Content

Abstract

1. Motivation	1
1.1 Thesis outline	2
1.2 Publication	4
1.3 Acknowledgements	4
2. Organisation of eukaryotic genomes	5
2.1 DNA as carrier of the genetic code	5
2.2 The structure of eukaryotic genes	7
Promoter	7
Transcription start site	7
Exons	9
Introns	9
2.3 Regulation of gene expression	9
2.3.1 Transcription factors	10
General TFs and the RNA polymerase II initiation complex	10
Gene specific transcription factors	12
Cellular control over TF activity	15
2.3.2 Chromatin modifications	16
Histone modifications	17
DNA methylation	18
2.4 Measuring gene expression	19
2.4.1 Microarray analysis	20
2.4.2 EST sequencing	20
Clustering ESTs and inferring tissue specificity of a gene	22
The GeneNest database	22
2.5 Measuring transcription factor binding	24
2.5.1 Small scale experiments	24
Promoter bashing	24
Electrophoresis mobility shift assay (EMSA)	24

DNase footprinting assay	24
2.5.2 Large scale approaches	25
SELEX	25
Protein binding arrays	25
ChIP-chip	26
ChIP-PET	27
3. Predicting TF Binding	29
3.1 Principles of TF binding site discovery	29
3.1.1 Deriving a consensus sequence	29
Basic site search	29
Consensus sequences	30
3.1.2 Deriving a TF binding motif	31
Pseudo counts	34
3.1.3 Statistical methods for finding binding sites in the genome	35
Requirement for a background model	35
Which score is large enough to indicate a binding site?	37
3.1.4 A biophysical model to predict TF binding energies	39
Statistical mechanical theory for TF-DNA interactions	40
3.1.5 From the biophysical approach to PWMs	45
3.2 Predicting regulating TF	49
3.2.1 Phylogenetic footprinting	50
3.2.2 oPOSSUM	51
3.2.3 PAP	52
3.2.4 CLOVER	53
4. The TRAP method	55
4.1 Deriving the TRAP model	55
4.1.1 Obtaining TF binding probabilities from mismatch energies	56
4.1.2 Deriving a binding measure for longer sequences	60
4.1.3 Deriving the TRAP parameters	61
How are predictions and experimental binding data related?	61
Experimental binding data	63

Utilized position frequency matrices	63
General parameter determination	63
General features of the parameter space	65
Optimal parameters choice derived from experimental data	69
Parameter choice in the absence of experimental data	72
Choosing the proper motif length	77
4.2 Results	79
4.2.1 Comparison of TRAP with hit-based methods	79
Comparison of achieved correlation	79
Comparison of ROC AUCs	80
4.2.2 Affinities are comparable between factors	85
4.2.3 Contributions from low affinity sites to $\langle N \rangle$	87
4.2.4 Ranking of intergenic regions is robust	91
4.3. Discussion	91
5. Application of TRAP to higher eukaryotes	95
5.1. The <i>Drosophila eve</i> promoter	95
5.2. P53 binding predictions	96
5.3. Affinity ranking for the transcription factor SRF	98
TF ranking for SRF target genes	100
6. PASTAA – Predicting TFs associated with groups of genes	103
6.1 Statistical measures for detecting affinity enrichments	104
6.1.1 Testing for increased average affinity	105
Affinities tend to be log-normally distributed	106
Applying the z-score test	106
6.1.2 Testing for target gene enrichment	107
Cutoff selection for TF targets and tissue specific genes	109
6.2 Data and methods used for analyzing tissue specific gene sets	110
6.2.1 Sequence data	110
6.2.2 Defining tissue specific gene expression	110
EST data	110
GNF data	111
6.2.3 Assessing TF expression across tissues	111

6.3 Validation of the PASTAA approach	112
6.3.1 Performance on ChIP-chip and PBM data sets from yeast	112
Results obtained from the z-score test	113
Results obtained from the hypergeometric test	117
Comparison to results from ROC curve AUCs	122
6.3.2 Validation on individual vertebrate genes	122
6.3.3 PASTAA can account for ChIP data from vertebrates	125
6.4 Analysis of tissue specific promoters	127
6.4.1 Detection of regulatory regions for tissue specific genes	127
6.4.2 TFs preferentially associated with EST derived tissue sets	130
Tissue specific genes are associated with TATA box motifs	133
6.4.3 Tissues preferentially associated with a given TF	133
TFs are themselves over-expressed in their top ranking tissues	134
Exemplary analysis of eye specific target genes for CHX10	136
6.4.4 Distribution of functional binding signals across promoters	137
Windows with maximal affinity are located near the TSS	140
TF-tissue ranks are robust against changes in promoter size	142
6.4.5 Overlap between GNF and EST data	143
6.4.6 Comparison to oPOSSUM, PAP and Clover	145
6.5 Web implementation of PASTAA	147
6.6 Discussion	149
7. Discussion	153
Bibliography	159
Appendix A. The Boltzmann distribution	177
A.1 Derivation via the dominating energy distribution	177
A.2 Derivation via assuming contact with a heat reservoir	182
Appendix B. Zusammenfassung	185