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Summary

Disagreement among and within individuals is not unusual. If there is, however, only one correct answer to
a particular question, disagreement can lead to serious problems. Take, for example, a patient who consults
with different doctors (or the same doctor on different occasions) about the malignancy of a mass in her
mammogram and hears different diagnoses. Not to know which diagnosis is correct and whether the prescribed
treatment is appropriate can endanger a patient’s health and understandably raises concerns about the judge’s
competence. However, in such disagreement can lie hidden potential, a source of wisdom that becomes visible
only when taking a step back to observe the disagreeing “crowd” from a distance. Such crowds often possess a
fragmented and probably noisy encyclopedia of information, which is distributed over the individual members
in the group. How should this fragmented knowledge be assembled into a meaningful and accurate judgment?
Is there one superior strategy that consistently outperforms competing strategies? Or does the performance
of each strategy depend on the statistical properties of the environment?

In the first chapter, I introduce the elementary concepts on which this dissertation draws. Crowds can
be understood in many ways, of which two are relevant in this dissertation. First, a crowd can be several
individuals forming a group of people, for example, a group of radiologists diagnosing the malignancy of
a tumor. Second, one can think of the different opinions existing within an individual’s mind as an inner
crowd. For example, a single radiologist might assess the same mammogram multiple times and give different
diagnoses. The main empirical body covers work on the wisdom of the inner crowd, that is, methods to harness
the wisdom within an individual. In Chapter 2, I compare theoretically and empirically the performance of
two strategies to improve confidence judgments of associated decisions. In the case of inconsistent judgments,
should one choose the higher confidence judgment or average them? Averaging two confidence judgments
consistently improves their accuracy, whereas always choosing the higher confidence judgment is risky: It
can substantially harm the accuracy of confidence judgments and begins to outperform averaging only in
environments where the probability of making a correct judgment is 60% or higher. Therefore, when one
lacks insight into the statistical properties of an environment, the results of the presented studies suggest that
averaging—due to its robustness—should be the default strategy to harness one’s conflicting judgments. In
the third chapter, I investigate the relationship between inconsistency in decisions, confidence judgments, and
the statistical environment within expert decisions. I seek to understand when physicians change their mind,
and I offer advice for people relying on expert decisions. In short, when an expert disagrees with herself, the
results of this study suggest to choose the more confident decision—since the probability of making a correct
decision is often 60% or higher in expert decisions. In Chapter 4, I extend the wisdom of the inner crowd
to sequential diagnostic decision making and investigate cognitive dependencies between successive decisions.
Existing literature suggests that gains from aggregating judgments are larger the more independent judgments
are. The results so far show that the statistical properties of the environment moderate the extent of cognitive
dependency processes. Future studies should investigate how such dependencies influence the accuracy of the
final diagnosis. In Chapter 5, my colleagues and I review four judgment-aggregation strategies through an
ecological lens. I show that there are a variety of ways to reduce uncertainty, each successful under distinct
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statistical properties of the environment. If such statistical properties cannot be known, I suggest adopting
two principles: (a) aggregate more judgments than fewer, and (b) use experience to adapt to the environment.
Finally, in Chapter 6 I summarize the key results and point to new ideas for future research.

Taken together, the results suggest that judgment-aggregation strategies offer great potential to reduce
judgment uncertainty, yet the process of doing so involves dealing with another type of uncertainty: What
strategy to select in a particular environment? To investigate this and further questions I use analytical
methods, computer simulations and empirical studies in different domains, ranging from mere perceptual
tasks to general knowledge questions to diagnostic decisions. This work extends previous research in that
it adapts and compares previous strategies and investigates them in the context of expert decisions. All in
all, this sheds a different light on judgment inconsistency and shows how and when disagreement among and
within individuals can be turned into a benefit.







Zusammenfassung

Meinungsdifferenzen zwischen, aber auch innerhalb, Personen findet man jeden Tag, überall und zu jeglichem
Thema. Wenn es jedoch nur eine richtige Antwort auf eine Fragestellung geben kann, können Meinungsunter-
schiede zum Problem werden. Lässt eine Patientin zum Beispiel ihr Mammogram von verschiedenen Ärzt/innen
(oder von derselben Ärztin mehrmals) auf Krebs untersuchen, kommt es durchaus vor, dass unterschiedliche
Diagnosen gegeben werden. Für die Patientin kann es eine enorme Belastung sein, nicht zu wissen welche
Diagnose zutrifft, und ob sie eine angemessene Behandlung bekommt. Verständlicherweise wirft dies Zweifel
an der Kompetenz der Ärzt/innen auf. Schliesslich kann nur eine Diagnose stimmen. Aus einem anderen
Blickpunkt betrachtet kann sich jedoch hinter diesen Unstimmigkeiten ein Potenzial—eine Art Intelligenz—
verstecken. Dieses wird erst erkennbar, sobald man einen Schritt zurücktritt und den vielen unterschiedlichen
Meinungen, aus der Ferne betrachtet, eine umfassende Gestalt gibt. Man könnte zum Beispiel annehmen, dass
jede einzelne Meinung ein Teil eines Puzzles ist und alle, oder ein Teil der Meinungen zusammen das Bild erst
vervollständigen—die “Weisheit der Vielen”. Die Herausforderung liegt darin, wie man das Puzzle zusammen-
legen soll. Liegen Teile dabei, die zu einem anderen Puzzle gehören? Welche Strategien stehen zur Verfügung
um die Teile zusammenzufügen? Und in welchen statistischen Umgebungen führen welche Strategien zum
Erfolg?

In Kapitel 1 stelle ich die grundlegenden Konzepte vor, auf die sich diese Arbeit bezieht. Die Weisheit der
Vielen kann in verschiedenen Gestalten vorkommen. Zwei davon sind relevant für diese Dissertation. Erstens,
kann Wissen über verschiedene Personen verteilt sein, vergleichbar zu Ärzten die unterschiedliche Diagnosen
geben. Zweitens, kann Wissen auch innerhalb einer Person verteilt sein, zum Beispiel wenn ein Arzt dasselbe
Mammogram zweimal evaluiert und dabei zu unterschiedlichen Diagnosen kommt. Ein Großteil dieser Arbeit
untersucht, wann sich unterschiedliche Meinungen in einer Person manifestieren und vergleicht den Erfolg von
verschiedenen Strategien um Meinungen zu aggregieren. Im zweiten Kapitel befasse ich mich mit subjektiven
Wahrscheinlichkeitsurteilen in Entscheidungsszenarien mit zwei Alternativen. Wenn sich zwei Wahrschein-
lichkeitsurteile von einer Person unterscheiden, wann sollte man Ihren Mittelwert nehmen und wann das höhere
Wahrscheinlichkeitsurteil wählen? Theoretische und empirische Resultate zeigen, dass der Mittelwert zweier
Wahrscheinlichkeitsurteile eine robuste Strategie ist, um ein akkurateres Wahrscheinlichkeitsurteil zu erzielen,
wohingegen es eine riskante Strategie ist, sich immer auf das höhere Wahrscheinlichkeitsurteil zu verlassen. Das
höhere Wahrscheinlichkeitsurteil kann Abweichung vom wahren Wert erheblich erhöhen und uebertrifft nur
dann den Erfolg des Mittelwerts, wenn die objektive Wahrschenlichkeit, dass man richtig antwortet bei 60%
oder höher liegt. In Kapitel 3 untersuche ich das Verhältnis zwischen inkonsistenten Entscheidungen, subjek-
tiven Wahrscheinlichkeiten und der statistischen Umgebung in Expertenentscheidungen. Im Detail, versuche
ich zu verstehen, wann Mediziner/innen ihre Meinung ändern und biete Hilfestellungen für diejenigen, die sich
auf Expertenentscheidungen verlassen müssen. Kurzum, wenn ein/e Experte/in sich widerspricht, kann man
sich auf die Entscheidung mit dem höheren Wahrscheinlichkeitsurteil verlassen—da in der Regel Expert/innen
eine objektive Wahrscheinlichkeit richtig zu liegen von 60% erreichen oder übertreffen. In Kapitel 4 erforsche
ich die Abhängigkeit zwischen aufeinanderfolgenden Teilentscheidungen in einem sequenziellen Diagnose Ver-
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fahren. In der Regel lassen sich Fehler besser ausgleichen, je unabhängiger die einzelnen Entscheidungen sind.
Bisher zeigen die Resultate, dass die statistische Umgebung moderiert, wie stark Teilentscheidungen in einem
sequenziellen Verfahren voneinander abhängen. Künftige Studien sollten erforschen, wie sich Abhängigkeiten
zwischen Teilentscheidungen auf die Richtigkeit der endgültigen Diagnose auswirken. In Kapitel 5 begutachten
meine Kollegen und ich vier bekannte Strategien für das Aggregieren von Entscheidungen aus einer ökologis-
chen Perspektive. Ich zeige, dass es eine Auswahl an Methoden gibt um Unsicherheit zu reduzieren und dass
jede Methode ihre eigene Nische in einer statistischen Umgebung hat. Kennt man die Umgebung nicht, kann
man zwei Prinzipien folgen: (a) Aggregieren Sie lieber mehr als weniger Urteile, und (b) verwenden Sie Feed-
back um sich an die Umgebung anzupassen. In Kapitel 6 fasse ich die zentralen Erkenntnisse zusammen und
zeige neue Ideen für zukünftige Studien auf.

Zusammengenommen, zeigt diese Arbeit, dass man durch das Aggregieren von unterschiedlichen Urteilen
Unsicherheit reduzieren kann. Jedoch impliziert die Auswahl an Strategien eine andere Unsicherheit: Welche
Strategie sollte man wann anwenden? Dieser und weiteren Fragen gehe ich mit Anwendung von analytischen
Methoden, Computer Simulationen und empirischen Studien auf den Grund. Ich treibe bestehende Forschung
voran, indem ich bisherige Strategien erweitere, gegenüberstelle und im Kontext von Expertenentscheidun-
gen untersuche. Im Großen und Ganzen beleuchtet diese Arbeit Meinungsunterschiede aus einem anderen
Blickwinkel und weist auf, wie und wann man sie zum Guten wenden kann.
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�� General Introduction

“Organisms are algorithms, and humans are not individuals – they are ’dividuals’, i.e. humans are an

assemblage of many different algorithms lacking a single inner voice or a single self.”

Yuval Noah Harrari, Homo Deus

Each year approximately 200,000 patients in the United States alone die from preventable medical errors

(Andel, Davidow, Hollander, & Moreno, 2012); many more undergo serious harm, disability, and false treat-

ment (Berner & Graber, 2008; Blendon et al., 2002). For patients as well as for doctors the legal and financial

consequences of wrong diagnoses are vast (Andel et al., 2012) and the inconsistency in judgments between and

within professionals is often identified as a principal source of the problem (Einhorn, 1974; Kahneman, Rosen-

field, Gandhi, & Blaser, 2016). Several studies report inconsistency in expert judgment throughout various

domains, including medicine (Kirwan, De Saintonge, Joyce, & Currey, 1983; Koran, 1975; Levi, 1989; Ullman

& Doherty, 1984), clinical psychology (Little, 1961; Millimet & Greenberg, 1973), neuropsychology (Garb &

Schramke, 1996), finance and management (Kahneman et al., 2016), agriculture (Trumbo, Adams, Milner,

& Schipper, 1962), and weather forecasting (Lusk & Hammond, 1991; Stewart et al., 1989). Simultaneously,

organizations across domains—whether in the health care sector, the judiciary, or the financial sector—expect

consistency from professionals in their judgments. Disagreement among and within individuals is interpreted

as a source of error, because logic requires that identical cases are evaluated identically (Kahneman et al.,

2016).

Yet, in this disagreement can lie hidden potential, a source of wisdom that becomes apparent only when one

steps back to observe the disagreeing crowd from a distance. Viewed from a different perspective, such crowds

posses a fragmented and noisy encyclopedia of information, which is distributed over the individual members

of the crowd. When aggregating this fragmented knowledge leads to the cancellation of errors and to a more

accurate judgment than that of the typical—or even best—individual, we speak of the wisdom of the crowds

phenomenon (Bang et al., 2014; Laan, Madirolas, & De Polavieja, 2017; Malone & Bernstein, 2015; Page, 2007;

Surowiecki, 2004). One of the earliest documented aggregation strategies illustrating the wisdom of crowds

effect is the majority rule, that is, choosing the option that received the most votes (Condorect, 1994). Marquis

de Condorcet (1994) showed that for two-alternative choices, aggregating ever more independent judgments
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can boost the accuracy of the majority vote. Two key factors influencing the success of the majority rule are

the diversity of judgments (and of errors) and the average individual accuracy. If individuals make diverse

judgments (i.e., diverse errors) and the average individual accuracy is higher than 0.5, that is, if the majority

is correct (a “kind” environment; Hertwig, 2012), errors of the aggregated judgments will cancel each other out

(Ladha, 1992, 1995). A growing body of research has investigated the potential of aggregation strategies in

various domains, including medical diagnostics (Kämmer, Hautz, Herzog, Kunina-Habenicht, & Kurvers, 2017;

Kurvers, De Zoete, Bachman, Algra, & Ostelo, 2018; Kurvers et al., 2016; Wolf, Krause, Carney, Bogart, &

Kurvers, 2015), geopolitical and economic forecasting (Atanasov et al., 2016; Budescu & Chen, 2014; Satopää,

Jensen, Mellers, Tetlock, & Ungar, 2014), and machine learning (Dutta & Bonissone, 1993). In Chapter

5 my colleagues and I review four well-known crowd rules and the ecological boundary conditions for their

performance.

When thinking of the wisdom of crowds phenomenon, usually what people imagine is an obvious group of

individuals solving a task. However, crowds can appear in a variety of shapes and are often invisible (Malone,

2018). Community science projects where citizens report landslides to help NASA create a global landslide

catalog, online groups accumulating knowledge on Wikipedia, and the 1,000 pedestrians moving through

Shibuya Crossing in Tokyo every three minutes without bumping into each other are just a few examples of

intelligent and sometimes hidden crowds. This dissertation represents my work on the wisdom of two types

of crowds, the known “outer” crowd and the more hidden “inner” crowd. Outer crowds are defined by groups

of individuals, each expressing their opinion on a given task, for example, a group of radiologists providing

individual diagnoses about the malignancy of a tumor in an x-ray. The inner crowd emerges whenever a

single individual expresses diverse, maybe even conflicting opinions on a given task, for example, a radiologist

making different diagnoses when assessing the same x-ray multiple times. This thesis extends the research on

outer crowds to inner crowds. The main part of this work investigates how fragmented knowledge should be

aggregated into a meaningful and accurate judgment. When do inner crowds arise? And how can inner crowds

be used to boost accuracy? Is there a superior strategy that consistently outperforms its competitors? Or does

the performance of each strategy depend on the statistical properties of the environment? In the following

sections I review previous research on the wisdom of the inner crowd and highlight the open questions that I

set out to answer in this dissertation.

A Brief History of the Inner Crowd

The first known demonstration of the wisdom of the inner crowd was provided in a ranking task, where indi-

viduals repeatedly arranged visually identical objects according to their weight. Averaging the rankings across

individuals yielded the known wisdom of crowds effect—that is, the correlation between the judged and the

actual rank of the objects increased, meaning the aggregated rankings became more accurate. Astonishingly,

however, averaging ever more repeated rankings of a single individual increased the correlation to the same

extent as averaging the rankings of different individuals (Stroop, 1932). Because the objects were visually
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identical, individuals could not remember their previous rankings and consequently made as many diverse

rankings as would different individuals.

One of the necessary conditions for the boosting effect of aggregating judgments (as well as decisions,

estimates, and rankings) is a diversity of judgments, and hence a diversity of errors (Davis-Stober, Budescu,

Dana, & Broomell, 2014; Herzog & Hertwig, 2009; Larrick & Soll, 2006; Page, 2007). Obviously, aggregating

identical judgments cannot result in any aggregation gain. Only when judgments differ, and hence errors

differ, can aggregation lead to the cancellation of errors, and therefore to a gain in accuracy. Meanwhile,

a growing body of literature has shown that averaging an individual’s judgments improves accuracy (for a

review see Herzog & Hertwig, 2014a). But what explains the diversity in an individual’s repeated judgments?

One intuitive point of view is that an individual’s initial judgment exhausts that person’s full knowledge

and any additional judgments will merely add noise (Vul & Pashler, 2008). Accordingly, initial judgments

should be more accurate than consecutive judgments. Another point of view, however, is that when making

judgments, individuals draw probabilistic subsamples from their knowledge base (Kersten & Yuille, 2003; Ma,

Beck, Latham, & Pouget, 2006; Steyvers, Griffiths, & Dennis, 2006; Vul & Pashler, 2008). Consequently,

aggregating such diverse judgments should result in the cancellation of errors. The majority of evidence for

the latter proposition comes from studies averaging estimates about general knowledge quantities, such as

historical dates (Herzog & Hertwig, 2009; Müller-Trede, 2011), and proportions (Fraundorf & Benjamin, 2014;

Herzog & Hertwig, 2014b; Hourihan & Benjamin, 2010; Vul & Pashler, 2008), or averaging estimates about

amounts in jars (Van Dolder & van den Assem, 2018).

The success of averaging can be attributed to a statistical principle: An individual’s quantitative estimate

can be decomposed into three parts, the true value of the quantity, random error, and systematic error.

Random error is an individual’s random fluctuation around the true value, while systematic error is the

consistent tendency to over- or underestimate the true value. Averaging an individual’s repeated estimates

cancels out random error and can reduce systematic error (Herzog & Hertwig, 2009; Larrick & Soll, 2006).

Take, for example, the question “In what year was Aristotle born?” Whenever two estimates bracket the true

value (i.e., 384 BC), that is, when one overestimates (e.g., estimate1 ⇤ 424 BC) and the other underestimates

(e.g., estimate2 ⇤ 344 BC) the true value, averaging them will, in this case, eliminate the absolute error

(avera ge ⇤ 384 BC; erroravera ge ⇤ 0) and is hence more accurate than either of the two estimates (Figure 1a).

When two estimates fall on the same side of the truth, that is, when both estimates over- or underestimate

the true value, averaging will be at least as accurate as randomly choosing one of the two (Figure 1a; for a

comparison of averaging vs. choosing, see Soll & Larrick, 2009).

Dialectical Bootstrapping: Facilitating Diversity Within an Individual’s Judgments

What influences the amount of diversity within an individual’s judgments? Increasing the time delay by three

weeks between an individual’s repeated judgments has been shown to reduce dependency between errors and

hence to increase accuracy more than asking for an immediate repeated judgment (Vul & Pashler, 2008).
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(a) Bracketing. First and second estimates bracket
the true value. Averaging both estimates eliminates
the error in this case and is more accurate than ran-
domly choosing between one of the estimates.

(b) No bracketing. First and second estimates under-
estimate the true value by the same amount, hence
averaging does not cancel the error.

Figure 1. Power of averaging.

Furthermore, individuals with lower working memory span have been shown to produce more independent

judgments, hence yielding higher averaging gains than individuals with higher working memory span. The

advantage of a lower memory span results from smaller samples drawn from the same knowledge base being

necessarily less dependent than bigger samples (Hourihan & Benjamin, 2010). But what if there is not enough

time to wait for a second judgment, or if an individual simply has a high memory span? How else could the

dependency within an individual’s repeated judgments be reduced?

Herzog and Hertwig (2009, 2014b) proposed dialectical bootstrapping as a general mental tool to harness

the wisdom of the inner crowd, where dialectical refers to the Hegelian dialectical method of creating a thesis

(first estimate), an antithesis (dialectical estimate), and a synthesis (aggregation) and bootstrapping refers to

the saga of Baron Münchhausen, who escaped from a swamp by pulling himself up by his own bootstraps.

Accordingly, any technique that promotes the use of different, nonredundant knowledge and reduces the

influence of the first estimate falls within this framework. One implementation of dialectical bootstrapping is

the “consider-the-opposite” technique, whereby individuals are encouraged to generate a dialectical estimate by

thinking about reasons why their first estimate was wrong. Herzog and Hertwig (2009, 2014b) demonstrated

that dialectical estimates had higher bracketing rates than simply repeated estimates (i.e., without dialectical

instructions), and therefore averaging dialectical estimates resulted in higher accuracy than averaging simply

repeated estimates. In other words, instead of waiting for three weeks, an individual can instantaneously

benefit from her inner crowd by actively generating a plausible dialectical second estimate. Do individuals

aggregate and combine their judgments without being explicitly instructed to do so? Individuals are more

likely to combine their judgments when instructed to contradict themselves and with growing disagreement

between their judgments (Herzog & Hertwig, 2014b).

So far research has shown that individuals do not always agree with themselves, and that they can use

this disagreement to their advantage by aggregating their repeated or dialectical estimates. However, evidence

so far is constrained to quantitative estimates. Could the wisdom of the inner crowd also be harnessed in

categorical decision making tasks, such as in the medical diagnostic task of detecting breast cancer? How

often and under what conditions do individuals disagree with themselves? And what strategies can be used

to aggregate categorical decisions?
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Outline of the Dissertation

The main empirical part of this dissertation extends the research on the wisdom of the inner crowd to categorical

decisions and their associated confidence judgments. Each chapter is being or has been prepared for publication

and can thus stand alone.1 In Chapter 2, I investigate how repeated confidence judgments in two-alternative

choices can be aggregated. Two strategies, averaging two confidence judgments (Ariely et al., 2000) and

maximizing, that is, choosing the judgment with the higher confidence (Koriat, 2012), have previously been

proposed but never compared against each other. In Chapter 2, I investigate theoretically and empirically which

strategy performs well in particular environments. Is there a superior strategy that consistently outperforms

competing strategies, or does the success of each strategy depend on the statistical environment? If higher

confidence in one’s decision is associated with higher accuracy, maximizing should improve accuracy. However,

if the relationship between confidence and accuracy is not described by a monotonically increasing function,

then maximizing can potentially harm accuracy.

Chapter 3 looks at what causes experts to change their mind and provides advice for those who have to rely

on expert decisions. More precisely, I investigate the relationship between inconsistency in expert decisions,

confidence judgments, and the statistical environment. Do experts change their mind more frequently when

they are more likely to be wrong than correct? Or is it something about the statistical environment that

drives inconsistency? The applied paradigm is similar to that outlined in Chapter 2. I stay within the realm

of two-alternative choices and their associated confidence judgments.

Chapter 4 broadens the wisdom of the inner crowd research to sequential diagnostic decision making. In

sequential diagnostic procedures, individuals make consecutive subdecisions before arriving at a final decision.

The three-point checklist of dermoscopy is one example of a sequential procedure applied in the field of

dermatology (Zalaudek et al., 2006). Radiologists first assess the presence of three cues, one at a time, and

then make a final judgment based on the number of present cues. However, studies have shown that the

order of evidence can bias one’s final diagnosis (Rebitschek, Bocklisch, Scholz, Krems, & Jahn, 2015). Since

independent and diverse judgments are one of the key factors driving aggregation gains, Chapter 4 addresses

the questions of (i) whether sequential diagnostic procedures induce dependencies between subdecisions in a

diagnostic sequence (taking into account the statistical properties of the environment), and (ii) whether a

different procedure can reduce such dependencies.

In Chapter 5, takes a broader perspective and explores four well-known aggregation strategies for outer

crowds (i.e., the opinions of several individuals) through the lens of ecological rationality. In what statistical

environments do those strategies perform well? And how should one proceed if there is little information about

the statistical environment? Finally, in Chapter 6, I conclude with a summary of the findings from Chapters

2–5 and provide ideas for future research.
1This is not a cumulative, publication–based dissertation but follows that form.
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Boost Accuracy of Confidence Judgments
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Abstract

The wisdom-of-crowds effect describes how aggregating judgments of multiple individuals can lead to a more

accurate judgment than that of the typical—or even best—individual. We investigated when individuals can

avail themselves of the wisdom of their “inner crowd” to improve the quality of their confidence judgments by

either (a) averaging their two confidence judgments or (b) selecting the higher of the two (i.e., maximizing).

In a simulation analysis based on a signal detection model of confidence, we investigated how the “kindness”

versus “wickedness” of items (i.e., the degree to which the majority of people chooses the correct or wrong

answer) and the redundancy of the two confidence judgments (made by the same person) affect the performance

of averaging and maximizing. Simulation and analytical results show that irrespective of the type of item,

averaging consistently improves confidence judgments, but maximizing is risky: It outperformed averaging

only once items were answered correctly 60% of the time or more. All effects were smaller the higher the

redundancy between confidence judgments. We investigated the relevance of these effects in three empirical

datasets since a person’s actual confidence judgments are redundant (median correlations ranged between

.5 and .85). Averaging two confidence judgments from the same person was superior to maximizing, with

Cohen’s d’s effect sizes ranging from 0.67–1.44. As people typically have no insight about the wickedness of

the individual item, our results suggest that averaging—due to its robustness—should be the default strategy

to harness one’s conflicting confidence judgments.

Keywords: judgments under uncertainty; judgment aggregation; dialectical bootstrapping; wisdom of the

inner crowd; confidence judgments

Data and scripts for reproduction can be found at Open Science Framework. | ACKNOWLEDGMENTS: We thank Anita Todd for
editing the manuscript, and the Swiss National Science Foundation for a grant to the second and fifth author (100014_129572/1).

https://osf.io/b3f6d/


14

Introduction

Among many psychologists and economists, confidence judgments have a bit of a “bad boy” persona (Grif-

fin & Brenner, 2004). Extant research has claimed that subjective confidence judgments violate coherence

norms of rationality (Kahneman & Tversky, 1982) and do not reliably reflect people’s actual decision accuracy

(D. D. P. Johnson & Fowler, 2011; Keren, 1991; Lichtenstein, Fischhoff, & Phillips, 1982; Sniezek, Paese, &

Switzer III, 1990). Notwithstanding this notorious reputation (but see Gigerenzer, Hoffrage, & Kleinbölting,

1991; Juslin, Winman, & Olsson, 2000; Pleskac & Busemeyer, 2010), confidence is one of the most important

correlates of acts of judgment and decision. In numerous areas of real-world decision making, such as intelli-

gence service (Betts, 1978; Mandel & Barnes, 2014; Mellers et al., 2014), eyewitness reports (Wixted, Mickes,

Dunn, Clark, & Wells, 2016), the stock market, and medical diagnostics (Berner & Graber, 2008), people

cannot help but rely on confidence judgments to assess the accuracy of decisions or the likelihood of an event

to happen. That is, people often treat confidence as a cue whether to act on a decision or whether they should

consult additional information. The accuracy of confidence judgments is thus key.

The accuracy of confidence judgments has been well studied often showing people are overconfident and

unreliable (for a review, see Arkes, 2001; McClelland & Bolger, 1994; Moore, Tenney, & Haran, 2015). Some

have argued that this miscalibration does not reside in the decision maker’s cognition but in the item-sampling

process: Representative samples of general knowledge items do not lead to miscalibrated confidence but selec-

tively sampled items do (Dhami, Hertwig, & Hoffrage, 2004; Gigerenzer et al., 1991; Juslin et al., 2000). Other

researchers attempted to improve the quality of confidence judgments using various techniques, mostly focus-

ing on how to elicit and improve the very first judgment a person makes (Arkes, 2001). For example, having

people consider evidence inconsistent with their current belief can reduce overconfidence (Koriat, Lichtenstein,

& Fischhoff, 1980). Relatedly, considering alternative outcomes and explanations can reduce bias in confi-

dence judgments (Hirt & Markman, 1995). Other researchers attempted to improve the quality of confidence

judgments by post-processing them statistically (Baron, Mellers, Tetlock, Stone, & Ungar, 2014; Satopää et

al., 2014).

We took an entirely different approach to improving confidence judgments, capitalizing on the fact that

sometimes people sit between a rock and a hard place, and struggle with conflicting opinions they simultane-

ously contemplate. As a result, people can experience an inner crowd made up of multiple, perhaps sometimes

conflicting judgments about the same problem. Previous work has shown that there may be a wisdom to this

inner crowd in that people can use it to inform and improve their judgments (Herzog & Hertwig, 2009, 2014b;

Vul & Pashler, 2008; for a review see Herzog & Hertwig, 2014a). In this paper, we sought to understand

how this wisdom of the inner crowd might extend to confidence judgments. We considered two strategies

for harnessing the wisdom of the inner crowd: (a) Follow the highest confidence judgment (adapted from

the maximum-confidence-slating technique; Koriat, 2012b), which we call maximizing ; and (b) average one’s

repeated confidence judgments (Ariely et al., 2000), which we call averaging.

In the following, we introduce the notion of the wisdom of the crowd and how it can be applied within one’s
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own mind. We then discuss maximizing and averaging—both strategies representing two hitherto unconnected

lines of research (Ariely et al., 2000; Koriat, 2012a)—and evaluate their potential strengths and weaknesses

using a simulation and an analytical approach. We then report analyses of these strategies and their potential to

boost the accuracy of confidence judgments across three empirical datasets, with two stemming from published

studies and one from a new study.

The Wisdom of the (Inner) Crowd

The wisdom-of-crowds effect (Larrick, Mannes, & Soll, 2012; Surowiecki, 2004) describes the phenomenon that

aggregating independent judgments of multiple individuals with diverse knowledge sources can lead to a more

accurate judgment than that of the typical—or even best—individual by canceling out opposing errors (Larrick

& Soll, 2006). Similarly, people can store diverse, perhaps even conflicting pieces of information regarding the

same problem but may often rely only on a subsample of that information to arrive at a judgment at any

point in time. Therefore, if they probe their knowledge again, sampling anew, they can arrive at a slightly

or sometimes even drastically different judgment (Hourihan & Benjamin, 2010; Koriat, 2012a; Lewandowsky,

Griffiths, & Kalish, 2009; Steyvers, Griffiths, & Dennis, 2006; Vul & Pashler, 2008). This suggests that

averaging an individual’s repeated quantitative estimates may result in the cancellation of both systematic

biases in the sampled knowledge and unsystematic error, leading to improved estimates. Indeed, averaging an

individual’s repeated quantitative estimates improves accuracy (for a review see Herzog & Hertwig, 2014a),

but the size of this accuracy gain depends on how correlated an individual’s repeated judgments are. The

accuracy can be further enhanced by increasing the time between two repeated estimates (Van Dolder &

van den Assem, 2018; Vul & Pashler, 2008; but see Steegen, Dewitte, Tuerlinckx, & Vanpaemel, 2014), as well

as actively encouraging an individual to approach the same question from a different angle to reduce error

redundancy (Herzog & Hertwig, 2009, 2014b).

So far research on the wisdom of this inner crowd phenomenon—judgment aggregation within one person

relative to aggregation across people—has primarily focused on improving the estimates pertaining to objective

quantities, but not on how aggregation changes a person’s uncertainty or confidence. Going beyond this past

focus, we here present a comprehensive analysis of when and how two different ways of harnessing the potential

wisdom of the inner crowd (Herzog & Hertwig, 2014a)—maximizing or averaging individual’s multiple and

possibly conflicting confidence judgments—improve a person’s final confidence in her decision.

Maximizing builds on the result that typically the higher a person’s confidence in a decision, the more likely

that decision is accurate (see, e.g., Baranski & Petrusic, 1998; Dougherty, 2001; Garrett, 1922; D. M. Johnson,

1939; Kurvers et al., 2016; Nelson & Narens, 1990; Pleskac & Busemeyer, 2010; Vickers, 1979; Yaniv, Yates, &

Smith, 1991; Yu, Pleskac, & Zeigenfuse, 2015). As a result, confidence can serve as a cue to the accuracy of a

decision or forecast. From this perspective, when faced with the choice between two self-generated confidence

judgments one could maximize and select the higher confidence judgment and its decision. Alternatively, how-

ever, one could start with the argument that two confidence judgments reflect different, possibly nonredundant
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pieces of information and therefore averaging an individual’s two confidence judgments is likely to result in the

most accurate confidence judgment (Wallsten, Budescu, Erev, & Diederich, 1997; Wallsten & Diederich, 2001).

Still another rationale is that the first judgment represents a person’s best effort and additional judgments

at best represent noisy, degraded versions of it (Vul & Pashler, 2008) and at worst add systematic error. In

our analyses, we used a person’s first confidence judgment as a benchmark and compared the performance

of averaging and maximizing to a “one-and-done” policy. In the following, we review how maximizing and

averaging have been investigated in previous research and introduce two crucial factors that moderate the

success of both strategies.

Past research has considered a strategy similar to maximizing. Koriat (2012b) and Bang et al. (2014)

investigated the effect of choosing the decision with the highest confidence (i.e., maximum confidence slating;

MCS)—across and within individuals—on the accuracy of decisions, but not on the accuracy of confidence

judgments. MCS did improve decision accuracy, however, only for what might be called “kind” items (Hertwig,

2012; Koriat, 2012b), that is, items for which the majority agreed on the correct answer. In contrast, for

“wicked” items where the majority agreed on the wrong answer, the use of MCS impaired decision accuracy

because the most confident decision was more likely to be wrong than the less confident decision. To illustrate,

a wicked item could be “Which city is the capital of Australia: (a) Canberra or (b) Sydney?”, where the

majority of, for example, European citizens would answer “Sydney” because it is the more popular city. Koriat

(1976, 2008, 2012a) explained this finding with the conjecture that an individual’s confidence is based on an

assessment of how clearly a set of sampled cues agrees with the selected response. Assuming some convergence

among the population of respondents in terms of the cues in their knowledge base, this implies that there

will be a relationship between an individual’s confidence in her or his decision and how large the majority of

people is who select that particular answer, a relationship that Koriat (2008) referred to as the consensuality

principle.

Yet if not only the decision but also confidence is evaluated, MCS specifies which decision but not which

of two possible states of confidences is more appropriate. One natural extension of the MCS strategy to

confidence judgments is to assume that in light of multiple confidence judgments a person generated, the

highest confidence judgment is the most accurate presumably because it based on the most coherent evidence.

This is what we here refer to as maximizing. However, if confidence tracks consensuality and not accuracy, as

suggested by Koriat (2012a), the effects of maximizing on the quality of confidence will be similar to the effects

MCS on the accuracy of decisions. That is, it will improve the quality for kind items but impair the quality

for wicked items. If this is the case, then maximizing will yield progressively worse results as the wickedness

of the items increases.

Past research has investigated the effect of averaging confidence judgments across and within individuals

(Ariely et al., 2000). Specifically, Ariely et al. (2000) investigated the effects of averaging on different aspects

of accuracy, such as how well confidence judgments discriminate between correct and wrong decisions (i.e.,

resolution) and how well subjective confidence judgments correspond to objective probabilities (i.e., calibra-

tion). In general, averaging confidence judgments across or within individuals improves the overall quality
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of confidence judgments. However, the benefits of averaging and its effects on different aspects of accuracy

depend on the redundancy in the knowledge sources underlying confidence judgments (Erev, Wallsten, &

Budescu, 1994; Wallsten et al., 1997). When the knowledge sources underlying the aggregated judgments are

distinct, averaging improves the ability of confidence judgments to discriminate between correct and wrong

decisions (i.e., resolution) but compromises the correspondence between subjective and objective probabilities

(i.e., calibration), whereas under shared knowledge sources, averaging solely improves calibration by canceling

out random error (Ariely et al., 2000; Wallsten & Diederich, 2001).

How do averaging and maximizing confidence judgments perform in a competition against each other?

Relatedly, which strategy promises better results assuming that individuals lack insight into whether they

face a kind or a wicked item? We investigated these questions primarily in the context of judgmental tasks

(Laughlin, 1980; Laughlin & Ellis, 1986) where (simulated or actual) participants were asked to rate their

confidence either in their choice or in a given event (e.g., “Sofia is the capital of: (a) Romania or (b) Bulgaria?”).

Regardless of which confidence rating they gave, in all tasks our participants responded to each question twice

and thus provided confidence judgments twice. Judgmental tasks differ from intellective tasks in that the

latter are tasks in which the correctness of the solution can be demonstrated at the time of deliberation (e.g.,

mathematical tasks), whereas in judgmental tasks this correctness cannot be demonstrated online (Laughlin,

1980; Laughlin & Ellis, 1986). Forecasting a future event is the quintessential judgmental task because the

outcome is not known at the time of judgment.

To understand the important influence of both the kindness of the environment and the redundancy in

knowledge sources, we began our investigation by conducting a simulation study based on a signal detection

model of confidence (Ferrell & McGoey, 1980; Gu & Wallsten, 2001) and an analytical model. To the best

of our knowledge, in the context of the wisdom of the inner crowd, we here present the first systematic

study of the boundary conditions for the success of averaging and maximizing and delineate under which

conditions one strategy would have an edge over the other. Subsequently, we examine whether the analytical

and simulation insights hold up in actual, empirical confidence judgments. To this end, we analyzed data

from three empirical studies (two reanalyses of previously published studies and one new study), taking into

account the environmental structure and correlation of confidence judgments as a proxy for the redundancy

of knowledge sources underlying both judgments.

A Simulation Study of Averaging and Maximizing Confidence Judgments

We conducted a simulation study to gain insights into how the statistical structure of the knowledge envi-

ronment affects the accuracy of individual confidence judgments and that of averaging and maximizing two

confidence judgments. To this end, we manipulated the probability p(C) [.1, .2, . . . , .9] of correctly choosing

between two options and created for each value of p(C) a corresponding environment consisting of many de-

cisions based on that value of p(C). Using these environments, we generated two confidence judgments per

item, while systematically varying the redundancy between the knowledge sources underlying the repeated
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confidence judgments from the same individual (expressed as a correlation r [0, .25, .5, .75]). By orthogonally

varying the values of p(C) and r, we thus created 36 different environments in total. As a result, the simulation

analysis illustrates the joint effects of the kindness of the environment and the dependency in knowledge sources

on the accuracy of averaging and maximizing confidence judgments. All scripts to reproduce the simulation

can be found at: https://osf.io/b3f6d/?view_only=22b543c3ab3f4943af67b5c4842127d5

Methods

To systematically manipulate the kindness across environments, we constructed different environments, where

within each of them all items had an identical probability p(C) of being answered correctly: .1, .2, . . . , or

.9. 1 We adopted the framework of signal detection theory introduced by Ferrell and McGoey (1980, their

2AFC(HR) model) and further developed by Gu and Wallsten (2001) to simulate confidence judgments based

on an item’s value of p(C). This signal detection theory model quantifies the ability of confidence judgments to

discriminate between correct (signal plus noise) and incorrect decisions (noise), where the mean of the signal

distribution is typically higher than that of the noise distribution. The sensitivity index, or d
0, is a measure

of the separation of those means, where a higher d
0 indicates better discrimination ability.

For each item in each environment, we generated two confidence judgments, corresponding to the first and

second confidence judgment of a simulated individual. To this end, we extended the signal detection theory

framework of confidence (Ferrell & McGoey, 1980; Gu & Wallsten, 2001) by replacing the two respective

univariate normal distributions for signal and noise trials with two bivariate normal distributions. This

allowed us to model the redundancy of two confidence judgments. To create subjective intensities for first

and second confidence judgments, we sampled one observation from either the signal or the noise distribution.

Whether the observation was drawn from the signal or the noise distribution was determined by drawing either

1 or 0 from a Bernoulli distribution where the probability of success equaled the p(C) value of the current

item. The observation’s value along the first dimension (x1) corresponded to the subjective intensity of the first

judgment and its value along the second dimension (x2) corresponded to the subjective intensity of the second

judgment. The signal distribution was set to have a bivariate mean of µsi gnal

1,2 ⇤ d
0
2 and the noise distribution

of µnoise

1,2 ⇤ � d
0
2 ; the standard deviations of both distributions along both dimensions (x1 and x2) were all set

to � ⇤ 1. To determine d
0 for an item, we transformed the p(C) value into a d

0 value using: d
0 ⇤

p
2�(p(C)),

where � is the inverse of the standard normal cumulative distribution function.

To simulate different levels of dependency between the knowledge sources used for first and second judg-

ments, we varied the correlation r in the covariance matrix underlying both bivariate distributions using the

values 0, .25, .5, and .75 (i.e., we assumed that the dependency within the signal and the noise distribution is

the same).
1We also created heterogeneous environments, where the probability p(C) of being answered correctly differed across items

(modeled as beta distributions). The qualitative conclusions from these additional simulations were fully in line with those of the
simulations using homogeneous environments (see the Appendix A3, subsection “Heterogeneous Environments”).

https://osf.io/b3f6d/?view_only=22b543c3ab3f4943af67b5c4842127d5
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Finally, to translate the subjective, latent intensities into overt confidence judgments, we followed Ferrell

and McGoey (1980) and Gu and Wallsten (2001) and chose a vector of 11 response categories of subjective

probability judgments [0, .1, .2, . . . , 1.0] and mapped the subjective intensities onto those discrete response

categories. An optimization algorithm determined the location of the category boundaries, ensuring that the

confidence judgments were roughly calibrated for medium difficulty items (i.e., d
0 ⇤ 1.4). 2 The resulting

confidence judgments represented the belief in being correct on a full-range probability scale. Confidence

judgments that fell below 50% thus imply that the belief in being correct was higher for the opposite decision.

Results

Overall accuracy. To assess the overall accuracy of confidence judgments, we calculated the mean proba-

bility, or Brier, score (Brier, 1950):

PS ⇤
1

N

N’
i⇤1

(oi � fi)2 ,

which measures the mean squared deviation between the confidence judgments ( fi) that event oi will happen

and the actual event oi (i.e., oi ⇤ 1 if oi happened vs. oi ⇤ 0 if oi did not happen) for N items. Zero is the

best possible score and 1 the worst possible. Randomly choosing between two options and then assigning .5

confidence to each decision would yield a score of .25.

Because the first and second confidence judgments perform equally well by construction, we compared the

performance of averaged and maximized confidence judgments only against that of first confidence judgments.

Figure 1 shows the Brier score as a function of the probability of being correct (p(C)) and the redundancy

in the knowledge sources (r). As expected by the design of the simulation, as p(C) increased, Brier scores

decreased for first, averaged, and maximized confidence judgments, reflecting the fact that as items became

more kind, confidence judgments became more accurate.

Comparing averaged to first judgments, averaging improved the Brier score in all environments—even in

wicked environments (i.e., p(C) < .5). For example, in r ⇤ 0 and p(C) ⇤ 0.2 (Figure 1, left-most panel),

averaging improved the Brier score by .028 points. The greatest gains from averaging were concentrated in

the central range of p(C) [.4, .7], an improvement of .03 points (for r ⇤ 0). When first and second confidence

judgments became more similar (i.e., as redundancy, r, increased), these differences decreased and the Brier

score of averaged judgments converged to that of first judgments—illustrating that diversity in judgments

is a key requisite for the wisdom-of-crowds effect. In stark contrast to averaging, the effects of maximizing
2Somewhat counterintuitively, perfect calibration is only possible for medium difficulty levels (i.e., d

0 ⇡ 1.4), but is not even
possible in principle for difficult and very easy decisions (Ferrell & McGoey, 1980; Gu & Wallsten, 2001). We therefore optimized
the category boundaries for d

0 ⇤ +1.4 once and then used this one fixed set of boundaries throughout the simulation. This
assumption is consistent with the finding that people’s confidence judgments are best calibrated for medium difficulty items
and become overconfident as difficulty increases and underconfident as difficulty decreases (Suantak, Bolger, & Ferrell, 1996).
Importantly, when people perform worse than chance (i.e., p(C) < .5), then d

0 < 0, indicating that the individual has a worse-
than-chance discrimination ability. However, the individual’s confidence in a decision is still based only on the subjective intensity
because one cannot know whether one is correct or wrong in any particular trial. Because we assumed a fixed set of category
boundaries, calibrated for medium difficulty items, this implies that for d

0 < 0, higher confidence implies a lower chance of being
correct. This implication of the simulation setup is validated in the empirical results in this paper, where we show that the
discrimination ability of people, as revealed by their confidence judgments, is indeed negative for wicked items where most people
choose the wrong answer.
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Figure 1. Overall accuracy of simulated confidence judgments as measured by the Brier score (y axis), where lower
values indicate better quality. Panels (from left to right) correspond to increasingly more redundant knowledge sources
underlying the two confidence judgments (correlation values r). The x axis shows the probability of being correct,
where values of p(C) > .5 represent increasingly kinder items and values of p(C) < .5 increasingly more wicked items.
Averaging outperformed first judgments, irrespective of the environment (more kind or more wicked items). Maximizing,
in contrast, outperformed first confidence judgments only in kind environments (i.e. p(C) > 0.5), averaged judgments
only for clearly kind environments (i.e. p(C) > 0.6). The effects of both aggregation strategies decreased as redundancy
in knowledge sources increased.

confidence judgments strongly depended on the wickedness of the environment. Maximizing improved the

Brier score in kind environments (i.e., p(C) > .5), for example, by .065 points for r ⇤ 0 and p(C) ⇤ .9, but

impaired the Brier score in wicked environments (i.e., p(C) < .5), for example, by .09 points for r ⇤ 0 and

p(C) ⇤ .2. Furthermore, maximizing outperformed averaging only once p(C) > 0.6 but not yet for p(C) > 0.5.

As redundancy (r) increased, the sizes of these beneficial and harmful effects both decreased.

In real world environments, items typically differ in their probability p(C) of being answered correctly.

We therefore investigated the effects of averaging and maximizing in heterogeneous environments (for detailed

results see Appendix , section A3). To summarize, the effects of averaging and maximizing depend simul-

taneously on the mean (µ) and variance of p(C) of the environment. In general, as µ increased, the Brier

score of all strategies improved. The effect of variance on the performance of confidence judgments depends

on µ: In wicked environments (µ < .5) increasing variance harmed the Brier score of all strategies, whereas in

kind environments (µ > .5) increasing variance improved the Brier score of first and averaged judgments, but

continued to harm the Brier score of maximized judgments.

Some of these key results can also be ascertained analytically using a very general model that postulates

for a particular item (1) the probability P that the high-confidence choice is correct, (2) the confidence CH

in this high-confidence choice, (3) the confidence CL in the other, low -confidence choice, and (4) whether the

high- and low-confidence choices are the same. Wicked items are characterized by P < .5 and thus imply

that the high-confidence choice is more likely to be wrong than correct. Kind items, on the other hand, are
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characterized by P > .5 and imply that the high-confidence choice is more likely to be correct than wrong. The

main analytical insights are as follows (see Appendix A1 for details). First, for a wicked item (i.e., P < .5),

averaging always has a better expected Brier score than maximizing, irrespective of whether or not the low-

confidence choice is also wrong. Second, for a kind item (i.e., P > .5), the conditions are more complicated

and depend on whether or not the low-confidence choice is also correct. When the high-confidence choice is

very likely to be correct (i.e., P � 7
8 , that is, a very easy, kind item) but the low-confidence choice is wrong,

the expected Brier score of maximizing is always better than that of averaging. In contrast, when both the

low- and high-confidence choices are correct, there are no sufficient conditions that depend only on P for which

maximizing always has a better expected Brier score than averaging. There are a series of conditions that

specify for particular relationships between P, CH , and CL whether averaging or maximizing will have a better

expected Brier score.

Apart from overall accuracy (in terms of, for example, the Brier score), confidence judgments can be

evaluated along several dimensions of accuracy, including calibration (i.e., the extent to which subjective and

objective probabilities match) and resolution (i.e., the extent to which confidence discriminates between correct

and wrong decisions, irrespective of calibration). We assessed the resolution by calculating the DI
0 score:

DI
0
⇤

slopep
scatter

,

which is the difference between mean confidence of correct vs. incorrect decisions (i.e., slope), standardized

by the pooled SD of confidence judgments (i.e., scatter). 3 To investigate how calibration and resolution

contribute to overall accuracy (in terms of the Brier score) and how they are influenced by the environment and

the dependency among knowledge sources, we decomposed the Brier score using the covariance decomposition

(Yates, 1990).

The results further validate the simulation setup (see Appendix A3). Here we highlight the most important

set of findings. As expected by the design of the simulation, for kind items (i.e., p(C) > .5, Figure 2), confidence

judgments discriminated between correct and wrong decisions (i.e., positive resolution). For wicked items (i.e.,

p(C) < .5), however, confidence judgments wrongly discriminated between correct and wrong decisions; that is,

as items became more wicked, confidence increased for the wrong decision and decreased for correct decisions

(i.e., negative resolution). This pattern of results is consistent with Koriat’s consensuality principle (Koriat,

2012a): Confidence correlates with the size of the majority of people who favor one of the two possible answers

(indexed by p(C) in our simulation) and not with accuracy per se. By the very nature of maximizing, this

implies that maximizing will improve resolution for kind items but worsen it for wicked items—a result we

obtained. Averaging had an effect on resolution similar to that of maximizing, but it performed better on two

other measures of the decomposition (bias and scatter) and therefore outperformed maximizing for wicked

items.

3With slope ⇤ con f
correct

� con f
wron g

and scatter ⇤
ncorrect var(con fcorrect )+nwron g var(con fwron g )

ncorrect+nwron g
.
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Figure 2. Resolution of simulated confidence judgments as measured by DI
0 (y axis). DI

0 quantifies the ability of
confidence judgments to discriminate between correct and wrong decisions (i.e., difference between mean confidence of
correct vs. incorrect decisions, standardized by the pooled SD of confidence judgments). Values above 0 indicate better
discrimination; values below 0 indicate increasingly wrong discrimination, that is, confidence in the wrong decision is
higher than in the correct decision. Panels (from left to right) correspond to increasingly more redundant knowledge
sources underlying the two confidence judgments (correlation values r). The x axis shows the probability of being
correct, where values of p(C) > .5 represent increasingly kinder items and values of p(C) < .5 represent increasingly
more wicked items. Averaging and maximizing performed similarly: They outperformed first judgments for kind items
but fell behind for wicked items.

Summary

Our simulation analysis, based on a signal detection framework of confidence (Ferrell & McGoey, 1980; Gu

& Wallsten, 2001), investigated how the kindness versus wickedness of the environment (i.e., the degree to

which people tend to choose the correct or wrong answer) and redundancy in knowledge sources used affect the

performance of averaging and maximizing. The simulation study produced four major insights. First, averaging

judgments resulted in improved overall accuracy (i.e., reduced Brier score) irrespective of the wickedness of

the items. Second, for wicked items, maximizing judgments resulted in poorer accuracy than sticking to the

first judgment but in better accuracy for kind items. These findings are further supported by our analytical

analysis, showing that for wicked items, averaging necessarily always has a better expected Brier score than

maximizing. Third, maximizing outperformed averaging only for items where p(C) > 0.6, but not yet for

p(C) > 0.5. That is, a kind item is a necessary but not a sufficient condition for maximizing to outperform

averaging. Finally, confidence correlated with how strongly the majority agreed on an answer, not with the

correctness of the decision per se, and this partly explains why maximizing wicked items results in poorer

overall accuracy (i.e., increased Brier score) compared to averaging wicked items.

What are the prescriptive recommendations that can be made on the basis of these results? Even when

informed about the presence of wicked items, people have been found to lack the necessary insights to know

whether an item is likely to be kind or wicked (Koriat, 2015, 2017). This means that relying on maximizing is
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a bit of a gamble; yet, the risk in the gamble is attenuated by the fact that when p(C) > .6 maximizing does

as well or better than averaging. In contrast, averaging one’s first and second confidence judgments should

always improve the overall accuracy of confidence judgments, even for wicked items, and therefore averaging

can be used to one’s benefit even though people cannot tell whether an item is kind or wicked.

However, as the simulation showed, all these effects were smaller the higher the redundancy among the

knowledge sources underlying the two confidence judgments. Because actual confidence judgments within peo-

ple are quite redundant (Ariely et al., 2000)—as we will show, the median correlation between two confidence

judgments ranged between 0.5 and .0.85 across our empirical datasets—it could be that people’s confidence

judgments are so highly correlated that the differences between the strategies were not meaningful and thus

largely irrelevant. Furthermore, it could also be that some assumptions of the simulation do not hold well

enough for actual confidence judgments and therefore there remains the risk that the simulation analysis’

insights might simply prove insufficient, and so, by extension, any recommendations based on them. When

Ferrell and McGoey (1980) tested their signal detection model of confidence against empirical data, they noted

that the empirical analyses corroborated many of the important qualitative patterns predicted by their model,

but they also found several systematic differences. For example, their model was less able to model decisions

about verbal assertions as compared to perceptual stimuli.

For all the above reasons, we investigated, using three empirical studies, how well the insights from our

theoretical analysis generalize to individuals’ actual confidence judgments as well as their practical relevance.

On the basis of the results from our analysis, we investigate the following expected regularity: Always averaging

an individual’s two confidence judgments results in higher overall accuracy than either always maximizing

confidence or always choosing the first confidence judgment. In the following, we reanalyze two published

experiments and report on a new experiment we conducted.

The Performance of Averaging Versus Maximizing Confidence Judgments: Three

Empirical Studies

To the best of our knowledge, there has hitherto been only one study that has investigated averaging confidence

judgments within people (Ariely et al., 2000). That study reported only a small benefit of averaging on

the quality of confidence judgments relative to averaging between people and attributed that to the higher

redundancy in confidence judgments within relative to between participants. Similarly, there has so far been

only one study that has investigated the effects of selecting the decision with the higher confidence judgment

within a person (maximum-confidence-slating (MCS) technique; Koriat, 2012b). Koriat’s MCS technique,

however, is mute about the confidence one should place in the maximum-confidence decision. Koriat evaluated

the accuracy of the maximum-confidence decisions (correct vs. wrong) but not that of the maximum-confidence

judgments themselves (e.g., Brier score). Moreover, his analysis reported the accuracy of maximum-confidence

decisions separately for kind and wicked items. For kind items, that is, where the majority of people chose the

correct option, Koriat found a slightly higher percentage of correct answers (82%) for maximizing decisions
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Case 1: Different decisions and different confidence judgments

Brier Score

1st judgment 90% Bulgaria (equivalent to 10% Romania) (.9Bul garia � 1)2 ⇤ .01

2nd judgment 70% Romania (equivalent to 30% Bulgaria) .7Romania � 0)2 ⇤ .49

Averaging

90Bul garia+30Bul garia

2 ⇤ 60Bul garia (.6Bul garia � 1)2 ⇤ .16
Choice of reference class is
irrelevant for the Brier scoreor

10Romania+70Romania

2 ⇤ 40Romania (.4Romania � 0)2 ⇤ .16

Maximizing 90Bul garia (.9Bul garia � 1)2 ⇤ .01

Case 2: Different decisions same confidence judgments

Brier Score

1st judgment 70% Bulgaria (equivalent to 30% Romania) (.7Bul garia � 1)2 ⇤ .09

2nd judgment 70% Romania (equivalent to 30% Bulgaria) .7Romania � 0)2 ⇤ .49

Averaging

70Bul garia+30Bul garia

2 ⇤ 50Bul garia (.5Bul garia � 1)2 ⇤ .25
Choice of reference class is
irrelevant for the Brier scoreor

30Romania+70Romania

2 ⇤ 50Romania (.5Romania � 0)2 ⇤ .25

Maximizing
70Bul garia (.7Bul garia � 1)2 ⇤ .09

Choice of reference class is
relevant for the Brier scoreor

70Romania (.7Romania � 0)2 ⇤ .49

Table 1. Applying averaging and maximizing when decisions or confidence judgments differ. Different decisions, but
equal confidence judgments occurred in Study 1 (Ariely et al., 2000) in 1.3% of the trials, in Study 2 (Koriat, 2012b)
in 1.4% of the trials and in Study 3 (New Experiment) in 0% of the trials.

compared to the typical performance of first and second judgments (81%). For wicked items, that is, where

the majority of people choose the wrong option, the percentage of correct answers dropped to 24% when

maximizing, whereas the typical performance of first and second judgments was now slightly higher at 25%.

In contrast to Koriat (2012b), we investigated whether maximizing can increase the accuracy of confidence

judgments and how useful this strategy is without knowing the kindness versus wickedness of an item. Assum-

ing that individuals do not know beforehand what type of item they face (Koriat, 2015, 2017), we investigated

whether it is possible to improve the quality of confidence judgments by always applying either averaging or

maximizing. To this end, we analyzed averaging and maximizing in two datasets, where participants indicated

their confidence about which of two U.S. cities has a larger population (Ariely et al., 2000) or about which of

two geometric figures was longer or larger, respectively (Koriat, 2012b). Table 1 illustrates the implementation

of averaging and maximizing, given that people may, when asked again, not only indicate a different level of

confidence, but also choose the other answer.

Furthermore, we conducted a study to test whether dialectical bootstrapping (Herzog & Hertwig, 2009,

2013, 2014a), a framework aiming to reduce redundancy in an individual’s estimates by using suitable elicitation
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techniques, could reduce redundancy in confidence judgments and as a result enhance the effects of averaging.

Herzog and Hertwig (2009) first tested the dialectical bootstrapping approach in a quantitative estimation task

using the consider-the-opposite technique (adapted from Lord, Lepper, & Preston, 1984). More precisely, in

their experiment, participants were told to assume that their first estimate was off the mark, to think about rea-

sons why that could be, and to produce a second, “dialectical” estimate. They found that averaging dialectical

estimates led to larger gains in accuracy than simply averaging repeated estimates. In our new experiment, we

tested whether applying the dialectical bootstrapping approach (using the consider-the-opposite technique) can

also reduce redundancy in confidence judgments about general knowledge questions (e.g., “Who was the tutor

of Alexander the Great first? (a) Aristotle or (b) Plato”), and whether, as a consequence, averaging dialectical

judgments can improve the overall accuracy further, compared to averaging merely repeated judgments. To

the best of our knowledge, this is the first test of dialectical bootstrapping in the service of boosting the wisdom

of the inner crowd in the context of confidence judgments. We made no predictions about how the consider-

the-opposite technique would influence the accuracy of maximizing. All data and scripts to reproduce the

empirical analyses can be found at: https://osf.io/b3f6d/?view_only=22b543c3ab3f4943af67b5c4842127d5

Methods

Study 1 (Ariely et al., 2000). The first dataset comes from a study by Ariely et al. (2000, referred to

as Study 3 (New Experiment) in their article) involving representative questions about the population sizes

of the 50 largest cities in the United States in 1992. Sixty-four students of the University of North Carolina,

Chapel Hill participated and were paid a minimum of $4 plus a bonus that depended on their performance.

The questions about the relative sizes of two cities were presented as either single true-or-false statements

(TF) or complementary pairs of statements (PC) written above each other, where one was the opposite of

the other. Participants indicated their belief in the statements with confidence judgments ranging from 0% to

100%, without providing a decision (true vs. not true), and later, in the same session, they assessed the same

statements again. For a more detailed description refer to Ariely et al. (2000). We made no predictions about

whether or how the results would differ depending on the response format (TF vs. PC).

Study 2 (Koriat, 2012b). The second dataset comes from Koriat (2012b, referred to as Study 5 in his

article). Fifty University of Haifa psychology undergraduates (43 females, 7 males) were asked to compare

the areas of geometric shapes and the lengths of irregular lines. The shapes task deliberately included more

wicked items (40%) than the lines task (20%). Participants first chose the larger object and then assigned their

confidence in their decision on a half-range probability scale (50–100%). The study consisted of two sessions

with a 1-week interval between them. For a more detailed description see Koriat (2012b). The higher number

of wicked items in the shapes task should put the maximizing strategy at a higher risk to do more harm than

good compared to the lines task, which featured fewer wicked items. Beyond that we made no predictions

about whether the results differ depending on the shapes or line task.

https://osf.io/b3f6d/?view_only=22b543c3ab3f4943af67b5c4842127d5
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Study 3 (New Experiment).

Participants. The data collection occurred at a previous institution (University of Basel, Switzerland). As

this experiment was a non-clinical study and did not involve any patients, it did not classify as requiring in-

depth evaluation and approval by a cantonal review board according to Swiss federal law. A total of 309 (160

female, 149 male) U.S. participants were recruited via Amazon Mechanical Turk for an approximately 45-min

survey and were reimbursed with a flat fee of $2.4 Forty-eight participants did not pass the instructional

manipulation check (i.e., a question testing their attention) and were thus excluded from further analyses.

The experiment deliberately did not force participants to only enter confidence judgments between 50% and

100%, to thus be able to monitor their attention to the task. When participants gave an answer outside of

the permissible range, we treated this trial as missing. Five participants were excluded because they gave

more than three answers outside this range. Furthermore, 25, 5 and 1 participants gave 1, 2 and 3 confidence

judgments, respectively, outside the range.

Materials and procedure. The material was taken from Gigerenzer et al. (1991) and included 50 general

knowledge questions about history, nature, geography, and literature (e.g., “Sofia is the capital of: (a) Romania

or (b) Bulgaria?). This question set deliberately included wicked items. In a pretest we created two comparable

subsets of 25 items each, which were matched by proportion correct, bias, and Brier scores. We used one of

these subsets in the main study here (see Appendix A2, Table A1). Participants provided their decision first

and then assigned their confidence on a half-range probability scale (50%–100%). The experiment was split into

two sessions. In the first session, participants answered the 25 questions. In the second session, participants

were allocated either to the dialectical condition or to the reliability (control) condition and responded to the

same questions again. After answering all 25 questions for a second time, participants were directed to the

online form of the new Berlin numeracy test (Cokely, Galesic, Schulz, Ghazal, & Garcia-Retamero, 2012). We

administered this measure for exploratory purposes and have not yet analyzed its data.

In the dialectical condition (n ⇤ 119), participants were asked to generate dialectical decisions and corre-

sponding confidence judgments while we showed them their first decision and confidence judgment (Herzog &

Hertwig, 2009, 2014a). The consider-the-opposite instructions (adapted from Lord et al., 1984) read:

First, assume that your first answer and confidence judgment were off the mark. Second, think

about a few reasons why that could be. Which assumptions and considerations could have been

wrong? Third, what do these new considerations imply? Does your answer make sense? Was the

first confidence judgment rather too high or too low? Fourth, based on this new perspective, give

a new answer and indicate your confidence in it. Please feel free to totally change your mind.
4On the basis of the medium effect of the dialectical instruction on the accuracy of quantitative estimates observed in Herzog

and Hertwig (2009, p. 234; Cohen’s d ⇤ 0.53), we considered a small to medium effect of the dialectical instruction on the accuracy
of confidence judgments as plausible a priori. We aimed for a sizeable sample size of n ⇤ 150 per condition and recruited a few
more participants in the anticipation that we would need to exclude a few who did not follow instructions.
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In the reliability condition (n ⇤ 137), participants were not shown their first responses and were instructed to

answer the questions as if they were seeing them for the first time.

Statistical analyses. After calculating accuracy measures for first, second, averaged, and maximized confi-

dence judgments, we conducted a Bayesian parameter estimation analysis (Kruschke, 2013) of the differences

between accuracy measures of first minus averaged and first minus maximized judgments. For the majority

of measures, first and second judgments did not differ systematically throughout the three studies; the sole

exception was that in the TF condition in Study 1 (Ariely et al., 2000) second judgments had a better Brier

score. We therefore report differences between first and averaged and first and maximized confidence judg-

ments. Comparing second to averaged and maximized confidence judgments qualitatively yielded largely the

same results. We conducted our analyses in the statistical computing software R and used the default priors

from the BEST package (Kruschke & Meredith, 2015). The resulting posterior distributions of the parameters

illustrate the credibility of the values given the data. We summarize the posterior distributions by reporting

medians as point estimates and 95% highest density intervals (HDIs) as uncertainty intervals. A 95% HDI

expresses the uncertainty around the estimate and states in which interval the true value is likely to fall with

a 95% probability (according to the model). When displaying effect sizes in figures, we highlight a “region of

practical equivalence,” for which Cohen’s d’s effect size is conventionally considered to be small (from �0.1 to

+0.1).

Results

Environments. Figure 3 shows the distribution of proportion correct across items in Studies 1–3. Study

1 (Ariely et al., 2000) and Study 2 (Koriat, 2012b) (Figure 3, panels A and B) contained more wicked items

than Study 3 (New Experiment) (Figure 3, panel C), thereby putting the maximizing strategy at risk of doing

more harm than good.

Confidence—kindness/wickedness relationship. Figure 4 depicts the relationship between the kind-

ness/wickedness of an item and the ability of participants’ first confidence judgments to discriminate between

correct and wrong answers (as measured by DI
0). Consistent with the simulation study, the more strongly the

majority agreed on the correct answer, the more clearly confidence distinguished between correct and wrong

answers. Notably, the more strongly the majority agreed on the wrong answer, the more clearly confidence

distinguished, albeit in a reversed fashion, between correct and wrong answers (i.e., as proportion correct per

item fell below .5, discrimination became negative, that is, DI
0 < 0).

Redundancy in knowledge sources: Correlation between two confidence judgments within indi-

viduals. Figure 5 summarizes the distribution of Spearman correlations between first and second confidence

judgments within participants across Studies 1–3 (median correlations ranged between .5 and .85). In Study

3 (New Experiment), the median correlation in the dialectical condition was lower (rdialectical ⇤ .77) than in



28

0

.1

.2

.3

.4

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
Proportion correct (first judgments)

Pr
op

or
tio

n 
of

 it
em

s PC (22%)
TF (32%)

Study 1 (Ariely et al., 2000)

A

0

.1

.2

.3

.4

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
Proportion correct (first judgments)

Pr
op

or
tio

n 
of

 it
em

s lines (22%)
shapes (30%)

Study 2 (Koriat, 2012b)

B

0

.1

.2

.3

.4

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
Proportion correct (first judgments)

Pr
op

or
tio

n 
of

 it
em

s dialectical (12%)
reliability (12%)

Study 3

C

Figure 3. Histograms of proportion correct of items (based on first judgments), separately for each study. Dashed
and dotted lines show the distributions per condition (A, C) or task (B). Circles and triangles on the bottom of each
panel indicate median proportion correct across items per condition (A, C) or task (B). Legends report percentages of
clearly wicked items (i.e., p(C) < .4) per condition (A, C) or task (B). Study 1 (Ariely et al., 2000) and Study 2 (Koriat,
2012b) contained more clearly wicked items than Study 3 (New Experiment). PC = pairwise comparison condition;
TF = true-or-false condition.
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Figure 4. Confidence’s ability to distinguish between correct and wrong first answers per item (DI
0 per item; y axis)

as a function of proportion correct of that item (x axis). Results are shown separately for each study (pooled across
the two tasks in Study 1 (Ariely et al., 2000) and Study 2 (Koriat, 2012b)). Circles, triangles and crosses indicate items
per study, and smoothed lines show for each study a robust local polynomial regression (LOESS) fit. DI

0 quantifies
the ability of confidence judgments to discriminate between correct and wrong decisions (i.e., difference between mean
confidence of correct vs. incorrect decisions, standardized by the pooled SD of confidence judgments). Values above
0 indicate better discrimination; values below 0 indicate increasingly wrong discrimination, that is, confidence in the
wrong decision is higher than in the correct decision. As items become more wicked, confidence increases for wrong
decisions and decreases for correct decisions (i.e., negative resolution).

the reliability condition (rreliabilit y ⇤ .85; Cohen’s dreliabilit y�dialectical ⇤ 0.7, 95% HDI [0.38, 1.03]). This sug-

gests that the consider-the-opposite technique in the dialectical bootstrapping condition successfully reduced

redundancy in participants’ confidence judgments.

Overall accuracy of confidence judgments. To evaluate the effects of averaging and maximizing, we

compared averaged and maximized confidence judgments against first judgments. On the basis of the results

from our simulation analysis, we predicted that consistently averaging participants’ confidence judgments

would result in a higher overall accuracy than consistently maximizing their judgments.

Averaging versus first confidence judgments. Averaging consistently led to improved Brier scores throughout

the three studies (Figure 6 and Table 2), even when median correlations between two confidence judgments

were relatively high (e.g., Study 1: rreliabilit y ⇤ .85), as well as when environments contained a substantial

number of wicked items (e.g., Study 1 and Study 2).

Maximizing versus first confidence judgments. With one exception, maximizing consistently harmed Brier

scores compared to first, initial confidence judgments throughout the three studies (Figure 6 and Table 2).

Only in the lines task in Study 2 was the effect size not reliably different from a zero effect (dlines ⇤ �0.015,
95% HDI [-0.37, 0.37]). Drawing on the insights from the simulation analysis, we suggest that the overall

negative effect of maximizing can be partly explained by the respective number of wicked items in two tasks.

In line with the relatively large number of clearly wicked items (i.e., p(C) < 0.4) in Study 1 (Ariely et al., 2000;

Figure 3, panel A: 22% in the PC and 32% in the TF condition) and Study 2 (Koriat, 2012b; Figure 3, panel
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Figure 5. Histogram of Spearman correlations between first and second confidence judgments separately for study.
Dashed and dotted lines show distributions per condition (A, C) or task (B). Circles and triangles on the bottom of each
panel indicate median correlations per condition or task. Study 1 and Study 3 were run in one session, whereas Study
2 elicited repeated judgments after a 1-week interval, which could possibly explain the lower correlations compared to
Study 1 and Study 3. PC = pairwise comparison condition; TF = true-or-false condition.
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Figure 6. Effects of averaging (Avg) and maximizing (Max) on the overall accuracy of confidence judgments relative
to first judgments. The x axis shows the improvement in Brier scores expressed as Cohen’s d effect sizes; symbols show
the median value and the ranges show the 95% highest density interval of the posterior distribution). Bars to the right
of zero imply improved scores and bars to the left of zero imply harmed scores. The shaded region ranging between
�0.1 and +0.1 highlights the region of practical equivalence, for which Cohen’s d effect size is conventionally considered
to be small (from �0.1 to +0.1). Averaging confidence judgments consistently and reliably outperformed the quality of
first judgments throughout the three studies. Maximizing, in contrast, tended to harm and never improved the quality
compared to first confidence judgments.
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Table 2. Cohen’s d Effect Sizes for Differences in Brier Scores Between First Versus Averaged and First Versus
Maximized Confidence Judgments

Study Condition Cohen’s d 95% HDI

First judgments vs. averaging

Ariely et al. (2000) PC 1.003 [0.511, 1.511]
TF 1.317 [0.743, 1.959]

Koriat (2012b) Shapes 0.728 [0.400, 1.056]
Lines 0.707 [0.332, 1.100]

New study Dialectical 0.490 [0.260, 0.722]
Reliability 0.345 [0.137, 0.548]

First judgments vs. maximizing

Ariely et al. (2000) PC -0.565 [-0.961, -0.173]
TF -0.560 [-0.989, -0.146]

Koriat (2012b) Shapes -0.377 [-0.689, -0.066]
Lines -0.015 [-0.377, 0.367]

New study Dialectical -0.216 [-0.460, 0.010]
Reliability -0.261 [-0.472, -0.062]

Note. PC = pairwise comparison condition; TF = true-or-false condition; Cohen’s d = median value of the posterior
distribution; 95% HDI = 95% highest density interval of the posterior distribution.

B: 30% in the shapes and 22% in the lines task), maximizing’s harmful effect on the Brier score is large (e.g.,

dPC ⇤ �0.56, 95% HDI [-0.96, -0.17]) or medium (dshapes ⇤ �0.38, 95% HDI [-0.68, -0.06]), respectively. In

contrast, Study 3 (New Experiment) contained relatively few clearly wicked items (Figure 3, panel C: 12% in

both, the dialectical and reliability condition) and maximizing’s harmful effect is small (e.g., dreliabilit y ⇤ �0.26,
95% HDI [-0.47, -0.06]).

Averaging dialectical versus reliability judgments. On the basis of the results of the simulation analysis,

we expected that the effects of averaging would be moderated by the size of the correlation between first and

second confidence judgments. In Study 3 (New Experiment), we investigated whether dialectical bootstrapping

(Herzog & Hertwig, 2009, 2014b) successfully reduces the redundancy (i.e., correlation) in confidence judgments

and whether, consequently, averaging first and dialectical judgments can further improve the overall accuracy

compared to averaging first and merely repeated confidence judgments. As already reported above, the median

correlation between participants’ confidence judgments was lower in the dialectical bootstrapping condition

(rdialectical ⇤ .77) than in the reliability condition (rreliabilit y ⇤ .85). Consistent with our prediction, there

is some evidence that averaging dialectical judgments may have enhanced the Brier score more than merely

averaging reliability judgments (d ⇤ 0.28, 95% HDI [-0.02, 0.59]).

Decomposition of overall accuracy. Finally, to understand how averaging and maximizing contribute to

the changes in overall accuracy, we conducted a Brier score decomposition (Yates, 1990, using the covariance

decomposition), which yields estimates of calibration and resolution, as well as estimates for bias (over- vs.
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underconfidence) and scatter (random error). Our analysis showed that gains from averaging were mainly

driven by reduced bias, whereas losses from maximizing primarily resulted from increased bias (see Appendix

A4 for detailed results).

General Discussion

Can the inner crowd be harnessed to boost accuracy of confidence judgments? We undertook the first com-

prehensive analysis of when and how two competing ways of harnessing the wisdom of the inner crowd (Her-

zog & Hertwig, 2014a)—maximizing or averaging individual’s multiple and possibly conflicting confidence

judgments—improves the accuracy of people’s final confidence in their decision. We find that an individual

can enhance the accuracy of her final confidence judgment by averaging her two confidence judgments (Ariely

et al., 2000). In contrast, maximizing, that is, using the highest confidence judgment (Koriat, 2012b, adapted

from the MCS technique) proves risky: It performs better than averaging for clearly kind items, but worse

otherwise. Next, we first review implications from our simulation and empirical analysis for the effects of max-

imizing and averaging. We then discuss the limitations of our simulation analysis and the boundary conditions

for aggregating ever more judgments from the same person. Finally, we conclude by relating our research to the

phenomenon of the wisdom of crowds and the literature on other strategies to improve confidence judgments.

Boundary Conditions for Averaging and Maximizing Confidence Judgments

An individual evaluates the same item on two different occasions, and each time produces a confidence judg-

ment. What should the individual do to improve the accuracy of these confidence judgments? One strategy is

to average them. Another one is to select the highest confidence judgment. We investigated the performance

of both strategies analytically and by simulating different items (i.e., questions) ranging from those for which

most people would make correct decisions (“kind” items) to those for which most people would make wrong

decisions (“wicked” items). Our analytical and simulation results suggest that if an individual averages the

confidence judgments, then their overall accuracy would be improved, even for wicked items. Maximizing, in

contrast, proves risky. It outperforms averaging only for clearly kind items (p(C) > .6). In light of the fact

that people appear to lack the necessary skills to assess the kindness vs. wickedness of a question in advance

(Koriat, 2015, 2017), our analysis suggests that averaging—due to its robustness—is the strategy that the

individual should apply to best exploit her conflicting confidence judgments.

One possible limitation of our analysis is the assumption that first and second confidence judgments do not

differ in their discrimination ability. Since we mostly did not find that first and second confidence judgments

differed in the empirical datasets, this assumption seems realistic. Future research could nevertheless extend

the predictions of the simulation to investigate the influence of differing discrimination abilities and calibration

of first and repeated confidence judgments on the performance of averaging and maximizing.

Since actual repeated confidence judgments from the same person are substantially correlated (Ariely et

al., 2000), we reanalyzed datasets from two previously published studies and conducted one new study to
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investigate whether the results from the simulation analysis generalize to empirical confidence judgments. The

median correlations in our empirical datasets ranged between .5 and .85 (see also Figure 5). Consistent with

the simulation analysis, we found that averaging two confidence judgments from the same person improved

overall accuracy (i.e., Brier score), whereas maximizing among a person’s confidence judgments harmed overall

accuracy, even in environments with relatively few wicked items (i.e., Study 3; see Figure 3).

We considered settings in which a person produced two confidence judgments. At least in theory, it is

conceivable that a person produces even more confidence judgments. Would averaging or maximizing them

further increase accuracy? Averaging more confidence judgments generated by the same person would unlikely

result in notably higher averaging gains, because error redundancy in a person’s judgments places an upper

limit on the effect of averaging (Rauhut & Lorenz, 2011; Van Dolder & van den Assem, 2018). In contrast,

maximizing over an increasingly larger set of confidence judgments from the same person is likely to further

amplify the effects we found for maximizing because making more and more judgments renders it increasingly

more likely that an even higher confidence judgment will be generated.

The Wisdom of Crowds: Averaging and Maximizing Confidence Judgments Across

Individuals

The insights from our analysis apply to judgment aggregation strategies both within and between individuals

because the simulated confidence judgments can be viewed as stemming from the same person or two differ-

ent people. Because judgments from different people are less redundant than the same person’s judgments

(Herzog & Hertwig, 2014a), our analysis predicts stronger effects when judgments are aggregated between

non-interacting people (see the panels in Figure 1 with lower knowledge redundancy). Furthermore, the re-

turns from averaging more people will diminish more slowly (see also Rauhut & Lorenz, 2011; Van Dolder &

van den Assem, 2018) and the effects of maximizing across ever more people should be even more pronounced

compared to combining ever more confidence judgments from the same person (as discussed in the previous

subsection).

Alternative Methods for Improving Accuracy of Confidence Judgments

Averaging and maximizing represent two of the many strategies that have been proposed for improving the

accuracy of confidence judgments. For example, recalibrating individual confidence judgments when aggre-

gating forecasts of several individuals has been shown to improve forecast accuracy by 26% (Turner, Steyvers,

Merkle, Budescu, & Wallsten, 2014). Furthermore, Baron et al. (2014) show that averaged confidence judg-

ments should be extremized because of at least two processes, which render individual confidence judgments

too regressive: (i) random error can only be distributed asymmetrically towards 0.5 the closer one’s internal,

latent confidence is to one of the end points of the probability scale; and (ii) awareness of one’s incomplete

knowledge may lead individuals to preemptively regress their confidence judgments towards 0.5. This latter
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process can be appropriate when the goal is to increase individual accuracy, but will typically result in too

conservative confidence judgments when the goal is aggregate them. 5

Other strategies aim to improve the quality of confidence judgments by trying to reduce overconfidence, for

example, by urging people to consider evidence inconsistent with their current beliefs (Koriat et al., 1980) or

alternative outcomes and explanations (Hirt & Markman, 1995). Yet, these techniques are typically evaluated

solely in the context of overconfidence (Arkes, 2001). Our work shows that a much richer analysis would

consider not only the effects of these different strategies on over- vs. underconfidence, but on the overall Brier

score as well as its different components and how different statistical environments impact the effectiveness of

these strategies.

Our own analysis has of course limitations. One is that our signal detection model of confidence judgments

is a static model that can be understood as people basing their confidence judgments on a fixed sample of

evidence about whether or not their decision is likely to be correct. However, recent work has begun to show

that confidence is based on a dynamic process where sequential samples of evidence are accumulated over

time (Pleskac & Busemeyer, 2010; Yu et al., 2015). From this perspective, differences between averaging and

maximizing depend in part on how the second confidence judgment is being generated. In our current datasets

participants provided two confidence judgments that were either spaced out within the same (Study 1 and

Study 3) or a different (Study 2) experimental session. Thus, both confidence judgments were the result of two

separate evidence accumulation processes, and assuming all else held constant, our results suggest averaging

being superior to maximizing across kind and wicked environments. However, now consider a context in

which individuals are asked to make two sequential confidence judgments in response to the same question

and in close temporal proximity. According to Pleskac and Busemeyer’s (2010) model, individuals continue

to accumulate evidence even after they have made an initial response. Thus, the second judgment is likely to

be based on even more accumulated evidence than the first judgment. Now how would one best harness the

wisdom of the inner crowd taking this dynamic perspective into account? This is an interesting question that

deserves more theory and experimentation. Our tentative answer is that it depends on the item. If the item is

kind, then the second confidence judgments will eventually yield a better resolution than the first judgments.

As a consequence, selecting the second confidence judgments should be a superior strategy to averaging both

confidence judgments. In other words, for kind items, from a dynamic perspective, when confidence judgments

are generated in close temporal proximity one should not average or maximize but should categorically select
5When aggregating judgments within the same individual, we would likewise expect both the end-of-scale and the confidence-

regression effects to occur. However, the overall regression of averaged confidence towards 0.5 (and thus the need for extremizing)
should be less pronounced than in the case of different people. Because an individual’s repeated judgments are more redundant
than those of different individuals, regressing one’s confidence towards 0.5 will underappreciate the information contained in a
within-person average less as compared to the a between-person average . In contrast, the implications of the end-of-scale effect
for extremizing should be the same, irrespective of whether averaging happens within or across individuals. Concerning averaging
within people, any factor that increases aggregation gains (e.g., less redundancy in knowledge sources used at both occasions;
i.e., smaller r in our simulation) would change the degree to which people’s tendency to regress their confidence judgments will
underappreciate the information contained in the average. This would then call for more extremizing, but likely still less than
for averaging the same number of confidence judgments from difference people since those judgments will typically be still less
redundant than those of one person. Furthermore, the moderation of these effects by the distribution of kind and wicked items
should hold equally for maximizing as well as extremizing. The kinder the items, the more beneficial it is to extremize, and the
more wicked the items, the more harmful it is to extremize.
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the second judgment. For wicked items, in contrast, one should not select the second but the first confidence

judgment. This is because for wicked items further evidence accumulation is likely to lead the decision maker

further astray.

However, as people seem to lack the necessary skills to assess the kindness versus wickedness of an item in

advance (Koriat, 2015, 2017), always choosing the first or the second judgment is again a risky strategy. In

the absence of reliable knowledge on the type of item, averaging should perform better and be the preferred

strategy—again. These ideas illustrate the importance of considering not only the environment, but also the

cognitive processes in developing and prescribing methods for improving the accuracy of confidence judgments.

Conclusion

The wisdom of the inner crowd refers to the idea that individuals can harness their own multiple, perhaps

even conflicting judgments pertaining to the same problem to improve the quality of their judgments (Herzog

& Hertwig, 2014a). The study of ecological rationality (Todd, Gigerenzer, & ABC Research Group, 2012)

involves asking the questions: Given a cognitive strategy, in what environments does it succeed? And given

an environment, what cognitive strategies succeed in it? We asked these questions about the maximizing and

averaging strategy applied to multiple confidence judgments of the same person. Our theoretical and empirical

results suggest that averaging should be the preferred strategy to harness the wisdom of one’s inner crowd.

The reason is that the robust averaging strategy, relative to the more fickle maximizing strategy, can boost

accuracy of confidence judgments while requiring less knowledge about the kindness and wickedness of the

items the decision maker faces.
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Abstract

Experts regularly make inconsistent judgments when judging the same case twice. Previous research on

experts’ inconsistency has largely focused on individual or situational factors. Here we focus directly on the

cases themselves. First, using a theoretical model, we study how inconsistency and confidence are affected

by how clearly the information in a case points to either the correct or the incorrect decision. Next, we

empirically corroborate the model’s predictions in two real-world datasets: diagnosticians rating the same

mammograms or images of the lower spine twice. Results show that unambiguous cases were associated with

highly confident initial decisions that were unlikely to change—independent of whether the experts’ consensus

decision was correct or incorrect. Furthermore, our results provide simple advice for individuals confronted

with two conflicting judgments from a single expert: Choose the more confident decision.
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Introduction

Inconsistency in expert judgments is a prevalent finding in several domains, including medicine (Kirwan,

De Saintonge, Joyce, & Currey, 1983; Koran, 1975; Levi, 1989; Ullman & Doherty, 1984), clinical psychology

(Little, 1961; Millimet & Greenberg, 1973), neuropsychology (Garb & Schramke, 1996), finance and manage-

ment (Kahneman, Rosenfield, Gandhi, & Blaser, 2016), agriculture (Trumbo, Adams, Milner, & Schipper,

1962), and weather forecasting (Lusk & Hammond, 1991; Stewart et al., 1989). Such inconsistency is often

understood as a source of error (Kahneman et al., 2016) and can have profound consequences; for example,

when a physician initially classifies a mass in a breast x-ray as cancerous, but later—when inspecting the same

image again—changes her mind and classifies it as benign. Which decision should the patient rely on? Under-

standing the conditions underlying experts’ inconsistency is of key importance—both for developing strategies

to improve expert decision making and for giving people advice on what to do when faced with inconsistent

expert decisions. Here we address two research questions: When do experts change their mind? And which

decision should individuals rely on?

Most studies investigating intraindividual inconsistency focus either on processes within the individual, such

as level of experience (Arnhoff, 1954), probabilistic sampling of information (Lewandowsky, Griffiths, & Kalish,

2009; Steyvers, Griffiths, & Dennis, 2006; Vul & Pashler, 2008), and hierarchical hypothesis testing (Brehmer,

1974), or on situational factors, such as time pressure (Rothstein, 1986) and the amount of information available

(Einhorn, 1971; Hogarth, 1987). However, one key aspect that has received comparatively little attention is

how information within the cases themselves affect inconsistency in experts’ judgments (Harvey, 1995; Little,

1961). To the best of our knowledge, none of the previous studies have addressed the interplay between an

individual’s confidence, consistency, and the ambiguity of a case. This study aims to close this gap in two

steps.

First, using a theoretical model (Koriat, 2012a), we study how inconsistency and confidence are affected

by how clearly the information in a case points to either the correct or the incorrect decision. We do this by

linking an expert’s internal consistency (also referred to as “intrarater agreement”) to the agreement among

a population of experts (also referred to as “interrater agreement”). Next, we empirically test the model’s

predictions in two real-world datasets: diagnosticians rating the same mammograms (Carney et al., 2012)

or images of the lower spine (de Zoete et al., 2002) twice. To preview one major insight not anticipated by

previous accounts of expert inconsistency: Cases on which there was clear expert consensus were associated

with highly confident initial decisions that were unlikely to change—independent of whether the experts’

consensus decision was correct or incorrect.

A Model Linking Inconsistency and Confidence to a Case’s Ambiguity

A fundamental process assumed by many models of cognition, judgment, and decision making is that individu-

als sample evidence from their environment or memory when making a decision (Koriat, 2012a; Lewandowsky
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et al., 2009; Pleskac & Busemeyer, 2010; Steyvers et al., 2006; Vul & Pashler, 2008). This sampled evidence

determines both the decision and the confidence in that decision (Koriat, 2012a; Kvam & Pleskac, 2016; Pleskac

& Busemeyer, 2010). In this view, an individual samples several pieces of evidence (“cues”) and selects the

option for which there is stronger evidence, and the more clearly the evidence points to the favored option, the

more confident an individual will be in the accuracy of that decision. Importantly, in such models, making a

second decision about the same case is equivalent to drawing a second sample of evidence. Because the sam-

pling process is probabilistic, the evidence in the second sample can differ from that in the first sample—as

can the decision (e.g., “cancer” vs. “no cancer”) and the confidence in that decision.

The conditions for inconsistency of repeated judgments and how that inconsistency relates to decision

confidence depend on how exactly the sampled evidence determines the decision and the confidence in it. To

theoretically investigate this question, we used a simple model embodying the assumptions outlined above to

derive key qualitative predictions about the relationship between experts’ inconsistency, confidence, and case

ambiguity (i.e., how clearly the information contained in the case pointed to one decision or the other). In the

Discussion, we show that relaxing the model’s assumptions would not change the results of interest and argue

that the key predictions would also emerge from more sophisticated models of judgment and decision making,

such as evidence accumulation models (e.g., Pleskac & Busemeyer, 2010; Ratcliff & McKoon, 2008).

The model we focus on here is the Self-Consistency Model (SCM; Koriat, 2012a). In the basic version

of SCM, a decision maker samples a fixed, odd number of n pieces of evidence (“cues”) and chooses the

option favored by more cues (i.e., decides between two options using majority voting among cues).1 Given a

probability p of sampling a cue pointing to the correct option (say, “cancer”), the probability P of making a

correct decision follows from the binomial distribution:

P(p , n) ⇤
n’

h⇤m

©≠
´

n

h

™Æ
¨
· p

h(1 � p)n�h , (1)

where m ⇤ n+1
2 (i.e., the minimum number of cues necessary to decide in favor of the correct decision).

The probability I of making two decisions that are inconsistent is

I ⇤ P(1 � P) + (1 � P)P ⇤ 2P(1 � P), (2)

which is maximal (I ⇤ 0.5) for choices at chance level (P ⇤ 0.5) and thus by extension for cases that are

maximally ambiguous (p ⇤ 0.5), that is, when every sampled cue is equally likely to point to the correct or the

incorrect decision. Conversely, inconsistency is minimal (I ⇤ 0) for perfectly correct (P ⇤ 1) and “perfectly”

incorrect (P ⇤ 0) decisions (Figure 1A). This corresponds to cases where all cues point either to the correct

decision (p ⇤ 1; perfectly “kind” cases) or to the incorrect decision (p ⇤ 0; perfectly “wicked” cases; Hertwig,

2012; Koriat, 2012b). Thus, in SCM, within-expert inconsistency increases the closer a cases’s p is to a fair

coin flip.2

1When even numbers of ns are allowed, ties are resolved through a coin flip.
2More formally, a case’s ambiguity is some monotonically decreasing function of |p � 0.5| (i.e., how close a cases’s p is to a fair

coin flip).
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We will now show how SCM provides a simple, elegant link between the consistency of a single expert’s

repeated readings of a case and the agreement among experts for that same case. For simplicity, let us assume

that all experts sample the same number of cues (i.e., share a common n) and that for any particular case and

cue those experts have the same probability p of sampling a cue that points to the correct answer. Although p

is not directly observable, according to SCM, the expected proportion of correct decisions E(Pi(pi)) for case i

among a population of identical experts is monotonically related to pi . Empirically, the sample proportion of

correct decisions among experts for case i, bPi , can be used as a proxy for ordering cases according to their pi .3

Thus, assuming SCM, we can use the disagreement among experts (i.e., how close bPi is to 0.5) as an indicator

of a case’s ambiguity (i.e., how close pi is to 0.5).

SCM further stipulates that the confidence in a decision increases with the proportion of cues pointing

to that decision. In particular, SCM assumes that confidence bC is the complement of the sample standard

deviation, which depends solely on the proportion of cues pointing to the chosen option (bp for correct decisions

and 1 � bp for incorrect decisions):
bC ⇤ 1 �

qbp �
1 � bp� . (3)

Since bp ⇤ E(p), it follows that confidence is highest for p ⇤ 1 and p ⇤ 0 (bC ⇤ 1) and lowest for p ⇤ 0.5 (bC ⇤ 0.5;

Figure 1B)—mirroring the results for an expert’s inconsistency (see eq. 2 and Figure 1A).

So when confronted with two inconsistent, conflicting decisions, which should people rely on? The maximum-

confidence slating (MCS) algorithm (Koriat, 2012b, henceforth “confidence rule”) prescribes the decision with

the higher confidence. The SCM predicts that, for p > 0.5, confidence will be positively correlated with the

probability of making a correct decision; for p < 0.5, this correlation will be negative.4

In sum, SCM predicts:

1. The higher a case’s ambiguity (indexed by experts’ disagreement among their initial diagnoses), the

higher an expert’s inconsistency (i.e., the more likely experts will be to make a different diagnosis when

judging the same case again; Figure 1A).

2. The higher a case’s ambiguity (indexed by experts’ disagreement among their initial diagnoses), the less

confident an expert will be in her initial diagnosis (Figure 1B).

3. The less confident an expert is in her initial diagnosis, the more likely she will be to change it when

judging the same case again (Figure 1C).

4. Considering only cases where an expert makes two inconsistent diagnoses: Relative to sticking with the

initial diagnosis, using the confidence rule (i.e., selecting the more confident diagnosis) improves accuracy
3Because equation 1 applies to majority voting either over cues or over individuals, we can use Condorcet’s Jury Theorem

(Condorcet, 1785/1994; Grofman, Owen, & Feld, 1983) to gain insights into how Pi and pi relate for n � 3. For example, for
pi > 0.5 ! Pi > pi ; conversely, for pi < 0.5 ! Pi < pi . Thus, if we assume that experts sample more than one cue, Pi will be a
more extreme version of pi . Importantly, for any n � 3, Pi and pi are identically ordered across a set of cases.

4More specifically, equation 1 shows that, for p > 0.5, any level of confidence is more likely under the correct than the incorrect
decision (and vice versa for p < 0.5). To see why, consider that, in equation 1, bp ⇤ h

n
. When p > 0.5, it follows that p

h > (1� p)n�h

and thus the event that a majority of cues (h) point to the correct decision is more likely than the event that the same-sized
majority of cues (n � h) point to the incorrect decision. For p < 0.5, we obtain the opposite result.
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for kind items but worsens it for wicked items (i.e., cases where the majority of experts’ initial diagnoses

were correct vs. incorrect, respectively).
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Figure 1. Predictions of the Self-Consistency Model (SCM) on how the proportion of experts who make a correct
diagnosis (bPi), inconsistency (I; probability of not making the same diagnosis again), and confidence (C) relate to each
other for three different values of n (the number of samples retrieved). (A) Consistency (I) as a function of bPi . Note
that the relation between I and bPi does not depend on n (see eq. 2). (B) Confidence (C) as a function of bPi . (C)
Inconsistency (I) as a function of confidence (C).

However, these predictions depend on SCM’s (Koriat, 2012a) strong assumptions about an expert’s judg-

ment process and our additional assumption of complete homogeneity among experts and cues. Specifically,

the model assumes that all experts sample the same number of n cues and that, for any particular case and

cue, those experts have the same probability p of sampling a cue that points to the correct answer. These

assumptions are unlikely to hold for actual expert judgments. Thus, to empirically test the model’s predictions

and assess how much insight the model provides about the judgments of real experts, we used two real-world

high-stakes expert datasets: diagnosticians rating mammograms (Carney et al., 2012) and x-rays of the lower

spine (de Zoete et al., 2002). In the following section, we describe the two datasets and how we analyzed them.

Experts’ Inconsistency and Confidence in Two Medical Studies

Dataset 1: Radiologists Diagnosing Mammograms (Carney et al., 2012)

Dataset 1 was collected to study the effect of time spent viewing and confidence on diagnostic accuracy in

mammography screening. For this study, 572 radiologists were invited to participate, of whom 102 completed

all procedures (i.e., phase 1+2, see below). The mammograms used were randomly selected from screening

examinations of women aged 40–69 years old. Importantly, the correct diagnosis (cancerous or non-cancerous)

for each mammogram was available from follow-up research. In phase 1, each radiologist was randomly assigned

to one of four different test sets of 109 mammograms. The radiologists were instructed to interpret the cases

as they would in clinical practice. They were informed that the overall cancer rate in their test set was higher

than that found in a screened population, but they were not informed of the specific prevalence of positive test

results or cancers in their test set. When viewing each case, participants were prompted to identify the most
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significant breast abnormality and to decide whether the patient should be recalled for additional workup. The

decision to recall constituted a positive test result. Additionally, participants provided a confidence judgment

for each assessment (“not at all confident,” “not very confident,” “neutral,” “confident,” or “very confident”).

Radiologists used either a home or work computer or a laptop provided by the study to complete the task.

After an interval of 3–9 months, radiologists were re-invited to rate a second set of 110 mammograms, using

an identical procedure as described above. In this phase 2, a proportion of the cases were the same as those

presented in phase 1. This information was unknown to the participants. Overall, 58 cases were rated twice

by 55 radiologists; of those 58 cases, 46 were rated twice by another 47 radiologists, resulting in 5,352 repeated

ratings and either 55 ratings per case (for 12 cases) or 102 ratings per case (for 46 cases) in each assessment

phase. All repeated mammograms were noncancer cases (i.e., from women who were cancer-free for at least 2

years after the first mammography). See Carney et al. (2012) for details.

Across all repeated cases, the median of radiologists’ accuracies (proportion correct) was median(cP1
j
) ⇤ 0.72

for phase 1 and median(cP1
j
) ⇤ 0.68 for phase 2.

Dataset 2: Physicians Diagnosing Radiographs of the Lumbosacral Spine (de Zoete et

al., 2002)

Dataset 2 was collected to study the diagnostic accuracy of radiologists and chiropractors (total N ⇤ 13) reading

lumbosacral radiographs. Five chiropractors, three chiropractic radiologists, and five medical radiologists

participated in the study. Participants’ professional experience ranged from 3 to 21 years. 300 radiographs of

the lumbosacral spine of adult patients were selected from a general hospital database. For each radiograph,

the correct diagnosis was known from follow-up research. The selected radiographs overrepresented “significant

abnormalities,” such as infections (n = 7), malignancies (n = 15), fractures (n = 8), inflammatory spondylitis

(n = 6), and spondylolysis (n = 14). The set of radiographs was presented in a random order. For each

radiograph and each assessment, the physician evaluated whether a significant abnormality was present (in

which case immediate referral to a hospital was required) and expressed her confidence in her decision on a

two-point scale. Three months later, all 300 radiographs were assessed again by all participants, resulting in

3,900 repeated assessments. See de Zoete et al. (2002) for details.

Across all cases, the median of physicians’ accuracy was median(cP1
j
) ⇤ 0.86 in phase 1 and median(cP2

j
) ⇤

0.91 in phase 2.

Statistical Analyses

We ran a series of Bayesian mixed-level regression models (using default priors and Bürkner et al. (the R-

package brms; 2016, version 2.6.0). The models all included group-level intercepts for experts and cases

(“random intercepts”). Four chains, each with 4,000 samples (and thinning = 2), were run. The first 2,000

samples were discarded as warm up; thus a total of 4,000 samples were obtained.
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Figure 2. Empirical results on the relations between the proportion of experts who made a correct diagnosis (bP) in
the first vs. second diagnoses across cases. Each point represents one case. The rugs on the y- and x-axes show
the marginal distributions. The solid curves are LOESS smooths. Panel B employs jittering to avoid overplotting.

Empirical Results

Before presenting the results on our four predictions, we highlight three points. First, although there were

300 radiographs in the spine dataset, each was rated by only 13 experts. Consequently, the estimates for

both proportion correct bPi and inconsistency Ii are noisy. In the mammogram dataset, in contrast, up to 102

radiologists rated 58 distinct mammograms, allowing the cases’ characteristics to be estimated more reliably.

To render our classification of cases in the spine dataset (kind vs. wicked) more reliable, we defined kind cases

as bPi > 0.6 and wicked cases as bPi < 0.4. We thus excluded cases where 0.4 < bPi < 0.6 in model M7 (Table

2; assessing prediction 4) ; importantly, those cases were retained in all other analyses and all figures (except

Figure 4).

Second, experts’ average performce was clearly better than chance in both studies, especially in the spine

dataset (Figure 2). This implies that there were fewer, and less pronounced, wicked cases than kind cases. As

a consequence, predictions 1, 2, and 4 hold with higher certainty for kind than for wicked cases—especially in

the spine dataset.

Third, the proportion of experts rendering a correct diagnosis for a mammography case remained largely

unchanged across first and second diagnoses (Figure 2A). In contrast, second diagnoses for a spine case had

a higher proportion of correct diagnoses (Figure 2B). This latter pattern suggests that—unless second spine

diagnoses are also, on average, sufficiently more confident—the confidence rule will likely not outperform the

second spine diagnosis.

The results presented in Figure 3A/B corroborate the first prediction: The higher a case’s ambiguity (in-

dexed by experts’ disagreement among their initial diagnoses), the higher experts’ inconsistency—irrespective

of whether the experts’ consensus opinion for a case was correct or not: In the mammogram dataset (Figure
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Figure 3. Empirical results on the relations between the proportion of experts who made a correct diagnosis (bP),
inconsistency (I; probability of making not the same diagnosis again), and mean confidence (bC) in the two datasets. (A
& B) Inconsistency (I) as a function of bP. (C & D) Mean confidence (bC) as a function of bP. (E & F) Inconsistency
(I) as a function of mean confidence (bC). Each point represents one case and its coordinates represent bP and bC from
initial diagnoses. The rugs on the y- and x-axes show the marginal distributions. The solid curves are LOESS smooths.
For comparison, the dashed curves show the smooths resulting from using bP and bC from the second diagnoses (the
corresponding points are not shown). Panels B, D, and F employ jittering to avoid overplotting.
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Mammography Lumbosacral spine
Parameter Estimate 95% CI Estimate 95% CI
M1: Inconsistency (intercept-only model)
Intercept �1.51 �1.76 �1.27 �2.31 �2.71 �1.90
sd(expert) 0.47 0.37 0.59 0.62 0.40 1.06
sd(case) 0.77 0.61 0.98 0.95 0.78 1.13

M2: Inconsistency vs. case ambiguity (Prediction 1): I ⇠ (bP � 0.5) + (bP � 0.5)2
Intercept �1.50 �1.63 �1.37 �2.39 �2.79 �2.01
(bP � 0.5) �1.61 �8.48 5.53 �56.97 �63.38 �50.69
(bP � 0.5)2 �49.09 �56.49 �42.63 �27.41 �33.14 �21.60
sd(expert) 0.47 0.37 0.59 0.64 0.40 1.08
sd(case) 0.17 0.03 0.30 0.09 0.01 0.28

M3: Confidence (intercept-only model)
Intercept 3.73 3.61 3.85 1.62 1.45 1.78
sd(expert) 0.46 0.40 0.54 0.29 0.20 0.46
sd(case) 0.25 0.21 0.31 0.16 0.15 0.18

M4: Confidence vs. case ambiguity (Prediction 2): C ⇠ (bP � 0.5) + (bP � 0.5)2
Intercept 3.73 3.63 3.82 1.62 1.45 1.80
(bP � 0.5) 2.97 �0.30 6.33 5.45 4.33 6.57
(bP � 0.5)2 13.95 10.57 17.11 4.16 3.04 5.36
sd(expert) 0.46 0.40 0.54 0.29 0.20 0.48
sd(case) 0.16 0.13 0.20 0.12 0.11 0.14

M5: Inconsistency vs. confidence (Prediction 3): I ⇠ (C � 1)
Intercept 0.16 �0.20 0.51 �1.39 �1.72 �1.07
(C � 1) �0.63 �0.74 �0.52 �1.66 �1.92 �1.41
sd(expert) 0.54 0.43 0.67 0.44 0.27 0.76
sd(case) 0.62 0.49 0.81 0.78 0.60 0.96

Table 1. Bayesian mixed-level regression models for predictions 1, 2, and 3 in the mammography and lumbosacral spine
datasets. The three models of inconsistency (M1, M2, and M4) are logistic regression models and thus the parameters
indicate (changes in) log odds. The two models of confidence (M3 and M5) are linear models (i.e., identity link).
Posterior distributions of parameters are summarized by their posterior median (Estimate) and 95% credible interval.
sd(expert) and sd(case) show the standard deviations of the group-level distribution of the intercept for experts and
cases, respectively. (bP � 0.5) and (bP � 0.5)2 in models M2 and M4 are the linear and quadratic polynomial contrasts
of the 0.5-centered proportion of correct diagnoses per case; this means that the intercept in those models predicts the
value of the dependent variable for a maximally ambiguous case (bP ⇤ 0.5; because for bP ⇤ 0.5, (bP�0.5) ⇤ (bP�0.5)2 ⇤ 0).
(C � 1) in model M5 is the linear effect of confidence, re-coded so that the intercept indicates the inconsistency at the
lowest confidence level in both datasets (i.e., C ⇤ 1; this is because for C ⇤ 1, (C � 1) ⇤ 0 corresponds to the lowest
possible confidence rating).
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Figure 4. Empirical results comparing the accuracy of the confidence rule to the accuracy of first (A) and sec-
ond (B) diagnoses for cases where experts were inconsistent, separately for kind and wicked cases and both datasets
(mammography and lumbosacral spine). Positive values on the y-axes indicate that the confidence rule outperformed
first diagnoses (A) or second diagnoses (B), respectively. Cases are shown as jittered shapes and are summarized by
boxplots. The size of the shapes indicates the number of experts contributing to each case.

3A), experts became more consistent the more strongly they initially favored either the correct or the incor-

rect diagnosis. In the spine dataset, the predicted pattern is also clearly visible for kind cases (Figure 3B).

However, the results for the few wicked items are less clear (Figure 3B). The regression models M2 (Table

1) show a clearly negative quadratic term in both datasets, corroborating the visual impression from Figure

3A/B. Comparing the standard deviations of the group-level intercepts for experts and cases in model M1

(intercept-only model) shows that cases differed more strongly in inconsistency than experts. With respect to

case ambiguity (model M2), the standard deviation for cases is reduced by a factor of 5 in the mammography

dataset and by a factor of 11 in the spine dataset, highlighting how much variance in inconsistency can be

explained by a case’s ambiguity.

The results presented in Figure 3C/D corroborate the second prediction: The higher a case’s ambiguity

(indexed by experts’ disagreement among their initial diagnoses), the less confident experts are in their initial

diagnoses—again, irrespective of whether the experts’ consensus opinion for a case was correct or not. The

regression models M4 (Table 1) show a clearly positive quadratic term in both datasets, corroborating the

visual impression from Figure 3C/D.

The results shown in Figure 3E/F corroborate the third prediction: The less confident experts are in their

initial diagnosis, the more likely they will be to change it when judging the same case again. The regression

models M5 (Table 1) show a clearly negative linear term in both datasets, corroborating the visual impression

from Figure 3E/F.

Our final results relate to the fourth prediction: When considering only cases where an expert made two
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Mammography Lumbosacral spine
Parameter Estimate 95% CI Estimate 95% CI
M6: Confidence rule vs. first/second diagnoses
Intercept 0.78 0.66 0.91 0.38 0.19 0.58
Diagnosis 1 �0.58 �0.76 �0.41 �1.04 �1.30 �0.78
Diagnosis 2 �0.98 �1.15 �0.81 0.29 0.03 0.55
sd(expert) 0.03 0.00 0.11 0.10 0.01 0.30
sd(case) 0.04 0.00 0.12 0.05 0.00 0.15

M7: Confidence rule and kind vs. wicked cases (Prediction 4)
Intercept 0.97 0.82 1.12 0.51 0.28 0.77
Wicked �0.61 �0.92 �0.28 �0.76 �1.87 0.28
Diagnosis 1 �0.82 �1.02 �0.61 �1.11 �1.42 �0.79
Diagnosis 1 ⇥ Wicked 0.66 0.23 1.09 �0.20 �2.02 1.48
Diagnosis 2 �1.13 �1.33 �0.93 0.10 �0.21 0.41
Diagnosis 2 ⇥ Wicked 0.56 0.12 0.98 1.77 0.17 3.53
sd(expert) 0.03 0.00 0.12 0.13 0.01 0.37
sd(case) 0.03 0.00 0.11 0.05 0.00 0.18

Table 2. Bayesian mixed-level regression models for prediction 4 in the mammography and lumbosacral spine datasets,
considering only cases where an expert’s two diagnoses for the same case differed. Both models M6 and M7 are logistic
regression models and thus the parameters indicate (changes in) log odds. The decision of the confidence rule is the
reference level, that is, Diagnosis 1 and Diagnosis 2 in model M6 indicate the change in accuracy (in log odds) from the
confidence rule (Intercept) to the first or second diagnosis, respectively. In model M7, kind cases constitute the reference
level, that is, Wicked indicates for kind cases the change in accuracy (in log odds) from the confidence rule (Intercept)
to wicked cases. Then Diagnosis 1 and Diagnosis 2 indicate for kind cases the change in accuracy (in log odds) from
the confidence rule (Intercept) to the first or second diagnosis, respectively. The interaction terms (Diagnosis 1 ⇥
Wicked and Diagnosis 2 ⇥ Wicked) show whether the type of case (kind vs. wicked) moderates the differences between
the confidence rule and first and second diagnoses, respectively. Posterior distributions of parameters are summarized
by their posterior median (Estimate) and 95% credible interval. sd(expert) and sd(case) show the standard deviations
of the group-level distribution of the intercept for experts and cases, respectively.

inconsistent diagnoses, we found that, relative to sticking with the initial diagnosis, using the confidence rule

(i.e., selecting the more confident diagnosis) improves accuracy for kind items but worsens it for wicked items

(i.e., cases where the majority of experts’ initial diagnoses were correct vs. incorrect, respectively). Figure 4

shows that for kind cases the confidence rule was more accurate than either the first or second diagnosis in the

mammography dataset, but only more accurate than the first diagnosis in the spine dataset. The results for

wicked cases were less consistent with our fourth prediction. In the mammography dataset, the difference in

performance between the confidence rule and first and second diagnoses was reduced; however, the confidence

rule did not, as predicted, perform worse than first and second diagnoses. In the spine dataset, a similar result

was found when we compared the confidence rule against the first diagnosis, but comparing the confidence

rule against the second diagnosis did not reveal a clear difference. Model M7 (Table 2) corroborates these

observations.

General Discussion

When do experts change their mind? Previous research on inconsistency has focused largely on individual

factors (e.g., Lewandowsky et al., 2009; Steyvers et al., 2006; Vul & Pashler, 2008) or situational factors
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(Einhorn, 1971; Hogarth, 1987; Rothstein, 1986). Here we focus directly on the cases themselves. First,

using the SCM (Koriat, 2012a), we studied how inconsistency and confidence are affected by how clearly the

information in a case points to either the correct or the incorrect decision (a case’s ambiguity, indexed by

experts’ disagreement among their initial diagnoses). Next, we empirically confirmed three of the model’s four

key predictions in two real-world datasets: diagnosticians rating the same mammograms (Carney et al., 2012)

or images of the lower spine (de Zoete et al., 2002) twice. We found that the higher a case’s ambiguity, the higher

experts’ inconsistency (prediction 1) and the lower their confidence in their initial diagnosis (prediction 2)—

irrespective of whether the experts’ consensus opinion for a case was correct or not. The first two predictions

imply that the more confident an expert is in her initial diagnosis, the less likely she will be to change her

diagnosis when judging the same case again (prediction 3), irrespective of whether the experts’ consensus

opinion was correct or not. Together, these first three results imply that a highly confident or unchanged

diagnosis is first and foremost an indicator for how strong the consensus among experts is, and an indicator

of accuracy only to the extent that most cases in the domain of interest are kind.

Finally, when an expert’s two diagnoses were inconsistent, using the confidence rule (i.e., selecting the

more confident diagnosis) improved accuracy (relative to sticking with the initial diagnosis). However, this

fourth prediction was empirically corroborated only for kind cases and only partially corroborated for wicked

cases—although other results for wicked cases were consistent with predictions 1 and 2 (see the left sides of

panels A–D in Figure 3). These latter, mixed findings might be explained by systematic differences between

first and second diagnoses in terms of accuracy and confidence judgments, especially for the spine dataset.

For example, second spine diagnoses were more accurate than first ones (Figure 2B). Future research should

explore the implications of such systematic differences. Importantly, however, model M6 (Table 2) shows that

across all cases the confidence rule outperformed both first and second diagnoses in the mammography dataset

and first, but not second, diagnoses in the spine dataset. Because decision makers cannot, in practice, tell in

advance whether a particular case is kind or wicked (Koriat, 2017), this result means that the confidence rule

has clear practical merit from an applied perspective. It thus implies the following prescription: Unless you

suspect that experts perform worse than chance in the domain of interest, rely on the more confident of two

conflicting judgments from an individual expert.

Linking Inconsistency to a Case’s Ambiguity

In the past, research has primarily studied inconsistency from an internal individual perspective, which explains

inconsistency as a consequence of unreliable processing of information. Studies reported, for example, that an

individual’s judgments become less reliable as the amount of available information increases (Einhorn, 1971;

Hogarth, 1987) because their capacity to process that information decreases (Faust, 1986; Sen & Boe, 1991).

Other studies showed that unreliability in judgment can often be attributed to a lack of cognitive control—

how acquired knowledge is used—rather than a lack of knowledge (Hammond & Summers, 1972). Harvey

(1995) reviewed further reasons for inconsistency in decisions, such as overload in working memory, learning
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correlations instead of functions, or reproduction of noise. In contrast to these individual factors, external-

task related factors contributing to experts’ consistency, such as the predictability of the environment (i.e.,

the degree to which cues allow the outcome to be predicted) have been rarely studied. A set of studies has

shown that, as a task becomes less predictable, individuals make less consistent judgments (Brehmer, 1976;

Camerer, 1981; Harvey, 1995). Our results are largely consistent with these previous findings. Importantly,

however, none of these previous studies made the connection between an individual’s confidence, consistency,

and the ambiguity of a case. Below we discuss two contributions that our perspective on expert inconsistency

offers.

First, in our reading of the literature, previous accounts of experts’ inconsistency explicitly or implicitly

assume or predict that consistency increases as the accuracy of a judgment increases. In stark contrast to this

assumption, our results show that this pattern is mirrored at chance level: For cases that experts tend to judge

incorrectly, consistency starts to increase again the more experts agree on the incorrect diagnosis. Furthermore,

our results showed that confidence tracks consistency, but because confidence tracks the ambiguity of a case

and not accuracy per se (Koriat, 2012a), confidence’s ability to predict accuracy and consistency strongly

depends on the environment (i.e., the distribution of ambiguity across the cases). If there are only kind cases

(i.e., cues tend to point to the correction decision), confidence strongly predicts that a diagnosis is accurate

and will not change. The more wicked cases there are (i.e., cues tend to point to the wrong decision), the

more these relations dilute. In the extreme case of a domain dominated by wicked cases (in which experts,

on average, tend to make wrong decisions), the two relations dissociate: Experts’ confidence is then negatively

related to accuracy, but still positively related to consistency—and being consistent in a wicked environment

means confidently sticking to the wrong diagnosis.

Second, previous accounts have focused on differences in consistency among experts or in different task

conditions (e.g., time pressure). Our perspective predicts that the cases themselves can differ markedly in

how consistently they are diagnosed by any expert. Importantly, as our results have shown, these consistency

differences among cases can be even larger than those observed among the experts themselves and can be

explained to a large degree by a case’s level of ambiguity.

Would Relaxing our SCM’s Assumptions Lead to Different Predictions?

In this study, we used the SCM (Koriat, 2012a) to gain insights into when experts are inconsistent and what

to do as a decision maker when faced with inconsistent advice from the same expert. Our implementation

of the SCM assumes that all experts sample the same number of n cues and that for any particular case

and cue those experts have the same probability p of sampling a cue that points to the correct answer. We

argue that relaxing those assumptions will, in general, not change the four key predictions; it will affect how

exactly the probability of a correct decision, P, depends on p and n, but the qualitative implications of the

distinction between kind cases (p > 0.5) and wicked cases (p < 0.5) will remain unchanged. In addressing this

point, we can benefit from the fact that SCM’s decision process amounts to majority voting among cues; we
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can therefore apply insights from more general research on majority voting. For example, similar conclusions

follow if, within an expert, the cues’ probabilities pi are not identical but symmetrically distributed around pi

(Grofman et al., 1983), or if the retrieval of cues is allowed to be dependent (e.g., retrieving cues pointing to

one option increases the likelihood that further cues point to that same option; Grofman et al., 1983; Ladha,

1992, 1995). As another example, under very general conditions, as the number of cues retrieved, n, increases,

the probability of a correct decision, P, will increase for kind cases (p > 0.5) and decrease for wicked cases

(p < 0.5; Grofman et al., 1983; Ladha, 1992, 1995). As a consequence, keeping everything else constant,

consistency should increase as more cues are retrieved (see eq. 2); the variation in cases’ ambiguity will be

most pronounced for small ns, whereas for large ns all cases will be clearly diagnosed either correctly or

incorrectly. Furthermore, assuming that experts sample different numbers of cues implies that, for the same

case, experts with larger ns will be more consistent than experts with smaller ns.

Would Different Models Make Different Predictions?

In this study, we focused on the SCM (Koriat, 2012a) as a simple model linking accuracy, confidence, and

consistency, but we argue that a broad family of models make qualitatively similar predictions. However, to

the best of our knowledge, the ability of these models to gain insights into expert consistency and the role

of wicked cases has not yet been explored. For example, in the diffusion decision model (Ratcliff & McKoon,

2008), a prominent example of the family of evidence accumulation models, case ambiguity is reflected in the

drift rate, which represents the average speed with which an individual accumulates evidence that stochas-

tically drifts to one of two decision boundaries (e.g., correct vs. incorrect answer). Keeping everything else

constant, a reduction in the drift toward zero implies increasingly more ambiguous cases, which are predicted

to be associated with lower accuracy, longer response times, and lower confidence (Pleskac & Busemeyer,

2010; Ratcliff & McKoon, 2008). Drift rates below zero represent wicked cases, where the evidence tends to

accumulate to the wrong decision boundary. Importantly, an increasingly negative drift rate corresponds to

increasingly less ambiguous and more wicked cases, which are predicted to be associated with lower accu-

racy, but shorter response times, and higher confidence—thus qualitatively mirroring the predictions from the

SCM. More generally, any model that assumes or implies the following two relations should predict qualita-

tively similar results: A particular decision becomes more likely and is rendered more confidently the more

clearly the relevant information points to that decision. If this claim sounds both grandiose and self-evident,

it is because those two relations are fundamental to many, if not most, psychological and normative models

of decision making. The crux of the matter is, of course, what exactly it means in a particular model that a

case is kind or wicked and clear cut or ambiguous. This will depend both on the statistical structure of the

cue–criterion and intercue relationships, and on the decision strategy applied. Future research should map out

which decision environments result from combinations of which decision strategies and cue structures.
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Conclusion

Inconsistency in expert judgment is a common finding in various domains, including medicine, finance and

management, and weather forecasting. Most previous studies have investigated inconsistency from an individ-

ual or situational perspective, leading to methods to improve information processing within individuals. In

this study, we connected—theoretically and empirically—the ambiguity of the case with the confidence and

inconsistency of the expert. For individuals confronted with inconsistent judgments from a single expert, we

advise the following: Unless there is reason to believe that the expert performs below chance, rely on the more

confident judgment.
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Abstract

In sequential diagnostic reasoning tasks, the order of the evidence a person encounters can influence their final

diagnosis. We hypothesized that sequential diagnostic procedures such as categorizing a sequence of cues in

a skin lesion can induce cognitive dependencies in the classification of cues. Using a signal detection model

we investigated three cognitive dependency processes: (i) the confirmatory response effect, which biases an

individual towards the hypothesis corresponding to their first cue assessment, (ii) the confirmatory evidence

accumulation process, which influences an individual’s evidence accumulation towards the hypothesis corre-

sponding to their first cue assessment, and (iii) the relevance effort effect, which influences an individual’s

effort depending on the relevance of the consecutive cues for the final diagnosis. To reduce the dependency

processes, we designed a condition in which the assessment of each cue is temporally isolated and compared it

to the common sequential diagnostic procedure, a grouped process where all cues in one case are fully assessed

before turning to the next case. We tested both conditions in two environments with either uncorrelated or

moderately positively correlated cues. All hypotheses were preregistered. Results suggest the presence of the

confirmatory response effect and the confirmatory evidence accumulation process in the correlated environ-

ment. Isolating cue assessments did not reduce the strength of the dependency processes. Future research

should investigate the downstream consequences of dependent cue assessments on the accuracy of the final

diagnosis, identify beneficial levels of dependency and study the extent to which individuals adapt to the

statistical environment.
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Introduction

In sequential diagnostic reasoning tasks the order of the evidence a person encounters can influence their final

diagnosis. In medical scenarios with multiple possible hypotheses around a diagnosis, ambiguous pieces of

evidence are distorted toward the hypothesis that corresponds with the piece of evidence that was encountered

first (Kostopoulou, Mousoulis, & Delaney, 2009; Lange, Thomas, & Davelaar, 2012; Rebitschek, Bocklisch,

Scholz, Krems, & Jahn, 2015), suggesting that once an individual has an emerging judgment, they tend to

distort additional information such that it coheres with that judgment. Relatedly, individuals are inclined

to bias their final diagnosis towards the hypothesis they initially formed (Rebitschek, Krems, & Jahn, 2015).

Furthermore, when individuals make judgments under incomplete evidence they try to infer the presence of

evidence using irrelevant information and then use that inferred evidence to explain their judgment (Johnson,

Rajeev-Kumar, & Keil, 2016), suggesting that the human mind will fill in gaps in a diagnostic reasoning

process. In the health care sector, medical error is estimated to be the third leading cause of death in the

United States (Makary & Daniel, 2016). Given the growing literature revealing not only systemic but also

cognitive mechanisms behind diagnostic errors, this paper investigates the underlying cognitive processes in

sequential diagnostic decision-making and explores how to improve the decision-making process.

The “three-point” checklist of dermoscopy is a sequential diagnostic tool used by dermatologists to detect

skin cancer. The checklist prescribes counting the presence of three cues (blue/white color, atypical network,

and asymmetry) and issues a malignant diagnosis if two or more cues are present; if one or no cues are present,

the lesion is considered benign (Argenziano et al., 2003; Zalaudek et al., 2006). This checklist belongs to a

general class of heuristic decision-making strategies known as tallying. Tallying is a decision rule that counts

the number of cues supporting one alternative over the other and compares this tally to a threshold in order

to make a decision or categorization (Dawes, 1979; Martignon, Katsikopoulos, & Woike, 2008). Experimental

studies and simulations using natural and synthetic domains have shown that tallying can perform extremely

well compared to more costly strategies that also consider the weights of cues, such as multiple regression models

(Czerlinski, Gigerenzer, & Goldstein, 1999; Kattah, Talkad, Wang, Hsieh, & Newman-Toker, 2009; Martignon

et al., 2008; McCammon & Hägeli, 2007). In many domains, however, once an accurate decision rule has

been developed, individuals still need to assess the cue values (e.g., “Does this skin lesion have an atypical

network or not?”) before they can apply a decision rule such as tallying (e.g., “If two or more cues are present,

diagnose as malignant; otherwise, diagnose as benign”). Extant research in psychology, cognitive science, and

judgment and decision making, in contrast, has focused on how individuals learn decision strategies when the

cues themselves are simply presented as a given and thus there is no need to assess them (e.g., a geometric

shape has one of two colors, or a city has an airport or not; Ashby & Maddox, 2005; Gigerenzer, Hertwig, &

Pachur, 2011; Kruschke, 2008; Payne, Bettman, & Johnson, 1993). Similarly, in the above reviewed studies on

biases and distortion of information in sequential diagnostic reasoning (Johnson et al., 2016; Kostopoulou et

al., 2009; Rebitschek, Bocklisch, et al., 2015; Rebitschek, Krems, & Jahn, 2015) cues were presented; they did

not need to be assessed. In order to investigate individuals’ cognitive processes when applying a categorization
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strategy and explore ways to improve the overall decision-making process, we examined whether tallying

induces cognitive dependency processes that influence the classification of sequentially assessed cues and tested

whether dependency can be reduced by redesigning the diagnostic procedure—in this case, by breaking up the

sequence in order to temporally separate the assessment of cues.

Cognitive Dependency Processes

Let us return to the three-point checklist, which issues a malignant diagnosis if two or more cues are present

and a benign diagnosis otherwise. Suppose a dermatologist evaluating a skin lesion assesses the first cue as

present. Could that first assessment influence the dermatologist’s consecutive cue assessments? For example,

does the awareness that only one more present cue is needed for a malignant diagnosis affect the cognitive

processes in assessing further cues?

To explore whether the sequential diagnostic procedure of a tallying rule, such as the three-point check-

list, can induce dependency in the assessments of cues, we focused on three mutually compatible cognitive

dependency processes. First, the confirmatory response effect states that the first cue assessment (e.g., the

dermoscopic cue A is present) could bias an individual’s response threshold in assessing the second cue to-

wards the hypothesis that corresponds with the first cue assessment (Germar, Albrecht, Voss, & Mojzisch,

2016; Germar, Schlemmer, Krug, Voss, & Mojzisch, 2014; Rebitschek, Krems, & Jahn, 2015). For example,

if the first cue is judged to be present, this assessment contributes positively to the “malignacy” hypothesis

because it increases the tally by one; therefore a positive assessment of the first cue might bias the response

threshold such that the dermatologist is more likely to judge the second cue as present.

Second, the confirmatory evidence accumulation process states that the first cue assessment could bias

evidence accumulation towards the hypothesis that corresponds with the first cue assessment. For example,

if the first cue was assessed as present, this assessment might direct our dermatologist’s attention to search

for patterns that correspond with the hypothesis of the first cue assessment. If the assessed value of the first

cue is congruent with the true state of the second cue, confirmatory evidence accumulation would increase the

efficiency of extracting evidence from the stimulus and decrease the efficiency otherwise (Germar et al., 2016,

2014; Talluri, Urai, Tsetsos, Usher, & Donner, 2018).

Third, the relevance effort effect states that the effort spent on the second cue assessment depends on

whether that assessment could change the overall decision. Imagine that there are only two cues and the

tallying threshold for issuing a malignant diagnosis is two (i.e., both cues are present). If the first cue is judged

as absent, then the second cue assessment cannot change the final diagnosis—even if the second cue is judged

to be present, the final diagnosis would be “benign” because only one cue is present and the threshold has not

been met. Thus, the effort in judging the second cue may decrease, thereby diminishing the decision maker’s

ability to discriminate whether a cue is absent or present. In contrast, if the first cue is judged as present,

the second cue judgment is critical for the overall decision (if judged to be present, the diagnosis would be

“malignant”; if judged to be absent, the diagnosis would be “benign”) and effort should stay high and contribute
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positively to the decision maker’s ability to discriminate.

The three processes will not only affect the accuracy of second cue assessments, but also have downstream

consequences for the accuracy of the final diagnosis. For example, if a dermatologist wrongly assesses the first

cue as present, then a confirmatory response effect would make them more likely to evaluate the second cue

assessment as present. If the first two cues are assessed as present (i.e., a tally of 2) but the true tally is

actually 0, they will make a wrong final diagnosis, classifying the lesion as malignant although it is benign.

Research on the wisdom of the (inner) crowd has shown that gains from aggregating judgments are larger,

the more independent the judgments, and hence their errors are (Herzog & Hertwig, 2009; Larrick, Mannes,

& Soll, 2012; Vul & Pashler, 2008). Could reducing the strength of these dependency processes result in

errors that are more independent, and therefore result in higher error cancellation rates? For example, if the

dermatologist wrongly assessed the first cue as present, but does not remember her initial assessment by the

time of the second cue assessment, then this could lead to a more independent, perhaps correct, second cue

assessment. The tally (i.e., 1) would still be wrong, but the resulting diagnosis would nevertheless be correct.

We will investigate whether temporally isolating, rather than grouping, the assessments of two cues in

the same case reduces the strength of the three dependency processes. In practice this can be realized by

introducing separate assessment phases, where in the first phase all cases are assessed according to only the

first cue (e.g., asymmetry), and in the second phase all cases are reassessed according to the second cue

(e.g., blue/white color). Temporally isolating cue assessments should diminish the strength of the dependency

processes because participants may not remember their first assessment for a particular case.

To simplify the experiment, we assumed that a valid strategy is known a priori and used only two cues

to assess the final criterion. Furthermore, to control for other factors such as ambiguous cases, untypical

appearance, and strength of cues, we created artificial stimuli that resembled skin lesions (Appendix B1).

Apart from the sequential diagnostic procedure, the probabilistic structure of the environment should as

well influence a person’s decision making process (Todd, Gigerenzer, & ABC Research Group, 2012). For

example, in environments with correlated cues, the presence (or absence) of one cue predicts—to the extent

of the correlation—the presence (or absence) of the other cue. Individuals will likely learn the underlying

cue correlation of the environment and integrate that into their decision-making process. Specifically, we

hypothesize that the confirmatory evidence accumulation process is influenced by the underlying correlation

between to cues. A high cue correlation implies that congruent cases (i.e., cases where both cues are present

or both are absent) occur more often than incongruent cases (i.e., cases where only one cue is present).

If individuals search for patterns that are congruent with the hypothesis of the first cue assessment then

the confirmatory evidence accumulation process should be amplified in environments where there are more

congruent than incongruent cases, resulting in both, an increased discrimination ability for congruent cases,

and a decreased discrimination ability for incongruent cases. We therefore implemented two environments:

one in which the correlation between the two cues was zero and one in which the correlation was +0.6.
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Experiment: What Induces Dependencies and Can They be Reduced?

Stimuli

To simplify our experimental design and analyses we diverged from the three-point checklist of dermoscopy

(Zalaudek et al., 2006) to a generic design with synthetically created stimuli that resembled skin lesions, which

we called “cell structures.” The stimuli were created in Python using the ImaGen package for creating pattern

distributions.1 The stimuli varied on two cues: bright color patches in the cell structure and an irregular

network structure containing connected thin lines and cavities (Appendix B, Figure B1). The criterion to

be diagnosed was whether the cell structure was “problematic” or “normal.” We constructed the criterion

value such that two present cues corresponded to a problematic cell structure, and zero or one present cue

to a normal cell structure. Participants were asked to assess each cue individually in order to differentiate

problematic cell structures from normal cell structures using the tallying rule, which prescribed that a tally of

2 (i.e., a presence of two cues) indicated a problematic cell structure; a lower tally indicated that the stimulus

could be regarded as normal. We conducted a pilot experiment and adjusted the strength of the cues in the

cell structures until participants’ average performance was approximately 70% correct—better than chance,

yet leaving room for improvement.

Two Statistical Environments: Zero Versus Positive Intercue Correlation

To investigate whether different correlations between cues influence the dependency processes, we used the

� coefficient, a measure of association for two binary variables, to create two cue correlation environments:

high correlation (� ⇤ +0.6) and zero correlation (� ⇤ 0; Table 1).2 Participants were randomly assigned

to one of the environments. Each environment had 250 stimuli and all participants within one environment

saw the same set of stimuli. The base rate of the presence of each cue was set to 0.5 for both cues in both

environments. Furthermore, with a tallying threshold of 2 to issue a problematic diagnosis, the base rate of

the criterion event was 0.25 in the no-correlation environment and 0.4 in the high-correlation environment.

The positive predictive value (PPV) per cue for the criterion event was 0.5 in the no-correlation enviroment

and 0.8 in high-correlation environment.3

Assessment Conditions: Grouped Versus Isolated Assessment of Cues

Staying close to the sequential diagnostic procedure of the three-point checklist (Argenziano et al., 2003;

Zalaudek et al., 2006), participants evaluated cases in the grouped cue assessment condition according to
1python.org; https://ioam.github.io/imagen/
2� ⇤

n++n���n+�n�+p
n+r n�r nc�nc+

, where n++ , n+� , n�+ , n��, are numbers of observations per cell that sum to n, the total number of
observations. n+r n�r are the marginal sums of rows, and nc�nc+ are the marginal sums of columns (Table 1).

3
PPV ⇤

number of true positives
number of true positives + number of false positives , where a “true positive” is the event that for example cue S was present

and the objective diagnosis was problematic, and a “false positive” is the event that for example cue S was present and the
objective diagnosis was normal.

python.org
https://ioam.github.io/imagen/
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Table 1. Frequency table of structure (S) and color (C) cues in both correlation environments

a) � ⇤ 0

S+ S -

C+ 63 62
C - 62 63

b) � ⇤ 0.6

S+ S -

C+ 100 25
C - 25 100

the first cue, then the second cue, and finally offered an overall diagnosis. That is, participants made three

subdecisions before assessing the consecutive case (Figure 1).

Conversely, in the isolated cue assessment condition, participants first evaluated all cases according to one

cue (e.g., bright color patches; phase 1). They then saw the same ordered set of cases again assessed the

presence of the second cue (e.g., irregular network structure) and gave their final diagnosis (phase 2). Thus,

participants in the isolated condition saw all cases twice, whereas participants in the grouped condition saw

the cases only once (Figure 1).

Procedure

The experiment was conducted at the laboratory of the Center for Adaptive Rationality at the Max Planck

Institute for Human Development in Berlin. At the beginning of the experiment, we collected participants’

age, gender, field of study (medicine or other), and experience with dermoscopy (the examination of skin

Color?

Structure?

Final 
Diagnosis?

1
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Structure?

Final 
Diagnosis?

1

1

2

2

2

Grouped cue assessments Isolated cue assessments

Color?

Color?

1

2

1

1
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2

Structure?

Final 
Diagnosis?

Structure?

Final 
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Figure 1. Cue assessment conditions. Numbers indicate individual cases. In the grouped condition (left) a case (1) is
fully assessed (i.e., color, structure, final diagnosis) before the next case (2) is assessed. In the isolated condition (right),
all cases (1–2) are first assessed according to one cue (color, Phase 1), then all cases (1–2) are assessed according to
the second cue (structure) and a final diagnosis is made (Phase 2).
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lesions with a dermatoscope).4 The experiment procedure was structured into three parts—tutorial, training,

and testing—and consisted of 14 blocks in total, with 25 cases per block. The first two blocks were part of the

training phase and the remaining blocks 3–14 belonged to the testing phase. In total each participant assessed

250 cases.

Tutorial. In the tutorial we informed our participants that the task was similar to a diagnostic procedure for

classifying skin lesions in professional practice, but that the stimuli in the experiment were synthetically created

cell structures resembling skin lesions. Participants were introduced to the two-point checklist and saw in total

twelve example cases of cell structures in the following order: three containing the first cue (e.g., bright color

patches), three cell structures without cues, three containing the second cue (i.e., irregular network structure),

and again three cell structures without cues. Participants were also provided with a handout summarizing the

information from the tutorial and were instructed to study the handout before continuing with one practice

case. By completing the practice case participants were familiarized with the actual task: They saw the task

structure, pressed the response keys, and could only continue to the next part once they pressed the correct

keys. In total participants made three subdecisions per case—first cue, second cue, and final diagnosis—

before assessing the consecutive case. For each subdecision participants provided a confidence judgment.

Furthermore, we recorded reaction times for decisions and confidence judgments. Participants first evaluated

the presence of one cue (e.g., irregular network structure), and provided their confidence in their decision on

a half range [50%, 60%, 70%, ..., 100%] probability scale. They then evaluated the presence of the second

cue (e.g., bright color patches), followed by a confidence judgment in their decision. Finally, they applied

the tallying rule to make an overall diagnosis (“problematic” vs. “normal”), again followed by a confidence

judgment in their overall diagnosis. We have not yet analyzed confidence judgments.

Training. In the two training blocks participants were provided with immediate feedback after each subde-

cision. During the first block, participants could review the handout, which explained the two-point checklist

and the visual appearance of the cues. After the first training block, the handout was taken away. All par-

ticipants were trained in the grouped cue assessment format, but experienced both assessment conditions in

separate phases in the testing phase.

Testing. In the testing phase (blocks 3–14) participants were no longer provided with feedback. During the

whole experiment participants were free to take as much time as needed to make a decision, yet were informed

that in order to finish within approximately one hour, they should not take more than 10 seconds per case.

Participants

100 participants (54 female, median age = 27) were recruited from the subject pool of the Center for Adaptive

Rationality at the Max Planck Institute for Human Development. Participants received a show-up fee of e 14
4Nine participants studied medicine, and three had experience with dermoscopy. In the analyses presented here, we did not

take field of study or experience into account.
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and were additionally rewarded with e 0.01 per correct subdecision; in total participants could earn up to

e 21.50.

Assignment to environments, conditions and cue order. Participants were randomly assigned to

either the zero or 0.6 correlation environment. The order of assessment conditions was counterbalanced across

participants, such that half of the participants started the testing phase in the grouped condition, the other

half in the isolated condition. Likewise, the order of cues was counterbalanced across participants, such that

half of participants—in both assessment conditions—evaluated first the color cue and then the structure cue,

and the other half assessed first structure then color.

Statistical Analysis

We modeled our data using a signal detection theory (SDT) framework (Macmillan & Creelman, 2004). SDT

classifies binary decisions into four categories: hits, misses, false alarms, and correct rejections (Table 2). A hit

corresponds to a “yes” response for a signal trial (i.e., a trial with a truly present cue), while a miss corresponds

to a “no” response for a signal trial. A false alarm implies a “yes” response for a noise trial (i.e., a trial where

the cue was absent) and a correct rejection means a “no” response for a noise trial.

The basic idea behind SDT is that signal and noise trials can be quantified as values on an arbitrary

unidimensional “strength” scale. Whenever individuals see either a signal or noise trial, they experience

them as intensities that vary according to a unimodal distribution along this strength scale. If a person can

discriminate between signal and noise trials, then in SDT terms the signal distribution has, on average, higher

strength values than the noise distribution. SDT assumes that a person has an a priori fixed criterion value

which is compared to the strength of a trial. If the strength of the trial exceeds the criterion value, a “yes”

response results; if not, the result is a “no” response. In the standard, Gaussian equal variance SDT model,

variances of both distributions are set to one and the mean of the noise distribution is set to zero. The mean of

the signal distribution is d
0, which makes d

0 a measure of discrimination, because it corresponds to the distance

between the means of the noise and signal distributions. An increasingly higher d
0 indicates an increasingly

higher discrimination ability. When signal and noise trials occur equally often, d
0/2 constitutes the unbiased

criterion value. The distance between a person’s actual criterion and the unbiased criterion is denoted c, which

makes c a measure of bias. Positive values of c indicate a strict threshold, that is, a bias towards saying no,

whereas negative values of c indicate a lenient threshold, that is, a bias towards saying yes (Macmillan &

Creelman, 2004).

Table 2. Signal Detection Theory Categories

Signal trial Noise trial

Yes response Hit False alarm
No response Miss Correct rejection
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To test our hypotheses we implemented a hierarchical SDT model and used Bayesian estimation techniques

(Kruschke, 2014; Lee & Wagenmakers, 2014) to estimate the model parameters and the effects of the assessment

conditions and environments on those parameters (Appendix B, section B2).5 The hierarchical structure

implies that each participant-level parameter (c and d
0) of the SDT model comes from a higher order group-

level distribution. We described the higher order group-level distributions for c and d
0 with a Gaussian normal

distribution,
c ⇠ N(µ, ⌧)

d
0 ⇠ N(µ, ⌧),

(1)

where parameters µ and ⌧ are the mean and precision (the inverse of variance).6 The resulting posterior dis-

tributions of the parameters illustrate the credibility given the data. We summarize the posterior distributions

by reporting medians as point estimates and the 95% credible interval (CI)—that is, the upper and lower

values between which 95% of the samples fall. When displaying effect sizes in figures, we highlight a “region

of practical equivalence” for which Cohen’s d
0s effect size is conventionally considered to be small (from -0.1

to +0.1; Kruschke, 2013). Analyses were conducted in the statistical computing software R (R Core Team,

2013) using JAGS (Plummer et al., 2003) via the R2jags package (Su & Yajima, 2015).

Hypotheses

We preregistered our hypotheses before data collection at https://aspredicted.org/blind.php?x=jh9ad7.

Hypothesis 1: Confirmatory response effect

1. If the first cue was judged as absent, criterion c for the second cue assessment will be more strict (i.e.,

the participant is more likely to assess the second cue as absent) than when the first cue is judged as

present.

2. In the isolated condition (compared to the grouped condition), criterion c for the second cue assessment

should depend less on whether the first cue was judged as present or absent.

Hypothesis 2: Confirmatory evidence accumulation

1. If the first cue assessment is congruent with the true cue value of the second cue, discrimination d
0 for

second cue assessments will be higher than when the first cue assessment is incongruent with the true
5Given that we collected response times for each decision, it would have been possible to analyze our data with a hierarchical

drift diffusion model (DDM; Ratcliff & McKoon, 2008; Vandekerckhove, Tuerlinckx, & Lee, 2011). Drift diffusion models can
quantitatively predict both choice and response times, whereas SDT models predict choices only. This is an advantage of the
DDM because it is possible that some dependency processes affect response times but not the observed choices, or multiple, even
antagonistic effects on different decision-making parameters (Pleskac, Cesario, & Johnson, 2018). Because of these advantages we
began our analyzes with a hierarchical DDM but eventually had to conclude that our data could not be fitted by the DDM as it
cannot account for the multimodal response time distributions we observed (Figure B2 in Appendix B)—rendering the parameter
estimates of the model invalid for interpretation.

6For priors for those Gaussian group-level distributions, we used a Gaussian normal distribution N(0, .001) for µ and a gamma
distribution G(.001, .001) for ⌧ (precision).

https://aspredicted.org/blind.php?x=jh9ad7


70

cue value of the second cue. This effect should be stronger when � ⇤ 0.6, because congruent cases occur

more often, than when � ⇤ 0.

2. In the isolated condition (compared to the grouped condition), discrimination d
0 for second cue assess-

ments should depend less on whether the first cue assessment was congruent or incongruent with the

true cue value of the second cue.

Hypothesis 3: Relevance effort effect

1. If the first cue was judged as present (relevant second cue assessment), discrimination d
0 of second

cue assessments should be higher than when the first cue was judged as absent (irrelevant second cue

assessment).

2. In the isolated condition (compared to the grouped condition), discrimination d
0 for second cue assess-

ments should depend less on whether the first cue was judged as present or absent.

Results

Descriptive Results of Training and Testing Phase

Training phase. Figure 2 illustrates participants’ balanced accuracy during the training phase.7 Partici-

pants categorized the two cues and provided final diagnoses with median balanced accuracy ranging between

.68 and .74 in the � ⇤ 0 environment and between .69 and .79 in the � ⇤ 0.6 environment.

Testing phase Participants’ median balanced accuracies improved from the training to the testing phase.

In general, first cue assessments had higher median balanced accuracies (ranging between .80 and .87) than

second cue assessments (ranging from .73 to .76) throughout environments and conditions (Figure 3). We

did not expect this finding and will return to this in the General Discussion. The next sections present the

effects of the dependency processes in grouped and isolated cue assessments, and the differences between both

conditions. Finally, we outline exploratory findings about the downstream consequences of the tallying rule

on the final diagnosis.

Dependency in Grouped Cue Assessments

We hypothesized that the sequential diagnostic procedure of tallying (i.e., grouped cue assessments) would

induce dependencies between cue assessments. The confirmatory response effect hypothesis (Hypothesis 1)

predicted an effect on the criterion c, a measure of bias. Recall that positive values of c indicate a strict

threshold, that is, a bias towards saying “absent,” and negative values of c indicate a lenient threshold, that

is, a bias towards saying “present.” The confirmatory response effect hypothesis predicted a positive c (i.e.,
7Balanced accuracy ⇤ (hit rate+ 1 - false alarm rate)/2. Balanced accuracy can deviate from proportion correct whenever the

number of signal and noise trials differ. The high correlation environment had more signal than noise trials.
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Figure 2. Training results. Empirical cumulative distribution function (ECDF; y-axis) of participants’ balanced
accuracies (x-axis) in the training phase, separately per environment and cue assessment. The ECDF depicts the
proportion of observations with a value at or below the value on the x-axis. The dotted horizontal line (at 50%) shows
the median. Median values ranged between .68 and .74 when � ⇤ 0 and between .69 and .79 when � ⇤ 0.6.
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Figure 3. Testing results. Empirical cumulative distribution function (ECDF; y-axis) of participants’ balanced
accuracies (x-axis) in the testing phase, separately per environment, assessment condition, and cue position. The
ECDF depicts the proportion of observations with a value at or below the value on the x-axis. The dotted horizontal
line (at 50%) shows the median. Median values for first cue assessments (red line) ranged between .80 and .86, and
between .74 and. 76 for second cue assessments (blue line).
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Figure 4. Posterior estimates of signal detection measures (criterion c and discrimination d
0) for second cue assessments

at the group level. Symbols indicate the median posterior value, bars the 95% credible interval (CI), separately
per environment, hypothesis, and assessment condition. For the criterion c positive values indicate a bias towards
responding “absent,” while negative values indicate a bias towards responding “present.” Discrimination d

0 is a measure
of participants’ ability to discriminate between the signal (i.e., present) and noise (i.e., absent) trials and corresponds
to the distance between signal and noise distributions. Increasingly positive values indicate increasing discrimination.
Differences are stronger in the � ⇤ 0.6 environment than in the � ⇤ 0 environment. a) Estimates in the � ⇤ 0.6
environment were in line with the predicted pattern of the confirmatory response effect hypothesis (Hypothesis 1).
When the first cue was assessed as absent, criterion c for second cue assessments was higher (i.e., participants were
biased to judge the second cue assessment to be absent) than when the first cue was assessed as present (i.e., participants
were biased to say present for the second cue assessment). b) Estimates in the � ⇤ 0.6 environment corresponded
with the predicted pattern of the confirmatory evidence accumulation hypothesis (Hypothesis 2). When the first cue
assessment was congruent with the true state of the second cue, discrimination d

0 was higher than when the first cue
assessment was incongruent with the true state of the second cue. c) Estimates differed more in the � ⇤ 0 environment,
but in the opposite direction of what the relevance effort effect hypothesis (Hypothesis 3) predicts: When the second
cue assessment was irrelevant for the overall diagnosis, discrimination d

0 was higher than when it was relevant for the
overall diagnosis.
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biased towards an “absent” assessment) for second cue assessments, when the first cue was judged as absent

and a negative c (i.e., biased towards a “present” assessment) when the first cue was judged as present in the

grouped cue assessment condition. Figure 4 summarizes the posterior distributions for the signal detection

measures at the group level (i.e., criterion c and discrimination d
0) and Figure 5 summarizes the posterior

distributions of the differences between assessment conditions (expressed as Cohen’s d effect sizes). In line

with this hypothesis, we observed a confirmatory response effect for grouped cue assessments in the � ⇤ 0.6

environment (Cohen’s d = 0.55, 95% � CI [0.12, 0.99]). This result shows that second cue assessments are

biased towards the initial cue assessment (Figure 4a & Figure 5a). We did not find this effect in the � ⇤ 0

environment (Cohen’s d = -0.15, 95% � CI [-0.58, 0.26]; Figure 4a, Table 3), suggesting that the underlying

cue correlation moderates the confirmatory response effect.

The confirmatory evidence accumulation hypothesis (Hypothesis 2) predicted an effect on the discrimination

measure d
0, a measure of how well one can differentiate between signal (i.e., “present”) and noise stimuli (i.e.,

“absent”). Increasing values of d
0 correspond to increasingly higher discrimination ability. The hypothesis

predicts a higher d
0 for second cue assessments if the first cue assessment was congruent with the true state of

the second cue compared to when the first cue assessment was incongruent with the true state of the second

cue. We also expected that this effect would be stronger when � ⇤ 0.6 than when � ⇤ 0. Consistent with

our hypothesis, we observed a confirmatory evidence accumulation effect for grouped cue assessments in the

� ⇤ 0.6 environment (Cohen’s d = 0.73, 95% � CI [0.29, 1.22]; Table 3), showing that discrimination d
0 for

second cue assessments was better (i.e., higher) when the first cue assessment was congruent with the true

state of the second cue (Figure 4b & Figure 5b). We did not find this effect in the � ⇤ 0 environment (Cohen’s

d = -0.19, 95%�CI [-0.64, 0.25]; Table 3), suggesting that the underlying cue correlation moderated the effect

of confirmatory evidence accumulation (Figure 4b, Table 3).

Finally, according to the relevance effort effect hypothesis (Hypothesis 3), d
0 for second cue assessments in

the grouped condition was expected to be higher (i.e., better discrimination) when the second cue was relevant

for the overall diagnosis, compared to when it was not relevant. With a tallying threshold of 2, the second cue

was relevant for the overall diagnosis whenever the first cue was assessed as present and irrelevant otherwise.

In contrast to our hypothesis, the results showed the reverse pattern when � ⇤ 0 (Cohen’s d = -0.44, 95%�CI

[-0.87, 0.01], Figure 5c), that is, a higher discriminability when the second cue was irrelevant for the overall

diagnosis. Differences in the � ⇤ 0.6 environment were less pronounced (Cohen’s d = -0.35, 95% � CI [-0.83,

0.13]; Figure 5c). However, in both environments the posterior distributions’ 95% � CI’s overlapped with the

region of practical equivalence (Table 3).

Isolating Cue Assessments

The purpose of the isolated cue assessment condition was to investigate whether the hypothesized dependency

effects could be reduced. In this condition all cases were first assessed according to one cue, then all cases

were again assessed according to the second cue and the final diagnosis. Figure 5 shows the dependency effects
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Figure 5. Dependency effects on second cue assessments as revealed by signal detection measures (criterion c and
discrimination d

0) at the group level. The x-axis shows the posterior distributions of the respective differences at the
group level (expressed as Cohen’s d effect sizes). Symbols indicate the median posterior value, bars the 95% credible
interval (CI). The shaded region ranging between �0.1 and +0.1 highlights the region of practical equivalence, for which
Cohen’s d effect size is conventionally considered to be small (from �0.1 to +0.1). Comparisons are between second cue
assessments, depending on whether the first cue was a) assessed as absent/present, b) congruent/incongruent with the
true state of the second cue, or c) whether the second cue assessment was relevant/irrelevant for the final diagnosis.
Results are shown separately per environment, hypothesis, and assessment condition. We predicted positive effect sizes
for the grouped condition and smaller (or even zero) effect sizes in the isolated condition. In a) and b) but not in c)
grouped cue assessments showed the predicted effects when � ⇤ 0.6, but not when � ⇤ 0. Contrary to predictions,
isolated cue assessments showed positive effect sizes in a) in both environments and in b) for � ⇤ 0.6, suggesting that
dependency effects could not be reduced. c) We observed the opposite of our predicted pattern for both grouped and
isolated cue assessment when � ⇤ 0, but not when � ⇤ 0.6.

between cue assessments for the isolated condition. We observed a confirmatory response effect (Figure 5a;

Cohen’s d = 0.76, 95% � CI [0.28, 1.22]) and a confirmatory evidence accumulation effect (Cohen’s d = 1.01,

95% � CI [0.49, 1.58]) in the � ⇤ 0.6 environment (Figure 5b), but no relevance effort effect (Cohen’s d =

-0.08, 95% � CI [-0.58, 0.42]) in the � ⇤ 0.6 environment. All effect sizes for the hypotheses in the isolated

cue assessment condition can be found in Table 3.

Figure 6 and Table 3 illustrate the effect sizes of the differences between grouped and isolated cue as-

sessments. Results show that almost all effect sizes are around zero (or include the zero value) for each

hypothesized dependency effect and in both environments, implying that isolating cue assessments in time did

not reduce dependency between cue assessments (Figure 6, Table 3).
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Table 3. Summary of effects within and between assessment conditions

Variable Cohen’s d 95% � CI

A) Dependency effects in grouped cue assessments

Environment: � ⇤ 0
Confirmatory response effect (c) -0.15 [-0.58, 0.26]
Confirmatory evidence accumulation (d

0) -0.19 [-0.64, 0.25]
Relevance effort effect (d

0) -0.44 [-0.87, 0.01]

Environment: � ⇤ 0.6
Confirmatory response effect (c) 0.55 [0.12, 0.99]
Confirmatory evidence accumulation (d

0) 0.73 [0.28, 1.22]
Relevance effort effect (d

0) -0.35 [-0.83, 0.13]

B) Dependency effects in isolated cue assessments

Environment: � ⇤ 0
Confirmatory response effect (c) 0.40 [-0.04, 0.87]
Confirmatory evidence accumulation (d

0) -0.02 [-0.47, 0.42]
Relevance effort effect (d

0) -0.52 [-0.95, -0.09]

Environment: � ⇤ 0.6
Confirmatory response effect (c) 0.76 [0.28, 1.22]
Confirmatory evidence accumulation (d

0) 1.01 [0.49, 1.58]
Relevance effort effect (d

0) -0.08 [-0.58, 0.42]

C) Assessment effects: Grouped minus isolated condition

Environment: � ⇤ 0
Confirmatory response effect (c) -0.55 [-1.19, 0.07]
Confirmatory evidence accumulation (d

0) -0.17 [-0.52, 0.18]
Relevance effort effect (d

0) 0.08 [-0.53, 0.69]

Environment: � ⇤ 0.6
Confirmatory response effect (c) -0.21 [-0.84, 0.44]
Confirmatory evidence accumulation (d

0) -0.27 [-1.01, 0.43]
Relevance effort effect (d

0) -0.26 [-0.95, 0.42]

Note: 95%�CI = 95% credible interval. Effect sizes (Cohen’s d) are calculated
so that positive values correspond to effects in the predicted direction.

Exploratory Analysis

Dependencies in sequential assessments will not only affect the accuracy of cue assessments, but also that

of final diagnoses. Here we present a descriptive exploratory analysis on the given and implied diagnoses.

A given diagnosis is simply a participant’s answer to the question, “Is this cell structure problematic?” An

implied diagnosis is the diagnosis that would follow from strictly applying the tallying rule to participants’

cue assessments. A given diagnosis can differ from an implied diagnosis in both the grouped assessment and

the isolated assessment conditions. In the grouped assessment condition this could occur if a participant does

not strictly apply the tallying rule, perhaps due to having changed their mind about one cue assessment and

therefore “internally” changing the tally and hence the diagnosis. In the isolated condition a participant’s
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Figure 6. Difference between grouped versus isolated cue assessment on signal detection measures c and d
0. The x-

axis shows the posterior distributions of differences (expressed as Cohen’s d effect sizes). Symbols indicate the median
posterior value, bars the 95% credible interval (CI). The shaded region ranging between �0.1 and +0.1 highlights the
region of practical equivalence, for which Cohen’s d effect size is conventionally considered to be small (from �0.1
to +0.1). Results are shown separately per environment and hypothesis. We predicted positive effect size differences
(grouped assessment condition minus isolated assessment condition). Differences are either zero or negative, but in all
cases effect sizes include the zero value.

implied diagnosis can differ from their given diagnosis if they do not remember their first given cue assessment

when they later assesses the second cue; in this scenario, a participant could arrive at a different diagnosis (in

principle, this reasoning could apply for the grouped condition as well, but is unlikely, since the two assessments

are made successively). Figure 7 suggests that in the isolated condition participants’ implied diagnoses were

more accurate than their given diagnoses, although the effect sizes were small, with Cohen’s d ⇤ 0.27 in the

� ⇤ 0.6 environment and Cohen’s d ⇤ 0.24 in the � ⇤ 0 environment. The implied diagnoses in the isolated

condition were better than the given diagnoses of the grouped condition in the � ⇤ 0.6 environment (Cohen’s

d ⇤ 0.36), but we observed the reverse pattern in the � ⇤ 0 environment (Cohen’s d ⇤ �0.2).

General Discussion

Each year an estimated 200,000 patients in the United States alone die from preventable medical errors (Andel,

Davidow, Hollander, & Moreno, 2012); many more undergo serious harm, disability, and false treatment

(Berner & Graber, 2008; Blendon et al., 2002) and suffer the legal and financial consequences thereof (Andel
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Figure 7. Accuracy of given and implied diagnoses. Empirical cumulative distribution function (ECDF; y-axis) of
participants’ balanced accuracies (x-axis) for final and implied diagnoses, separately per environment and assessment
condition. Implied diagnoses (blue line) are more accurate than the given diagnoses (red line). This trend was stronger
in the � ⇤ 0.6 environment and in the isolated assessment condition. The ECDF depicts the proportion of observations
with a value at or below the value on the x-axis. The dotted horizontal line (at 50%) shows the median.

et al., 2012; Kahneman, Rosenfield, Gandhi, & Blaser, 2016). Growing literature suggests that a majority of

diagnostic errors can be attributed to an individual doctor’s cognitive processes (Graber, Franklin, & Gordon,

2005; Hussain & Oestreicher, 2017; Norman & Eva, 2010; but see Sherbino et al., 2012). Identifying the

cognitive processes underlying diagnostic errors is thus a major step toward improving health care and patient

safety (Thammasitboon & Cutrer, 2013). Here we investigated whether the sequential diagnostic procedure

of a tallying rule induces cognitive dependency processes and studied how such dependency processes could

be reduced. Based on previous research we enlisted three mutually compatible processes: the confirmatory

response effect, which biases an individual towards the hypothesis corresponding to the first piece of evidence

they encounter; the confirmatory evidence accumulation process, which influences an individual’s evidence

accumulation towards the hypothesis corresponding to the first piece of evidence they encounter; and the

relevance effort effect, which influences an individual’s effort depending on the relevance of the consecutive

cues for the final diagnosis. We created two environments with different cue correlations (i.e., � ⇤ 0 and

� ⇤ 0.6) and studied whether dependency can be reduced by temporally isolating cue assessments in the same

case.

Dependency Processes in Grouped Cue Assessments

Our results showed the presence of the confirmatory response effect and the confirmatory evidence accumulation

process in an environment with a positive correlation between cues, and not in an environment where cues
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were uncorrelated. However, if the sequential diagnostic procedure of tallying induces cognitive dependency

processes, then these processes should also have appeared in the no-correlation (� ⇤ 0) environment. Since

we found the effects only in the correlation (� ⇤ 0.6) environment, this suggests that the correlation among

cues moderates the dependency processes. Indeed, research has shown that individuals are sensitive to the

underlying probabilistic structure of the environment and adapt their decision-making strategies accordingly

(Jarecki, Meder, & Nelson, 2018; Pachur & Olsson, 2012; Pleskac & Hertwig, 2014). This raises a normative

question that should be addressed in future studies: To what extent it is adaptive to integrate the underlying

probabilistic structure of an environment into one’s decision-making process? With regard to our confirmatory

response effect hypothesis, we speculate that, when making decisions under uncertainty, it may be beneficial

for the accuracy of second cue assessments to adapt one’s criterion c (i.e., bias) according to the probabilistic

environment. For instance, when the presence of the first cue predicts the presence of the second cue (correlated

environment) and the first cue is assessed as present, lowering one’s threshold for the second cue (i.e., one’s

bias toward an assessment of “present”) could increase the accuracy of the second cue assessment. Conversely,

when the absence of the first cue predicts the absence of the second cue and the first cue was assessed as

absent, then raising one’s threshold for the second cue (i.e., one’s bias toward an assessment of “absent”) could

increase the accuracy of the second cue assessment.

However, to normatively assess the extent to which individuals should adapt their criterion value c not only

depends on the consequences for the accuracy of the second cue assessment, but also on the consequences for

the overall diagnosis as implied by the tallying rule. Consider a case where the first cue assessment was wrongly

judged as present, making an individual more likely to judge the second cue assessment as present. Then,

even if this tendency would make it more likely that the second cue is assessed correctly, the downstream

consequences of both cues being judged as present can nevertheless lead to a wrong final diagnosis. The

downstream consequences of the two cue assessments on the final diagnosis should be addressed in future

studies.

Concerning our confirmatory evidence accumulation hypothesis, we predicted that individuals search for

patterns that are congruent with their assessment of the first cue, resulting in increased discrimination for

congruent cases and decreased discrimination for incongruent cases. This process should be amplified in

environments where there are more congruent than incongruent cases (i.e., a high cue-correlation environment).

The pattern of our results was in line with the predicted pattern—there was a stronger effect in the correlation

compared to the no-correlation environment. It could be that when individuals learn the cue correlation

and use the presence of one cue to make inferences about the presence of another cue, this not only affects

the response tendency (i.e., criterion c) but also directs an individual’s attention more strongly to search for

congruent information.

To investigate whether individuals are well adapted to the environment, future research should study

whether individuals who displayed a confirmatory response effect also followed a confirmatory evidence ac-

cumulation process and vice versa. If both processes happen simultaneously within an individual, how does

that affect their accuracy for second cue assessments and the final diagnosis, in comparison to individuals who
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only display one or none of the processes? For example, if both processes happen simultaneously, would they

cancel or amplify effects on accuracy for second cue assessments and the final diagnosis?

With respect to the role of adaptive decision making in our relevance effort effect hypothesis, there is little

reason to assume that adapting one’s effort according to the underlying cue correlation in the environment is a

reasonable strategy. Rather, it would be desirable to keep one’s effort high at any point in time, independent

of the cue correlation, in order to maximize the accuracy of second cue assessments.

The finding that we observed the opposite of the expected pattern for the relevance effort effect in the

� ⇤ 0 environment remains surprising. We hypothesized that the effort spent on the second cue assessment

depends on the relevance of the second cue for the overall diagnosis. If the first cue was assessed as present

and therefore the second cue assessment can change the final diagnosis (if the second cue is assessed as present

the overall diagnosis is “problematic” and if assessed as absent the final diagnosis is “normal”), the effort in

assessing the second cue should stay high. However, when the first cue was assessed as absent, making the

second cue irrelevant for the final diagnosis, the effort in assessing the second cue should decline. To our

surprise, we observed the opposite effect: Individuals put more effort in their second cue assessment when the

second cue was irrelevant for the final diagnosis as compared to when it was relevant. We currently cannot

offer an explanation for this result.

Isolating Cue Assessments

We investigated whether temporally isolating cue assessments can reduce the cognitive dependency processes.

When assessing the second cue, individuals might not remember their first cue assessment; therefore isolating

cue assessments should reduce dependency effects. However, we found no such effects. All dependency processes

we found also appeared in the isolated condition and, in fact, the confirmatory response effect appeared in

the isolated condition but not in the grouped condition (i.e., for criterion c when � ⇤ 0). This finding implies

that participants’ decision processes were similar in both assessment conditions, that is, during the second

phase of the isolated condition participants were probably reassessing the first cue and only then the second

cue. It is possible that participants proceduralized their decision-making behavior in the grouped assessment

condition during the training phase, such that they automatically assessed the first cue and then the second

cue in the isolated assessment condition. Furthermore, participants were asked to make a final diagnosis in

the second phase of the isolated condition, therefore, to give a final diagnosis, they had to take the first cue

into account. Because our goal was to investigate whether it is possible to apply the tallying rule but reduce

dependency by isolating cue assessments, we deliberately decided to collect a final diagnosis in the isolated

condition in order to emphasize the tallying rule—the ultimate goal of the rule is to make a final diagnosis

and all hypothesized dependency effects depend on the tally. However, this design may have come at the cost

of rendering the isolated condition ineffective.

Future research should address different methods for reducing dependency and investigate whether more

independent judgments eventually result in improved final diagnoses. One method could be to randomize



80

the cue order within participants instead of the current design of keeping it constant. On the one hand,

randomizing the cue order might prevent individuals from proceduralizing the sequential assessment of both

cues and therefore reduce the dependency processes. On the other hand, randomizing the order may make

assessing the cues more effortful—and potentially error-prone—because of the mental costs of task-switching.

Another possibility would be to not ask for a final diagnosis in the second assessment phase, but instead have

three separate assessment phases: one for cue one, a second for cue two, and a third for the final diagnosis.

However, we believe that the best procedure would be to eliminate the final diagnosis altogether and only

aggregate the individual cue assessments mechanically using the tallying rule. Depending on the performance

of such a procedure, new assessment methods can be developed.

Performance of Second Cue Assessments

Our descriptive analysis showed that throughout the training and testing phase, in both assessment conditions

and cue correlation environments, participants’ accuracy on second cue assessments was consistently lower

than that of their first cue assessments—independent of which of the two cues (i.e., color or structure) was

first (Figure 3). This finding is unexpected. Future studies should investigate whether the effect diminishes

when individuals merely learn to categorize cues without learning the tallying rule.

Next Steps in Studying Cognitive Dependencies in Sequential Diagnostic Reasoning

Tasks

Future research should expand on at least three points. First, we attempted to isolate cue assessments to de-

crease the dependency between cue assessments, but we might not have fully exploited the potential of isolating

cue assessments. As discussed above (“Isolating Cue Assessments”) participants might have proceduralized the

grouped cue assessment format, leading them to consistently assess the first cue and then the second cue even

in the isolated condition. Furthermore, in the second phase of the isolated condition, participants also had

to provide a final diagnosis, which required them to reassess the first cue. Possible alternatives to reduce

dependency would be to randomize the cue order within participants, or to introduce three assessment phases

(i.e., one for cue one, a second for cue two and a third for the final diagnosis). The strongest test, however,

would be to omit the final diagnosis altogether and mechanically derive the implied final diagnosis by applying

the tallying rule to participants’ cue assessments.

Second, another source of noise in cue assessments could result from interference in visual information

processing. Anticipating the order of cue assessments (e.g., first cue A, then cue B and the final diagnosis,

before moving to the next case), might result in holistic processing of both visual cues and potentially lead to a

diminished discrimination ability for both cues. Investigating whether individuals who learned to discriminate

only one cue perform differently from individuals who learned to discriminate both could be used to further

develop methods to harness the wisdom of crowds, where diagnostic judgments are aggregated across individ-

uals (Kämmer, Hautz, Herzog, Kunina-Habenicht, & Kurvers, 2017; Kurvers et al., 2016). For example, one
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method could be to aggregate cue assessments of individuals who were only trained in assessing one of several

cues and then mechanically derive the final diagnosis from the individuals’ aggregated cue assessments.

Third, in a typical clinical setting physicians have a limited amount of time to dedicate to each patient. In

our experiment we investigated how individuals make decisions when there are no time constraints. It would be

informative to study whether dependency effects increase or decrease under time pressure. On the one hand,

without time pressure individuals can harness their skills to thoroughly analyze a case (Mamede et al., 2010).

On the other hand, a skilled person’s initial “gut feeling” might be the most accurate choice (Norman et al.,

2014; Sherbino et al., 2012) and any further evidence accumulation could be distorted by cognitive processes

such as the confirmatory evidence accumulation or the confirmatory response effect.

Diagnostic errors can seriously endanger patients’ health. The literature suggests that a majority of errors

result from preventable cognitive processes (Andel et al., 2012; Berner & Graber, 2008; Blendon et al., 2002).

Our study provides first insights into the cognitive processes during sequential diagnostic decision making,

taking into account the probabilistic structure of the environment. Even if individuals exhibit cognitive de-

pendency processes, future research should investigate to what extent they are adaptive and how else diagnostic

errors could be prevented.
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�� Summary and Future Directions

Inconsistency in judgments or decisions within and between individuals is commonly seen as a reason for

concern. Identical cases must be evaluated identically (among and within individuals; Kahneman, Rosen-

field, Gandhi, & Blaser, 2016); consequently, when judgments are inconsistent, some of them must be wrong.

Naturally, individuals have the urge to identify the most accurate judgment or best performing individual,

neglecting that combining judgments can perform at least as well as the most accurate judgment or individual

and sometimes even outperforms them (Soll & Larrick, 2009; Yaniv, 2004). This dissertation treated inconsis-

tent judgments from a different perspective. Extending research on the wisdom of the inner crowd (Herzog &

Hertwig, 2014), I showed in previously unexplored domains (i.e., confidence judgments of general knowledge

and medical decisions) when conflicting judgments arise and how they can be used to one’s benefit. Moreover,

this work investigated cognitive dependency processes in sequential diagnostic reasoning tasks and explored a

different procedure to reduce such dependencies. Finally, my colleagues and I reviewed four well-known aggre-

gation strategies for outer crowds from an ecological perspective and pointed out the parallels and differences

between aggregating judgments across and within individuals.

Chapter 2 addressed the accuracy of confidence judgments in two-alternative choice tasks. Despite the

often bad reputation of subjective confidence judgments, confidence is frequently used in various real-world

areas of decision making, including intelligence service (Betts, 1978; Mandel & Barnes, 2014; Mellers et al.,

2014) and eyewitness (Wixted, Mickes, Dunn, Clark, & Wells, 2016) reports, the stock market, and medical

diagnostics (Berner & Graber, 2008). How might confidence judgments be improved? Chapter 2 compared

the performance of two strategies for aggregating an individual’s conflicting confidence judgments in different

statistical environments. Using analytical and simulation approaches and empirical data, the results showed

that irrespective of the environment, averaging one’s conflicting confidence judgments improves accuracy rel-

ative to first confidence judgments. Choosing the higher confidence judgment (i.e., maximizing) instead is

risky; it harms accuracy for “wicked” items and only begins to outperform averaging once items are answered

correctly 60% of the time or more. Put differently, items must be answered correctly above chance level (50%

of the time) for maximizing to outperform averaging. This chapter provides at least three novel contributions.

First, it offers the first qualitative and quantitative comparison of two competing strategies (i.e., averaging

and maximizing) for aggregating confidence judgments. Second, it provides concrete, quantitative predictions

for each strategy’s performance. Third, it demonstrates the theoretical predictions in three empirical studies
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drawn from different domains (general knowledge, demography, and perceptual decision making).

Chapter 3 addressed the questions of when experts change their mind and what to do about it. Inconsis-

tency in expert judgment is often understood as a source of error (Kahneman et al., 2016) and can have serious

consequences; for example, when a physician makes contradicting diagnoses in repeated decisions. To under-

stand the conditions when experts change their mind, we investigated the relationship between inconsistency

in decisions, confidence judgments, and the ambiguity of a case. Are experts more likely to change their mind

when they are initially wrong? And can confidence judgments predict when experts change their mind? To

answer these and more questions, my colleagues and I used a theoretical model based on the self-consistency

model (Koriat, 2012a) and investigated the resulting predictions in two real-world high-stakes expert datasets.

Our findings are threefold. First, the stronger the consensus among experts, the less likely they were to make

a different decision the second time around, even if the consensus was wrong. This is further corroborated

by the fact that cases with high expert agreement were diagnosed with high confidence, implying that when

experts highly agree on a diagnosis that is wrong, they will confidently stick to the wrong diagnosis. Second,

when fewer experts agreed with each other, their confidence judgments became less confident. Third, the less

confident an expert’s judgment, the more likely she was to change her mind when judging the same case again.

Finally, whenever experts change their mind, our results suggest they should choose the decision with the

higher confidence. This might seem to contradict the previous chapter’s recommendation, but it is in line with

the ecological rationality of the strategy’s performance: Because experts are usually more likely to be correct

than wrong, their confidence can be used as a signal for the accuracy of their decisions and hence as a guide

for dealing with inconsistent decisions.

Chapter 4 moved from repeated judgments to the domain of sequential diagnostic decision making and

investigated how the inner crowd can be harnessed to reduce cognitive dependency processes, such as a biased

or less attentive mind. A majority of diagnostic errors can be attributed to a doctor’s cognitive processes

(Graber, Franklin, & Gordon, 2005; Hussain & Oestreicher, 2017; Norman & Eva, 2010; but see Sherbino

et al., 2012). In sequential diagnostic decision making, for example, the order of the encountered evidence

influences how consecutive pieces of evidence are evaluated (Kostopoulou, Mousoulis, & Delaney, 2009; Lange,

Thomas, & Davelaar, 2012; Rebitschek, Bocklisch, Scholz, Krems, & Jahn, 2015; Rebitschek, Krems, & Jahn,

2015). Chapter 4 investigated whether sequential diagnostic procedures induce dependencies in cognitive

processes between decisions in a sequence, taking into account the probabilistic structure of the environment.

Additionally, my colleagues and I explored whether an alternative procedure that aimed to free one’s mind

from one’s initial assessment by separating the assessments in time could reduce such dependencies. Our

results show that cognitive dependencies primarily exist in an environment with correlated cues, but that the

alternative procedure does not succeed in reducing such dependencies.

Finally, in Chapter 5 my colleagues and I took a broader perspective and reviewed four well-known aggre-

gation strategies for outer crowds, that is, for groups of several individuals, and pointed out the parallels and

differences between combining decisions in outer and inner crowds. We demonstrate how each aggregation

strategy has its own ecological niche—there is no single strategy that outperforms every other strategy across
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all statistical environments. The similarity between aggregation strategies for outer and inner crowds is, that

the success of strategies depends on the similarity of the accuracy of the aggregated judgments, diversity of

errors, and the ability to identify the better judgment. The difference is, that averaging judgments of different

individuals usually results in higher gains because error diversity between different individuals’ judgments

is higher. In sum, aggregation strategies offer a powerful tool to reduce uncertainty. However, because the

statistical properties of an environment are often unknown, individuals face a new type of uncertainty: Which

strategy should be selected? In the absence of information about the statistical environment, we suggest two

principles: (a) aggregate more rather than fewer judgments, and (b) use experience to adapt to the environ-

ment. Aggregating more judgments will balance against the risk of choosing the worst performing individual,

while accumulated experience (e.g., through feedback) can help in becoming more selective in deciding whose

judgments should be included.

In the next section I first discuss questions that were left open or newly emerged in this dissertation.

Then I transition to guiding questions for future research, and conclude with connecting the insights from the

wisdom of human crowds to a new type of crowd that is gaining increasing relevance, the crowd arising from

human–machine interactions.

What Remains Open?

One natural question that arises from the work presented in Chapter 2 is whether the accuracy of decisions

in two-alternative choice tasks can be improved through averaging or maximizing confidence judgments. In

principle, whenever binary decisions differ, averaging and maximizing their associated confidence judgments

will necessarily result in the same decision, and therefore those two strategies cannot differ in terms of the

proportion of correct decisions.1 To illustrate this with an example, assume an individual’s first answer to

the question “Sofia is the capital of: (a) Romania or (b) Bulgaria?” was “Romania” with 60% confidence.

At the second assessment the individual changed her mind and answered “Bulgaria” with 100% confidence.

Maximizing would result in choosing Bulgaria with 100% confidence. Likewise, assuming that answering

Romania with 60% confidence is equivalent to answering Bulgaria with 40% confidence, averaging would result

in choosing Bulgaria with 70% confidence. Koriat (2012b) demonstrated that selecting the decision with the

higher confidence can improve the accuracy (from 81% to 82% of correct decisions) of an individual’s decisions

in “kind” environments. Our results show an effect on the accuracy of confidence judgments, yet no consistent

effects on the accuracy of decisions when averaging or maximizing.2 However, one necessary condition to

improve the accuracy of decisions is that decisions must differ in the first place. Our participants, on average,

changed their decisions in 12% to 22% of questions—putting an upper limit on any improvements one could see
1To see why, consider two confidence judgments (coded as the confidence in the correct decision). First consider the case of

both being larger or both smaller than 0.5 (i.e., they imply the same decision): Both the more extreme confidence judgment as
well as their average remain on that same side of 0.5 and therefore imply the same decision. If the two confidence judgments are
on opposite sides of 0.5 (i.e., they imply different decisions), then the arithmetic average will be on the side of 0.5 with the more
extreme confidence judgment; and, by definition, maximizing will also choose that very same decision.

2Study 3 constitutes the only exception, with second and averaged dialectical estimates showing a mean increase of 2 percentage
points.
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in terms of proportion of correct decisions. The reason we focused on the quality of the confidence judgments

and less on the accuracy of the decisions themselves lies in the fact that confidence itself is an important

ingredient for decision making in that it will, among other things, determine whether people will act on

decisions (e.g., bets) or advice and whether they will consult additional information or advisors. That is, not

only is confidence an additional aspect of decisions, it also has tangible effects on decision making.

Given the tight connection between Chapter 2 and 3, one might wonder why we did not directly compare

averaging and maximizing confidence judgments in expert judgments. Unfortunately, experts confidence judg-

ments were either provided on a two-point or five-point verbal scale. To measure the performance of averaging

and maximizing in terms of the Brier score, we would have needed confidence judgments on a six-point scale

to translate them to a half-range [50%, 60%, 70%,... ,100%] probability scale.

Chapter 4 introduced new questions regarding the ecological rationality of dependencies in cognitive pro-

cesses during sequential diagnostic decision making. Researchers have found that the majority of medical

errors can be attributed to cognitive processes (Graber et al., 2005), and that in sequential diagnostic proce-

dures, initial assessments influence later assessments (Kostopoulou et al., 2009; Lange et al., 2012; Rebitschek,

Bocklisch, et al., 2015; Rebitschek, Krems, & Jahn, 2015). This chapter investigated whether the sequen-

tial nature of diagnostic procedures induces such dependencies between assessments, taking into account the

probabilistic structure of the environment, and explored methods to reduce cognitive dependencies. Results

show that cognitive dependency processes appeared primarily in an environment where cues were correlated,

suggesting that the probabilistic structure of the environment moderates these processes. Our findings raise

the question of to what extent it is adaptive to integrate the underlying statistical structure of the environ-

ment into one’s decision making process. Future research should, therefore, answer this normative question,

taking into account not only the accuracy of successive subdecisions in a sequence but also the final diagnosis.

Depending on the answers to these questions, further steps can be taken to reduce diagnostic errors.

Guiding Questions for Future Research

Guiding questions for future studies can be broadly divided into two streams, a cognitive stream that gets to

the bottom of the phenomenon of the inner crowd, and another, more applied stream that explores possible

implementations of inner crowd strategies in various areas of real-world decision making. Concerning the

cognitive understanding, to date the inner crowd has been demonstrated on a behavioral level only. Advance-

ments in neuroimaging techniques, such as magnetic resonance imaging (MRI), provides additional tools to

study the inner crowd on a neurological level (De Martino et al., 2018). Recent technical and computational

innovations in ultra high field MRI scanners (with 7 Tesla and above) made it possible for imaging tools to

operate in vivo at the mesoscopic scale and fostered the use of functional MRI for computational modeling of

neural networks. Such advancements make it possible to study neural computations at a submillimeter scale,

implying a spatial resolution of cortical layers, cortical columns, and cortical nuclei—which previously could

only be achieved with invasive techniques (De Martino et al., 2018; Haupt et al., 2017). These developments
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open new doors to study the wisdom of the inner crowd. Neurologically, distinct information should be rep-

resented in different cortical regions, or distinct cortical connections. For example, studies using neural data

have been able to reconstruct the visual field during perception and mental imagery of four different letter

shapes (Senden, Emmerling, Van Hoof, Frost, & Goebel, 2018) and identify a specific story a participant was

reading (Dehghani et al., 2017). If it is possible to decode a specific letter that an individual is imagining, or

a specific story to which an individual is listening, would it also be possible to identify whether an individual

is making use of an inner crowd when making judgments? How might imaging studies differentiate between

inconsistent judgments resulting from different sources of information—the key driving force behind the wis-

dom of the inner crowd—and those coming from a stochastic process after information has been retrieved? To

answer these questions we need not only high spatial resolution but also high temporal resolution in imaging

techniques. Let me speculate about possible implications for research on the wisdom of the inner crowd. The

application of newly emerging imaging techniques in combination with cognitive models could further advance

the understanding of the wisdom of the inner crowd and provide neurological proof of concept: Future research

could investigate whether inconsistent judgments are the result of diverse samples of information (e.g., repre-

sented by distinct neural networks at the time of sampling information) or of a perhaps stochastic generation

of judgments after samples have been retrieved (e.g., represented by distinct neural networks after sampling).

This research could then be used to understand (a) the underlying process of mind reversals, (b) in what

situations individuals are more likely to change their mind, and (c) to design tools that facilitate retrieval of

diverse information.

Applied research should identify further areas of real-world decision making, beyond the medical domain,

where inner crowd strategies can be implemented. There are at least three situations that lend themselves to

the application of inner crowd strategies: (a) when it is difficult to collect opinions of several individuals, for

example, because of limited budget to consult more experts, time constraints, or logistic limitations; (b) when

it is unlikely to recognize previously evaluated cases as such, for example, in radiology or dermoscopy, where

images can look fairly similar throughout a set of cases; and (c) when dealing with sensitive cases, where, for

example, security concerns prevent the sharing of information across multiple individuals.

The Human–Machine Crowd

The focus of this dissertation was, broadly speaking, on the wisdom of human crowds. However, with the

progress in artificial intelligence (AI) a fairly new type of crowd is gaining increasing relevance: the crowd

arising from human–machine interactions. How could the insights from the wisdom of human crowds be

transferred to human–machine crowds? In the following sections I briefly review what AI is contributing to

human decision making in a specific area: the health care sector. Then, I discuss possible alternatives of how

human–machine judgments could be combined and conclude with a final thought about what the human mind

should contribute to AI systems.

In the health care sector, AI is assisting clinical decision making in various areas (e.g., radiology, oncology,



110

pathology, and brain imaging) and applications (e.g., drug discovery, patient monitoring, medical diagnostics,

imaging, and hospital management; Hosny, Parmar, Quackenbush, Schwartz, & Aerts, 2018). Within radiology,

radionomic studies (i.e., studies of radiographic images coupled with clinical outcomes; Lambin et al., 2012)

have employed deep learning algorithms that automatically learn feature representations from example images

(Litjens et al., 2017) and thus help in the interpretation of the phenotypic characteristics of human tissues

(Shen, Wu, & Suk, 2017). These technological advances offer a large potential to improve disease diagnoses

and to reduce medical errors. In some cases radiologists have on average only 3–4 seconds to interpret an image

to meet workload demands (McDonald et al., 2015). Additionally, radiologists not only operate under time

pressure, but also have to make decisions under incomplete evidence and perceptual uncertainty (Fitzgerald,

2001), making diagnostic errors almost inevitable. Further investing in and incorporating AI as a tool to assist

in clinical decision making can thus increase efficiency and reduce errors.

From the wisdom of crowds perspective at least one important question arises: How should human and

machine judgments be combined? The answer to this question will differ depending on the field of decision

making and the statistical environment. In the health care sector future research should take at least three

alternatives into account. First, from a purely objective point of view, one could argue that, in order to

reduce medical errors, future studies should investigate which statistical aggregation strategy (e.g., confidence

rule, best-member rule, averaging) for combining medical experts’ and AI judgments performs well in which

environment. However, purely statistical aggregation approaches will likely face legal constraints, because many

AI models cannot be held accountable. Despite the growing success of AI, one major downside of relying on

currently popular AI models, such as deep learning algorithms, is that they operate as a “black box,” meaning

that we have little to no insight into how the algorithm extracts information and learns to make categorizations.

Such algorithms are called “deep” because they consist of multiple layers of information processing. Often the

layers between the input and the output layer are described as “hidden layers” because their information

processing is opaque. The uncertainty about how exactly such models draw their conclusions makes it difficult

to predict errors or to correct bugs in the software. The inherent complexity and lack of transparency of such

black box algorithms is what makes investigating and verifying their mathematical reasoning a major ongoing

challenge (Ford & Price, 2016; Pasquale, 2015). A second alternative could be to use AI models as an augmented

inner crowd, potentially providing information that might have stayed undiscovered by the human eye, but

the expert remains autonomous (Hosny et al., 2018). Accordingly, experts would control, supervise, maintain,

and optimize AI models—a concept called human-in-the-loop (HITL; Allen, Guinn, & Horvtz, 1999; Rahwan,

2018; Sheridan, 2006). Third, a perhaps less obvious approach could be to integrate patients’ preferences

into the final decision making process. Some individuals might dislike the idea of a machine influencing their

diagnosis, while others have more trust in machines than in medical experts. Therefore, another alternative

could be to give the patient a voice in deciding between the expert, AI, or a combination thereof.

I want to conclude by touching upon a final thought. In the above section I pointed out how AI can augment

the human mind. In the final section, I want to bring up the question of what parts of the human mind should

to be planted into AI algorithms. Going beyond the health care sector, newly emerging AI systems, such
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as unmanned combat drones (White, 2003), autonomous vehicles (Endsley, 2018; Pendleton et al., 2017),

and news-filtering or credit-scoring algorithms have broad implications on a societal level (Helbing, in press;

Rahwan, 2018)—they can influence political beliefs, economic development and even the life or death of large

groups of people. Should collateral damage be tolerated in autonomous warfare? Or should a self-driving

car in an inevitable tradeoff scenario save the lives of passengers or pedestrians? These questions cannot be

answered from a purely technical engineering point of view, but have to take human ethical preferences into

account. Many scholars and policy makers argue that AI systems, influencing the political beliefs or even

lives of groups of individuals, need to embed the values of the society in which they operate (Rahwan, 2018).

The challenge, however, is that often the society does not know their values or cannot easily formulate ethical

principles to guide machine behavior. One attempt to close this gap was undertaken by a large-scale societal

study that simply asked citizens from 233 countries which outcome they would prefer, such as saving the lives

of the elderly or the young in an inevitable self-driving car accident (Awad et al., 2018)? This study offers

interesting insights into human ethical preferences regarding machine behavior. But even if the society would

agree, that for example rather the lives of the young than the elderly should be saved, would it make it right?

Should we plant this ethical preference into machine behavior? And do we need deterministic answers to these

type of questions?
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A

�� Supplementary Material to Chapter 2: “How

the “Wisdom of the Inner Crowd” Can Boost

Accuracy of Confidence Judgments”

A1 Conditions Under Which Averaging Has a Smaller Expected Brier Score

Than Maximizing

We consider a two-alternative forced-choice paradigm where a decision maker decides twice about the same

item, that is, renders a first and a second decision concerning the same question. The two decisions either

coincide or not. Furthermore, for each of the two decisions the decision maker also provides a confidence

judgment (half-range, that is, the subjective probability of having made the correct decision, ranging between

.5 and 1). We want to specify the conditions for which averaging (i.e., simply aggregating the two confidence

judgments using the arithmetic mean) has a smaller expected Brier score (Brier, 1950) than maximizing (i.e.,

choosing the option with the higher associated confidence and reporting that confidence).

To investigate this analytically, we use a very general model that postulates for a particular item (1) the

probability P that the high-confidence choice is correct, (2) the confidence CH in this high-confidence choice,

(3) the confidence CL in the other, low -confidence choice, and (4) whether the high- and low-confidence choices

are the same. The model makes no cognitive assumptions but merely restricts the admissible range of the

three variables by making the following two assumptions. First, 0 < P < 1. Second, .5 < CL < CH < 1; that is,

the high-confidence judgment needs to be strictly larger than the low-confidence judgment and they are both

expressed on a half-range probability scale.

The Brier score is the mean squared error across probability forecasts, and for a single item it can be

expressed as B ⇤ (o � f )2, where f is the probability forecast that an event o happens. Event o either happens

(o ⇤ 1) or it does not (o ⇤ 0). In a two-alternative forced-choice paradigm the event o can be interpreted as

whether the decision is correct (o ⇤ 1) or incorrect (o ⇤ 0). To derive the expected Brier scores for averaging

and maximizing in this model, it is convenient to distinguish between the case when the two decisions differ

and the case when the two decisions are the same and then to develop the equations separately for those two

cases. Note that we define the event o as whether the high-confidence choice is correct.
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Case 1: The Two Decisions Differ

Maximizing’s expected Brier score B
di f f erent

M
is

E(Bdi f f erent

M
) ⇤ P(1 � CH)2 + (1 � P)(0 � CH)2 ,

whereas averaging’s expected Brier score B
di f f erent

A
is

E(Bdi f f erent

A
) ⇤ P(1 � CH + (1 � CL)

2
)2 + (1 � P)(0 � Ch + (1 � CL

2
)2

Because in Case 1 the low-confidence choice is the opposite of the high-confidence choice, we re-express the

confidence in the low-confidence choice in terms of the confidence that the high-confidence choice is correct

(i.e., we need to use 1 � CL for the low-confidence choice).

Now we solve the following system of three inequalities (i.e., averaging having a lower Brier score than

maximizing plus the two assumptions of the model):

8>>>>>><
>>>>>>:

E(Bdi f f erent

A
) < E(Bdi f f erent

M

0 < P < 1

0.5 < CL < CH < 1

,

which results in the following four conditions satisfying the above system of inequalities:

8>>>>>>>>><
>>>>>>>>>:

0 < P  1
2 and 1

2 < CH < 1 and 1
2 < CL < CH

1
2 < P  3

4 and 1
6 (8P � 1) < CH < 1

2 (4P � 1) and 1
2 < CL < �4P + 3CH + 1

1
2 < P  3

4 and 1
2 (4P � 1)  CH < 1 and 1

2 < CL < CH

3
4 < P < 7

8 and 1
6 (8P � 1) < CH < 1 and 1

2 < CL < �4P + 3CH + 1

At least two insights can be gained from those four solutions. First, Solution 1 shows that an item being

wicked is sufficient for averaging to always outperform maximizing; note that the second and third parts of

Solution 1 merely restate the model’s assumptions about the confidence judgments. Second, Solutions 2, 3,

and 4 show the conditions under which averaging outperforms maximizing when .5 < P < 7
8 (i.e., a very

difficult to moderately difficult kind item). Yet these conditions are complicated and depend on the particular

relationships between P, CH , and CL. However, since none of the four solutions represent items for which

P � 7
8 , this implies that for such very easy kind items (P � 7

8 ), averaging will always have a worse Brier score

than maximizing.

Case 2: The Two Decisions Are the Same

Because maximizing’s confidence depends on only CH (and not on CL), maximizing’s expected Brier score

B
same

M
is the same as B

di f f erent

M
in Case 1:

E(Bsame

M
) ⇤ P(1 � CH)2 + (1 � P)(0 � CH)2 ,
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whereas averaging’s expected Brier score B
same

A
is now

E(Bsame

A
) ⇤ P(1 � CH + Cl

2
)2 + (1 � p)(0 � CH + CL

2
)2 .

Now we solve the following system of three inequalities (i.e., averaging having a lower Brier score than

maximizing plus the two assumptions of the model):

8>>>>>><
>>>>>>:

E(Bsame

A
) < E(Bsame

M
)

0 < P < 1

0.5 < CL < CH < 1

,

which results in the following four conditions satisfying the above system of inequalities:

8>>>>>>>>><
>>>>>>>>>:

0 < P  1
2 and 1

2 < CH < 1 and 1
2 < CL < CH

1
2 < P  7

8 and P < CH < 1
6 (8P � 1) and 4P � 3CH < CL < CH

1
2 < P  7

8 and 1
6 (8P � 1)  CH < 1 and 1

2 < CL < CH

7
8 < P < 1 and P < CH < 1 and 4P � 3CH < CL < CH

At least two insights can be gained from those four solutions. First, Solution 1 shows that an item being

wicked is, again, sufficient for averaging to always outperform maximizing; note that, again, the second and

third parts of Solution 1 merely restate the model’s assumptions about the confidence judgments. Second,

Solutions 2, 3, and 4 show that for kind items of any difficulty level (.5 < P < 1) there are always conditions

for which averaging can outperform maximizing. Or, phrased differently, for kind items there are no sufficient

conditions for which maximizing always outperforms averaging that depend only on P (unlike in Case 1

discussed above where P � 7
8 is a sufficient condition). These conditions, however, again are complicated and

depend on the particular relationships between P, CH , and CL.

Summarizing Across Cases 1 and 2

First, for a wicked item (i.e., P < .5), averaging always has a better expected Brier score than maximiz-

ing—irrespective of whether the low-confidence choice is also incorrect or instead correct. Second, for a kind

item (i.e., P > .5) the conditions are more complicated and depend on whether the low-confidence choice is

also correct or instead incorrect. When the high-confidence choice is very likely to be correct (i.e., P � 7
8 , that

is, a very easy kind item) but the low-confidence choice is incorrect, maximizing always has a better expected

Brier score than averaging. In contrast, when both the low- and high-confidence choices are correct, there are

no sufficient conditions for which maximizing always has a better expected Brier score than averaging that

depend only on P. There are a series of conditions that specify for particular relationships between P, CH ,

and CL whether averaging or maximizing will have a better expected Brier score.
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A2 Items Used in Study 3

Table A1. Items used in main study.

Question Answer (a) Answer (b)

When was the zipper invented? Before 1920* After 1920

Which country send the first terrestrial satellites to the orbit? The Soviet Union* USA

The first air mail was set up in: England* Germany

Kurt Gödel was: A composer A mathematician*

The number of leukocytes in the healthy human blood is: Less than 4000/mm3 More than 4000/mm3*

Mao Zedong was born Before 1900* After 1900

When was discovered the magnetic North Pole? 1866 1831*

Which of these fruits contains fat? The lemon* The bell pepper

Edgar Allan Poe was: American* Englishman

What does the word “hecatomb” mean? Sacrifice to the idols* Early Christian sepulchre/tomb

Who was born first? Immanuel Kant* Wolfgang Amadeus Mozart

Where can we find “fibrin”? In a cell nucleus In blood*

Who wrote the play “Liebelei”? Arthur Schnitzler* Franz Grillparzer

What’s the name of the Bolivian capital? La Paz* Bogota

Where do the Betschuans live? In Africa* In Asia

Manuel da Falla was a: Composer Race driver

Sofia is the Capital of: Romania Bulgaria*

Who was the tutor of Alexander the Great? Aristotle* Plato

A meridian is a: Circle of latitude Circle of longitude*

Which metal melts down at a lower temperature? Zinc Tin*

Saskatchewan is (was) a state of: The Soviet Union Canada*

Weisherbst (Roséwine) is extracted from: Red grapes* White grapes

How long is the gestation time of an elephant? 22 months* 18 months

The first coffeehouse in Vienna was founded in: 1685* 1679

How many % from the whole Swiss grain production to the cattle eat? More than 50%* Less than 50%

Note. Correct answers are indicated with an asterisk.

A3 Decomposition of Overall Accuracy in the Simulation

Homogeneous Environments

Apart from overall accuracy (i.e., Brier score; see main text), confidence judgments can be evaluated along

several dimensions of accuracy. To investigate how calibration and resolution contribute to overall accuracy

(in terms of the Brier score) and how they are influenced by the environment and the dependency among

knowledge sources, we decomposed the Brier score using the covariance decomposition (Yates, 1990). The

three main components of the covariance decomposition are bias, slope, and scatter. The formula for the

covariance decomposition of the Brier score is: PS ⇤ VI + bias2 + VI(slope)(slope � 2) + scatter (Yates, 1990),
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where VI is the variability index, which is the variance of the event’s probability, here the sample variance

of the proportion of correct decisions. The bias score measures the difference between the average confidence

judgment and the proportion of correct judgments:

bias ⇤ con f � P(C) .

A positive bias score indicates overconfidence, or in other words, that individuals overestimate their prob-

ability of being correct. As one would expect by the definition of maximizing, the simulation study illustrates

(Figure A1) that maximizing increases bias irrespective of the environment, whereas averaging has no effect on

the bias score. As the dependency in knowledge sources (i.e., correlation r) increases, the effects of maximizing

and averaging decrease. Because this pattern is stable across all reported measures (see Figure A7), we do not

refer further to the effect of r.

The slope score is a measure of resolution. More specifically, it quantifies the difference between the average

confidence in correct decisions and average confidence in wrong decisions:

slope ⇤ con f
correct

� con f
wron g

.

A positive slope score indicates the ability of confidence judgments to discriminate between correct and wrong

decisions. As expected by the design of the simulation (Figure A1), confidence in the correct decision increases

(slope > 0) and confidence in the wrong decision decreases as p(C) increases in kind environments [i.e.,

p(C) > 0.5], implying that confidence judgments increasingly discriminate better between correct and wrong

decisions (i.e., positive resolution). In wicked environments [i.e., p(C) < 0.5], however, the slope score falls

below 0, implying a worse-than-chance ability of confidence judgments to discriminate between correct and

wrong decisions (i.e., negative resolution). That is, as items become more wicked, confidence in the wrong

decision increases and confidence in the correct decision decreases as p(C) decreases. This pattern of results is

consistent with Koriat’s (2012a) consensuality principle, which states that because confidence is based on an

assessment of how clearly a set of available cues agree with the selected response, confidence will be correlated

with the strength of the majority belief (consensuality). Our simulation analysis thus complements Koriat’s

analysis by illustrating the consensuality principle in a quantitative manner.

The scatter score is the weighted average of the variances of confidence judgments for correct and wrong

decisions:

scatter ⇤
ncorrect var(con fcorrect + nwron g var(con fwron g

ncorrect + nwron g

and represents the variability (i.e., random error) of confidence judgments, whereby larger scores indicate

greater random error. Random error in confidence judgments was highest in environments where the prob-

ability of answering an item correctly is .5 (Figure A1). Furthermore, in line with Error theory (Wallsten

& Diederich, 2001), both averaging and maximizing confidence judgments reduce scatter, and we observed a

stronger effect for averaging compared to maximizing.

We additionally calculated a standardized measure of discrimination based on slope and scatter:

DI
0
⇤

slopep
scatter
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Figure A1. Decomposition of the Brier score of simulated strategies into the score components (rows). Columns
(from left to right) correspond to increasingly more redundant knowledge sources underlying both confidence judgments
(correlation values r). The x axes show the probability of being correct, where values of p(C) > .5 represent increasingly
kinder environments and values of p(C) < .5 represent increasingly more wicked environments. The y axis of each row
depicts the value of the corresponding statistic. In the bias panel, lines corresponding to first judgments are overplotted
by averaging. In the slope panel, all strategies have the same values and are thus overplotting each other. DI

0 is a
standardized measure of resolution, combining slope and scatter.
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The DI
0 score can be interpreted along the same lines as the slope score, with DI

0 > 0 indicating positive

discrimination and DI
0 < 0 meaning negative discrimination. Comparing first judgments to averaged and

maximum judgments, averaging and maximizing amplify discrimination by increasing positive resolution for

kind item types, that is, p(C) > .5 and by increasing negative resolution for wicked item types, that is,

p(C) < .5 (Figure A1). Taken together, the results indicate that averaging outperforms maximizing on two

out of the three components of the Brier score decomposition (bias and scatter), explaining why averaging

outperforms maximizing overall in terms of the Brier score.

Heterogeneous Environments

In addition to the homogeneous environments (see main text), we also investigated various mixed environments,

where the probability p(C) of answering correctly differed across items (modelled as beta distributions; see

Figure A2, panel A). We constructed the environments by orthogonally varying the mean µ of the beta

distribution (values: [.1, .2, .3,. . . .9]), its variance �2 (values: [.01, .02, .03,. . . .08]), and the correlation r

between the knowledge sources underlying the repeated confidence judgments from the same individual (values:

[0, .25, .5, .75]). This resulted in 288 different environments. Other than assuming distributions of p(C) (as

compared to constant values for p(C)), the simulation procedure was identical to that described in the main

text.

As in the homogeneous environments, also for heterogeneous environments we found that, as dependency

in knowledge sources (i.e., correlation r) increased, the effects of averaging and maximizing on overall accuracy

(Brier score) decreased (Figure A7). Therefore, in the following we only present results of the environments

with zero dependency (i.e., r ⇤ 0).

Overall accuracy (Brier score)

In general, overall accuracy of confidence judgments improved (i.e., decreased Brier scores) with increasing

mean µ (Figure A2, panel B). In wicked environments (µ < .5) increasing variance �2 reduced the proportion

of wicked items (Figure A2, panel C), but still harmed the Brier score of all strategies (increasing curves for all

strategies in Figure A2, panel B). In contrast, in kind environments (µ > .5) increasing variance �2 increased

the proportion of wicked items (Figure A2, panel C) and improved the Brier score of first and averaged

judgments (decreasing curves), but continued to harm the Brier score of maximizing (increasing curves).

Similar to the homogeneous environments, averaging improved overall accuracy (i.e. lower Brier scores;

see Figure A2, panel B) relative to first judgments irrespective of the environment. Maximizing, in contrast,

only improved overall accuracy in kind environments with µ � .6 and harmed accuracy in environments with

µ < .6. Furthermore, in clearly kind environments with µ > .6 maximizing outperformed averaging in low

variance environments (e.g., µ ⇤ .7, �2  .05) but underperformed it in some of the high variance environments

(e.g., µ ⇤ .7, �2 � .06).
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Figure A2. Brier scores of simulated strategies in heterogeneous environments. A. Heterogeneous environments
varying according to the mean of p(C) (µ: [.1, .2, .3,. . . .9]) and the variance of p(C) (�2: [.01, .02, .03,. . . .08]).
Columns correspond to increasingly more kind environments (µ), rows (from top to bottom) indicate increasing variance
(�2). B. Brier scores (y axis) of simulated strategies in heterogeneous environments varying in µ (columns) and �2 (x-
axes) for correlation r ⇤ 0. Averaging consistently improved Brier scores irrespective of the environment. Maximizing in
contrast, harmed Brier scores for µ < .6 and improves Brier scores only for µ � .6. Maximizing outperforms averaging
only for µ � .7. Increasing variance harms all strategies for µ < .6 (increasing curves), and benefits averaging and first
judgments for µ > .6. C. Proportion of wicked items in heterogeneous environments varying on µ (columns) and �2 (x

axis). As variance increased, proportion of wicked items decreased in wicked environments (µ < .5), and increased in
kind environments (µ > .5).
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Figure A3. Bias scores (y axis) of simulated strategies in heterogeneous environments varying in the mean of p(C) (µ;
columns) and the variance of p(C) (�2; x-axes) for correlation r ⇤ 0. Averaging is always overplotting first judgments.

Over- vs. underconfidence (bias score)

Bias scores decreased in increasingly kinder environments and increased with increasing variance for all strate-

gies (Figure A3). Relative to first judgments, maximizing consistently increased bias, whereas averaging always

has the same bias as first judgments. For averaging and first judgments, increasing variance �2 worsened (i.e.,

increased bias) for µ  .5. For µ > .5 averaging and first judgments were underconfident (i.e., negative bias

score) and thus increasing variance �2 had a positive effect in that the increase in bias mostly resulted in the

bias scores being closer to zero. Because maximizing had a higher bias score in general, this positive effect

happens only for higher means and only up to moderate variances.

Over- vs. underconfidence (bias score)

Bias scores decreased in increasingly kinder environments and increased with increasing variance for all strate-

gies (Figure A3). Relative to first judgments, maximizing consistently increased bias, whereas averaging always

has the same bias as first judgments. For averaging and first judgments, increasing variance �2 worsened (i.e.,

increased bias) for µ  .5. For µ > .5 averaging and first judgments were underconfident (i.e., negative bias

score) and thus increasing variance �2 had a positive effect in that the increase in bias mostly resulted in the

bias scores being closer to zero. Because maximizing had a higher bias score in general, this positive effect

happens only for higher means and only up to moderate variances.
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Figure A4. Slope scores (y axis) of simulated strategies in heterogeneous environments varying in the mean of p(C) (µ;
columns) and the variance of p(C) (�2; x-axes) for correlation r ⇤ 0. Averaging is always overplotting first judgments.

Discrimination ability I (slope score)

In general, the kinder the environment (i.e., the higher µ), the better the slope (i.e., discrimination; Figure A4).

In contrast, the effects of variance depended on the mean: In wicked environments (µ < .5), where confidence

discriminated between correct and incorrect decisions the wrong way around (i.e., reversed discrimination,

that is, slope < 0), increasing variance reduced the size of the negative slope (i.e., the values of the slope

increased and became thus less negative, that is, resulting smaller reversed discrimination). In contrast, in

kind environments (µ > .5), increasing variance reduced the size of the positive slopes. Relative to first

judgments, averaging had no effect on the slope, while maximizing consistently differed, for better (µ > .5) or

worse (µ < .5), from first and averaged judgments (except for µ ⇤ .5).

Noise (scatter score)

Scatter scores were lowest in extremely kind (i.e., µ ⇤ .9) or extremely wicked (i.e., µ ⇤ .1) environments

and highest in “ambiguous” environments (i.e., µ ⇤ .5; Figure A5). Both averaging and maximizing improved

scatter relative to first judgments—irrespective of the environment. An increasing variance had generally a

negative effect on scatter except for extreme µ’s, where the pattern was inversely U-shaped.
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Figure A5. Scatter scores (y axis) of simulated strategies in heterogeneous environments varying in the mean of
p(C) (µ; columns) and the variance of p(C) (�2; x-axes) for correlation r ⇤ 0. Averaging is always overplotting first
judgments.

Discrimination ability II (DI’)

DI
0 scores improved as environments became increasingly kinder (Figure A6). An increasing variance was

beneficial in wicked environments (i.e., µ < .5) and detrimental in kind environments (i.e., µ > .5). Relative to

first judgments, the DI
0 scores of both averaging and maximizing improved in kind environments, but worsend

in wicked environments.

Dependency in knowledge sources

Figure A7 shows the Brier score for all environments when the dependency in knowledge sources increased (i.e.,

correlation values r: [0, .25, .5, .75]). As r increased, the differences between strategies decreased. Similar to the

homogeneous environments, relative to first judgments, averaging always improved the Brier score, irrespective

of the environment. Maximizing, in contrast, only improved the Brier score in kind environments (µ � .6)
and harmed the Brier score otherwise. Furthermore, in kind environments with µ [.7, .8, .9] maximizing

outperformed averaging and first judgments. As variance increased (columns from left to right), differences

between maximizing and averaging became smaller. When µ ⇤ .6, averaging and maximizing performed similar

in low variance environments (both improved performance on first judgments), however, as variance increased

(�2 � .03), averaging started outperforming maximizing. When µ ⇤ .5, averaging improved performance

relative to first judgment, while maximizing harmed performance—especially when variance increased (�2 �
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Figure A6. DI
0 scores (y axis) of simulated strategies in heterogeneous environments varying in the mean of p(C) (µ;

columns) and the variance of p(C) (�2; x-axes) for correlation r ⇤ 0.

.03). This pattern continues for environments with µ < .5. The effect of variance is most prominent in

extreme environments with µ [.1, .2, .8, .9] where an increase in variance reduced the differences between all

three strategies.

A4 Decomposition of Overall Accuracy in the Empirical Studies

To understand how the several dimensions of accuracy underlying the Brier score contribute to the changes

in overall accuracy (see main text), we calculated, as in the simulation analysis, a Brier score decomposition

(using the covariance decomposition Yates, 1990), which yields estimates of bias, slope, scatter, and DI
0 scores

(refer to section A3 for more details on those scores).

The majority of effect sizes for the differences between averaging and maximizing with respect to (Table A2)

and DI
0 (Table A3) are relatively small across studies (Figure A8)—with the two exceptions being an improved

slope when averaging in the lines task (dlines ⇤ 0.47, 95% highest density interval [0.16, 0.80]) and an impaired

slope when maximizing in the shapes task (dshapes ⇤ �0.43, 95% highest density interval [-0.80, 0.09]) of Study

2.

In contrast to the discrimination measures, the majority of scatter scores, a measure of random error, were

greatly affected by both strategies. Averaging resulted in improved scatter scores (Table A9) in Studies 1 and

3, suggesting that improvements in overall accuracy were driven by a reduction of random error (except in

Study 2). Similarly, maximizing reduced scatter scores in Studies 1 and 2, but these positive effects seem not to
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Figure A7. Brier scores (y-axes) of simulated strategies in heterogeneous environments varying in the mean of p(C)
(µ; columns), r (rows), and the variance of p(C) (�2; x-axes). The correlation values r [0, .25, .5, .75] represent
increasingly dependent knowledge sources underlying the two confidence judgments.
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Figure A8. Effect sizes (Cohen’s d) of differences in Brier decomposition measures (Brier score, bias, slope, scatter,
and DI

0) between first minus second (2nd), first minus averaged (Avg), first minus maximized (Max), and maximized
minus averaged (A vs. M) confidence judgments. We summarize the posterior distributions by reporting medians as
point estimates and 95% highest density intervals (HDIs) as uncertainty intervals. Bars to the right of zero imply
improved scores, and bars to the left of zero imply harmed scores. The shaded region ranges between -0.1 and 0.1,
and constitutes the region of practical equivalence around the null value. PC = pairwise comparison condition; TF =
true-or-false condition.

be reflected in the overall accuracy of maximizing, most likely because they are cancelled out by the negative

effects of maximizing on bias scores. Consistent with the findings from our simulation study, maximizing

increased bias scores throughout all studies (Figure A8, Table A5), whereas averaging reduced bias scores

throughout all studies (except in the reliability condition of Study 3).

A5 Additional Results on Participants’ Behavior

Results across studies and conditions show that participants changed their decisions, on average, in 12% to

22% of questions (Table A6). Furthermore, we calculated the mean confidence level of participants’ initial

decisions, separately for changed and unchanged decisions (Table A7), thus being able to examine if changing

one’s decision was related to initial confidence level. Results across conditions and studies show that confidence

in the initial decision was lower when participants changed their decision later on as compared to when they did

not. The mean within participant differences (�M) are larger than their standard deviations (�SD) in all studies

and conditions, suggesting substantial effect sizes. This observation is in line with models of confidence, such

as the self-consistency model (Koriat, 2012a) or the Two-stage Signal Detection Model (Pleskac & Busemeyer,

2010).
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Table A2. Effect Sizes (Cohen’s d) of Differences in Slope Between First Versus Averaged and First Versus Maximized
Confidence Judgments

Study Condition Cohen’s d 95%HDI

First vs. averaging

Study 1 Ariely et al. (2000) PC 0.189 [-0.183, 0.571]
TF 0.147 [-0.250, 0.542]

Study 2 Koriat (2012b) Shapes -0.047 [-0.378, 0.279]
Lines 0.476 [0.160, 0.808]

Study 3 Dialectical -0.095 [-0.292, 0.091]
Reliability 0.080 [-0.095, 0.260]

First vs. maximizing

Study 1 Ariely et al. (2000) PC 0.054 [-0.320, 0.414]
TF -0.275 [-0.717, 0.122]

Study 2 Koriat (2012b) Shapes -0.433 [-0.799, -0.087]
Lines -0.174 [-0.479, 0.137]

Study 3 Dialectical 0.122 [-0.090, 0.344]
Reliability -0.046 [-0.235, 0.150]

Note. HDI = Highest density interval. PC = pairwise comparison; TF = true or false. Cohen’s d = median value of
the posterior distribution; 95% HDI = 95% highest density interval of the posterior distribution.

Table A3. Effect sizes (Cohen’s d) of differences in DI
0 Scores Between First Versus Averaged and First Versus

Maximized Confidence Judgments

Study Condition Cohen’s d 95%HDI

First vs. averaging

Study 1 Ariely et al. (2000) PC 0.289 [-0.096, 0.706]
TF 0.266 [-0.147, 0.678]

Study 2 Koriat (2012b) Shapes -0.090 [-0.400, 0.214]
Lines 0.398 [0.077, 0.731]

Study 3 Dialectical -0.006 [-0.205, 0.198]
Reliability 0.173 [-0.005, 0.354]

First vs. maximizing

Study 1 Ariely et al. (2000) PC 0.287 [-0.090, 0.673]
TF -0.125 [-0.542, 0.273]

Study 2 Koriat (2012b) Shapes -0.288 [-0.686, 0.060]
Lines -0.012 [-0.342, 0.327]

Study 3 Dialectical 0.169 [-0.046, 0.400]
Reliability 0.015 [-0.170, 0.206]

Note. HDI = Highest density interval. PC = pairwise comparison; TF = true or false. Cohen’s d = median value of
the posterior distribution; 95% HDI = 95% highest density interval of the posterior distribution.
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Table A4. Effect sizes (Cohen’s d) of differences in Scatter Between First Versus Averaged and First Versus Maximized
Confidence Judgments

Study Condition Cohen’s d 95%HDI

First vs. averaging

Study 1 Ariely et al. (2000) PC 0.429 [-0.088, 1.072]
TF 0.266 [-0.147, 0.678]

Study 2 Koriat (2012b) Shapes 0.471 [0.015, 0.965]
Lines -0.150 [-0.457, 0.154]

Study 3 Dialectical 0.370 [0.146, 0.598]
Reliability 0.587 [0.377, 0.806]

First vs. maximizing

Study 1 Ariely et al. (2000) PC 1.178 [0.680, 1.710]
TF 0.756 [0.339, 1.190]

Study 2 Koriat (2012b) Shapes 1.094 [0.694, 1520]
Lines 0.855 [0.512, 1.208]

Study 3 Dialectical -0.120 [-0.374, 0.111]
Reliability -0.085 [-0.289, 0.110]

Note. HDI = Highest density interval. PC = pairwise comparison; TF = true or false. Cohen’s d = median value of
the posterior distribution; 95% HDI = 95% highest density interval of the posterior distribution.

Table A5. Effect sizes (Cohen’s d) of Differences in Bias Between First Versus Averaged and First Versus Maximized
Confidence Judgments

Study Condition Cohen’s d 95%HDI

First vs. averaging

Study 1 Ariely et al. (2000) PC 0.696 [0.281, 1.105]
TF 1.014 [0.499, 1.604]

Study 2 Koriat (2012b) Shapes 0.833 [0.487, 1.194]
Lines 0.737 [0.326, 1.241]

Study 3 Dialectical 0.241 [0.050, 0.437]
Reliability -0.029 [-0.205, 0.146]

First vs. maximizing

Study 1 Ariely et al. (2000) PC -1.145 [-1.618, -0.656]
TF -0.501 [-0.898, -0.115]

Study 2 Koriat (2012b) Shapes -0.604 [-0.923, -0.282]
Lines -0.554 [-0.886, -0.236]

Study 3 Dialectical -0.371 [-0.586, -0.155]
Reliability -0.534 [-0.737, -0.342]

Note. HDI = Highest density interval. PC = pairwise comparison; TF = true or false. Cohen’s d = median value of
the posterior distribution; 95% HDI = 95% highest density interval of the posterior distribution.
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Figure A9. Mean differences in Brier decomposition measures between first minus second (2nd), first minus averaged
(Avg), first minus maximized (Max), and maximized minus averaged (A vs. M) confidence judgments, by study and
accuracy measure. We summarize the posterior distributions by reporting medians as point estimates and 95% highest
density intervals (HDIs) as uncertainty intervals. PC = pairwise comparison; TF = true or false..

Additionally, we calculated differences in accuracy (in terms of proportion of correct decisions) between

first and second, first and averaged and first and maximized decisions (Table A8). In almost all studies, the

95%-HDI (highest density interval) includes the zero value, indicating no effect on the proportion of correct

decisions. Study 3 constitutes the only exception, with second and averaged dialectical estimates showing a

mean increase of 2 percentage points.

Finally, we calculated the difference between first and second confidence judgments in general, that is,

irrespective of whether participants changed their decision in the second phase (Table A9). Participants’ mean

confidence for second judgments decreased slightly in Study 1 and 2, by 0.0015 and 0.015, respectively; we

found no changes in Study 3.
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Table A6. Proportion of changed decisions per study and condition.

Study Median IQR

Study 1 (Ariely et al., 2000) 0.22 [0.15, 0.35]
Study 2 (Koriat, 2012b) 0.21 [0.19, 0.25]

Study 3 (New Experiment) 0.20 (dialectical) [0.10, 0.32]
0.12 (reliability) [0.04, 0.16]

Note. We report median and interquartile range (IQR) as the distributions are markedly skewed towards zero.

Table A7. Mean confidence of first decisions as a function of whether or not the second decision was different.

Study Change Mean SD �M �SD

Study 1 (Ariely et al., 2000) no 084 0.07 0.19 0.09
yes 0.65 0.10

Study 2 (Koriat, 2012b) no 0.78 0.09 0.06 0.04
yes 0.72 0.09

Study 3 (New Experiment)

no 0.71(dialectical) 0.10 0.13 0.10
yes 0.58 (dialectical) 0.08
no 0.67 (reliability) 0.08 0.12 0.10
yes 0.55 (reliability) 0.09

Note. We report the mean and standard deviation (SD) of mean confidence across participants; in addition, we
report the mean of the within-participant differences in mean confidence for changed vs. non-changed decisions (�M),
where positive differences indicate that the changed decision was more confident. Furthermore, we report the standard
deviation of those within differences (�SD).
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Table A8. Mean differences in proportion of correct decisions between first minus second, first minus averaged and
first minus maximized decisions.

Study Comparison Condition �M 95% HDI

Study 1 (Ariely et al., 2000)

Second PC -0.015 [-0.031, 0.001]
TF 0.007 [-0.006, 0.022]

Averaging PC 0.0 [-0.010, 0.010]
TF 0.009 [-0.002, 0.020]

Maximizing PC -0.005 [-0.016, 0.005]
TF 0.009 [-0.002, 0.020]

Study 2 (Koriat, 2012b)

Second Shapes -0.003 [-0.025, 0.018]
Lines 0.002 [-0.026, 0.020]

Averaging Shapes 0.008 [-0.006, 0.023]
Lines 0.004 [-0.013, 0.021]

Maximizing Shapes 0.008 [-0.004, 0.023]
Lines 0.002 [-0.015, 0.021]

Study 3 (New Experiment)

Second Dialectical 0.025 [0.003, 0.046]
Reliability 0.009 [-0.002, 0.020]

Averaging Dialectical 0.021 [0.001, 0.040]
Reliability -0.002 [-0.017, 0.012]

Maximizing Dialectical 0.008 [-0.005, 0.023]
Reliability 0.005 [-0.002, 0.013]

Note. HDI = Highest density interval. PC = pairwise comparison; TF = true or false. Positive differences imply an
improved proportion of correct decisions. PC = pairwise comparison; TF = true or false.

Table A9. Difference between first and second confidence judgments.

Study �M 95%-HDI

Study 1 (Ariely et al., 2000) 0.0015 [0.0007, 0.0023]
Study 2 (Koriat, 2012b) 0.015 [0.0110, 0.0190]

Study 3 (New Experiment) -0.0008 (dialectical) [-0.0015, 0.0001]
0.00 (reliability) [0.0000, 0.0000]

Note. HDI = Highest density interval. We report the mean (�M) and 95%-HDI of within-participant differences
in confidence between first and second judgments. Positive differences indicate that the second judgment was less
confident.
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�� Supplementary Material to Chapter 4:

“Cognitive Dependencies in Sequential Diagnostic

Reasoning Tasks”

B1 Example Stimuli Used in the Experiment

(a) no cue (b) color cue present

(c) structure cue present (d) color and structure cues present

Figure B1. Example stimuli
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B2 Signal Detection Model in JAGS

model{

# Hyperpr iors

for ( e in 1 : nenv ) {

for ( c in 1 : ncond ) {

lambdac [ e , c ] ~ dgamma( . 0 0 1 , . 0 0 1 )

lambdad [ e , c ] ~ dgamma( . 0 0 1 , . 0 0 1 )

sigmac [ e , c ] <� 1/ sq r t ( lambdac [ e , c ] )

sigmad [ e , c ] <� 1/ sq r t ( lambdad [ e , c ] )

muc [ e , c ] ~ dnorm (0 , . 0 0 1 )

mud[ e , c ] ~ dnorm (0 , . 0 0 1 )

mucPrior [ e , c ] ~ dnorm (0 , . 0 0 1 )

mudPrior [ e , c ] ~ dnorm (0 , . 0 0 1 )

}

}

# Pr i o r s

for ( s in nSub ) {

for ( cc in 1 : ncond ) {

c [ s , cc ] ~ dnorm(muc [ env [ s ] , cc ] , lambdac [ env [ s ] , cc ] )

d [ s , cc ] ~ dnorm(mud[ env [ s ] , cc ] , lambdad [ env [ s ] , cc ] )

# repa ramete r i z a t i on us ing equal var i ance gauss ian SDT

thetah [ s , cc ] <� phi (d [ s , cc ]/2� c [ s , cc ] )

t h e t a f [ s , cc ] <� phi (�d [ s , cc ]/2� c [ s , cc ] )

# observed data

h [ s , cc ] ~ dbin ( thetah [ s , cc ] , s gn l [ s , cc ] )

f a [ s , cc ] ~ dbin ( t h e t a f [ s , cc ] , no i s e [ s , cc ] )

# po s t e r i o r p r ed i c t i on

h i tPos t [ s , cc ] ~ dbin ( thetah [ s , cc ] , s gn l [ s , cc ] )

faPost [ s , cc ] ~ dbin ( t h e t a f [ s , cc ] , no i s e [ s , cc ] )

}

}

}
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Figure B2. Reaction Times. Empirical cumulative distribution function (ECDF, y-axis) of participants’ reaction times
(x-axis) in the testing phase, separately per decision on first assessment (columns) and decision on second assessment
(color) for subjects 10, 20, 24, 25, and 30. The ECDF depicts the relative proportion of each observed value ordered
on the x-axis. The dotted horizontal line corresponds to 50% of observed values and therefore indicates the median.
The minimum and maximum of the distribution is illustrated by the begin (on the x-axis) and the end (y-axis) of the
line. The steeper the curve, the narrower the distribution. Plateaus indicate multimodality.
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