Methylamine and ammonium permeases (Mep) unspecifically (Arino et al. 2010). In 

addition, because of the similarities between NH4
+ and K+ in terms of their hydrated 

diameters, charge and influence on membrane potentials, it is an obvious question to 

investigate whether NRT1.5 has NH4
+ transport activity. To address this question, yeast 

expression vector p426TEF with NRT1.5 CDS was introduced into yeast mutant 
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31019b which lacks the function of three methylamine and ammonium permeases 

Mep1, Mep2 and Mep3. Arabidopsis ammonium transporter AMT1.1 served as a 

positive control. Compared to wild type 233441c cells with the empty vector p426, the 

Mep mutant (31019b) cells with empty vector p426 showed the retarded growth even 

when external NH4
+ concentration is 10 mM (Figure 15A). The stronger growth 

retardation of yeast mutant cells was observed on medium with 1 mM and 3 mM NH4
+ 

supply. The Expression of AMT1.1 restored the growth of Mep mutant to the 

performance level of wild type strain 233441c transformed with empty vector p426 

(Figure 14A). However, three independent transformants of Mep mutant with the 

expression of NRT1.5 failed to do so (Figure 15A). Yeast growth performance was 

tested with three different pH values 4.5, 5.0 and 6.0. However, at none of these pH 

conditions a different growth performance of Mep cells with the NRT1.5 expression 

was generated. Even though yeast cannot directly use NO3
- as N source, to exclude 

the possibility that the activity of NRT1.5 in yeast is dependent on the presence of NO3
-, 

another yeast performance test was done on YNB medium with NH4NO3 as NH4
+ 

source instead of NH4Cl (Figure 15B). However, the different NH4
+ source did not 

generate different results. These results show that NRT1.5 cannot mediate ammonium 

uptake in yeast system.  
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Figure 15. Ammonium uptake capacity analysis of NRT1.5 in Saccharomyces cerevisiae.  

(A) NH4
+ uptake capacity of NRT1.5 was analyzed in yeast Mep mutant 31019b (mep1Δ mep2Δ 

mep3Δ) cells grown on YNB medium with various NH4Cl supply. (B) NH4
+ uptake capacity of 

NRT1.5 was analyzed in yeast Mep mutant 31019b (mep1Δ mep2Δ mep3Δ) cells grown on 

YNB medium with various NH4NO3 supply. Yeast wild type 233441c and mutant Mep cells were 

transformed with expression constructs indicated on the right under various pH conditions 

(pH4.5, pH5.0 and pH6.0 from left to right). 20 µL cell suspensions (OD600 from 1.0 to 10-5) were 

dropped on YNB (-Ura) agar plates with indicated amount of NH4+ (1mM, 3 mM and 10 mM, 

from upper to lower panel). p426 is the empty vector. AMT1.1 and NRT1.5 are coding 

sequences of the respective Arabidopsis genes cloned in p426 vector. 1, 2 and 3 indicate three 

independent yeast transformants. 
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3.2.3 Potassium export assay of NRT1.5 in Saccharomyces 

cerevisiae  

Since NRT1.5 showed no K+ inward transport function, it makes sense to test whether 

it can transport K+ out of the yeast cells, either autonomously or by influencing the 

activity of SKOR, which is the well-known major potassium channel protein responsible 

for K+ xylem loading in Arabidopsis. To answer this question, full length CDS of NRT1.5 

and SKOR were cloned into yeast expression vector p426TEF and p425TEF, 

respectively, followed by the introduction into yeast mutant BYT45 which lacks the 

activity of Na+(K+)-ATPase Ena1-5 and H+/Na+(K+) antiporter Nha1 (Borovikova et al. 

2014). When additional 1 M KCl was supplemented in the YNB medium, BYT45 cells 

transformed with two empty vectors were not able to grow as vigorously as wild type 

BY4741 cells with empty vectors (Figure 16). Expression of SKOR in BYT45 cells 

restored the normal growth of transformed cells like BY4741, demonstrating the K+ 

export capacity of SKOR. However, mutant cells with the expression of NRT1.5 

demonstrated the same growth retardation as mutant cells expressing empty vectors, 

suggesting that expression of NRT1.5 failed to export K+ in the yeast system used in 

this study. In addition, BYT45 transformants which co-expressed SKOR and NRT1.5 

just showed comparable growth like cells expressing SKOR alone, suggesting that the 

presence of NRT1.5 has no influence on the K+ export activity of SKOR.  

 

Figure 16. Potassium export capacity analysis of NRT1.5 in Saccharomyces cerevisiae. 



Results 

68 

K+ export capacity was analyzed in yeast BY4741 and the mutant BYT45 (ena1-5Δ nha1Δ) 

cells transformed with the expression constructs indicated on the right. 20 µL cell suspensions 

(OD600 from 1.0 to 10-5) were dropped on YNB (-Ura -Leu) agar plates with additional 1 M KCl 

supply (pH 5.9). p425 and p426 are the empty vectors. SKOR and NRT1.5 are coding 

sequences of the respective Arabidopsis genes cloned in p425 or p426 vector.  

3.2.4 The expression of NRT1.5 renders Saccharomyces cerevisiae 

cells the susceptibility to toxic cationic compounds 

In yeast, sensitivity to toxic cationic drugs like hygromycin B (HygB), 

tetramethylammonium (TMA), spermine and tetraethylammonium (TEA) is often linked 

to changes in the membrane potential which can be provoked by alterations in K+ 

homeostasis (Barreto et al. 2011). Accordingly, BYT12 cells which lack TRK1 and 

TRK2 have a higher sensitivity to toxic cations even under nonlimiting K+ 

concentrations, due to the hyperpolarization of the plasma membrane (Navarrete et al. 

2010). To elucidate whether NRT1.5 has an influence on the membrane potential, p426 

vector with NRT1.5 CDS was transformed in wild type BY4741 and mutant BYT12 cells 

followed by growth tests on YNB plates contain concentration gradients of HygB, TMA 

or TEA. Compared to wild type BY4741 cells, mutant BYT12 cells expressing empty 

vector p426 did not grow properly on YNB medium with high concentrations of HygB 

(Figure 17A) or TMA (Figure 17B), which confirmed that membrane of BYT12 cells 

were more polarized. Expression of NRT1.5 in BYT12 cells resulted in strongly 

increased HygB sensitivity compared to BYT12 cells with p426 empty vector (Figure 

17A). A similar pattern was obtained in the TMA sensitivity test (Figure 17B). It is 

interesting to note that the expression of NRT1.5 in wild type BY4741 cells did not 

cause the increased sensitivity to HygB or TMA (Figure 17A, 17B). It could be due to 

the concentration of HygB or TMA applied was not high enough to provoke the growth 

differences between BYT4741 cells with or without the NRT1.5 expression. This 

explanation might be supported by the observation that on gradient plates containing 

another cationic drug TEA, the expression of NRT1.5 in BY4741 cells caused the 

increased sensitivity of BY4741 cells compared to cells with empty vector p426 (Figure 
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17C). Altogether, the increased sensitivity of NRT1.5-expressing cells to toxic cationic 

compounds suggests that the expression of NRT1.5 can provoke the hyperpolarization 

of yeast cell membrane.  

 

Figure 17. Cationic compound sensitivity test of Saccharomyces cerevisiae cells expressing 

NRT1.5.  

(A) Yeast growth on YNB (-Ura) medium with increasing concentrations of hygromycin B from 

0 to 0.5 g/l. (B) Yeast growth on YNB (-Ura) medium with increasing concentrations of 

tetramethylammonium from 0 to 1 M. (C) Yeast growth on YNB (-Ura) medium with increasing 

concentrations of tetraethylammonium from 0 to 1 M. BY4741 and BYT12 cells were 

transformed with the expression constructs indicated on the right. 100 mM KCl was 

supplemented to YNB medium to support the growth of BYT12 cells. Twelve 3 µl drops of each 

yeast cell suspension (OD600 = 1.0) were distributed on the plates. p426 is the empty vector 

and NRT1.5 is the coding sequence of the Arabidopsis gene. 1 and 2 indicate two independent 

yeast transformants.  

3.2.5 The NRT1.5 level in Arabidopsis seedlings corelates with the 

sensitivity to hygromycin B 

It has been reported that the T-DNA insertion mutant of Arabidopsis plasma membrane 

H+-ATPase 2 (AHA2) was more resistant to toxic cations like HygB, cesium and lithium, 
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indicating that the protonmotive force in aha2 mutant was impaired (Haruta et al. 2010). 

To assess whether the increased HygB sensitivity in yeast cells caused by the 

expression of NRT1.5 also occurs in Arabidopsis plants, Col-0, nrt1.5 mutants, nrt1.5-

5 complementation lines PHO1p::NRT1.5 (in nrt1.5-5 background) and overexpression 

lines 35Sp::NRT1.5 (in Col-0 background) were grown on 1/2 MS plates supplemented 

with either HygB or high amount of KCl which is known to cause the depolarization of 

the membrane. In comparison to Col-0, two nrt1.5 mutants nrt1.5-4 and nrt1.5-5 were 

more resistant to 5 µg HygB treatment (Figure 18A), indicating the reduced plasma 

membrane potential of nrt1.5 mutants. Two complementation lines PHO1p::NRT1.5#1 

and PHO1p::NRT1.5#3, in which expression of NRT1.5 was restored to wild type level 

in roots, exhibited the comparable response to HygB like Col-0 (Figure 18A). 

Compared to Col-0, three independent 35Sp::NRT1.5 overexpression lines were more 

sensitive to HygB (Figure 18B), which is consistent with the increased HygB sensitivity 

of yeast BYT12 cells expressing NRT1.5. Those results demonstrate the expression 

level of NRT1.5 in Arabidopsis is in correlation with the plasma membrane potential: 

nrt1.5 mutants are depolarized, while 35Sp::NRT1.5 overexpression lines are 

hyperpolarized in comparison to the wild type. It is known that high external K+ 

concentration leads to a reduction in the membrane potential (Maathuis and Sanders 

1993). In agreement with the response to HygB, nrt1.5 mutants were more sensitive 

to the treatment with 50 mM KCl (Figure 18A) and 35Sp::NRT1.5 overexpression lines 

were more resistant to 100 mM KCl treatment (Figure 18B). All these observations 

strongly imply that nrt1.5 mutants have depolarized plasma membrane, whereas 

plasma membrane of overexpression lines is hyperpolarized, in other words, the 

expression level of NRT1.5 influences the plasma membrane potential of Arabidopsis 

plants. 
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Figure 18. Growth of different plant lines in response to hygromycin B and high concentration 

of K+ treatment.  

(A) Morphology of Col-0, nrt1.5 mutants and two PHO1p::NRT1.5 complementation lines grown 

on 1/2 MS plates or 1/2 MS plates containing either 10 mg/l HygB or 50 mM KCl. (B) 

Morphology of Col-0, nrt1.5-5 and three 35Sp::NRT1.5 overexpression lines grown on 1/2 MS 

plates containing either 5 mg/l HygB or 100 mM KCl. 5 DAG Seedlings germinated on 1/2 MS 

medium were transferred on 1/2 MS medium supplemented with HygB or with KCl and grew 

vertically for 6-7 more days.  
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3.3 Functional analysis of NRT1.8 in Saccharomyces 

cerevisiae 

3.3.1 Potassium uptake and export assay of NRT1.8 in 

Saccharomyces cerevisiae 

The function of Arabidopsis NRT1.8 is to remove NO3
- from the xylem sap and transfer 

it into xylem parenchyma cells (Lin et al. 2008; Li et al. 2010; Chen et al. 2012). Among 

the 53 NRT1 members in Arabidopsis, NRT1.8 shares the highest sequence similarity 

with NRT1.5 (Li et al. 2010). The expression of both genes is oppositely regulated by 

various stress conditions (Li et al. 2010). In nrt1.5 mutants roots, NRT1.8 expression 

is strongly increased (Chen et al. 2012; Drechsler et al. 2015). Therefore, it is 

conceivable that the enhanced NRT1.8 level in nrt1.5 might contribute to the reduced 

K+ root-to-shoot transfer in nrt1.5 mutants. To test this hypothesis, the potassium 

transport assay of NRT1.8 was conducted in S. cerevisiae K+ uptake mutant BYT12 

and K+ export mutant BYT45 cells. BYT12 cells with empty vector p426 did not grow 

on YNB medium, but the supplementation of 100 mM KCl restored the growth of 

BYT12 as that of KAT1 transformed BYT12 cells and wild type BY4741 cells (Figure 

19A). BYT45 cells grew normally on YNB medium, but their growth was nearly 

completely abolished by the addition of 1.2 M KCl (Figure 19B). Expression of NRT1.8 

in BYT12 cells was not able to complement the growth retardation of BYT12 cells on 

YNB medium without additional K+ supply (Figure 19A), indicating that NRT1.8 cannot 

directly import K+ into yeast cells. Interestingly, compared to BYT45 cells expressing 

empty vector p426, two independent BYT45 transformants with the expression of 

NRT1.8 demonstrated the very weak growth at YNB medium with 1.2 M KCl (Figure 

19B), implying that NRT1.8 might be able to export K+ in yeast. However, due to the 

very weak growth of yeast cells, further analysis should be done to verify this 

observation.  
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Figure 19. Potassium transport capacity analysis of NRT1.8 in Saccharomyces cerevisiae.  

(A) Potassium uptake capacity of NRT1.8 was analyzed in yeast mutant BYT12 (trk1Δ trk2Δ) 

cells. (B) Potassium export capacity was analyzed in yeast mutant BYT45 (ena1-5Δ nha1Δ) 

cells. Wild type BY4741 and yeast mutant cells were transformed with the expression 

constructs indicated on the right. 20 µL cell suspensions (OD600 from 1.0 to 10-5) were dropped 

on YNB (-Ura) agar plates or on YNB (-Ura) medium with 100 mM KCl or 1.2 M KCl as indicated 

on top of each figure. p426 is the empty vector. NRT1.8 and KAT1 are coding sequences of the 

respective Arabidopsis genes cloned in p426. 1 and 2 indicate two independent yeast 

transformants. 

3.3.2 The expression of NRT1.8 renders Saccharomyces cerevisiae 

cells more sensitive to cationic compounds 

The high sequence similarity between NRT1.5 and NRT1.8, their opposite function in 

NO3
- transport, as well as their opposite expression patterns under stress conditions 

make it interesting to test whether the expression of NRT1.8 also affects the membrane 

potential like NRT1.5 does in yeast cells. Compared to BYT12 cells with empty vector 
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p426, the expression of NRT1.8 made BYT12 cells more sensitive to the cationic toxic 

compounds HygB (Figure 20A) and TEA (Figure 20B), indicating that the presence of 

NRT1.8 increased the plasma membrane potential of yeast cells. Moreover, in 

comparison to BYT12 cells expressing NRT1.5, the expression of NRT1.8 made 

BYT12 cells were more sensitive to HygB and TEA treatment (Figure 20A, 20B), which 

might indicate a stronger effect of NRT1.8 on the membrane potential of yeast cells.  

 

Figure 20. Cationic drug sensitivity test of Saccharomyces cerevisiae cells expressing NRT1.8.  

(A) Yeast growth test on YNB (-Ura) medium with increasing concentration of hygromycin B 

from 0 to 0.5 g/l. (B) Yeast growth test on YNB (-Ura) medium with increasing concentration of 

tetraethylammonium from 0 to 0.5 M. BY4741 and BYT12 cells were transformed with the 

expression constructs indicated on the right. Twelve 3 µL drops of each yeast cell suspension 

(OD600 = 1.0) were distributed on the plates. 100 mM KCl was supplemented to YNB medium 

to support the growth of BYT12 cells. p426 is the empty vector. NRT1.5 and NRT1.8 are coding 

sequences of the respective Arabidopsis genes cloned in p426. 

3.4 The interplay of NRT1.5 and SKOR in potassium 

root-to-shoot transfer 

The subsequent results presented in section 3.4.1, 3.4.2, 3.4.3, 3.4.4 and 3.4.5 have 

been published as part of the publication: Drechsler, N., Zheng, Y., Bohner, A., 

Nobmann, B., von Wirén, N., Kunze, R. and Rausch, C. (2015). Nitrate-dependent 
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control of shoot K homeostasis by the Nitrate Transporter1/Peptide Transporter Family 

Member NPF7.3/NRT1.5 and the stelar K+ outward rectifier SKOR in Arabidopsis. 

Plant Physiology 169: 2832-2847. 

3.4.1 Generation of the nrt1.5-5/skor-2 double mutant 

In Arabidopsis, SKOR is the most well-known protein responsible for K+ translocation 

from root to shoot. At low NO3
- supply, K concentration in shoots of hydroponically 

growing nrt1.5 mutants was significantly reduced compared to that of wild type, 

indicating K+ root-to-shoot transfer in nrt1.5 was blocked (Drechsler et al. 2015). The 

reduction of K+ in nrt1.5 shoots resembles what has been observed for the skor1 

mutant (Gaymard et al. 1998). In this work, even though it was shown that NRT1.5 had 

no influence on the K+ export activity of SKOR in yeast cells (Figure 16), this does not 

rigorously exclude such an activity in planta. To investigate the interplay between 

NRT1.5 and SKOR in root-to-shoot translocation of K+ in Arabidopsis, two T-DNA 

insertion knockout mutants skor-2 and skor-3 in the Col-0 background were isolated 

(Figure 21 A, 21B). Both skor mutants showed no morphological difference compared 

to Col-0 at low NO3
- availability, however, they exhibited the leaf chlorosis phenotype 

at high NO3
- supply (Figure 21C). skor-2 knockout mutant plants, which carry the T-

DNA insertion in the essential cyclic nucleotide binding domain (cNBD) (Dreyer et al. 

2004) (Figure 21A), were crossed with nrt1.5-5 plants to generate the double knockout 

mutant skor-2/nrt1.5-5. Absence of full-length transcripts of NRT1.5 and SKOR in 

single and double mutant plants was verified by semi-quantitative RT-PCR (Figure 

21B).  
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Figure 21. Identification and confirmation of the absence of full-length transcripts of NRT1.5 

and SKOR in the double mutant nrt1.5-5/skor-2.  

(A) Scheme of T-DNA insertion sites in the SKOR genomic region of the skor-2 and skor-3. The 

T-DNAs are inserted in the eighth and the second exon of the gene, respectively. CHC, channel 

hydrophobic core; cNBD, cyclic nucleotide-binding domain; Anky, ankyrin domain. Black and 

white boxes represent exons and untranslated regions (UTRs), respectively. The arrows 

indicate the annealing positions of the forward (F) and reverse (R) primers used for RT-PCR. 

(B) RT-PCR of single and the double mutant was performed with gene-specific primers for 

SKOR and NRT1.5. (C) Morphology of Col-0, skor-2, and skor-3 grown on soil supplied with 

different NO3- regimes. 
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3.4.2 The leaf chlorosis phenotype of nrt1.5 is caused by low 

potassium accumulation 

To investigate how morphological changes of each plant line develop under various 

N/K regimes, Col-0, nrt1.5-5, skor-2, and nrt1.5-5/skor-2 plants were cultivated on 

unfertilized soil supplemented with modified 1/2 MS solutions containing the 

macronutrients N/K/P in the concentrations 1/1/1, 1/1/10, 1/10/1, 10/1/1, 5/0/5 and 

10/10/10 mM, respectively. N was supplied as NO3
- and P was supplied in the form of 

Pi. When all plants were flowering, the inflorescence stems were removed and rosette 

FW, elemental composition and total N were determined (Figure 22).  

In all plant lines including Col-0, early leaf chlorosis accompanied by yellow leaf tips 

and pale green inner rosettes occurred whenever the K concentration of plants 

dropped below 1% dry weight (DW) (Figure 22, red dotted line). Consequently, Ca and 

Mg in these rosettes were strongly accumulated probably to compensate the loss of K. 

When K concentration was higher than 1% DW, all plants were able to accumulate 

anthocyanins and developed a red-brown leaf pigmentation which presumably 

indicated N deficiency (Figure 22, treatments 1/1/1, 1/1/10, and 1/10/1 N/K/P [mM]). 

Under all tested nutrient regimes, compared to wild type plants, no significant reduction 

of total N in nrt1.5-5 was detected. The results suggest that the observed leaf chlorosis 

phenotype of nrt1.5-5 mutant was due to the low K concentration in shoots, which also 

corroborated our previous findings with hydroponically grown plants. 
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Figure 22. Correlation of the rosette phenotype with the K, Ca and Mg elemental composition 

in Col-0, nrt1.5-5, skor-2 and nrt1.5-5/skor-2 plants.  

Each column shows on top the applied fertilization regime (N/K/P [mM]). The bar diagrams 

show the rosette K, Ca, Mg, total N and fresh weight gain, respectively. At the bottom the 

respective phenotypes of the plants are shown. The color codes of the bars are indicated in the 

top right corner. The dotted red line indicates a K concentration of 1% in the dry matter. The 

data were statistically analyzed by one-way ANOVA and subsequent multiple comparisons 

(Tukey’s honestly significant difference mean-separation test). Means (n ≥ 4) marked with 

different letters differ significantly at P < 0.05. Vertical bars denote standard deviations. The 

experiment was performed three times independently with similar phenotypic growth responses. 

The elemental analysis by ICP-OES was performed for two of the three independent 

experiments with similar results. 
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3.4.3 NRT1.5 affects shoot potassium accumulation at limited nitrate 

supply 

At 1 mM NO3
-, total N concentration in shoots of all plant lines was less than 2.5% 

(Figure 22), which reflected the low amount of NO3
- supplied to the plants. Total N in 

nrt1.5-5/skor-2 mutant plants was higher than that of the wild type and single mutants. 

FW analysis further reflected the importance of NO3
- supply on plant growth, since the 

FW gain of all lines was below 110 mg under 1 mM NO3
- supply, which was 2- to 3- 

fold less than plants growing with 10 mM NO3
- supply (Figure 22).  

The K concentration in skor-2 was almost not altered compared to wild type at 1 mM 

NO3
-, whereas, K concentrations in nrt1.5-5 and the double mutant nrt1.5-5/skor-2 

plants were reduced to approximately 50% of wild-type level (Figure 22, treatments 

1/1/1 and 1/1/10 N/K/P [mM]). Even the supply with high amount of K+ (10 mM) could 

not revert the K concentration in nrt1.5-5 and nrt1.5-5/skor-2 plans back to wild-type 

level (Figure 22, treatment 1/10/1 N/K/P [mM]). Obviously, the results indicate that in 

comparison to SKOR, NRT1.5 made a more important contribution to the shoot K+ 

concentration when NO3
- supply is limited, regardless of the K+ supply.  

3.4.4 SKOR contributes to root-to-shoot transfer of potassium at 

high nitrate supply 

At 10 mM NO3
- fertilization (10/1/1 N/K/P [mM]), the nrt1.5-5 mutant accumulated the 

comparable K concentration as wild-type plants (Figure 22), indicating that NRT1.5 

was not primarily involved in establishing shoot K status under high NO3
- conditions. 

However, at this condition, skor-2 plants had a significantly lower K concentration 

compared with Col-0 and nrt1.5-5. Ca and Mg were not enriched, presumably because 

the K concentration had not dropped below 1% DW. Lack of both NRT1.5 and SKOR 

decreased K levels in nrt1.5-5/skor-2 even further (Figure 22). These results were 

confirmed by a further experiment where a 20-fold excess of NO3
- over K+ (20/1/1 

N/K/P [mM]) was supplied to plants. The skor-2 and nrt1.5-5/skor-2 plants 
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demonstrated the leaf chlorosis at this nutrient regime (Figure 23A). Correlatedly, the 

reduction in shoot K concentration was observed in skor-2 and in nrt1.5-5/skor-2 plants, 

but K concentration in nrt1.5-5 was not affected (Figure 23A). Under a high equimolar 

N/K supply (10/10/10 and 10/10/1 N/K/P [mM]), K levels of both single mutants reached 

almost those of Col-0 (Figure 22, 23B). However, K concentrations in the nrt1.5-5/skor-

2 double mutant were still significantly reduced in comparison to Col-0 (Figure 22), 

which was probably attributed to the additive effect of loss of both genes.  

 
Figure 23. Rosette phenotype and K, Ca and Mg concentrations in Col-0, nrt1.5-5, skor-2 and 

nrt1.5-5/skor-2 plants at 20/1/1 and 10/10/1 N/K/P [mM] supply.  
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(A) K, Ca and Mg concentrations and morphology of Col-0, nrt1.5-5, skor-2 and nrt1.5-5/skor-

2 rosettes at the fertilization with 20/1/1 N/K/P [mM]. (B) K, Ca and Mg concentrations and 

morphology of Col-0, nrt1.5-5, skor-2 and nrt1.5-5/skor-2 rosettes at the fertilization with 

10/10/1 N/K/P [mM]. The color codes of the bars are indicated in the top right corner. The dotted 

red line indicates a K concentration of 1% in the dry matter. Statistical analysis of the data was 

performed by one-way ANOVA and subsequent multiple comparisons (Tukey’s HSD test). 

Means (n ≥ 6) marked with different letters differed significantly at P < 0.05. Vertical bars denote 

standard deviations.  

In summary, this fertilization experiment highlighted the importance of both proteins for 

shoot K+ homeostasis under defined nutritional supply: SKOR under high NO3
- and low 

K+ availability; and NRT1.5 under low NO3
- availability irrespective of the K+ supply. 

Enhancement of K deficiency in the double mutant under a high NO3
- to K+ ratio (10/1/1 

and 20/1/1 N/K/P [mM]) and a high equimolar supply (10/10/10 N/K/P and 10/10/1 

N/K/P [mM]) further suggests an interdependency of NRT1.5 and SKOR in K+ root-to-

shoot translocation under these conditions. 

3.4.5 The induction of SKOR expression by high nitrate supply 

To investigate whether the expression pattern of SKOR and NRT 1.5 is in accordance 

with the phenotype development of mutants, transcripts of SKOR and NRT1.5 in roots 

of wild-type plants grown under various N/K regimes (1/1, 10/1, 1/10, and 10/10 N/K 

[mM], constant 1 mM Pi supply) were analysed by qRT-PCR. The expression of 

NRT1.5 was relatively constant and was only slightly regulated by different N/K ratios 

(Figure 24). Relative to equimolar supply 1/1 N/K [mM], NRT1.5 was 1.5-fold 

upregulated by high NO3
- to K+ ratio (10/1 N/K [mM]), and 1.5-fold down-regulated by 

low NO3
- to K+ ratio (1/10 N/K [mM]). In contrast to NRT1.5, SKOR was nearly not 

regulated by the NO3
- to K+ ratio, whereas it was strongly upregulated (about 5-fold) 

by high NO3
- supply (10/1 and 10/10 N/K [mM]) compared to its level at 1/1 N/K [mM] 

(Figure 24).  

The expression patterns of the two genes could partially explain the phenotypes of 

mutant plants. Under low NO3
- supply (1 mM), the expression of NRT1.5 was almost 

constant, whereas the expression of SKOR is 5-fold lower than under high NO3
- supply. 
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Consistently, when grown with 1 mM NO3
-, nrt1.5-5 but not skor-2 mutant plants had 

reduced K levels in the shoots (Figure 22). In contrast, under high NO3
- supply (10 

mM), SKOR is strongly expressed in roots. It is conceivable that, under high NO3
- 

supply (10 mM), enhanced level SKOR can partially complement the lack of NRT1.5 

in the nrt1.5 mutants and facilitate root-to-shoot translocation of K+, therefore, no 

significant K reduction occurred in nrt1.5 shoots, but skor-2 and nrt1.5-5/skor-2 mutant 

had decreased K level (Figure 22, 23). However, the expression patterns of NRT1.5 

and SKOR by N/K regimes cannot explain all the physiological changes of mutants, 

thus it is possible that deregulation of other ion homeostasis-associated genes in 

nrt1.5-5 roots (Drechsler et al. 2015) might also contribute to the K reduction 

phenotypes. 

 

Figure 24. Expression of NRT1.5 and SKOR under different fertilization regimes.  

Relative transcript levels (2-ΔΔCт) of NRT1.5 and SKOR at various N/K regimes were measured 

in roots of Col-0 plants by qRT-PCR (means ± SD; n ≥ 4). UBQ10 was used for normalization. 

Transcript levels of NRT1.5 and SKOR in roots grown with 1/1/1 N/K/P [mM] were set to 1.0 as 

a control.  

3.4.6 Ion homeostasis-associated genes deregulated in nrt1.5-5 

were not altered in skor-2 

It has been shown that gene expression levels of several ion homeostasis-associated 
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genes including SLAH1, SLAH3, NRT1.8, HAK5, CIPK9 and SKOR were altered in 

nrt1.5-5 roots (Drechsler et al. 2015), which might contribute to the K deficiency in 

nrt1.5-5 shoots. In this work, skor-2 had reduced shoot K level at high NO3
- supply 

(Figure 22, 23). Gaymard et al. (1998) also reported the reduction of shoot K in the 

skor-1 mutant which is in Wassilewskija background. To investigate whether the similar 

K reduction phenotype of nrt1.5-5 and skor-2 mutants is caused by the same molecular 

mechanism, expression patterns of those genes deregulated in nrt1.5-5 were analyzed 

in roots of the single mutant nrt1.5-5, skor-2 and in the double mutant nrt1.5-5/skor-2 

under various N/K regimes by qRT-PCR.  

Anion transporter genes SLAH1, SLAH3 and the potassium channel SKOR were 

upregulated in nrt1.5-5 compared to Col-0 under low NO3
- (1 mM) supply, which is 

consistent with earlier findings of our group which used hydroponically grown plant 

materials with 0.1 mM NO3
- supply (Drechsler et al. 2015). Interestingly, when 10 mM 

NO3
- was supplied, SLAH1 and SLAH3 expression in nrt1.5-5 was indistinguishable to 

that of Col-0 (Figure 25A). This result indicates that SLAH1 and SLAH3 might 

contribute to the shoot K deficit phenotype of nrt1.5-5 at low NO3
- supply. Unlike the 

expression pattern in hydroponically grown plants with 0.1 mM NO3
- supply, CIPK9 

was not downregulated in nrt1.5-5 at all N/K regimes, and the downregulation of HAK5 

only occurred at 10/1 N/K [mM] supply (Figure 25A). Those discrepancies might be 

attributed to the differences in growth conditions and compositions of fertilization 

solution. In contrast to what was observed in nrt1.5-5, none of the tested ion 

homeostasis-associated genes were regulated in skor-2 mutant plants, even at 10 mM 

NO3
- supply when skor-2 plants developed K deficit symptoms (Figure 25B). The 

differences of gene expression pattern in nrt1.5-5 and skor-2 suggest that the 

involvement of NRT1.5 in the K+ root-to-shoot transfer process was independent of the 

function of SKOR, and the deregulation of those K+ transporter or K+ signaling related 

genes might contribute to the development of the K deficit phenotype in nrt1.5 mutants.  

Interestingly, the expression patterns of those ion homeostasis-associated genes in 

the nrt1.5-5/skor-2 double mutant more resembled those in nrt1.5-5 than in skor-2 
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(Figure 25C). However, compared to low NO3
- supply, at high NO3

- and low K+ 

availability (10/1, N/K [mM]), SLAH1 and SLAH3 expression was induced around 5-

fold in the double mutant (Figure 25C), which was neither observed in nrt1.5-5 nor in 

skor-2 mutant. At high NO3
- and high K+ supply (10/10, N/K [mM]), HAK5 expression 

was strongly inhibited in the nrt1.5-5/skor-2 double mutant. Based on the observed 

additive effect of K reduction in shoots of the double mutant at this nutrient condition 

(Figure 22, 23B), it could be speculated that the altered expression patterns of SLAH1, 

SLAH3 and HAK5 in the double mutant may contribute to the enhanced K deficit 

phenotype of the double mutant under high NO3
- and high K+ availability.  

 

Figure 25. Expression of nitrate and potassium homeostasis-associated genes in roots of 

nrt1.5-5, skor-2 and nrt1.5-5/skor-2 under various fertilization regimes.  

Relative transcript levels of six nitrate and potassium homeostasis-associated genes were 
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measured by qRT-PCR and normalized to UBQ10 in roots of (A) nrt1.5-5, (B) skor-2 and (C) 

nrt1.5-5/skor-2 at indicated N/K regimes. Plants were grown on unfertilized soil supplied with 

modified 1/2 MS solution with 1/1, 10/1, 1/10 or 10/10 NO3-/K+ [mM]. Plotted are the relative 

gene expression (2-ΔΔCт) of each gene in mutant roots compared with Col-0 level (set as 1.0) at 

indicated fertilization regimes (means ± SD, n ≥ 4). Root materials from three plants were 

pooled as one biological replicate.  

3.4.7 The nrt1.5-5/skor-2 double mutant accumulated more sodium, 

sulfur and phosphorus at low nitrate supply  

In addition to K, Ca and Mg concentration, sodium (Na) and macroelements sulfur (S), 

phosphorus (P) as well as microelements iron (Fe), boron (B), manganese (Mn), 

copper (Cu) and zinc (Zn) were also measured in Col-0, single mutants nrt1.5-5 and 

skor-2, and the double mutant nrt1.5-5/skor-2 by ICP-OES with the same shoot 

materials used for Figure 22. All four plant lines accumulated comparable 

concentration of microelements (data not shown). Mutation of NRT1.5 did not 

significantly influence P and S accumulation in nrt1.5-5 at all nutrient regimes (Figure 

26). Under some conditions (1/10/1, 10/1/1 and 5/0/5 N/K/P [mM]), nrt1.5-5 showed 

significantly higher concentration of Na compared to wild type (Figure 26). The skor-2 

mutant plants showed higher S concentration only at 10 mM NO3
- supply. Interestingly, 

at most nutrient regimes, Na, P and S concentrations in the nrt1.5-5/skor-2 double 

mutant plants were higher compared to other lines (Figure 26). These results 

suggested that a simultaneous defect in both NRT1.5 and SKOR probably has a great 

influence on the specific or unspecific root-to-shoot transport of macroelements P and 

S as well as Na. In addition, the higher accumulation of Na could result in a high Na+/K+ 

ratio in the nrt1.5-5/skor-2 double mutant, which may in turn cause the susceptibility to 

salinity stress of the double mutant.   
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Figure 26. Concentration of sodium, phosphorus and sulfur in rosettes of Col-0, skor-2, nrt1.5-

5 and the double mutant.  

Concentration [mg/g DW] of Na, P and S in the rosette were measured with the same material 

used in Figure 22. Data were shown as means ± SD (n ≥ 4). Different letters indicate significant 

difference at P < 0.05. The data were statistically analyzed by one-way ANOVA and subsequent 

multiple comparisons (Tukey’s HSD test) for each fertilization treatment.  

3.4.8 The skor mutants showed no root phenotype at K+ deprivation 

In the previous section (see 3.1.2), the reduced LR density phenotype of nrt1.5 plants 

growing at K+ deprivation conditions has been shown. In order to investigate whether 

this root phenotype of nrt1.5 mutants is caused by the defect in K+ xylem loading, skor-

2 and skor-3 were also grown under various K+ concentrations from 0 mM to 2 mM. 

Different from nrt1.5 mutants, skor-2 and skor-3 mutant plants demonstrated 

comparable growth as wild-type plants at all tested K+ concentrations. Even at 0 mM 

K+ concentration, neither skor-2 nor skor-3 showed impaired shoot or root growth 

(Figure 27A), and the fresh weight gain of skor-2 and skor-3 was even higher than that 

of wild type (Figure 27B). 
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Figure 27. Potassium deficiency does not cause visible phenotype of skor mutants. 

(A) Morphology of Col-0, skor-2 and skor-3 mutant seedlings growing on plates 0 mM or 2 mM 

K+ (constant 1 mM NO3-). (B) Shoot and root fresh weight of skor-2 and skor-3 seedlings grown 

on plates containing increasing concentrations of K+ from 0 to 2 mM (constant 1 mM NO3-). 

Four seedlings were pooled as one biological replicate. Results are displayed as relative to Col-

0 FW (means ± SD; n = 12).   

The nrt1.5-5 and the double mutant nrt1.5-5/skor-2 plants showed impaired LR growth 

(Figure 28A) and gained less fresh weight (Figure 28B) grown on plates with 0 mM K+, 

in contrast, no visible morphological differences of skor-2 compared to wild type were 

observed. These results demonstrated that the defect in SKOR function does not lead 

to the impairment of the root growth under K+ deprivation conditions. 

 

Figure 28. The root development of skor-2 and nrt1.5-5/skor-2 mutant under potassium 

deficiency.  
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(A) Morphology of Col-0, skor-2, nrt1.5-5 and the double mutant nrt1.5-5/skor-2 seedlings 

growing on plates 0 mM K+ (1 mM NO3-). (B) Shoot and root fresh weight of Col-0, skor-2 and 

nrt1.5-5/skor-2 seedlings grown on plates containing 0 mM K+ (constant 1 mM NO3-). Four 

seedlings were pooled as one biological replicates. Results were displayed as relative to the 

Col-0 FW (means ± SD; n = 12).  

3.5 Identification of interacting partners of NRT1.5  

3.5.1 Verification of NRT1.5-interacting partners by Bimolecular 

Fluorescence Complementation (BiFC) 

In the previous study of our group, several interacting partners of NRT1.5 have been 

identified in S. cerevisiae by a split-ubiquitin assay (Drechsler, Dissertation 2016). To 

assess whether the protein-protein interaction observed in heterologous yeast cells 

also occur in living plant cells, the Bimolecular Fluorescence Complementation (BiFC) 

assay was applied in this study. NRT1.5 was fused to C-terminus of cYFP, and the 

potential NRT1.5-interacting partner SLAH1, SLAH3 or AHA2 was fused to the C-

terminus of nYFP in the pBiFC-2in1 system (pBiFCt-2in1-NN) (Grefen and Blatt 2012) 

by Gateway® cloning, respectively (Figure 29E). Meanwhile, the pBiFCt-2in1-NN 

construct with unfused nYFP and NRT1.5-fused cYFP was also generated as a 

negative control. The generated pBiFCt-2in1-NN constructs were transformed into A. 

tumefaciens for transient verification expression in Nicotiana benthamiana. Three days 

post infection (dpi), fluorescence signals from lower leaf epidermal cells of transfected 

N. benthamiana were recorded by confocal fluorescence microscopy.   

The RFP signal denotes the successful transformation and expression of the pBiFC-

2in1 construct in tobacco leaves (Figure 29, the left panel). Without interacting partners, 

coexpression of cYFP-NRT1.5 with unfused nYFP did not lead to visible reconstituted 

YFP fluorescence signals (Figure 29A). By contrast, under the same setting of the 

microscope, coexpression of cYFP-NRT1.5 with its potential interacting partners 

nYFP-AHA2, nYFP-SLAH1 and nYFP-SLAH3 generated reconstituted YFP 

fluorescence signals which can be clearly attributed to localization in the plasma 
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membrane (Figure 29B, 29C, 29D). The localization of YFP signal matches the 

membrane localization of NRT1.5, SLAH1, SLAH3 and AHA2. These results 

demonstrate that NRT1.5 can interact with AHA2, SLAH1 and SLAH3 in tobacco 

leaves, which could further corroborate the assumption that NRT1.5 interacts with 

these three proteins in Arabidopsis.  

 

Figure 29. Verification of interacting partners of NRT1.5 by BiFC assay (pBiFC-2in1) in leaf 

epidermis cells of Nicotiana benthamiana.  

Confocal microscope images of N. benthamiana. leaf epidermis cells expressing cYFP-NRT1.5 

and (A) non-fused nYFP; (B) nYFP-AHA2; (C) nYFP-SLAH3; (D) nYFP-SLAH1 at 3 dpi. Left 
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panels: mRFP fluorescence signals visualizing the cytoplasm and the lumen of the nucleus. 

Center panels: YFP fluorescence signals of the indicated coexpressed fusion proteins 

containing the two YFP moieties (nYFP and cYFP). Right panels: superimposed YFP and 

mRFP signals. Scare bar = 25 µM. The two YFP moieties and mRFP for each assay were 

encoded on the same vector to ensure synchronized expression and equimolar protein levels.  

(E) Schematic depiction of the T-DNA of the pBiFCt-2in1-NN vector containing NRT1.5 and 

different interacting partners. RB/LB: right/left border of T-DNA. 35S-Ω: 35S promoter linked to 

an enhancer. RFP: mRFP marker. nYFP and cYFP are two YFP moieties.  

However, even though BiFC has become a routine tool to identify interactions between 

proteins, it has been noticed that some available BiFC systems are still subject to 

problems like low signal-to-noise ratios (Lalonde et al. 2008; Kodama and Hu 2012). 

Therefore, to exclude possible false positive result generated by the pBiFC-2in1 

system, a second BiFC system called pDOE (pDOE-08) was applied. Different from 

using YFP split at residue 155 in the pBiFC-2in1 system, the pDOE system uses 

monomeric Venus (mVenus) split at residue 210 to reduce the background signal from 

non-specific reassembly (Gookin and Assmann 2014). Interaction between NRT1.5 

and SLAH1 was examined again by using construct pDOE-08. In addition, the 

glucosinolate transporter GTR2 (also known as NRT1.10, hereafter NRT1.10), which 

probably inhibits the nitrate transport activity of NRT1.5 in oocyte cells (Wang, 

Dissertation 2011), was shown to interact with NRT1.5 in yeast by the split-ubiquitin 

assay (Drechsler, Dissertation 2016). Therefore, NRT1.10 was also included in the 

BiFC study. NRT1.5 was fused to the C-terminus of NmVen210 (N-terminal moiety of 

mVen210), and potential interacting partner SLAH1 or NRT1.10 was fused to the C-

terminus of CVen210 (C-terminal moiety of mVen210) by conventional cloning, 

respectively (Figure 30D). The pDOE-08 plasmid with NRT1.5-fused NmVen210 and 

unfused CVen210 was generated as a negative control.  

The signal of the Golgi marker mTurquoise2 indicates the successful infiltration and 

expression of the constructs in tobacco leaves (Figure 30, left panels). Co-expression 

of NmVen210-NRT1.5 and unfused CVen210 lead to only background noise and no 

visible reconstituted YFP signal could be observed (Figure 30A). In contrast, 

coexpression of NmVen210-NRT1.5 with CVen210-SLAH1 led to clear YFP signals 
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localized on the plasma membrane (Figure 30B). Coexpression of NmVen210-NRT1.5 

with CVen210-NRT1.10 generated even stronger YFP signals which can be clearly 

attributed to the localization on the plasma membrane (Figure 30C). The reconstituted 

YFP signals corroborated the interaction between NRT1.5 and SLAH1 in planta and 

suggests that NRT1.5 also interacts with NRT1.10 in planta.  

 

Figure 30. Verification of interacting partners by BiFC assay (pDOE-08) in leaf epidermis cells 

of Nicotiana benthamiana.  

Confocal microscope images of N. benthamiana. leaf epidermis cells expressing NmVen210-

NRT1.5 and (A) non-fused cVen210; (B) cVen210-SLAH1; (C) cVen210-NRT1.10 at 3 dpi. Left 

panels: mTurquoise2 fluorescence signals visualizing the Golgi. Center panels: fluorescence 

signals of the indicated coexpressed fusion proteins containing the two mVen210 moieties 

(NmVen210 and CVen210). Right panels: superimposed mTurquoise2 and mVen210 signals. 

Scare bar = 25 µM. (D) Schematic depiction of the construct pDOE-08 containing NRT1.5 and 

different interacting partners. MASp: MAS promoter. MASt: MAS terminator. NOSt: NOS 
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terminator. OCSt: OCS terminator. XT-mTq2: XT-Golgi-mTurquoise2 marker. 35S::Ω: 35S 

promoter linked to an enhancer. NmVen210 and cVen210 are two mVen210 moieties. 

3.5.2 NRT1.5 interacts with CIPK23-CBL1/CBL9 complex in 

Saccharomyces cerevisiae 

Recently, more and more studies indicate that CIPK23 may act as a common 

component controlling K+ and NO3
- transport through phosphorylating transporter 

proteins with the help of CBLs (Xu et al. 2006; Ho et al. 2009; Ragel et al. 2015). For 

example, CIPK23 has been shown to be able to activate nitrate transporter NRT1.1 

and potassium transporter AKT1 and HAK5 (see introduction 1.6.2). Therefore, it is 

tempting to test whether NRT1.5 can also interact with CIPK23 directly or with the co-

presence of CBLs by the split-ubiquitin assay in yeast. The full-length CDS of CIPK23 

was fused with the mutated N-terminal ubiquitin moiety NubG. The full-length CDS of 

CBL1 and CBL9 was cloned into yeast expression vector p14156. Subsequently, 

together with the construct NRT1.5-Cub (Drechsler, Dissertation 2016) in which 

NRT1.5 was fused to the C-terminal ubiquitin moiety Cub, the constructs were 

transformed in the auxotrophic (-Leu, -Trp, -His, -Ade, -Ura) S. cerevisiae strain 

THY.AP4 (Obrdlik et al. 2004). The N-terminal wild-type half of ubiquitin NubI, NubG-

fused DUF679 Membrane Protein (DMP) NubG-DMP2 and NubG-DMP7 served as 

positive controls. NubG fused unrelated inward K+ rectifying channel protein NubG-

KAT1 and potato sucrose transporter NubG-StSUT1 served as negative controls. Yeast 

cells transformed with NRT1.5-Cub and positive control constructs showed growth on 

SD-deficient medium (-His, -Ade, -Leu, -Trp), whereas no growth of negative controls 

was detectable (Figure 31A). Coexpression of NRT1.5-Cub and NubG-CIPK23 led to 

the very weak yeast growth, which might indicate NRT1.5 could directly interact with 

CIPK23 (Figure 31A). The weak interaction could be explained by the fact that without 

CBLs, CIPKs in vitro have very little kinase activity (Li et al. 2009). In the presence of 

CBL9 or CBL1 especially, coexpression of NRT1.5-Cub and NubG-CIPK23 led to 

improved yeast growth compared to yeast cells without CBLs (Figure 31B). The results 

suggest that with the help of CBL1 and CBL9, NRT1.5 could interact with CIPK23 in 
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the yeast system. 

 

Figure 31. The interaction between NRT1.5 and CIPK23 with the help of CBLs in heterologous 

Saccharomyces cerevisiae system.  

The interaction between NRT1.5 and CIPK23 were investigated either without (A) or with (B) 

the presence of CBL1 and CBL9. NubI, and NubG fused integral membrane proteins (DUF679 

Membrane Protein) NubG-DMP2 and NubG-DMP7 were positive controls. NubG fused unrelated 

membrane proteins NubG-AtKAT1 (potassium transporter) and NubG-StSUT1 (potato sucrose 

transporter) were negative controls. For the selection of transformants, yeast cells were 

dropped on leucine- and tryptophan-deficient SD media (A, lower panel) or leucine-, tryptophan- 

and uracil-deficient SD media (B, lower panel). The detection of protein-protein interactions was 

carried out on SD-Leu-Trp media lacking histidine and adenine (A, upper panel) or SD-Leu-Trp-

Ura media lacking histidine and adenine (B, upper panel). The addition of 5 mM 3-amino-1,2,4-

triazole (3-AT) was used to reduce the nonspecific yeast growth not based on protein-protein 

interactions.  

3.6 Phenotypical studies of double mutant lack NRT1.5 

and its interacting partner 

3.6.1 Identification of slah3, nrt1.8 and aha2 knockout mutants 

In order to investigate the physiological meaning of the interaction between NRT1.5 

and its interacting partners, single T-DNA insertion mutants slah1 (SALK_039811), 

slah3 (GK-317G03) and aha2 (Gabi-219D04) were ordered from the Arabidopsis 

Biological Resource Center (ABRC). The nrt1.8 (GK-756D01) mutant was also 
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included in this study because of its close functional correlation with NRT1.5. Genomic 

genotyping PCR was done to identify homozygotes of each single mutant (Figure 32). 

Semi-quantitative RT-PCR was carried out to verify the absence of full-length gene 

transcripts in homozygous mutants. slah3 and nrt1.8 are knockout mutants since no 

intact gene transcripts were detectable in single mutants (Figure 32). The aha2 mutant 

is also a knockout mutant (RT-PCR for detecting AHA2 in aha2 was done by my 

colleague Florencia Sena). However, the transcript of SLHA1 was still detectable in 

slah1 mutant, which suggest that it was only the knockdown mutant and therefore it 

was not included in following experiments. The same RT-PCR result with slah1 was 

also showed in a recent study of Zheng et al. (2015). Subsequently, homozygous 

single knockout mutants slah3, nrt1.8 and aha2 were crossed with nrt1.5-5 to generate 

double mutants.  

 

Figure 32. Scheme of T-DNA insertion lines and identification of homozygous knockout mutants.  

Left panels: map of the T-DNA insertion site in (A) SLAH3, (B) NRT1.8, (C) AHA2. Middle 

panels: genotyping PCR to identify homozygous single mutant (A) slah3, (B) nrt1.8, (C) aha2. 

Right panels: RT-PCR analysis to detect gene transcripts in single mutant (A) slah3, (B) nrt1.8, 

(C) aha2. Primers used for genomic PCR and RT-PCR are listed in Table 4. 
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3.6.2 Phenotypical analysis of the nrt1.5-5/nrt1.8 double mutant 

NRT1.5 and NRT1.8 share the highest sequence similarity among all NRT1 members, 

but their function was opposite in NO3
- long-distance transport towards shoot, loading 

and unloading NO3
- into xylem, respectively (Lin et al. 2008; Li et al. 2010). 

Consequently, it has been shown that NO3
- concentration was decreased in nrt1.5 

mutant but increased in nrt1.8 mutant (Li et al. 2010). In addition, NRT1.8 expression 

was strongly upregulated in roots of nrt1.5 mutant (Drechsler et al. 2015). It was thus 

interesting to test whether the reduced K+ transport in nrt1.5 shoots is due to the altered 

NO3
- xylem loading, or whether the strong upregulation of NRT1.8 in nrt1.5 roots is 

necessary for the phenotype development in nrt1.5 mutants. Single mutant nrt1.5-5 

and nrt1.8, wild type Col-0 and the nrt1.5-5/nrt1.8 double mutant plants were grown on 

non-fertilized soil supplied with modified 1/2 MS solution with various N/K 

concentrations. Compared to Col-0, nrt1.8 did not demonstrate any visible 

morphological changes under all tested fertilization regimes (Figure 33). This indicates 

that the increased NO3
- concentration in xylem leads to no visible phenotypical 

changes. The double mutant nrt1.5-5/nrt1.8 just showed the leaf chlorosis phenotype 

of nrt1.5-5 under low NO3
- supply, and no more distinction between the double mutant 

and nrt1.5-5 could be observed (Figure 33). This observation indicates that the altered 

shoot K+ homeostasis in nrt1.5 might not be caused by the reduction in NO3
- 

concentration in xylem, and the upregulation of NRT1.8 in nrt1.5-5 does not contribute 

to the phenotype development of nrt1.5-5.  
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Figure 33. Rosette morphology of Col-0, nrt1.5-5, nrt1.8 and nrt1.5-5/nrt1.8 plants in response 

to varying N/K/P supply.  

Plants were cultivated on unfertilized soil and were supplied with modified 1/2 MS nutrient 

solutions which contained indicated concentrations [mM] of the macronutrients N (NO3-), K and 

P (Pi). Each column shows on top the genotype and on left the applied fertilization regime 

(N/K/P [mM]). 
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3.6.3 Phenotypical analysis of the nrt1.5-5/slah3 double mutant 

To investigate the physiological meaning of the interaction between NRT1.5 and 

SLAH3, the phenotypical analysis of slah3 single mutant and the nrt1.5-5/slah3 double 

mutant was conducted under various nutrient concentrations on soil. Under all tested 

fertilization conditions, slah3 single mutants showed comparable growth like Col-0 

(Figure 34A). The nrt1.5-5/slah3 double mutant developed a leaf chlorosis phenotype 

like nrt1.5-5 at low NO3
- supply. Interestingly, at low NO3

- and high K+ condition (1/10/1 

N/K/P [mM]), the nrt1.5-5/slah3 double mutant exhibited the stronger leaf chlorosis 

compared to nrt1.5-5 (Figure 34A), indicating that the K concentration in the double 

mutant is lower than in nrt1.5-5. Since SLAH3 has been characterized to be strongly 

permeable to NO3
-, the total N concentration in rosette leaves was measured to 

evaluate whether the interaction between NRT1.5 and SLAH3 affects N accumulation. 

At low NO3
- supply (1/1/1, 1/10/1 N/K/P [mM]), the N concentration in shoots of slah3 

was higher than in Col-0, and the total N in the double mutant nrt1.5-5/slah3 was higher 

than that of other three plant lines (Figure 34B). This high accumulation of N in the 

double mutant might be caused by the compensation of other proteins involved in NO3
- 

root-to-shoot translocation. The similar N accumulation pattern has also been 

observed for the nrt1.5-5/skor-2 double mutant (Figure 22), suggesting that the higher 

total N in double mutants might be an indirect and unspecific effect of the simultaneous 

mutation of two nitrate or potassium transporters located at root vascular.  



Results 

98 

Figure 34. Rosette morphology and the total N concentration in Col-0, nrt1.5-5, slah3 and 

nrt1.5-5/slah3 plants in response to varying N/K/P supply.  

(A) Rosette morphology of Col-0, nrt1.5-5, slah3 and nrt1.5-5/slah3 plants under varying N/K/P 

supply. Each column shows on top the genotype and on left the applied fertilization regime 

(N/K/P [mM]). Plants cultivated on unfertilized soil were fertilized with modified 1/2 MS nutrient 

solutions which contained indicated concentrations of N (NO3-), K and P (Pi). (B) Total N 

concentration in Col-0, nrt1.5-5, slah3 and nrt1.5-5/slah3 rosette leaves grown with indicated 

N/K/P supply. Results shown are the means ± SD (n=6).  
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To examine the concentration of macroelements, ICP-OES analysis was conducted 

with rosette leaves grown under four different N/K/P regimes (1/1/1, 1/10/1, 10/1/1 and 

10/10/10 N/K/P [mM]). The K concentration in nrt1.5 mutants was significantly lower 

than that of Col-0 under low NO3
- (1 mM) condition, which was consistent with our 

previous findings (Figure 22). Concentrations of macroelements including K, Ca, Mg, 

S and P in slah3 mutant were not significantly changed compared to Col-0 at all N/K/P 

regimes (Figure 35). At 1 mM NO3
- and K+ supply (1/1/1 N/K/P [mM]), the K 

concentration in the nrt1.5/slah3 double mutant resembled that of nrt1.5-5 mutant. 

However, it is noteworthy that unlike the other three fertilization conditions, at low NO3
- 

and high K+ supply (1/10/1 N/K/P [mM]), slah3 mutant plants showed the slightly 

reduced K concentration compared to that of Col-0 (Figure 35), implying that SLAH3 

might affect the K+ transport at this condition. The K concentration in the double mutant 

nrt1.5-5/slah3 plants was lower than that of nrt1.5-5 plants, even though the difference 

was not statistically significant. The double mutant also accumulated significantly 

higher concentrations of Ca, Mg, S and P than all other lines at this condition (1/10/1 

N/K/P [mM]), perhaps caused by the compensation effect of the reduced K content. 

The reduced K concentration in the double mutant was consistent with the observation 

that the double mutant showed a stronger leaf chlorosis phenotype compared with 

nrt1.5-5 mutant (Figure 34A). These results suggest that at certain fertilization 

condition (low NO3
- and high K+), NRT1.5 and SLAH3 might work synergistically to 

maintain the homeostasis of K and a wide variety of other marcoelements in shoots.  



Results 

100 

 

Figure 35. Elemental concentrations in the rosettes of Col-0, nrt1.5-5, slah3 and nrt1.5-5/slah3 

plants.  
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Concentrations [mg/g DW] of the macroelements potassium, calcium, magnesium, sulphur and 

phosphorus in the rosettes of the Col-0, nrt1.5-5, slah3 and nrt1.5-5/slah3 plants. The applied 

fertilization regimes (N/K/P [mM]) were shown on top of the figure. Results shown are the 

means ± SD (n = 6). The data were statistically analysed by one-way ANOVA and subsequent 

multiple comparisons (Tukey’s HSD test). Different letters represent significant differences at P 

< 0.05. 

3.6.4 Phenotypical analysis of the nrt1.5-5/aha2 double mutant 

Among eleven Arabidopsis plasma membrane (PM) H+-ATPases which have specific 

expression patterns, AHA2 is the predominant root-expressed proton pump. 

AHA2::GUS construct revealed a strong signal in different cell layers including 

epidermis, cortex cells, phloem, xylem as well as root hairs (Fuglsang et al. 2007). The 

physical interaction between NRT1.5 and AHA2 has been demonstrated in 

heterologous yeast system (Drechsler, Dissertation 2016) and in planta in this study 

(Figure 29).  

The nrt1.5 mutants phenocopy aha2 mutant in response to HygB treatment and the 

supply with high concentration K+ (Figure 18). Based on these observations, it is 

tempting to speculate that the interaction between NRT1.5 and AHA2 is important for 

maintaining plasma membrane potential of root cells. The root-to-shoot transfer of K+ 

might be subsequently influenced by the change in plasma membrane potential. 

Therefore, the HygB sensitivity test was carried out to examine the membrane potential 

of the nrt1.5-5/aha2 double mutant plants. Consistent with the previous observation for 

nrt1.5 mutants in this study (Figure 18) and what has been published for the aha2 

mutant (Haruta et al. 2010), nrt1.5-5 and aha2 were more tolerant to HygB treatment 

compared to wild-type plants (Figure 36), indicating the depolarization of the 

membrane potential in both mutants. Interestingly, compared to aha2, nrt1.5-5 

seedlings showed the stronger resistance to HygB. The nrt1.5-5/aha2 double mutant 

showed the comparable root growth like nrt1.5-5, and no visible additive effect could 

be observed in the double mutant. These results indicate that NRT1.5 and AHA2 might 

share the same mechanism in influencing the plasma membrane potential.  
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Figure 36. Root morphology of Col-0, nrt1.5-5, aha2 and the nrt1.5/aha2 double mutant in 

response to hygromycin B treatment.  

4 DAG seedlings germinated on 1/2 MS medium were transferred on 1/2 MS medium 

supplemented with 5 mg/l or 10 mg/l HygB and continued to grow vertically for 6-7 more days. 

To investigate whether the aha2 single mutant and the nrt1.5-5/aha2 double mutant 

develop any phenotype at certain nutrient conditions, seedlings of Col-0, nrt1.5-5, aha2 

and nrt1.5-5/aha2 were grown on unfertilized soil supplied with four different N/K 

regimes. Under low NO3
- supply (1/1/1 N/K/P [mM]), in comparison with Col-0 plants, 

nrt1.5-5 and the nrt1.5-5/aha2 plants showed the leaf chlorosis phenotype and 

reduced anthocyanin accumulation, indicating the K reduction in shoots. However, 

aha2 mutant plants showed the similar morphology as Col-0 plants under all tested 

N/K regimes, and no visible differences of aha2 plants were observed (Figure 37). 

Although showing no phenotype, aha2 mutant plants yet gained significantly less fresh 

weight compared to Col-0 plants under 10/10/1 (N/K/P [mM]) supply. Similar trend was 

also observed at the other three N/K/P regimes except 1/1/1 (N/K/P [mM]) (Figure 38B). 

This result indicates the growth of aha2 plants was inhibited at these conditions. 
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Figure 37. Rosette morphology of Col-0, nrt1.5-5, aha2 and nrt1.5-5/aha2 plants in response 

to varying N/K/P supply.  

Each column shows on top the genotype and on left the applied fertilization regime (N/K/P 

[mM]). Plants cultivated on unfertilized soil were fertilized with modified 1/2 MS solutions which 

contained different concentrations [mM] of the macronutrients N (NO3-), K and P. 

ICP-OES analysis was conducted to examine the K composition in rosettes of each 

line. Under low NO3
- supply (1/1/1 N/K/P [mM]), aha2 mutant plants accumulated the 

comparable K concentration as that of Col-0, whereas the K concentration in nrt1.5-5 

was significantly decreased (Figure 38A). The K concentration in the nrt1.5-5/aha2 

was slightly, but still significantly higher than that in nrt1.5-5 at this condition. 

Interestingly, at high NO3
- supply (10/1/1, 10/10/1 N/K/P [mM]), the aha2 mutant 

showed the reduced K concentration compared with Col-0. This K reduction in aha2 

mutant was only statistically significant at high NO3
- and low K+ (10/1/1 N/K/P [mM]) 
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supply (Figure 38A). However, the K concentration in aha2 plants still approximately 

reached 1% DW at this condition, therefore, no visible leaf chlorosis phenotype in aha2 

was observed. The nrt1.5-5/aha2 lines just demonstrated the leaf chlorosis phenotype 

and similar shoot K accumulation like nrt1.5-5 at most circumstances. These results 

suggest that the mutation of AHA2 did not greatly affect the K+ root-to-shoot 

translocation. Haruta et al. (2010) also noticed that the impairment in AHA2 had little 

consequence on Arabidopsis seedlings growing under ideal conditions, maybe due to 

the highly redundant function of AHAs.  

 

Figure 38. Potassium concentration and fresh weight of the rosettes of Col-0, nrt1.5-5, aha2 

and nrt1.5-5/aha2 plants under various N/K regimes.  
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(A) K concentrations [mg/g DW] in the rosettes of the Col-0, nrt1.5-5, aha2 and nrt1.5-5/aha2 

plants under various fertilization conditions as indicated on top of the columns. Data shown are 

means ± SD (n ≥ 7). (B) The fresh weight gain of rosettes of Col-0, nrt1.5-5, aha2 and the 

double mutant nrt1.5-5/aha2 under various fertilization regimes as indicated on top (means ± 

SD, n = 24). When all plant lines start flowering, florescence meristems were removed, then 

the fresh weight of each rosette was measured and followed by ICP-OES analysis. The data 

were statistically analyzed by one-way ANOVA and subsequent multiple comparisons (Tukey’s 

HSD test) for each fertilization treatment. Different letters the indicate significant difference at 

P < 0.05. 

To investigate whether AHA2 transcript is regulated by NRT1.5 level or by different N/K 

availabilities, qRT-PCR was applied to examine the expression of AHA2 in roots of 

Col-0 and nrt1.5-5 under four N/K regimes (Figure 39). Under all regimes, AHA2 was 

nearly similarly expressed in Col-0 and in nrt1.5-5, indicating its expression was not 

affected by the NRT1.5 level. Compared to 1/1/1 (N/K/P [mM]), elevated NO3
- supply 

to 10 mM (10/1/1, N/K/P [mM]) did not change the expression of AHA2 in Col-0, 

suggesting that external NO3
- amount had no influence on AHA2 transcript. However, 

an increment of K+ concentration to 10 mM (1/10/1 and 10/10/1, N/K/P [mM]) enhanced 

AHA2 level to 2-fold and 3.5-fold in Col-0, respectively. These results demonstrated 

that AHA2 is stimulated by high K+ supply at the transcriptional level.   

 

Figure 39. Expression of AHA2 in roots of Col-0 and nrt1.5-5 under various N/K regimes. 

Relative transcriptional level (2-ΔΔCт) of AHA2 was measured by qRT-PCR and normalized to 

UBQ10 in roots of Col-0 and nrt1.5-5 plants grown on non-fertilized soil supplemented with 

various N/K regimes (means ± SD; n ≥ 4). Relative transcript level of AHA2 in roots of Col-0 

grown on unfertilized soil supplemented with 1/1/1 N/K/P [mM] was set to 1.0.  
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3.7 Potassium reduction in shoots of 35Sp::NRT1.5 at 

low nitrate supply 

It has been shown that NRT1.5 function in roots rather than in shoots is responsible 

for the root-to-shoot K+ transfer (Drechsler et al. 2015). Our group has successfully 

generated shoot specific NRT1.5-overexpression lines under the control of CAB2 

promoter (Drechsler, Dissertation 2016), however, the attempt to overexpress NRT1.5 

in roots under the control of its native promoter and the root specific Pyk10 promoter 

failed (Drechsler et al. 2015 and unpublished data).  

In this study, NRT1.5 was overexpressed in Arabidopsis Col-0 plants under the control 

of the CaMV 35S promoter. Enhanced expression of NRT1.5 in transgenic lines was 

confirmed by qRT-PCR at the transcriptional level (Figure 11). To study the effect of 

overexpression of NRT1.5 on K+ transport, two independent homozygous 

35Sp::NRT1.5 T3 lines, nrt1.5-5 and Col-0 were grown on non-fertilized soil and 

supplied with modified 1/2 MS solution with various amounts of NO3
- and K+. As shown 

before, nrt1.5-5 plants exhibited the early leaf chlorosis phenotype at low NO3
- supply, 

which was an indication of the low K concentration in rosette leaves (Figure 40). 

However, two independent overexpression lines 35Sp::NRT1.5 #8-2 and #18-3 also 

developed the similar phenotype like nrt1.5-5 mutant at the low NO3
- conditions (1/1, 

1/10 N/K [mM]) (Figure 40).  
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Figure 40. Rosette phenotype of Col-0, nrt1.5-5 and 35Sp::NRT1.5 plants under varying N/K 

supply.  

Each column shows on top the genotype and on left the applied fertilization regime (N/K [mM]). 

Phosphorus was always supplied as 1 mM at all conditions. Plants cultivated on unfertilized soil 

were additionally fertilized weekly with modified 1/2 MS nutrient solutions which contained 

different concentrations [mM] of the macronutrients N (NO3-) and K+.  

To figure out whether the leaf chlorosis phenotype of 35Sp::NRT1.5 lines was also 

attributed to the low shoot K concentration, the whole rosettes of all lines were 

harvested for elemental analysis by ICP-OES. Indeed, consistent with the phenotype, 

both 35Sp::NRT1.5 lines accumulated significantly reduced K concentration compared 

with Col-0 in rosettes (Figure 41). Accordingly, concentrations of Ca, Mg and Na were 

increased in rosettes of 35Sp::NRT1.5 possibly to compensate the charge balance 
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(Figure 41). This result confirmed that the leaf chlorosis phenotype of 35Sp::NRT1.5 

lines was due to the K deficiency in shoots, like in nrt1.5-5 plants.  

 

Figure 41. Potassium, calcium, magnesium and sodium concentration in the rosettes of Col-0, 

nrt1.5-5 and 35Sp::NRT1.5 plants.  

Concentrations [mg/g DW] of elements were examined by ICP-OES analysis with the rosettes 

of the Col-0, nrt1.5-5 and two 35Sp::NRT1.5 overexpression lines #8-2 and #18-3 (means ± 

SD, n = 6). Various fertilization conditions were applied as indicated on top of the columns. The 

data were statistically analyzed by one-way ANOVA and subsequent multiple comparisons 

(Tukey’s HSD test) for each fertilization treatment. Different letters the indicate significant 

difference at P < 0.05. 
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3.8 Expression profiles of nitrate- and potassium- 

transporters upon hormone treatment 

Several studies have revealed the crosstalk between plant hormones and nutrients. 

For example, plant hormones including abscisic acid (ABA), auxin and cytokinins (CK) 

have been proposed to be involved in coordinating N acquisition and assimilation 

(Signora et al. 2001; Wilkinson and Davies 2002; Argueso et al. 2009). Besides N, the 

crosstalk between K+ and hormones auxin and JA was also documented (Armengaud 

et al. 2004; Vicente-Agullo et al. 2004). To investigate how nitrate transporters and 

potassium transporters are regulated by phytohormones at the transcriptional level, 

various phytohormones were used to treat Arabidopsis seedlings for 24 h followed by 

qRT-PCR analysis with root materials. Eight transporters proposed to be involved in 

uptake and root-to-shoot transfer of NO3
- and K+ were investigated.  

3.8.1 Genes involved in the uptake of nitrate and potassium  

NRT1.1, responsible for nitrate uptake at both high and low affinities, and two 

potassium inward transporters HAK5 and AKT1 which work as high and low affinity 

transporters, respectively, were investigated in this study. The expression of AKT1 is 

relatively stable by most of hormone treatments except JA and Methyl jasmonate 

(MeJA) which caused its dramatic downregulation (Figure 42). Unlike AKT1, HAK5 

expression is upregulated by a variety of hormones including ABA, salicylic acid (SA), 

indole-3-acetic acid (IAA), 6-Benzylaminopurine (BAP) and gibberellic acid (GA3). 

Nitrate transporter NRT1.1 was inhibited by most of hormones including JA, MeJA, SA, 

IAA, especially by BAP, whereas it was strongly induced by ABA and marginally 

enhanced by GA3 and 24-epibrassinolide (EBR) (Figure 42). These results suggest 

ABA is in favour of the uptake of NO3
- and K+, while JA and MeJA inhibit this process.  
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3.8.2 Genes involved in root-to-shoot transfer of nitrate and 

potassium 

Expression of SKOR and NRT1.5 which are key proteins responsible for xylem loading 

of K+ and NO3
-, respectively, were investigated in this study. In addition, NRT1.8 which 

is responsible for NO3
- unloading from xylem, SLAH1 and its analogue SLAH3 which 

is highly permeable to NO3
- and might contribute to root-to-shoot transfer of NO3

- were 

also included in this study. SKOR was markedly inhibited by a variety of hormones 

including ABA, JA, MeJA, IAA and BAP, whereas it was slightly induced by GA3, SA 

and EBR (Figure 42). NRT1.5 was downregulated by nearly all the hormone treatments, 

except IAA and ABA which only marginally induced its expression. It is known that the 

expression of NRT1.5 and NRT1.8 was oppositely regulated by stress conditions (Li 

et al. 2010). This pattern was consistent with the observation that JA, MeJA and SA 

treatment upregulated NRT1.8 while downregulated NRT1.5 (Figure 42). Moreover, 

the NRT1.8 expression was enhanced by ABA and IAA but reduced by BAP and GA3.  

SLAH1 was significantly upregulated by ABA, JA, MeJA, IAA and GA3, however, SA 

and BAP had a strong inhibition effect on its expression. SLAH3 showed the similar 

expression pattern like SLAH1 by ABA, SA, BAP treatment but with much attenuation. 

However, by JA, MeJA, IAA and GA3 treatment, SLAH3 showed the opposite regulation 

pattern compared to SLAH1 (Figure 42), indicating different functions of these two 

proteins.   

In conclusion, this study showed that the expression of nitrate and potassium 

transporters responsible for NO3
- and K+ uptake or xylem loading was influenced by 

most of the tested phytohormone treatments in roots, but in different patterns. 

Compared with ABA, JA, MeJA, SA and BAP treatment, IAA, EBR and GA3 treatment 

had less impact on expression of these transporters. ABA treatment is probably in favor 

of the retention of nutrients in roots, since it upregulates transcripts of nitrate and 

potassium importers (NRT1.1, HAK5) while inhibited the expression of transporters for 

xylem loading (SKOR, NRT1.5). BAP inhibited all tested nitrate transporters, and it 
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might also support the retention of K+ in roots through stimulating HAK5 and inhibiting 

SKOR. The strong inhibition of SLAH1 by SA might indicate its role in dealing with 

biotic or abiotic stress. This study will be helpful to understand more detail about the 

nutrient transport process controlled by phytohormone signals.  

 

Figure 42. Expression profiles of nitrate and potassium transporters in roots by phytohormone 

treatment.  
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Relative expression level of eight nitrate and potassium transporter genes in phytomorne 

treated Col-0 roots were measured by qRT-PCR and normalized to UBQ10 (means ± SD, n ≥ 

3). Col-0 seedlings were grown in liquid 1/2 MS medium and were treated with phytomornes 

for 24 h. Root material from ten seedlings were pooled as one biological replicate. Plotted are 

log2 fold expression changes (FCs) in hormone treated roots compared with untreated roots.  
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4 Discussion 

4.1 Expression of NRT1.5 in roots influences the lateral 

root growth at potassium deprivation 

The Arabidopsis lateral root originates from pericycle founder cells adjacent to the two 

xylem poles (Dubrovsky et al. 2001). These cells undergo cell divisions and expansion 

to form a lateral root primordium. LR development can be divided into eight 

morphological events (Malamy and Benfey 1997). The importance of auxin and its 

transport in LR development has been well studied (Casimiro et al. 2001; Swarup et 

al. 2001; Marchant et al. 2002). For instance, auxin is required at several specific 

developmental stages to facilitate the LR formation (Dubrovsky et al. 2001; Stals and 

Inze 2001). Exogenous application of IAA stimulates LR development and elongation 

(Blakely et al. 1982; Muday and Haworth 1994). Contrary to the stimulation effect of 

auxin, many studies have reported the inhibitory effect of cytokinin on LR development 

(Torrey 1962; Bottger 1974; Li et al. 2006; Chang et al. 2013). Recently, it has been 

shown that nitrate transporter NRT1.1 is capable of exporting auxin out of LR primordia 

at low NO3
- supply, consequently, nrt1.1 mutant plants have more LRs compared to 

wild type plants (Krouk et al. 2010). MYB77, a R2R3-type MYB transcription factor, 

was downregulated by K+ deprivation. MYB77 enhances auxin signal transduction 

through interacting with ARFs (Shin et al. 2007). Interestingly, nrt1.5 mutants 

phenocopy the myb77 mutant. Both mutants demonstrated the reduced LR density at 

K+ deprivation, whereas no root phenotype was observed under nutrient sufficient 

conditions or under the N deprivation. This study shows that neither NRT1.1 nor 

MYB77 was transcriptionally significantly altered in roots of nrt1.5-5 (Figure 9), 

indicating those two genes are not responsible for the root phenotype of nrt1.5 mutants. 

Moreover, expression of several auxin or cytokinin related genes were also not 

deregulated in roots of nrt1.5-5 compared to wild type (Figure 10), suggesting auxin 

and cytokinin status are not altered in nrt1.5-5. It is possible that those tested hormone 
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related genes are only expressed at specific root cells. For example, Genevestigator 

data showed that MYB77 was mainly expressed in primary root and lateral root tips 

(Shin et al. 2007). Therefore, the expression changes of those genes might not be 

detected by using the whole root material in this study. Moreover, the low K+-dependent 

LR phenotype of nrt1.5 mutants makes it conceivable to speculate that NRT1.5 might 

be involved in K+-dependent hormone homeostasis. Similar to the dual transport roles 

of NRT1.1 (NO3
- and auxin), the KT/KUP/HAK family protein TRH1 (TINY ROOT HAIR 

1) has been proposed to play a role in transport of both K+ and auxin (Vicente-Agullo 

et al. 2004). TRH1 regulates auxin transport by influencing the localization of the auxin 

efflux protein PIN1 (Rigas et al. 2013). To answer the question whether NRT1.5 is 

directly or indirectly involved in the auxin transport process, experiments such as auxin 

immunolocalization or auxin transport assay in the heterologous systems are required 

to be included in following studies.  

In addition to hormones, root growth can be determined by the availability of nutrients 

such as nitrogen (N), phosphorus (P), potassium (K), iron (Fe) and sulfur (S) (Gruber 

et al. 2013). Several studies have observed that K+ availability influences the lateral 

root growth (Drew 1975; Armengaud et al. 2004; Shin and Schachtman 2004; Gruber 

et al. 2013). At very low external K+ concentrations (<10 µM), the high-affinity K+ 

transporter HAK5 is the only protein capable of taking up K+ in Arabidopsis (Rubio et 

al. 2010). HAK5 is transcriptionally upregulated in roots under K+ deprivation (Gierth 

et al. 2005). The previous study in our group found that HAK5 is approximately 3-fold 

downregulated in roots of nrt1.5-5 compared to Col-0 (Drechsler et al. 2015). It is 

therefore conceivable that at limited external K+ supply, the reduced expression of 

HAK5 leads to K+ shortage, which could consequently result in the reduced LR density 

in nrt1.5-5. However, when growing on plates with only 10 µM K+, root K+ concentration 

in nrt1.5-5 was dramatically increased rather than reduced, compared to that in Col-0 

(Table 13). This observation is corroborated by a very recent study of Li et al. (2017) 

in which they also observed a significant increase of K content in the mutant of LKS2 

which turn out to encode NRT1.5. However, the former study of our group with 
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hydroponic growing plants (Drechsler et al. 2015), as well as the study by Meng et al. 

(2016) did not observe the significantly higher accumulation of K+ in roots of nrt1.5-5. 

Notably, both two studies used hydroponic system and the K+ supply was not limited 

in hydroponic solutions. The different cultivating systems and medium composition 

might be the reason for this discrepancy in K accumulation pattern in nrt1.5-5 roots. 

SKOR is the main potassium channel protein responsible for K+ transport from root to 

shoot through xylem loading (Gaymard et al. 1998), and it was 2-fold upregulated in 

nrt1.5-5 roots (Drechsler et al. 2015). This study showed that skor-2 mutant plants did 

not exhibit morphological root growth differences compared to wild type under K+ 

deprivation conditions (Figure 27), whereas the nrt1.5-5/skor-2 double mutant plants 

just showed the nrt1.5-5 root phenotype (Figure 28). The growth pattern of skor-2 

mutant observed here is consistent with the findings by Li et al. (2017). They 

investigated another T-DNA insertion knockout mutant of SKOR (SALK_132944) and 

did not observe the leaf chlorosis of skor mutant plants under K+ deprivation (Li et al. 

2017). These results suggest that the less LR phenotype of nrt1.5 mutants is neither 

attributed to the reduced root K+ concentration, nor dependent on the changed K+ 

xylem loading activity of SKOR in nrt1.5 mutants. However, it is noteworthy that 1 mM 

NO3
- was supplied in the root assay of this work. At this amount of NO3

- supply, NRT1.5 

rather than SKOR is the main player for K+ root-to-shoot translocation (see section 3.4). 

Therefore, the normal root growth of skor-2 mutant does not exclude the possibility 

that the reduced LR growth of nrt1.5 mutant may be caused by the disruption of 

rectifying K+ out of pericycle cells. The higher accumulation of K+ in pericycle cells 

where lateral roots originate may affect the turgor pressure or change the plasma 

membrane potential of pericycle cells, which in turn affect the LR development.  

In addition to K, it is known that the deficiencies of P, Ca, Mn and B evoked an increase 

in the first-order (1°) LR density, whereas the limited supply of Mg and Fe led to 

decreased 1° LR density (Gruber et al. 2013). Besides K, the roots of nrt1.5-5 

accumulated more macroelements including P, S and Mg than in Col-0 roots (Table 

13). Many studies have reported the relationship between nutrient deficiency and root 
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system architecture (RSA) (Armengaud et al. 2004; Gruber et al. 2013), however, little 

is known how do increased intrinsic marcoelement or microelement levels influence 

the RSA. It is tempting to speculated that the decreased LR density in nrt1.5 mutants 

might be caused by the higher K, P, S and Mg concentrations at K+ limitation condition.  

4.2 NRT1.5 showed no potassium transport activity in 

yeast 

There have been many successful examples of functional characterization of plant 

potassium channels in yeast mutant trk1Δ trk2Δ cells (Anderson et al. 1992; Sentenac 

et al. 1992; Obata et al. 2007). In this study, nrt1.5-5 seedlings growing at low K+ 

availability (10 µM) accumulated significantly higher amount of K in roots, whereas K 

in shoots was dramatically decreased compared to wild type (Table 13), implying again 

that K+ xylem loading was defective in nrt1.5-5. The most plausible explanation would 

be that NRT1.5 directly transports K+. However, this study detected no K+ uptake 

activity of NRT1.5 in yeast experiments (Figure 14). There are some unsuccessful 

examples of functional expression of the plant transporter in heterologous expression 

systems (Dreyer et al. 1999). It might be because of the incompatibility of the 

heterologous expression system, for example, the functional expression of AKT1 was 

failed in Xenopus oocytes but was successful in baculovirus/insect cell system 

(Gaymard et al. 1996). Alternatively, it might be due to the lack of a regulatory network 

involving protein-protein interactions and posttranslational modifications as described 

for potassium channel AKT1 and potassium transporter HAK5 (Honsbein et al. 2009; 

Ragel et al. 2015). The lack of such modifying activities or appropriate regulators in 

yeast might account for the negative K+ uptake activity of NRT1.5. 

However, more likely than K+ uptake, a K+ export function in roots would explain the 

nrt1.5 leaf chlorosis phenotype which can be attributed to the block in exporting K+ out 

of pericycle into xylem. This study demonstrated the K+ export activity of SKOR in yeast 

system for the first time, however, it was failed to detect K+ export activity of NRT1.5 in 

the same experiment (Figure 16). In this study, NRT1.5 was not fused to a tag, which 
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makes it difficult to directly detect the NRT1.5 protein level in yeast. Therefore, it is 

possible that the negative transport activity might be caused by misexpression or 

incorrect folding of the NRT1.5 protein in yeast cells. Moreover, it is worth noting that 

the NO3
- efflux activity of NRT1.5 is regulated by external pH, as the NO3

- export activity 

increases with an increase in pH (Lin et al. 2008). Therefore, it is conceivable that the 

lack of K+ export activity in this study is resulted from an inappropriate pH value (pH 

6.0) of the YNB medium. Very recently, Li et al. (2017) reported the K+ export function 

of NRT1.5. In addition to using electrophysiological assay to show K+ export activity of 

NRT1.5 in Xenopus oocyte cells, the K+ export function of NRT1.5 was also 

demonstrated in yeast cells. Different from our approach to score the growth of yeast 

cells on agar plates, they cultured yeast cells in K+-free buffer and measured the K 

accumulation in buffer after several hours. By this means, a higher accumulation of K 

in buffer for growing NRT1.5-transformed yeast cells was observed, which supports 

the K+ export function of NRT1.5. Moreover, Li et al. (2017) also showed that the K+ 

release function of NRT1.5 relied on the external acidic pH value. With the increase in 

pH from 5.5 to 7.4, the K+ export activity of NRT1.5 was greatly reduced. This 

observation supports the argument that the failure to detect K+ export activity of 

NRT1.5 in the present study might be caused by the inappropriate pH value of medium.  

4.3 Expression of NRT1.5 increases the plasma 

membrane polarization  

Membrane potential is the difference in electrical potential between intracellular and 

extracellular fluids of a living cell. The interior of the cell is electrically negative to the 

exterior, which results a transmembrane voltage usually ranging from -10 mV to -100 

mV (Gutknecht 1970). The more negative cell membrane potential is called 

hyperpolarization, whereas the less negative charge inside the cell is defined as 

depolarization. It is known that the activity of ion channels can be influenced by 

membrane polarization. In Arabidopsis, six and two members of the Shaker K+ channel 

family can be activated by hyperpolarization and depolarization, respectively (Lebaudy 
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et al. 2007). Therefore, it is tempting to hypothesize that other than transporting K+ 

itself, NRT1.5 might be capable of modulating the activity of potassium transporters or 

channel proteins through regulating plasma membrane potential. The aminoglycoside 

antibiotic hygromycin B (HygB) has been used as an indicator for the membrane 

potential, because of its penetration into yeast cells and thus its toxic effect is 

dependent on the membrane potential (Barreto et al. 2011). In this study, yeast BYT12 

cells were more sensitive to increased concentrations of HygB (Figure 16), indicating 

the hyperpolarized plasma membrane of BYT12 caused by the defective K+ uptake 

function. This observation is consistent with what has been demonstrated in a previous 

study (Navarrete et al. 2010). In addition to HygB, TMA and TEA have been also used 

to indicate yeast cell membrane potential (Barreto et al. 2011). Compared to BYT12 

with empty vector, BYT12 cells with NRT1.5 expression were more sensitive to high 

concentrations of HygB, TMA and TEA, suggesting the expression of NRT1.5 

additionally resulted in the increased membrane hyperpolarization (Figure 16A). Li et 

al. (2017) has reported the amino acid residue Gly209 of NRT1.5 is indispensable for 

its K+ export function. The mutation of Gly209 to Glu209 abolished the K+ transport 

activity of NRT1.5. In following studies, it would be interesting to investigate whether 

the mutated NRT1.5 (G209E) can change the membrane potential of yeast cells or not. 

It will be helpful to answer the question whether the change of membrane potential 

observed in this study relies on the K+ export function of NRT1.5 or not.  

Consistent with the observation in yeast system, compared to Col-0 plants, 

Arabidopsis NRT1.5 overexpression plants 35Sp::NRT1.5 showed more susceptibility,  

whereas nrt1.5 mutant plants showed the enhanced tolerance to high concentrations 

of HygB (Figure 18). Moreover, it is reported that the binding of BRs (brassinosteroids) 

to the BR receptor BRI1 (brassinosteroid insensitive 1) induces membrane 

hyperpolarization (Caesar et al. 2011). It is conceivable to expect that the application 

of BR inhibitor brassinazole to plants could decrease the membrane potential. 

Consistent with this notion, in this study, nrt1.5 mutant plants were more sensitive to 

brassinazole treatment compared to wild-type plants (Figure 12). In addition, the 
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inhibition of plasma membrane H+-ATPase induces plasma membrane depolarization 

(Sze et al. 1999) and the decrease in plasma membrane potential renders plants the 

resistance to draught stress. For instance, transgenic plants overexpressing VAMP711, 

the negative regulator of AHA1 (Arabidopsis plasma membrane H+-ATPase 1), were 

resistance to drought stress (Xu et al., 2018). Plants with the mutated hyperactive 

AHA1 were hypersensitive to drought stress (Merlot et al. 2007). Intriguingly, Chen et 

al. (2010) have also reported that nrt1.5 mutants had enhanced tolerance to drought 

stress. These observations are further support the notion that the plasma membrane 

of nrt1.5 plants is depolarized.  

This study suggests that the NRT1.5 expression level in roots is critical for regulating 

the plasma membrane potential. Membrane potential can be both the cause and the 

result of ionic transport processes (Gutknecht 1970). Therefore, it is tempting to 

speculate that plasma membrane potential changes in pericycle and xylem 

parenchyma cells may modulate K+ translocation by indirectly regulating the activity of 

voltage-dependent potassium channel proteins, which in turn results in the interruption 

of K+ root to-shoot transport in nrt1.5 plants. Alternatively, Li et al. (2017) has 

demonstrated NRT1.5 works as an H+/K+ antiporter, it is thus also possible that the 

membrane polarization change resulted from the NRT1.5 expression could be the 

outcome of the altered K+ transport activity. However, study of Li et al. (2017) suggests 

that NRT1.5 may mediate electroneutral transport of H+ and K+. This finding does not 

explain the membrane potential changes by NRT1.5 expression observed in the 

present study. It is noteworthy that in addition to the inhibition of proton pump, the 

activation of anion currents also induces the depolarizing processes (Brault et al. 2004). 

As a nitrate transporter, it is conceivable that through nitrate transport activity mediated 

by itself or through its interaction with other anion transporters/channels that 

membrane potential is influence by the expression of NRT1.5.  
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4.4 Job Sharing between NRT1.5 and SKOR in nitrate- 

dependent potassium translocation  

When the present study was carrying on, SKOR was known as the main player for 

root-to-shoot translocation of K+ through xylem loading (Sharma et al. 2013), which 

was based on the observation that its disruption strongly reduced the K content in the 

shoot, whereas the K content in the roots remained unaffected. However, the K+ root-

to-shoot translocation in skor mutant was not completely abolished, suggesting that 

more proteins are involved in this process (Gaymard et al. 1998). The previous study 

in our group found that the nrt1.5-5 mutant growing in hydroponic solutions with limited 

NO3
- supply accumulated less K in shoots, although the expression of SKOR was 

increased in the roots of nrt1.5-5 (Drechsler et al. 2015). Therefore, a NO3
- dependent 

job sharing between SKOR and NRT1.5 in the root-to-shoot translocation of K+ is 

conceivable.  

This study showed that under low NO3
- (1 mM) conditions, skor-2 accumulated 

comparable K content as its wild-type level (Figure 22). This observation with skor-2 

mutant is consistent with the study of Li et al. (2017), as neither leaf chlorosis 

phenotype nor the reduction of K content were observed in skor mutant under K+ 

limitation. However, it has been shown that K content in skor-1 mutant, which is in the 

Wassilewskija background, was dramatically decreased (Gaymard et al. 1998). This 

discrepancy might be attributed to the different growth conditions. Since skor-1 plants 

were grown on substrate with unknown NO3
- to K+ ratio, therefore, no direct 

comparison of phenotypes of skor mutants could be made.  

In contrast with skor-2, the K concentration in nrt1.5-5 mutants was always lower than 

in the wild type, even at a 10-fold excess of K+ over NO3
- (1/10/1, N/K/P [mM], Figure 

22), indicating that, irrespective of the K+ supply, primarily NRT1.5 but not SKOR is 

involved in root-to-shoot translocation of K+ under low NO3
- concentrations. Notably, 

when K+ supply was sufficient (10 mM), although the K concentration in nrt1.5 shoots 

was significantly lowered than in wild type, no leaf chlorosis phenotype of nrt1.5 was 
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shown, which is probably due to the higher than 1% of DW K concentration in shoots 

of nrt1.5 mutant. This could also explain why no leaf chlorosis phenotype of nrt1.5 

mutant was observed by Li et al. (2017) when growing on plates with high K+ 

concentration.  

The reduction of shoot K concentrations in skor-2 occurred at high NO3
-/K+ ratio (10/1 

and 20/1) conditions (Figure 22, 23A). It thus seems that SKOR is most important for 

the root-to-shoot translocation of K+ when the transport of NO3
- toward the xylem is not 

restricted while the supply with the counterion K+ is limited, which suggests that the 

abundance or activity of SKOR might be regulated by availability of NO3
- and K+. By 

contrast, when the NO3
-/K+ ratio is high, NRT1.5 is not mainly involved in root-to-shoot 

transport of K+, because no significant reduction of shoot K was observed in nrt1.5 

mutants (Figure 22, 23). Similar observations were also shown by Li et al. (2017) and 

Meng et al. (2016) that along with the increment in NO3
- supply, K concentration in 

nrt1.5 plants restored to the wild-type level. Interestingly, inconsistent with the 

observations with Arabidopsis plants, Li et al. (2017) showed that the external NO3
- 

concentration did not affect the K+ transport function of NRT1.5 in Xenopus oocyte. 

Therefore, it is tempting to argue that high NO3
- availability may affect the activity of 

NRT1.5 through regulating its interaction with other proteins, alternatively, high NO3
- 

concentration may regulate the activity of other potassium transporters or channels 

such as SKOR, which were missing in the oocyte system. It has been known that 

SKOR activity is influenced by a variety of triggers, including membrane depolarization 

(Gaymard et al. 1998), pH (Lacombe et al. 2000), intracellular and external K+ status 

(Johansson et al. 2006; Liu et al. 2006), as well as reactive oxygen species in the form 

of hydrogen peroxide (Garcia-Mata et al. 2010). This study showed that SKOR was 

strongly induced by high concentration of NO3
- (10 mM), whereas it was not altered by 

K+ availability (Figure 24). The strong upregulation of SKOR by NO3
- is consistent with 

the observation by Xu et al. (2016), moreover, it is also in accordance with the 

observation that K accumulation in skor-2 was significantly lower than that in wild type 

at high NO3
- supply (Figure 22). Unlike SKOR, NRT1.5 transcript was relatively 
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constant under various N/K supply in this study (Figure 24). However, Lin et al. (2008) 

showed that NRT1.5 was downregulated by K+ limitation and was induced by the 

presence of NO3
-. It is noteworthy that in their study, plant age, medium composition 

and growth conditions were different from this study, therefore, their findings do not 

contradict with results presented in this study. It is conceivable that at high NO3
- supply 

(10/1/1, 20/1/1 and 10/10/1, N/K/P [mM]), K reduction in nrt1.5 mutant may be 

compensated by the enhanced SKOR activity, therefore, nrt1.5-5 and Col-0 plants 

accumulated comparable shoot K amount (Figure 22, 23). The study of expression 

pattern of NRT1.5 and SKOR under different N/K supply will be helpful to understand 

how they work synergistically on root-to-shoot translocation of K+ under certain nutrient 

conditions.  

The importance of both proteins for root-to-shoot translocation of K+ is illustrated by 

the observation that, under high equimolar NO3
- and K+ supplies (10/10/10 and 10/10/1, 

N/K/P [mM]), both single mutants reached K concentrations close to that of wild-type 

plants, whereas the nrt1.5-5/skor-2 double mutant failed to do so (Figure 22).  

To sum it up, this study demonstrated a nitrate-dependent interplay of NRT1.5 and 

SKOR on K+ root-to-shoot translocation, which is important for K+ homeostasis in 

shoots. However, root-to-shoot translocation of K+ was not completely blocked in the 

nrt1.5-5/skor-2 double mutant, indicating the activity of additional K+ transport systems 

in the root vasculature. Fox example, a recent study showed that KUP7 may also 

contribute to K+ xylem loading under low K+ avaliablility conditions (Han et al. 2016). In 

addition to NRT1.5, the knockout mutant of NPF2.3, a recently characterized nitrate 

excretion transporter, also exhibited the decreased K+ translocation to shoots (Taochy 

et al. 2015), supporting the presence of a regulatory loop of NO3
- and K+ xylem 

transport. The job sharing of NRT1.5 and SKOR examined in this study may be of 

great importance for plants to regulate the K+ root-to-shoot translocation under 

fluctating nutritional conditions.  
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4.5 NRT1.5 affects potassium root-to-shoot transfer 

independent on SKOR 

The indistinguishable growth performances between yeast cells expressing SKOR 

alone and cells expressing both SKOR and NRT1.5 indicates that NRT1.5 does not 

functionally interact with SKOR (Figure 16). Moreover, it has been shown that several 

ion-homeostasis related genes were deregulated in nrt1.5-5 roots (Drechsler et al. 

2015), however, these genes were not regulated in skor-2 mutant under all tested N/K 

regimes (Figure 25). These results indicate that the K+ root-to-shoot transfer controlled 

by NRT1.5 and SKOR are two different mechanisms. This speculation could be 

corroborated by the findings that: 1) the split-ubiquitin assay showed no protein-protein 

interaction between NRT1.5 and SKOR in yeast (Drechsler, Dissertation 2016); 2) 

unlike nrt1.5 mutant which showed inhibited LR development by K+ deprivation, skor-

2 mutant gained normal root growth like wild-type plants (Figure 27); 3) Li et al. (2017) 

showed that skor mutant did not exhibit a K+-deficiency phenotype. Even though Li et 

al. (2017) successfully demonstrated the K+ export function of NRT1.5 in heterologous 

systems Xenopus oocyte and in yeast, it is not yet clear why nrt1.5 mutant and skor 

mutant have different phenotypes at K+ deprivation. Interestingly, the high upregulation 

of SLAH1 and SLAH3 in roots of nrt1.5-5 only occurs at low NO3
- supply (1 mM). In 

contrast, these two genes were only marginally upregulated in roots of nrt1.5-5 at high 

NO3
- supply (10 mM) (Figure 25A), implying that the strong upregulation of these two 

SLAH genes may contribute to the K reduction in the nrt1.5-5 shoots at low NO3
- 

availabilities.  

4.6 Interaction complex NRT1.5-SLAH1-SLAH3? 

By using the split-ubiquitin method, eight NRT1.5-interacting partners were identified 

in the heterologous yeast system (Drechsler, Dissertation 2016). In this study, BiFC 

assay was further applied to confirm four of the NRT1.5-interacting partners SLAH1, 

SLAH3, AHA2 and NRT1.10 in planta. All four potential candidates demonstrated clear 
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reconstituted fluorescence signal at the plasma membrane of tobacco epidermal cells 

(Figure 29, 30).  

SLAH3 itself is a NO3
- and Cl- efflux channel (Geiger et al. 2011) and it can inhibit the 

inward K+ conduct through direct protein-protein interaction with KAT1, and therefore 

influences the stomata closure (Zhang et al. 2016). SLAH1 modifies Cl- transport 

through activating SLAH3 (Cubero-Font et al. 2016). Based on the reported transport 

function of NRT1.5 and SLAH1/SLAH3, it is likely that the interaction between NRT1.5, 

SLAH1 and SLAH3 could influence the anion (NO3
- and Cl-) transport activities of 

plants. However, no reduction in total N concentration was detected in rosettes of slah3 

mutant or in the double mutant nrt1.5-5/slah3 compared to wild type (Figure 34B). This 

observation is consistent with the recent finding of Cubero-Font et al. (2016) that no 

reduction of NO3
- was observed in xylem sap of slah3 mutant. The unchanged N 

concentration in mutant plants may reflect the high redundancy of nitrate transporters. 

Based on the reported interaction between SLAH3 and KAT1, the formation of an 

interacting complex NRT1.5-SLAH3-KAT1 is conceived. Therefore, the potassium 

transport may be affected by NRT1.5-SLAH3 interaction through modulating KAT1 

activity. In addition, the AP2/ERF transcription factor RAP2.11 is induced by K+ 

deficiency and regulates the expression of numerous genes involved in the K+ deficient 

signaling cascade including HAK5 (Kim et al. 2012). Both SLAH3 and NRT1.5 were 

moderately induced by the RAP2.11 overexpression in roots (Kim et al. 2012), which 

further supports that the NRT1.5-SLAH3 complex might regulate K+ homeostasis. Soil 

grown slah3 mutant plants demonstrated no shoot morphological changes compared 

to Col-0 under various N/K regimes (Figure 34A). No significant K reduction in shoots 

of slah3 was detected, although at low NO3
- and high K+ supply (1/10 N/K [mM]), K in 

slah3 shoots was slightly deceased compared to Col-0 (Figure 35). These results 

suggest that the disruption of SLAH3 itself does not apparently affect K+ root-to-shoot 

transfer. However, interestingly, under low NO3
- and high K+ supply (1/10 N/K [mM]), 

an additive effect of K reduction was observed in shoots of the double mutant nrt1.5-

5/slah3 in comparison with that of nrt1.5-5 and slah3 mutant, although the difference 
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was not statistically significant (Figure 35). Consistent with the reduced K 

concentration, the double mutant nrt1.5-5/slah3 developed a more severe leaf 

chlorosis phenotype than nrt1.5-5 at this condition (Figure 34A). These observations 

indicate that, when NO3
- supply is limited but K+ supply is ample, SLAH3 might be 

regulated in the nrt1.5 mutant, either transcriptionally or post-transcriptionally, and 

therefore indirectly influence the K+ transport. The statistical insignificance of K 

concentration between nrt1.5-5 and the nrt1.5/slah3 double mutant might be caused 

by the late timepoint for harvesting material, at which the K concentration in all plant 

lines has become too low to be distinguishable. To verify this presumption, several 

earlier timepoints should be adopted to harvest plant material for detecting K 

concentration.  

Besides the interaction with SLAH3, NRT1.5 could also interact with SLAH1 in planta 

(Figure 29D). The heteromerization of SLAH1/SLAH3 has been demonstrated recently 

(Cubero-Font et al. 2016). Moreover, NRT1.5, SLAH1 and SLAH3 are co-expressed in 

root pericycle cells (Lin et al. 2008; Cubero-Font et al. 2016), therefore, it is 

conceivable to speculate the formation of the NRT1.5-SLAH1-SLAH3 complex. The 

generation of the nrt1.5/slah1/slah3 triple mutant will be helpful to interpret the 

physiological meaning of their physical interactions. Up to now, no slah1 knockout 

mutant (in Col-0 background) is available. In future experiments, the CRISPR-Cas9 

systems should be applied to generate a slah1 mutant as well as the double or triple 

mutants.   

4.7 Could AHA2 and NRT1.5 activate each other? 

Another potential NRT1.5-interacting partner verified by both split-ubiquitin and BiFC 

is the plasma membrane H+-ATPase AHA2. Through generating a chemical proton 

gradient, the plasma membrane H+-ATPase is supposed to play a role in phloem 

loading (Blatt 2004), regulating the stomatal aperture (Zeiger 1983; Merlot et al. 2007), 

energizing nutrient uptake in the roots (Michelet and Boutry 1995) as well as regulating 

the growth of root hairs (Zhu et al. 2015) and pollen tubes (Pertl-Obermeyer et al. 
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2014). It was also suggested that the loading of root xylem with inorganic nutrients is 

dependent on the active transport process driven by the H+-ATPase (Paretssoler et al. 

1990). Among eleven AHA members in Arabidopsis, AHA2 is the predominant proton 

pump expressed in the roots (Haruta et al. 2010). It is expressed in roots in epidermis, 

cortex, phloem, root hair and xylem (Fuglsang et al. 2007), indicating a role in the 

xylem loading of the nutrients. In addition, the plasma membrane H+-ATPase is also 

critical for maintaining the membrane potential (Falhof et al. 2016). Consistent with its 

function in extruding proton out of cytoplasm, it was suggested that aha2 mutant has 

a more depolarized membrane potential based on its susceptibility to high external K+ 

concentration and resistance to HygB (Haruta et al. 2010).  

In this work, aha2 mutant grew indistinguishable from the wild type under all N/K 

regimes on soil (Figure 37), which is in accordance with the previous report that aha2 

mutant grew normally under standard conditions on plates (Haruta et al. 2010). 

However, the fresh weight gain of aha2 mutant was significantly lower compared to 

that of Col-0 under several nutrient conditions (Figure 38B), indicating the importance 

of AHA2 for increasing plant biomass. This observation is consistent with the previous 

report that the overexpression of AHA2 in guard cells promoted stomatal opening and 

enhanced plant growth (Wang et al. 2014). This study showed that the transcript of 

AHA2 in Col-0 roots was enhanced by high K+ availability but not regulated by NO3
- 

supply (Figure 39). The constant expression of AHA2 at different NO3
- concentrations 

is consistent with the previous study of Maathuis et al. (2003). However, a recent study 

reported that AHA2 expression was induced at both transcriptional and protein level 

by low NO3
- availability (Mlodzinska et al. 2015). This discrepancy may be attributed to 

the different growth conditions and the age of plants.  

The structure and the post-translational modification of AHA2 has been intensively 

investigated in the past (Morth et al. 2011). The C-terminal cytoplasmic domain of 

AHA2 serves as an autoinhibitory domain (Palmgren 2001), which is important for the 

phosphorylation and the binding of 14-3-3 proteins (Falhof et al. 2016). For instance, 

the phosphorylation of the penultimate residue Thr-947 creates a binding site for 14-
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3-3 proteins and release the autoinhibition of AHA2. In addition to 14-3-3 proteins, the 

C-terminal of AHA2 also interacts directly with PSY1R, a leucine-rich-repeat receptor 

kinase, and PP2C-D phosphatases. The BiFC experiment in this study confirmed the 

protein-protein interaction between NRT1.5 and AHA2 in planta (Figure 29B), however, 

it is not clear yet that whether NRT1.5 also interacts with AHA2 in the C-terminal region. 

The nrt1.5 plants phenocopied aha2 mutants with respect to the resistance to HygB 

treatment (Figure 18, 36) and susceptibility to high external K+ treatment (Figure 18) 

(Haruta and Sussman, 2012), indicating that the membrane potential in both mutants 

appears to be altered in a similar way. Interestingly, nrt1.5-5 mutant was more resistant 

to HygB treatment compared to aha2 mutant, indicating the more depolarized plasma 

membrane of nrt1.5-5 (Figure 36). Since the expression level of AHA2 was 

indistinguishable in roots of nrt1.5-5 and in Col-0 (Figure 37), thus the increased 

depolarization in nrt1.5-5 is probably not caused by the alteration in AHA2 transcript. 

Based on the BiFC result, it is tempting to hypothesize that NRT1.5 could activate 

AHA2 through their protein-protein interaction. Because of the high redundancy of 

AHAs, other AHAs might be post-transcriptionally modulated in aha2 mutant to 

compensate the loss-function of AHA2. Whereas in nrt1.5-5, compensation of other 

AHAs does not occur because of the presence of the AHA2, although in the 

nonactivated form. This hypothesis could explain the stronger resistance of nrt1.5-5 to 

HygB treatment than aha2 mutant. However, this does not explain the indistinguishable 

growth pattern between nrt1.5-5 and the nrt1.5-5/aha2 double mutant (Figure 36). One 

reason might be the concentration of HygB in this experiment is not high enough to 

provoke the growth differences between nrt1.5-5 and the double mutant. To verify 

whether NRT1.5 indeed affects the AHA2 activity, in future experiments, it is worth 

examining the H+-ATPase activity in nrt1.5-5, 35Sp::NRT1.5 overexpression lines as 

well as in the nrt1.5-5/aha2 double mutant. Alternatively, electrophysiology techniques 

like patch clamp could be used to record the membrane potential differences between 

Xenopus oocytes expressing NRT1.5, AHA2 and both of them. Moreover, it would be 

interesting to investigate whether the expression of mutated NRT1.5 which lost K+ 
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export function could change the membrane potential of yeast cells or not.  

It has been shown that the expression of potassium transporter HAK5 and cation/H+ 

antiporter 17 (CHX17) in the aha2 mutant is enhanced by more than 2-fold (Haruta 

and Sussman 2012), supporting the speculation that AHA2 is important for K+ transport 

through regulating plasma membrane potential. K+ outward rectifier SKOR and GORK 

are well known to be activated by plasma membrane depolarization, which is the 

expected situation for aha2 mutant and nrt1.5 mutant. However, the supposedly 

activated SKOR by depolarization did not promote the K+ root-to-shoot transfer in aha2 

mutant in any utilized fertilization regime (Figure 39A). Interestingly, under high NO3
- 

and low K+ supply (10/1 N/K [mM]), the K amount in aha2 shoots was significantly 

reduced compared to that of Col-0, though it was not as low as that in nrt1.5-5. The 

similar trend was also observed under high NO3
- and high K+ (10/10 N/K [mM]) 

condition, although the K concentration difference between aha2 and Col-0 was not 

statistically significant (Figure 39A). These findings imply that, under certain 

circumstances, for example, at high NO3
- supply (10 mM), AHA2 might regulate the 

activity of NRT1.5 through their physical interaction, therefore, K amount was reduced 

in aha2 shoots due to the inhibition of the NRT1.5 activity. The observation that no 

additive K reduction was observed in the nrt1.5-5/aha2 double mutant is in agreement 

with this assumption.  

Results obtained in this work hint that NRT1.5 and AHA2 might activate each other 

through their interaction, by this means that the membrane potential and K+ transport 

are affected in their single mutants. Since the K reduction in aha2 shoots only occurs 

at certain high NO3
- supply, it is possible that the interaction between NRT1.5 and 

AHA2 might be regulated by NO3
- availability. There are some questions remain to be 

solved in the future study. First, it is worth finding out the protein domain responsible 

for the interaction between NRT1.5 and AHA2. In addition, it would be interesting to 

investigate whether their interaction is dependent on the nitrate/potassium transport of 

NRT1.5 or not. These answers will be helpful to interpret the biological meaning of their 

interaction.  
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4.8 NRT1.5 is regulated by CIPK23-CBL1/CBL9 

complex 

The CBL-CIPK signaling modules have been shown to be able to interact with a 

number of transporting proteins involved in nutrient translocation and homeostasis (Li 

et al. 2009). CIPK23 is the most well-known CIPK mainly involved in regulating the 

transport of K+ and NO3
-. Recent studies showed that with the help of CBLs, CIPK23 

interacts with nitrate transporter NRT1.1 and nitrate-specific anion channel SLAH2 (Ho 

et al. 2009; Maierhofer et al. 2014). Moreover, CIPK23 is strongly upregulated by K+ 

deprivation (Cheong et al. 2007) and it also interacts with AKT1 and HAK5 which are 

two most important transporters responsible for K+ uptake (Li et al. 2006; Ragel et al. 

2015). The split-ubiquitin study of this work demonstrated that CIPK23-CBLs complex 

can also interact with NRT1.5 in yeast (Figure 31). The Arabidopsis cipk23 mutant and 

the cbl1/cbl9 double mutant demonstrated the sensitivity to low K+ (Cheong et al. 2007), 

which is similar to the phenotype of nrt1.5 mutants observed in this study (Figure 5). 

This similarity may indicate that CIPK23-CBL1/CBL9 complex may regulate the K+ 

root-to-shoot translocation assumed by NRT1.5. In addition, cipk23 mutant showed the 

stronger resistance to drought stress than wild type (Cheong et al. 2007), which is 

similar to the behavior of nrt1.5 mutant observed by Chen et al. (2012). These findings 

support the speculation that NRT1.5 activity may be regulated by CIPK23-CBL1/CBL9 

complex. The interaction between NRT1.5 and CIPK23-CBL1/CBL9 complex indicates 

that CIPK23 may act as a common component modulating the uptake and 

translocation of NO3
- and K+. In future studies it would be interesting to investigate 

whether the NO3
-/K+ transport activity or selectivity of NRT1.5 could be regulated by 

CIPK23-CBL1/CBL9 complex under different NO3
- and K+ availabilities.  

4.9 Overexpression studies of NRT1.5 in Arabidopsis 

Overexpressing a transporter driven by a constitutive promoter sometimes failed, for 

example, the attempt to overexpress PHO1 driven by CaMV 35S promoter failed to 
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increase the PHO1 expression in wild type (Stefanovic et al. 2011). In this study, 35S 

promoter was used to overexpress NRT1.5 in wild type Col-0. The NRT1.5 expression 

was indeed increased in both shoots and roots of three independent transgenic lines 

(Figure 11A). Since NRT1.5 was not fused to a tag in the 35Sp::NRT1.5 construct, 

therefore, it is difficult to detect the NRT1.5 protein in overexpression lines. However, 

35Sp::NRT1.5 overexpression lines were more sensitive to HygB treatment, which was 

the opposite response of nrt1.5 mutants (Figure 18B). This response indirectly proved 

the NRT1.5 protein was indeed increased. Interestingly, these overexpressing lines 

showed reduced LR density at K+ deprivation (Figure 11B), and reduced K+ 

concentrations in shoots at low NO3
- supply (Table 13, Figure 41), which are the same 

phenotypes of nrt1.5 mutants. One plausible explanation would be the misexpression 

of NRT1.5 in cell layers where it was not supposed to express in wild-type plants. 

Alternatively, these similar phenotypes may reflect the tight regulation of K+ root-to-

shoot translocation. Similar phenomenon has also been observed for the study of 

SLAC1. Kin
+-channel currents were reduced in a similar way in slac1 mutant and in 

SLAC1 or SLAH3 overexpression lines (Laanemets et al. 2013; Zhang et al. 2016). 

Another speculation is that the increased NRT1.5 protein presumably interferes at 

some level with its interaction complex, acting as an antimorph (Prelich 2012). As has 

been observed for histone pair SPT5, SPT6 and SPT16, which function as part of 

multiprotein complexes. Overexpression of each of them causes the loss-of-function 

mutant phenotypes, whereas co-overexpressing the other histone pair restored the 

wild-type phenotype (Clarkadams and Winston 1987; Malone et al. 1991; Swanson et 

al. 1991). Since several proteins have been identified as interacting partners of NRT1.5 

in yeast and in planta, it is conceivable that the nrt1.5 mutant phenotypes observed in 

35Sp::NRT1.5 overexpression lines are due to disrupting stoichiometry or disruption 

of the complexes. 
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4.10 Phytohormones regulate nitrate and potassium 

transporters 

A close relationship between phytohormones and environmental signals such as 

nutrient availability has been demonstrated. For instance, it has been proposed that 

ABA, auxin and cytokinin (CK) are involved in the acquisition of N. Moreover, there 

may exist a tight link between phytohormones and K+ signaling pathway (Pilot et al. 

2003). Low K+ availability leads to increases in JA and ABA, and decrease in CK and 

auxin (Schachtman 2015). Many genes related to hormone JA metabolism and 

signaling were also regulated by K+ availability (Armengaud et al. 2004) 

Arabidopsis seedlings grown on high concentration of NO3
- generated more CK than 

those grown on low NO3
- condition, suggesting the role of CK as a N status signal 

(Sakakibara et al. 2006). Moreover, it has been observed that CK treatment 

downregulated a lot of root-type NRTs, therefore, it was indicated that CK function as 

a root-to-shoot long distance signal of N supplement. The strong downregulation of 

NRT1.1 and NRT1.8 observed in this study is consistent with the previous observation 

(Kiba et al. 2011). SLAH1 and SLAH3 which is a potential contributor to NO3
- root-to-

shoot translocation, were also inhibited by 6-Benzylaminopurine (BAP). Since CK was 

thought as a repressor of genes responsive to many nutrient starvations (Rubio et al. 

2009), the results suggest that SLAH1 and SLAH3 might be involved in NO3
- starvation 

responses. The inhibition of SKOR was consistent with the previous finding (Pilot et al. 

2003). Unlike SKOR, HAK5 was induced by BAP. The response of SKOR and HAK5 

to BAP treatment is very similar to their response to ABA treatment (Figure 42). These 

results suggest that retaining more K+ in roots through decreasing K+ secretion into 

xylem by inhibiting SKOR and promoting K+ uptake by inducing HAK5 may be under 

the tight control.by various hormones.  

Although ABA content is not affected by N amount, increasing evidences showed that 

ABA is involved in N signaling (Zhang et al. 2007). For example, ABA deficient and 

insensitive mutants lost the sensitivity to inhibitory effect on LRs growth by HN (Signora 
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et al. 2001). This study showed that NRT1.1 was induced by ABA. The similar result 

was observed by Kita et al. (2011) under low NO3
- (LN, 0.1 mM) supply. Together with 

the strong inhibition of NRT1.5 (Figure 42), ABA might be in favor of the retention of 

NO3
- in roots. In guard cells, ABA activates anion channel SLAC1 and subsequent 

anion efflux (Yamamoto et al. 2016). In accordance with this, we showed that the 

transcript of SLAH1, the homologue of SLAC1, was dramatically induced by ABA 

treatment. However, other two studies by Qiu et al. (2016) and Cubero-Font et al. (2016) 

observed the strong inhibition of SLAH1 transcript by ABA treatment. It seems likely 

that this discrepancy results from different nutrient supplies, growth conditions, the age 

of plants and the treatment duration. It has been suggested that through modulating 

K+ channel activity, application of ABA was in favor of reducing K+ transport to xylem 

vessel and enhancing K+ accumulation in the root (Roberts and Snowman, 2000). 

Consistent with this notion, our results showed that SKOR was strongly inhibited by 

ABA, which has been also observed in other studies (Gaymard et al. 1998; Tester 

1999). Interestingly, potassium importer AKT1 was not regulated at all, whereas HAK5 

was strongly induced by ABA treatment (Figure 42). It was observed that ABA had no 

effect on K+ uptake by the epidermis (Roberts and Snowman 2000), therefore, the 

upregulation of HAK5 might indicate a link between ABA and K+ deprivation adaption.   

JA and MeJA inhibited expression of NRT1.5 whereas upregulated expression of 

NRT1.8, which is consistent with the earlier finding (Chen et al. 2012). It has been 

shown that this regulation pattern of NRT1.5 and NRT1.8 was controlled via the 

ethylene/JA-NRT module, and it helps plants to keep NO3
- in root under adverse 

growth conditions, in a nitrate reductase-dependent manner (Zhang et al. 2014). JA 

was also suggested to be involved in nutrient recycling under K+ deprivation stress 

(Rubio et al. 2009). The downregulation of HAK5 and SKOR indicates that JA and 

MeJA treatments lead to the reduction of K in shoots under K+ deprivation.  

To date, no experimental evidences support the connection between GA or SA 

signalling and N/K homeostasis. Under both high NO3
- (HN, 10 mM) and LN conditions, 

GA and SA hardly affected the expression of both root-and shoot-type NRTs (Kiba et 
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al. 2011). Similar results were observed for expression pattern of NRT1.1, NRT1.5 and 

NRT1.8 by GA3 treatment in this study (Figure 42). SLAH1 and SLAH3 were strongly 

induced and inhibited by GA3, respectively, indicating different roles of two proteins in 

GA3 signalling responses. In addition to acting an important component in biotic stress 

tolerance mechanism, SA is also supposed to be involved in plant abiotic responses 

like salinity tolerance (Ashraf et al. 2010). Shoot Cl- content is related to salinity 

sensitivity (Teakle and Tyerman 2010). Therefore, the dramatic downregulation of 

SLAH1 by SA supports the potential role of SLAH1 in the salinity stress adaption.  

It has been demonstrated that LN availability increases IAA content in Arabidopsis 

roots (Walch-Liu et al. 2006). However, the application of auxins had no influence on 

the lateral root growth of plants growing under HN supply, suggesting auxin might not 

be directly involved in NO3
- signaling (Zhang et al. 2007). In this study, due to the big 

standard deviation, no obvious regulation of nitrate and potassium transporters could 

be concluded by IAA treatment (Figure 42).  

It is worth noting that, in this study, 1/2 MS medium was used to support the growth of 

plants. It has been observed that under nutrient starvation conditions, responses of ion 

transporters to hormone treatment were even contrary to that under nutrient sufficient 

conditions. For example, Kiba et al. (2011) showed that the NO3
- availability influenced 

the expression of nitrate transporter in response to CK treatment. At LN supply, the 

root-predominant expression of NRT1.1 as well as the inhibition effect of NRT1.1 by 

CK was abolished. Moreover, it has been noticed that the effects of ABA treatment on 

ion transport is sensitive to nutrient status of roots (Roberts and Snowman, 2000). 

Therefore, to better understand the connection between phytohormone and nutrient 

transport, in future studies, gene expression analysis with plants growing under NO3
- 

and K+ starvation should be included to compare the difference of these datasets.  
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5 Summary 

Potassium (K) and nitrogen (N) are two of the most important macroelements needed 

by plants. After the absorption through roots, nitrate (NO3
-) and K+ undergo the long-

distance root-to-shoot transport. Xylem loading is a critical step for the root-to-shoot 

translocation of nutrients. In Arabidopsis thaliana, NPF7.3/NRT1.5 and SKOR are 

responsible for the xylem loading of NO3
- and K+, respectively. Our group has 

demonstrated the K concentration in shoots of nrt1.5 knockout mutants was 

dramatically decreased compared to wild type at low NO3
- supply, suggesting NRT1.5 

is involved in K+ transport in a NO3
--dependent manner. The aim of this work is to 

investigate the role of NRT1.5 in the root-to-shoot translocation of K+ in Arabidopsis.  

In this work, we show that NRT1.5 is important for the lateral root development of 

Arabidopsis at K+ deprivation conditions. Lateral root density of nrt1.5 knockout 

mutants was significantly reduced by K+ limitation compared to wild type. No K+ 

transport activity of NRT1.5 was not observed in Saccharomyces cerevisiae. However, 

yeast BYT12 cells expressing NRT1.5 were more sensitive to hygromycin B. Similar 

and the opposite responses to HygB were also observed for Arabidopsis 

35Sp::NRT1.5 overexpression lines and nrt1.5 mutant plants, respectively. These 

results indicate that expression of NRT1.5 results in the hyperpolarization of the 

plasma membrane in yeast and in Arabidopsis.  

Phenotypical and the elemental analysis with single and the double mutant plants 

suggest a NO3
--dependent job-sharing of NRT1.5 and SKOR in K+ root-to-shoot 

translocation: NRT1.5 is important when external NO3
- amount is limited, whereas 

SKOR is predominant at high NO3
- concentrations. The protein-protein interaction 

between NRT1.5 and SLAH1, SLAH3 and AHA2 were verified in Nicotiana 

benthamiana by BiFC. Moreover, the split-ubiquitin assay showed the interaction 

between NRT1.5 and the CIPK23-CBL1/CBL9 complex in yeast. To investigate the 

physiological meanings of the interaction, double mutants nrt1.5/slah3 and nrt1.5/aha2 

were generated and grown under various NO3
- and K+ supply conditions for 
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phenotypical and physiological studies.  

At last, the expression profiles of several nitrate and potassium transporters in 

response to various phytohormone treatments were studied. ABA is probably in favor 

of the retention of nutrients in roots through upregulating nitrate and potassium 

importers (NRT1.1, HAK5) and inhibiting the expression of transporters for xylem 

loading (SKOR, NRT1.5). Cytokinin BAP inhibited expression of all tested nitrate 

transporters and SKOR but stimulated HAK5. SLAH1 expression was strongly 

impaired by SA treatment. These observations will be helpful to understand the NO3
- 

and K+ transport mediated by phytohormone signals.  
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6 Zusammenfassung 

Kalium (K) und Stickstoff (N) sind zwei der wichtigsten Makroelemente, die Pflanzen 

benötigen. Nach der Aufnahme in die Wurzeln durchlaufen Nitrat (NO3
-) und K+ den 

Ferntransport von den Wurzeln zu den oberirdischen Sprossorganen. Die Beladung 

des Xylems ist ein kritischer Schritt bei der Translokation von Nährstoffen von der 

Wurzel in den Spross. In Arabidopsis thaliana sind NPF7.3/NRT1.5 und SKOR für die 

Beladung des Xylemsmit NO3
- und K+ verantwortlich. Unsere Gruppe hat 

nachgewiesen, dass nrt1.5 Knockout Mutanten bei niedriger NO3
- Versorgung im 

Vergleich zum Wildtyp signifikant geringere Kaliumkonzentrationen im Spross 

aufweisen. Dies deutet darauf hin, dass NRT1.5 in einer NO3
--abhängigen Weise am 

K+ Transport beteiligt ist. Das Ziel dieser Arbeit war es, die Rolle des NRT1.5 Proteins 

bei der Translokation von K+ in Arabidopsis zu untersuchen. 

In dieser Arbeit zeigten wir, dass NRT1.5 für die laterale Wurzelentwicklung von 

Arabidopsis unter K+ Mangelbedingungen wichtig ist. So war die Anzahl der 

Lateralwurzeln bei den nrt1.5 Knockout Mutanten unter Kaliummangel im Vergleich 

zum Wildtyp signifikant reduziert. In Saccharomyces cerevisiae wurde keine K+ 

Transportaktivität von NRT1.5 beobachtet. Hefe BYT12 Zellen, die NRT1.5 

exprimieren, waren jedoch gegenüber hygromycin B empfindlicher. Ähnliche und 

entgegengesetzte Reaktionen auf HygB wurden auch für Arabidopsis 35Sp::NRT1.5-

Überexpressionslinien bzw. nrt1.5 Knockout Pflanzen beobachtet. Diese Ergebnisse 

zeigen, dass die Expression von NRT1.5 zu einer Hyperpolarisierung der 

Plasmamembran in Hefe und in Arabidopsis führt. 

Die phänotypischen Untersuchungen und Elementanalysen der Einzel- und 

Doppelmutanten weisen auf eine Nitrat-abhängige Arbeitsteilung von NRT1.5 und 

SKOR bei der K+ Translokation zwischen Wurzel und Sprosshin: die NRT1.5 Funktion 

ist essentiell, wenn die externe NO3
- Menge limitiert ist, während die SKOR Funktion  

bei hohen NO3
- Konzentrationen dominiert. Die Protein-Protein-Interaktion zwischen 

NRT1.5 und SLAH1, SLAH3 und AHA2 wurde in Nicotiana benthamiana durch BiFC 
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verifiziert. Darüber hinaus dokumentierte der Split-Ubiquitin Assay die Interaktion 

zwischen NRT1.5 und dem CIPK23-CBL1/CBL9-Komplex in Hefe. Um die 

physiologische Bedeutung der Interaktionen zu untersuchen, wurden die 

Doppelmutanten nrt1.5/slah3 und nrt1.5/aha2 generiert und mit verschiedenen NO3
-- 

und K+- Gaben für phänotypische und physiologische Studien kultiviert. 

Zuletzt wurden die Expressionsprofile verschiedener Nitrat- und Kaliumtransporter als 

Antwort auf verschiedene Phytohormonbehandlungen untersucht. ABA fördert 

vermutlich die Nährstoffspeicherung in den Wurzeln durch eine Heraufregulierung der 

Nitrat- und Kaliumimporteure (NRT1.1, HAK5) und die Hemmung der Expression von 

Transportern für die Xylembeladung (SKOR, NRT1.5). BAP inhibierte die Expression 

von allen getesteten Nitrattransportern und SKOR, stimulierte jedoch die HAK5 

Expression. Die SLAH1 Expression wurde durch SA-Behandlung stark inhibiert. Diese 

Beobachtungen werden hilfreich sein, um die NO3
-- und K+ Transport, die durch 

Phytohormonsignale vermittelt werden, zu verstehen. 
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Table S1. The detail description of existing plasmids.  

Plasmid name Description 

pPTKan3 binary T-DNA vector with 35S promoter 

p425 yeast expression vector with TEF promoter 

p426 yeast expression vector with TEF promoter 

pDONRTM222 Gateway® donor vector 

pDONR221_p3-p2 Gateway® donor vector 

pDONR221_p3-p2_SLAH1 mit Stopp Gateway® donor vector with AtSLAH1 full length coding 

 sequence 

pDONR221_p3-p2_SLAHA3 mit Stopp Gateway® donor vector with AtSLAH3 full length coding 

 sequence 

pDONR221_p3-p2_CBL3 mit Stopp Gateway® donor vector with AtCBL3 full length coding 

 sequence 

pDONR221_p1-p4_NRT1.5 mit Stopp Gateway® donor vector with AtNRT1.5 full length coding 

 sequence 

pBiFC-2in1-NN pBiFC-2in1 destination vector with split nYFP and cYFP 

pDOE-08 BiFC vector with split NmVen210 and cVen210 

pBT3-N_AtNRT1.5 yeast expression vector with Cub-NRT1.5 fusion 

 construct 

pNubI-X-HA Gateway® expression destination vector for expression 

 of NubI-X-HA 

pNubG-X-HA Gateway® expression destination vector for expression 

 of NubG-X-HA 

pNubG-AtDMP2 Gateway® expression destination vector for expression 

 of NubG-DMP2 

pNubG-AtDMP7 Gateway® expression destination vector for expression 

 of NubG-DMP7 

pNubG-KAT1 Gateway® expression destination vector for expression 

 of NubG-KAT1 

pAG426GPD-ccdb/p14156 Gateway® compatible mbSUS vector with URA3 marker 
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Table S2. Nutrient composition of the soil used in this study. 

For the propagation of Arabidopsis, we used a 1:1 [v/v] mixture of the two commercially 

available soil types: 'P' and '0' (unfertilized) from the company Einheitserde, Sinntal-

Altengronau, Germany. Soil composition analysis was performed for type 'P', '0' and the 

resulting low fertilized soil mixture which was used in fertilization experiments by Institut 

Koldingen GmbH, Sarstedt, Germany. 

 

    Soil type 

Parameter Unit P-type  P/0 mixture unfertilized soil (0-type) 

salt content (soluble) mg/l 1518 1062 890 

soluble N mg/l 83 43 23 

nitrate N mg/l 75 36 14 

ammonium N mg/l 8 7 9 

phosphate mg/l 82 44 15 

potassium mg/l 211 100 10 

conductivity µS/cm 439 310 253 

pH  5.2 5.1 5.2 

 

 

 

  



Appendix 

159 

Table S3. The composition of various N/K/P fertilization solutions. 

Fertilization solutions are based on the composition of 1/2 Murashige-Skoog medium, with the 

exception of the NO3-, K and Pi concentrations. 

 

  

N/K/P 

[mM] 
1/1/1 1/1/10 1/10/1 10/1/1 10/10/10 5/0/5 20/1/1 10/10/1 

Macro- 

elements 

KNO3 1 mM 1 mM 1 mM 1 mM 10 mM 0 mM 1 mM 10 mM 

KCl 0 mM 0 mM 9 mM 0 mM 0 mM 0 mM 0 mM 0 mM 

Ca(NO3)2 0 mM 0 mM 0 mM 4.5 mM 0 mM 2.5 mM 9.5 mM 0 mM 

NaH2PO4 1 mM 10 mM 1 mM 1 mM 10 mM 5 mM 1 mM 1 mM 

MgSO4 1 mM 1 mM 1 mM 1 mM 1 mM 1 mM 1 mM 1 mM 

CaCl2 1.5 mM 1.5 mM 1.5 mM 0 mM 1.5 mM 0 mM 0 mM 1.5 mM 

Micro- 

elements 

H3BO4 50 µM 

MnSO4 50 µM 

ZnSO4 15 µM 

KI 2.5 µM 

Na2MoO4 0.5 µM 

CuSO4 0.05 µM 

CoCl2 0.05 µM 

 
Fe-EDTA 50 µM 

 
MES 0.5 g/l 

 
pH 5 

 

 

 


