
Appendix  
 

A. The Boltzmann distribution 
Two derivations of the Boltzmann distribution (taken from Atkins 2000, and Atkins 1978, 

respectively) are shown, the latter of which relates to the logic used by Berg and von 

Hippel for their derivation of the TF mismatch energies. 

 

A.1 Derivation via the dominating energy distribution 
Consider a system of N independent molecules (e.g. an ideal gas) with constant total 

energy E. While the amount of energy associated with any given particle cannot be 

determined one can address the question on how the energy is distributed over the 

particles on average. To this end it is useful to remember that energy levels are 

quantitized, that is, every molecule can occupy one of the available energy levels ε0, ε1, 

ε2, …, εE where ε0 is the level with lowest energy (arbitrarily set to a value of 0). At a 

given moment the system will be in a particular configuration where there will be n0 

molecules occupying energy level ε0, n1 molecules occupying level ε1 and so forth. The 

occupation numbers ni thereby change constantly due to the collision between the 

molecules, however, the total energy, E of the system and the total number of particles, 

N must stay unchanged: 
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To derive how many molecules will be associated with a given energy level on average 

we can start by considering a simple example. Suppose we have a system with five 

equally spaced energy levels which are given by εi = i Δε with i ∈ {0, 1, 2, 3, 4}. The 

system contains three particles with a total energy E = 3 Δε. We are interested in how 

the energy will distribute itself among the 3 particles, or in other words, how the particles 

will arrange themselves on the available energy levels. In one configuration the energy 
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of the system is evenly distributed among the particles with each particle residing on 

energy level ε1. As Figure A.1a illustrates, there is only one way in which this 

configuration or microstate of the system can be realized. Alternatively, the energy might 

be distributed in such a way that one particle carries all the energy and thus occupies 

energy level ε3 while the other two particles have energy ε0. As shown in Figure A.1b 

there are three ways in which this microstate can be attained. It is thus 3 times more 

likely than the first microstate. In a last set of configurations, the energy is distributed in 

such a way that one particle occupies energy level ε0, one particle resides on energy 

level ε1 and one particle occupies ε2. There are six ways to achieve this energy 

distribution. This is thus the dominant configuration of the system, which will be found 

60% of the time. 

Figure A.1 – Particle distribution across energy levels 
 

 
 

a) There is only one way to distribute a total energy of 3 Δε evenly among the red, green and 

blue molecules. b) In comparison, there are three ways to assign the total energy to one of the 

three molecules. c) Finally, there are six ways to distribute the energy in such a way that one 

molecule has energy Δε, one molecule has energy 2 Δε and one molecule has energy 0.  

a) 
 
 
 
 
b) 
 
 
 
 
c) 

In general, the number of ways in which a configuration can be achieved is called 

the weight W of the configuration and is directly proportional to the probability of finding 

the system in a certain configuration. It is given by the binomial coefficient: 
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where the ni‘s are the occupation numbers for the different energy levels. In agreement 

with Figure A.1, the number of ways in which the first, second and third configuration in 

the above example can be realized is thus: 

  
3! / (0! 3! 0! 0!) = 1, 

3! / (2! 0! 0! 1! 0!) = 3, 

3! / (1! 1! 1! 0! 0!) = 6. 

 
Importantly, the larger the number of particles in a system the more dominant will one of 

the configurations be. In the following we thus seek to find this most dominant 

configuration that is, the ni’s that maximize W. For this we will rely on the case that N 

grow towards infinity (which is the case for most real world examples such as a mol of 

gas with ~6×1023 molecules). Dealing with ln(W) is thereby mathematically easier and 

yields identical results. To start with, imagine that changing the number of molecules on 

each energy level εi by the quantity dni goes in hand with a corresponding change dln(W) 

in the weight of the configuration, where dln(W) is: 
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The maximum weight for the system can then be derived by setting . Since 

we deal with a physical system there are two constraints that need to be fulfilled when 

shifting dn

( ) 0lnd =W

i molecules. For one, the number of molecules in the system has to be kept 

constant, that is: 

 . (A.5) ∑ =
i

idn 0

 
Secondly, the total energy of the system has to stay unchanged and therefore, 

 

 . (A.6) ∑ =
i
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These two constraints are incorporated in finding the most probable configuration by 

using the method of Lagrange multipliers. Each constraint is thereby multiplied by a 

constant and added to the main condition. Using α and -β as the multipliers we obtain: 
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Using Sterling’s formula for approximating N! and subsequently solving the equation 

(details on how this is done are provided for instance in [Physical-chemistry, Atkins]) one 

finds that the ni’s of the most probable configuration are given by the Boltzmann 

distribution: 
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where the term  is referred to as the Boltzmann factor for the state i. Equivalently, 

the probability p

ie βε−

i of a given particle to reside on energy level εi is: 
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where Z is the so called molecular partition function (Atkins). The relative probability of a 

molecule to be on energy level εi rather than on level εj is given by the ratio of the 

Boltzmann factors: 
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For thermodynamic systems it can be shown that the scaling constant β is equal to 1/kT 

where k is the Boltzmann constant and T is the absolute temperature.  

 

It is important to realize that looking at the most probable configuration is 

extremely useful since the distribution of particles in a system with N → ∞ will at any 

time deviate only slightly from the pi’s derived above. To see this, image a system with 
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four equidistant energy levels (Figure A.2). If we set β ∆ε = 1 then the probabilities for 

finding a particle with energy εi can be computed by: 

 

∑
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Using this equation we find p0, p1, p2 and p3 to be 0.644, 0.237, 0.087 and 0.032, 

respectively. Given N = 1000 the weight of the most probable configuration is thus: 

 

!32 !87 !237 !644
! 1000

max=W . 

 
That means in the most probable configuration there are 644 molecules with energy ε0, 

237 with energy ε1, 87 with energy ε2 and 32 with energy ε3. Now imagine one particle 

with energy ε3 = 3 ∆ε is transferring its energy to 3 particles with energy ε0 = 0. Each of 

these latter particles would now have energy ε1 = ∆ε while the former particle would have 

ε0 = 0. The occupation numbers would thus have changed to 642, 240, 87 and 31. The 

weight of the resulting configuration would be: 

 

!31 !87 !240 !642
! 1000

=W . 

 
Dividing W by Wmax yields a ratio of 0.97, that is, W is 0.97 times as likely as Wmax. 

Changing the energy of 10 particles instead of one in the same fashion as above would 

result in a configuration with weight of: 

 

!22 !87 !267 !624
! 1000

=W  

 
where W / Wmax would now be 0.028. Thus although the probabilities pi would only be 

mildly effected (strongest for p3 with going from 0.032 to 0.022) one would find the 

system only rarely in this configuration. The larger N the quicker this decay in the 

probabilities for other configurations takes place. For instance, using the same changes 

in the pi’s as above but with N = 2000 would yield a ratio W / Wmax of 4.5×10-4. In most 

real world examples N is of the order 6.0×1023 and a deviation of the pi’s from the values 

according to the most probable configuration is never observed. On the other hand, the 
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Boltzmann distribution is valid only if N is large. This can be seen for instance in the 

example of Figure A.1c where in the most likely configuration the particles are equally 

distributed over the energy levels and not according to the Boltzmann weights. 

 

 

Figure A.2 – A system with four equidistant energy levels 
 

 
 
The left side shows the energy levels ε0 through ε3 for the theoretical system described in the 

text. The occupation probabilities given β ∆ε = 1 are shown on the right. 

 

A.2 Derivation via assuming contact with a heat reservoir 
The Boltzmann distribution can be derived also by adopting a different point of view, 

which does not require writing down the weights of the different configurations of the 

system. This approach is similar to the one used by Berg and von Hippel for their 

derivation of the TF mismatch energies explained in Section 3.1.3 of the main text. 

  

For the derivation of the Boltzmann distribution imagine a particle system as the 

one described above that is in contact with a large heat reservoir (which constitutes 

another particle system but of considerably larger size). The total energy of system and 

reservoir is ETot. If the energy of the system is Ei then the energy of the reservoir must be 

ETot – Ei. Let the number of ways, W, in which the reservoir can accommodate this 

energy be W(ETot – Ei). Given the previous section we can easily imagine that the higher 

the energy of the reservoir the more configurations exist in which the reservoir can 

accommodate the energy (for instance, the energy E = 0 can be achieved by the 

reservoir only if all its molecules have energy ε = 0). Since we assume that the reservoir 

is much larger than the system we can assume that ETot >> Ei virtually all the time. 

Therefore the number of configurations available to the reservoir with E = ETot – Ei can 

be related to the number of configurations available at ETot via a Taylor expansion. If we 

again work with the logarithm of W then we can write: 
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where higher order terms of Ei can be neglected. The differential coefficient is dependent 

only on ETot and can therefore be written as a constant: 
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(Notice the similarity between these expressions and the derivation by Berg and von 

Hippel for the TF mismatch energies outlined in the main text, page 43, where λ takes 

the role of β.) With this expression we obtain: 
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Based on the discussion in Section A.1 one can reason that the probability, Pi, of the 

system having energy Ei is proportional to the number of ways the reservoir can 

accommodate the energy ETot – Ei in respect to the number of ways the reservoir can 

accommodate ETot. Therefore: 
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where C is a scaling constant. With the condition that the Pi’s have to sum to 1, that is: 
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 we obtain again the Boltzmann distribution: 
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this time for the probability of a system (which may consist of only one particle in which 

case we return to the molecular partition function) having energy Ei. Z is hereby referred 

to as the canonical partition function. Via the comparison to classical thermodynamics β 

can again be identified as being 1/kT. 
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B. Zusammenfassung 
 
Transkriptionsfaktoren (TFs) bilden Schlüsselkomponenten zellulärer regulatorischer Netzwerke, 

indem sie die Expression sowohl zelltypspezifischer als auch breit exprimierter Gene regulieren. 

Die Interaktion zwischen den Aminosäuren des jeweiligen Faktors und der DNA bildet die 

Grundlage für das sequenzspezifische Bindeverhalten der TFs, wobei ein gegebener Faktor eine 

Vielzahl von unterschiedlichen DNA Sequenzen binden kann, allerdings mit abweichender 

Affinität. Die Vielfältigkeit der Bindemuster und die enorme Länge eukaryotischer Genome 

machen die Vorhersage des Bindeverhaltens der TFs zu einem schwierigen Unterfangen. 

Traditionelle Methoden versuchen das Problem zu lösen, indem sie eine Unterteilung des 

Sequenzraums in Bindestellen und nicht gebundene Stellen vornehmen. Daß solche Modelle eine 

starke Vereinfachung darstellen, wird nicht zuletzt durch genomeweite Bindedaten belegt, die ein 

kontinuierliches Bindeverhalten von TFs aufzeigen. 

Der erste Teil dieser Dissertation widmet sich deshalb der Entwicklung eines 

biophysikalischen Modells (genannt TRAP), das eine binäre Unterteilung zwischen Bindestellen 

(Hits) und ungebundenen Stellen vermeidet und stattdessen hoch und niedrig affine Sequenzen 

berücksichtigt. Wie gezeigt wird, können die Parameter des Modells durch eine physikalisch 

motivierte Vorschrift bestimmt werden, die für alle untersuchten Organismen von Hefe bis zu 

Mensch gilt. Die konzeptionelle, sowie praktische Überlegenheit von TRAP gegenüber 

traditionellen Hit-basierten, sowie alternativen affinitätsbezogenen Methoden, wird dargestellt.  

Um TFs zu detektieren, die für die Regulation ganzer Gengruppen verantwortlich sind, 

wurde TRAP im Folgenden durch ein statistisches Verfahren erweitert, das mittels einer Reihe 

hypergeometrischer Tests prüft, ob eine Anreicherung potentieller Zielgene eines gegebenen TFs 

innerhalb einer benutzerdefinierten Gengruppe existiert. Die Anwendung dieser Methode 

(genannt PASTAA) auf Gruppen gewebespezifischer Gene ermöglichte die Identifizierung einer 

umfassenden Anzahl experimentell bekannter TF-Gewebe-Assoziationen. PASTAA war hierbei 

erheblich erfolgreicher als verschiedene alternative Methoden. Darüber hinaus ließen die 

Resultate eine Reihe interessanter, biologischer Schlussfolgerungen zu, wie z.B., daß hochaffine 

Bindestellen gewebespeziefischer TFs bevorzugt in proximalen Promotoren, upstream vom 

Transkriptionsstart vorkommen. Die Analyse war dabei robust gegenüber der Auswahl an 

Promotersequenzen und der Herkunft der Expressionsdaten. 
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