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Abstract
This thesis studies three particular types polytopal subdivisions with concrete applica-
tions to other mathematical objects, particularly in algebraic geometry.

The first type of polytopal subdivision consists in hypersimplicial subdivisions. These
are subdivisions induced by linear projections of hypersimplices. In the case where the
projection sends the canonical bases to the vertices of a convex polygon, hypersimplicial
subdivisions are in bijection with Grassmannian graphs, a type of planar graph that
appears in work of Postnikov to parametrize the positive Grassmannian [Pos19]. We
show that for these cases, the poset of hypersimplical subdivions, and hence the poset
of Grassmannian graphs of a given type, is homotopic to a sphere, solving a question of
Postnikov. For more general projections of hypersimplices, we study the fiber polytope
and show that in some cases it is normally equivalent to the Minkowski sum of some the
faces of the corresponding secondary polytope.

The second type of polytopal subdivision is regular matroid subdivisions. These objects
are polytopal complexes dual to tropical linear spaces. Given any matroid polytope,
functions from the set of vertices to the reals that induce a matroid subdivision are the
tropical analog of a Plücker vector [Spe08]. We study the Dressian of that matroid,
which is the space of all such tropical Plücker vectors. It is a subfan of the secondary
fan of the matroid polytope. We show that matroid subdivisions are determined by its
3-skeleton. We study tropical linear spaces arising from matrices with tropical entries,
called Stiefel tropical linear spaces in [FR15]. We show that these are a valuated analog
of transversal matroids, generalizing much of the theory of transversal matroids to the
valuated case. In particular, we concretely describe the space of all tropical matrices
with the same tropical Plücer vector. In the process, we show that transversality is a
‘local’ property.

The third type of polytopal subdivisions is regular lattice polygon subdivisions. We make
use of them to study Harnack curves. We generalize to arbitrary toric surfaces work of
Kenyon and Okounkov [KO06], who computed the moduli space of Harnack curves in the
projective plane with a given degree. Then we use the fact that Harnack curves can be
constructed using regular lattice polygon subdivisions via Viro’s patchworking method
to construct a meaningful compactification of the moduli space of Harnack curves. In the
process we also make use of abstract tropical curves, which exhibits again the duality
between polygon subdivisions and tropical varieties. The result is a compact moduli
space of Harnack curves that has a cell complex structure with the same poset as the
secondary polytope of the Newton polygon.
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Zusammenfassung
Diese Arbeit untersucht drei Arten der Polytopen-Unterteilungen mit konkreten Anwen-
dungen auf andere mathematische Objekte, insbesondere in der algebraischen Geometrie.

Die erste Art der Polytopen-Unterteilung besteht aus hypersimplizialen Unterteilungen.
Diese sind Unterteilungen, die durch lineare Projektionen von Hypersimplizes induziert
werden. In dem Fall, in welchem die Projektion die kanonische Basis auf die Ecken eines
konvexen Polygons abbildet, sind die hypersimplizialen Unterteilungen in Bijektion mit
Grassmannschen Graphen. Letztere sind eine Art von Graphen, die in der Arbeit von
Postnikov auftauchen, um den Grassmannschen zu parametrisieren. Wir zeigen, dass
in diesem Fall das Poset der hypersimplizialen Unterteilung und damit das Poset der
Grassmannschen Graphen eines bestimmten Typs den Homotopie-Typ einer Kugel hat.
Für allgemeinere Projektionen von Hypersimplizes untersuchen wir das Faserpolytop
und zeigen, dass es in einigen Fällen normaläquivalent zu der Minkowski-Summe einiger
Seiten des entsprechenden Sekundärpolytops ist.

Die zweite Art der Polytopen-Unterteliung ist die reguläre Unterteilung der Matroiden.
Diese Objekte sind polytopale Komplexe, die zu tropischen linearen Räumen dual sind.
Für jedes Matroid-Polytop sind Funktionen von der Menge der Eckpunkte zu den reellen
Zahlen, die eine Matroid-Unterteilung induzieren, das tropische Analogon eines Plücker
Vektors [Spe08]. Wir untersuchen den Dressschen dieses Matroids, der der Raum von
allen solchen tropischen Plückervektoren ist. Es ist ein Unterfächer des Sekundärpoly-
tops des Matroidpolytops. Wir zeigen, dass die Unterteilungen der Matroiden durch das
3-Skelett bestimmt werden. Wir untersuchen tropische lineare Räume, die aus Matrizen
mit tropischen Einträgen hervorgehen. In [FR15] sind dies sogenannte Stiefel tropische
lineare Räume. Wir zeigen, dass diese ein Analogon der transversalen Matroiden für
bewertete Matroiden sind, wobei viel der Theorie der transversalen Matroiden auf den
bewerteten Fall verallgemeinert wird. Insbesondere beschreiben wir konkret den Raum
aller tropischen Matrizen mit demselben tropischen Plücker Vektor. Dabei zeigen wir,
dass Transversalität eine “lokale” Eigenschaft ist.

Die dritte Art von Polytopen-Unterteilungen sind reguläre Gitterpolygonunterteilun-
gen. Wir verwenden sie, um Harnack-Kurven zu studieren. Wir verallgemeinern die
Arbeit von Kenyon und Okounkov [KO06], die den Modulraum von Harnack-Kurven
in der projektiven Ebene mit einem bestimmten Grad berechnet, auf beliebige torische
Flächen. Wir nutzen die Tatsache, dass Harnack-Kurven unter Verwendung von reg-
ulären Gitterpolygonunterteilungen mit Viros Patchwork-Methode konstruiert werden
können, um eine bedeutsame Kompaktifizierung des Modulraums von Harnack-Kurven
zu konstruieren. Dabei bedienen wir uns auch abstrakter tropischer Kurven, mit de-
nen die Dualität zwischen Polytopen-Unterteilungen und tropischen Varietäten weiter
aufgezeigt wird. Das Ergebnis ist ein Zellkomplex, der ein kompakter Modulraum von
Harnack Kurven und isomorph zu dem Sekundärpolytops des Newton-Polygons ist.
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Chapter 1

Introduction and overview.

This thesis is about three specific types of polytopal subdivisions, all of which have
a concrete connection to mathematical objects that lie in the intersection of algebraic
geometry and combinatorics:

1. Hypersimplicial subdivisions. These are subdivisions that are induced by a
linear projection of a hypersimplex. The motivation to study them comes from
the positive Grassmannian, since these subdivisions are in bijection with Grass-
mannian graphs in the case where the projection sends the cannonical basis to a
convex polygon.

2. Matroid subdivisions. There is a particular class of polytopes that is cryp-
tomorphic to matroids. Regular subdivisions of matroid polytopes into smaller
matroid polytopes are known to be the dual objects to tropical linear spaces and
constitute the theory of valuated matroids.

3. Lattice polygon subdivisions. In other words, regular subdivisions consisting
of 2-dimensional polytopes whose vertices have integer coordinates. They are an
ingredient in the process known as patchworking of real algebraic curves, which we
use to construct the compactified moduli space of Harnack curves.

Since polytopal subdivisions are central objects throughout the thesis, in Chapter 2 we
provide a brief review of their basic theory. A particular emphasis will be given to
regular subdivisions, since most of the subdivisions concerning this thesis are regular.
This chapter also includes a brief introduction to tropical geometry, showing some of
the many ways in which regular subdivisions are essential in this field of mathematics.

After Chapter 2, the thesis is divided into three parts, one for each specific type of
polytopal subdivision we are considering together with their specific application we are
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2 Chapter 1. Introduction and overview.

interested in. After settling down some notation that is going to be used throughout
this thesis, we provide a summary of the main results of each of the parts.

After the summary, we end the introductory chapter with a section about the positive
Grassmannian. In that section we show that all three parts of this thesis are related
to each other by having concrete applications to the same setting. Some of the results
stated there are new. Even though these new results follow from the work done in the
rest of the thesis, they were not explicitly included in any of the research articles on
which this thesis is built on. So this section is the only place so far where these results
can be found.

1.1 Notation

• We write Z,R,C,T for the integers, reals, complex and tropical numbers respec-
tively.

• We write [n] for the set of integers {1, . . . , n}.

• We write
([n]
k

)
for the set of subsets of [n] of cardinality k.

• Given a set A we write |A| for cardinality.

• Given a complex number z ∈ C we write |z| for the absolute value of z.

• We write R≥0 for the set of non negative real numbers.

• Given a field K we write K∗ for the multiplicative group K \ {0} .

• We write PKn for the n-dimensional projective space over K.

• We write K[x±1 , . . . , x±n ] for the ring of Laurent polynomials over K

• For any α ∈ Zn we write xα for xα1
1 . . . xαnn .

• Given a vector space Kn, we write e1, . . . , en for the canonical basis.

• For a, b ∈ Kn we use a · b or 〈a, b〉 for the dot product of a and b.

• Given a subset A of a topological space, we write A for its closure.

• To simplify exposure, we sometimes write 123 for the set {1, 2, 3} and A ∪ i for
A ∪ {i}.

• Given sets A ⊆ B we write [A,B] for the set of sets that contain A but are
contained in B (an interval in the boolean lattice).
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• For multisets, we use double brackets {{_}} to list their elements.

• However, we use K{{t}} for the field of Puiseux series.

1.2 Hypersimplicial subdivisions

This part is based on a joint paper with Francisco Santos, [OS19].

The main object of study in this part are hypersimplicial subdivisions. These are subdi-
visions that are induced by linear projections of the hypersimplex ∆k,n.

Let π : Rn → Rd be a linear projection. Let A be the set of n (possibly repeated)
points to which the canonical basis of Rn is mapped to. We write A(k) for the image
of the vertices of the hypersimplex ∆k,n under π. A hypersimplicial subdivision of A(k)

is a polytopal subdivision of conv(A(k)) such that every face of the subdivision is the
image of a face of ∆(k)

n under π. These are the π-induced subdivisions as introduced in
[BS92, BKS94].

The main motivation to study them comes from the case where A ⊆ R2 is the set of
vertices of a convex polygon. In this case, the poset of hypersimplicial subdivisions by
refinement is isomorphic to the poset of Grassmannian graphs [Pos19]. In particular,
triangulations of this form are in bijection with complete reduced plabic graphs [Gal18].
This relationship is explained further in Section 1.5.

In [Pos19, Problem 10.3] Postnikov asks the generalized Baues problem for the case when
A is the set of vertices of the d-dimensional cyclic polytope C(n, d). In other words, he
asks whether the poset of hypersimplicial subdivisions of C(n, d)(k) has the homotopy
type of a (n − d − 2)-sphere. For k = 1 this was shown to have a positive answer by
Rambau and Santos [RS00]. For d = 2, Balitskiy and Wellman show the poset to be
simply connected and again ask the Baues question for it ([BW19, Theorem 6.4 and
Question 6.1]). In Chapter 3 we answer this question:

Theorem 1.1. (Theorem 3.55) Let Pn be the vertices of any convex n-gon. The
poset of hypersimplicial subdivisions B(∆(k)

n → P(k)
n ) retracts onto the poset of coherent

hypersimplicial subdivisions. In particular, it has the homotopy type of an (n−4)-sphere.

[Pos19, Problem 10.3] also asks for which values of the parameters can all hypersimplicial
subdivisions of C(n, d)(k) be lifted to zonotopal tilings of the cyclic zonotope. Galashin
[Gal18] showed that in dimension two all hypertriangulations can be lifted, a result that
was generalized to all hypersimplicial subdivisions by Balitskiy and Wellman [BW19,
Lemma 6.3]. On the other hand, it was already known that for d = 1 [Pos19, Example
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10.4] there are hypersimplicial subdivisions that do not lift to zonotopal tilings. We
generalize the counterexamples to every odd dimension:

Theorem 1.2. (Theorem 3.40) Consider the cyclic polytope C(n, d) ⊂ Rd for odd d
and n ≥ d+ 3. Then, for every k ∈ [2, n− 2] there exist hypersimplicial subdivisions of
C(n, d)(k) that do not extend to zonotopal tilings of the cyclic zonotope Z(C(n, d)).

The poset of coherent hypersimplicial subdivisions of π : ∆k,n → A(k) is isomorphic to
the face poset of a polytope which we call the k-th hypersecondary polytope of A. This is
a particular case of a fiber polytope and when k = 1 this is just the secondary polytope
of A. We study hypersecondary polytopes for any A ⊂ Rd and k ≤ d + 1. Specifically,
we show that for any A ⊂ Rd and k ≤ d + 1, hypersecondary polytopes are normally
equivalent to the Minkowski sum of certain faces of the secondary polytope of A. By
symmetry, an analogue statement holds for n− d− 1 ≤ k < n.

Theorem 1.3. (Theorem 3.24) Let A ⊆ Rd be a configuration of size n and k ∈ [d+1].
Let s = max(n−k+1, d+2). The hypersecondary polytope F (k)(A) is normally equivalent
to the Minkowski sum of the secondary polytopes of all subsets of A of size s.

At the end of this part the problem of enumerating hypertriangulations of a convex
polygon is discussed.

1.3 Tropical linear spaces

These part is divided into three chapters. In Chapter 4 we give an introduction to
tropical linear spaces. This includes the basic theory of matroids and more generally
valuated matroids, as well as the main constructions regarding them. Chapter 5 is based
on joint work with Benajmin Schröter and Marta Panizzut [OPS]. Chapter 6 is based
on joint work with Alex Fink [FO19].

Recall that the tropical semiring is T = R∪{∞} with addition ‘min’ and multiplication
‘+’ (see Theorem 2.9). We study the tropical analog of a linear space, that is, tropical
varieties given by equations of degree 1. A tropical linear space is given by tropical
Plücker vectors, better known as valuated matroids, which are vectors in the tropical
projective space V ∈ PT(nd)−1, where 0 ≤ d ≤ n are integers (when talking about a rank
d subspace of an n dimensional space). The coordinates of V are labelled by subsets of([n]
d

)
. They are required to satisfy the tropical Plücker relations: for every S ∈

( n
d−1
)
and

T ∈
( n
d−1
)
the minimum

min

 ∑
j∈T\S

VS∪j + VT\j

 (1.1)
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is attained at least twice. For each valuated matroid V ∈ PT(nd)−1 there is a correspond-
ing tropical linear space L(V ) ⊆ Tn of dimension d.

The support (the set of coordinates with finite entry) of a valuated matroid V is the set of
basis of a matroid called the underlying matroid V . The space of all valuated matroids
of rank d on [n] is known as the Dressian Dr(d, n). Given a matroid M , we call the
space of all valuated matroids with underlying matroid M the local Dressian of Dr(M).
This is the main object of study in Chapter 5. Valuated matroid V are characterized
by inducing a regular subdivision of the matroid polytope of V into smaller matroid
polytopes (see Theorem 4.13).

Theorem 1.4. (Theorem 5.2) Let V be a valuated matroid with underlying matroid
M . The regular subdivision of PM induced by V is determined by its 3-skeleton (the
3-dimensional cells).

This gives as a corollary a new and simpler proof of the following statement origi-
nally proved by Dress and Wenzel [DW92, Theorem 5.11]. Binary matroids (matroids
representable over some field of characteristic 2) do not admit non-trivial matroid sub-
divisions. We also prove the following, which was independently proven by López de
Medrano, Rincón and Shaw [LdMRS17, Lemma 4.7 and Corollary 4.8]:

Theorem 1.5. (Theorem 5.14) Let M1 and M2 be two matroids and let M1 ⊕M2 be
their direct sum. then Dr(M1 ⊕M2) ∼= Dr(M1)×Dr(M2).

One way of obtaining valuated matroids is by taking the maximal tropical minors of
a matrix with tropical entries. This is known as the tropical Stiefel map, π : Td×n →
Dr(d, n). Given a matrix A ∈ Td×n, the tropical linear space π(A) can be thought of
as a tropical analog of ‘the span of the rows of A’. However, not all valuated matroids
arise this way (see Theorem 6.19). Fink and Rincón showed that if a valuated matroid
is in the image of the tropical Stiefel map then the facets of the regular subdivision are
transversal matroids [FR15] (see Theorem 6.13). We prove the converse:

Theorem 1.6. (Theorem 6.47) A valuated matroid is in the image of the tropical Stiefel
map if and only if the facets of the matroid subdivision are transversal matroids.

Therefore we call any such valuated matroid V a transversal valuated matroid and any
matrix in A ∈ π−1(V ) a presentation of V . The name presentation, comes from classi-
cal transversal matroid theory. Transversal matroids arise from matchings in bipartite
graphs, which can be represented by a {0, 1}-matrix, which in the tropical world becomes
a {0,∞}-matrix. In analogy with the work of Brualdi and Dinolt [BD72] on classical
transversal matroids, we give an explicit description of the space of presentations of a
given transversal valuated matroid and in particular we show the following:
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Theorem 1.7. (Theorem 6.40) The space of presentations of a transversal valuated
matroid is the orbit of an affine fan in Td×n under permuting rows.

Theorem 6.40 is actually much more concrete and provides a very precise description of
the space of presentations of a transversal valuated matroids.

In [Mas72] Mason introduced a class of matroids called gammoids, which are the minor
and dual closure of the class of transversal matroids. We develop a valuated version of
this class of matroids. In particular we define valuated strict gammoids using tropical
flows on directed graphs. Ingleton and Piff proved that strict gammoids are exactly the
duals of transversal matroids [IP73]. We generalize this to valuated matroids:

Theorem 1.8. ( Theorem 6.23) Valuated strict gammoids are exactly the duals of val-
uated transversal matroids.

This in particular characterizes tropical linear spaces that are stable intersections of
tropical hyperplanes. Theorems 1.6 and 1.7 can be dualized to provide statements for
this scenario. More concretely, valuated strict gammoids characterize tropical linear
spaces that are the stable intersection of tropical hyperplanes. The space of tropical
hyperplanes with a given stable intersection is described by Theorem 6.40.

1.4 Harnack curves

This part is based on [Ola17].

Harnack curves are real algebraic plane curves with several remarkable properties. They
are named after Axel Harnack [Har76], who first discovered them to show that his upper
bound on the number of connected components that a plane curve can have is tight. For
projective toric surfaces this bound is g+ 1. Part of Hilbert’s 16th problem is to classify
all topological types of curves that achieve such maximum number of components.

Much later, Mikhalkin defined them for any projective toric surface as follows.

Let ∆ be a lattice polygon with m sides, g interior points and n boundary points. Let
X∆ be the real part of the toric projective surface associated to the normal fan of ∆,
Let L1, . . . , Lm ⊆ X∆ be the axes of X∆, that is, the 1-dimensional torus invariant
closed sets, ordered according to the clockwise order of the sides of ∆. Let d1, . . . , dm

the integer lengths of the respective sides of ∆.

Definition 1.9. [Mik00, MR01] (Definitions 7.3 and 7.4) Let C ⊆ X∆ be a smooth real
algberaic curve with Newton polygon ∆. It is called a Harnack curve if the following
conditions hold:
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• The number of connected components of C is g + 1.

• Only one component of C intersects L1 ∪ · · · ∪Lm, and this can be divided into m
arcs, θ1 . . . θm, that appear in this order along C, such that θj ∩ Lj consists of dj
points (counted with multiplicity) and θj ∩ Lk = ∅ for j 6= k.

If C is not smooth then it is a Harnack curve if its only singularities are isolated double
points and when all of these double points are replaced by a small circle around it the
result has the same topological type of a smooth Harnack curve.

Mikhalkin made progress on Hilbert’s 16th problem by proving that for a fixed ∆, the
topological type of smooth Harnack curves is unique [Mik00, Theorem 3]. Shortly after,
several remarkable properties about Harnack curves, specially about their amoebas (see
Theorem 7.7) were found. For example, Harnack curves are precisely the curves whose
amoebas have the maximum area [MR01]. Amoebas of Harnack curves also appear
in physics, where the dimer model is used to study crystal surfaces (see [KOS06] for
details). In this model, the limit of the shape of a crystal surface is given by the amoeba
of a Harnack curve.

Motivated by the dimer model, Kenyon and Okounkov [KO06] studied the space of
projective Harnack curves C ⊆ RP2 of degree d modulo the torus action. Equivalently,
this is the space of amoebas of Harnack curves modulo translation. They show that this
moduli space has global coordinates given by the areas of holes of the amoeba and the
distances between consecutive tentacles. Therefore it is diffeomorphic to R(d+4)(d−1)/2

≥0 .
Crétois and Lang [CL18] generalized some of the techniques used in [KO06] to Harnack
curves in any projective toric surface. They showed that given a lattice polygon ∆,
the moduli space H∆ of Harnack curves with Newton polygon ∆ is path connected and
conjectured that it is also contractible. In Chapter 7 we prove this conjecture. Moreover,
we show that H∆ has a set of global coordinates similar to [KO06], generalizing their
computation of H∆:

Theorem 1.10. (Theorem 7.22) Let ∆ be a lattice m-gon with g interior lattice points
and n boundary lattice points. Then the moduli space H∆ of Harnack curves with Newton
polytope ∆ is diffeomorphic to Rm−3 × Rn+g−m

≥0 .

In Chapter 8 we use tropical curves to construct a compactification of H∆ similar in
spirit to the Deligne-Mumford compactification ofMg,n. This compactification consists
of ‘Harnack meshes’, that is, collections of Harnack curves that can be patchworked
using Viro’s method to produce a curve in H∆ (see Section 7.2.4 for a brief summary
on patchworking or [Vir06] for a detailed description of the method). A Harnack mesh
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consists of a regular subdivision of ∆ and a Harnack curve with Newton polytope ∆i

for each facet ∆i of the subdivision, with some gluing conditions. The space of Harnack
meshes is naturally stratified in cells according to which regular subdivision is used in
the patchworking recipe. The above can be summed up in the following:

Theorem 1.11. (Theorem 8.11) The space H∆ has a compactification H∆ consisting
of all Harnack meshes over ∆. Moreover, H∆ has a cell complex structure whose poset
is isomorphic to the face poset of the secondary polytope Sec(∆ ∩ Z2).

1.5 Applications to the positive Grassmannian

We now show how all three parts of this thesis relate to each other through a common
application: the positive Grassmannian. This is a particular case of the general phe-
nomenon known as total positivity studied by Fomin and Zelevinsky, which resulted in
the development of the theory of cluster algebras [FZ02]. Postnikov found that the pos-
itive Grassmannian enjoys very rich combinatorial structures [Pos06]. Due to a direct
connection with scattering amplitutes in quantum field theory, the positive Grassman-
nian has gained a lot of attention from the physics community [AHBC+16]. Polyhedral
subdivisions have recently taken an important role in the study of the positive Grass-
mannian [Pos19]. We discuss this connection, while showing that several results in this
thesis have direct consequences in this theory.

Definition 1.12. Let (K,≤) be an ordered field. Let A ∈ Kd×n be a matrix. We say
A is totally positive if all of its maximal minors are positive. Similarly we say A is
totally non-negative if all of its maximal minors are non-negative. The totally positive
(respectively totally non-negative) Grassmannian Gr+(d,Kn) (Gr≥0(d,Kn)) is the set of
all linear spaces that admit as a basis the rows of a totally positive (respectively totally
non-negative) matrix. A positroid is a matroid of the form M(L) (see Theorem 4.7) for
L ∈ Gr≥0(d,Kn).

In other words, a linear space is in the totally positive Grassmannian if all of its Plücker
coordinates are non-zero and of the same sign (see Section 4.1). From the definition it
is clear that Gr≥0(d,Kn) is the closure of Gr+(d,Kn) within Gr(d,Kn). Observe that
being a positroid is not a property of the matroid alone; it depends on the order of the
element set [n]. However, being a positroid is invariant under cyclic permutations of [n].

Example 1.13. The rank 2 matroid M on [4] with bases B(M) =
([4]

2
)
\ {34} is a

positroid. However, the matroid M ′ with bases B(M ′) =
([4]

2
)
\ {24} is not a positroid,

even though M and M ′ are isomorphic.
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Positroids were introduced by Postnikov [Pos06] to study the totally non-negative Grass-
mannian through its matroid decomposition. Many combinatorial objects have been
found with positroids associated to them and with nice bijections between them.

A plabic graph (short for planar bicolored graph), is a planar graph embedded in a
closed disc such that each interior vertex is colored either black or white and all the
vertices in the boundary are of degree 1. Monochromatic edges are allowed. We say
that a plabic graph is of type (k, n) if it has n boundary vertices and the number of
black vertices minus the number of white vertices is 2k − n. The boundary vertices are
labelled cyclically by [n].

Every plabic graph has a postroid associated to it. One way to obtain the positroid
associated to the plabic graph is the following. A perfect orientation O of a plabic
graph is an orientation of the edges such that for every black vertex there is exactly one
outgoing edge and for every white vertex there is exactly one ingoing edge. Assume G is
a plabic graph with a perfect orientation. Let B0 ⊆ [n] be the set of boundary vertices
that are targets (the edge incident to the vertex is oriented towards it). The matroid
M(G) associated to G is the strict gammoid of the directed graph (G,O) with targets
B0, restricted to the vertices in the boundary (see Section 6.2.5).

Proposition 1.14. [Pos06, Lemma 11.10] Let G be a plabic graph with a perfect ori-
entation. The matroid M(G) does not depend on the perfect orientation O and it is a
positroid. Furthermore, every positroid arises this way.

Remark 1.15. There are other equivalent ways of defining M(G) for plabic graphs,
even if they do not admit a perfect orientation.

Recall that a gammoid is any matroid which is the restriction of a strict gammoid.
Alternatively, it is the contraction of a transversal matroid. Gammoids form a class of
matroids closed under restriction, contraction and duality (see [Mas72]). A consequence
of the above proposition is that positroids are gammoids.

A generalization of plabic graphs was introduced in [Pos19], called Grassmannian graphs.
These are also planar graphs with boundary vertices labelled cyclically, but now internal
vertices v have an integer number h(v) from 1 to deg(v)−1 assigned called helicity. The
helicity of the Grassmannian graph G is given by

h(G)− n

2 =
∑
v

h(v)− deg(v)
2

where the sum goes over all internal vertices. The type of a vertex v is (h(v),deg(v))
and we say a Grassmanian graph is of type (k, n) if it has helicity k and there are n
boundary vertices. Plabic graphs of type (k, n) are Grassmannian graphs of the same
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type by assigning helicity 1 to white vertices and helicity deg(v)−1 to each black vertex
v.

We restrict our attention to Grassmannian and plabic graphs that are reduced, which
means you do not get isolated components, double edges or loops when performing
certain moves that we will not describe (see [Pos06, Section 12]). Just like plabic graphs,
each Grassmannian graph has a positroid assigned to it. Reduced Grassmannian graphs
can always be given a perfect orientation.

We call a Grassmannian graph complete if its corresponding positroid is the uniform
matroid. We say that a reduced Grassmannian graph G coarsens G′ if G can be obtained
from G′ by replacing vertices v of type (a, b) with a complete reduced Grassmannian
graphs of the same type; we write G ≥ G′. Coarsening does not change the positroid of
the graph, so it is a partial order on the set of reduced Grassmannian graphs of a given
positroid. The following theorem connects hypersimplicial subdivisions of Part I with
the positive Grassmannian.

Theorem 1.16. [Pos19, Theorem 11.1] The poset of complete reduced Grassmannian
graphs of type (k, n) is isomorphic to the baues poset B(∆k,n → Pn) of the projection
from the hypersimplex ∆k,n to a convex polygon Pn (see Section 3.2.2). Trivalent plabic
graphs are the minimal elements of this poset and this isomorphism extends the bijection
given in [Gal18] between them and hypertriangulations.

The isomorphism consists of replacing vertices of type (a, b) with tiles [X,Y ](k) with
|X| = k−a and |Y | = k−a+b. The moves on plabic graphs we mentioned correspond to
flips of zonotopal tilings of the zonotope Z(Pn). The following corollary is a consequence
of Theorem 3.55:

Corollary 1.17. The poset of complete reduced Grassmannian graphs of type (k, n) has
the homotopy type of an (n− 4)-dimensional sphere.

Plabic graphs allow us to describe the matroid cells of the totally non-negative Grass-
mannian in the following way. Given a positroid M , let

SM := {L ∈ Gr≥0(d,Kn) M(L) = M}

be the matroid cell of M intersected with the non-negative Grassmannian.

Now consider a reduced plabic graph G of type (d, n) such thatM(G) = M and consider
a perfect orientation O on G where B0 ⊆ [n] are the target vertices. A plabic network
N on (G,O) is an assignment of a positive real xe to each edge e of G. For simplicity,
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we assume that (G,O) does not have directed cycles. For every B ∈
([n]
d

)
let

wB(N ) :=
∑
Θ

∏
e∈Θ

x±1
e

where the sum is over all linkings from B to B0 (see Theorem 6.21) in the undirected
graph G and the exponent xe is 1 if the orientation of e agrees with the direction of the
linking and −1 if it does not. By convention, the sum above is taken to be 0 if no such
linking exists. The vector (wB)

B∈([n]
d ) satisfies the Plüker relations, so we have a well

defined map from the set of all plabic networks on G to the Grassmannian Gr(d,Rn)
called the measurement map. The image of the map from the set of all planar networks
on G to Gr(d,Kn) which sends N 7→ [wB(N )]

B∈([n]
d ) is exaclty SM [Pos06, Corollary

16.5].

This parametrization can be tropicalized. Williams and Speyer defined the tropical pos-
itive Grassmannian [SW05] and the tropical non-negative Grassmannian can be defined
similarly. Recall the field of real Puiseux series R{{t}} (see Section 2.3). It is an ordered
field in which an element f ∈ R{{t}} is positive if the coefficient of the leading term is
positive. The positive Grassmannian Gr+(d,R{{t}}n) can be defined in the same way as
Gr+(d,Rn).

Definition 1.18. The tropical positive Grassmannian is

TGr+ := ν(Gr+(d,R{{t}}n)) ⊆ TGr0(d, n)

and the tropical non-negative Grassmanian is

TGr≥0 := ν(Gr≥0(d,R{{t}}n)) ⊆ TGr0(d, n),

(see Theorem 4.1). We call V a valuated positroid if V ∈ TGr≥0(d, n).

In [SW05] the tropical positive Grassmannian is parametrized. This is essentially trop-
icalizing the parametrization of the positive Grassmannian Gr≥0(d,R{{t}}n) by flows in
a particular complete plabic network with positive Puiseux series as weights. Since
we are restricting ourselves to positive Puiseux series, there is never cancellation when
computing the measurement maps, so the measurement map and the valuation com-
mute. This works for any plabic graph. The tropical measurement map is exactly what
in Section 6.2.5 we call the weight of a linking, which we use to define valuated strict
gammoids.

Definition 1.19. A valuated gammoid is the restriction of a valuated strict gammoid.
Alternatively, it is the contraction of a valuated transversal matroid.
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The discussion above implies the following:

Proposition 1.20. Valuated positroids are valuated gammoids.

Proof. Let V be a valuated positroid. Consider a plabic network without loops whose
tropical measurement maps give V . Such a plabic network exists by taking the web
plabic graph (see [SW05, Figure 1]) and by [Pos06, Corollary 16.5]. Then V is the
restriction to the boundary points of the valuated gammoid given by that the plabic
network.

This result together with Theorem 6.22 and the interpretation of valuated matroid mi-
nors and duality in terms of the tropical linear space discussed in Section 4.5 imply the
following:

Corollary 1.21. Let L be the tropicalization of a linear space in the totally non-negative
Grassmannian, i.e., L = L(V ) for V ∈ TGr≥0(d, n). Then:

• L is the projection of a stable intersection of tropical hyerplanes.

• L is the intersection of a stable sum of points with {xj = ∞ j ∈ J} for some
subset of coordinates j.

In Chapter 6 we show that transversality is a local property, i.e., a valuated matroid
is transversal if and only if it all the matroids in its subdivision are transversal (see
Theorem 6.47). Similarly, it is easy to show that all matroids in M(V ) for a valuated
positroid V are positroids. The converse is an open problem that has been asked by
Felipe Rincón and is related to Problem 7.10 in [RVY19].

Conjecture 1.22. A valuated matroid V is a valuated positroid if and only if every
matroid inM(V ) is a positroid.

Recall that TGr(2, n) (which does not depend on the charateristic) is isomorphic to the
space of phylogenetic trees, see Theorem 4.2.

Proposition 1.23. [SW05, Proposition 5.3] The phylogenetic trees that correspond to
TGr+(2, n)/Rn are those which are dual to triangulations of a polygon Pn whose edges
are labeled by [n] in cyclical order.

The way in which total positivity relies on the cyclic order is strikingly similar to Harnack
curves (see Theorem 4.2). One way in which this is reflected is that the 3 × n matrix
used in the proof of Theorem 7.19 is totally non-negative. We can make a more explicit
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connection. Let ∆ be a lattice polygon with n sides and no lattice points in the boundary
other than vertices. Consider a rational Harnack curve C in H0,∆ and let Υ′(C) ∈Mtrop

0,n

be the amoeba of C (we here mean the usual spine that does not take into account
contracted components of the complement of the amoeba, not the expanded spine that we
introduce in Theorem 7.9). Let us identify TGr+(2, n) with the corresponding subsapce
ofMtrop

0,n by Theorem 1.23.

Corollary 1.24. The map Υ′ : H0,∆ →Mtrop
0,n is a homeomorphism between H0,∆ and

TGr+(2, n).

One could expect then to associate the closure H0,∆ with the tropical non-negative
Grassmannian. However modding out the lineality space makes the corresponding val-
uated matroid ambiguous. Instead, similar as what we do in Chapter 8, the reasonable
object to use as boundary in a compactification of TGr+(2, n) inMtrop

0,n is collections of
valuated positroids, one for each facet of a matroid subdivision.

This same idea can be used to construct a compactification of the local Dressian of
a given matroid (see Chapter 5) modulo the lineality space, in a similar way as in
Theorem 1.11.

Proposition 1.25. Let M be a matroid on [n] and L be the lineality space of its local
Dressian Dr(M). Then Dr(M)/L has a compactification given by considering all regular
matroid subdivisions S of PM and all collections of valuated matroids V1, . . . Vs, one
for each facet of S, such that that the linear spaces agree in the common intersection.
More precisely, if M is the intersection of the undelying matroids of Vi and Vj, i.e.
PM = PVi ∩ PVj , then

Vi|M = Vj |M ∈ Dr(M).





Chapter 2

Review on polytopal subdivisions
and tropical geometry.

2.1 Polyhedral complexes

We start by introducing the basic concepts of polyhedral theory. The main references
regarding polyhedra and polyhedral complexes are [Zie95, Grü03] and for subdivisions
and triangulations we recommend [DLRS10].

A polyhedron P is the feasible set of a system of linear inequalities, that is

P = {x ∈ Rd | Ax ≤ b}

for a matrix A ∈ Rd×m and b ∈ Rm. If P is a bounded polyhedron we call it a polytope.
Its dimension is the dimension of its affine span.

Given a functional w : Rd → R, the face of P defined by w is

Pw := {x ∈ P | w · x ≤ w · y, ∀y ∈ P}.

Every face of a polyhedron is a polyhedron and the face of a polytope is a polytope.
Notice that P itself is a face (defined by the 0 functional) and, by convention, the
emptyset is also considered a face. We call vertices the 0-dimensional faces, edges the
(bounded) 1-dimensional faces, and facets the codimension 1 faces. The faces of a
polytope form a lattice (as in poset) by inclusion.

15
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Any polytope is the convex hull of its vertices, that is, if v1, . . . , vm are the vertices of
P then

P = conv(v1, . . . , vn)

:= {λ1v1 + · · ·+ λnvn | λ1, . . . , λn ∈ R≥0, λ1 + · · ·+ λn = 1}.

Example 2.1. • The cube [0, 1]n is the feasible set of the system {0 ≤ xi ≤ 1 | i ∈
[n]}. It is the convex hull of all {0, 1}-vectors in Rn.

• The symplex ∆n−1 is the convex hull of {ei | i ∈ [n]}. It is of dimension n − 1,
since it is the intersection of the cube with the plane {x1 + · · ·+ xn = 1}.

• The k, n-hypersimplex is the convex hull of all {0, 1}-vectors with exactly k ones.
It is the intersection of the cube with the plane {x1 + · · ·+ xn = k}. The vertices
of the hypersimplex are in correspondence with subsets in

({[n]
k}
)
, by taking the

indicator vector of the subset. The edges are always parallel to ei−ej for i, j ∈ [n].
Hypersimplices are possibly the most important polytopes in this thesis. They are
the main characters of Part I and they also play a major role in Part II (see for
example Theorem 4.10).

Definition 2.2. A polyhedral complex C is a collection of polyhedra satisfying the
following axioms:

1. If P ∈ C and F is a face of P then F ∈ C (Closure Proeperty).

2. For any P,Q ∈ C the intersection P ∩Q is a (possibly empty) face of both P and
Q (Intersection Property).

The support of a polyhedral complex C is the set

⋃
P∈C

P

We call elements of a polyhedral complex cells. We say that a polyhedral complex is pure
if all the maximal cells are of the same dimension. A (polyhedral) cone σ is a polyhedron
such that for any x ∈ σ and λ ∈ R≥0 we have that λx ∈ σ. The lineality space of a cone
is the largest linear space contained in it. Equivalently, the lineality space of a cone is
its minimal non empty face. A (polyhedral) fan is a polyhedral complex consisting of
cones. All cones in a fan have the same lineality space, so we call that space the lineality
space of the fan. If the support of a fan is all of the ambient space Rd we say that the
fan is complete. Given a face F of a polytope P , the closure of the set of vectors that
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defines that face forms a cone:

σ(F ) = {w ∈ Rd | Pw = F}

The (inner) normal fan of a polytope is the fan

{σ(F ) | F face of P}.

The normal fan is a complete fan. The dimension of the lineality space of the normal
fan of P is the codimension of P ; more precisely, the lineality space is the orthogonal
complement of the linear space parallel to the affine span of P . Equivalently, the lineality
space of the normal fan is the space of functionals constant over P .

Remark 2.3. One can also define the normal fan of an unbounded polyhedron. In such
case, we only consider the linear functionals w for which P achieves its minimum. So in
this case the normal fan is not complete.

Definition 2.4. Let A ⊆ Rd a point configuration, i.e., a finite set of points. A polytopal
subdivision of A is a collection of subsets of A, S = {S1, . . . , Ss}, such that

{conv(S1), . . . , conv(Ss)}

is a polyhedral complex with support conv(A). For technical reasons, we require that for
every polytope P there is at most one set Si with Si ∈ P and if P is a face of conv(Sj)
then Sj ∩ P = Si. As with polyhedral complexes, we call the elements of a polytopal
subdivision cells.

Remark 2.5. Sometimes we want to allow A to have repeated points. In other words,
points may have different labels. We consider different subdivisions if the points they
use have different labels (actually, the definition in [DLRS10] uses labels). In this thesis,
this matters in Chapter 3, where different vertices of the hypersimplex may be projected
to the same point.

Given two subdivisions S1 and S2 of A we say that S1 refines S2 if every cell in S1 is
contained in a cell of S2. It is easy to see that refinement is a partial order; it is transitive
and antisymmetric. Hence the set of all subdivisions of A is a poset. We write S1 ≤ S2

if S1 refines S2. The maximal element of this poset is the subdivision {A}. Minimal
elements of this poset are called triangulations of A. The name comes from the fact that
in a triangulation every cell is a simplex.
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Figure 2.1: The mother of all examples

2.2 Regular subdivisions

We now show one of the main recipes for constructing polytopal subdivisions. Let
A ⊆ Rd be a point configuration. Given a function h : A→ R, consider the polyhedron

Ph = conv({(a, t) | a ∈ A, t ≥ h(a)}).

For any bounded face F of Ph, let AF := {a ∈ A | (a, h(a)) ∈ F}. Then the regular
subdivision of A induced by h is

Sh(A) := {AF | F bounded face of Ph}.

Colloquially, the regular subdivision induced by h consists of lifting the points of A at
height h, and projecting back the ‘downward looking’ faces of the convex hull. Not all
subdivisions are regular, as the following examples shows:

Example 2.6 (The mother of all examples). Consider the point configuration of Fig-
ure 2.1 where triangle {1, 2, 3} is homothetic to {4, 5, 6} by a factor of λ > 1. Suppose
the triangulation displayed is regular. Then it exists a height function h : [6]→ R. The
existence of the line {1, 6} implies that h(1) +λh(6) < h(3) +λh(4), the existence of the
line {2, 4} implies that h(2) + λh(4) < h(1) + λh(5) and the existence of the line {3, 5}
implies that h(3) + λh(5) < h(2) + λh(6), all together producing a contradiction.

Let h : A→ R be any function. The following facts are easy to verify:

1. Let f : Rd → R be any affine linear function and let h′ = h+ f |A. Then Sh(A) =
Sh′(A).
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2. Let λ ∈ R be a positive scalar. Then Sh(A) = Sλh(A).

3. Let h′A→ R be a function such that Sh(A) = Sh′(A). Then Sh(A) = Sh+h′(A).

Properties 2 and 3 imply that given a regular subdivision S, the set

σS(A) := {h ∈ RA | Sh(A) = S}

is a cone. Property 1 implies that this cone contains the linear subspace given by the
restrictions to A of all affine functions f : Rd → R. The dimension of this linear space
is the affine dimension dim(A) of A plus 1.

Definition 2.7. The secondary fan of A is the fan given by

{σS(A) | S regular subdivion of A}.

This fan is complete and has a lineality space of dimension dim(A) + 1.

Theorem 2.8. (Gelfand, Kapranov, Zelevinsky [GKZ94, Chapter 7, Theorem 1.17])
There exists a polytope Sec(A), called the secondary polytope of A, whose inner normal
fan equals the secondary fan of A.

This polytope lives in Rn. However, its codimension equals the dimension of the linearity
space of the secondary fan of A, that is, dim(A) + 1. By Theorem 2.8, faces of Sec(A)
are in bijection with regular subdivisions of A. This bijection is order preserving, so
the face poset of Sec(A) is isomorphic to the poset of regular subdivisions of Sec(A). In
particular, vertices of Sec(A) are in bijection with regular triangulations of A.

2.3 Tropical geometry

Tropical geometry is the study of tropical varieties, which can be regarded as ‘combi-
natorial shadows’ of algebraic varieties. A general philosophy in tropical geometry is to
take objects and theorems of algebraic geometry and find tropical analogues of them.
For example, there is an analogue of Bezout’s theorem for tropical curves (see [MS15]).
Tropical varieties retain much of the information of their algebraic counterparts, such
as the degree. However, the combinatorial nature of tropical varieties allow for simpler
computations on them. A great example of this is Mikhalkin’s celebrated correspondence
theorem [Mik05]. Our main reference for tropical geometry is [MS15].



20 Chapter 2. Review on polytopal subdivisions and tropical geometry.

Definition 2.9. The semiring of tropical numbers consists of T := R ∪ {∞} with the
following operations:

a⊕ b = min(a, b) and a� b = a+ b

where a⊕∞ = a and a�∞ =∞.

So, for example, in the tropical semiring

2⊕ 3 = 2 and 2� 3 = 5

. In this semiring, ∞ is the additive identity element and 0 is the multiplicative identity
element.

As a topological space, T is a partial compactification of the Euclidean topology on R
by the point ∞. We take infinity to be positive, i.e. as a basis of neighbourhoods it has
the compactified rays (h,∞] for h ∈ R.

Just as we have polynomials over a ring, we have that a tropical polynomial f in d

variables is of the form

f(x) =
⊕
a∈A

cax
�a = min(x · a+ cv | a ∈ A)

where A ⊆ Nd is a finte set and ca ∈ R. We define the zero set of F as

V(f) = {x ∈ Td | the minimum in f(x) is achieved at least twice}.

We call any V(F ) a tropical hypersurface.

Example 2.10. Consider the tropical polynomial f(x, y) = x⊕ 1� y⊕ 3. The tropical
hypersurface defined by f consists of 3 rays, one for x = 1 + y ≤ 3, another for x = 3 ≤
1 + y and the other one for 1 + y = 3 ≤ x. The three rays meet at the vertex (3, 2).

In general, for any subset of monomials of f the region where those terms are exactly
the ones achieving the minimum is a polyhedron. So V (f) is always the support set of
a polyhedral complex.

To connect algebraic geometry with tropical geometry there is a process called tropical-
ization, which takes polynomials and algebraic varieties to tropical varieties and tropical
hypersurfaces. This process requires a field with a valuation:

Definition 2.11. Let K be a field. A valuation ν over a K is a function ν : K→ T such
that:
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Figure 2.2: The tropical hypersurface V (x⊕ 1� y ⊕ 3)

• For all a and b in K, ν(a+ b) ≥ ν(a)⊕ ν(b) with equality if ν(a) 6= ν(b).

• For all a and b in K, ν(ab) ≥ ν(a)� ν(b).

• ν(a) =∞ if and only if a = 0.

Example 2.12. For any field K, the function

ν(a) :=

∞, if a = 0

0, if a 6= 0

is always a valuation called the trivial valuation.

Example 2.13. The field of Puiseux series over a field K, written K{{t}} is the field of
formal power series of the form

∞∑
i>m

ai/nt
i/n

where n ∈ Z>0, m ∈ Z, ai ∈ K for every i ∈ Z≥m and t is just a formal variable. The
sum and multiplication are the expect ones which extend that of polynomials. If K is
algebraically closed then K{{t}} is also algebraically closed. It has a valuation given by

∞∑
i>m

ai/nt
i/n 7→ min({q ∈ Q | aq 6= 0}).

with the convention ν(∅) = ∞. The image of this valuation is Q ∪ {∞}. For more on
Puiseux series see [Mar10]

Let f be any Laurent polynomial in K[x±1 , . . . , x
±
d ]. We can write it as

f =
∑
a∈A

cax
a
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for a finite set A ⊆ Zd. The tropicalization of f is the tropical polynomial

trop(f) :=
⊕
a∈A

ν(ca)x�a

= min
a∈A

(ν(ca) + a · x)

If ν is the trivial valuation, then the coefficients of trop(f) are all equal to 0. In this
case, the tropical hypersurface V (trop(f)) is a fan.

For a vector x = (x1, . . . , xd) ∈ Kd we write ν(x) for (ν(x1), . . . , ν(xd)) ∈ Td. The
following is one of the earliest theorems in tropical geometry, stating the link between
tropical hypersurfaces and algebraic hypersurfaces (see [MS15, Theorem 3.1.3]):

Theorem 2.14. Kapranov’s Theorem [EKL06] Let K be an algebraically closed field
with a non-trivial valuation ν. Let f ∈ K[x±1 , . . . , x

±
d ] be a Laurent polynomial and

V(f) ⊆ K∗ be its zero set. Then

V(trop(f)) = ν(V(f)).

Informally, Kapranov’s theorem says that taking zeros and tropicalizing commute.

Tropical hypersurfaces can be understood from the perspective of regular subdivisions.
Let f be a tropical polynomial as above. The coefficients ca can be seen as a height
vector c : A → R, so they induce a regular subdivision Sc of A, given by projections of
the bounded faces of the polytope

P = conv({(a, t) | a ∈ A, t ≥ h(a)}.

Every bounded face Q of P is of the form P (w,1) for a vector (w, 1) ∈ Rd+1. But
(w, 1) · (a, ca) = ca � w�a, so AQ consists of all the points a whose corresponding term
in f(w) achieve the minimum. Hence trop(f) is the set of all vectors w such that AQ is
not a singleton, that is, such that P (w,1) is not a vertex.

Given a bounded face Q of P , the of set of vector w such that Q = P (w,1) is the
intersection of the normal cone σ(Q) and the hyperplane {xd+1 = 1}. So the support of
trop(f) is the support of a polytopal complex, which is the union of all w for which P (w,1)

is not a vertex. To see that it is indeed a complex, notice that it is the intersection of all
the cones of positive codimension of the normal fan of P with the hyperplane {xd+1 = 1}.
This shows that trop(f) is ’dual’ to the subdivision Sc(A); for every cell S of dimension
k ≥ 1 in Sc(A), there is a polytope of codimension k in trop(f) which is orthogonal to
S.
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Algebraic varieties of higher codimension can also be tropicalized. Let K be a field with
valuation and consider X = V(I) an algebraic variety in (K∗)d. Then the tropicalization
of X is

trop(X) :=
⋂
f∈I

V (trop(f)).

Once again, trop(X) is the support of a polyhedral complex. The following is a gener-
alization of Kapranov’s theorem.

Theorem 2.15. The Fundamental Theorem of Tropical Geometry [MS15, Theorem
3.2.5] Let K be an algebraically closed field with a non-trivial valuation ν. Let I be an
ideal of K[x±1 , . . . , x±n ] and X = V(I). Then

trop(X) = ν(X)

Remark 2.16. If {f1, . . . , fk} is a basis of I, in general trop(X) may not be the in-
tersection of the tropical hypersurfaces V(trop(f1)) ∩ · · · ∩ V(trop(f1)). Any inter-
section of tropical hypersurfaces is called a tropical prevariety. Whenever trop(X) =
V(trop(f1))∩ · · · ∩V(trop(f1)) we call {f1, . . . , fk} a tropical basis I. Every ideal has a
finite tropical basis [MS15, Theorem 2.6.5].

IfX is an irreduible variety, trop(X) is a pure polyhedral complex of the same dimension.

As a direct analogy from the classical projective space, we can define the tropical linear
projective space TPd−1 as

(Td \ {(∞, . . . ,∞)})/R(1, . . . , 1)

where R(1, . . . , 1) is tropical scaling (adding a constant to all coordinates). If the tropical
polynomial f is homogeneous, i.e. all monomials have the same degree, then V(f) is
closed under the R action. So there is a well defined vanishing locus

(Td \ {(∞, . . . ,∞)})/R(1, . . . , 1) ⊂ TPd−1

which we call a tropical projective variety.

In this thesis we study two particular types of tropical varieties:

• Those of degree 1, that is, tropical linear spaces. They are the main object of
study in Part II. We take tropical linear spaces as projective tropical varieties.
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• Hypersurfaces of dimension 1, that is, plane tropical curves. In Part III we asso-
ciate to each Harnack curve a plane tropical curve that we call the expanded spine
(see Theorem 7.9)



Part I

Hypersimplicial Subdivisions

25





Chapter 3

Hypersimplicial Subdivisions

3.1 Introduction

The main object of study in this chapter are hypersimplicial subdivisions, defined as
follows. Let A be a set of n points affinely spanning Rd. Let ∆n be the standard
(n− 1)-dimensional simplex in Rn. Consider the linear projection π : Rn → Rd sending
the vertices of ∆n to the points in A. (We implicitly consider the points in A labelled
by [n], so that π sends ei to the point labelled by i). Let ∆(k)

n := k∆n ∩ [0, 1]n be
the standard hypersimplex and A(k) the image of the vertices of ∆(k)

n under π (so that
points in A(k) are labelled by k-subsets of [n]). A hypersimplicial subdivision of A(k)

is a polyhedral subdivision of conv(A(k)) such that every face of the subdivision is the
image of a face of ∆(k)

n under π. Put differently, we call hypersimplicial subdivisions
the π-induced subdivisions of the projection π : ∆(k)

n → conv(A(k)), as introduced in
[BS92, BKS94] (see also [Rei99, DLRS10]). See more details in Section 3.2.

One reason to study such subdivisions comes from the case where A ⊂ R2 are the
vertices of a convex polygon. Galashin [Gal18] shows that in this case fine hypersimplicial
subdivisions, which we call hypertriangulations, are in bijection with maximal collections
of chord-separated k-sets. These, in turn, correspond to reduced plabic graphs, [OPS15]
which are a fundamental tool in the study of the positive Grassmannian [Pos06, Pos19].

More generally, it is of interest the case where A are the vertices of a cyclic polytope
C(n, d) ⊂ Rd. (The n-gon is the case d = 2). In [Pos19, Problem 10.3] Postnikov asks
the generalized Baues problem for this scenario; that is, he asks whether the poset of
hypersimplicial subdivisions of C(n, d)(k) has the homotopy type of a (n−d−2)-sphere.
For k = 1 this was shown to have a positive answer by Rambau and Santos [RS00]. For
d = 2, Balitskiy and Wellman show the poset to be simply connected and again ask the

27
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Baues question for it ([BW19, Theorem 6.4 and Question 6.1]). We here give the answer
to this:

Theorem 3.1. Let Pn be the vertices of any convex n-gon. The poset of hypersim-
plicial subdivisions B(∆(k)

n → P(k)
n ) retracts onto the poset of coherent hypersimplicial

subdivisions. In particular, it has the homotopy type of an (n− 4)-sphere.

[Pos19, Problem 10.3] also asks for which values of the parameters can all hypersimplicial
subdivisions of C(n, d)(k) be lifted to zonotopal tilings of the cyclic zonotope. This
was already known to be false for d = 1 [Pos19, Example 10.4] and we generalize the
counterexamples to every odd dimension:

Theorem 3.2. Consider the cyclic polytope C(n, d) ⊂ Rd for odd d and n ≥ d + 3.
Then, for every k ∈ [2, n − 2] there exist hypersimplicial subdivisions of C(n, d)(k) that
do not extend to zonotopal tilings of the cyclic zonotope Z(C(n, d)).

In contrast, Galashin [Gal18] showed that the answer to Postnikov’s question is positive
in dimension two for hypertriangulations, a result that was generalized to all hypersim-
plicial subdivisions by Balitskiy and Wellman [BW19, Lemma 6.3].

The poset of coherent hypersimplicial subdivisions of any A is isomorphic to the face
poset of a polytope, a particular case of a fiber polytope. When k = 1 this is just the
secondary polytope of A, so for k > 1 we call it the k-th hypersecondary polytope of
A. We study hypersecondary polytopes for any A ⊂ Rd and k ≤ d + 1. Specifically,
we show that these polytopes are normally equivalent to the Minkowski sum of certain
faces of the secondary polytope of A. By symmetry, an analogue statement holds for
n− d− 1 ≤ k < n.

Theorem 3.3. Let A ⊆ Rd be a configuration of size n and k ∈ [d + 1]. Let s =
max(n − k + 1, d + 2). The hypersecondary polytope F (k)(A) is normally equivalent to
the Minkowski sum of the secondary polytopes of all subsets of A of size s.

The chapter is organized as follows: Section 3.2 introduces notation and basic back-
ground on induced subdivisions in general, and hypersimplicial subdivisions in particu-
lar. In Section 3.3 we look at coherent hypersimplicial subdivisions and hypersecondary
polytopes as Minkowski sums and prove Theorem 3.3, among other results. In Sec-
tion 3.4 we study the connection of hypersimplicial subdivisions with zonotopal tilings.
In particular, we extend to tiles of positive dimension the concept of A-separated sets
introduced in [GP17]. With this machinery we show that if all hypertriangulations of
A are separated then all hypersubdivisions are separated too (Theorem 3.36). In Sec-
tion 3.5 and Section 3.6 we prove Theorem 3.2 and Theorem 3.1 respectively. Finally,
we briefly discuss the enumeration of hypersimplicial subdivisions of P(2)

n in Section 3.7.
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3.2 Preliminaries and notation

3.2.1 Fiber polytopes

We here briefly recall the main concepts and results on fiber polytopes. See [BS92] or
[Rei99] for more details.

Let π : Rn → Rd be a linear projection map. Let Q ⊂ Rn be a polytope and let
A = π(vertices(Q)). A π-induced subdivision of A is a polyhedral subdivision S (in the
sense of, for example, [DLRS10]), such that every face of S is the image under π of a
face F of Q.

Given a vector w ∈ (Rn)∗ the face Qw of Q selected by w is the convex hull of all vertices
of Q which minimize w. A π-coherent subdivison is a π-induced subdivision in which
the faces of Q are chosen “coherently” via a vector w ∈ (Rn)∗. More precisely, we define
the π-coherent subdivision of A given by w to be

S(Q π→ A,w) :=
{
π(F ) : ∃w̃ ∈ (Rn)∗ s.t. w̃|ker(π) = w|ker(π) and Qw̃ = F

}
.

The fiber fan of the projection Q π→ A is the stratification of (Rn)∗ according to what
π-coherent subdivision is produced. It is a polyhedral fan with linearity space equal to

{w ∈ (Rn)∗ : ker(π) ⊂ ker(w)}+ {w ∈ (Rn)∗ : w|Q = constant}.

As we will see below, it is the normal fan of a certain polytope F(Q π→ A) of dimension
dim(Q)− dim(A).

To define F(Q π→ A), we look at fine π-induced subdivisions. A π-induced subdivision
S is fine if dim(F ) = dim(π(F )) for each of the faces F ≤ Q whose images are cells in
S Put differently, a fine π-induced subdivision is the image of a subcomplex of Q that
is a section of π : Q→ conv(A). To each fine π-induced subdivision S we associate the
following point:

GKZ(S) :=
∑
F≤Q
π(F )∈S

vol(π(F ))
vol(A) c(F ) ∈ Rn,

where c(F ) denotes the centroid of F .

Definition 3.4. The fiber polytope of the projection π : Q→ conv(A) is the convex hull
of the vectors GKZ(S) for all fine π-induced subdivisions. We denote it F(Q→ A).

The main property of the fiber polytope is the following result of Billera and Sturmfels.
In fact, for the purposes of this chapter this theorem can be taken as a definition of the
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fiber polytope, since our results are mostly not about the polytope but about its normal
fan (see, eg Section 3.3).

Theorem 3.5 (Billera and Sturmfels [BS92]). F(Q → A) is a polytope of dimension
dim(Q)− dim(A) whose normal fan equals the fiber fan.

In particular, the face lattice of F(Q → A) is isomorphic to the poset of π-coherent
subdivisions ordered by refinement. For example, vertices of F(Q → A) correspond
bijectively to fine π-coherent subdivisions.

Two cases of this construction are of particular importance. Let A = {a1, . . . , an} ⊂ Rd

be a configuration of n points. Then:

1. If we let π : ∆n → conv(A) be the affine map ei 7→ ai bijecting vertices of ∆n to A,
then all the polyhedral subdivisions of A are π-induced, and the coherent ones are
usually called regular subdivisions of A. The corresponding fiber polytope is the
secondary polytope of A and we denote it F (1)(A) (in the next sections we define
F (k)(A) for other values of k).

2. Let
Z(A) =

∑
i

conv{0, (ai, 1)} ⊂ Rd+1

be the zonotope generated by the vector configuration A× {1} ⊂ Rd+1. The π in
the previous case extends to a linear map π : [0, 1]n → Z(A) still sending ei 7→ ai.
Then the π-induced subdivisions are precisely the zonotopal tilings of Z(A). The
corresponding fiber polytope is the fiber zonotope of Z(A) (or of A) and we denote
it FZ(A).

3.2.2 The Baues problem

The poset of all π-induced subdivisions (excluding the trivial subdivision for technical
reasons) is called the Baues poset of the projection and we denote it B(Q → A). The
subposet of π-coherent subdivisions is denoted Bcoh(Q → A). The Baues problem is,
loosely speaking, the question of how similar are B(Q→ A) and Bcoh(Q→ A), formalized
as follows:

To every poset P one can associate a simplicial complex called the order complex of P by
using the elements of P as elements and chains in the poset as simplices. In particular,
one can speak of the homotopy type of P meaning that of its order complex. Similarly,
an order preserving map of posets

f : P1 → P2
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induces a simplicial map between the corresponding order complexes, and one can speak
of the homotopy type of f .

The prototypical example is the following: if P is the face poset of a polyhedral complex
C, then the order complex of P is (isomorphic to) the barycentric subdivision of C. In
particular, since Bcoh(Q→ A) is the face poset of the polytope F(Q→ A), it is homotopy
equivalent (in fact, homeomorphic) to a sphere of dimension dim(Q)− dim(A)− 1.

Question 3.6 (Baues Problem). Under what conditions is the inclusion Bcoh(Q →
A) ↪→ B(Q→ A) a homotopy equivalence?

See [Rei99] for a (not-so-recent) survey about this question, and [San06, Liu17] for
examples where the answer is no and having Q a simplex and a cube, respectively.

3.2.3 Cyclic polytopes

Cyclic polytopes are a family of polytopes of particular interest for this manuscript and
are defined as follows. The trigonometric moment curve (also known as the Carathéodory
curve), is parametrized by

φd : t→ (sin(t), cos(t), sin(2t), cos(2t), . . . ) ∈ Rd.

Let t1, . . . , tn be n cyclically equidistant numbers in [0, 2π), for example, ti = 2π(i−1)
n .

The cyclic polytope C(n, d) is the convex hull of φ(t1), . . . , φ(tn).

The combinatorics of the cyclic polytope can be nicely described in terms of the circuits
of the corresponding oriented matroid. Namely, all circuits are of the form

({a1, a3, . . . }, {a2, a4, . . . })

such that a1 < a2 < · · · < ad+2 and their opposites (giving the label i to the vertex
φ(ti)).

Cyclic polytopes can also be defined by using the polynomial moment curve t →
(t, t2, . . . , td) instead of the trigonometric moment curve and the combinatorial type
remains the same. However, the coherence of subdivisions and hence fiber polytopes de-
pend also on the embedding (see Theorem 3.25). When using the trigonometric moment
curve in even dimension the cyclic polytope has more symmetry. That is, it is invariant
under the cyclic group action on the vertices. When d = 2 the cyclic polytope C(n, 2)
is a is a regular polygon and we abbreviate it by Pn.
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The Baues problem is known to have positive answer for cyclic polytopes in the following
two cases:

Theorem 3.7 ([RS00, SZ93]). Let n > d ∈ N. Then, the following two cases of the
Baues question have a positive answer:

• When Q = ∆n and A = C(n, d) is the cyclic polytope of dimension d with n

vertices [RS00].

• When Q = [0, 1]n and A = Z(C(n, d)) is the cyclic zonotope of dimension d + 1
with n generators [SZ93].

3.2.4 Hypersecondary polytopes.

Let A = {a1, . . . , an} ∈ Rd be a point configuration. For each k = 1, . . . , n − 1 we
consider the following k-th deleted (Minkowski) sum of A with itself, which we denote
A(k):

A(k) :=
{
ai1 + · · ·+ aik ∈ Rd : {i1, . . . , ik} ∈

(
[n]
k

)}
.

The k-th deleted sum of the standard (n− 1)-simplex ∆n := conv(e1, . . . , en) equals the
k-th hypersimplex of dimension n− 1:

∆(k)
n := conv

{∑
i∈B

ei : B ∈
(

[n]
k

)}
= [0, 1]n ∩

{
x :

n∑
i=1

xi = k

}
.

(Observe that the notation ∆(k)
n here is an abbreviation of conv(vertices(∆n)(k))).

As mentioned above, the projection Rn → Rd × {1} that sends the vertices of ∆n to
A extends to a linear map Rn → Rd+1 that sends the unit cube [0, 1]n to the zonotope
Z(A). In turn, this linear map restricts to an affine map sending each ∆(k)

n ⊂ Rn to
A(k) ⊂ Rd × {k}. We use the same letter π for all these projections.

Definition 3.8. The π-induced subdivisions of the projection π : ∆(k)
n → A(k) are called

hypersimplicial subdivisions of level k of A, or just hypersimplicial subdivisions of A(k).
Fine hypersimplicial subdivisions are called hypertriangulations. We denote B(k)(A) and
F (k)(A) the corresponding Baues poset and fiber polytope, and call the latter the k-
th hypersecondary polytope of A. We denote B(k)

coh(A) for the coherent subdivisions in
B(k)(A).

Remark 3.9. The Baues poset B(k)(A) only depends on the oriented matroid of A while
B(k)

coh(A) does depend on the embedding of the oriented matroid.
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3.2.5 Lifting subdivisions

By construction, the intersection of any zonotopal tiling of Z(A) with the hyperplane∑
xi = k is a hypersimplicial subdivision of A(k). But the converse is in general not true.

Not every hypersimplicial subdivision of A(k) “extends” to a zonotopal tiling of Z(A).
Following [BLVS+99, Pos19, San02] the ones that extend are called lifting hypersimplicial
subdivisions. The following are examples of them:

• For a cyclic polytope C(n, d), all triangulations in the standard sense (that is, all
hypertriangulations of C(n, d)(1)) are lifting [RS00]. The same is not known for
non-simplicial subdivisions.

• For arbitrary k and a convex n-gon Pn, all hypertriangulations of P(k)
n are lift-

ing [Gal18]. The same result for all hypersimplicial subdivisions has recently been
provedin [BW19].

Non-lifting triangulations of A(1) are not known in dimension two but easy to construct
in dimension three or higher. For example, if a subdivision S of A has the property that
its restriction to some subset B of A cannot be extended to a subdivision of B, then
S is non-lifting. Such subdivisions (and triangulations) exist when A is the vertex set
of a triangular prism together with any point in the interior of it, the vertex set of a
4-cube, or the vertex set of ∆4 ×∆4, among other cases (see, e.g., [San02, Chapter 5],
or [DLRS10, Proof (10) in Sect. 7.1.2, ]).

To better understand lifting subdivisions, let us look at zonotopal tilings of Z(A). We
denote BZ(A), BZcoh(A) and FZ(A) for the poset of zonotopal tilings, its subposet of
coherent tilings and the secondary zonotope of Z(A) respectively. We call any subset
of [n] a point, since it represents an element of the point configuration

∑
i∈[n]{0, ai}. A

tile is a poset interval [X,Y ] of the boolean poset 2[n], where X ⊆ Y . To be precise,
[X,Y ] := {I ⊆ [n] | X ⊆ I ⊆ Y }. Geometrically, we think of [X,Y ] as the zonotope
X + Z(Y \X), but we prefer the combinatorial notation where the tile is described as
the set of vertices of [0, 1]n of which it is the projection.

Every tile is a cell in a coherent zonotopal tiling of Z(A), by letting w(j) be −1, 0 or
1 depending on whether j is in X, Y \X, or none of them. Indeed, this w gives value
at least −|X| to every point in Z(A), with equality if and only if the point belongs to
[X,Y ].

Turning our attention to hypersimplices, observe that every face of the hypersimplex ∆(k)
n

is the intersection of a face of [0, 1]n with the hyperplane {x :
∑n
i=1 xi = k}. Therefore
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we can denote the projection under π of any face of ∆(k)
n by

[X,Y ](k) := [X,Y ] ∩
(
Rd × {k}

)
= {B | X ⊆ B ⊆ Y |B| = k}.

By definition, a subdivision of A(k) is hypersimiplicial if and only if all of its cells are of
the form [X,Y ](k). A hypersimplicial subdivision is fine if for every cell [X,Y ]k we have
that Y/X is an affine basis in A. This spells out the following relation with zonotopal
tilings:

Proposition 3.10. For every configuration A of n points and every k ∈ [n− 1]:

1. Intersection of zonotopal tilings with the hyperplane at level k induces an order-
preserving map

r(k) : BZ(A)→ B(k)(A).

2. The normal fan of FZ(A) refines the normal fan of F (k)(A).

Proof. For the first claim, notice that the intersection of a zonotopal tiling S = {[Xi, Yi] |
i ∈ I} with the hyperplane Rd × k gives the subdivision

r(k)(S) :=
{

[Xi, Yi](k) | i ∈ I |Xi| < k < |Yi|
}
∪
{
X ∈

(
n

k

)
∩ S

}

of A(k), which clearly is hypersimplicial. We denote r(k)(S) as S(k) for simplicity. The
second claim follows from the fact that S(Z(A), w)(k) = S(A(k), w) for every w ∈ (Rn)∗.

We say that a tile [X,Y ] covers level k, if |X| < k < |Y |. In other words, [X,Y ] covers
level k if [X,Y ](k) is of positive dimension.

Example 3.11. Consider the regular hexagon P6. Figure 3.1 shows a hypersimplicial
subdivision of P(2)

6 whose set of facets are the triangles [∅, 123](2), [∅, 135](2), [∅, 156](2),
[∅, 345](2), [1, 1236](2), [1, 1356](2), [3, 1235](2), [3, 2345](2), [5, 1345](2) and [5, 1456](2).
The colour of the triangle [X,Y ](2) is dark gray if X = ∅ and white if |X| = 1, which
agrees with the colouring of vertices of the corresponding plabic graph (see [Gal18]).

This subdivision is not coherent. To see this, suppose there is a lifting vector w ∈ (R∗)6

whose regular subdivision is this. Then notice that the presence of the edge [1, 136](2)

implies w3 +w6 < w2 +w5, the presence of the edge [3, 235](2) implies w2 +w5 < w1 +w4

and the presence of the edge [5, 145](2) implies w1 + w4 < w3 + w6, together forming
a contradiction. This contrasts the fact that every subdivision of a convex polygon is
regular.
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Figure 3.1: A non-coherent hypersimplicial subdivision of P(2)
6 .

3.2.6 Lifting subdivisions via Gale transforms. The Bohne-Dress The-
orem

As a general reference for the contents of this section we recommend the book [DLRS10],
more specifically Chapters 4, 5 and 9.

A Gale transform of a point configuration A = {a1, . . . , an} is a vector configuration
GA = {a∗1, . . . , a∗n} with the property that a vector (λ1, . . . , λn) ∈ Rn is the coefficient
vector of an affine dependence in A if and only if it is the vector of values of a linear
functional on GA. The definition implicitly assumes a bijection between A and GA

given by the labels 1, . . . , n.

Gale duality is an involution: the Gale duals of a Gale dual of A are linearly isomorphic
to A when considering A as a vector configuration via homogenization, by which we
mean looking at affine geometry on the points a1, . . . , an as linear algebra on the vectors
(a1, 1), . . . , (an, 1). In fact, if A and B are Gale duals to one another then their oriented
matroids are dual, which implies that their ranks add up to n. In our setting where A
has affine dimension d and hence rank d+ 1, its Gale duals have rank n− d− 1.

The normal fan of the secondary polytope F (1)(A) of A lives naturally in the ambient
space of GA: it equals the common refinement of all the complete fans with rays taken
from GA. Put differently, vectors w ∈ span(GA) are in natural bijection to lifting
functions A → R (where the latter, which forms a linear space isomorphic to Rn, is
considered modulo the linear subspace of affine functions restricted to A). Under this
identification, w1 and w2 define the same coherent subdivision of A if and only if they lie
in exactly the same family of cones among the finitely many cones spanned by subsets
of B. The precise combinatorial rule to construct the coherent subdivision S = S(∆n

π→
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A,w) of A induced by a w ∈ span(GA) is: a subset Y ⊂ [n] is a cell in S if and only if
w lies in the relative interior of [n]\Y .

This rule can be made purely combinatorial as follows. Instead of starting with a vector
w ∈ span(GA), letM∗(A) be the oriented matroid of GA and letM′ be a single-element
extension ofM∗(A). That is,M′ is an oriented matroid of the same rank asM on the
ground set [n] ∪ {w} and such that M′ restricted to [n] equals M∗(A). Any vector
w ∈ span(GA) induces such an extension, but the definition is more general since M′

needs not be realizable, or it may be realizable but not extend the given realization GA

ofM∗(A). Yet, any such extension w allows to define a subdivision S(w) of A as follows.

Proposition 3.12. With the notation above, the following rules define, respectively, a
polyhedral subdivision S(1)(A,w) of A and a zonotopal tiling S(Z)(A,w) of Z(A):

1. A subset Y ⊂ [n] is a cell in S(1)(A,w) if and only if ([n] \ Y, {w}) is a vector in
the oriented matroidM′.

2. An interval [X,Y ] is a tile in S(Z)(A,w) if and only if ([n]\Y,X∪{w}) is a vector
in the oriented matroidM′.

By construction, S(1)(A,w) is the slice at height 1 of S(Z)(A,w). In fact:

Theorem 3.13 (Bohne-Dress Theorem). The construction of Theorem 3.12(2) is a
bijection (and a poset isomorphism, with the weak map order on extensions of M∗(A))
between one-element extensions ofM∗(A) and zonotopal tilings of Z(A). In particular,
lifting subdivisions of A(1) are precisely the ones that can be obtained by the construction
in Theorem 3.12(1).

3.3 Normal fans of hypersecondary polytopes

The goal of this section is to study hypersecondary polytopes, and the relations between
them and the secondary zonotope. Most of such relations say that the normal fan of
one of the polytopes refines that of another one. We introduce the following definition
to this effect:

Definition 3.14. Let P,Q ∈ Rd be two polytopes. We say that Q is a Minkowski
summand of P , and write Q ≤ P , if any of the following equivalent conditions holds:

1. The normal fan of P refines that of Q.

2. P +Q is combinatorially isomorphic to P .
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If P and Q are Minkowski summands of one another then they are normally equivalent
and we write P ∼= Q.

Remark 3.15. The equivalence of these two conditions follows from the fact that the
normal fan of P + Q is the common refinement of the normal fans of P and Q. It can
be shown Q ≤ P is also equivalent to the existence of a polytope Q′ and an ε > 0 such
that P = Q′ + εQ, hence the name “Minkowski summand”.

Throughout this section we will assume that A ⊆ Rd is a point configuration that spans
affinely Rd. As a first example, it follows from Theorem 3.10 that:

Proposition 3.16. For every configuration A ⊂ Rd of size n:

1. F (k)(A) ≤ FZ(A).

2. Let k0 = 0 < k1 < · · · < kp = n be a sequence of integers with ki+1 − ki ≤ d + 1
for all i. Then,

FZ(A) ∼=
p∑
i=0
F (ki)(A).

In particular:

Corollary 3.17. For every configuration A ⊂ Rd of size n,

1. If n ≤ 2d+ 2 then

FZ(A) ∼= F (k)(A), ∀k ∈ [n− d− 1, d+ 1].

2. If n ≥ 2d+ 2 then
n−d−1∑
k=d+1

F (k)(A) ∼= FZ(A).

Lemma 3.18. Let S be coherent zonotopal subdivision of A and let B ⊆ A be a spanning
subset. Then there is at most one X ⊆ A\B, such that [X,X ∪B] ∈ S.

Proof. Let w ∈ (R∗)n such that S = S(Z(A), w). Since B is of maximal dimension,
there is at most one w̃ such that w̃|ker(π) = w|ker(π) and w · b = 0 for every b ∈ B. If
such w̃ exists then the only tile of the form [X,X ∪ B] that is in S is the one where
X = {x ∈ A | w̃ · x < 0}. If no such w̃ exists then there is no tile of that form in the
subdivision.

In the following result and in the rest of this section we denote by AJ the subset of A
labelled by J , for any J ⊂ [n].
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Lemma 3.19. Fix k ≥ 1 and a lifting vector w ∈ (Rn)∗, for a point configuration A

of size n. For each tile [X,Y ] ⊂ 2[n] such that Y \X a basis of A, the following are
equivalent:

1. [X,Y ](k+1) is a cell in S(k+1)(A,w).

2. There is an x ∈ X such that [X\x, Y \x](k) is a cell in S(k)(A[n]\x, w) but not in
S(k)(A,w).

3. For every x ∈ X, [X\x, Y \x](k) is a cell in S(k)(A[n]\x, w) but not in S(k)(A,w).

If, moreover, k > 1, then they are also equivalent to:

(4) There are x1, x2 ∈ X such that [X\xi, Y \xi](k) is a cell in S(k)(A[n]\xi , w) for
i = 1, 2.

(5) For every x ∈ X, [X\x, Y \x](k) is a cell in S(k)(A[n]\x, w).

Proof. The implication (3)⇒(2) is obvious.

To show that (2)⇒(1), consider an x such that the cell [X\x, Y \x](k) is a cell in
S((A[n]\x)(k), w). Then by Theorem 3.10, [X\x, Y \x] is a cell of S(Z(A[n]\x), w). There-
fore either [X\x, Y \x] ∈ S(Z(A), w) or [X,Y ] ∈ S(Z(A), w) but not both by Theo-
rem 3.18. In other words, either [X\x, Y \x](k) ∈ S(A(k), w) or [X,Y ](k+1) ∈ S(A(k+1), w)
but not both. Since we assumed [X\x, Y \x](k) 6∈ S(A(k), w), we are done.

To see that (1)⇒(3), notice that if [X,Y ](k+1) ∈ S(A(k+1), w) then [X,Y ] ∈ S(Z(A), w).
So for all x ∈ X we have that the tile [X\x, Y \x] is a cell of S(Z(A[n]\x), w) and
in particular [X\x, Y \x](k) ∈ S((A[n]\h)(k), w). But as [X,Y ] ∈ S(Z(A), w) then by
Theorem 3.18 [X\x, Y \x] can not be a cell of S(Z(A), w), so [X\x, Y \x](k) can not be
a cell of S(A(k), w).

Now assume that k > 1. It is clear that (3)⇒(5)⇒(4). To see that (4)⇒(2) notice that
it if [X\xi, Y \xi](k) ∈ S(A(k), w) holds for i = 1, 2, then the two zonotopes [X\x1, Y \x1]
and [X\x2, Y \x2] are in S(Z(A), w), which can not happen by Theorem 3.18.

Proposition 3.20. For every configuration A of size n and every k ∈ [n − 1] we have
that F (k+1)(A) is a Minkowski summand of

F (k)(A) +
∑
i∈[n]
F (k)(A[n]\i).
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Proof. Saying that F (k+1)(A) is a Minkowski summand of F (k)(A) +
∑
i∈[n]F (k)(A[n]\i)

is equivalent to saying that if, for a given w we know the subdivisions that w induces
in A(k) and in A\x(k) for every x then we also know the subdivision induced in A(k+1).
For a cell [X,Y ](k+1) with |X| = k, Theorem 3.19 says that its presence in S(A(k+1), w)
is determined by its presence in S(A(k), w) and S(A\x(k), w). Cells [X,Y ](k+1) with
|X| < k are in S(A(k+1), w) if and only if [X,Y ](k) ∈ S(A(k), w).

The converse is only true for small k:

Proposition 3.21. For every configuration A ⊆ Rd of size n and every k ∈ [d] we have
that

F (k+1)(A) ∼= F (k)(A) +
∑
i∈[n]
F (k)(A[n]\i).

Proof. One direction is Theorem 3.20. For the other direction we have that by Theo-
rem 3.19 then S(A(k+1), w) determines S(A(k+1)

[n]\i , w) for all i ∈ [n]. Any maximal cell
in [X,Y ](k) ∈ S(A(k), w) must satisfy |Y \X| ≥ d + 1, in particular |Y | ≥ d + 1 > k,
so [X,Y ](k+1) is also a cell in S(A(k+1), w). This implies that S(A(k+1), w) determines
S(A(k), w).

Proposition 3.22. For every configuration A ⊆ Rd of size n > d+ 2 and every k ∈ [d]
we have that

F (k)(A) ≤
n∑
i=1
F (k)(A[n]\i)

Proof. We need to prove that for every w ∈ Rd, knowing S(A(k)
[n]\i, w) for every i deter-

mines S(A(k), w). It is enough to prove it for a generic w, so we can assume the subdi-
visions are fine. Let [X,Y ] be a tile such that Y \X is an affine basis. We claim that
[X,Y ](k) ∈ S(A(k)

[n]\i, w) if and only if [X\i, Y \i](k) ∈ S(A(k)
[n]\i, w) for every i ∈ [n]\(Y \X).

There is exactly one w̃ that agrees with w in ker(π) and such that w̃ · x = 0 for every
x ∈ Y \X. We have that [X,Y ](k) ∈ S(A(k)

[n]\i, w) if and only if w̃ · x < 0 for every x ∈ X
and w̃ · x > 0 for every x ∈ [n]\Y . Notice that as n > d + 2, |[n]\(Y \X)| > 2. Let
i ∈ [n]\(Y \X). As k ≤ d and |Y \X| = d+ 1, then for Y \i > k so [X\i, Y \i](k) is a full
dimensional cell in the level k. So it is in S(A(k)

[n]\i, w) if and only if w̃ · x < 0 for every
x ∈ X\i for all x ∈ X\i and w̃ · x > 0 for every x ∈ [n]\(Y ∪ i). As |[n]\(Y \X)| > 2, we
can do this for two different elements in [n]\(Y \X) so we can verify the sign of w̃ · i for
every i ∈ [n]\(Y \X).

A consequence of this is that Theorem 3.21 can be strengthened as follows:
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Proposition 3.23. For every configuration A ⊆ Rd of size n > d+ 2 and every k ∈ [d]
we have that

F (k+1)(A) ∼=
∑
i∈[n]
F (k)(A[n]\i).

Notice that if n = d + 1 then the fiber polytopes are just points and if n = d + 2 they
are just segments and in particular F (k+1)(A) ∼= F (k)(A). Now we are ready to prove
the main result of this section:

Theorem 3.24. Let A ⊆ Rd be a configuration of size n and k ∈ [d + 1]. Let s =
max(n− k + 1, d+ 2). Then

F (k)(A) ∼=
∑

J∈([n]
s )
F(AJ)

Proof. We prove this by iterating Theorem 3.23 several times. At each iteration, for
1 < i ≤ k, we replace each F (i+1)(AJ) by

∑
j∈[n]
F (i)(AJ\j) if |J | > d+ 2 or by F (i)(AJ) if

|J | = d+2. The iteration stops at level 1 with the desired result (notice that Minkowski
sum is idempotent with respect to normal equivalence).

Example 3.25. Consider the regular hexagon P6. The secondary polytope F (1)(P6) is
the 3-dimensional associahedron, as seen in Figure 3.2. Its border consists of 6 pentagons
and 3 squares. By Theorem 3.24, the hypersecondary polytope F (2)(P6) is normally
equivalent to the Minkowski sum of those 6 pentagons, see Figure 3.3. It has 66 vertices
and the facets consist of 27 quadrilaterals (18 rectangles, 6 rhombi and 3 squares), 6
pentagons, 2 hexagons and 6 decagons. The short edges correspond to flips which do not
change the set of vertices of the triangulation and the long edges correspond to those
flips that do change the set of vertices.

The GKZ vector corresponding to the triangulation from Theorem 3.11 is in the center
of one of the hexagons. There are 4 non-coherent hypertriangulations of P(2)

6 , which
come in pairs with the same GKZ-vector, each in the center of one of the two hexagons.
If instead of a regular hexagon we had a hexagon where the three long diagonals do not
intersect in the same point, two of those subdivisions would become coherent and the
hypersecondary polytope would have instead of each hexagon a triple of rhombi around
the new vertex.

The order complex of the Baues poset B(2)(P6) is the (barycentric subdivision of the
border of the) hyperassociahedron F (2)(P6) where the hexagons are replaced by cubes.
In particular it satisfies the Baues problem, that is, B(2)(P6) retracts onto F (2)(P6). We
will generalize this in Section 3.6.
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Figure 3.2: The associahedron F (1)(P6).

Figure 3.3: The hyperassociahedron F (2)(P6).

3.4 Separation and lifting subdivisions

Throughout this section let A ⊂ Rd be a point configuration labelled by [n], and let
Z(A) ⊂ Rd+1 be the zonotope generated by the vector configuration A×{1} ⊂ Rd×{1}.
Recall that a point in Z(A) is a subset X ⊂ [n] and a tile is an interval [X,Y ] ⊂ 2[n],
where X ⊂ Y ⊂ [n].
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Following [GP17], we say that two points X1, X2 ⊂ [n] are separated with respect to A or
A-separated for short if there is an affine functional positive on AX1\X2 and negative on
AX2\X1 . Equivalently, if there is no oriented circuit (C+, C−) in A with C+ ⊂ X1\X2

and C− ⊂ X2\X1. Their motivation is that the notions of strongly separated and chord
separated that were introduced in [LZ98] and [Gal18, OPS15] are equivalent to “C(n, 1)-
separated” and “C(n, 2)-separated” respectively ([GP17, Lemmas 3.7 and 3.10]).1 One
of their main results is as follows (their statement is a bit more general, since it is stated
for arbitrary oriented matroids, rather then “point configurations”):

Theorem 3.26 ([GP17, Theorems 2.7 and 7.2]). Let A be a point configuration and let
m be the number of affinely independent subsets of A. Then:

1. No family of A-separated points in A has size larger than m.

2. The map sending each zonotopal tiling to its set of vertices gives a bijection

{fine zonotopal tilings of Z(A)} ↔ {S ⊂ 2[n] : S is A-separated and |S| = m}.

We here extend their definition to separation of tiles. In the rest of the chapter we omit
A and write “separated” instead of A-separated:

Definition 3.27. Let [X1, Y1] and [X2, Y2] be two tiles. We say they are separated if
there is no circuit (C+, C−) such that C+ ⊂ Y1 \ X2, C− ⊂ Y2 \ X1 and C+ ∪ C− 6⊆
(Y1 ∩ Y2) \ (X1 ∪X2).

The following diagram illustrates the circuits forbidden by the first two conditions in
this definition. The third condition forbids circuits with support fully contained in the
middle cell:

X2 Y2 \X2 [n] \ Y2

X1 0 ≥ 0 ≥ 0
Y1 \X1 ≤ 0 ∗ ≥ 0
[n] \ Y1 ≤ 0 ≤ 0 0

By the orthogonality between circuits and covectors in an oriented matroid [BLVS+99,
Proposition 3.7.12], and the fact that covectors of a realized oriented matroid are the
sign vectors of affine functionals this definition is equivalent to:

Proposition 3.28. Two tiles [X1, Y1] and [X2, Y2] are separated if there is a covector
(that is, an affine functional) that is positive on (X1 \ X2) ∪ (Y1 \ Y2), negative on
(X2 \X1) ∪ (Y2 \ Y1), and zero on (Y1 ∩ Y2) \ {X1 ∪X2}.

1Observe that [OPS15] uses the expression “weakly separated” for “chord separated”, but “weakly
separated” had a different meaning in [LZ98]
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The following diagram illustrates the sign-patterns of covectors witnessing that two tiles
are separated:

X2 Y2 \X2 [n] \ Y2

X1 ∗ + +
Y1 \X1 − 0 +
[n] \ Y1 − − ∗

Proof. Consider the subset I = (Y1 ∪ Y2) \ (X1 ∩X2) of A, and let A′ be the restriction
of A to I. Remember that the circuits of A′ are the circuits of A with support contained
in A′, while the covectors of A′ are the covectors of A (all of them) restricted to A′. In
particular, the characterization of covectors of A′ as the sign vectors orthogonal to all
circuits says that

((X1 \X2) ∪ (Y1 \ Y2) , (X2 \X1) ∪ (Y2 \ Y1))

is a covector in A′ if and only if a circuit as in the definition of separation does not
exist.

Example 3.29. Two “singleton tiles” (that is, X1 = Y1 and X2 = Y2) are separated as
tiles if and only if they are separated as points in the sense of Galashin and Postnikov.
Two tiles containing the origin, that is with X1 = X2 = ∅, are separated if and only if Y1

and Y2 intersect properly in the usual sense, as cells in A. Finally, the whole zonotope
2[n] = [∅, [n]] is separated from a tile [X,Y ] if and only if the cells Y and [n]\X intersect
properly; this is equivalent to [X,Y ] being a face of the zonotope Z(A).

The following result clarifies the relation between separation of points and tiles. In it,
we say that a tile [X,Y ] is fine if Y \X is an independent set. Fine tiles are the ones
that can be used in fine zonotopal tilings of Z(A).

Proposition 3.30. Let [X1, Y1] and [X2, Y2] be two tiles. If every point B1 ∈ [X1, Y1] is
separated from every point B2 ∈ [X2, Y2], then [X1, Y1] and [X2, Y2] are separated. The
converse holds if the tiles are fine.

Proof. For the first direction, by induction on |Y1\X1| + |Y2\X2|, we can assume that
[X1, Y1] is not a singleton and that every tile properly contained in it is separated from
[X2, Y2]. In particular, taking any element i ∈ Y1\X1 we have that both [X1 ∪ i, Y1] and
[X1, Y1\i] are separated from [X2, Y2]. By Theorem 3.28, that implies the following two
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covectors:

X2 Y2\X2 [n]\Y2

X1 ∗ + +
i ∗ + +

Y1\X1\i − 0 +
[n] \ Y1 − − ∗

X2 Y2\X2 [n]\Y2

X1 ∗ + +
Y1\X1\i − 0 +

i − − ∗
[n] \ Y1 − − ∗

If i ∈ X2 or i ∈ [n]\Y2 then the first or the second covector, respectively, show that
[X1, Y1] and [X2, Y2] are separated. If i ∈ Y2\X2 then elimination of i in these two
covectors gives a covector with values

X2 Y2\X2 [n]\Y2

X1 ∗ + +
i 0

Y1\X1\i − 0 +
[n] \ Y1 − − ∗

,

which again shows that [X1, Y1] and [X2, Y2] are separated.

For the converse, suppose first that [X1, Y1] and [X2, Y2] are separated and let V be the
covector showing it. Let B1 and B2 be points in them. Since the set C := (Y1 \X1) ∩
(Y2 \X1) is independent and is contained in the zero-set of V , no matter what signs we
prescribe for its elements there is a covector V ′ that agrees with V where V is not zero
and has the prescribed signs on C. This implies the points B1 and B2 are separated.

Theorem 3.31. Let [X1, Y1] and [X2, Y2] be two tiles. Then, the following conditions
are equivalent:

1. The tiles are separated.

2. There is a zonotopal tiling of Z(A) using both.

3. There is a coherent zonotopal tiling of Z(A) using both.

4. There is a polyhedral subdivision of A using Y1\X2 and Y2\X1 as cells.

5. There is a coherent polyhedral subdivision of A using Y1\X2 and Y2\X1 as cells.

Proof. Throughout the proof, let A = {a1, . . . , an} and denote ãi = (ai, 1) the corre-
sponding generator of Z(A).
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• 1 ⇒ 3. Suppose the tiles are separated. By Theorem 3.28 this implies there is
a linear functional v ∈ (Rd+1)∗ such that v · ãi takes the following values on the
generators of Z(A):

X2 Y2 \X2 [n] \ Y2

X1 ∗ > 0 > 0
Y1 \X1 < 0 0 > 0
[n] \ Y1 < 0 < 0 ∗

Let w ∈ (Rn)∗ be defined as follows on each i ∈ [n]:

X2 Y2 \X2 [n] \ Y2

X1 −N −2 v · ãi −v · ãi
Y1 \X1 0 0 0
[n] \ Y1 −v · ãi −2 v · ãi +N

where N is a very large positive number. Since w is negative in X1, positive in
[n]\Y1, and zero in Y1\X1, the tile selected by w in the subdivision S(Z(A), w)
is [X1, Y1]. Similarly, the vector w′ ∈ (Rn)∗ defined by w′i = wi + 2v · ãi has the
following values

X2 Y2 \X2 [n] \ Y2

X1 < 0 0 v · ãi
Y1 \X1 2 v · ãi 0 2 v · ãi
[n] \ Y1 v · ãi 0 > 0

,

which shows that [X2, Y2] is also in S(Z(A), w), since the difference between w and
w′ is a linear function.

• 2⇒ 1. By the Bohne-Dress Theorem, zonotopal tilings of Z(A) correspond to lifts
of the oriented matroid of Z(A). Here, a lift is an oriented matroid M of rank
d + 2 on the ground set [n + 1] and such that M/(n + 1) = M(A). The tiles of
the subdivision defined by the liftM are the intervals [X,Y ] ⊂ 2[n] such thatM
has a covector that is negative on X, zero on Y \X, and positive on [n+ 1]\Y .

That is, our hypothesis is that there is a liftM of A that contains the covectors

([n+ 1] \ Y1 , X1) and (X2 , [n+ 1] \ Y2).

Elimination of the element n + 1 among these covectors gives us a covector of
Theorem 3.28.
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• 1⇒ 5. Let v as in the proof of 1⇒ 3, and define w ∈ (Rn)∗ as follows:

X2 Y2 \X2 [n] \ Y2

X1 N 0 0
Y1 \X1 −v · ãi 0 0
[n] \ Y1 −v · ãi −v · ãi N

.

Then w and the w′ defined by w′i = wi + v · ãi show that Y1\X2 and Y2\X1 are
cells in S(A,w).

• 4 ⇒ 1 For C1 := Y1\X2 and C2 := Y2\X1 to be cells in a subdivision it is
necessary that their convex hulls intersect in a common face. That is, there must
be a covector in A that is zero in C1 ∩ C2, negative on C1 \ C2, and positive on
C2 \ C1. These are precisely the same conditions as required in Theorem 3.28.

• 3⇒ 2 and 5⇒ 4 are obvious.

Remark 3.32. With this theorem, it is now easy to see that Theorem 3.18 also holds
for non-coherent subdivisions. If Y1\X1 = Y2\X2 is a spanning set then there can not
be a linear functional vanishing on it, so [X1, Y1] and [X2, Y2] are not separated (unless
X1 = X2, in which case they are the same cell).

Remark 3.33. The definition of separated points and tiles makes sense for an arbitrary
oriented matroid M, since it uses only the notion of circuits, and Theorem 3.28 still
holds in tis more general setting.

The notions of zonotopal tiling and of subdivision also make sense for arbitrary oriented
matroids: the former is interpreted as “extension of the dual oriented matroid” via The-
orem 3.13 and the latter is studied in detail in [San02]. In this setting the implications
(2)⇒ (4)⇒ (1) of Theorem 3.31 still hold, the first one as a consequence of the oriented
matroid analogue of Theorem 3.12 and the second one because our proof above works
at the level of oriented matroids. Yet:

1. The notion of coherent subdivisions needs a realization of the oriented matroid be
given. Not only the notion does not make sense for nonrealizable oriented matroids.
Also, different realizations of the same oriented matroid may have different sets of
coherent subdivisions, and non-isomorphic secondary polytopes/zonotopes.

2. The implication (4)⇒ (2) fails in the example of [San02, Section 5.2] (see Propo-
sition 5.6(i) in that section), and the implication (1) ⇒ (4) fails in the Lawrence
polytope that one can construct from that example.

Corollary 3.34. Let [X1, Y1] and [X2, Y2] be two separated tiles. Then any pair of
subtiles [X̃1, Ỹ1] ⊆ [X1, Y1] and [X̃2, Ỹ2] ⊆ [X2, Y2] are separated.



3.5. Non-separated subdivisions 47

Proof. By Theorem 3.31, there is a zonotopal tiling using [X1, Y1] and [X2, Y2] and such
tiling uses [X̃1, Ỹ1] and [X̃2, Ỹ2].

Proposition 3.35. Let A be a configuration of n pairwise independent points. Let k ∈
[n− 1]. Let [X1, Y1] and [X2, Y2] be two tiles that cover level k (that is, |Xi| < k < |Yi|).
Suppose that [X1, Y1] and [X2, Y2] are not-separated and that one of them is not fine.

Then, there are fine tiles [X ′1, Y ′1 ] and [X ′2, Y ′2 ] contained in [X1, Y1] and [X2, Y2], still
covering level k and still not separated.

Proof. By induction on the dependence rank of the tiles we only need to show that if
[X1, Y1] is dependent then there is a tile [X ′1, Y ′1 ] properly contained in [X1, Y1], covering
level k, and non-separated from [X2, Y2].

Let (C+, C−) be a circuit showing that [X1, Y1] and [X2, Y2] are not-separated. Let
C = C+ ∪ C− be its support.

If there is an element a ∈ (Y1\X1)\C then both [X1 ∪ a, Y1] and [X1, Y1\a] are not
separated from [X2, Y2], and one of them still covers level k, since dependent sets are of
size at least 3.

If there is no such an a, then Y1\X1 ⊂ C. Since C is a circuit we conclude that
Y1\X1 = C. By definition, we have that C− ⊂ Y2 and C+ ⊂ [n]\X2. Again, we take
as new tile [X1 ∪ a, Y1] or [X1, Y1\b], depending on which of the two still covers level k,
where a ∈ C+ and b ∈ C−.

Corollary 3.36. Let A be a point configuration in general position (“uniform”) and let
k ∈ [n − 1]. If no hypertriangulation of A(k) contains two non-separated tiles, then no
hypersimplicial subdivision of A(k) contains them either.

Proof. Suppose that a subdivision S has two non-separated tiles [X1, Y1] and [X2, Y2].
Let [X ′1, Y ′1 ] and [X ′2, Y ′2 ] be the tiles guaranteed by Theorem 3.35. Then, we can refine
[X1, Y1] and [X2, Y2] to fine subdivisions using [X ′1, Y ′1 ] and [X ′2, Y ′2 ]. By general position
this extends to a hypertriangulation refining S and with two non-separated tiles.

3.5 Non-separated subdivisions

We call a subdivision S of A(k) non-separated if it contains two non-separated cells.
Non-separated subdivisions are certainly non-lifting.
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Example 3.37. We here construct a non-separated subdivision in dimension two, which
contrasts the fact that for Pn such things do not exist [BW19]. LetA be the configuration
of the following 5 points in the plane: p1 = (1, 2), p2 = (0, 4), p3 = (4, 4), p4 = (4, 0)
and p5 = (0, 0). Figure 3.4 on the right shows a hypertriangulation of A(2) consisting of
the triangles:

[∅, 234](2), [∅, 245](2),

[2, 1235](2), [2, 2345](2), [4, 1234](2), [4, 1245](2), [4, 1345](2), [5, 1245](2).

The circuit (14, 35) shows that the cell [2, 2345](2) is not separated from the cells
[4, 1234](2) and [4, 1245](2).

Figure 3.4: A not separated hypertriangulation in the plane.

The following non-separated subdivision of C(4, 1)(2) appears in [Pos19, Exm. 10.4]:

S =
{

[1, 123](2), [1, 134](2), [4, 124](2), [4, 234](2)
}
.

Here we generalize it to

Lemma 3.38. For every odd d and every k ∈ [2, d− 2] there is a non-separated hyper-
triangulation of C(d+ 3, d)(k).

Proof. A hypertriangulation of a configuration A with n = d + 3 has all its full-
dimensional cells of one of the following forms, where a < b ∈ [n] and we omit the
superscript (k), which will be clear from the context:

[ ∅, [n]\ab ], [ a, [n]\b ], [ b, [n]\a ], [ ab, [n] ].



3.5. Non-separated subdivisions 49

To simplify notation, we denote these four cells simply as ab, ab, ab and ab, respectively
(observe that we always write the indices a and b in increasing order). For example, in
this notation the subdivision S of C(4, 1)(2) mentioned above becomes

S = {14, 12, 34, 14}(2).

One reason for this notation is that via the correspondence in Theorem 3.12 the tile
[X,Y ] corresponds in GA to the cone spanned by X ∪ [n] \ Y , where we use B to denote
the set of vectors opposite to B, for B ⊂ [n].

With this notation, Theorem 3.12(2) gives us that the following is a (coherent) zonotopal
tiling of Z(C(d+ 3, d)) (Figure 3.5 shows the case of C(6, 3)):

S0 := {ab : a odd, b odd}∪{ab : a odd, b even}∪{ab : a even, b odd}∪{ab : a even, b even}.

1
2

3

4

5
61

2

3

4

5
6

S0
S1 S2

Figure 3.5: The Gale transform of C(6, 3), with the regions corresponding to the
zonotopal tilings S0, S1 and S2 marked in it.

S0 admits the following cubical flips:

• Flip 1: negate the other symbol in every cell containing 1. That is, remove

{1b : b > 1 odd} ∪ {1b : b even}

and insert
{1b : b > 1 odd} ∪ {1b : b even}.

• Flip 2: negate the other element in every cell containing n. That is, remove

{an : a < n even} ∪ {an : a odd}

and insert
{an : a < n even} ∪ {an : a odd}.
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These flips transform S0 into two new coherent tilings S1 and S2, also shown in Fig-
ure 3.5. The two flips are not compatible, since both want to remove the tile 1n from
S0, and we can only remove it once. But 1n only affects level 1 of the tiling, which
means that in any S(k)

0 with k ≥ 2 we can do these two flips one after the other. After
performing them we get a subdivision that contains (for k ∈ [2, d−2]) the non-separated
cells

12 and n− 1n.

To further generalize this construction we need the following easy lemma:

Lemma 3.39. Let A be a d-dimensional configuration of size n in general position. If
A

(k)
[n]\i has a non-separated subdivision S for some i ∈ [n] then A(k) and A(k+1) have

non-separated subdivisions too.

Proof. For A(k) do the following: Extend S to a subdivision S′ of A by adding all
the cells of the form [X,Y ∪ i](k) with [X,Y ] ⊂ 2[n] such that [X,Y ∪ i] is separated
from [∅, [n]\i]. (The latter is equivalent to saying that [X,Y ] is contained in a facet of
Z(A[n]\i) whose normal vector has positive scalar product with i). S′ is non-separated
since it contains S.

ForA(k+1) apply the same construction upside-down. That is, consider the non-separated
subdivision S of A(n−k−1)

[n]\i obtained from S via the map [X,Y ]→ [[n]\Y, [n]\X]. From S

construct a non-separated subdivision S′ of A(n−k−1) as above, then turn S′ upside-down
to get a non-separated subdivision of A(k+1).

Corollary 3.40. For every odd d, every n ≥ d+ 3, and every k ∈ [2, n− 2], there is a
non-separated hypertriangulation of C(n, d)(k).

Question 3.41. Are there non-separated hypertriangulations of C(n, d)(k) for d ≥ 4
even? The case of C(n, 2) suggests that the answer is no.

3.6 Baues posets for A = Pn

In this section we will restrict ourselves to the case when A is a convex polygon Pn.

Definition 3.42. Let S = {[Xi, Yi](ki)}i∈I be a subdivision of P(k)
n . We define

S+ := {[Xi, Yi] | i ∈ I |Yi| > k + 1}

S− := {[Xi, Yi] | i ∈ I |Xi| < k − 1}
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Proposition 3.43. Let S be a zonotopal tiling of Z(Pn). Then

S(k)+ = S(k+1)−

Proof. It is straightforward to check that both sets equal

{[X,Y ] ∈ S | |X| < k |Y | > k + 1}

The proposition suggests we use the notation

S(k+ 1
2 ) := S(k+1)− = S(k)+

and define the following poset:

Definition 3.44. We define B(k+ 1
2 )(Pn) to be the poset on the set

{S(k+ 1
2 ) | S ∈ BZ(Pn)}

where the order is refinement, as in subdivisions: S1 < S2 if and only if ∀σ ∈ S1 ∃τ ∈
S2 : σ ⊆ τ . We have two natural order-preserving maps U : B(k)(Pn) → B(k+ 1

2 )(Pn)
and D : B(k+1)(Pn)→ B(k+ 1

2 )(Pn) such that for every S ∈ BZ(Pn) we have

U(S(k)) = D(S(k+1)) = S(k+ 1
2 ).

Remark 3.45. The maps U and D are well defined thanks to the fact that all hyper-
simplicial subdivisions of Pn are lifting ([BW19]). For more general configurations the
definitions above would only make sense restricted to lifting subdivisions.

Example 3.46. Consider the subdivision T ∈ B(2)(P6) in Figure 3.6 whose maximal
cells are

{
[∅, 124](2), [∅, 234](2), [∅, 1456](2), [1, 1246](2), [2, 1234](2), [4, 1345](2), [4, 2345](2)

}
The gray cells of T in the figure give D(T ); that is:

D(T ) = {[∅, 124], [∅, 234], [∅, 1456]}.

As seen in the right part of the figure, the cells in D(T ) are precisely the ones that have
a full-dimensional intersection with the first level.
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Figure 3.6: The subdivision T ∈ B(2)(P6) of Theorem 3.46 (left) and D(T )(1) (right).

The main result in this section is that U and D induce homotopy equivalences of the
corresponding order complexes (Theorem 3.54). To prove this we use the following
criterion, originally proved by Babson [Bab93]. Another proof can be found in [SZ93]
and some generalizations appear in [BWW05]:

Lemma 3.47 (Babson’s Lemma). Let f : P → Q be an order preserving map between
two posets. Suppose that for every q ∈ Q we have that

1. f−1(q) is contractible, and

2. f−1(q) ∩ P≤p is contractible, for every p ∈ f−1(Q≥q).

Then f is a homotopy equivalence.

For a collection S of subzonotopes of Z(A), let vertices(k)(S) be the set of vertices of
cardinality k of all zonotopes in S. We only consider a point B in [X,Y ] to be a vertex
if it is a face; that is, if [X,Y ] is separated from {B}.

Proposition 3.48. Let S ∈ B(k+ 1
2 )(Pn). Consider a point X ∈ vertices(k)(S). Define

uhS(X) := X ∪ {i ∈ [n] | X ∪ i ∈ vertices(k+1)(S)}.

(Here “ uh” stands for “upper hole”). Then [X,uhS(X)] is separated from every cell in
S.

Proof. Observe that uhS(X) equals

{i ∈ [n] | ∃j ∈ X [X \ j,X ∪ i] is a face of a cell in S}.
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Suppose there exists X ∈ vertices(k)(S) and [I, J ] ∈ S such that [X,∪uhS(X)] and
[I, J ] are not separated. Since d = 2 we may assume that |J \ I| ≤ 2 and there is
Y ∈ [X,uhS(X)](k+2) such that [X,Y ] is not separated from [I, J ]. So we have a circuit
(C+, C−) such that C+ ∈ Y \ I and C− ∈ J \X Further, since S ∈ B(k+ 1

2 )(Pn) we can
also assume |I| ≤ k − 1. Let y ∈ Y \ X. Since y ∈ uhS(X) \ X we have that there is
x ∈ X such that [X \ x,X ∪ y] is a face of a cell in S. Then by Theorem 3.34 and the
fact that S is pairwise separated we have that [X \ x,X ∪ y] is separated from [I, J ].
So C+ can not be contained in X ∪ y. This means that C+ = Y \X. Notice that for
every i ∈ [n] \ C there is y ∈ C+ such that (C+ \ y ∪ i, C−) is a circuit. So if there is
an i ∈ X \ I, this circuit would imply that [X,Y \ y] is not separated from [I, J ], which
can not be as [X,Y \ y] is a face of some cell in S. But this means X \ I = ∅ which is a
contradiction since |X| = k > k − 1 = |I|.

Corollary 3.49. Let S ∈ B(k+ 1
2 )(Pn). Then

S(k+1) ∪ {[X,uhS(X)](k+1) | X ∈ vertices(k)(S)},

together with all their faces, form the unique coarsest subdivision in the fibre D−1(S).

Proof. We need to show that forX1, X2 ∈ vertices(k)(S), [X1,uhS(X1)] and [X2,uhS(X2)]
are separated. If not, we can again assume there are subsets Y1 ⊆ uhS(X1) and
Y2 ⊆ uhS(X2) of cardinality k + 2 such that [X1, Y1] and [X2, Y2] are separated. As
any subtile of them are faces of S, we have that there is a circuit C+ = Y1 \ X1 and
C− = Y2 \X2. Similarly as the proof of 3.48, this implies that X1 = X2. The corollary
follows from the fact that every cell in a subdivision in D−1(S) not coming from S is of
type 1 and hence it is contained in [X,uhS(X)] for some X.

Example 3.50. Consider the subdivision S ∈ B(1)(P6) in Figure 3.6 whose maximal
cells are {

[∅, 124](1), [∅, 234](1), [∅, 145](1), [∅, 156](1)
}
.

We have that
uh(1) = 12456, uh(2) = 1234, uh(3) = 234,
uh(4) = 12345, uh(5) = 156, uh(6) = 156,

so that the coarsest subdivision Ŝ of D−1(S) has maximal cells

{
[∅, 124](2), [∅, 234](2), [∅, 145](2), [∅, 156](2),

[1, 12456](2), [2, 1234](2), [4, 12345](2), [5, 1456](2)
}
.
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The two cells

[3,uh(3)](2) = [3, 234](2) ⊂ [∅, 234](2), and

[6,uh(6)](2) = [6, 156](2) ⊂ [∅, 1456](2)

are also in Ŝ, but they are not maximal: they are edges.

Figure 3.7: The subdivision S ∈ B(1)(P6) of Theorem 3.50 (left) and Ŝ ∈ B(2)(P6)
(right).

Lemma 3.51. Let S ∈ B(k+ 1
2 )(Pn) and let T ∈ B(k+1)(Pn) be such that S ≤ D(T ).

Then, the poset D−1(S) ∩ B(k+1)(Pn)≤T has a unique maximal element.

Proof. Let Ŝ be the maximal element of D−1(S), as described in Theorem 3.49.

Let T ′ ∈ D−1(S), which is a refinement of Ŝ. If a cell [X,Y ](k+1) ∈ T ′ is such that
|X| < k, then [X,Y ] ∈ S which implies that it is contained in a cell of D(T ). Then,
[X,Y ](k+1) is contained in a cell of T . Thus, for T ′ to be a refinement of T , it is enough
that [X,Y ](k+1) ∈ T ′ is contained in a cell of T for every [X,Y ] ∈ T ′ with |X| = k.

For every such X, the cells [X,Y ′](k+1) ∈ T are a subdivision of [X,uhD(T )(X)](k+1). Let
[X,Y1](k+1), . . . , [X,Yl](k+1) be such subdivision. For each Y there are two possibilities:

• If Y ⊆ uhD(T )(X), then [X,Y ](k+1) is contained in a cell of T if and only if there
is some i ∈ [l] such that Y ⊆ Yi.

• If Y is not contained in uhD(T )(X), then [X,Y ](k+1) is contained in a cell of T if
and only if [X,Y ](k+1) does not intersect the interior of [X,uhD(T )(X)](k+1). To see
this, notice that if [X,Y ](k+1) does not intersect the interior of [X,uhD(T )(X)](k+1),
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then all vertices of [X,Y ](k+1) correspond to edges of S(k) contained in the same
cell of D(T ). If this cell is [X ′, Y ′], then [X ′, Y ′](k+1) ∈ T contains [X,Y ].

The discussion above implies that: a T ′ ∈ D−1(S) is a refinement of T if and only if
all edges of T are also edges in T ′. This follows from the fact that the only edges in
T ′ not in Ŝ are of the form [X,Y ] with |X| = k and Y ⊆ uhS(X). For each X, there
is a unique coarsest subdivision of the polygon [X,uhS(X)](k+1) that uses those edges.
The subdivision that does that for each X is the unique coarsest refinement of T in
D−1(S).

Example 3.52. Consider the subdivisions T from Theorem 3.46 and S from Theo-
rem 3.50. We have that S refines D(T ). The unique minimal, (actually, the only)
subdivision in D−1(S) ∩ B(k+1)(Pn)≤T is T ′ as depicted in Figure 3.8.

Figure 3.8: The only subdivision T ′ in D−1(S) ∩ B(k+1)(P6)≤T

Remark 3.53. One could expect the unique maximal element stated in Theorem 3.51
to coincide with the maximal element D̂(T ) in D−1(D(T )). That is not the case in
Theorem 3.52. In fact, in that example D̂(T ) (whose picture would be as the picture of
T in Figure 3.6 without the edge {45, 24}) does not refine Ŝ.

Corollary 3.54. The maps D : B(k+1)(Pn) → B(k+ 1
2 )(Pn) and U : B(k)(Pn) →

B(k+ 1
2 )(Pn) are homotopy equivalences.

Proof. For D, conditions (1) and (2) in Babson’s Lemma follow from Theorem 3.49
and Theorem 3.51, respectively, since a poset with a unique maximal element is clearly
contractible. For U the proof is completely symmetric.

Theorem 3.55. Let A be the vertex set of a convex n-gon. The inclusion B(k)
coh(A) →

B(k)(A) is a homotopy equivalence, for k = 1, . . . , n− 1.
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Proof. The proof is by induction on k. The base case, k = 1, is the main result of
Rambau and Santos in [RS00]. Now let us suppose that B(k)

coh(A)→ B(k)(Pn) is a homo-
topy equivalence and we will prove that B(k+1)

coh (Pn) → B(k+1)(Pn) is also a homotopy
equivalence. Consider the following diagram, which commutes by Theorem 3.43:

B(k+1)
coh (Pn) B(k+1)(Pn)

BZcoh(Pn) B(k+ 1
2 )(Pn)

B(k)
coh(Pn) B(k)(Pn)

i(k+1)

Dr(k+1)

r(k)

i(k)

U

The maps i(k) and i(k+1) are the inclusions of coherent subdivisions into all subdivisions.
The maps r(k) and r(k+1) are the restriction of each zonotopal tiling to its k and k + 1
levels; that is, S 7→ S(k) and S 7→ S(k+1) respectively. They are homotopy equivalences
since they can be geometrically realized as the identity maps among the normal fans
of FZ(Pn), F (k)(Pn) and F (k+1)(Pn). Since D and U are homotopy equivalences by
Theorem 3.54, and i(k) is a homotopy equivalence by inductive hypothesis, the dotted
arrow i(k+1) must also be a homotopy equivalence.

Corollary 3.56. The restriction map r(k) : BZ(Pn)→ B(k)(Pn) is a homotopy equiva-
lence.

Proof. We now use the following commutative diagram:

BZcoh(Pn) BZ(Pn)

B(k)
coh(Pn) B(k)(Pn)

i(k+1)

r(k) r(k)

i(k)

The top arrow is a homotopy equivalence by [SZ93] and the bottom arrow by Theo-
rem 3.55. The left arrow is also a homotopy equivalence, as mentioned in the proof of
Theorem 3.55, so the right arrow is a homotopy equivalence too.
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3.7 Hypercatalan numbers

Let C(k)
n be the number of hypertriangulations of P(k)

n , which we will call hypercatalan
number. When k = 1 these are the usual Catalan numbers Cn. In this section we look
at the case k = 2. For a triangulation T of Pn and a vertex i ∈ [n] we write degT (i) for
the number of diagonals (edges excluding the sides of Pn) in T incident to i and we call
it the degree of i.

Lemma 3.57.
C(2)
n =

∑
T

∏
i∈[n]

CdegT (i),

where the sum runs over all trinangulations T of Pn.

Proof. Let T be a triangulation of Pn. To get a hypertriangulation of P(2)
n that agrees

with T we need to triangulate [i,UT (i)](2) for every i. As [i,UT (i)](2) is a polygon
with degT (i) + 2 vertices, the number of ways to triangulate it is CdegT (i). So for each
triangulation T there are

∏
i∈[n]

CdegT (i) hypertriangulations of P(2)
n . Summing over all

triangulations gives the desired result.

Example 3.58. For n = 3, . . . , 10 we have computed this formula to give the following
values:

n 3 4 5 6 7 8 9 10
1 2 10 70 574 5176 49656 497640

The computation for n = 6 is as follows. Triangulations of the hexagon fall into three
symmetry classes:

• Two triangulations with degree sequence 020202, each contributing 1·2·1·2·1·2 = 8
to the sum.

• Six triangulations with degree sequence 012012, each contributing 1·1·2·1·1·2 = 4
to the sum.

• Six triangulations with degree sequence 011103, each contributing 1·1·1·1·1·5 = 5
to the sum.

This gives a total of 2 · 8 + 6 · 4 + 6 · 5 = 70 fine subdivisions in B(2)(P6).

Lemma 3.59. Let T be a triangulation of an (n+ 2)-gon with n ≥ 4. Then

2n−2 ≤
∏

i∈[n+2]
CdegT (i),≤ 2

5
2n−7.
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Proof. Let k1 . . . kj be the sequence of the degrees of the vertices of T which are positive.
The terms of this sequence add up to 2n−2. The contribution of T to the sum is

∏j
i=1Cki .

Observe that the number (n + 2) − j is the number of ears in T , which lies between 2
and n

2 + 1. Thus, j lies between n
2 + 1 and n.

For the lower bound, take into account that for every k ≥ 1 one has 2k−1 ≤ Ck, we
deduce the contribution of T to be at least 22n−2−j . Plugging in that j ≤ n, we get the
desired lower bound.

For the upper bound, let l be number of degree 1 vertices. Reorder the ki so that the
last l are equal to 1. We have that

∑j−l
i=1 ki = 2n− 2− l. Now take into account that for

k ≥ 2 we have that Ck ≤ 22k−3, so

∏
i∈[n+2]

CdegT (i) =
j−l∏
i=1

Ckj ≤ 22(2n−2−l)−3(j−l) = 2n−10+3e+l

where e = n + 2 − j is the number of ears. So to prove the upper bound we need to
show that 3e+ l ≤ 3n+6

2 .

Suppose T is the triangulation that maximizes 3e + l. If there was a vertex of inner
degree 1 such that it is not adjacent to an ear, flipping this edge would not decrease the
number 3e+ l. So we can assume every degree 1 vertex is next to an ear. But then the
vertex of degree 1 can not be neighbour to two ears, otherwise n = 2, and it can not
be neighbour to another vertex of degree 1, otherwise n = 3. Also, an ear can not be
neighbour to two degree 1 vertices, otherwise n = 2. So the other neighbours of a pair of
consecutive vertices (ear,degree 1) must have degree at least 2. Let e′ the number of ears
not adjacent to any degree 1 vertex. Then e− e′ = l is the number of pairs (ear,degree
1) and we have:

l + 2e = 3l + 2e′ ≤ n+ 2

l + 3e ≤ n+ 2 + e ≤ 3(n+ 2)
2

Corollary 3.60. For n ≥ 6,

2n−2 ≤ C
(2)
n

Cn
≤ 2

5
2n−7.

Remark 3.61. The lower bound of 2n−2 of Theorem 3.59 for the contribution of a
single triangulation T is attained by a zigzag triangulation, in which all degrees are 2
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except for two 1s and two 0s. When T is a star triangulation in which a vertex is joined
to all others, the contribution of T is Cn−1 ∼ 4n (neglecting a polynomial factor). A
higher contribution is obtained by the following procedure: start with any triangulation
T0 (e.g. a zig-zag or a star). Let T1 be obtained by adding an ear at each boundary
edge of T0, let T2 be obtained from T1 in the same way, etcetera. This method produces
triangulations that contribute about 4.133n (according to our computations) for n large.

Remark 3.62. By [Gal18, Theorem 1.2], hypercatalan numbers are bounded from above
by the number of fine zonotopal tilings of Z(Pn), which is sequence A060595 in the
Online Encyclopedia of Integer Sequences. The known terms are

n 3 4 5 6 7
1 2 10 148 7686
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Chapter 4

Introduction to tropical linear
spaces

In this chapter we provide an overview of tropical linear spaces. Tropical linear spaces,
in the more general sense, are cryptomorphic to valuated matroids, originally defined in
[DW92]. We recommend [MS15, chap. 4] as a general reference for this material.

4.1 Plücker Coordinates

We begin by reviewing some notions from classical linear algebra which are mimicked
in tropical geometry. Let K be any field. The Grassmanian Gr(d,Kn) is the moduli
space of all d-dimensional linear subspaces of Kn. As a set, Gr(d,Kn) can be indenti-
fied with the space of matrices with coefficients in K modulo row transformations, i.e.,
Kd×n/GL(d,Kn). If K is R or C it is a compact manifold. In general, it is a smooth
algebraic variety via the Plücker embedding which we now explain.

Let L be linear subspace of Kn of dimension d. Consider a matrix A ∈ Kd×n whose
rows are a basis of L. A maximal minor of A is the determinant of a d× d submatrix.
For each subset B ∈

([n]
d

)
, there is a corresponding maximal minor AB by taking the

submatrix of A whose columns are those indexed by B. All the maximal minors together
form a vector in K([n]

d ) (which can be thought of as the k-th exterior space of Kn). Row
operations on A only affect the vector of maximal minors as multiplication by a scalar.
So, by projectivizing, we get that the vector

[AB]
B∈([n]

d ) ∈ P
(
K([n]

d )
)

63
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is independent of the choice of A for a fixed L. This implies there is a well-defined map

π : Gr(d,Kn)→ P
(
K([n]

d )
)

that sends a linear space L to the vector of maximal minors of any matrix whose rows
are a basis of L. This map is called the Stiefel map. The image of the Stiefel map is
called the Plücker embedding of Gr(d,Kn) and the vector π(L) the Plücker coordinates
of L.

The Plücker embedding is a smooth projective variety, whose ideal is given by the
Plücker relations: for any two sets S ∈

( [n]
d−1
)
and T ∈

( [n]
d+1
)
where the elements of T are

t1 < · · · < td+1 we have that

∑
ti∈T\S

(−1)iAB∪tiAT\ti = 0.

The linear space L can be recovered from its Plücker coordinates π(L) in the following
way:

L =

x ∈ Kn | ∀T ∈
(

[n]
d+ 1

)
,
∑
ti∈T

(−1)π(L)T\ti · xti = 0


4.2 The tropical Grassmanian

Recall the tropical semiring T from Theorem 2.9.

Definition 4.1 ([SS04]). Let K be an algebraically closed field of characteristic p with
non trivial valuation. The tropical Grassmannian TGrp(d, n) ⊆ P

(
T(nd)

)
is the tropi-

calization of Gr(d,Kn) as a tropical projective variety.

As the notation suggests, the tropical Grassmannian depends on the charateristic of
the field, but it does not depend on anything else about K. Even though the Plücker
relations are the same for every characteristic, the ideal generated by them has different
tropical bases for different characteristics. The tropical Grassmannian is a pure d(n−d)-
dimensional fan for every characteristic.

The study of the tropical Grassmannian was initiated by Speyer and Sturmfels [SS04].
The authors focused on Grp(2, n) and the special case Grp(3, 6). The fan structure and
the homology of the tropical Grassmannian Grp(3, 7) is studied in [HJJS09].

Let Gr◦p(2, n) be the restriction of the tropical Grassmannian Gr◦p(2, n)to its finite part
R([n]

2 ) and consider its linearity space Rn.
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Theorem 4.2 ([SS04, Theorem 3.4 and Corollary 4.5]). The Grassmannian Gr(
p 2, n) is

characteristic-free and Gr◦p(2, n)/Rn coincides with the space of phylogenetic trees with
n labeled leaves.

Definition 4.3. A tropical linear space realizable over K or tropicalized linear space is
a subset of Tn of the form trop(L) where L ∈ Gr(d,Kn).

Let V be a vector in the tropical Grassmanian TGrp(d, n). For each subset S ∈
( [n]
d+1
)
,

consider the tropical linear polynomial

fS(v) :=
⊕
i∈S

vS\i � xi (4.1)

and define L(V )◦ as the intersection of the tropical hyperplanes V (fS), as S varies over
all elements in

( [n]
d+1
)
. Then, L(V )◦ is the tropicalization of a classical d-dimensional

linear space.

Speyer in [Spe08, Proposition 4.5.1] showed that every tropicalization of a linear space
arises this way. By Theorem 2.15, TGrp(d, n) consists of the valuations of Plücker
coordinates of classical linear spaces. Given a linear space L ∈ Gr(d,Kn), let V ∈
TGrp(d, n) be the valuation of π(L). Then LV coincides with the tropicalization of L.

Theorem 4.4 ([SS04, Theorem 3.8]). The bijection between the classical Grassmannian
Gr(d, n) and the set of d-planes in Kn induces a unique bijection V 7→ LV between the
tropical Grassmannian and the set of realizable tropical linear spaces of dimension d in
Tn.

4.3 Matroids

The concept of tropical linear space is more general than the realizable ones introduced
in the previous section. In order to introduce it, we first need to speak about matroids.
Matroids are classical objects in discrete mathematics. They are an abstraction of the
concept of linear independence. Nakasawa and Whitney introduced them independently
in the 1930s. There are many cryptomorphic ways to define a matroid. We will present
just one definition and focus on their relation to polyhedral structures. We recommend
Oxley [Oxl11] and White [Whi86] as main references for matroid theory.

Definition 4.5. A matroid M = (E,B) consists of a ground set E and a set B of subsets
of E such that the following axioms are satisfied:

1. B 6= ∅.
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2. For any B1, B2 ∈ B and i ∈ B1\B2 there exists j ∈ B2\B1 such that B1 ∪ j\i ∈ B
(Exchange axiom).

We call the elements of B the bases of M , which we write B(M) for clarity. All elements
of B(M) have the same cardinality, called the rank of M , denoted by rk(M). Unless
stated otherwise, we take E = [n]. Any subset I ⊆ [n] such that there is a basis
B ∈ B(M) containing it is called independent. Otherwise it is called dependent.

Example 4.6. Given 0 ≤ d ≤ n, the uniform matroid Ud,n is the matroid on [n] such
that B(Ud,n) =

([n]
d

)
.

Example 4.7. Let L ⊆ Kn be a linear subspace. Then the collection of subsets B ∈
([n]
k

)
for which π(L)B 6= 0 forms the bases of a matroidM(L) on [n]. Any matroid that arises
this way is called representable over K. The rank of M(L) equals the dimension of L.
Matroids representable over characteristic 2 are called binary and matroids representable
over characteristic 3 are called ternary.

Example 4.8. Consider the matroid F7 on [7] of rank 3 represented by all non zero
vectors of F3

2 , called the Fano matroid (see Figure 4.1). This matroid is binary, but it
is only representable over fields of characteristic. Now consider the non-Fano matroid
F7 also on [7] where B(F7) = B(F7)∪{456}. The non-Fano matroid is not binary, but it
is representable over every other characteristic. The direct sum, defined shortly ahead,
F7 ⊕ F7 is not representable over any field.

Figure 4.1: The Fano matroid F7. Lines (and the circle) represent triples of dependent
elements.

A connected component of M is a minimal non-empty subset A ⊆ [n] such that |A ∩B|
is the same for all B ∈ B(M). The connected components of any matroid partition [n],
and a matroid is called connected if its only connected component is [n]. A loop of M is
an element j ∈ [n] not contained in any basis B ∈ B(M). A coloop is an element j ∈ [n]
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contained in every basis B ∈ B(M). Both loops and coloops are connected components
of size 1.

The matroid polytope of M is

PM := conv{eB | B ∈ B(M)} ⊆ Rn

The dimension of PM is equal to rk(M) minus the number of connected components of
M .

Example 4.9. The matroid polytope PUd,n of the uniform matroid Ud,n of Theorem 4.6
is the hypersimplex ∆d,n from Theorem 2.1.

Proposition 4.10 (Edmonds [Edm70]. See also [GGMS87]). A polytope P is a matroid
polytope P = PM for a matroid M of rank d on [n] if and only if all of its vertices and
all of its edges are also vertices and edges of the hypersimplex ∆(d, n). In other words,
it is a polytope whose vertices are {0, 1}-vectors of length n with d ones and its edges
are parallel to ei − ej.

Remark 4.11. Consider the Grassmannian Gr(d,Cn) over the complex numbers C.
The algebraic torus (C∗)n acts on Cn by (t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn).
The action is linear so it maps subspaces to subspaces. Therefore, it induces an action
on the Grassmannian Gr(d,Cn). Given a point L ∈ Gr(d,Cn), the closure of the orbit
T · L is a toric variety. If M = M(L) is the matroid associated to L, then the toric
variety T · L is isomorphic to XPM . See [GGMS87] for details.

The rank function of matroid M on ground set [n], is defined for every subset of [n] as

rk(J) := max
B∈B(M)

|B ∩ J |

. Given a rank d matroid M with ground set [n] and a subset J ⊆ [n] with k = rk(J).
The restriction ofM to J is the matroidM |J on the ground set J of rank k whose bases
are

B(M |J) := {B ∩ J | B ∈ B(M), |B ∩ J | = k}.

The contraction of J in M is the matroid M/J on the ground set [n] \ J of rank d− k
whose bases are

B(M/J) := {B \ J | B ∈ B(M), |B ∩ J | = k}.

The dual of M is the matroid M∗ on the ground set [n] of rank n− d whose bases are

B(M∗) := {[n] \B | B ∈ B(M)}
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One can easily verify that (M |J)∗ = M∗/([n] \ J) and (M/J)∗ = M∗|([n] \ J).

Given two matroids M1 and M2, of ranks d1 and d2 on the disjoint ground sets E1 and
E2 respectively, the direct sum M1 ⊕M2 is a matroid on the ground set E1 ∪E2 where

B(M1 ⊕M2) := {B1 ∪B2 | B1 ∈ B(M1), B2 ∈ B(M2)}.

If J1, . . . , Jc are the connected components of M , then M = M |J1 ⊕ · · · ⊕M |Jc. It is
easy to see that (M1 ⊕M2)∗ = M∗1 ⊕M∗2 .

In terms of polytopes we have that PM1⊕M2 = PM1 × PM2 . The polytope PM∗ is the
image of PM under the affine map

(x1, . . . , xn) 7→ (1− x1, . . . , 1− xn).

If j ∈ [n] is not a loop then PM/j is the same as the intersection of PM with the
hyperplane {xj = 1}. If j is not a coloop then PM |[n]\j is the same as the intersection
of PM with the hyperplane {xj = 0}.

The flats of a matroid M are the subsets F ⊆ [n] such that for every j ∈ [n] \ F ,

rk(F ∪ {j}) > rk(F )

. We denote the set of flats of M by F(M).

The set F(M) is a ranked lattice of rank d under set inclusion. The intersection of two
flats is also a flat. Hence, for an arbitrary set J ⊆ [n], not necessarily a flat, there is a
unique smallest flat of M containing it, called the closure of J , and denoted cl(J).

Dually, a cyclic set of M is a set C such that

rk(C \ {j}) = rk(C)

for all j ∈ C. For each J ⊆ [n] there is a unique largest cyclic set of M contained in it,
called the coclosure of J , and denoted cocl(J). A cyclic flat is a cyclic set which is a
flat. We denote the set of cyclic flats of M by CF(M).

Observe that J is cyclic if and only if M |J is coloop-free and J is a flat if and only
if M/J is loop-free. For any F ∈ F(M) the intersection of PM with the hyperplane{∑
j∈F

xj = rk(F )
}

is a face of PM and it is the polytope of the matroid M |F ⊕M/F .

Any facet of PM which intersects the interior of ∆(d, n) is of this form for a cyclic flat
F ∈ CF(M), and all the other facets are also of this form for some singleton F .
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Given a matroid M of rank d on [n], the matroid cell SM is the subset of Gr(d,Kn) of
all linear subspaces L such that M(L) = M . If M is not representable over K then the
corresponding cell is empty. Matroid cells provide the Grassmannian a stratification by
representable matroids. However the strata or not as nice as one could hope for. In fact,
it follows from Mnëv’s Universality theorem that matroid cells can be as complicated as
any semialgebraic set [Mnë88].

4.4 Valuated matroids

Valuated matroids are the tropical analogue of a Plücker vectors. They were first defined
by Dress and Wenzel in [DW92] before the theory of tropical linear spaces (and most of
tropical geometry) was developed.

Definition 4.12. A valuated matroid V on the ground set [n] of rank rk(V ) = d with
0 ≤ d ≤ n, is a vector in P

(
T(nd)

)
that satisfies the tropical Plücker relations: for any

sets S ∈
( [n]
d−1
)
and T ∈

( [n]
d+1
)
, the minimum of

⊕
i∈T\S

VS∪{i} � VT\{i} (4.2)

is achieved at least twice. The space of all valuated matroids V ∈ P(T(nd)) is called the
Dressian Dr(d, n).

Since the tropical Grassmannian TGrp(d, n) satisfies the tropical Plücker relations, we
have the containment TGrp(d, n) ⊆ Dr(d, n). However, this containment is strict for d >
2 (see Theorem 4.16). This happens because, on one hand, the tropical Grassmannian
TGrp(d, n) is the vanishing of the tropicalization of the ideal Id,n generated by the
Plücker relations, while the Dressian is only the vanishing of the tropicalization of the
generators of Id,n, which is not alway a tropical basis. In other words, the tropical
Grassmannian is a tropical variety while the Dressian is only a tropical prevariety (see
Theorem 2.16). Note that while TGrp(d, n) depends on the characteristic p, the Dressian
Dr(d, n) does not. The difference between the tropical Grassmannian and the Dressian
can also be observe from their dimensions; the dimension of Dr(d, n) is of order nd−1 for
fixed d, while the dimension of Grp(d, n) grows linear in n, see [JS17, Corollary 32].

With this language, a matroid M can be thought of as a valuated matroid with trivial
valuation, that is, the vector in P

(
T(nd)

)
where

MB

0 if B ∈ B(M)

∞ if B /∈ B(M)
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The Plücker relations restricted to {0,∞} are equivalent to the exchange axiom. This
also implies that given a valuated matroid V , the set of B such that VB is finite form
the basis of a matroid which we call underlying matroid V of V . We identify a valuated
matroid with values in {0,∞} with its underlying matroid.

A valuated matroid can be regarded as an enrichment of a matroid by assigning a real
number to each of its bases. In other words, it is a height vector on the vertices of the
matroid polytope PV . Thus, it induces a regular subdivision of PV which we denote SV .

Theorem 4.13. [Spe08, Proposition 2.2] Let M be a matroid and V : B(M)→ R. The
following are equivalent:

1. V is a valuated matroid.

2. V satisfies the 3-term Plücker relations, that is, Equation (4.2) only for S ⊆ T .

3. All the cells of the regular subdivision SV are matroid polytopes.

Given a vector x ∈ Rn, by definition of regular subdivision (see Section 2.2), the set

{B ∈ B(V ) | ∀B′ ∈ B(V ) eB · x ≤ eB′ · x}

is an element of SV . Hence, this set of bases of a matroid V x known as the initial
matroid of V at x. This definition can be extended to any x ∈ TPn−1. We writeM(V )
for the set of all initial matroids of V all of whose loops are loops in V , i.e. matroids
whose polytopes are cells of SV not contained in any hyperplane {xj = 0}.

Example 4.14. Consider the uniform matroid U2,4. Its matroid polytope is the hy-
persimplex ∆2,4, which is an octahedron. Now consider the valuated matroid V where
V34 = 1 and VB = 0 for every B ∈

(4
2
)
\ {3, 4}. The matroid subdivision induced by

V divides the octahedron into two square pyramids, one with apex e12 and the other
one with apex e34. The only x that selects the pyramid with apex e12 is [0 : 0 : 0 : 0]
while the only x that selects the pyramid with apex e34 is [0 : 0 : 1 : 1]. The initial
matroids contained in M(V ) are those whose polytopes are the two square pyramids,
their common square face, and four of the triangular faces, namely conv({e12, e13, e14})
and its S4-images.

Given a valuated matroid V on the ground set [n] and of rank d underlying matroid
M = V , we say an element j ∈ [n] is a (co)loop of V if it is a (co)loop of the underlying
matroid V . The dual of V is the valuated matroid V ∗ of rank n−d given by V ∗B := V[n]\B.
Notice that (V ∗)∗ = V .
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Let Bc be any basis of M/J . Then the restriction of V to J is the valuated matroid
V |J on the ground set J of rank k such that V |JB = VB∪Bc for any B ∈

(J
k

)
. This

definition does not depend on the choice of Bc ∈ B(M/J), as choosing a different basis
means tropically scaling all Plücker coordinates by the same factor (see, for example,
Lemma 4.1.11 in [Fre13]). In particular V |J = V |J and, if k = d, that is, [n] \ J
consists of only loops, then V |JB = VB. The contraction of J in V can be defined as
V/J := (V ∗|([n] \ J))∗.

4.5 Tropical linear spaces

Now we disscus tropical linear spaces in its full generality:

Definition 4.15. The affine tropical linear space associated to a valuated matroid V is

L(V )◦ :=
⋂

T∈( [n]
d+1)

V

⊕
j∈C

VT\j � xj


and the projective tropical linear space is the tropical projective variety

L(V ) := (L(V )◦\{(∞, . . . ,∞)})/R(1, . . . , 1) ⊆ TPn−1.

When unspecified, by tropical linear space we usually mean a projective one. Let
V = ν(w) for a (classical) Plücker vector w ∈ Gr(d,Kn). The space L(V )◦ is the
tropicalization of the linear space Lw. The matroids M(V ) obtained this way are all
representable over K. Since not all matroids are representable, not all tropical linear
spaces are tropicalizations of classical linear spaces.

Example 4.16. The matroid of F7⊕F7 from Theorem 4.8 with trivial valuation is in the
Dressian Dr(3, 7) but not in the tropical Grasmannian over any characteristic. Notice
that also F7 with trivial valuation is in TGr2(3, 7) but not in TGr3(3, 7), for example,
so the tropical Grassmannian does depend on the characteristic.

The set L(V )◦ can be given the structure of a polyhedral complex in several ways.
When V is a matroid, two of these have been much discussed in the literature. They are
distinguished in [FS05] as the Bergman fan and the nested set complex, and in [AK06]
as the “coarse subdivision” and the “fine subdivision” respectively. Our arguments use
the valuated generalization of the Bergman fan structure, which we introduce in this
section. The name of the Bergman fan recognizes Bergman’s work [Ber71]. We will
explain the nested set complex after Theorem 4.19.
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Let ιJ : RJ → Tn be the inclusion of RJ in Tn by filling ∞ in the [n] \ J coordinates.

Proposition 4.17 ([Spe08, Prop 2.3]; implicit in [KSZ92]). Let V be a valuated matroid
where J is the set of non loops. Then

L(V )◦ = ιJ({x ∈ RJ | (V |J)x has no loops}).

For simplicity, assume V is a valuated matroid with no loops. The interiors of the cells
in the Bergmann fan structure of L = L(V ) are the sets of points x ∈ Rn such that the
matroid V x is constant. The complex L(V ) is pure of dimension d − 1. For any initial
matroidM of V which has the same set of loops as V , we write LM for its corresponding
cell, that is:

LM := ({x ∈ L◦ | V x = M}).

When this cell is 0-dimensional, we call it vLM (pedantically, vLM is the point which is the
single element of LM ).

Lemma 4.1.11 of [Fre13] describes the effects of restriction and contraction on L(V ).
Given a subset A ⊆ [n] we have that

L(V/A) = {x ∈ P(T[n]\A) | x̂ ∈ L}

where x̂ ∈ TPn−1 is the extension of x by setting the coordinates indexed by A to be
∞. Let TPn−1

A := {x ∈ TPn−1 | ∃i ∈ A xi 6= ∞} and let πA : TPn−1
A → P(TA) be the

projection of x to the coordinates indexed by A. Then

L(V |A) = πA(L ∩ TPn−1
A ).

If M is a matroid, the polyhedral complex structure we have just placed on the tropical
linear space L(M) is the Bergman fan. If L = L(V ) is a tropical linear space and
x ∈ Rn/R(1, . . . , 1) is in the relative interior of LM , then L(M) equals the set of vectors
y such that x+εy ∈ L for all sufficiently small ε > 0. That is, L looks like the translation
L(M) + x locally near x.

Example 4.18. Consider the valuated matroid V from Theorem 4.14. The polytopes
in the subdivision induced by V that correspond to loopless matroids are the two square
pyramids, the square separating the pyramids and the four triangles which are inside
each of the hyperplanes xi = 1 for i ∈ [4]. Figure 6.1 shows a picture of the associated
linear space.

We will use a construction of the set L(M)◦ in terms of flats. For simplicity we state it
in the loopless case.
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Proposition 4.19 ([MS15], Theorem 4.2.6). Let M be a matroid with no loops. Then

L(M)◦ =
{
λe[n] +

s∑
i=1

aFieFi | λ ∈ R, aFi ≥ 0, F1 ⊂ · · · ⊂ Fs ∈ F(M)
}
.

The nested set complex of M is the order complex of the lattice of flats, interpreted as a
polyhedral complex structure on L(M) by the above proposition. For further details see
[FS05], [AK06] and [MS15, Chapter 4]. Moreover, the introduction of Hampe [Ham15]
gives a broad overview about properties and developments of tropical linear spaces.





Chapter 5

Local Dressians

5.1 Introduction

The Grassmannian Gr(d,Kn) can be stratified by representable matroids, where the
strata SM of M consists of all linear spaces L whose corresponding matroid is M . As
remarked in [HJJS09], a similar stratification can be considered in the tropical setting.
The strata in the tropical setting are the main object of study in this chapter and they
are defined as follows:

Definition 5.1. [HJJS09] Let M be a rank d matroid on [n]. The Dressian on M ,
denoted by Dr(M), is the subset of Dr(d, n) consisting of all valuated matroids with
underlying matroid is M .

When talking about the Dressian of a matroid we also call it local, to distinguish it from
Dr(d, n). The Dressian of matroid was introduced by Herrmann, Jensen, Joswig and
Sturmfels in [HJJS09], where they studied the fan structure of the local Dressian for
the Pappus matroid. They also studied the fan of finite tropical Plücker vectors, which
naturally corresponds to the Dressian Dr(Ud,n) of the uniform matroid.

Local Dressians can be endowed with two fan structures: one coming from the Plücker
relations and one as a subfan of the secondary fan. By Theorem 4.13 the Dressian is
defined by the 3-term Plücker relations. More concretely, the 3-term Plücker relations
say that for every S ∈

([n]
d

)
, the minimum

min(VSij + VSkl, VSik + VSjl, VSil + VSjk)

75
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is achieved twice for every i, j, k, l ∈ [n] \ S. These relations induce the Plücker fan
structure on Dr(d, n), given by the set of terms where V achieves the minimum for each
3-term Plücker relation.

On the other hand, Theorem 4.13 also implies that the Dressian Dr(M) is a subfan of
the secondary fan of of the matroid polytope PM . This endows Dr(M) with a secondary
fan structure as subfan of the secondary fan of PM . In [HJJS09, Theorem 4.4], the
authors proved that for the uniform matroid U3,n the two fan structures coincide.

In Section 5.2 we prove the main result of this chapter is Theorem 5.2, which states that
for any matroid M the two fan structures on Dr(M) coincide. The proof is based on
a careful analysis of the subdivision induced by a point in the local Dressian on the 3-
dimensional skeleton of the matroid polytope. From our study it follows that a matroid
subdivision is completely determined by its restriction to the 3-skeleton.

We then focus on local Dressians of disconnected matroids. We show that the local
Dressian of the direct sum of two matroids is the product of their local Dressians.
Again, the key step in the proof is to look at the 3-dimensional skeleton of the matroid
polytope.

Finally, in Section 5.3 we move our attention to rigid matroids, i.e., matroids which do
not admit matroid subdivisions of their matroid polytopes. The local Dressians of such
matroids are linear spaces. We give a new proof that binary matroids are rigid. We
discuss some questions regarding refinement of matroid subdivisions, such as whether
finest matroid subdivisions are always composed of rigid matroids as cells. We show
that this is the case for rank 2 matroids.

5.2 The fan structure of local Dressians

Since we already discussed all the prelimanaries in Chapter 4, we can start right away
with the main result:

Theorem 5.2. Let M be a matroid of rank d on n elements. The Plücker fan structure
coincides with the secondary fan structure on Dr(M).

Proof. First, we take valuated matroids V and W on M lying in the same cone of
the secondary fan. They induce the same subdivision of the matroid polytope PM , in
particular of the 3-dimensional skeleton. Therefore V and W satisfy the same three
term Plücker relations and lie in the same cone of the local Dressian equipped with the
Plücker structure.
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Now we focus on the viceversa. We take V and W lying in the same Plücker cone σ.
This means that they satisfy the same equations and inequalities coming from the three
term Plücker relations. By Theorem 4.13, they induce two matroid subdivisions SV and
SW of PM . We want to show that SV = SW . This will imply that V,W are in the same
secondary cone. By the fact that they satisfy the same Plücker relations, we know that
SV |3−skeleton = SW |3−skeleton as the 3-faces are either tetrahedra or octahedra. We pick
SV a maximal dimensional cell in SV . We suppose that SV is not in SW . It means
without loss of generality there are vertices q1 and qk in the cell SV such that q1 and
qk do not lie in a maximal dimensional cell of SW . Let q1 q2 . . . qk be a path in the
vertex-edge graph of the cell SV . We pick a cell SW in SW that contains q1 . . . qi for
some i ≤ k and there is no cell in SW containing q1 . . . qi+1.

Now we have that qi−1 and qi+1 are at most of distance two. So we can use the base
exchange axiom in the definition of a matroid to construct up to six points giving the
unique face F of SV spanned by qi−1 and qi+1. The following situations may arise.

• Either F is a octahedron, then F is subdivided in SW as qi−1, qi are in SW and
qi+1 is not. This is a contradiction to the fact that the subdivisions agree on the
3-skeleton.

• If F is a pyramid, it cannot be subdivided, therefore F is a face of SW and hence
qi+1 is a vertex of SW , and that contradicts our assumption.

• Similarly if F is 2-dimensional, i.e., a square or a triangle.

Hence we conclude that both points q1 and qk are in SW and hence the subdivisions SV
and SW agree.

Corollary 5.3. The Plücker fan structure on the Dressian Dr(d, n) as a fan in R(nd)−1

coincides with the secondary fan structure.

Proof. It is enough to consider the uniform matroid Ud,n in the previous statement.

Corollary 5.4. Let d ≥ 2, and S and S ′ be two matroid subdivisions of the hypersimplex
∆(d, n). If they induce the same subdivision on the 3-skeleton, or equivalently on the
octahedral faces of ∆(d, n), then S and S ′ coincide.

Remark 5.5. The above statement extends Proposition 4.3 and Theorem 4.4 by Her-
rmann et al. [HJJS09] and is the key in the algorithm in Section 6 of Herrmann et al.
[HJS12] for computing (local) Dressians. Note that the abstract tree arrangements in
Section 4 of Herrmann et al. [HJJS09] are a cover of the 3-skeleton of the hypersimplex
∆(3, n) for n ≥ 6 and the metric condition guarantees that the height functions agree
on all three maps that contain a given vertex.
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We derive the following characterization of the lineality space which follows from the
characterization of the dimension of a matroid polytope in terms of connected compo-
nents by Edmonds [Edm70] or Feichtner and Sturmfels [FS05]. Together with the fact
that the secondary fan of a set of vertices has a lineality space of the same dimension as
the affine dimension of the set of vertices.

Corollary 5.6. Let b be the number of bases of a matroid M on n elements and with
c connected components. The lineality space of the Dressian Dr(M) in Rb/R1 is of
dimension dimPM = n− c.

Proof. Adding a linear functions to the height function of a regular subdivision does not
change the subdivision. Therefore the linealty space is the image of the map Rn → Rb

with ei 7→
∑
B3i

eB.

Example 5.7. The local Dressian of the uniform matroid U2,4 coinsides with the Dres-
sian Dr(2, 4). This is a 5-dimensional pure balanced fan in R6/R1 consisting of three
maximal cells and a 3-dimensional lineality space.

Example 5.8. The local Dressian of the matroid U1,2 ⊕ U1,2 is a 2-dimensional linear
space in R4/R1 spanned by e13 +e14 and e13 +e23. The corresponding matroid polytope
PU1,2 × PU1,2 is a square, which has no finer matroidal subdivision.

Let us discuss two examples of local Dressians of non-regular connected ternary (3, 6)-
matroids. These are matroids that are representable over the field with three elements,
but are not representable over the field with two elements.

Example 5.9. Let M be the matroid on 6 elements and rank 3 whose bases are
([6]

3
)
\

{123, 145, 356}, see Figure 5.1. The polytope PM is full dimensional so the local Dressian
Dr(M) has a lineality space of dimension 5 in R16 = R17/R1. The local Dressian is 6-
dimensional and consists of three maximal cones. These cones correspond to the vertex
split with the hyperplane x2 +x4 +x6 = 0 and two 3-splits, i.e., a subdivision into three
maximal cells that intersect in a common cell of codimension 2. The three maximal cells
of one of those 3-splits is illustrated in Figure 5.2.

Example 5.10. Let M be the connected matroid given by the 14 bases:

135, 136, 145, 146, 156, 235, 236, 245, 246, 256, 345, 346, 356, 456 .

The local Dressian Dr(M) consists of three maximal cones of dimension 6 and a 5-
dimensional lineality space in R13. In other words the polytope PM has four matroidal
subdivisions. The trivial subdivision and three splits with respect to the hyperplanes
x4 + x5 + x6 = 2, x3 + x5 + x6 = 2 or x3 + x4 = 1.
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Figure 5.1: The terrnary matroid of Example 5.9.

Figure 5.2: The three matroids of one of the subdivisions of Example 5.9.

Remark 5.11. For any pointW in the local Dressian Dr(M) we can construct a tropical
linear space LW , by taking the intersection over S ∈ M of the tropical hyperplanes
defined by

fS(W ) =
⊕
i∈S

WS\i � xi .

Proposition 5.12. Let M and M ′ be matroids such that PM is combinatorially iso-
morphic to PM ′. Then,

Dr(M) ∼= Dr(M ′).

Proof. A matroid subdivision of the polytope PM does not impose new edges. The
isomorphism between the polytopes PM and PM ′ induces a subdivision of PM ′ as images
of cells. Moreover, this subdivision is matroidal as the 1-cells are edges of PM ′ . This
subdivision is regular, as the map between PM and PM ′ is a concatenation of a coordinate
permutation, an embedding and a reflection. This follows from the explicit description
in Remark 5.13.

Remark 5.13. It can be shown that the two matroid polytopes of M and M ′ are
combinatorially isomorphic if and only if the matroids are isomorphic up to loops, coloops
or dual connected components. This is part of the work by Pineda-Villavicencio and
Schröter [PVS].

The following statement deals with Dressians of direct sums of matroids. It was inde-
pendently proven by Lopez de Medrano, Rincón and Shaw [LdMRS17, Lemma 4.7 and
Corollary 4.8]
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Theorem 5.14. Let M1 and M2 be matroids with disjoint element sets. Then

Dr(M1 ⊕M2) = Dr(M1)×Dr(M2).

Proof. We have the map

⊗ : Dr(M1)×Dr(M2)→ Dr(M1 ⊕M2)

(W,V ) 7→W ⊗ V

where (W⊗V )B1tB2 := WB1 +VB2 for any B1 ∈M1 and B2 ∈M2. To check thatW⊗V
satisfies the tropical Plücker relations notice the following: any octahedron contained in
PM1⊕M2 must be of the form {eB1} × O2, with B1 ∈ M1 and O2 octahedron contained
in PM2 , or O1 × {eB2}, with B2 ∈ M2 and O1 octahedron contained in PM1 . Then the
Plücker relations follow from those of Dr(M1) and Dr(M2). In particular, the cone where
W ⊗ V lies is determined by the cones where W and V lie, so ⊗ maps cones into cones.

To construct the inverse of ⊗, we fix a basis B1 tB2 ∈M1⊕M2 and we define the map

φ : Dr(M1 ⊕M2)→ Dr(M1)×Dr(M2)

W 7→ (φ1(W ), φ2(W ))

where φ1(W )A1 := WA1tB2 and φ2(W )A2 := WB1tA2 for any A1 ∈M1 and any A2 ∈M2.
It is straight forward to verify that the Plücker relations satisfied by W imply that the
projections φ1(W ) and φ2(W ) satisfy them as well. In particular, φ maps cones to cones.

Now we prove that φ is independent of the choice of basis B1 t B2. We do this by
contradiction. Suppose it is not, without loss of generality we can assume there exist
B1 tB2 and B1 tB′2, with B2 and B′2 of distance 1 such that φ does not agree for these
two choices. Clearly φ2 is the same for both choices, so we look at φ1. Let A,A′ ∈M1 be
bases at distance 1. We have that the points eAtB2 , eAtB′2 , eA′tB′2 , eA′tB2 form a square
face of PM1⊕M2 . This square can not be subdivided, so

WAtB2 −WA′tB2 = WAtB′2 −WA′tB′2 .

But this means that the difference of φ1 for A and A′ is independent of the choice of
B2. By connectivity of the graph of PM1 , we can conclude that φ1 is independent of the
choice of B2.

We are left with proving that φ is the inverse of ⊗. First we check that for any (V,W ) ∈
Dr(M1) × Dr(M2) we have that φ(W ⊗ V ) = (W,V ). To see this, notice that φ1(W ⊗



5.2. The fan structure of local Dressians 81

V )A = (W ⊗V )AtB2 = WA+VB2 for any A ∈M1. But VB2 is a constant independent of
A, so φ1(W ⊗ V ) = W in the tropical torus. Analogously, we get that φ2(W ⊗ V ) = V .

Now we check the other direction, that is, for any W ∈ Dr(M1 ⊕M2) we have W =
φ1(W ) ⊗ φ2(W ). Consider two bases of (M1 ⊕ M2) at distance 1. Without loss of
generality let them be A1 tA2 and A1 tA′2. We have that

(φ1(W )⊗ φ2(W ))A1tA2 − (φ1(W )⊗φ2(W ))A1tA′2

=φ1(W )A1 + φ2(W )A2 − φ1(W )A1 − φ2(W )A′1
=WA1tB2 +WB1tA2 −WA1tB2 −WB1tA′2

=WB1tA2 −WB1tA′2 .

We have already shown that φ is independent of the choice of B1, so we may assume
B1 = A1. Hence, the above equals WA1tA2 −WA1tA′2 . By connectivity of the graph of
PM1⊕M2 , we get W = φ1(W )⊗ φ2(W ) as we wanted.

Therefore, the maps φ and ⊗ are bijective linear maps which send cones to cones, which
implies Dr(M1 ⊕M2) = Dr(M1)×Dr(M2).

Remark 5.15. The statement above generalizes Theorem 4 by Chatelain and Ramírez
[CRA14] which deals with sequences of weakly compatible hyperplane splits. While
the article by Joswig and Schröter [JS17] provides the case of sequences of strongly
compatible hyperplane splits and the matroid polytopes that occur in these matroid
subdivisions. We refer to Herrmann and Joswig [HJ08] for the definitions.

Let M be a matroid (E,B). Two elements e and e′ in E are parallel if rk({e, e′}) = 1.
We denote this by e ‖ e′. Remark that this implies that M\e = M\e′.

Theorem 5.16. Let M be a matroid and e ‖ e′ in M . Then

Dr(M)
/

lin Dr(M) ∼= Dr(M \ e′)
/

lin Dr(M \ e′)

and dim lin Dr(M) = dim lin Dr(M \ e′) + 1.

Proof. Clearly, M contains the circuit {e, e′}. Hence, the number of connected compo-
nents of M is the same as the number of connected components of M \ e′. It follows
that dim lin Dr(M) = dim lin Dr(M \ e′) + 1.

The projection Dr(M) → Dr(M \ e′) that forgets the coordinates that correspond to
bases that contain e′ is surjective. Our goal is to show that this projection is injective if
we quoten by the lineality spaces. LetW ∈ Dr(M) and Be be a basis ofM that contains
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e and Be′ = Be \ {e} ∪ {e′}. We may assume that WBe = WBe′ as the lineality space of
Dr(M) contains

∑
B3e′ eB. Let B′e′ be a basis of M and B′e = B′e′ \{e′}∪{e} of distance

#B′e \ Be = 1. That is eBe , eB′e , eBe′ , eB′e′ , form a square in the vertex-edge graph of
PM . The set Be∩B′e′ ∪{e, e′} is a non-basis of distance 1 to those four bases. Therefore,
the square is not subdivided by the regular subdivision induced by W . We conclude
that WBe + WB′

e′
= WBe′ + WB′e and by our assumption WB′

e′
= WB′e . Iterating our

argument shows that WB = WB\{e}∪{e′} for any basis B that contains e. As the basis
exchange graph of a matroid is connected. Therefore, we derive that the projection is
injective up to lineality and therefore the desired isomorphism.

The combination of Theorem 5.14 and Theorem 5.16 allows to deduce the local Dressian
Dr(M) of an arbitary matroidM from the simplifications of its connected componenets.

5.3 Rigid matroids

In this section, we study the notion of rigidity, first introduced by Dress and Wenzel:

Definition 5.17. [DW92, Definition 2.2] A matroid is said to be rigid if and only if its
polytope does not allow a non-trivial matroid subdivision.

Notice that if M is a rigid matroid, then the local Dr(M) is just a linear space.

Recall that any matroid obtained from successive deletions and contractions form a
matroid M is a minor of M . Theorem 3 by Chatelain and Ramírez [CRA11] which
states that a matroid polytope of a binary matroid can not be splited into two matroid
polytopes. However this is a weaker statement than that of Dress and Wenzel in 1992:

Theorem 5.18. [DW92, Theorem 5.11] The following matroids are rigid:

1. Binary matroids.

2. Matroids of finite projective spaces of dimension at least 2. That is, the matroid
with ground set PKd−1 where d ≥ 3 and K is a finite field and with bases given by
the bases of Kd.

We show a new proof of rigidity of binary matroids, which is essentially a corollary from
Theorem 5.2. We make use of the following characterization of binary matroids in terms
of forbidden minors.
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Proposition 5.19 (Tutte[Tut58]). A matroid is binary if and only if it has no minor
isomorphic to the uniform matroid U2,4.

Corollary 5.20. Binary matroids are rigid.

Proof. Let M be a binary matroid and PM its matroid polytope. The 3-skeleton of the
polytope PM does not contain a octahedral face as such a face corresponds to a minor
isomorphic to the uniform matroid U2,4. From Corollary 5.4 we deduce that PM only has
a trivial matroid subdivision. That is the Dressian is a linear space and M is rigid.

If a matroid subdivision contains only polytopes of rigid matroids, then it clearly can
not be subdivided any further while staying a matroid subdivision. Then it is natural
to ask whether all matroid subdivisions are of this form.

Question 5.21. Are all cells in a finest matroid subdivision polytopes of rigid matroids?

We now show that this is true for U2,n:

Proposition 5.22. The cells of a finest matroid subdivision of the hypersimplex ∆(2, n)
correspond to binary matroids. In particular, they are rigid.

Proof. By Theorem 4.2 we have that Dr(2, n) = Gr(2, n) and that rank 2 valuated ma-
troids are in correspondence to the space of phylogenetic trees. In this correspondence,
nodes of the phylogenetic tree correspond to facets of the subdivision induced by the
valuated matroid, which in turn correspond to connected matroids. The valency of each
node is at least 3 and correspond to the number of rank 1 flats of the corresponding ma-
troid. Using these correspondence, we see that finest matroid subdivisions correspond
to stable trees, that is, trees where all nodes have valency at most 3. This means that
all matroids have at most three rank 1 flats hence they are binary by Theorem 5.19.

One way to determine that matroid is rigid, is by showing that there it has no connected
submatroid. This is the case for binary matroids. However, it is unclear whether this is
always the case.

Question 5.23. Does there exist two connected matroids M and M ′ such that PM ′ is
strictly contained in PM but no matroid subdivision of PM has PM ′ as a cell?

Notice that when M is a uniform matroid then the corank subdivision has PM ′ as a cell.
But the corank function of M ′ does not necessarily satisfy local Plücker relations.
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Example 5.24. Let M be a matroid with bases 12, 13, 14, 23 and 24 and M ′ be the
matroid With the two bases 12 and 13. Then the local corank lifting is V = (0, 0, 1, 1, 1)
and this vector is not in the local Dressian Dr(M) as it subdivides the square pyramid
PM into two tetrahedra, hence creating a new edge.

Further evidence for a positive answer of Question 5.23 is the ternary projective plane.
This was already knwon to be rigid Theorem 5.18

Proposition 5.25. Consider the simple matroid P on 13 elements and rank 3 given by
the ternary projective plane. There are no connected submatroids of P.

Proof. Assume that M is a proper connected submatroid of P. Being a submatroid
means that every basis of M is a basis of P.

The proof consists of five steps:

• There are two parallel elements in M .

• Two lines of P collapse to a line in M .

• A quadrilateral in P collapses to a point in M .

• Three concurrent lines of P collapse into a line in M .

• Contradiction.

After each step, for improving the exposition, we reset the labeling. We make sure to
clarify the new assigned labels. We do this in order to assure that there is no loss of
generality. Keep in mind that for M to be connected there is no line such that its
complement is a single point. In particular there must be a least four points, i.e., four
parallelism classes.

Our first step is to show that M contains a pair of parallel elements. Suppose that the
set 123 is a basis of P but it is dependent in M . Either 123 contains a parallel pair or
clM (123) is of rank 2 as M is loop free. In the latter case, let 4 be not in the rank 2 flat
clM (123). This implies that the intersection of the lines clM (14)∩ clM (123) is of rank 1
in M . As 2 is not parallel to 3 in M, then clP(23) ⊆ clM (23) = clM (123) and, as 123
is independent in P, there is an element 5 with 5 ∈ clP(23) ∩ clP(14). This means that
5 ∈ clM (14) ∩ clM (123) and hence it is parallel to 1 in M .

Suppose now that 1 and 2 are two parallel elements in M . Notice that there are at
lest three elements not in clM (12). Moreover, clP(12) has four elements, at least two of
which are in clM (12). Then there exists an element 3 such that 3 is not in clM (12) ∪
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clP(12). Therefore, clP(13) and clP(23) are two different lines in P which are contained
in clM (13) = clM (23).

Suppose that the eight points on the two lines 1234 and 1567 in P span a line in M .
There must be at least two points 8 and 9 outside this line in the connected matroid
M . Each of the three lines clP(28), clP(38) and clP(48) intersects the line 1567 in a
different point in the projective geometry P. This induces a bijection between 234 and
567 where elements are mapped to parallel elements in M . Similarly, a bijection can be
constructed by considering the lines from 9. These bijections do not agree and hence,
there are at least four parallel elements in M that span a quadrilateral in P.

Suppose that 1234 is a quadrilateral in P which collapses to a point in M . Let 5 ∈
clP(12) ∩ clP(34), and 6 ∈ clP(13) ∩ clP(24), and 7 ∈ clP(14) ∩ clP(23). As M is
connected, there are at least three elements outside clM (1234). Suppose that these
points are exactly 5, 6 and 7. Then clP(56) ∩ clM (1234) 6= ∅ forcing clM (1234), 5 and 6
to be colinear inM , andM disconnected. So there is another point 8 outside clM (1234).
In particular, three of the lines in P passing through 8 also pass through at least one
point in the quadrilateral 1234. Therefore they collapse in a single line in M .

Suppose three concurrent lines passing through 1 in P collapse to a single line inM . Let
S be the set of elements different from 1 forming these three lines. As M is connected
there must be at least two elements outside clM (S). For each point, the lines passing
through it and not 1 induces a partition of S in three subsets of size three, such that
the elements in each subsets belong to the same parallelism class. The two partitions
are transversal, therefore S is in the same parallelism class. As the complement of S is
a line in P, then M is disconnected and we obtain a contradiction.





Chapter 6

Transversal Valuated matroids

6.1 Introduction

A linear subspace of a vector space can be described in several ways: as a row space of
a matrix A; as the set of solutions of a system of linear equations; by its Plücker coordi-
nates, which are the maximal minors of A; or others besides. In tropical mathematics,
the objects defined in each of these ways no longer coincide. It is the Plücker perspective
that has become accepted as defining tropical linear spaces. The vectors that serve as
Plücker coordinate vectors in tropical geometry were introduced by Dress and Wenzel
[DW92], who named them valuated matroids.

Using the operations of the tropical semifield, the counterpart of the row space, i.e. the
set of all (R∪{∞})-linear combinations of a set of tropical vectors, is the tropical convex
hull, an object which has been intensely studied from many points of view [AD09, DS04,
JL16, AGG12, GK07, Ser09, But10]. Tropical convex hulls are usually not tropical linear
spaces at all: [YY, Theorem 16] describes when they are. But there is a bridge between
the two classes of object, the tropical Stiefel map [FR15]. The tropical Stiefel map
provides a tropical linear space containing a given tropical convex hull (Theorem 6.15).
If the tropical convex hull is r-dimensional and defined by r+1 points, then the tropical
Stiefel map provides an r-dimensional tropical linear space, which is smallest possible.

The combinatorics of the tropical Stiefel map is governed by transversal matroids. Let
A = {{A1, . . . , Ad}} be a multiset of subsets of a finite set E. Edmonds and Fulkerson
[EF65] observed that the set of subsets J ⊆ E which form a transversal of A, i.e.
such that there is an injection f : J → {1, . . . , d} with j ∈ Af(j) for each j ∈ J ,
are the independent sets of a matroid. A matroid M arising in this way is called a
tranversal matroid, and A is called a presentation of M . If M is transversal then it

87
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has a presentation where d equals the rank of M ; we will restrict our attention to
presentations of this size.

As Edmonds explained [Edm67], the set system A can be represented as a boolean d×n
matrix A, where n = |E|, and then M is obtained from A by formally computing its
maximal minors within the boolean semifield, where addition is OR and multiplication is
AND. Encoding true as 0 and false as ∞ makes this a (min-plus) tropical computation,
which can then be extended by allowing any tropical numbers as matrix entries. We
define a transversal valuated matroid V to be the vector of tropical maximal minors of a
d×n matrix A of tropical numbers, and we call the multiset of rows of A a presentation
of V . The function that computes V from A is the tropical Stiefel map, and the tropical
linear space dual to V is called a Stiefel tropical linear space in [FR15]. The name
“Stiefel” reflects the above matrix analogy: the space of tropical matrices maps to the
space of valuated matroids just as the non-compact Stiefel manifold of d×n matrices of
rank d (i.e. not necessarily orthogonal d-frames) maps to the Grassmannian of d-planes
in n-space.

Mason [Mas71] gave a characterization of transversal matroids (Proposition 6.42). Shortly
thereafter, Brualdi and Dinolt [BD72, Theorem 5.2.6] described all presentations of a
given transversal matroid M as follows (we reformulate it as Theorem 6.17). There is
a unique maximal presentation of M , which consists of τM (F ) copies of E \ F for each
flat F of M , where τM (F ) is computed by a recurrence (6.2) on the lattice of flats. Any
presentation {{E \F1, . . . , E \Fd}} is obtained from the maximal one by deleting relative
coloops in a way that doesn’t contravene Hall’s theorem, i.e. that satisfies

cork(
⋂
i∈I

Fi) ≤ |I| (6.1)

for every I ⊆ {1, . . . , d}, where cork(J) = d− rk(J) is the corank function.

In this work we give an explicit description of the fibers of the tropical Stiefel map,
which is a direct generalization of Brualdi and Dinolt’s result.

Theorem 6.1 (Synopsis of Theorem 6.40). Each nonempty fiber of the tropical Stiefel
map is the orbit of a fan in the space of d× n tropical matrices under the action of Sd
permuting the rows.

The apex of the fan corresponds to the unique maximal presentation of Brualdi and
Dinolt. Apart from a d-dimensional lineality space spanned by the zero-one indicator
vectors of rows, all rays of the fan are in coordinate directions, and the sets of rays that
form faces are governed by “local” counterparts of (6.1).
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Theorem 6.1 mirrors the classical fact that the non-compact Stiefel manifold is a principal
GLd bundle over the Grassmannian. The only invertible matrices of tropical numbers
are the generalized permutation matrices, those which have exactly one finite entry in
every row and column, forming a group isomorphic to R o Sd. Our theorem implies that
the space of d × n tropical matrices without too many infinities (Theorem 6.4) has a
deformation retract onto the Minkowski sum of the set of apices and the lineality space,
which is a ramified R oSd bundle over its image. The ramification arises because an apex
can have equal rows. It remains an open question to describe the topology of the image
of the tropical Stiefel map; the above bundle perspective suggests a possible approach.

In [FR15] a necessary condition for a valuated matroid V to be transversal was given
(Theorem 6.8). Assuming for convenience that V is connected, the condition is that if
V is transversal, all connected initial matroids of V must be transversal. The initial
matroids are those whose polytopes appear in the subdivision induced by V . We obtain
a converse.

Theorem 6.2 (Theorem 6.47). A connected valuated matroid is transversal if and only
if all of its connected initial matroids are transversal.

What about solutions to systems of linear equations? The solutions of a single tropical
linear equation form a tropical hyperplane. Set-theoretic intersections of two or more
tropical hyperplanes need not be tropical linear spaces. Minimal collections of tropical
hyperplanes whose intersection is a given tropical linear space are studied by Yu and
Yuster [YY]. However, an altered version of intersection which always produces linear
spaces, stable intersection, is well known in tropical geometry. Its first appearance was
as the fan displacement rule of Fulton and Sturmfels [FS97]. Stable intersection is dual
to the tropical Stiefel map; in the language of matroids, we dualize the transversal ma-
troids to strict gammoids (Section 6.2.5). Their valuated counterparts are presented by
weighted directed graphs akin to the graphs Speyer and Williams use to parametrize the
tropical positive Grassmannian [SW05]. Therefore our main results all have counter-
parts for stable intersections. Theorem 6.40 explicitly describes the space of all d-tuples
of tropical hyperplanes whose stable intersection is a given tropical linear space, and
Theorem 6.47 gives a “local” criterion for a tropical linear space to be a tropical stable
complete intersection.

Section 6.2 introduces transversality and the Stiefel map, and interprets the former as
the {0,∞}-valued case of the latter. The end of the section describes the dual picture.
We begin to characterize presentations in Section 6.3, by bounds on the number of rows
chosen from certain regions of the tropical linear space. Section 6.4 proves the main
theorems.
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6.2 Transversality

6.2.1 The tropical Stiefel map

The fibers of the following map π are our main subject.

Definition 6.3 ([FR15]). Let A ∈ Td×n be a tropical matrix. The tropical Stiefel map
is the map π : Td×n 99K P(T(nd)) defined by

π(A)B = min
{

d∑
i=1

Ai,ji : B = {j1, . . . , jd}
}
.

Remark 6.4. The domain of π is the subset of Td×n where at least one injective function
j : [d] → [n] achieves Ai,j(i) 6= ∞ for all i ∈ [d]. By Hall’s theorem, the only matrices
excluded from the domain are those that have a k × (n+ 1− k) submatrix all of whose
entries are ∞ for some 1 ≤ k ≤ d.

Figure 6.1: The tropical linear space L(π(A)) ⊆ TP3 of Theorem 6.5.

Example 6.5. Consider the matrix

A =

0 0 0 0
0 0 1 1


in T2×4. Computing the tropical minors gives π(A)B = 0 for any B ∈

([4]
2
)
\ {3, 4}

and π(A)34 = 1, which is the same valuated matroid as in Theorems 4.14 and 4.18.
Notice that replacing either A1,1 or A1,2 (but not both at the same time) by any tropical
number larger than 0 does not change any of the minors, so the resulting matrix would
be mapped to the same valuated matroid. Similarly, replacing either A2,3 or A2,4 by a
number larger than 1 also does not change π(A). Figure 6.1 shows the tropical linear
space of π(A). Any matrix A′ with π(A′) = π(A) must have one row giving projective
coordinates for a point in the blue subcomplex of the figure, and the other row doing
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the same for the red subcomplex. Later, we will show how all fibers of π have a similar
behavior.

Permuting the rows of A, or adding a scalar to any row, does not change π(A), and
therefore neither does left multiplication by any invertible tropical matrix. The first
invariance implies that π(A) is determined by the list of the projectivization (lying in
TPn−1) of each row of A, and the second invariance means that π(A) is determined
by the unordered list, i.e. the multiset, of these projectivizations. So we will normally
discuss fibers of π in terms of such multisets.

Definition 6.6. A (transversal) presentation of a valuated matroid V of rank d is a
multiset A of d points in TPn−1 such that V = π(A), where A is a matrix whose rows
are coordinate vectors for the elements of A.

If we say that a multiset A is a presentation of a tropical linear space L(V ), we mean
that it is a presentation of V .

The tropical Stiefel map is not surjective onto the space of valuated matroids. In [FR15]
the name Stiefel tropical linear space was given to tropical linear spaces of the form
L(π(A)). In view of Section 6.2.2, we grant the valuated matroids another name.

Definition 6.7. A valuated matroid V ∈ P(T(nd)) is transversal if it is in the image of
π.

Here is a necessary condition for transversality.

Proposition 6.8 (Fink, Rincón [FR15]). Let V be a transversal valuated matroid. Then
every matroid M ∈M(V ) such that PM is a facet of SV is transversal.

In Theorem 6.47 we show that this condition is also sufficient.

Remark 6.9. The image of π is always contained in the tropical Grassmanian TropGr(d, n),
the tropicalization of the Grassmannian over a field in its Plücker embedding [SS04]. The
matroid of Theorem 6.19 lies in the tropical Grassmannian for any field, so π does not
surject onto TropGr(d, n).

Remark 6.10. A family of presentations that have been the focus of much previous
work are the pointed presentations, where A has a tropical identity matrix as a maximal
submatrix [HJS12, Rin13b, JL16]. The unvaluated matroids with pointed presentations
are called fundamental transversal matroids [Bon10, Section 3.1] (see also [Bix77, RI80]);
by Theorem 6.27, these presentations can be taken to be by {0,∞} matrices. If V has a
pointed presentation A, then all facets of SV share the vertex eJ where AJ is the identity



92 Chapter 6. Transversal Valuated matroids

submatrix. The converse is false: for example, non-fundamental transversal matroids
exist. In other words, whereas the Grassmannian Gr(d,Kn) over a field K has an atlas
of charts isomorphic to Ad(n−d)

K , one for each position of the identity submatrix, the
corresponding maps from Td(n−d) fail even to cover the image of π.

Remark 6.11. If V and V ′ are valuated matroids on [n] of respective ranks d and d′,
their stable sum V + V ′ is the valuated matroid of rank d+ d′ defined by

(V + V ′)J = min{VB + V ′B′ | B ∈
([n]
d

)
, B′ ∈

([n]
d′
)
, B ∪B′ = J}

for each J ∈
( [n]
d+d′

)
, provided that (V + V ′)J < ∞ for some J . Stable sum generalizes

matroid union in the special case that the matroid union is additive in rank, for which
reason Frenk [Fre13, Section 4.1] calls it the “valuated matroid union”. In this language,
presentations are decompositions of a valuated matroid as a stable sum of rank 1 valuated
matroids.

Remark 6.12. A way of looking at the tropical Stiefel map which we do not take up
here is in terms of the semimodule theory of T. This viewpoint is adopted in [CGM],
and is generalized in [Mun] to the valuated version of Perfect’s “induction” of a matroid
across a directed graph [Per69].

6.2.2 Transversal matroids

We recommend [Bru87] as a general reference for transversal matroids.

Definition 6.13. A matroid is transversal if it is of the form π(A) where A ∈ {0,∞}d×n.

Let us unpack this and see that it agrees with the usual definition. The matrix A

determines a multiset of nonempty subsets of [n], i.e. a set system, whose members are
the sets Ai = {j ∈ [n] | Aij = 0} for i ∈ [d]. Then the bases of the transversal matroid
π(A) are the sets B ∈

([n]
d

)
whose elements can be labelled B = {j1, . . . , jd} in such a

way that ji ∈ Ai for each i ∈ [d], which is what is necessary for the tropical B-minor
of A not to be infinite. This data (j1, . . . , jd) is the classical notion of transversal of a
set system.

Theorem 6.27 will imply that we could have allowed arbitrary A ∈ Td×n in Theorem 6.13,
not just A ∈ {0,∞}d×n. The same set of (unvaluated) matroids will be obtained.

We caution readers of the literature on transversal matroids that most authors allow
the set system presenting a rank d matroid to contain more than d sets. These authors
would say that all our presentations are “of rank d”.
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6.2.3 Points in presentations

The search for transversal presentations of a tropical linear space L is helpfully delimited
by the fact that all elements of a presentation must lie in L. This is essentially the tropical
Cramer rule [AGG14, RGST05], but the proof is short so we include it for convenience.

Lemma 6.14. Let {{A1, . . . , Ad}} be a transversal presentation of a valuated matroid V .
Then Ai ∈ L(V ) for each i ∈ [d].

Proof. Write the presentation as a matrix A ∈ Td×n. Define an expanded matrix A(i)

whose first d rows agree with A and whose (d + 1)st row equals its ith row. Given a
set C ∈

( [n]
d+1
)
, let (j(i′) | i′ ∈ [d + 1]) be a transversal from [d + 1] to C in A(i) so that∑

i′ A
(i)
i′,j(i′) is minimal. By construction of A(i), swapping the ith and (d + 1)th entries

of the transversal preserves this sum. This implies that both j = j(i) and jf = j(d+ 1)
minimize the quantity Ai,j+LC\{j}, because in each case LC\{j} is the sum of the matrix
entries in the transversal other than the entry in the (d + 1)th row, which contributes
Ai,j . Therefore the tropical equations in the definition of L(V ) hold at Ai.

Because tropical linear spaces are tropically convex, i.e. closed under tropical linear
combinations [DS04, Theorem 7], Theorem 6.14 implies the following.

Corollary 6.15 ([FR15, Theorem 6.3]). The Stiefel tropical linear space L(π(A)) con-
tains the tropical convex hull Td ·A.

Every bounded cell of L(π(A)) is contained in the tropical convex hull Td · A [FR15,
Theorem 6.8]. More generally, Td · A contains the cells of L(π(A)) dual to coloop-free
matroids, which is exactly the bounded part of L(π(A)) if V = Ud,n.

6.2.4 The set of presentations of a matroid

In the matroid case, Lemma 6.14 asserts that any point in an presentation of a transversal
matroid M by points with {0,∞} coordinates has the form eF defined as

(eF )j :=

∞ if j ∈ F

0 if j /∈ F

where F is a flat of M . In terms of set systems, the sets which may appear are the
complements [n]\F of the flats. Given this, to characterize the presentations of M is to
determine when a multiset of d flats ofM constitutes the complements of a presentation
of M . This problem was solved by Brualdi and Dinolt [BD72] who proved that every



94 Chapter 6. Transversal Valuated matroids

transversal matroid M has a unique maximal presentation and showed how to derive all
other presentations from it. To describe the unique maximal presentation they use an
algorithm which we now discuss.

Let µ be the Möbius function on the lattice of cyclic flats CF(M). For F ∈ CF define

τ(F ) :=
∑

F ′∈CF(M), F⊆F ′
µ(F ′, 1) cork(F ′). (6.2)

If τ is non-negative, we can consider the multiset of cyclic flats DF(M) where each
F ∈ CF(M) has multiplicity τ(F ). Brualdi calls this the distinguished family of cyclic
flats [Bru87, p. 77].

Proposition 6.16 (Brualdi and Dinolt [BD72]). Let M be a transversal matroid. Then
τ is non-negative, and the complements of the distinguished family of cyclic flats make up
the unique maximal presentation of M . Moreover, A = {{A1, . . . , Ad}} is a presentation
if and only if the complements are flats Fi = [n] \Ai such that

{{cocl(F1), . . . , cocl(Fd)}} = DF(M)

and for every I ⊆ [d]
cork(

⋂
i∈I

Fi) ≥ |I|.

At the heart of this chapter is the idea of generalizing the above result to valuated
matroids.

The literature contains several statements similar or equivalent to the above. Below
we describe another reformulation of Theorem 6.16 as a precise bijection between in-
teger vectors and presentations. See for example Bonin [Bon10] for more detail on the
equivalence.

Proposition 6.17. Let M be a matroid, and β : F(M)→ Z. Then M has a transversal
presentation consisting of β(F ) copies of eF for each F ∈ F(M) if and only if β satisfies
the following inequalities:

β(F ) ≥ 0 for all F ∈ F(M) (6.3)∑
G≥F

β(G) ≤ cork(F ) for all F ∈ F(M) (6.4)

∑
G≥F

β(G) = cork(F ) for all F ∈ CF(M). (6.5)

Notice that if M is a transversal matroid, extending τ to be 0 for every non-cyclic flat
yields a solution of the integer program in Theorem 6.17. This is the minimal such
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function in the following sense: if β is a solution of this system for some matroid M ,
then by Theorem 6.16 we have that for every F ∈ CF(M)

∑
cocl(G)=F

β(G) = τ(F ).

Testing if M is transversal can be done by checking whether τ satisfies inequalities (6.3)
and (6.4). Another test for transversality, Theorem 6.42, was provided by Mason and
Ingleton.

The above discussion shows that every unvaluated presentation of M can be obtained
from the maximal presentation by replacing some elements eF with eG where cocl(G) =
F . Coclosure is a decreasing operation, so the maximal presentation is the one with a
maximum set of zero coordinates, i.e. it is maximum in the usual sense when viewed as
a set system or a graph. For any flat G of M we have cocl(G) = G \ J where J is the
set of coloops of M |G. Therefore, every unvaluated presentation of M is obtained from
the maximal presentation by adding relative coloops to the flats chosen.

Example 6.18. The work [FR15] focusses on presentations of valuated matroids V
with no VB =∞, so in the matroid case its concern is with presentations of the uniform
matroid Ud,n (see Theorem 4.6). The only cyclic flats of Ud,n are ∅ and [n], so we get
τ([n]) = 0 (as is the case for all matroids) and τ(∅) = d. Hence the maximal presentation
of Ud,n is {{0, . . . ,0︸ ︷︷ ︸

d

}}, where 0 ∈ Tn is the vector with all entries 0.

The other unvaluated presentations are obtained by changing some zeroes to infinities.
The non-cyclic flats of Ud,n are all sets F such that 0 < |F | < d. So since the vectors
in the presentation must be of the form eF , we cannot put d or more infinities into any
single vector; and inequality (6.4) says that for F ⊆ [n] one of these flats, we cannot
change all the positions indexed by F to infinity in more than cork(F ) = d− |F | of the
vectors. But any multiset of {0,∞} vectors where we avoid making such concentrated
changes is a presentation of Ud,n. This is the statement (c)⇔(d) of [FR15, Proposition
8]. The reader may check that when n = d we have recovered Philip Hall’s marriage
theorem, and when n = d+ 1, the dragon marriage theorem of Postnikov [Pos09].

Example 6.19. Consider the matroid M on 6 elements of rank 2 given by B(M) :=(6
2
)
\ {12, 34, 56}. For M to have a transversal presentation, β would have to satisfy

β(12) = β(34) = β(56) = 1, as all of the sets 12, 34, 56 are cyclic flats of corank 1. But
this means that

∑
F≥∅

β(F ) ≥ 3 > cork(∅) = 2, which is a violation of condition 6.5. In

consequence, no valuated matroid V such that M ∈ M(V ) can be in the image of the
Stiefel map.
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Figure 6.2: The ‘snowflake’ tropical linear space, where V12 = V34 = V56 = 1 and
VB = 0 for B ∈

(6
2
)
\{12, 34, 56}, does not correspond to a transversal valuated matroid.

Similar reasoning shows that no rank 2 matroid with three or more nontrivial parallel
classes has a transversal presentation. This provides one proof that the tree formed
by the bounded faces of a Stiefel tropical linear space of rank 2 is a path. Figure 6.2
exhibits an example of a tropical linear space without this property.

6.2.5 Strict gammoids and stable intersections

Speyer [Spe08, Section 3] described the stable intersection of tropical linear spaces in
terms of Plücker coordinates.

Definition 6.20. Let V and V ′ be valuated matroids on [n] of respective ranks d and d′.
Their stable intersection V ∩

stable
V ′ is the valuated matroid of rank d+ d′ − n defined by

(V ∩
stable

V ′)J = min{VB + V ′B′ | B ∈
([n]
d

)
, B′ ∈

([n]
d′
)
, B ∩B′ = J}

for each J ∈
( [n]
d+d′−n

)
, provided that there exists some J for which the above formula

yields (V ∩
stable

V ′)J <∞.

In particular, for such a valuated matroid to exist we must have d+d′ ≥ n. By comparing
this definition to Theorem 6.11, we see that stable intersection is dual to stable sum, in
the sense that

(V ∩
stable

V ′)∗ = V ∗ + V ′∗ and (V + V ′)∗ = V ∗ ∩
stable

V ′∗.

The linear space L(V ∩
stable

V ′) is contained inside L(V ) ∩ L(V ′) but in general this
containment can be strict (for example, whenever V = V ′).
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In terms of matroids, the dual of a transversal matroid is commonly known as a strict
gammoid.

Definition 6.21. Let Γ = ([n], E) be a directed graph with vertices [n] and directed
edges E ⊂ [n]2, and let J ⊆ [n] be a subset of size d. A linking from a set B ⊆ [n] to J
is a collection of vertex-disjoint directed paths such that each path starts from a vertex
in N and ends in J , and each vertex of B is the start of exactly one path.

We allow a path to be zero edges long.

Proposition 6.22. The collection of all sets B of size d such that there is a linking
from B to J forms the bases of a matroid. A matroid arises this way if and only if it is
the dual of a transversal matroid.

The first sentence of Theorem 6.22 is due to Mason [Mas72], the second to Ingleton and
Piff [IP73].

Our work provides a valuated version of strict gammoids. Consider a weighted directed
graph Γ = ([n], E) where E is now a weight function E : [n]2 → T which is 0 on the
diagonal, and let J ⊆ [n] be a subset of size d. Given a linking from a set B to J , the
weight of that linking is the sum of the weights of all of the edges used in that linking.

Proposition 6.23. Let Γ be a weighted directed graph with no negative cycles. Let
V ∈ P(T(nd)) be the vector such that for every subset B ∈

([n]
d

)
, VB is the minimum

weight among all linkings from B to J . Then V is a valuated matroid. Moreover, a
valuated matroid arises this way if and only if it is the dual of a transversal valuated
matroid.

Proof. Consider A ∈ T(n−d)×n to be the matrix where the rows are indexed by I = [n]\J
and Ai,j is the weight of the edge from i to j. In particular, Ai,i is 0 for every i ∈ I. Let
B ∈

([n]
d

)
and consider the tropical minor of A corresponding to the columns [n] \B. A

matching from those columns to the rows corresponds to picking edges such that every
vertex in [n] \ B has exactly one edge coming in and all vertices in I have exactly one
edge coming out. Taken together this is exactly a linking from B to J plus possibly some
cycles in I \B. The value of the term of that matching in the tropical minor corresponds
to weight of the linking corresponds plus the weight of the cycles. However, as there are
no negative cycles, removing the cycles (choosing the matching where for every vertex i
in a cycle is matched with itself instead) the value of the corresponding term can only
decrease. So the corresponding minor is equal to the minimum weight of a matching for
B to J , that is, VB. So V is exactly the dual of π(A).



98 Chapter 6. Transversal Valuated matroids

Now if V is dual to to a transversal valuated matroid π(A) with A ∈ T(n−d)×n, to
construct the corresponding weighted graph Γ, let I be any basis of π(A) and let σ :
[n− d]→ I be a matching that achieves the minimum of π(A)I . Let Γ be the weighted
directed graph where for every (i, j) ∈ I × [n] there is an edge from i to j with weight
Aσ−1(i),j − Aσ−1(i),i. As σ achieves the minimum among matchings [n − d] → I there
cannot be any negative cycles in Γ. So when the matrix A′ is constructed from Γ as
described above, then A′ is obtained from A by subtracting Aσ−1(i),σ(i) from each entry
of the row σ−1(i). In particular π(A′) = π(A), so V is the valuated matroid associated
to Γ.

Theorem 6.47 implies that these are exactly the valuated matroids that correspond to
stable intersections of tropical hyperplanes.

6.3 Characterizing presentations by regions

In this section, we characterize presentations of a valuated matroid V in terms of bounds
on the number of points which may lie in certain regions of L(V ).

Our first step is to generalize Proposition 6.17, which characterizes unvaluated presen-
tations of matroids, to describe presentations of unvaluated matroids by points with
unrestricted tropical coordinates. In this case, the regions we invoke can be seen as
generalizing the ranges of summation in inequalities (6.4) and (6.5).

We begin by defining relative support. This is essentially the same notion as covectors
in the theory of tropical hyperplane arrangements [AD09, Section 3]. The covector of a
point is the list of complements of its relative supports with respect to the apex of each
tropical hyperplane.

Definition 6.24. Let x and y be two points in TPn−1. The relative support rsx(y) ⊆ [n]
of y with respect to x is the set indexing the coordinates where y−x does not attain its
minimum.

Note that addition of a scalar multiple of (1, . . . , 1) to the coordinates of a point does
not affect its relative support, so the relative support is well defined. If x has a fixed
vector of affine coordinates (x1, . . . , xn) ∈ Tn, then we say that the supportive choice
of affine coordinates (y1, . . . , yn) for y, with respect to (x1, . . . , xn), is the one which
achieves minj(yj − xj) = 0. In terms of supportive coordinates, Theorem 6.24 becomes

rsx(y) = {j ∈ [n] | yj > xj}.
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Let L = L(M) where M is a matroid of rank d on [n]. By definition of L, we have that
rs0(y) ∈ F(M) for every y ∈ L. So for each flat F ∈ F(M) we define the region

R0(F,L) := {y ∈ L | F ⊆ rs0(y)}.

In supportive coordinates with respect to the zero vector, R0(F,L) consists of all the
points which have positive entries in the coordinates indexed by F . Similarly, for each
cyclic flat F ∈ CF(M) we define another region

R∞(F,L) := {y ∈ L | ∀j ∈ F, yj =∞}.

Clearly R0(F,L) ⊆ R∞(F,L). Given a multiset of d points in L, A = {{A1, . . . , Ad}}, we
define the numbers

σ0(A, F ) := |{i ∈ [d] | Ai ∈ R0(F,L)}|

σ∞(A, F ) := |{i ∈ [d] | Ai ∈ R∞(F,L)}|

where F is a flat in the first line, and a cyclic flat in the second.

Proposition 6.25. Let M be a transversal matroid, L = L(M) and A1, . . . , Ad ∈ L.
Then A = {{A1, . . . , Ad}} is a presentation of M if and only if the following conditions
hold:

1. ∀F ∈ F(M), σ0(A, F ) ≤ cork(F ).

2. ∀F ∈ CF(M), σ∞(A, F ) = cork(F ).

Proof. Let A ∈ Td×n be the matrix whose rows are the supportive coordinates for
A1, . . . , Ad with respect to 0, so all entries are nonnegative and each row contains a
zero. First we assume that {{A1, . . . , Ad}} is a presentation of M , that is π(A) = M .
Let F ∈ F and suppose that condition (1) is not satisfied for F . Let k = cork(F ). Let
B ∈ B(M) such that |F ∩B| = d− k. There are k+ 1 rows with positive coordinates in
all of the columns indexed by F . This means that in the square d× d submatrix given
by the columns of B, there is a (k+1)× (d−k) submatrix whose entries are all positive.
Then the tropical minor corresponding to B must be positive, which is a contradiction
as MB = 0.

Now suppose there is a cyclic flat F ∈ CF(M) that violates condition (2). As we already
proved condition (1) is satisfied, we can assume σ∞(A, F ) < cork(F ) = k. Then there
are d− k + 1 rows with finite entries in the columns corresponding to F . Assume there
is a matching of the submatrix of F with these rows. Then any matching of the whole
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matrix can be used to get a matching that uses the columns of F in all of those d−k+1
rows by exchanging the entries. This is a contradiction to the rank of F ; so no such
matching exists, and there must be a violation of Hall’s condition. Let I be the violating
subset of rows of size m, so that there are at most m− 1 columns with which elements
of I can be matched. Let j be one of those columns. Because F is cyclic there should
be a matching of d − k rows to F − j. So there is a row i corresponding to a point in
R∞(F,L) which is not used in this matching. Then I − i has access to at most ≤ m− 2
columns of F − j, which is a contradiction to the matching.

We now do the other direction. Assume conditions (1) and (2) are satisfied. Because
Ai ∈ L, we have rs0(Ai) ∈ F(M). Consider the initial matroid M ′ = π(A)0, that is, the
matroid whose bases are given by the entries where π(A) is 0. This M ′ is transversal,
and Condition (1) implies that all independent sets inM are also independent sets inM ′

(see Lemma 4.4 in [BD72]). This means that for each B ∈ B(M) there is a matching on
the 0 entries of A, so that B ∈M ′.

Now let B ∈
([n]
d

)
\ B(M). Then there exists F ∈ CF(M) of rank k such that |B ∩ F | >

k. By condition (2) there are d − k rows with infinity entries at the columns of F .
This means that in the square submatrix of A with columns indexed by B, there is a
(k + 1) × (d − k) submatrix with all entries infinity. So π(A)B = ∞. Altogether, this
shows π(A) = M .

We now turn our attention to the more general case L = L(V ) where V is any valuated
matroid. The following definition helps us pass to the Bergman fan case.

Definition 6.26. Let L = L(V ) be a tropical linear space, M ∈ M(V ) and x ∈
relint(LM ). The zoom map of L to x is the map Zx : L→ L(M) such that

Zx(y)j :=

0 when j /∈ rsx(y)

∞ when j ∈ rsx(y)

Proposition 6.27. Let M ∈ M(V ) be a coloop-free matroid, not necesarily connected,
and let x be a point in the relative interior of LM . Suppose A = {{A1, . . . , Ad}} is a
Stiefel presentation of the tropical linear space L. Then Zx(A) = {{Zx(A1), . . . , Zx(Ad)}}
is a presentation of M .

The basic idea of the proof is a primal-dual technique as used in the Hungarian method
for the assignment problem [Kuh55]. The corresponding arguments in [FR15] are Propo-
sitions 5.5 and 5.9.
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Proof. Let A ∈ Td×n be the matrix whose ith row consists of Ai written in supportive
coordinates with respect to x. We have that L(π(A)) equals L − x, the tropical linear
space L translated so that x is at the origin. Tropically exponentiating (i.e. classically
multiplying) each entry of A by t transforms L−x by a classical homothety centered at
the origin of factor t, so L(π(At)) = t(L− x). When t→∞, we have that At → Zx(A)
where Zx(A) is the matrix where the row i is given by Zx(Ai). It also attains when
t→∞ that t(L− x)→ L(M), because L coincides with L(M) + x near x. Because π is
a continuous map in its domain, these two limits imply that π(Zx(A)) = L(M) as long
as Zx(A) is still in the domain of π. So the only thing left to prove is that this is the
case, namely, that there is a set B for which πB(A) = 0.

If there were no maximal minor of A equal to 0, then there would be an a× b submatrix
A′ of A consisting of strictly positive entries such that a+b > n. Among such matrices A′

select one where b is maximal, i.e. with the most columns. Let I be the set of rows taken
by A′ and J be the set of columns not taken by A′. Notice that |I| = a > n − b = |J |.
Consider a bipartite graph G whose vertices are I q J and containing the edge (i, j)
just if Ai,j = 0. If Γ is disconnected, then there is a connected component with vertices
I ′ ⊆ I and J ′ ⊆ J with |I ′| < |J ′|. So the submatrix of A given by rows I and columns
[n] \ J ′ is strictly positive and has more columns than A′, which is a contradiction. So
G is connected.

Let j ∈ J . As M has no coloops, then there is a basis B ∈ B(M) such that j /∈ B.
Because 0 ∈ L(π(A))M , then π(A)B is minimal among all maximal minors of A. The
value of π(A)B is achieved by a matching σ : B → [d]. This matching must use an entry
of A′, meaning that there is an element j′ ∈ J such that σ(j′) ∈ I. Let G′ be the graph
where you add to G the vertex j′ and the edge (σ(j′), j′). As G′ is connected, then there
is a path Γ from j′ to j. The matching given by σ does not use consecutive edges. By
replacing each edge used by σ in Γ by the edge that follows it, we get a matching σ′ from
B − i ∪ j to [d]. But the weight of this matching is less than that of σ as we replaced a
strictly positive entry Aσ(j′),j′ by zero. This contradicts the minimality of π(A)B.

When we look at general tropical linear spaces, we have to define the regions R0 and R∞
more carefully. They will now have three parameters: the tropical linear space L = L(V ),
a point x ∈ L and a flat F ∈ F(M) such that the relative interior of LM contains x.
Before we define these regions, we provide the following lemma which explains why it
still makes sense to take flats as parameters.

Proposition 6.28. Let L = L(V ) be a tropical linear space, M ∈ M(V ) and x be a
point in the relative interior of LM . Then rsx(y) ∈ F(M) for any y ∈ L.
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Proof. Without loss of generality we can translate L so that x is the origin. In this
case, we may assume that VB = 0 if and only if B ∈ B(M). Now suppose that there
exists y ∈ L such that rsx(y) /∈ F(M). This means there is an element i ∈ [n] \ rsx(y)
such that i ∈ clM (rsx(y)). Let B ∈ B(M) be such that B ∩ rsx(y) = rkM (rsx(y)). Then
i /∈ B, and B∪{i}\{j} /∈ B(M) for any j ∈ B \ rsx(y). By the tropical Plücker equation
corresponding to B ∪ {i}, the minimum in

min
B′∪{j}=B∪{i}

VB′ + yj

is achieved twice. We have that VB + yi = 0. But for any other B′ ∪ {j}, if j ∈ rsx(y)
then yj > 0 and if j /∈ rsx(y) then VB′ > 0. So the minimum is only attained once,
which is a contradiction.

Given a tropical linear space L = L(V ), a matroid M ∈M(V ), a flat F ∈ F(M) and a
point x ∈ relint(LM ), we define the regions:

R0(F, x, L) := {y ∈ L | F ⊆ rsx(y)},

and, whenever F ∈ CF(M),

R∞(F, x, L) :=
⋂

y∈LM|F⊕M/F

R0(F, y, L).

Observe that when M is a matroid, the regions R0(F, 0,L(M)) and R∞(F, 0,L(M)) are
the setsR0(F,L(M)) andR∞(F,L(M)) defined earlier. Indeed, to see thatR∞(F, 0,L(M)) =
R∞(F,L(M)) note that every x ∈ R0(F,L(M)) has positive entries in F when written
in supportive coordinates with respect to 0 and any y ∈ R0(F, x,L(M)) must have
coordinates larger than x in F . As x can have arbitrarily large coordinates in F , any
y ∈ R∞(F, 0,L(M)) must have infinite entries at F , so R∞(F, 0,L(M)) ⊆ R∞(F,L(M)).
But clearly also R∞(F,L(M)) ⊇ R0(F, x,L(M)) for every x ∈ R0(F,L(M)), so the
equality holds.

Given a multiset A = {{A1, . . . , Ad}} of d points in L we can define σ as in the unsubdi-
vided case. For x ∈ relint(LM ),

σ0(A, F, x) := |{i ∈ [d] | Ai ∈ R0(F, x, L)}|

σ∞(A, F, x) := |{i ∈ [d] | Ai ∈ R∞(F, x, L)}|

where F is a flat of M in the first line, and a cyclic flat of M in the second.
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Lemma 6.29. Let M ∈ M(V ) be a coloop-free matroid, x ∈ relint(LM ), F ∈ CF(M)
and y ∈ LM |F⊕M/F . Then R0(F, y, L) ⊆ R0(F, x, L).

Proof. If y ∈ LM |F⊕M/F , then y is of the form c1eF1 + · · ·+ ckeFk for a flag F1 ⊂ . . . Fk
containing F and such that ci ≥ 0 for every i. This is the same form as points have
in the cone L(M)F of the Bergman fan of M . This means in particular that for any
j /∈ F and j′ ∈ F we have yj ≤ yj′ when written in the supportive coordinates with
respect to (fixed coordinates for) x. So if z ∈ R0(F, y, L), then there is a j /∈ F such that
j /∈ rsy(z). For every j′ ∈ F it follows that (z− y)j′ > (z− y)j , and (y−x)j′ ≥ (y−x)j ,
so (z − x)j′ > (z − x)j which means that z ∈ R0(F, x, L).

We will need the following lemma whose proof is straightforward from the definition
of Zx.

Lemma 6.30. Let M ∈M(V ) be a coloop-free matroid and let x ∈ LM lie in a coloop-
free face M . For F ∈ F(M) we have that

Z−1
x (R∞(F, 0,L(M))) = R0(F, x, L).

Proposition 6.31. Let A be a presentation of V . Then for any coloop-free matroid
M ∈ M(V ) and x ∈ relint(LM ) we have that σ0(A, F, x) ≤ corkM (F ) for F ∈ F(M),
with equality if F ∈ CF(M).

Proof. By Theorem 6.27 we have that Zx(A) is a presentation of L(M). Then by
Theorem 6.25 there are at most corkM (F ) elements of ZX(A) in R0(F, 0,L(M)). By
Theorem 6.30,

Zx(R0(F, x, L)) ⊆ R∞(F, 0,L(M)) ⊆ R0(F, 0,L(M))

so there at most corkM (F ) elements of A in R0(F, x, L). If F ∈ CF(M) then there are
exactly corkM (F ) elements of Zx(A) in R∞(F, 0,L(M)) so there are exactly corkM (F )
elements of A in R0(F, x, L).

Theorem 6.32. Let L = L(V ) be a tropical linear space and A1, . . . , Ad ∈ L. Then
A = {{A1, . . . , Ad}} is a Stiefel presentation of L if and only if for every connected
matroid M ∈M(V ) the following hold:

(1) σ0(A, F, vLM ) ≤ corkM (F ) for all F ∈ F(M); and

(2) σ∞(A, F, vLM ) = corkM (F ) for all F ∈ CF(M).
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Proof. Let A be a Stiefel presentation of a tropical linear space L. Applying Theo-
rem 6.31 for every vertex vLM of L gives us condition (1). For any connected matroid
M and every F ∈ CF(M) we have that there are exactly cork(F ) elements of A in
R0(F, vLM , L) = Z−1

vLM
(R∞(F, 0,L(M))). If condition (2) is not satisfied, it means that

one of those points is in R0(F, vLM , L) \R∞(F, vLM , L). Let Ai be that point.

Then there exists y ∈ LM |F⊕M/F such that Ai /∈ R0(F, y, L). From F ∈ CF(M) we see
that M |F ⊕M/F is coloop-free and F ∈ CF(M |F ⊕ F ), so by Theorem 6.31 we have
that corkM/F⊕M |F (F ) = σ0(A, F, y). Notice also that corkM (F ) = corkM |F⊕M/F (F ).
However by Theorem 6.29 we have that R0(F, y, L) ⊆ R0(F, vLM , L) so

σ0(A, F, y) ≤ σ0(A, F, vLM )− 1

= corkM (F )− 1

= corkM/F⊕M |F (F )− 1

= σ0(A, F, y)− 1

which is a contradiction.

Conversely, suppose A satisfies conditions (1) and (2). Let A be the matrix which has
A as its rows, so what we have to prove is that π(A) = V . For any connected matroid
M , we have that ZvLM (A) satisfies (1) and (2) for L(M), so it is a Stiefel presentation of
L(M). By adding vLM to each element of ZvLM (A) we get a presentation of L(M) + vLM .
The matrix we obtain by concatenating all of these presentations coincides in its finite
entries with A. As the finite Plücker coordinates of L(M) + vLM agree with V up to
adding a scalar, the difference between any pair of Plücker coordinates of π(A) both
indexed by elements of B(M) has the value called for by V . Because the incidence
graph of edges and maximal cells in SV is connected, we conclude that all finite Plücker
coordinates of π(A) agree with V up to a single global scalar.

Let B be a nonbasis of V . Consider a facet Q of PV such that eB fails to satisfy
its defining inequality. Let PM be one of the maximal cells of SV which have a facet
contained in Q, and let F be the cyclic flat that defines that facet. Then |B ∩ F | >
rkM (F ). As the polytope of PM/F⊕M |F is in the boundary of PV , we have sup{zj | z ∈
LM/F⊕M |F } =∞ for all j ∈ F . This implies that points in R∞(F, vLM , L) have∞ entries
in the coordinates corresponding to F . Because of (2) for M and F , there are cork(F )
elements of A in R∞(F, vLM , L). So at most rkM (F ) of the rows of A contain a finite
entry in a column indexed by B ∩ F . This is a violation of Hall’s condition, so there is
no matching for B using finite entries of A. So π(A)B =∞.
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We end this section by using the previous theorem to understand how presentations
behave under contractions.

Proposition 6.33. Let A be a presentation of V and F ∈ CF(V ) a cyclic flat of rank
k. Then there are exactly d−k points in A all of whose coordinates indexed by elements
of F are ∞. The projection of these points to the [n]\F coordinates form a presentation
of V/F .

Proof. As F ∈ CF(V ), there are coloop-free matroids inM(V ) such that their polytopes
are contained in the hyperplane

HF :=

∑
j∈F

xj = k

 .
Condition (2) of Theorem 6.32 applied to any of these matroids implies that there
are exactly d − k points of A with ∞ in the F coordinates, because the cells of L
corresponding to these cells extend to infinity in the eF direction. Let AF ⊆ A be the
multiset of those points.

For every coloop-free matroid in M ′ ∈ M(V/F ) there is a coloop-free matroid M ∈
M(V ) such that M/F = M ′ and PM ⊆ HF . In particular, F ∈ CF(M). For every
point x′ ∈ L(V/F )M ′ there is a point x ∈ LM which coincides with x′ in the [n]/F
coordinates and is arbitrarily large in the F coordinates. For such points and for any
flat F ⊆ F ′ ∈ F(M) we have that

R0(F ′, x, L) ∩ {xj =∞ | j ∈ F} = ιF (R0(F ′, x′,L(V/F ))

where ιF again means the inclusion L(V/F ) → L which sets the F coordinates to ∞.
As the lattice of flats of M ′ is isomorphic to the interval above F in lattice of flats of M ,
the conditions that Theorem 6.32 imposes on AF when applied to V are exactly the
same as its conditions for presentations of V/F .

6.4 The presentation space of L

We begin this section by recalling the τ function as defined in Equation (6.2). A matroid
valuation is a valuation in the sense of convex geometry that is defined on the class of
matroid polytopes. For more detail, in particular the equivalence of the different ways
the last sentence might be interpreted, see [DF10, Section 3].

Lemma 6.34. The function M 7→ τM (∅) is a matroid valuation.
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Proof. Let X : X0 ⊆ · · · ⊆ Xk be a chain of subsets of [n], and r : r0 ≤ · · · ≤ rk

nonnegative integers. The matroid function sX,r which takes value 1 onM if rkM (Xi) =
ri for each i, and 0 otherwise is known to be a matroid valuation [DF10, Proposition
5.3].

We prove the lemma by way of an auxiliary function. Let X and r be as above, and let
cX,r be the 0-1-valued matroid function which takes value 1 on M if each Xi is a cyclic
flat of M with rkM (Xi) = ri and 0 otherwise, To prove that cX,r is a valuation, it will
suffice to write it as a linear combination of functions sX′,r′ .

A set J is a cyclic flat of M if and only if there is no j ∈ [n] \ J such that rk(J ∪ {j}) =
rk(J) and no j ∈ J such that rk(J \ {j}) = rk(J) − 1. If K ⊇ J , then the assertion
rk(K) = rk(J) is equivalent to rk(J ∪ {k}) = rk(J) for each k ∈ K \ J . Therefore the
indicator function of the predication “J is a flat of rank r”, i.e. “rk(J) = r and there is
no j ∈ [n] \ J such that rk(J ∪ {j}) = r”, can be written by inclusion-exclusion as

∑
K⊇J

(−1)|K\J |s(J,K),(r,r).

Repeating the same argument in the dual allows c(J),(r) (where the two indices are lists
of length one) to be written as an alternating sum of terms s(I,J,K),(r−|J |+|I|,r,r). We thus
have

cX,r(M) =
k∏
i=0

c(Xi),(ri)(M)

=
∑ k∏

i=0
(−1)|Ki\Ii| s(Ii,Xi,Ki),(ri−|Xi|+|Ii|,ri,ri)(M) (6.6)

where the sum is over choices of sets Ii ⊆ Xi and Ki ⊇ Xi for each i.

Submodularity implies that if rk(K) = rk(J) for some K ⊆ J , then also rk(K ∪ L) =
rk(J∪L) for every L disjoint fromK. Therefore, for any term of (6.6) in whichKi 6⊆ Xi+1

for some i < k, with j ∈ Xi+1 \Ki, inserting j into or removing it from Kk gives another
term which is equal with opposite sign. So we may cancel these terms, and by repeating
the argument in the dual we may impose on the index set of the sum (6.6) the further
conditionsKi ⊆ Xi+1 and Ii ⊇ Xi−1. We have furthermore that any term withKi 6⊆ Ii+1

is zero, because if j ∈ Ki \ Ii+1, submodularity is violated at Xi ∪ {j} and Xi+1 \ {j}.
Thus we can impose the condition Ki ⊆ Ii+1 on (6.6) as well. Under this condition all
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the sets in the indices form a single chain and we have

k∏
i=0

s(Ii,Xi,Ki),(ri−|Xi|+|Ii|,ri,ri)(M)

= s(I0,X0,K0,I1,...,Kk),(r0−|X0|+|I0|,...,rk)(M)

which is a valuation. This establishes that cX,r(M) is a valuation.

We can now prove the lemma. By Philip Hall’s theorem, the Möbius function µ(F ′, 1)
is a sum over the chains of cyclic flats from F ′ to 1 in CF , with a chain of length i

weighted (−1)i. Therefore µ(F ′, 1) cork(F ′) can be written as a linear combination of
the cX,r running over all chains of sets X = (X0 = F ′, . . . , Xk = [n]) and all tuples
r = (r0, . . . , rk), the coefficient of cX,r being r0(−1)k. We conclude M 7→ τM (∅) is a
valuation.

We want to prove the converse of Theorem 6.8, so we say that V has transversal facets
if it satisfies that proposition’s conclusion, that is, if all of its facets SV correspond to
polytopes of transversal matroids. Define

M(V ) :=
⋃

F∈CF(V )
M(V/F ).

All of the matroids in this set index cells of SV .

Definition 6.35. Let V be a valuated matroid with transversal facets. The distinguished
multiset of matroids DM(V ) of V contains each matroid M ∈ M(V ) with multiplicity
τM (∅). For any connected matroid M ∈M(V/F ) with F ∈ CF(V ), let vLM ∈ L = L(V )
be the point in TPn−1 whose coordinate vector extends vL(V/F )

M by setting the coordinates
corresponding to F to be ∞. The distinguished multiset of apices DA(L) of L consists
of vLM for every M ∈ DM(V ), with the same multiplicities.

If V has transversal facets, then all elements of M(V ) are transversal, because con-
traction of cyclic flats preserves transversality. Therefore τM (∅) only takes non-negative
values for any M ∈M(V ).

Corollary 6.36. Let V be a valuated matroid of rank d with transversal facets. Then
|DM(V )| = d.

Proof. For each distinguished cyclic flat F of V , τV /F (∅) = τV (F ). By Theorem 6.34
there are exactly τV (F ) matroids fromM(V/F ) in DA(L) counted with multiplicities.
So there are as many distinguished matroids as distinguished cyclic flats of V , which is
exactly d.
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Definition 6.37. Let M be a transversal matroid and let t = τM (∅). The presentation
fan φM of M consists of all tuples of points (p1, . . . , pt) ∈ L(M)t such that rs0(pi)
are independent flats and there is a presentation A = {{A1, . . . , Ad}} of M such that
Ai = [n] \ rs0(pi) for i ∈ [t]. If V is a valuated matroid with transversal facets and
L = L(V ), then for every M ∈ DM(V ) we define

φL(M) := φ(M) + vLM

Finally we define the presentation space Π(L) of L to be the orbit of

∏
M∈DM(V )

φL(M)

under the action of Sd by permuting points.

In the product φL(M) is only taken once, regardless of the multiplicity ofM in DM(V );
multiplicities are already accounted for in the definition of φ(M). Notice that φ(M) and
therefore φL(M) are invariant under the St action, and Π(L) is invariant under the Sd
action.

Example 6.38. Consider the valuated matroid V from Theorems 4.14, 4.18 and 6.5
and let M1 and M2 be the connected matroids in M(V ) corresponding to the square
pyramids where B(M1) =

([4]
2
)
\{3, 4} and B(M2) =

([4]
2
)
\{1, 2}. We have thatDF(M1) =

{{∅, {3, 4}}} andDF(M2) = {{∅, {1, 2}}} so τ(M1) = τ(M2) = 1 andDM(V ) = {{M1,M2}}.
The distinguished apices are DA(L) = {{vLM1

, vLM2
}} = {{[0 : 0 : 0 : 0], [0 : 0 : 1 : 1]}}.

The presentation fan φ(M1) consists of two rays, one in direction e1 and the other in
direction e2 while φ(M2) has its rays going in direction e3 and e4. Figure 6.1 shows
φL(M1) in blue and φL(M2) in red. The presentation space Π(L) consists of the S2

orbit of the product of these fans, in other words,

Π(L) = φL(M1)× φL(M2) ∪ φL(M2)× φL(M1).

Example 6.39. The uniform matroidM = Ud,n is the unique rank d matroid such that
τM (∅) = d. The presentation fan of the uniform matroid is an Sd-invariant subset of
Td×n where (A1, . . . , Ad) ∈ φ(Ud,n) if and only if for every non-empty subset I ⊆ [d],∣∣∣∣∣⋂

i∈I
rs0(Ai)

∣∣∣∣∣ ≤ d− |I|.
The {0,∞}-vectors within φ(Ud,n) give the unvaluated presentations from Theorem 6.18.

The reason for calling Π(L) a presentation space is the following theorem.
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Theorem 6.40. Let V be a transversal valuated matroid. Then A = {{A1, . . . , Ad}} is a
presentation of V if and only if (A1, . . . , Ad) ∈ Π(L(V )).

In other words, the theorem asserts that Π(L(V )) ⊆ (TPn−1)d equals the row-wise
projectivization of π−1(V ). Notice that if L = L(M) is the Bergman fan of a matroid
M , then the distinguished set of apices DA(L) consists of DA(L) = {{eF : F ∈ DF(M)}}
(where eF is as defined in Section 6.2.4). So the distinguished set of apices DA(L) are
the valuated generalization of the unique maximal presentation of a transversal matroid.

We begin the proof of Theorem 6.40 with the easier inclusion.

Proposition 6.41. Let V be a transversal valuated matroid. If A = {{A1, . . . , Ad}} is a
presentation of V then (A1, . . . , Ad) ∈ Π(L(V )).

Proof. Let A be a presentation of V and let M ∈ DM(V ). First assume M ∈ M(V ).
Then by Theorem 6.27 we have that ZvLM (A) is a presentation of L(M). By Theo-
rem 6.25(2) applied to every cyclic flat in the inclusion-exclusion manner, there are
exactly τM (∅) points of ZvLM (A) whose relative support with respect to 0 is an indepen-
dent set of M . The tuple formed from the corresponding points in A will then be in
φL(M).

Now if M is not inM(V ) but inM(V/F ) for some F ∈ CF(V ), then by Theorem 6.33
there is AF ⊆ A such that its projection to the [n]/F coordinates is a presentation
of V/F . Then by the same argument as above, there are τM (∅) of those points in
φL(V/F )(M) which proves the desired result as ιF (φL(V/F )(M)) = φL(M).

For the other direction of Theorem 6.40, we begin by recalling the following charac-
terization of transversal matroids in its form due to Ingleton [Ing77]. Essentially the
same characterization, but quantifying over all cyclic sets, was given earlier by Mason
[Mas71].

Proposition 6.42. A matroid M is transversal if and only if for every collection of
cyclic flats F1, . . . , Fk the following inequality is satisfied:

∑
∅6=I⊆[k]

(−1)|I| rk
(⋃
i∈I

Fi

)
≤ − rk

(
k⋂
i=1

Fi

)
.

Notice that for k = 2, this is the submodularity axiom of the rank function. We also
remark that on substituting rk(J) = d − cork(J) in the above inequality, the d terms
cancel out, and therefore a formally identical inequality is true where rk is replaced by
cork and ≤ by ≥.
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Definition 6.43. Let M be a transversal matroid of rank d. We say that a collection
G1, . . . Gd of flats of M is a pseudopresentation if

{{cocl(G1), . . . cocl(Gd)}} = DF(M).

To motivate this definition, note that it is a necessary condition for a presentation of M
that the complements of its members be a pseudopresentation (see Theorem 6.16). The
following lemma says that if a pseudopresentation fails to be the complements of a
presentation, then the failure is “local”, that is, there is a distinguished cyclic flat F
such that the Gi which extend F were poorly chosen.

Lemma 6.44. Let M be a transversal matroid with DF(M) = {{F1, . . . , Fd}} and let
G1, . . . , Gd ∈ F(M) be a pseudopresentation. Suppose that G1, . . . , Gd are not the com-
plements of a presentation. Then there exists F ∈ DF(M) and I, J ⊆ [d], such that:

• cocl(Gi) = F for every i ∈ I

• F ( Fj for every j ∈ J .

• cork
(⋂
i∈I

Gi ∩
⋂
j∈J

Fj

)
< |I|+ |J |

Proof. Suppose that such F does not exist but G1, . . . , Gd are not the complements of
a presentation. Then there is a set of indices I ⊆ [d] such that

cork
(⋂
i∈I

Gi

)
< |I|.

Let k be the number of different elements of {cocl(Gi) | i ∈ I} and without loss of
generality let that set be {F1, . . . , Fk}. For j ∈ [k] let Ij = {i ∈ I | cocl(Gi) = Fj} and
let mj = |Ij |. The Ij clearly partition I so we have that

k∑
j=1

mj = |I|

Let K =
⋂
i∈I

Gi. For any proper subset J ⊆ [k] let

aJ =

∣∣∣∣∣∣K ∩
⋂
j∈J

Fj

 ∩
⋂
j /∈J

[n] \ Fj

∣∣∣∣∣∣
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and let a[k] = rk
(⋂
i∈I

Fi

)
. Notice that for any element x ∈ K \

⋂
i∈I

Fi, x is a coloop of

some Gi, so in particular it is a coloop in K. Therefore we have that

rk(K) =
∑
J⊆[k]

aJ .

For every i ∈ I1 we have that K ⊂ Gi, so

rk

⋂
i∈I1

Gi

 ≥ rk(F1) +
∑

J⊆[d]\{1}
aJ .

As we assume (F1, I1, ∅) do not satisfy the conditions of the lemma (for (F, I, J) in the
statement), we have that

m1 ≤ cork

⋂
i∈I1

Gi

 ≤ cork(F1)−
∑

J⊆[d]\{1}
aJ .

Now for any 2 ≤ j ≤ k, let

Jj =

j′ ∈ [d] | Fj ∪

 ⋂
j′′<j

Fj′′

 ⊆ Fj′ and Fj 6= Fj′

 .
Similarly as before, we assume the conditions of the lemma are not satisfied for (Fj , Ij , Jj).
By inclusion-exclusion, we have that

|Jj | ≥
∑

∅6=J⊆[j−1]
(−1)|J |−1 cork

 ⋃
j′∈J∪{j}

Fj′

 .
On the other hand we have

rk

⋂
i∈Ij

Gi ∩
⋂
j′∈Jj

Fj′

 ≥ rk(Fj) +
∑

[j−1]⊆J⊆[d]\{j}
aJ .

So by assumption we get

mj ≤ cork

⋂
i∈Ij

Gi ∩
j−1⋂
j′=1

Fj′

− |Jj |
≤

∑
J⊆[j−1]

(−1)|J | cork

 ⋃
j′∈J∪{j}

Fj′

− ∑
[j−1]⊆J⊆[d]\{j}

aJ .
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Adding all bounds for the mj and using Theorem 6.42 we get:

k∑
j=1

mj = |I| ≤
∑

∅6=J⊆[k]
(−1)|J | cork

⋃
j∈J

Fj

− ∑
J([d]

aJ

≤ cork(
k⋂
j=1

Fj)−
∑
J([d]

aJ

= d−
∑
J⊆[d]

aJ

= cork(K)

which is a contradiction, as we assumed |I| > cork(K).

Proposition 6.45. Let L = L(V ) be a tropical linear space such that V has transversal
facets and let DA(L) = {{A1, . . . , Ad}} be its distinguished multiset of apices. Then for
every M ∈ M(V ) coloop-free and x ∈ LM the multiset {{rsx(A1), . . . , rsx(Ad)}} is a
pseudopresentation of M .

Proof. Let x be any point inside a coloopless cell LM . If τM (∅) > 0, then LM = {x}
and x has multiplicity exactly τM (∅) in DA(L) and coclM (rsx(x)) = ∅.

Now fix a coloopless cell LM0 of V and a flat F ∈ DF(M0), and let t = τM0(F ). We
claim that

there are t distinguished apices Ai with coclM (rsx(Ai)) = F . (6.7)

We will prove this as follows. For each distinguished apex Ai we construct a finite
sequence of matroids M0,M1, . . . ,Mk which form a “path” from x to Ai, and sets F =
F 0, F 1, . . . , F k where F j is a flat of Mj . We reduce claim (6.7) about (Mj , F

j) to
the same claim about (Mj+1, F

j+1) for each j < k. The last matroid Mk satisfies
LMk

= {Ai}, for which claim (6.7) is proved by the previous paragraph.

The construction of the path is iterative, starting with M0. Let (M,F ) be the last
matroid and flat (Mj , F

j) constructed, and let HF be the hyperplane

HF :=
{∑
i∈F

zi = rkM (F )
}
.

Consider three cases.

Case 1. PM is not contained in HF . This means that the affine span of LM does not
contain the vector eF . So let M ′ = M |F ⊕M/F . We have that PM ′ is the proper face
of PM maximized by eF . As F is cyclic in M , it follows that M ′ is coloop-free. The
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lattice of flats of M ′ decomposes as (F(M ′),⊂) = (F(M |F ),⊂) × (F(M/F ),⊂) where
(F(M |F ),⊂) is isomorphic to the sublattice of (F(M ′),⊂) below F and (F(M/F ),⊂)
is isomorphic to the sublattice above F . In particular, τM ′(F ) = t. This means that,
letting y = x+ εeF ∈ LM ′ for small ε > 0, if there are τM ′(F ) = t distinguished apices
Ai with coclM ′(rsy(Ai)) = F , then those same points satisfy rsx(Ai) = rsy(Ai) and
coclM (rsx(Ai)) = coclM ′(rsy(Ai)) = F . Therefore, we have the necessary reduction with
the choice Mj+1 := M ′ and F j+1 = F .

Case 2. PM is contained in HF and rkV (F ) > rkM (F ). Let y = x + λeF , where λ is
maximum subject to y ∈ L. Then y ∈ LM ′ where LM ′ is a face of LM . Dually, PM is
the proper face of PM ′ maximized by [n] \ F . This case is the reverse of the first case,
in that (F(M),⊂) = (F(M ′|([n] \ F )),⊂)× (F(M ′/([n] \ F )),⊂).

If rkM (F ) = r, then DF(M) contains exactly r supersets (possibly not strict) of [n] \F ,
which will also be in DF(M ′) because the upper intervals above [n] \ F are identical in
F(M) and F(M ′). For F ′ ∈ CF(M ′) a proper subset of [n] \ F , we have

τM (F ∪ F ′) = |{{G ∈ DF(M ′) | F ′ = coclM ′(G \ F )}}|. (6.8)

To see this, compare the use of the recursion (6.2) to compute τM on the interval [F, [n]]
and τ ′M on the interval [∅, [n] \ F ]. Note that these two intervals are isomorphic. The
coranks in the latter interval exceed those in the former by r; this is accounted for by
the r distinguished flats of M ′ above [n]\F . The other difference is the presence of flats
G not comparable with [n]\F inM ′. Because CF(M ′) is a lattice, it contains a greatest
lower bound of G and [n] \ F , namely coclM ′(G \ F ). This is the maximal element of
[∅, [n]\F ] contained in G. Therefore, terms τ(G) behave in the recursion as if they were
terms τ(coclM ′(G \ F )), and this is the fact expressed by (6.8).

The case f ′ = ∅ of the above means that if t = τM (F ) there are exactly t elements
{{F1, . . . , Ft}} ⊆ DF(M ′) such that Fi\F is an independent set. In particular, coclM (Fi∪
F ) = F for every i ∈ [t]. So if there are exactly t distinguished apices such that, up
to reordering, coclM ′(rsy(Ai)) = Fi, then we have that rsx(Ai) = rsy(Ai) ∪ F and
coclM (rsx(Ai)) = coclM (Fi ∪ F ) = F . So Mj+1 := M ′ and F j+1 := Fi provides our
reduction.

Case 3. PM is contained in HF but rkV (F ) = rkM (F ). This means that PM is in
the boundary of PV and that the affine span of LM contains eF . In particular LM
is unbounded in the eF direction. But then M ′ = M/F is a coloopless matroid with
τM ′(∅) = τM (∅) and LM ′ consists of a vertex v with infinity in the coordinates cor-
responding to F . In particular, the multiplicity of v in DA is τ(M), and we have
rsx(v) = F and in particular coclM (rsx(v)) = F . So in this case our path terminates.
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Finally, we argue that the path M0, . . . ,Mk terminates. Each member Mj+1 except
possibly the last is of the form V xj+1 where xj+1 = xj + λeF j where λ > 0. We have
that S = F j+1 \ F j consists of coloops of the restriction Mj+1|(S ∪ F j+1). In Case 2,
this implies that S is independent in Mj+1, and therefore that S is a set of coloops
of Mj |(S ∪ F j). This property also propagates backwards in Case 1. Therefore, the
union U = ∪kj=0F

j consists of F 0 together with coloops of M0|U . Because M0 is coloop-
free, U is a subset of some hyperplane H containing F 0, excluding an element ` of the
ground set. Therefore, in supportive coordinates with respect to x0, the x` coordinate
is constant and the coordinates in H are nondecreasing.

Theorem 6.46. Let L = L(V ) be a tropical linear space such that V has transversal
facets. Then the distinguished multiset of apices is a Stiefel presentation of L.

Proof. The proof has the same structure as the proof of Theorem 6.45. If the distin-
guished multiset of apices DA(L) = {{A1, . . . , Ad}} is not a Stiefel presentation of L,
then by Theorem 6.32 there exists x ∈ LM0 where M0 is a coloopless matroid such
that rsx(DA(L)) = {{rsx(A1), . . . , rsx(Ad)}} is not a presentation. By Theorem 6.45,
rsx(DA(L)) is indeed a pseudopresentation, so by Theorem 6.44 we know there is a flat
F ∈ F(M0), a set I such that coclM0(rs(Ai)) = F for every i ∈ I and distinguished flats
{{F1, . . . , Fk}} ⊆ DF(M0) such that Fj ⊇ F for every j ∈ [k] and

corkM0

⋂
i∈I

rsx(Ai) ∩
k⋂
j=1

Fj

 < |I|+ k.

We show that this failure of presentation implies a sequence of such failures

(M0, F
0 := F ), (M1, F

1), . . . , (Mk, F
k)

such that we can argue a contradiction for (Mk, F
k). The Mj will be the same matroids

as in Theorem 6.45, so this proof will consider the exact same three cases. The sequence
terminates either in Case 3 or at (Mk, ∅); the latter is an immediate contradiction because
cork(∅) = d.

Otherwise, let (M,F ) = (Mj , F
j), and construct (Mj+1, F

j+1) = (M ′, F ′) as follows.

Case 1. In the first case, recall that we defined y = x+ εeF ∈ LM ′ where LM is a face
of LM ′ . We have that rsy(Ai) = rsx(Ai) for any i ∈ I, so

corkM ′

⋂
i∈I

rsy(Ai) ∩
k⋂
j=1

Fj

 < |I|+ k.
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Case 2. In the second case, recall that y = x + λeF ∈ LM ′ , where LM ′ is a face of
LM . Here, rsy(Ai) ⊇ rsx(Ai) \ F . For every j ∈ [k], Fj \ F is a cyclic flat in M ′.
However, it may be the case that τM ′(Fj \ F ) ≤ τM (Fj). This happens when there is
a cyclic flat F ′j such that F ′j \ F = Fj \ F . In any case, we can find distinguished flats
{{F ′1, . . . , F ′k}} ⊆ DF(M ′) such that for every j ∈ [k] we have F ′j \F = Fj \F . Moreover,
there are another r = corkM ′([n] \F ) = rkM (F ) distinguished flats F ′k+1, . . . , F

′
k+r such

that F ′k+j ⊇ [n] \ F for every j ∈ [r]. In total we have that

⋂
i∈I

rsy(Ai) ∩
k+r⋂
j=1

F ′j ⊇

⋂
i∈I

rsx(Ai) ∩
k⋂
j=1

Fj

 \ F
corkM ′

⋂
i∈I

rsy(Ai) ∩
k+r⋂
j=1

F ′j

 ≤ corkM

⋂
i∈I

rsx(Ai) ∩
k⋂
j=1

Fj

+ rk(F )

< |I|+ j + r.

Then rsy(DA(L)) is not a presentation of M . So we can use Theorem 6.44 again to
find F ′ ∈ DF(M ′) and I ′ ⊆ I such that coclM ′(rsy(Ai)) = F ′ where the conditions for
presentation fail.

Case 3. In the third case, we have that v = Ai for every i ∈ I. In particular, rsx(v) = F .
But then

corkM

F ∩ k⋂
j=1

Fj

 < |I|+ k

is a contradiction to the fact thatM is a transversal matroid withDF(M) ⊇ {F |I|, F1, . . . Fk}.

We get three important results as corollaries. The first corollary is Theorem 6.40:

Proof of Theorem 6.40. One of the directions is Theorem 6.41. For the other direction,
let (A1, . . . , Ad) ∈ Π(L) and A = {{A1, . . . , Ad}}. Let M ∈ M(V ) be coloop-free and
x ∈ LM . By Theorem 6.45, rsx(DA(L)) is a pseudopresentation of M . Now, the
argument used in proving Theorem 6.46 can be strengthened to show that A is actually
a presentation of V . Let M and M ′ be successive matroids in the path, and label the
distinguished apices for Mi as {{A′1, . . . , A′d}} so that the apex of M corresponding to A′i
is Ai. As all the cones in φ(M ′) are generated by rays going in the direction of a single
coordinate ej , the difference rsx(A′i) \ rsx(Ai) must consist of coloops of rsx(Ai). So

coclM (rsx(A)) = coclM (rsx(DA(L)))

which means A is still a pseudopresentation of M .
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The second corollary is the converse of Theorem 6.8.

Theorem 6.47. A tropical linear space is in the Stiefel image if and only if all the
facets in its dual subdivision are transversal.

Since the class of transversal matroids is closed under contractions of cyclic sets [BM72,
Theorem 5.4] and arbitrary deletions, if V is transversal then so is any initial matroid
V x which has no new coloops. Thus Theorem 6.47 can be sloganized: transversality is
a local property of a tropical linear space.

Corollary 6.48. Let M be a matroid and suppose PM has a regular subdivision such
that all facets in the subdivision are transversal. Then M is transversal.

Proof. Let L be a tropical linear space dual to such a regular subdivision. By Theo-
rem 6.47, L is in the Stiefel image so it has presentation A. Consider the matrix Ã that
replaces all finite entries of A by 0. Then π(L) is a tropical linear space dual to M , so
M is transversal.

Figure 6.3: The distinguished matroids of V in Theorem 6.49.

Example 6.49. Let V be the valuated matroid of rank 3 on 5 elements such that
V123 = 1, V145 = ∞, and VB = 0 for any B ∈

([5]
3
)
other than these two. The three

distinguished matroids M1, M2 and M3 of V are shown in Figure 6.3. The respective
distinguished apices of L(V ) are x1 = [0 : 0 : 0 : 0 : 0], x2 = [1 : 1 : 1 : 0 : 0] and
x3 = [∞ : 0 : 0 : ∞ : ∞]. Figure 6.4 shows the presentation fan of each distinguished
matroid: the fan from x1 is the cone over the boundary of a square and the fan from x2

is the cone over the boundary of a triangle, while the fan from x3 is the single point x3.
So any matrix A ∈ π−1(V ) must have one row in the red zone, another row in the blue
zone and a third row lying exactly at the green point.
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Figure 6.4: The presentation fan φMi
of each of the distinguished matroids Mi in

Theorem 6.49, as they appear together in TP4. Labels eJ on rays and edges indicate
their directions.





Part III

Lattice polygon subdivisions:
Harnack Curves
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Chapter 7

The moduli space of Harnack
curves

7.1 Introduction

Harnack curves are real algebraic plane curves with several remarkable properties. By
definition, they have the maximum possible number of connected components and these
components are arranged in a unique particular way [Mik00] (see Definition 7.3). Their
amoebas are particularly special, since they are precisely the ones with maximal area
for a fixed Newton polygon [MR01]. Because of this, they have found applications in
physics, where the dimer model is used to study crystal surfaces (see [KOS06] for details).
In this model, the limit of the shape of a crystal surface is given by the amoeba of a
Harnack curve.

To better understand the dimer model, Kenyon and Okounkov [KO06] studied the space
of Harnack curves of degree d in the projective plane modulo the action of the torus
(C∗)2 ⊆ CP2. Equivalently, this is the space of amoebas of Harnack curves modulo
translation. They show that this moduli space has global coordinates given by the
areas of holes of the amoeba and the distances between consecutive tentacles. Therefore
it is diffeomorphic to R(d+4)(d−1)/2

≥0 . Crétois and Lang [CL18] generalized some of the
techniques used in [KO06] to Harnack curves in any projective toric surface. They
showed that given a lattice polygon ∆, the moduli space H∆ of Harnack curves with
Newton polygon ∆ is path connected and conjectured that it is also contractible. We
confirm this belief and further generalize the results of [KO06] to compute H∆:

Theorem 7.1. Let ∆ be a lattice m-gon with g interior lattice points and n boundary
lattice points. Then the moduli space H∆ of Harnack curves of Newton polytope ∆ is
diffeomorphic to Rm−3 × Rn+g−m

≥0 .
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The interior of H∆ corresponds to the smooth Harnack curves with transversal intersec-
tions with the axes of X∆.

We further show that H∆ admits a compactification similar in spirit to the Deligne-
Mumford compactification ofMg,n. This compactification consists of ‘Harnack meshes’,
that is, collections of Harnack curves that can be patchworked (using Viro’s method, see
[Vir06]) to produce a curve in H∆. A Harnack mesh consist of a regular subdivision of
∆ and aa Harnack curve with Newton polytope ∆i for each facet ∆i of the subdivision
with some gluing conditions. The space of Harnack meshes is naturally stratified in cells
according to which regular subdivision is used in the patchworking recipe. The above
can be summed up in the following:

Theorem 7.2. The space H∆ has a compactification H∆ consisting of all Harnack
meshes over ∆. Moreover, H∆ has a cell complex structure whose poset is isomorphic
to the face poset of the secondary polytope Sec(∆ ∩ Z2).

In Section 7.2 we set notation and recall some background results on Harnack curves.
Sections 7.3 and 7.4 are dedicated to proving Theorem 7.1 (Theorem 7.22) and Chapter
8 is dedicated to prove Theorem 7.2 (Theorem 8.11). Most of the proofs consist in
showing that there are different parameters that can be taken as global coordinates for
Harnack curves. In Section 7.3 we consider the following diagram:

Rational
Harnack
curves

 ↪→


Roots of
rational

parametrization

 /PGL(R, 2) ρ̃→


Positions of
amoeba
tentacles

 /R
2

In the left we have the moduli space of rational Harnack curves, which we denote H0,∆;
in the middle we have parametrizations φ : CP1 → X∆ of Harnack curves modulo the
action of PGL(R, 2) on CP1; and in the right we have the positions of the tentacles of
the amoeba modulo translations of the amoeba. The main result of section 3 is that the
map ρ̃ is a smooth embedding when restricted to the image of the first map.

In Section 7.4 we show that the following are diffeomorphisms:
Harnack curves

with fixed
tentacle positions

↔


Bounded
Ronkin

intercepts

↔


Areas of
holes of

the amoeba

 (7.1)

By putting together the two diagrams above we have:

H∆ ↪→
{Tentacle positions}/R2

×{Bounded intercepts}
→

All Ronkin
intercepts

 /R3 Υ
↪→Mtrop

g,n
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where the R3 action in the the third space refers to translations of the graph of the
Ronkin function. The first map is a smooth embedding by putting together the two
previous diagrams.

In Chapter 8 we look at the last two maps. The second map is a linear bijection between
tentacle positions and unbounded Ronkin intercepts. The last map is given by what we
call the expanded spine. Since Mtrop

g,n is not a manifold (it is a tropical variety), this
map can no longer be a diffeomorphism. However we show that it is a piecewise linear
embedding. We also show how that Harnack meshes can be smilarly embedded into the
closure of the embedding H∆ ↪→Mtrop

g,n . This allows us to construct the compactification
H∆. We end the thesis by suggesting some directions for future research. In particular we
conjecture H∆ to be a regular CW-complex and we suggest a possible smooth structure
on H∆ as a manifold with generalized corners (see [Joy16]).

7.2 Preliminaries

7.2.1 Notation

We fix the following notation for the rest of this part. As is usual in toric geometry,
M ∼= N ∼= Z2 are the lattices of characters and one-parametric subgroups of the algebraic
two-dimensional torus (C∗)2 respectively. See [CLS11] as a general reference for toric
varieties.

Let ∆ ⊂M⊗R be a convex lattice polygon. We write ∂∆ for the boundary of ∆, int(∆)
for the interior of ∆. We write ∆M for the lattice points in ∆, that is, ∆M = ∆ ∩M .
We use n and g to denote the number of lattice points in ∂∆ and int(∆), respectively,
and m for the number of edges of ∆. For any positive integer k, [k] denotes the set
{1, . . . , k}. We denote by Γi, i = 1, . . . ,m, the edges of ∆ in cyclic anticlockwise order.
Let d1, . . . , dm be their respective integer lengths (i.e. di = |Γi ∩M | − 1). Let ui ∈ N
be the primitive inner normal vector of Γi. We have the following equation:

m∑
i=1

dkui = 0 (7.2)

To each v = (v1, v2) ∈ M there is an associated Laurent monomial xv := xv1
1 x

v2
2 .

The Newton polygon of a Laurent polynomial f(x) =
∑
v∈M

cvx
v is the convex hull of

{v ∈M | cv 6= 0}. For any subset ∆′ ⊆ ∆ we write f |∆′(x) :=
∑

v∈∆′M
cvx

v.

Given a lattice polygon ∆ there is an associated projective toric surface X∆ whose
geometry reflects the combinatorics of ∆. It contains a dense copy of the torus (C∗)2
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where coordinate-wise multiplication extends to an action on all of X∆. For each edge
Γi of ∆, there is a corresponding irreducible divisor Li in X∆ which is invariant under
the action of the torus. We call these divisors the axes of X∆. Two axes intersect in a
point if and only if they correspond to consecutive edges of ∆. We denote the real part
of X∆ as RX∆.

7.2.2 Harnack Curves

Let f be a Laurent polynomial with real coefficients and Newton polygon ∆. The zeros
of f define a curve C◦ ⊂ (C∗)2. The closure of C◦ in X∆ is a compact algebraic curve C.
If C is smooth its genus is equal to g [Hov77]. The intersection of C with RX∆ is a real
algebraic curve RC. The intersection of C with an axis Li is given by the restriction of f
to Γi, which is, after a suitable change of variable, a polynomial of degree di. Therefore
Li ∩ C consists of exactly di points counted with multiplicities.

Definition 7.3. [Mik00, Definition 2] Let ∆ be a lattice polygon with g,m and the di’s
defined as above. A smooth real algebraic curve RC ⊆ RX∆ is called a smooth Harnack
curve if the following conditions hold:

• The number of connected components of RC is g + 1.

• Only one component of RC intersects L1 ∪ · · · ∪ Lm. This component can be
subdivided into m disjoint arcs, θ1 . . . θm, in that order, such that C ∩Li = θi∩Li.

The components that are disjoint from L1 ∪ · · · ∪ Lm are called ovals.

Harnack curves were originally called in “cyclically maximal position” in [Mik00]. In
the literature these curves are sometimes called “simple Harnack curves”. However,
following [MR01, KOS06, KO06] we omit the adjective ‘simple’ when referring to them
(see [MO07, Remark 6.6]).

These curves are named after Axel Harnack because he showed in 1876 that smooth
curves of genus g in the real projective plane have at most g+ 1 connected components.
To show that the bound was tight, he constructed the eponymous curves [Har76]. Curves
which attain the maximum number of components are called M -curves. These are
the topic of the first part of Hilbert’s 16th problem, which asks to classify all possible
topological types of M -curves. When RX∆ = RP2, Harnack curves are the M -curves
such that only one component intersects the axes and it does so in order. Mikhalkin
proved that, for any given ∆, if RC is a Harnack curve with Newton polygon ∆ then
the topological type of (RX∆,RC,RL1∪, . . . ,∪RLn) is unique [Mik00, Theorem 3].
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Recall that a singular point in RC is an ordinary isolated double point if it is locally
isomorphic to the singularity of x2

1 + x2
2 = 0.

Definition 7.4. [MR01, Definition 3] A (possibly singular) real algebraic curve RC ⊆
X∆ is a Harnack curve if

• The only singularities of RC are ordinary isolated double points away from the
torus invariant divisors.

• Replacing each singular point of RC by a small oval around it yields a curve
RC ′ such that (RX∆,RC ′,RL1∪, . . . ,∪RLn) has the topological type of smooth
Harnack curves.

Notice that any singular Harnack curve can be aproximated by smooth Harnack curves.
To see this, let f be a polynomial that vanishes on RC and let g(x, y) := f(λx, λy) for
a real number λ close to 1 but different from 1, so that the singular points of f and g
are close but do not coincide. Then f − εg vanishes on a smooth Harnack curve which
approaches RC when ε tends to 0.

Let R[∆M ] be the vector space of real polynomials with Newton polygon contained in
∆. Since scaling all coefficients of f by the same constant does not change the curve
RC, we can identify the space of real curves with Newton polygon contained in ∆ with
P(R[∆M ]). The action of the torus (R∗)2 on RX∆ induces an action on P(R[∆M ]) given
by f(x1, x2) 7→ f(r−1

1 x1, r
−1
2 x2).

Definition 7.5. Themoduli space H∆ of Harnack curves is the subspace of P(R[∆M ])/(R∗)2

consisting of all (possibly singular) Harnack curves with Newton polygon ∆ modulo the
action of (R∗)2.

Given an element in RC ∈ H∆, we say that a polynomial vanishes on RC if its zero
locus is in the equivalence class given by RC.

Remark 7.6. The notation H∆ was used in [CL18] to note the space of Harnack curves
without taking them modulo the action of (R∗)2. They defined it with a more algebro-
geometric language as follows: the space of curves with Newton polygon contained in ∆
can be identified with the complete linear system |D∆| of the Cartier divisor D∆ of X∆

associated to ∆. Since X∆ is a complete normal toric variety, |D∆| can be identified
with the projectivization of the space of global sections of the line bundle associated to
∆. Therefore H∆ can be defined as the subspace of |D∆| of Harnack curves, modulo the
action of the torus (R∗)2 on RX∆.
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The case when ∆ is the d-th dilation of the unimodular triangle corresponds to degree d
curves in RP2 and the corresponding moduli space is diffeomorphic to the closed orthant
R(d+4)(d−1)/2
≥0 [KO06, Corollary 11].

7.2.3 Amoebas and the Ronkin function

Amoebas, which are essential to understand Harnack curves, were defined in [GKZ94,
Chapter 6] where details about them can be found.

Definition 7.7. Let Log : (C∗)2 → R2 be the map

Log(z1, z2) := (log |z1|, log |z2|)

The amoeba of an algeraic curve C is A(C) := Log(C◦).

The amoebas of Harnack curves are specially well-behaved:

Proposition 7.8. [MR01] Let RC be a real algebraic curve with Newton polygon ∆ and
A = A(C) its amoeba. The following are equivalent:

1. RC is Harnack curve

2. The map Log |C◦ is at most 2-to-1.

3. area(A) = π2 area(∆)

For arbitrary curves, area(A) ≤ π2 area(∆) [PRr04], so Harnack curves have the amoebas
with maximal area. Smooth Harnack curves are also characterized by having maximal
curvature, and by having totally real logarithmic Gauss map [PR11, Mik00]. However
there are more general singular curves whose logarithmic Gauss map is also totally real
[Lan15].

Each connected component of the complement of an amoeba is convex and has a point
in ∆M naturally associated to it, as we now show. Let f : R2 → R be a Laurent
polynomial. The Ronkin function Rf : R2 → R of f defined in [Ron74], is

Rf (x) := 1
(2π
√
−1)2

∫
Log−1(x)

log |f(z1, z2)|
z1z2

dz1dz2.

The Ronkin function is convex, see [PRr04]. Its gradient vector ∇Rf = (ν1, ν2) is given
by

νi(x) = 1
(2π
√
−1)2

∫
Log−1(x)

zi∂zif(z1, z2)
z1z2f(z1, z2) dz1dz2.
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For any x ∈ R2 we have that ∇Rf (x) ∈ ∆. If two points are in the same connected
component of R2\A, then their preimages under Log are homologous cycles in (C∗)2\C◦.
This implies that ∇Rf is constant in each component and it has integer coordinates by
the residue theorem. Therefore ∇Rf (x) induces an injection from the components of
R2 \ A to ∆M . The value that ∇Rf takes in a component of R2 \ A is called the order
of that component and we write Ev for the component of order v if it exists. For details
of this construction see [FPT00].

To better understand amoebas, we review some facts about their behaviour, see [GKZ94,
Section 6.1]. The component Ev is bounded if and only if v is in the interior of ∆. For
each vertex v of ∆, Ev exists and contains a translation of − cone(ui, ui+1) where ui
and ui+1 are the inner normal vectors of the edges adjacent to v. If v is a lattice point
in the relative interior of an edge Γi, Ev is only unbounded in the direction −ui. Parts
of the amoeba extend to infinity in between the unbounded components of R2 \ A, in
direction ui for some i. These are called the tentacles of the amoeba. Figure 7.1 serves
as an illustration of how typical amoebas of Harnack curves look like.

For each v ∈ ∆M such that Ev exists, let Fv : R2 → R be the affine linear function that
coincides with Rf in Ev. The spine of a curve C as defined in [PRr04] is the corner
locus of maxFv where max is taken over all Ev that exist. Notice that scaling f by a
a constant only changes Rf by an additive constant constant, so the spine of C is well
defined.

The spine varies continuously for smooth curves. However, if Ev vanishes for v ∈ int(∆),
then the spine changes abruptly. Fortunately, for Harnack curves there is an easy work
around. By the definition of singular Harnack curves, for each v ∈ int(∆)∩M such that
Ev = ∅ there is an isolated double point pv in RC such that there is a smooth Harnack
curve RC ′ arbitrarily close to RC with a component near pv with order v. Therefore
∇Rf (Log(pv)) = v. Let Fv be the tangent plane of Rf at Log(pv).

Definition 7.9. Let RC be a Harnack curve. We call expanded spine of C and denote
Υ(C) the corner locus of the piecewise affine linear convex function max

v∈∆M

Fv.

The expanded spine and the usual spine coincide if and only if RC is a smooth Harnack
curve. The expanded spine varies continuously for Harnack curves, even singular ones.
It has a cycle for each v ∈ int(∆) ∩M . The bounded part of the expanded spine is a
planar graph of genus g. This definition will be crucial in Section 8.2.

By definition, the expanded spine is a tropical plane curve. The intercepts cv of the
affine functions Fv are the coefficients of the tropical polynomial that vanishes on the
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Figure 7.1: The amoeba (blue), the spine (black) and the Newton polygon (green) of
a Harnack curve.

expanded spine, that is
Υ(C) = trop(

⊕
v

cv � x�v).

We call the numbers cv the Ronkin intercepts. We call a Ronkin intercept cv bounded if
v ∈ int(∆) and unbounded if v ∈ ∂∆. In other words, we say cv is bounded if and only
if whenever Ev exists it is bounded.

7.2.4 Patchworking

We now give a basic overview of patchworking of real algebraic curves, a powerful tool to
construct curves with a prescribed topology, developed by Viro, see [Vir06] for details.
The ingredients for (real) pathworking are a regular subdivision S = S(h) of a polygon
∆ and a real polynomial f ∈ R[∆M ]. Let ∆1, . . . ,∆s be the facts of S. Then the
polynomial f |∆i

defines a real curve RCi ⊆ X∆i
. Suppose that every curve RCi is

smooth and intersects transversally the axes of X∆i
, that is, RCi intersects each axis in

d different points, where d is the integer length of the corresponding edge of ∆i. Let

ft(x) :=
∑
v∈∆M

th(v)avx
v

and let RCt ⊆ X∆ be the vanishing locus of ft. The Patchworking Theorem by Viro
[Vir06] says that there exists t0 > 0 small enough such that for every t ∈ (0, t0] the
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topological type of RCt can be computed from the topological type of each RCi by
gluing them in a certain way. We say RCt is the result of patchworking the curves RCi.
Given the curves RCi, there exist different f such that f |∆i

vanishes on RCi. However,
the topological type of the resulting curve RCt only depends on the signs of each f |∆i

(real polynomials with the same zero locus differ only by scaling by a constant in R∗).

We do not show in general how to do this computation, see [Vir06] for that purpose. We
do however mention some important facts regarding Harnack curves. First, Mikhalkin
showed that Harnack curves can be constructed using patchworking, [Mik00, Appendix].
There it is shown that Harnack curves are T -curves, that is, curves whose topological
type can be obained from patchworking using regular unimodular triangulations as reg-
ular subdivision. In that case, the signs of each coefficient of f contain all the relevant
information and this is known as combinatorial pathcworking [IV96]. Consider the sign
configuration ∆M → {−1, 1} given by v 7→ (−1)v1v2 . No matter the triangulation cho-
sen, the result from patchworking with this sign configuration will always be a Harnack
curve [Mik00, Apendix]. Moreover, it is essentially (up to Z2

2) the only sign configura-
tion whose patchwork is invariant under the chosen unimodular triangulation. These
statements follow directly from the discussion in [GKZ94, Chapter 11 Section 5C].

Another important fact is that for any regular subdivision S, if each curve RCi is a
Harnack curve, then there exists a choice of fi such that the result from patchworking
is a Harnack curve, see Theorem 8.6.

7.2.5 Cox coordinates

We now review Cox coordinates for toric surfaces, since it will help us understand the
parametrizations of rational Harnack curves. For details see Chapter 5 of [CLS11].
They are a generalization of homogeneous coordinates in the projective space CPd =
(Cd+1 \ {0})/C∗.

Let ∆ be a Newton polygon and recall u1, . . . , um to be the primitive inner normal
vectors of ∆. Let α : (C∗)m → (C∗)2 be the group homomorphism given:

(z1, . . . , zm) 7→ (
m∏
i=1

zui1i ,
m∏
i=1

zui2i ).

We have that ker(α) is a subgroup of (C∗)m. Let Z be the subset of Cm with at least
three coordinates equal to 0 or at least two not-cyclically-consecutive coordinates equal
to 0.
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Proposition 7.10. [CLS11, Theorem 5.1.11] Let ∆ be a lattice polygon. All ker(α)-
orbits of Cm \ Z are closed and the quotient (Cm \ Z)/ ker(α) is isomorphic to X∆ as
an algebraic variety.

We write [z1 : · · · : zm]∆ to denote the point in X∆ corresponding to the orbit of
(z1, . . . , zm) ∈ Cm\Z under the action of ker(α). We have that

Li = {[z1 : · · · : zm]∆ ∈ X∆ | zi = 0}

and
RX∆ = {[z1 : · · · : zm]∆ ∈ X∆ | zi ∈ R ∀i} .

Example 7.11. Let ∆ be any rectangle with edges parallel to the R2 axes. The map
α : M → Z4 is given by the matrix:1 0 −1 0

0 1 0 −1


Then α : (C∗)4 → (C∗)2 is given by (z1, z2, z3, z1) 7→ (z1z

−1
3 , z2z

−1
1 ). The action of G

consists of coordinatewise multiplications by vectors of the form (λ1, λ2, λ1, λ2) where
λ1, λ2 ∈ C∗. The set Z consists of the points where z1 = z3 = 0 or z2 = z1 = 0. So in
this case X∆ is isomorphic to CP1 × CP1.

7.3 Rational Harnack curves

7.3.1 Parametrizations of rational Harnack curves

We start this section by describing a parametrization of rational Harnack curves which
was already used in [KO06] for X∆ = CP2 and more generally in [CL18]. We rewrite it
using Cox homogenous coordinates. Real rational curves in X∆ with Newton polygon ∆
can be parametrized by φ = [p1 : · · · : pm]∆, where each pi : CP1 → C is a homogenuous
polynomial of degree di with real coefficients for i ∈ [m] and no two polynomials have a
common root. If the curve is Harnack, φ(RP1) is the 1-dimensional component of RC.
This implies that the roots of pi are real and are ordered in the cyclic way according to
Theorem 7.3. In fact, this condition is sufficient for RC to be a Harnack curve. This was
shown in [KO06, Proposition 4] for X∆ = CP2 and it was noticed in [CL18, Equation
(2)] that the same arguments work for any projective toric surface. So Rφ(CP1) is a
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Harnack curve if and only if, for some chart of CP1, we have

φ(t) =

b1 d1∏
i=1

(t− a1,i) : · · · : bm
dm∏
i=1

(t− am,i)


∆

(7.3)

where all ai,j are real, all bi are real different from zero and

a1,1 ≤ · · · ≤ a1,d1 < a2,1 ≤ · · · ≤ a2,dn < · · · < am,1 ≤ · · · ≤ am,dm . (7.4)

We call the a1,1 . . . am,dm the roots of φ. Composing φ with α yields a parametrization
for C◦ ⊂ (C∗)2:

α ◦ φ(t) =

 m∏
i=1

bui1i

di∏
j=1

(t− ai,j)ui1 ,
m∏
i=1

bui2i

di∏
j=1

(t− ai,j)ui2


Let H0,∆ be the subspace of H∆ consisting of rational Harnack curves. The following
generalizes [KO06, Corollary 5]:

Proposition 7.12. Let ∆ be a lattice polygon with m sides and n lattice points in its
boundary. Then H0,∆ is diffeomorphic to Rm−3 × Rn−m≥0 .

Proof. The parametrization above is unique up to the action of the projective special
linear group PGL(R, 2) on the parameter t. This induces an action of PGL(R, 2) on the
roots of φ. More explicitely, for ψ ∈ PGL(R, 2) the function φ ◦ ψ−1 also parametrizes
C and has roots ψ(a1,1), . . . , ψ(am,dm). The roots ψ(a1,1), . . . , ψ(am,dm) are in the same
cyclic order as in Equation (7.4).

The action of (R∗)2 in RX∆ affects φ by changing the constants b1, . . . , bn, but not the
roots. The same is true for choosing different representatives of the Cox homogenous
coordinates of X∆ in eq. (7.3). So every rational Harnack curve is equivalent in H∆ to a
curve with b1 = · · · = bd = 1. Therefore, the elements of H∆ corresponding to rational
curves are uniquely determined by the roots a1,1 . . . am,dm , up to the action of PGL(R, 2)
on them.

The action of PGL(R, 2) can be fixed, for example, by considering the unique Möbius
transformation ψ ∈ PGL(R, 2) such that ψ(a1,1) = 0, ψ(a2,1) = 1 and ψ(a3,1) = 2. The
map

RC 7→ (ψ(a4,1), . . . , ψ(am,1))

× (ψ(a1,2)− ψ(a1,1), . . . , ψ(am,dm)− ψ(am,dm−1))
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is a diffeomorphism between H0,∆ and Rm−3 × Rn−m≥0 (by identifying copies of R with
(φ(ai,di), 0) for i ≥ 3).

The roots of φ are associated naturally to the segments of primitive segments of ∂∆.
The proposition above says that we can take as global coordinates of H0,∆ the difference
between two consecutive roots corresponding to the same edge of ∆ together with the
first root of each edge except the first 3 edges.

7.3.2 The positions of the tentacles

Following [KO06], we now make a useful change of global coordinates in H0,∆. Instead of
the roots of φ, we will use the positions of the tentacles of the amoeba which correspond
to boundary points C \ C◦.

Let J : N → M be the 2 × 2 matrix that rotates vectors π/2 clockwise, i.e. J =( 0 1
−1 0

)
. Observe that Jui is a character, which maps [x1, . . . , xm]∆ 7→

∏m
k=1 x

uk∧ui
k

where uj ∧ ui ∈ R is the determinant of the 2× 2 matrix whose columns are uj and ui
in that order. In other words, ui ∧ uj = 〈Juj , ui〉. This is not well-defined over all X∆.
We take 00 = 1 by convention, so Jui is well-defined over Li except the torus invariant
points. In fact, the ring of functions of Li (without the torus invariant points) consists
of Laurent polynomials on Jui.

Definition 7.13. Let RC be a rational Harnack curve parametrized by φ as in Equa-
tion (7.3). For 1 ≤ i ≤ m and 1 ≤ j ≤ di, the position of the (i, j) tentacle of the amoeba
is

log |φ(ai,j)Jui |

Explicitly,

log |φ(ai,j)Jui | =
m∑
k 6=i

dk∑
l=1

uk ∧ ui(log |bi|+ log |ai,j − ak,l|).

Since the curve does not change when acting the roots by PGL(R, 2), the positions of the
tentacles of the amoeba do not change either. However, the tentacle positions are not
invariant under the action of (R∗)2 on RX∆. Concretely, multiplying RC by r ∈ (R∗)2

translates the amoeba by Log |r|, thus changing the position of the (i, j) tentacle by
〈Jui,Log |r|〉. Thus, the (R∗)2 action on RX∆ induces an R2 action on the position of
the tentacles by translations of the amoeba.

Consider the maps ρi,j : Rn 99K R given by

ρi,j :=
n∑
k 6=i

dk∑
l=1

uk ∧ ui log |ai,j − ak,l|.



7.3. Rational Harnack curves 133

This is almost the position of the (i, j) tentacle except that we drop the log |bi| terms.
The maps ρi,j are well-defined on the space of roots satisfying eq. (7.4). Together
they form a map ρ : Rn 99K Rn invariant under the PGL(R, 2) action on the roots.
Additionally, consider the action of R2 on the target space Rn of ρ given by translations
of the amoeba, that is:

r · ρi,j := ρi,j + 〈Jui, r〉 (7.5)

By construction, ρ descends to a map ρ̃ making the following diagram commutative:

Rn Rn

Rn/PGL(R, 2) Rn−2

ρ

ρ̃

The left downwards arrow is the quotient of the space of roots by PGL(R, 2) and the
right downward arrow is the quotient of Rn by the action of R2 described above. By
Theorem 7.12, we can identify H0,∆ with the space of roots that satisfy eq. (7.4) modulo
the PGL(R, 2) action, so ρ̃ is a well defined map on H0,∆. The main objective of this
section is to prove the following:

Theorem 7.14. The restriction ρ̃|H0,∆ is a smooth embedding.

This is a generalization of Theorem 4 in [KO06], where the same statement is proven for
the case where ∆ is a dilated unit triangle. To prove that ρ̃|H0,∆ is a diffeomorphism we
show that it is proper (Section 7.3.3) and that the differential is injective (Section 7.3.4).

Before going to the proof, let us show a concrete diffeomorphism between the positions
of the tentacles and Rm−3 × Rn−m≥0 . For the semi-bounded components, consider the
distance between two parallel tentacles

ρi,j+1 − ρi,j for 1 ≤ i ≤ m, 1 ≤ j ≤ di − 1.

Notice that ρi,j+1 − ρi,j is invariant under the R2-action of translating the amoeba. For
the unbounded components take as coordinates

ρ̃i,1 for 4 ≤ i ≤ m,

where ρ̃i,1 is the position of the (i, 1)-tentacle after translating the amoeba, so that the
position of the (1, 1) and (2, 1) tentacles are both 0. It is straightforward to see that the



134 Chapter 7. The moduli space of Harnack curves

image satisfies

m∑
i=1

di∑
j=1

ρi,j = 0 and ρi,j+1 − ρi,j ≥ 0 for all i, j. (7.6)

In particular, ρ̃3,1 is determined by the rest of the coordinates. The space described by
the equation and the inequalities above is simply connected. This is important since we
will use the following global diffeomorphism theorem, which was known by Hadamard.
A proof of it can be found in [Gor72].

Proposition 7.15. A local diffeomorphism between two manifolds which is proper and
such that the image is simply connected is a diffeomorphism.

7.3.3 Properness

To prove that ρ̃|H0,∆ is proper, we make use of the following lemma:

Lemma 7.16. Let x1, . . . xn, y1, . . . , yn ∈ R such that x1 ≤ · · · ≤ xn,
n∑
i=1

yi = 0 and
there exists j such that yi < 0 for i < j and yi ≥ 0 for i > j. Then

n∑
i=1

xiyi ≥ 0.

Proof. We do induction on n. For n = 1 we have y1 = 0 so the above sum is 0. Let
n > 1 and suppose the inequality above holds for less than n terms. Subtract from the
left-hand-side yn(xn − xn−1), which is a non-negative number. The result is

n−2∑
i=1

xiyi + xn−1(yn−1 + yn)

which is non-negative by applying the induction hypothesis to x1, . . . , xn−1, y1, . . . , yn−2, yn−1+
yn.

Proposition 7.17. The map ρ̃|H0,∆ is proper when restricting the codomain to the
quotient of the space described by the equation and inequalities in (7.6).

Proof. We want to show that the preimage of a compact set is a bounded set in H0,∆ ∼=
Rm−3×Rn−m≥0 . First we bound the parameters corresponding to the Rn−m≥0 part of H0,∆.
These correspond to the difference between roots along the same edge of ∆, which are
trivially bounded from below by 0. Without loss of generality consider the roots a1,j−1

and a1,j for 1 < j ≤ d1. We fix the PGL(R, 2) action on the space of roots by setting
a1,j−1 = −1, a2,1 = 0 and am,dm = 1. To show that a1,j−a1,j−1 attains its upper bound,
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we show that a1,j can not be arbitrarily close to a2,1 = 0. By assumption, the difference
between the position of the tentacles

ρ1,j − ρ1,j−1 =
n∑
i=2

di∑
k=1

ui ∧ u1 (log |ai,k − a1,j | − log |ai,k + 1|) (7.7)

is bounded. We have that a1,j ∈ [−1, 0) and ai,k ∈ [0, 1] if i ≥ 2. The function
log |x− a1,j | − log |x+ 1| is increasing in [0, 1]. On the other hand,

n∑
i=2

di∑
k=1

ui ∧ u1 =
(

n∑
i=1

diui

)
∧ u1 = 0

by Equation (7.2). Notice that for i ∈ {2, . . . ,m}, ui∧u1 is positive for the first numbers
and then negative for the rest (with a 0 in between if and only if ∆ has another edge
parallel to Γ1).

So, applying Theorem 7.16 to the sequences log |ai,j − a1,j | − log |ai,j + 1| and ui ∧ u1

(repeated di times) we get that ρ1,j − ρ1,j−1 is non-negative. More importantly, since
u2 ∧ u1 < 0 < un ∧ u1, we can subtract

(log |am,dm − a1,j | − log |am,dm + 1|)− (log |a2,1 − a1,j | − log |a2,1 + 1|)

= log |1− a1,j | − log |2| − log |a1,j |

≥ − log |2| − log |a1,j |

from the right-hand-side in Equation (7.7) and again by Theorem 7.16 the result is still
non-negative. This implies ρ1,j − ρ1,j−1 ≥ − log |2| − log |a1,j |, which is arbitrarily large
if a1,j is arbitrarily close to 0. Since we assumed ρ1,j − ρ1,j−1 is bounded, a1,j is not
arbitrarily close to 0.

Now we turn our attention to the Rm−3 component, assuming m > 3. We choose a
different representative of the PGL(R, 2)-orbit on the roots by setting a1,1 = 0, a3,1 = 1
and am,dm = 2. We will show that a2,1 can not be arbitrarily close to a1,1 = 0. That
implies that the paramater a2,1 has a minimum in the preimage under ρ̃ of any compact
set, and it attains it by continuity. Analogously, all other bounds regarding the Rm−3

component are achieved and we conclude the preimage is compact.

To fix the R2 action on the positions of the tentacles, we assume that the position of
the (1, 1) tentacle and the (m, dm) tentacle are both 0. This is translating the amoeba
by the vector

w = −ρm,dm
u1 ∧ um

u1 + −ρ1,1
um ∧ u1

um.
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We show that if the position of the second tentacle after this translation,

ρ̂2,1 = ρ2,1 − ρm,dm
u1 ∧ u2
u1 ∧ um

− ρ1,1
um ∧ u2
um ∧ u1

,

is bounded from below then a2,1 is not arbitrarily close to a1,1 = 0.

By Theorem 7.16, ρm,dm is non-positive, since log |x − 2| is a decreasing function in
[0, 2) and um ∧ ui is negative for the first values of i and positive for the later. Since
u1 ∧ u2 < 0 < u1 ∧ um, we have that −ρn

u1 ∧ u2
u1 ∧ um

is non-positive.

In both ρ2,1 and ρ1,1 there is a log |ai| term which is arbitrarily large in absolute value
if a2,1 is close to 0. As ai,j > 1 if i ≥ 3, the only terms in ρ1,1 and ρ2,1 which can be
arbitrarily large in absolute value are those corresponding to a2,j and a1,j , respectively.

In other words, the part that could grow arbitrarily large in absolute value in ρ1,1 is

d2∑
j=1

u2 ∧ u1 log |a2,j |

and in ρ2,1 it is
d1∑
j=1

u1 ∧ u2 log |a2,1 − a1,j |.

Notice that
| log |a2,1 − a1,j || ≥ | log |a2,1|| ≥ | log |a2,j |. (7.8)

Let c1 be the real number such that

d1∑
j=1

u1 ∧ u2 log |a2,1 − a1,j | = c1u1 ∧ u2 log |a2,1|.

By Equation (7.8) we have that c1 ≥ d1. Similarly, if c2 is such that

d2∑
j=1

u2 ∧ u1 log |a2,j | = c2u2 ∧ u1 log |a2,1|

then by Equation (7.8) c2 ≤ d2. So the part of ρ̂2,1 which grows in absolute value is

c1u1 ∧ u2 log |a2,1| − c2u2 ∧ u1 log |a2,1|
um ∧ u2
um ∧ u1

= log |a2,1|
u1 ∧ u2
um ∧ u1

(c1um ∧ u1 + c2um ∧ u2)

= log |a2,1|
u1 ∧ u2 · um ∧ (c1u1 + c2u2)

um ∧ u1
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Notice that−d1u1−d2u2 is the inner normal vector of the third side of the triangle formed
by Γ1 and Γ2, so um ∈ cone(−d1u1−d2u2, u1) sincem > 3. Thus, um∧(d1u1+d2u2) > 0.
Because c1 ≥ d1 and c2 ≤ d2, we have that c1u1 + c2u2 ∈ cone(u1, d1u1 + d2u2). As
um ∧ u1 is also positive, we have that um ∧ (c1u1 + c2u2) > 0. We conclude that

u1 ∧ u2 · um ∧ (c1u1 + c2u2)
um ∧ u1

> 0,

which implies that ρ̂2,1 is negative and arbitrarily large in absolute value if a2,1 is arbi-
trarily close to 0.

7.3.4 The Jacobian of ρ

In this subsection we proof that ρ̃|H0,∆ is a local diffeomorphism.

From now on, we sightly change the notation we have used so far to simplify the exposi-
tion and the computations. Instead of labelling the roots by pairs (i, j) with i ∈ [m] and
j ∈ [di], we relabel them as a1, . . . , an in the global cyclic order. Similarly, we relabel
the ui’s to agree with the labelling of the roots; that is, we have vectors u1, . . . , un where
ui is the primitive inner normal vector of the edge of ∆ that corresponds to the axis in
which φ(ai) vanishes. With this notation, we have that

α(φ)(t) =
n∏
i=1

(t− ai)ui

and that the ai and the ui correspond to a parametrization of a Harnack curve if

1.
n∑
i=1

ui = 0.

2. a1 ≤ · · · ≤ an.

3. The u1, . . . , un are ordered anticlockwise.

We write a = (a1, . . . , an) and U = (u1, . . . , un) for short and we say a and U are
cyclically ordered if they satisfy the above conditions.

Now we consider the Jacobian matrix D of ρ at a given point a. We have that

Di,j =



ui ∧ uj
ai − aj

if ai 6= aj

0 if ai = aj but i 6= j

−
∑
k 6=i

Di,k if i = j
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In general, D is a matrix that depends on a and U , so we denote it as D(a, U) =
D(a1, . . . , an;u1, . . . , un).

Proposition 7.18. The map ρ̃|H0,∆ is a local diffeomorphism.

Proof. Let a and U be cyclically ordered. Let TaPGL(R, 2)a be the tangent space of
the orbit of a under the PGL(R, 2) action at a and similarly let K be the kernel of the
quotient Rn → Rn/R2 by the R2 action defined in Equation (7.5). In other words,

K = {(r ∧ u1, . . . , r ∧ un) | r ∈ R2}

which is a linear space. Let us look at the relation of these spaces with D.

To compute the tangent space TaPGL(R, 2)a, recall that Möbius transformations are of
the form

t 7→ at+ b

ct+ d
.

We see that

∂

∂ε
t+ ε

∣∣∣∣
ε=0

= 1, ∂

∂ε
(1 + ε)t

∣∣∣∣
ε=0

= t,
∂

∂ε

t

εt+ 1

∣∣∣∣
ε=0

= −t2,

so TaPGL(R, 2)a is spanned by the vectors (1, . . . , 1), (a1, . . . , an) and (a2
1, . . . , a

2
n). Since

n∑
j=1

Di,j = Di,i −Di,i = 0

and
n∑
j=1

ajDi,j =
n∑
j=1

aj · ui ∧ uj
ai − aj

−
n∑
j=1

ai · ui ∧ uj
ai − aj

= −
n∑
j=1

ui ∧ uj = 0,

we have that both (1, . . . , 1) and (a1, . . . , an) are in the kernel of D. In Theorem 7.19
we will proof that the kernel of D is 2 dimensional, so the vector (a2

1, . . . , a
2
n) is not in

the kernel. However, since ρ descends to the map ρ̃, we have that D · (a2
1, . . . , a

2
n)> ∈ K.

Since D is symmetric, its image is the orthogonal complement of its kernel. So the
image of D is orthogonal to (1, . . . , 1) and (a1, . . . , an). On the other hand, K is always
orthogonal to (1, . . . , 1). By a similar argument as in the proof of Theorem 7.17, we
have that

n∑
i=1

aiui 6= 0, so (a1, . . . , an) is never orthogonal to K. Thus, the intersection

of the image of D with K is exactly one dimensional so it is spanned by (a2
1, . . . , a

2
n).

This implies that the Jacobian of ρ̃ is injective, since no vector outside TaPGL(R, 2)a
vanishes under the composition of D and the quotient Rn → Rn/R2.

Now the only thing left to prove is the following:



7.3. Rational Harnack curves 139

Proposition 7.19. If a and U are cyclically ordered then the rank of D(a, U) is n− 2.

Proof. In [KO06, Theorem 4] the authors prove this for the case where ∆ is the di-
lation of a the unit triangle. They do it by showing that D is a sum of 3 × 3-block
semidefinite positive matrices of rank 1, each corresponding to the Jacobian of the uni-
modular triangle case. We here generalize this for any polygon ∆. Let e1, e2, e3 be
the primitive normal vector of the standard unimodular triangle in clockwise order and
let T (ai, aj , ak) = D(ai, aj , ak, e1, e2, e3) (see Equation (4.8) in [KO06]). We have that
T (ai, aj , ak) is a rank 1 matrix with kernel generated by (1, 1, 1) and (ai, aj , ak). We
obtain thenon-zero eigenvalue by computing the image under D of the cross-product of
the two vectors in the kernel, (1, 1, 1)× (ai, aj , ak). We get that the eigenvalue is

(ai − aj)2 + (aj − ak)2 + (ak − ai)2

(ai − aj)(aj − ak)(ak − ai)
,

which is always positive when ai < aj < ak.

Let Ti,j,k(ai, aj , ak) be the n×nmatrix that restricts to T (ai, aj , ak) in the 3×3 submatrix
with indices {i, j, k} and that is zero elsewhere. We will show that if a and U are cyclically
ordered, then D(a, U) is a positive sum of matrices of the form Ti,j,k(ai, aj , ak). In other
words we want to show that:

D(a, U) ∈ cone ({Ti,j,k(ai, aj , ak) | 1 ≤ i < j < k ≤ n}) .

To do so, we write each ui in the unique way ui = xie1 + yie2 + zie3 where xi, yi, zi ≥ 0
and at most two are positive. With this notation we have that

ui ∧ uj = xiyj + yizj + zixj − xizj − yixj − ziyj

and that
n∑
i=1

xi =
n∑
i=1

yi =
n∑
i=1

zi.

We call c the constant above. For i < j < k let

qi,j,k = det


xi yi zi

xj yj zj

xk yk zk

 .
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For all i < j < k we have that qi,j,k ≥ 0. To see that, notice that the vectors (xi, yi, zi)
are ordered cyclically along

R2 × {0} ∪ R× {0} × R ∪ {0} × R2,

since they project to U under
(

1 0 −1
0 1 −1

)
. Therefore, by the right-hand-rule, the determi-

nant of that matrix is non-negative. Now we claim that

∑
i<j<k

qi,j,kTi,j,k(ai, aj , ak) = cD(a, U).

To verify that claim, look at the coefficient of 1
ai−aj in the (i, j)-entry of the left hand

side. We have that the coefficient is equal to

xiyj

(
n∑
k=1

zk

)
+ yizj

(
n∑
k=1

xk

)
+ zixj

(
n∑
k=1

yk

)

−xizj

(
n∑
k=1

yk

)
− yixj

(
n∑
k=1

zk

)
− ziyj

(
n∑
k=1

xk

)
= c · ui ∧ uj

Therefore, D(a, U) is the sum of positive semidefinite matrices, so its kernel is the
intersection of the kernels of all of the summands. This implies that the kernel is the
span of (1, . . . , 1) and (a1, . . . , an).

Proof of Theorem 7.14. By Theorems 7.17 and 7.18, ρ̃ is a proper local diffeomorphism
whenever a and U are cyclically ordered. By Theorem 7.15, ρ̃|H0,∆ is a diffeomorphism
onto the space defined by Equation (7.6) modulo R2.

7.4 From H0,∆ to H∆

The reason for the change of coordinates by ρ̃ is that fixing the position of the tentacles
is fixing C \ C◦, which implies fixing f |∂∆ up to scaling by a constant. Polynomials
using the remaining monomials int(∆) ∩M were shown to be in correspondence with
holomorphic differentials, in [KO06, Section 2.2.4] for CP2 and in [CL18, Lemma 4.3] for
smooth toric projective surfaces. The following lemma generalizes this to X∆ for any ∆.

Lemma 7.20. Let ∆ be any lattice polygon and let C ⊆ X∆ be the vanishing set of
a polynomial f with Newton polygon ∆ such that RC is a Harnack curve. Then the
space of holomorphic differentials on C is isomorphic to the space of polynomials with
coefficients in int(∆) ∩M , via the map

h(z1, z2) 7→ h(z1, z2)dz2
∂z1f(z1, z2)z1z2

(7.9)
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Proof. The map is injective and both spaces have dimension g, so it remains to prove
that the differentials from Equation (7.9) are holomorphic. If ∆ has a vertex at the
origin with incident edges given by the coordinate axes, then the differentials from
Equation (7.9) are holomorphic over C2 ∩ C (see [CL18, Lemma 4.3]).

Given any lattice-preserving affine map A : M ⊗R→M ⊗R, that sending a polygon ∆′

to ∆, there is a dual map A∨X∆ → X∆′ . In [CL18] it is shown that the pullback of A∨

sends differentials of the form of Equation (7.9) for ∆′ to differentials of that form for ∆.
For each vertex v of ∆, consider the lattice preserving affine map that sends the positive
orthant to the cone spanned by ∆ from v. Then the differentials from Equation (7.9)
are holomorphic in the intersection of C with the affine chart corresponding to v. Doing
that for every vertex we get that they are holomorphic in all of C.

If ∆ is not a smooth polygon, then such a lattice-preserving map does not exist. However,
given any vertex v of ∆, there is a lattice-preserving map that sends the cone spanned
by (1, 0) and (p, q) to the cone spanned by ∆ from v, for some suitable p, q ∈ N. Let ∆′

be the preimage of ∆ under such map. By the same arguments as in [CL18, Lemma 4.3],
the differentials of the form of Equation (7.9) for ∆′ are holomorphic in (C × C∗) ∩ C.
This implies that the pullback is holomorphic in ((C∗)2∪L)∩C, where L is the axis that
corresponds to the edge contained in the image under A of the coordinate axis {x1 = 0}.
This can be done for every edge of ∆. Since C does not contain the intersection any two
axes, it follows that the differentials in Equation (7.9) are holomorphic over all C.

Proposition 7.21. The areas of the holes of the amoeba are global coordinates for the
moduli space of Harnack curves with fixed Newton polygon ∆ and fixed boundary points.
Moreover, the moduli space of Harnack curves with fixed boundary is diffeomorphic to
Rg≥0.

Proof. Recall the diagram from Equation (7.1) in the introduction. The first map sends
a Harnack curve with fixed boundary (that is, we fix f |∂∆) to the bounded Ronkin
intercepts. By Theorem 7.20, the differential of that map is the period matrix of C (see
[KO06, Proposition 6] and [CL18, Theorem 3]). The second map, from the bounded
intercepts to the areas of the holes in the amoeba, is also a local diffeomorphism because
its differential is diagonally dominant (see [KO06, Proposition 10]). The areas of the
holes of the amoeba are non-negative and the composition of the two maps is proper over
Rg≥0 (see [KO06, Theorem 6]). All of these facts are proven in [KO06] and none of the
arguments used there require that X∆ = CP2. Again, by Theorem 7.15 the composition
of the maps is a diffeomorphism onto Rg≥0.
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Notice that the positions of the tentacles are also well-defined numbers for non-rational
Harnack curves: they are simply the evaluation of Jui on the points C ∩ Li. So by
Theorem 7.14 and Theorems 7.12 and 7.21 we have that the positions of the tentacles
of the amoeba modulo translation together with the areas of the holes of the amoeba
are global coordinates for H∆. Hence, we have proved that.

Theorem 7.22. Let ∆ be a lattice polygon with m sides, g interior lattice points and n
boundary lattice points. Then H∆ is diffeomorphic to Rm−3 × Rn+g−m

≥0 .



Chapter 8

The compactified moduli space of
Harnack curves

The goal of this chapter is to construct a natural compactification H∆ of H∆ by collec-
tions of ‘patchworkable’ Harnack curves.

8.1 Abstract tropical curves

We begin with a review of abstract tropical curves and of Mtrop
g,n , the moduli space of

tropical curves with n legs and genus g. For details of this construction see [Cap13].

A weighted graph with n legs G is a triple (V,E,L,w) where

• (V,E) is a perhaps non-simple connected graph, that is, we allow multiple edges
and loops.

• L : [n]→ V is a function which we think of as attaching n labelled legs at vertices
of the graph.

• w is a function V → N which we call the weights of the vertices.

The genus of G is the usual genus of (V,E) plus the sum of the weights on all vertices;
that is

genus(G) =
∑
v∈V

w(v)− |V |+ |E|+ 1.

An isomorphism between two graphs with n legs G1 = (V1, E1, L1, w1) and G2 =
(V2, E2, L2, w2) is a pair of bijections φV : V1 → V2 and φE : E1 → E2 such that

143
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• For any edge e ∈ E1 and any vertex v ∈ V1, φE(e) is incident to φV (v) if and only
if e is incident to v.

• L2 = φV (L1).

• w1(v) = w2(φV ).

Let G/e denote the usual contraction of G over an edge e with the following change of
weights: if we contract a non loop ab, then the contracted vertex gets weight w(a)+w(b).
If the contracted edge is a loop on a, then the weight of a is increased by 1. Observe
that the genus is invariant under contraction.

We say that a weighted graph G is stable if every vertex with weight 0 has degree at
least 3 and every vertex with weight 1 has positive degree. An (abstract) tropical curve
is a pair (G, l) where G is a stable weighted graph and l is a function that assigns lengths
to the edges of G, in other words, l is a function l : E(G) → R|E(G)|

≥0 . The genus of the
tropical curve is the genus of G. An isomorphism between two abstract tropical curves
(G1, l1) and (G2, l2) is an isomorphism φ of the weighted graphs G1 and G2 such that
l1 = l2 ◦ φE , or such that one is the result of contracting an edge of length 0 form the
other, or the transitive closure of these two relations.

Given a weighted stable graph G, one can identify the space of all tropical curves over
G with R|E(G)|

≥0 . We defineMtrop
g,n (G) := R|E(G)|

≥0 and

Mtrop
g,n :=

 ⊔
G stable

Mtrop
g,n (G)

/∼ ,
where ∼ denotes isomorphism. This is a connected Hausdorff topological space which
parametrizes bijectively isomorphism classes of tropical curves. It is covered byMtrop

g,n (G)
where G runs over all 3 valent graphs with all vertices of weight 0. For such graphs we
have thatMtrop

g,n (G) is just R3g+n−3. HoweverMtrop
g,n is not a manifold as there are triples

of graphs of this form glued along codimension 1.

To compactify this space we allow lengths to be infinite. Let R∞ = R≥0 t {∞} be the
one point compactification of R≥0. An extended tropical curve (G, l) consists of a stable
weighted graph G and a length function l : E(G) → R|E(G)|

∞ . We define isomorphism
classes of extended tropical curves in the same way as for tropical curves. This way we
defineMtrop

g,n (G) := R|E(G)|
∞ and

Mtrop
g,n :=

 ⊔
G stable

Mtrop
g,n (G)

/∼
This is a compact hausdorff space withMtrop

g,n as an open dense subspace.
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8.2 Ronkin intercepts

From now on, lightly abusing notation, we call elements of H∆ curves and denote one of
them C, even though by definition they are equivalence classes of Harnack curves. We
say that a polynomial vanishes on C if its zero locus is in the equivalence class C.

The expanded spines of different Harnack curves in the same equivalence class in H∆

only differ by translations. In particular, the combinatorial type and the lengths of the
bounded edges remain the same. So given a curve C ∈ H∆, we have a well defined
abstract tropical curve structure for its expanded spine Υ(C) ∈Mtrop

g,n : fix a labelling of
the boundary segments of ∆ by [n] in a cyclical way and let L(Υ(C))(k) be the vertex
incident to the ray corresponding to the segment labelled k. This induces a map

Υ : H∆ →Mtrop
g,n .

Recall that Ronkin intercepts are the coefficients of the tropical polynomial defining the
expanded spine.

Proposition 8.1. The Ronkin intercepts modulo translations of the graph of the Ronkin
function can be taken as global coordinates for H∆.

Notice that translations of the Ronkin function are the same as translations of the
amoeba.

Proof. Since we proved in Theorem 7.21 that composition of the maps in Equation (7.1)
is a diffeomorphism, each of the maps themselves are diffeomorphisms. This implies that
the bounded Ronkin intercepts can be taken as global coordinates for Harnack curves
with fixed boundary.

Now, Theorem 7.14 says that the positions of the amoeba tentacles can be taken as
global coordinates for rational Harnack curves, and it is easy to recover the unbounded
Ronkin intercepts from the positions of the tentacles as follows. Let ρi be the position
of a tentacle. It corresponds to a segment in ∂∆ lying between two lattice points. Let
ci and ci+1 be the intercepts corresponding to those points. It is straightfoward that
ρi = ci − ci+1. This implies that the map

Positions of
amoeba
tentacles

 /R
2 →


Unbounded
Ronkin

intercepts/R3
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is a linear bijection when restricted to
{

n∑
i=1

ρi = 0
}
.

Proposition 8.2. The map H∆ →Mtrop
g,n is a piecewise linear topological embedding.

Proof. By Theorem 8.1, we can take the Ronkin intercepts as global coordinates of
H∆. The Ronkin intercepts can be recovered from Υ(C) and ∆ up to translations of
the amoeba. Computing the lengths of the bounded edges of a tropical curve from
the tropical polynomial is again solving a system of linear equations. So, over every
componentMtrop

g,n ((G)) of the co-domain, the map Υ is linear.

8.3 Harnack meshes

Definition 8.3. Let B ⊆ M be a finite set of affine dimension 2. We define HB
the subset of Hconv(B) consisting of curves C such that for every v ∈ conv(B)M the
corresponding component Ev in R2 \ A(C) exists if and only if v ∈ B.

This is well defined since the existence of Ev depends only on the equivalence class of a
Harnack curve. By Theorem 7.22, HB is diffeomorphic to R|B|−3.

Definition 8.4. Consider a regular subdivision S of ∆ with facets {B1, . . . , Bs} and
let ∆i = conv(Bi). A Harnack mesh over S is a collection of curves (C1, . . . , Cs) with
Ci ∈ HBi such that there exists a polynomial f with f |∆i

vanishing on Ci. We denote

H∆(S) ⊆
s∏
i=1
HBi

for the space of all Harnack meshes over S.

Notice that H∆ is equal to the disjoint union of all H∆(S) where S has exactly one face,
i.e., all S of the form {B} with ∆ = conv(B).

The existence of such f in the definition above is equivalent to the Ci agreeing on their
common boundary. That is, given ∆i and ∆j such that Γ = ∆i ∩ ∆j , the distances
between the tentacles of Ci corresponding to Γ are the same to the distances between
the respective tentacles in Cj .

Given any Harnack mesh (C1, . . . Cs) ∈ H∆(S) we can define its expanded spine as an
extended tropical curve. Let Υi be the expanded spines of Ci. For each edge ∆i ∩∆j ,
glue the expanded spines Υi and Υj by removing the legs corresponding to that edge
and placing instead an edge of infinite length for each primitive segment in ∆i ∩ ∆j
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between the two vertices that were incident to the corresponding leg. The remaining
legs are labelled by the boundary segments of ∆. This way we have a map

ΥS : H∆(S)→Mtrop
g,n ,

which is an embedding, by Theorem 8.1.

Definition 8.5. Let ∆ be a lattice polygon. The compactified moduli space of Harnack
curves is

H∆ :=
⊔
S
H∆(S),

where the union runs over all regular subdivisions S of ∆M . We give it the coarsest
topology that makes the map

Υ : H∆ →Mtrop
g,n

defined by Υ|H∆(S) := ΥS , continuous.

We will prove that this in fact is a compactification of H∆, i.e. a compact space where
H∆ is dense.

Harnack meshes are essentially collections of Harnack curves that can be patchworked
into another Harnack curve, except that we allow singularities and non transversal in-
tersection with the axes. We call a subdivision S of ∆ is full if it uses all the points,
that is

⋃
Bi∈S

Bi = ∆M . So we can only do true patchworking with them whenever S full.

Proposition 8.6. Let S be a full regular subdivision of ∆ with lifting function h and let
(C1, . . . , Cs) ∈ H∆(S) be a Harnack mesh. Then there exist polynomials f1, . . . , fs van-
ishing on C1, . . . , Cs such that the polynomial ft obtained by patchworking them vanishes
on a Harnack curve.

Proof. S being full implies that each Ci is smooth and non transversal in the boundary,
so that they can be patchworked together. The topological type of Ci can be obtained
by patchworking using a unimodular triangulation of ∆i and the ‘Harnack’ sign pattern
v 7→ (−1)v1v2 . By taking a unimodular triangulation of ∆ that refines S and the Harnack
sign pattern, the result of patchworking is a Harnack curve. It must have the same
topological type as the patchwork using S and the curves Ci when the polynomials fi
are chosen with the same sign as the polynomial that results from patchworking ∆i with
the Harnack sign configuration.

Proposition 8.7. Let S be a regular subdivision of ∆. Then H∆(S) is diffeomorphic
to Rn+g−dim(σ(S)) where σ(S) is the cone in the secondary fan of ∆ corresponding to S.
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Proof. First consider the case where S has a single facet B. By Theorem 7.22, H∆(S) =
HB ∼= R|B|−3 and the result follows from dim(σ(S)) = n+ g + 3− |B|.

Now let S be any full regular subdivision with facets B1, . . . , Bs and let ∆i = conv(Bi).
Let us compute dim(σ(S)). Note that for h ∈ σ(S), fixing h for 3 affinely independent
points of Bi fixes h on all of Bi. First, ∆1 is fixed after fixing 3 affinely independent
points. Suppose ∆2 is adjacent to ∆1 and let v1 be any element of B2 \ B1. We have
that h(v1) can take any positive real value. However, after fixing h(v1), all of h|∆2

is determined. Furthermore, if Bi shares sides with both B1 and B2 then fi is also
determined.

Let I1 ⊆ [s] is the minimum set containing 1 and 2 and such that
⋃
i∈I1

∆i is a convex set.

Then if h is determined for B1 and v1, it is determined for all of
⋃
i∈I1

Bi. If I1 6= [s], we

can repeat last step; choose a vertex v2 in a facet Fi with i 6= I1 but adjacent to a facet
Fj with j ∈ I1. Further determining the value of h on v2 determines h on a set of facets
indexed by I2. We can repeat this until Id = [s]. By construction, d + 3 = dim(σ(S)).
We can reorder [s] so that without loss of generality we can assume that Ii = [ki] for
some 1 ≤ ki ≤ s. If S is not full, then

dim(σ(S)) = d+ 3 + |∆M\
s⋃
i=1

Bi|,

since the value of h for points in ∆M\
s⋃
i=1

Bi can be arbitrary as long as it is large enough.

Now let us computeH∆(S). Recall that the global coordinates forH∆ that were taken in
Theorem 7.22 consist of areas of ovals, distances between consecutive parallel tentacles,
and the position of the first tentacle of every edge after the second. We start with B1

and we have that HB1
∼= R|B1|−3. The distances between the tentacles corresponding

to the edge Γ = ∆1 ∩∆2 are the same for C1 and C2. So, these |Γ| − 2 parameters of
HB2 are fixed if we fix C1. The subspace of Hb2 of curves C2 that agree with C1 on the
boundary is isomorphic to R|B2|−|Γ|−1. Let

qi =

∣∣∣∣∣∣Bi ∩
 i⋃
j=1

Bi

∣∣∣∣∣∣ .
Similarly, we have that the subspace of Harnack curves Ci ∈ HBi compatible with
C1, . . . Ci−1 is isomorphic to R|Bi|−qi−1 if ∆i only shares an edge with one of ∆1, . . . ,∆i−1.
If it shares edges with 2 of ∆1, . . . ,∆i−1, then there are qi−3 distances between tentacles
being fixed, so the subspace of Harnack curves Ci ∈ HBi compatible with C1, . . . Ci−1

is isomorphic to R|Bi|−|Γ|. The last statement also holds when ∆i shares edges with 3
or more of ∆1, . . . ,∆i−1, since the position of the first tentacle of each edge after the
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second gets fixed. By construction, Bi shares only one edge with the previous polygons
if and only if i = 2 or i = kj + 1, for 1 ≤ j < d. We have that

dim(H∆(S)) =
s∑
i=1
|Bi| − 3− d

= |
⋃
S| − 3− d

= n+ g − dim(σ(S)).

Proposition 8.8. Let ∆ be a lattice polygon and S be a regular subdivision of ∆M .
Then ΥS(H∆(S)) ⊆ Υ(H∆), where Υ(H∆) is the closure of Υ(H∆) inMtrop

g,n .

Proof. Suppose S is a full subdivision of ∆. Choose a height function h ∈ σ(S). By
Theorem 8.6, for any Harnack mesh C = (C1, . . . , Cs) in H∆(S) there exists polynomials
f1, . . . , fs and t0 > 0 such that for any 0 < t < t0 the curve Ct obtained by patchworking
is in H∆. So, we have a path (0, t0) → H∆. For each facet Bi of S there is a family
of polynomials {f it | t ∈ (0, t0)} with real coefficients such that f it vanishes on Ct and
every coefficient of f it outside conv(Bi) goes to 0 as t goes to 0. This follows from picking
the height function hi affinely equivalent to h such that points in Bi have height 0 and
doing patchworking with hi. The limit lim

t→∞
f it = fi vanishes on Ci.

As t goes to 0, the lengths of the edges of Υ(Ct) that corresponds to the interior of
Bi tend to the lengths of the edges of Υ(Ci). Doing this for every i we have that all
the finite lengths of ΥS(C) agree with the lengths of lim

t→0
Υ(Ct). The edges going to

infinity are precisely those dual to primitive segments of S. Then, Υ(Ct) forms a path
(0, t0)→ Υ(H∆) such that the limit of this path when t goes to 0 is Υ(C). So, C ∈ H∆.

If S is not full, let S ′ be the subdivision whose facets are B′ = conv(B)M for each facet
B ∈ S. That is, S ′ is the finest full subdivision that coarsens S. It is regular, as we can
take a height function a height function in σ(S) and linearly extrapolate in each ∆i to
make it full. As the expanded spine is continuous, even when ovals contract, we have
that

ΥS′(H∆(S ′)) ⊆ ΥS(H∆(S)) ⊆ H∆.

Lemma 8.9. Let ∆ be a lattice polygon. Then Υ(H∆) = Υ(H∆).

Proof. Proposition 8.8 implies that Υ(H∆) ⊂ Υ(H∆).
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For the other containment, let C1, C2, . . . be a sequence of curves in H∆ such that their
expanded spines converge to a point in G ∈ Mtrop

g,n . We call connected components
of G the components obtained by deleting from G all edges of infinite length. Notice
that vertices of an expanded spine correspond to polygons inside ∆ given by the regular
subdivision dual to the expanded spine. This association is carried on to the limit, so
the connected components G1, . . . , Gs induce a regular subdivision S = {B1, . . . , Bs} of
∆. For a connected component Gi of G, we can choose polynomials f i1, f i2, . . . vanishing
on C1, C2 . . . such that they converge to a polynomial f i which vanishes on a curve
whose expanded spine is Gi. This can be done, for example, by picking a vertex of Gi
and fixing it to be in the origin, i.e., translating the amoebas of C1, C2 . . . so that the
corresponding vertex in the expanded spine is always at the origin. Since the limit of
Harnack curves is a Harnack curve (see [MR01, Remark 2]), f i vanishes on a Harnack
curve Ci ∈ HBi . The collection C = (C1, . . . , Cs) is a Harnack mesh over S and we have
that Υ(C) = G.

Corollary 8.10. Let ∆ be a lattice polygon. Then,

H∆(S) =
⋃
T ≤S
H∆(T ),

where the union runs over all subdivisions T of ∆ that refine S.

Theorem 8.11. Let ∆ be a lattice polygon. The stratification of H∆ by H∆(S) is a cell
complex with a poset isomorphic to the face poset of the secondary polytope Sec(∆M )
given by its faces.

Proof. The faces of Sec(∆M ) are in correspondance with regular subdivisions. By The-
orem 8.7, H∆(S) has the same dimension as the face of Sec(∆M ) corresponding to S.
By Theorem 8.10, the boundary of H∆(S) consists of H∆(T ) for every subdivision T
that refines S. Similarly, the faces contained in the face of Sec(∆M ) corresponding to S
are those corresponding to refinements of S.

Example 8.12. Let ∆ := conv((1, 0), (0, 1), (−1, 0), (0,−1)). We have that Sec(∆) is
a triangle. Figure 8.1 shows the space H∆ together with the subdivisions of the corre-
sponding face in Sec(∆) and the amoebas of the corresponding Harnack meshes. The hor-
izontal coordinate represents the relative position of the tentacles. This is parametrized,
for example, by ρ1 +ρ3. Going to the left stretches the amoeba vertically while going to
the right stretches it horizontally. The vertical coordinate corresponds to the area of the
oval, where going downwards decreases the area while going upwards increases it. The
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bottom open segment corresponds to H0,∆, and that segment together with the interior
face corresponds to H∆ ∼= R× R≥0.

Figure 8.1: H∆ for ∆ = conv((1, 0), (0, 1), (−1, 0), (0,−1))
.

8.4 Questions and future directions

8.4.1 H∆ as a CW-complex

We begin by suggesting the following strengthening of Theorem 8.11:

Conjecture 8.13. The cell decomposition of the compactified moduli space H∆ =⊔
S H∆(S) is a regular CW-complex.

Two regular CW-complexes with isomorphic cell posets are isomorphic, that is, there
is a homeomorphism that maps each cell to the corresponding cell given by the poset
isomorphism. By Theorem 8.11, if Theorem 8.13 hold, H∆ would be isomorphic to
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Sec(∆M ). To show that H∆ is a regular CW complex it is enough to show that for any
regular subdivision S of ∆, ΥS(H∆(S)) is a closed ball. Moreover, it is enough to prove
the following:

Conjecture 8.14. Let C ∈ H∆(S) be a Harnack mesh and S ′ be a coarsening of S.
Then there is a neighborhood of C in H∆(S ′) homeomorphic to a half space of dimension
dim(H∆(S ′)).

Since the poset of H∆ is Eulerian by Theorem 8.11, Theorem 8.14 implies that the
closure of the cells of H∆ are closed balls by (a reformulation of) Pointcaré’s conjecture.
This argument was recently used by Galashin Lam and Karp in order to prove that
the positroid stratification of the totally non-negative Grassmannian is a CW-complex
[GKL19]. It is worth remarking that Harnack curves enjoy several similarities with the
total positivity phenomenon (see, for example, [KOS06, Section 5.2] or our proof of
Theorem 7.19). In the next subsection we will see that Theorem 8.14 holds when S is
full.

8.4.2 H∆ as a manifold with generalized corners.

The above discussion suggests to study topological charts in H∆. We can be more
ambitious and try to endow H∆ with a smooth structure. Theorem 7.22 is already a
description of H∆ as a smooth manifold with corners. A natural question is whether we
can extend this smooth structure to H∆. A desirable trait of such a smooth structure
(besides being compatible with the chart given by Theorem 7.22) is that the cell complex
structure from Theorem 8.11 can be recovered from it. However, secondary polytopes
are not always simple polytopes and manifolds with corners lack the capacity to describe
non-simple vertices. To mend this, we turn our attention to a wider category, namely
that of manifolds with generalized corners, or gc-manifolds, as defined in [Joy16].

Definition 8.15 ([Joy16]). A g-chart of a topological space X is a triple (φ,L, U) such
that:

• L is a weakly toric monoid, i.e. a semi-lattice of the form L = Zs ∩ σ where s is a
positive integer and σ ⊆ Rs is a rational polyhedral cone.

• U is an open subset of Hom(L,R≥0), i.e. the space of monoid morphisms from L
to the monoid (R≥0, ·) with the weakest topology that makes evaluation on a point
q ∈ L continuous.

• φ : U → X is a topological embedding to an open subset φ(U) ⊆ X.
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We call X a gc-manifold if it has a g-atlas, that is, a collection of g-charts covering X and
satisfying certain compatibility conditions on the transition functions. These conditions
depend on the monoids, but we restrain from explaining them in detail in this paper
to avoid overextending us. Easy examples of gc-manifolds are Hom(N,R≥0) ∼= R≥0

and Hom(Z,R≥0) ∼= R. So as a gc-manifold, H∆ ∼= Hom(Nm−3 × Zn+g−m,R≥0) by
Theorem 7.22.

Proposition 8.16. Let C ∈ H∆(S) be a Harnack mesh where S is a full subdivision.
Then there exists a g-chart around C. Moreover, all charts provided this way are com-
patible with each other.

Proof. Since (R ∪ {∞},+) is isomorphic as a monoid to (R≥0, ·) with x 7→ e−x as
isomorphism, g-charts can be equivalently defined to be homeomorphisms from open
subsets of ‘affine tropical toric varieties’, i.e. from open subsets U ⊆ Hom(L,R ∪ {∞}).
Consider a graph G embedded in R2 that is dual to the subdivision S. In particular, the
edges of G have a prescribed slope. The lengths of these edges satisfy linear equations
with integer coefficients given by the circuits of G (two for each circuit). These equations
are binomial relations under the isomorphism (R∪ {∞},+) ∼= (R≥0, ·). Thus, the edges
of G (which correspond to edges of S in the interior of ∆) generate a toric monoid LS
under these relations.

Let C′ be a Harnack mesh close enough to C. The spine Υ(C′) has a subgraph Gi which
is very close to Υ(Ci) for each curve Ci ∈ C. These subgraphs are glued together with
edges of very large (possibly infinite) length. Contracting these subgraphs results in
the graph dual to S, so the distances between these graphs induce a homomorphism
φC′ : LS → R ∪ {∞}.

The coordinates of a Harnack mesh in H∆(S) encode the same information as the spines
of each curve in the Harnack mesh. Since C′ is close enough to C there exists a mesh
H∆(S) that has a curve whose spine is isomorphic as metric graphs to Gi for each i

(here we use that S is full). The coordinates of this mesh in H∆(S) is a vector in Rd,
where d = n + g − dim(σ(S)), by Theorem 8.7. This vector induces a homomorphism
ψC′ : Zd → R≥0.

The Harnack mesh C′ is completely determined by φC′ and ψC′ , so we obtain an embed-
ding from a neighborhood of C in H∆ to Hom(LS × Zd,R≥0) given by

C′ 7→
(
(x, y) 7→ e−φC′ (x)ψC′(y)

)
where x ∈ LS and y ∈ Zd. Since Hom(LS × Zd,R≥0) is of the same dimension as H∆,
this mapping forms a g-chart.
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That this g-chart is compatible with the g-chart of H∆ given by Theorem 7.22 is a
consequence of Theorem 8.1. Similarly, charts constructed this way are compatible with
each other.

Corollary 8.17. Theorem 8.14 holds when S is full.

Proof. For any L, the space Hom(L,R≥0) is stratified by its support. All of the strata
are again of the form Hom(L′,R≥0) for some submonoid L′ ≤ L and are topological
manifolds with boundary. The g-charts constructed above respects the cell strata of
Hom(LS × Zd,R≥0) and H∆, so the result follows.

Unfortunately, we do not know of a good way of constructing g-charts for points in cells
corresponding to non-full subdivisions. Length of edges is not a good parameter for the
chart, since the edges of cycles in Γ that correspond to ovals contracting to a point are
finite (that is, positive after applying x 7→ e−x) so the preimage in such chart would
not be open. One could expect a g-chart covering H∆(S) for a non-full subdivision S
to be defined over an open subset of Hom(LS ×Zd×Nk,R≥0) where k is the number of
missing points of S. However, it is not clear what the coordinates corresponding to the
copies of N should be.

For example, using the area of ovals as coordinates, as we did in Theorem 7.22, does
not work either. Consider the bottom right corner of Theorem 8.12. If we take a
continuous path along the interior of the triangle by stretching the amoeba horizontally
but maintaining the area of the bounded component is constant. Since the square
bounded by the expanded spine is contained in the union of the amoeba with the bounded
component of the complement, its area is bounded. Stretching the amoeba horizontally
causes the length of the vertical edges of the square to tend to 0, which means that the
path ends in the bottom right corner. This coordinate should be 0 at this point, so the
continuity is broken.

Question 8.18. Is there a natural way of completing a g-atlas on H∆ with g-charts
respecting the cell strata?

A positive answer to this question implies a positive answer to the conjectures in Sec-
tion 8.4.1.
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8.4.3 A cell complex for T -curves.

Harnack meshes can also be patchworked into non-Harnack curves by choosing polyno-
mials with different sign patterns. The resulting curves are called T -curves. They can
be thought of as the ‘neighborhood’ of H∆, which suggests the following question.

Question 8.19. Given a lattice polygon ∆, are there other topological types of curves
in X∆ such that their moduli space can be given a cell complex structure similar to
H∆? Can such moduli spaces be glued together to form a larger cell complex, or even a
polytopal complex, where cells correspond to different topological types?

Example 8.20. When ∆ is the unit square, H∆ is a segment. When the Harnack
meshes of the extremes are patchworked in a non Harnack way, we get a curve whose
amoeba has a pinching (see [Mik00, Example 1]). From one of the extremes the resulting
expanded spine has a bounded edge parallel to {x1 = x2} and from the other extreme
the edge is parallel to {x1 = −x2}. When the length of the bounded edge goes to 0, both
cases degenerate to a reducible curve (the union of two axis-parallel lines). In this case
the complex of Question 8.19 exists and it is isomorphic to the boundary of a triangle.
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