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Abstract

Next-generation sequencing (NGS), in particular Illumina sequencing, is the current state-

of-the-art DNA sequencing technology. However, when it comes to time-critical analysis,

Illumina sequencing lacks sufficiently short turnaround times due to the sequential paradigm

of data acquisition and analysis. For clinical application and infectious disease outbreaks, a

significant reduction of time needed from sample arrival to analysis outcome is crucial to

optimally treat patients and to prevent further spread of disease. At the same time, nucleotide-

level analysis is required to enable (sub-)species level classification and determination of

organism-specific properties such as, for example, antimicrobial resistances. To accelerate

the generation of NGS analysis results, the real-time read aligner HiLive was developed that

performs read alignment while sequencing. Still, HiLive delivers results only at the end of

the sequencing process and lacks sufficient resolution and scalability.

In this thesis, a novel real-time alignment algorithm is introduced that was implemented in

HiLive2. Unlike its predecessor, HiLive2 provides results at any desired stage of sequencing

at full nucleotide-level resolution. The novel approach is based on an FM-index and is

more scalable with respect to reference database size and sample size. HiLive2 enables

high-quality downstream analysis as shown by performing variant calling based on real-

time alignments of human sequencing data. Further, PathoLive is presented, a pipeline

for real-time pathogen identification from metagenomic datasets. Based on the output of

HiLive2, PathoLive performs a weighted ranking of identified species. Thereby, sequences

that typically do not occur in samples from non-infected human individuals are assumed to be

of high clinical significance and therefore highlighted in the results. PathoLive also provides

an intuitive and interactive visualization that significantly facilitates the interpretation of

results. In a case study of a real-world sample from Sudan, PathoLive enables the correct

identification of Crimean–Congo hemorrhagic fever virus based on only a few dozen related

reads. Besides analytical challenges, samples from human individuals are problematic with

respect to data protection as reads from a human host can be used for the identification of the

patient. To address this issue, PriLive was developed that enables the irrevocable removal

of human sequences from Illumina sequencing data during the ongoing sequencing process.

This enables a much higher level of data protection than conventional post hoc host removal

approaches as the human sequences are at no time available in full length.
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Terminology and Abbreviations

Terminology

Next-Generation Sequencing

In current discussion, the term next-generation sequencing (NGS) sometimes includes

third-generation sequencing (TGS) technologies. In the context of this work, the term

NGS describes only short-read sequencing technologies and can therefore be considered

as a synonym for second-generation sequencing. In contrast, recent long-read sequencing

technologies are referred to as TGS.

DNA Sequencing

Besides DNA, many different types of RNA can also be sequenced with all presented

sequencing technologies. This thesis focuses on the sequencing of genomic material that

is usually encoded by DNA, with RNA viruses being the only exception. While RNA

sequencing usually requires specific protocols for sample preparation, the sequencing process

itself is similar to DNA sequencing. Therefore, while referring to DNA sequencing, the

methods described in this thesis can generally be adapted for RNA sequencing applications.

Abbreviations

APR area under the precision-recall curve

AUC area under the curve

bp base pair(s)

BSL biosafety level

BWT Burrows-Wheeler transform

BWM Burrows-Wheeler matrix

cDNA complementary DNA

CPU central processing unit

DNA deoxyribonucleic acid

dNTP deoxyribonucleoside triphosphate, a type
of nucleotide

ds-cDNA double-stranded cDNA

ERV endogenous retrovirus

FM-index full-text index in minute space

FPGA field-programmable gate array

FPR false positive rate

FTP file transfer protocol

GB gigabyte(s)

GHz gigahertz

h hour(s)

InDel insertion or deletion, also summarized as
gap

PCR polymerase chain reaction

PR curve precision-recall curve
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Terminology and Abbreviations

kbp kilobase pair(s)

MB megabyte(s)

µL microliter(s)

µM micromole(s)

M million(s)

ng nanogram(s)

NGS next-generation sequencing

ONT Oxford Nanopore Technologies

RAM random access memory

RNA ribonucleic acid

ROC receiver operating characteristic

rpWGS rapid pulsed WGS

SBS sequencing by synthesis

SMRT single-molecule, real-time

SNP single-nucleotide polymorphism

STR short tandem repeat

TaxID taxonomic identifier

tbp terabase pair(s)

TGS third-generation sequencing

TPR true positive rate

WES whole exome sequencing

WGS whole genome sequencing

ZMW zero-mode waveguide
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1 Introduction

1.1 DNA Sequencing

The genetic information, specifying the structure and function of an organism, is conserved

as deoxyribonucleic acid (DNA) which is composed of two connected strands of chained

nucleotides that form a DNA double helix [1]. DNA contains four types of nucleotides that

differ in their underlying nucleic bases: adenine (A), cytosine (C), guanine (G) and thymine

(T). The DNA double helix is connected at each position by forming hydrogen bonds of two

complementary nucleotides, i.e., A with T and C with G. Those pairs of bound nucleotides

are called base pairs (bp). While DNA is the most frequent form of genomic nucleic acid,

many viruses encode their genome using ribonucleic acid (RNA), a different type of nucleic

acid that contains the nucleic base uracil (U) instead of thymine [2, 3]. RNA can generally

occur in single- or double-stranded form and, besides encoding viral genomes, also plays an

essential role in various cellular processes of all organisms.

The order of nucleotides in the genome of an organism serves as “a blueprint to direct a host

of processes for building an embodied organism” [4]. Thus, the phenotype of an organism,

defined by the set of observable characteristics, is generally based on its genetic information.

However, many traits can be influenced by the environment such that a direct correlation of

changes in the genome to a specific phenotype can be hard to observe. As genetic information

is inheritable, closely related organisms share large proportions of their genetic code. This

leads, by implication, to the general assumption that organisms with high similarities in

the genomic material are more closely related than organisms with very distinct genetic

information. Many different types of genetic analysis, for example taxonomic classification,

genetic genealogy or the reconstruction of disease transmission networks, are based on this

assumption.

DNA sequencing describes methods to analyze the order of nucleotides in a DNA sample.

After the first attempts were made in the late 1960s and early 1970s [5, 6], two approaches

that allowed the sequencing of hundreds of base pairs within a single day were published

in 1977 [7, 8]. Unlike chemical sequencing of Maxam and Gilbert that has lost relevance

over time, Sanger sequencing has been continuously improved by using fluorometric based

detection [9–12] and the detection through capillary based electrophoresis [13, 14]. Based on

these improvements, it was finally possible to use Sanger sequencing for the first sequencing

3



1. Introduction

of the human genome that was published in 2001 [15, 16]. Until today, Sanger sequencing is

widely used for many applications, especially for low-throughput targeted sequencing and

as a gold standard for the confirmation of results obtained from other technologies [17–19].

However, new generations of sequencing evolved in the last two decades that provide much

higher throughput at lower costs and time consumption and therefore enable a plethora of

new sequencing-based applications.

1.1.1 Next-Generation Sequencing

From 2005 on, new sequencing devices became available that were based on substantially

different technologies than the previously used Sanger sequencing. These new methods

enabled the production of much higher amounts of sequencing data at lower cost per kilobase

pair (kbp) [20]. This group of sequencing technologies is referred to as next-generation

sequencing (NGS). The first commercially successful NGS sequencing device was the

Roche 454 pyrosequencer that used the pyrosequencing method [21] and a bead emulsion

amplification strategy [22]. Over several years, different competing technologies where

brought to market including the Solexa Genome Analyzer (2006), ABI SOLiD system (2007),

Ion Torrent Ion semiconductor system (2010) and the BGISEQ-500 (2016). Although each

of those systems comes along with unique advantages and disadvantages, the currently

dominating NGS technology is Illumina dye sequencing (or Illumina sequencing), which is

similar to the technology used in the Solexa Genome Analyzer (Solexa was purchased by

Illumina in 2007). With a market share in the field of DNA sequencing devices and services

of around 90 % in 2018 [23], Illumina clearly provides the current state-of-the-art sequencing

technology. Therefore, the proposed work focuses on this technology which is subsequently

introduced in more detail. For extensive reviews on the history of DNA sequencing and NGS

technologies, I refer to [17, 24–26].

Illumina Sequencing

Illumina sequencing is a realization of the sequencing by synthesis (SBS) approach. In this

method, the DNA sequence is usually extended by a DNA polymerase or ligase, binding

one deoxyribonucleoside triphosphate (dNTP), a type of nucleotide, per round (referred to

as sequencing cycle). Whenever a nucleotide is bound, a measurable signal is produced

which is specific for the respective nucleotide. In the case of original Illumina four-channel

technology, this signal is produced by a specific fluorescent dye for each of the four nu-
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1. Introduction

Figure 1.1: Overview of the Illumina sequencing technology. a Cluster generation: The DNA is
cut into small fragments, bound to the flow cell and iteratively amplified via bridge amplification.
This procedure leads to exponential growth of the cluster. b Sequencing by synthesis: Nucleotides
labeled with different fluorescent dyes and a terminating group are used to extend the fragments of
each cluster. After binding to the fragment, the nucleotide can be identified by the corresponding
fluorescent signal. After the signal is recorded, the dyes and the terminating group are cleaved.
This iterative procedure is performed a fixed number of times (sequencing cycles). c Base calling:
The fluorescent signal of each cluster is recorded for each sequencing cycle. The order of signals
corresponds to the nucleotide sequence of the fragments in one cluster. Figure adapted from [17],
permission granted.1

cleotides (Figure 1.1). However, new devices use the one-channel approach (iSeq 100) or the

two-channel approach (MiniSeq, NextSeq and NovaSeq Series), requiring only one or two

dyes, respectively. For the one-channel approach, the single dye is bound to two nucleotides

for the first step (A,T). In a second step, the dye is cleaved from A and added to C, making

all nucleotides distinguishable when images from both steps are available [27]. For the

two-channel approach, a mix of two dyes (represented in red and green color) is used of

that none (G), one (C,T) or both (A) are bound to a specific nucleotide. When overlaying

the images from both channels, the four different nucleotides can be distinguished [28].

Regardless of the differences in chemistry, the general sequencing approach is similar for

all Illumina machines and can be divided in four general steps: Library preparation, cluster

generation, SBS and base calling.

1Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature Reviews Genetics
[Sequencing technologies - the next generation, Metzker ML, ©2009 (2010)]
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1. Introduction

Library Preparation

The library preparation describes the preparation of one or more DNA samples for Illumina

sequencing. Here, only the most important steps of library preparation that are relevant

for this work are described. For a more extensive insight into the library preparation

process, I refer to Bronner and Quail [29]. As a first step, the DNA of a single sample is

quantified and fragmented into small DNA molecules, typically of size 200 - 500 bp for read

lengths of 75 - 250 bp. These fragments are tagged with sequencing adapters and purified.

Consequently, amplification via polymerase chain reaction (PCR) can be performed to enrich

properly ligated template strands, increase the total amount of library and add oligonucleotide

sequences to allow hybridization to the flow cell surface. However, alternative protocols

that omit the PCR step exist to prevent PCR-induced sequencing bias. For both types of

protocols (PCR and non-PCR), multiplex indices can be integrated in the sequencing adapters

to enable identification of samples that are sequenced in the same sequencing run. Before

sequencing, the library is purified and its quality and quantity are assessed. Especially the

quantification step is crucial to prevent the generation of too many or few clusters. For

multiplexed sequencing, several indexed libraries are pooled. The library pools can be stored

or directly used for cluster generation [29, 30].

Cluster Generation

To obtain a signal of sufficient strength, each DNA molecule in the pool library is amplified.

To enable a proper distinction of different fragments, the amplification takes place in a

limited area of the flow cell that is separated from amplification products of other fragments.

The resulting areas containing copies of the same DNA molecule, called clusters, are created

via bridge amplification in Illumina sequencing (Figure 1.1 a). Therefore, a well-defined

concentration of DNA from the pool library is bound to the flow cell. With both adapters

being bound, a bridge is created and the fragment is amplified by a DNA polymerase from

one end of the bridge to the other. When finished, the strands are separated and one adapter

is unbound from the flow cell. In doing so, the number of identical copies of the initial

fragment is doubled in each step such that the cluster growths exponentially until it has

sufficient size to produce an interpretable signal [17, 31].
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1. Introduction

Sequencing by Synthesis

In the SBS step, all fragments of all clusters are amplified in parallel. Thereby, in four-

channel technology, four nucleotides each marked with a different fluorescent dye are given

to the flow cell. One of those four nucleotides binds to each fragment, producing a fluorescent

signal. A reversible terminator group that is bound to the nucleotides prevents that more

than one nucleotide can bind to each fragment. Unless amplification errors occurred, all

fragments of one cluster are amplified with the same nucleotide to enhance the fluorescent

signal. After analyzing the signals of one sequencing cycle, the dyes and terminating groups

are cleaved. This iterative procedure is repeated a fixed number of times, subsequently being

referred to as sequencing cycles (Figure 1.1 b) [17, 31]. The total number of sequencing

cycles corresponds to the final read length. In paired-end sequencing, each fragment flips

over after sequencing the first direction. This is done by forming a bridge and unbinding

the adapter that was bound to the flow cell for sequencing the first read. In doing so, the

fragment can be sequenced from both ends, enabling better results in subsequent analysis

steps. For multiplex sequencing, the indices are sequenced in separate reactions at both ends

of the fragment.

Base Calling

Base calling is often not regarded as a separate step in Illumina sequencing but rather

described as a part of SBS, probably because it is performed for each sequencing cycle.

However, as the transforming step from raw signals to human-readable and analyzable

sequence information, it is a crucial part of the workflow and can strongly influence the

sequencing and analysis results. This fact recently regained more attention in the community

due to the high differences in the performance of base calling software for third-generation

sequencing approaches (see Section 1.1.2). In Illumina sequencing, base calling is performed

by a specialized software that analyzes the fluorescence images made by the sequencer. The

first five sequencing cycles are used to distinct the clusters from each other. Once the cluster

locations are identified, the fluorescent signals are analyzed to identify the nucleotide that

was appended to the fragments of a cluster (Figure 1.1 c) [17, 31]. Thereby, the signals of

neighboring clusters and of previous and subsequent sequencing cycles are considered in the

calculation of the correct base call as they can influence the signal of the analyzed cluster.

Based on these factors, the base calling software specifies the identified nucleotide including

a quality score coding for the probability that the base call is correct. The base call quality is
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1. Introduction

provided as Phred score, a log-transformed quality value q defined as q = −10 · log10(p),
where p is the estimated error probability for the base call [32].

1.1.2 Third-Generation Sequencing

When compared to NGS, third-generation sequencing (TGS) comes with two major differ-

ences. First, TGS technologies perform sequencing on single DNA molecules rather than

amplified clusters. Second, they provide much longer reads in the range of up to several kilo-

base pairs compared to a maximum of 2 x 300 bp for Illumina sequencing. There are currently

two notable TGS technologies on the market. The first commercial product was released

by Pacific Biosciences in 2011 using the single-molecule, real-time (SMRT) sequencing

technology. This technology, like Illumina sequencing, follows the SBS approach. The

sequencing library for SMRT sequencing consists of circular fragments of length 10 - 15 kbp

and is created by the ligation of hairpin adapters to both ends of the DNA molecules. After

binding sequencing primers and a DNA polymerase to the adapter, the library is loaded onto

a flow cell that contains so-called zero-mode waveguides (ZMWs), each being occupied by

one DNA polymerase and a single template DNA molecule. Similar to Illumina sequencing,

the DNA polymerase replicates the fragment with fluorescently labeled nucleotides. The

fluorescent signal produced during replication is enhanced by the ZMW while other signals,

such as from neighboring reactions or labeled nucleotides in the solution, are repressed. The

signal is measured by a camera system on the bottom of the flow cell. As modifications

of the template DNA, such as methylation, decelerate the sequencing process, they can be

identified through longer interruptions between two signals, the so-called longer inter-pulse

duration (Figure 1.2 a-c) [33, 34].

In 2015, the portable nanopore sequencing device was released by ONT. This sequencer, not

much larger than a USB stick, produces reads of arbitrary length, in general only limited by

the length of the template DNA. The technology behind ONT sequencing is very different

to the SBS approach of NGS and SMRT sequencing. For a standard 1D library, adapters

with DNA protein complexes are bound to both ends of the DNA fragment. After binding

to a single nanopore, the motor protein ensures the stepwise movement of a single strand

of the DNA template through the nanopore. The different nucleotides of the template DNA

lead to measurable changes in the voltage potential that is applied across the membrane.

Thereby, the signal of modified nucleotides also differs when compared to unmodified

nucleotides, meaning that modifications can implicitely be identified (Figure 1.2 d-f) [33, 34].

8



1. Introduction

Figure 1.2: Overview of Pacific Biosciences SMRT sequencing (a-c) and Oxford Nanopore
Technologies (ONT) sequencing (d-f). a-c A SMRT sequencing library containing double-stranded
fragments of length 10-15 kbp is created by ligating hairpin adapters. For shorter fragments, one
template may contain multiple subreads. The template DNA is sequenced using a DNA polymerase
to replicate the template with fluorescently labeled dNTPs. The fluorescent signal of the incorporated
dNTP is enhanced by a ZMW and measured by a laser and a camera system on the bottom of the flow
cell. DNA modifications can be identified due to longer inter-pulse duration. d-f An ONT sequencing
library contains DNA fragments of arbitrary length bound with adapters on both ends. The motor
protein channels the fragment through the nanopore, producing measurable changes in the voltage
potential of the membrane depending on the nucleotide sequence and potential modifications. Figure
adapted from [34], permission granted.2

The translation of the voltage signal to human-readable and analyzable sequence outcome

is not trivial and base calling approaches are still rapidly evolving. Therefore, and due to

different approaches and training data, the performance of base callers and even different

2Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Nature Reviews Genetics
[Deciphering bacterial epigenomes using modern sequencing technologies, Beaulaurier J et al., ©2018 (2018)]
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1. Introduction

versions of the same base caller differs profoundly in terms of base call accuracy, speed and

detection of modifications [35].

Besides the plethora of new possibilities that TGS introduced with its highly increased

read lengths, the ability to identify modifications and the implicit potential for real-time

analyses, it also comes with several challenges. The biggest drawback of both technologies

is the comparably high error rate of currently ∼ 11 - 15 % for SMRT sequencing with single

long subreads [33, 36–38] and ∼ 5 - 20 % for ONT sequencing, depending on the type of

molecules and library preparation methods [38–42]. However, in SMRT sequencing, smaller

subreads can be used to create a circular consensus sequence achieving accuracies of > 99 %,

but significantly reducing the maximum read length (Figure 1.2 a) [33, 43–45]. For ONT

sequencing, besides ongoing improvements in chemistry for standard 1D sequencing, an

increase of accuracy up to 97 % is reported by performing 2D (no longer available) or 1D

squared (1D2) sequencing that enables the sequencing of both strands of each template to

obtain a consensus sequence [33, 46]. However, this method is reported to significantly

reduce throughput and read length and was therefore summarized as “not very efficient” by

van Dijk et al. [33]. The second general obstacle of TGS is scalability. The first devices

of both technologies (Pacific Biosciences Sequel and Oxford Nanopore MinION) allowed

massively less throughput compared to modern NGS devices. Today, both companies are

working on high-throughput solutions that aim to be competitive to the throughput of Illumina

sequencing technology. For example, Oxford Nanopore’s PromethION P48 is specified to

produce up to 7.6 tbp and up to 15 tbp being announced with future improvements [47]. While

those numbers are at least comparable to Illumina’s production-scale sequencer NovaSeq

6000, they are so far exclusively reported by the manufacturer and have to be proven and

established by third party research laboratories in future.

1.2 Short Read Alignment

Before giving a formal introduction to short read alignment, a short overview of different

terms for specific alignment problems is provided. Please note that the definitions given in

this section refer to pairwise alignments, though many of them can easily be adapted for

multiple alignments with more than two queries.
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1. Introduction

1.2.1 General Terminology

Read alignment, also called read mapping, is a concept to describe the transformation of a

pattern P to a text T by single-character operations. Thereby, alignment algorithms aim to

determine such a transformation and generally allow for differences in the compared regions

of P and T, making it an approximate string matching problem. An alignment is called

optimal with respect to a given scoring function (or string metric, see Section 1.2.2) if there

is no other alignment with a higher score under the same function. Otherwise it is called

suboptimal. Please note that there can be multiple optimal alignments for the same P and T.

Alignments of a pattern P and a text T can be further grouped in three major categories: local

alignments, global alignments and semi-global (also known as glocal) alignments. A global

alignment is a so-called end-to-end alignment of complete P and complete T. In the field of

computational biology, global alignments are usually used when two sequences are expected

to be of high similarity over their full length, for example when searching for mutations in

closely related genes. Local alignment algorithms aim at finding (optimal) alignments of a

substring of P and a substring of T. This means, a local alignment can disregard both ends

of P and T. The most prominent implementation of a local alignment algorithm is the Basic

Local Alignment Search Tool (BLAST) [48]. Semi-global alignments aim at aligning the

complete pattern P to a substring of T. This means that both ends of T can be disregarded

while complete P must be aligned. Examples for these alignment categories are given in

Figure 1.3. These examples also show that the choice of an appropriate alignment category

and scoring function for a certain problem is crucial as it can substantially influence not only

the alignment itself, but also the mapping position.

Two additional terms got commonly used in the last years, pseudoalignment and lightweight

alignment. Thereby, a pseudoalignment specifies from which, but not where in a sequence

a read originated. This concept is, for example, used for RNA sequencing quantification

with kallisto [49]. In contrast, lightweight alignments provide partial alignment information

including the mapping position and are used for quantification of transcript expression with

Salmon [50]. However, the focus of this work are alignment-based approaches providing

mapping positions and full nucleotide-level alignment resolution.
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1. Introduction

Figure 1.3: Examples for different alignment categories. The pattern P is aligned to text T under
the given scoring function. Except for rewarding matches in local alignments with a score of 1, the
scoring function is identical for all alignment categories. For global and semi-global alignments, the
scoring function represents the negative Levenshtein distance (e.g., a score of -3 implies a Levenshtein
distance of 3 between the aligned regions of P and T). One optimal alignment is shown for each
alignment category. Disregarded regions for the alignments are shown in light gray. Matches between
P and T are connected by vertical lines.

1.2.2 String Metrics

Short read alignment is a specialization of the approximate string matching problem that

describes the retrieval of all occurrences of an input string (or pattern) P of length |P| = n
in a reference string (or text) T of length |T| = m with a maximum distance d. Thus,

short read alignment falls into the category of semi-global alignments. Both strings P and

T contain characters of a common alphabet Σ. Basic single-character operations include

substitutions, insertions and deletions of a character [51]. In general, arbitrary string metrics

can be used to define the validity of an alignment. One of the most popular string metrics in

computational biology is the Levenshtein distance that defines a cost of 1 for each operation

[52]. Thus, an alignment with a Levenshtein distance of k corresponds to an alignment

with k single-character operations, also called an alignment with k errors. The Levenshtein

distance is often referred to as edit distance although this term originally describes a more

general concept for any type of operations [53]. A second common string metric in the field

of computational biology makes use of affine gap penalties. Thereby, the cost of an insertion

or deletion (InDel) of length l ≥ 1 is defined as a + b · l, where a is the gap opening penalty

and b is the gap extension penalty. Affine gap penalties result in better alignment scores for

contiguous InDels when compared to non-contiguous InDels of the same total length, which

often makes sense in the biological context.
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In computational biology, the term short read alignment describes the alignment of NGS

reads to a database of known reference genomes. For DNA, the alphabet usually consists of

the four basic nucleotides and sometimes includes the ambiguous zero-quality base call N

(i.e., Σ = {A, C, G, T, N}). The text T corresponds to a reference sequence or a database

of reference sequences and P is the sequence of a read. The length |P| = n is called read

length.

1.2.3 Algorithms and Data Structures

A first solution of the approximate string matching problem in computational biology was

the Needleman-Wunsch algorithm published in 1970 [54]. It uses a dynamic programming

approach and is still widely used, especially when optimal results are required. However, the

runtime complexity ofO(m · n) is too high to scale up for high-throughput applications such

as NGS. After several optimizations and modifications, a breakthrough was the BLAST algo-

rithm published in 1990, a heuristic seed-and-extend approach being an order of magnitude

faster than previous approaches of similar sensitivity [48]. The seed-and-extend approach

consists of two general parts. Seeding describes the first step, searching for alignments of

short substrings of length q (called q-gram or k-mer) between the pattern P and the text T.

In the following extension step, the alignments obtained from seeding (seeds) are extended

in both directions. While the seeding step is often exact (i.e., having an alignment distance

of 0), errors are usually considered during extension. Similar seed-and-extend strategies are

still used today by many state-of-the-art short read alignment algorithms.

However, while BLAST is still widely used for many applications, the arrival of high-

throughput NGS technologies led to the development of novel alignment approaches that

are specialized to align millions of short reads several orders of magnitudes faster. While

different approaches differ in algorithmic details, many of the most popular tools are based on

similar general approaches and data structures that are introduced in the following paragraphs.

q-gram Index and Hashing Methods

A q-gram index is a data structure to store substrings of fixed length q from a given sequence.

The most simple form to create such an index is the transformation of each q-gram of the

reference genome to a representative number. When using a simple lookup table, this number

corresponds to a specific entry that stores all occurrences of the respective q-gram of a

reference sequence. In the seeding step, a read of length n can be segmented into n− q + 1

13
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overlapping q-grams whose positions can efficiently be retrieved from the index. While

q-gram indices are very efficient in build time and data retrieval, the required memory for

a simple lookup table implementation of this approach is relatively high (O(|Σ|q + m),

m being the length of the reference genome). For large q (usually q > 16 for DNA) it

is therefore necessary to apply hashing techniques to reduce memory consumption at the

cost of retrieval time efficiency [55]. Other modifications were made to improve q-gram

indices, e.g., using so-called spaced seeds that disregard specified positions in the q-gram

to allow for non-consecutive matches. Spaced seeds were shown to significantly increase

alignment sensitivity [56–58]. Many popular short read alignment tools are based on q-gram

or hash table indices of the reference genome [59–69], others rely on indexing of the reads

[48, 70–75] or double indexing (building indices of the reads and the reference database)

[76].

FM-index

A very runtime-efficient index for the seeding step is the suffix tree that was introduced in

1973 [77] as it can find all occurrences of a pattern in optimal time while being built in linear

time [55]. However, suffix trees come with a large memory footprint and can therefore hardly

be used for large reference genomes. The suffix array [78] and enhanced suffix array [79]

improved the memory footprint at the cost of runtime efficiency, but although the latter is

used for short read alignment [80] the memory footprint is still not sufficiently small for the

growing size of reference databases. Therefore, many modern short read aligners use the

full-text index in minute space (FM-index) [81] that provides results in linear time O(n), n
being the read length, with a much smaller memory footprint [82–90]. The FM-index is based

on the Burrows-Wheeler transform (BWT) [91], a method that was originally developed for

lossless data compression. In addition to the BWT, auxiliary tables are required to enable the

traversal through the index (C and Occ) and the acquirement of the occurrence positions of

the query in the reference (Pos). The construction of and traversal through the index is shown

in Figure 1.4. The most prominent short read aligners using FM-index implementations are

Bowtie 2 [85], BWA [89] and HISAT2 [90]. While Bowtie 2 and BWA use a single global

FM-index, HISAT2 makes use of additional overlapping local FM-indices. Thereby, a single

local FM-index in HISAT2 is small enough to fit into the CPU’s cache memory, “which is

substantially faster than standard RAM” [90] and thereby improves the overall alignment

performance.
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Figure 1.4: FM-index data structure and query search. a Example for the construction of an
FM-index. The $ character is appended at the end of text T. All possible rotations of the string are
computed and lexicographically sorted, resulting in the Burrows-Wheeler matrix (BWM). Column
L of the BWM is called Burrows-Wheeler transform (BWT). For the FM-index, F and L plus
some additional tables are required. The prefix-sum table C stores the number of occurrences
of lexicographically smaller letters in T for each character. The occurrence table Occ stores the
occurrences of each character in a prefix of L, corresponding to the rank of the respective character in
a given row. Occ and C can be used to find the related row in F for an entry of L. The position table
Pos specifies the corresponding position of an entry in F in input string T. For memory efficiency,
only every m-th row of Occ and n-th position of Pos are usually stored (m = n = 3 in this example,
missing values being shown in light gray). Missing values can be efficiently calculated during runtime.
b The reverse pattern rev(P) is used to find all occurrences of P in T. For the sake of clarity, ranks
are included as indices of all entries in F and L. For each entry in the current span of F, all entries in
L that match the next character of rev(P) are considered for the next iteration. Once the complete
query was found, occurring positions can be calculated using the Pos vector. If no entry in L for the
current span matches the next character, the query does not occur in the input string (not shown). The
occurrence of the P in T is highlighted in subfigure a.
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1.3 Thesis Outline

In this thesis, new algorithmic approaches for alignment-based real-time analysis of Illumina

sequencing data are presented. The main goal of the work is to improve the previously

existing method of real-time alignment implemented in HiLive [92]. Thereby, scalability of

the approach is significantly increased to adapt it for the use with larger reference genomes

and datasets. This is achieved by algorithmic developments and technical optimizations.

A more efficient alignment algorithm is used as a basis for novel approaches to open up

new areas of application for real-time analysis, including variant calling, data protection

and pathogen detection. Throughout the projects, I was advised by Bernhard Renard who

participated in the conceptional design of the projects and drafting of the manuscripts for

publication.

In Chapter 2, I introduce HiLive2 which is the successor of HiLive. One major change I made

for HiLive2 was the integration of a newly developed algorithm based on the FM-index while

its predecessor made use of the q-gram index. This improvement made HiLive2 applicable

for large reference genomes as shown for the human reference hg19. Additionally, the need

of computational resources including CPU time and memory consumption was considerably

reduced which allows the application for larger datasets. Further developments included the

ability to produce intermediate results during runtime and improved functions to calculate

the alignment score (affine gap costs) and mapping quality to improve follow-up analyses.

Chapter 2 also shows a proof-of-principle to use real-time results of HiLive2 for variant

calling with human whole exome sequencing data. In this contribution I conceptualized the

FM-index based algorithm and did all related implementations. Simon Tausch extensively

tested the functionality and performance of HiLive2 on various types of datasets and gave

detailed feedback about misbehavior and usability. Simon Tausch was also involved in design

decisions such as supported file formats, the choice of default parameters as well as the

evaluation and prioritization of new features. Together with Bernhard Renard, I designed the

proof-of-principle study for real-time alignment-based variant calling and I preformed the

corresponding experiments. I drafted the manuscript with helpful input of the co-authors.

Loka TP, Tausch SH, Renard BY. Reliable variant calling during runtime of Illumina

sequencing. bioRxiv, 2018, doi: 10.1101/387662.

Accepted for publication in Nature Scientific Reports.

In Chapter 3, I introduce PriLive which adds a local background alignment approach to

the HiLive software. This functionality is primarily designed to remove human reads from
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Illumina sequencing data to significantly increase the level of data protection when analyzing

microbial samples from a human host. This is achieved by masking relevant sequence

information in the raw base call data of the sequencing device even before sequencing has

finished. The experiments on simulated and real data show the effectiveness of our approach

with respect to data protection, even in early stages of sequencing. Based on the general idea

of real-time filtering which was introduced by Bernhard Renard, I designed and implemented

the local alignment approach via integration in HiLive. Simon Tausch was involved in

the elaboration of algorithmic details and the technical strategy regarding the real-time

modification of Illumina base call files. I preformed the computational experiments which

were designed together with Bernhard Renard and Simon Tausch. Piotr Wojciech Dabrowski

supported technical and infrastructural decisions with respect to the implementation of

PriLive and reproducing the real-time experiment with dataset HiSeq_1. Andreas Nitsche

and Aleksandar Radonić designed the sequencing experiment of dataset HiSeq_1 which was

performed by Aleksandar Radonić. Andreas Nitsche further provided virological insights,

especially concerning the expected proportions of viral and human reads. I wrote the

manuscript with valuable contributions of all co-authors.

Loka TP, Tausch SH, Dabrowski PW, Radonić A, Nitsche A, Renard BY. PriLive:

privacy-preserving real-time filtering for next-generation sequencing. Bioinformatics,

2018, bty128, doi: 10.1093/bioinformatics/bty128

In Chapter 4, I show how the real-time alignment results of HiLive2 can be used for the

detection of pathogens in metagenomic samples. The presented software PathoLive integrates

HiLive2 and ranks the alignment results with respect to their occurrences in a database of

known background signals in human samples. PathoLive further provides an intuitive

visualization that highlights uncommon (and therefore interesting) signals of organisms with

a high biosafety level which is usually assumed to correlate with their expected risk for

humans. This visualization is provided for intermediate and final results and allows first

interpretations even in early stages of sequencing. The concept of PathoLive was designed

by Simon Tausch, Bernhard Renard and Andreas Nitsche. Andreas Nitsche supervised

the in-house sequencing experiments and Jeanette Klenner produced the spiked dataset for

benchmarking. I gave vast conceptional input concerning real-time applicability for the

first implementation of PathoLive. Piotr Wojciech Dabrowski, Martin Lindner and Andreas

Andrusch gave substantial input on algorithmics, parametrization, visualization, and scoring

methods. Simon Tausch did the related implementations. I adapted PathoLive to run with

HiLive2. Jakob Schulze and I adapted both versions of HiLive to fulfill specific requirements
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of PathoLive and for the experiments shown in the manuscript. These changes included new

major features such as, for example, the adapter trimming functionality which was required

for the real-world sample from Sudan. The real-time experiments were performed by Simon

Tausch, while I did all experiments with HiLive2 including the analysis of the sample from

Sudan. The manuscript was drafted jointly by Simon Tausch and me while receiving valuable

input from all co-authors. I particularly emphasize that the first version of the manuscript

was also part of the doctoral thesis of Simon Tausch [93] in which I am not mentioned as a

joint first author as many of my contributions were made in a later stage of the project.

Tausch SH ∗, Loka TP ∗, Schulze JM, Andrusch A, Klenner J, Dabrowski PW,
Lindner MS, Nitsche A, Renard BY. PathoLive - Real time pathogen identification
from metagenomic Illumina datasets. bioRxiv, 2018, doi: 10.1101/402370.
Submission in preparation.
∗ These authors contributed equally to this work.

Chapter 5 gives a summary of the thesis and provides an outlook for potential future devel-

opments in the field of real-time analysis of sequencing data.
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2 Reliable Variant Calling during Runtime of Illumina
Sequencing

The sequential paradigm of data acquisition and analysis in NGS leads to high turnaround

times for the generation of interpretable results. We combined a novel real-time read

mapping algorithm with fast variant calling to obtain reliable variant calls still during the

sequencing process. Thereby, our new algorithm allows for accurate read mapping results

for intermediate cycles and supports large reference genomes such as the complete human

reference. This enables the combination of real-time read mapping results with complex

follow-up analysis. In this study, we showed the accuracy and scalability of our approach by

applying real-time read mapping and variant calling to seven publicly available human whole

exome sequencing (WES) datasets. Thereby, up to 89 % of all detected single-nucleotide

polymorphisms (SNPs) were already identified after 40 sequencing cycles while showing

similar precision as at the end of sequencing. Final results showed similar accuracy to those

of conventional post hoc analysis methods. When compared to standard routines, our live

approach enables considerably faster interventions in clinical applications and infectious

disease outbreaks. Besides variant calling, our approach can be adapted for a plethora of

other mapping-based analyses.

2.1 Background

Common workflows for the analysis of Illumina NGS data can only be applied after sequenc-

ing has finished. Besides the time needed for sample preparation, this sequential paradigm of

data acquisition and analysis is one of the main bottlenecks leading to high turnaround times.

For time-critical applications, it is crucial to massively reduce the time span from sample

receipt to interpretable analysis results. Examples for such time-critical analyses range from

the differential diagnosis of genetic disorders in infants [94–97], to the determination of

Mycobacterium tuberculosis drug resistances [98], and to the identification of pathogens,

virulence factors, drug resistances and paths of disease transmission in infectious disease

outbreaks [99, 100]. While having considerably higher turnaround times than targeted ap-

proaches such as molecular tests, NGS provides a more open view as well as more extensive

and reliable results. During bioinformatics analysis of NGS data, read mapping and variant

calling are crucial steps to obtain genetic information that is essential for the treatment of a
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patient, including strain level classification and drug resistances of a pathogen or the presence

of genetic disorders that are known to be associated with specific disease characteristics.

While HiLive [92], the predecessor of our new algorithm HiLive2, delivered results at the

end of sequencing, HiLive2 can produce read mapping output for arbitrary sequencing

cycles while still sequencing. At the same time, the new algorithm is faster, more accurate

and enables scalability to large reference genomes such as the complete human reference.

The recently published software LiveKraken [101] already gives k-mer based taxonomic

classification results for arbitrary sequencing cycles. However, while LiveKraken provides

valuable information about the microbial composition of a sample, the results do not allow

for complex reference-based follow-up analyses such as variant calling or the analysis of

drug resistances. Alternative approaches to obtain read mapping results for Illumina data

while still sequencing, such as rapid pulsed whole genome sequencing [97], lack sufficient

scalability for high amounts of data and large reference genomes and are therefore only

suitable for special use cases. At the same time, the incremental approach of HiLive2

provides higher flexibility in the choice of output cycles which can even be modified during

the runtime of the sequencer. The use of specialized hardware, such as field-programmable

gate arrays (FPGAs) that are for example used in the DRAGEN system [96] could generally

overcome the lack of scalability and speed for intermediate analyses but come with additional

costs, either for purchase and infrastructure of local solutions or for the use of a cloud system.

At the same time, such approaches are usually not algorithmically optimized for analyzing

incomplete data. Additionally, cloud solutions as provided by DRAGEN can be problematic

with regard to data protection guidelines in many countries.

A different tool, TotalReCaller [102], implements a similar algorithmic idea as HiLive2.

TotalReCaller uses an FM-index based alignment approach to perform reference-based

base calling. While TotalReCaller’s alignment approach only allowed for substitutions, its

successor Gappy TotalReCaller [103] also considers insertions and deletions. However, as

TotalReCaller’s main objective is to improve base calling it does not produce actual alignment

output. At the same time, the authors describe the need for an FPGA-implementation to

make it suitable for real-time applications.

When compared to ONT sequencing, which enables real-time analysis by design, Illumina

sequencing provides higher scalability at lower costs and with much lower error rates.

Therefore, while being a promising technology for real-time analysis in the future, sequencing

technology, protocols and computational analysis for ONT need to be further established and

improved to become a viable alternative for many scenarios.
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2. Reliable Variant Calling during Runtime of Illumina Sequencing

The workflow described in this study is based on real-time read mapping results with our

novel algorithm HiLive2 followed by fast and accurate variant calling with xAtlas [104].

Thereby, live results can be obtained several hours before all data are written by the sequencer

and provide increasing insights into the sample over sequencing time. This study describes

the application of our workflow to human WES data, showing the scalability of our approach

for high amounts of complex data and large reference genomes. However, our approach

can generally be adapted for different types of sequencing methods such as whole genome

sequencing (WGS) or amplicon sequencing and a plethora of different mapping-based

analysis methods. While application to arbitrary sample types and reference genomes

is possible in general, the latency of real-time results strongly depends on the size and

complexity of the used reference genome, the number of reads per tile, the parameter settings

made and the available hardware. Therefore, when planning real-time sequencing, it should

be examined if the desired live analysis of a sample is possible under the given conditions.

Our new real-time read mapping software HiLive2 is publicly available under BSD-3-clause

on https://gitlab.com/rki_bioinformatics/hilive2 and on Bioconda [105] for easy installation

(conda install –c bioconda hilive2).

2.2 Methods

In this chapter, we provide a brief description of our workflow. All software versions are

listed in the Software versions section.

Implementation of HiLive2

HiLive2 is based on a novel algorithm based on the efficient FM-index implementation of

the SeqAn library [106]. HiLive2 provides five different modes to select a focus on runtime

(fast or very-fast), accuracy (accurate or very-accurate) or a trade-off of both (balanced).

Parameter decisions are made automatically by HiLive2 based on the selected mode, the

size of the reference genome and the read length. The influenced parameters include the

length of an initial, error-free k-mer (anchor-length), the intervals of creating new seeds

(seeding-interval), the minimum alignment score (min-as) and the intervals of increasing

the number of errors (error-interval). However, all parameters can be refined or completely

manually set by the user to enable even faster or more accurate computations.

HiLive2 follows the seed-and-extend alignment approach. The first seeds are created when
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sufficient bases are available for all reads to create an anchor of the specified length (initial

seeding). Thereby, anchors are error-free matches of the most recently sequenced k-mer

in the index. New alignment anchors of the same length are created in specified intervals

(non-initial seeding). By default, the selected intervals produce overlapping anchors. In the

following cycles after the creation of an anchor, the alignments are extended in the direction

of sequencing only. This means that alignments originating from non-initial seeding have

unaligned regions at the beginning of the reads which are reported as soft clips. During

extension, the minimum score of the alignment decreases with ongoing sequencing. This

means that more errors are permitted for longer sequences. This approach leads to a massive

reduction of the search space in early sequencing cycles while having only minor effects

on the final results as the mapping positions of reads with too many errors at the beginning

can still be determined based on a non-initial seeding step. However, the actual alignment

information for the erroneous regions is lost in this case but can be covered by other reads

having these regions being placed in the middle or at the end of the read.

HiLive2 is an all-mapper by design. This means that all alignments within the search

space specified by the parameter setting can be found and reported. However, the default

output option of HiLive2 is to report only one best alignment for each read. For most

analyses, this output option is the expected behavior. Output is written in the well-established

BAM or SAM format. For all output cycles, temporary files are stored and can be used

to efficiently produce output with different options (e.g., writing all alignments instead of

one best alignment for each read). This functionality is particularly useful for explorative

analyses. Additionally, these temporary files can be used as an entry point to continue the

alignment if the process crashed or had to be interrupted.

Data Download and Conversion

The human reference genome hg19 was obtained from the National Center for Biotechnology

Information (NCBI) and only considered chromosomes 1 - 22, X and Y. Alternative regions

were omitted. The sequences were stored in a single multi-FASTA file. For the evaluation

of variant calls with RTG Tools [107], the reference genome was converted to SDF format.

The sequencing datasets of the individual NA12878 were downloaded from the European

Bioinformatics Institute (EBI) in FASTQ format. For read mapping with HiLive2, read pairs

were converted to Illumina base call file (BCL) format, distributed on one lane and 64 tiles.

There were four different definitions for exome capture region definition required for the
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different datasets (see Table 2.2 in the results section). The regions were obtained in BED

format from the respective producer, if available. Whenever multiple definition files were

provided, the primary target regions were selected.

Gold standard variants for the individual NA12878 were downloaded from the Genome

in a Bottle (GIAB) consortium [108] and regularized with the vcfallelicprimitives tool of

VCFtools [109]. SNPs and InDels of the gold standard were stored in two separated files and

filtered out against the exome capture regions using BEDTools intersect [110]. The resulting

files were used as the gold standard for datasets using the respective exome capture definition.

During the evaluation of the results, only variant calls in high confidence homozygous

regions which were obtained from GIAB were considered.

Real-time Read Alignment with HiLive2

The index of human reference genome hg19 for HiLive2 was built with default parameters.

The creation of base call files by the sequencing machine was simulated using a script for

sequencing simulation with a sequencing profile for HiSeq2500 machines in rapid mode and

using dual barcodes. As no barcodes were present in our datasets, no data was written by the

sequencing simulator for the respective cycles. HiLive2 was run in fast mode allowing faster

turnaround times at the expense of slightly lower recall. Technical parameters as lanes, tiles

and read length were set according to the datasets. In general, we chose cycles 30, 40, 55, 75

and 100 for each of the two reads as output cycles. For datasets with read lengths other than

2 x 100 bp, we adapted the output cycle numbers to 30, 40 and 50 (SRR292250) or 30, 40,

55 and 76 (SRR098401). We used the recommended number of threads (one thread per tile)

for HiLive2 resulting in 64 threads for all datasets.

Read Alignment with Bowtie 2

The index of human reference genome hg19 for Bowtie 2 was built with default parameters.

Read alignment with Bowtie 2 was performed with default parameters using ten threads.

Variant Calling with xAtlas

Variant calling with xAtlas was performed for each chromosome individually. Therefore,

the alignment files of HiLive2 or Bowtie 2 were split in 24 files (one for each chromosome).
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The resulting files were sorted and indexed using samtools [111]. Afterwards, variants were

called with xAtlas for the respective exome capture regions using default parameters. Sorting,

indexing and variant calling was performed with 24 threads (one per chromosome). The

resulting VCF files were merged using vcflib vcf-concat (https://github.com/vcf lib/vcflib)

for SNPs and InDels separately.

Measure of Turnaround Time

The sequencing simulation script provides time stamps for each written sequencing cycle.

These time stamps were compared to the system time stamps for the last modification of the

alignment output files of HiLive2. The time span between both time stamps describes the

alignment delay of HiLive2. Additionally, we measured the clock time of the xAtlas pipeline.

The sum of sequencing time until the respective cycle, the alignment delay of HiLive2 and

the clock time of xAtlas yields the overall turnaround times of our workflow.

Evaluation with RTG Tools

We used the vcfeval program of RTG Tools for the validation of variant calling results.

We used the gold standard for the respective dataset (depending on the used exome kit) as

baseline and the variant calling output of xAtlas or Genome Analysis Toolkit (GATK) as

call. The human reference hg19 in SDF format was used as reference template. Only variant

calls being included in the high-confidence regions for individual NA12878 provided by the

GIAB consortium were considered for validation. We ran RTG Tools with 24 threads and

used the squash-ploidy and all-records parameters. For variant calls produced by xAtlas,

we additionally defined QUAL as the field for variant call quality. For GATK, the GQ field

is chosen by default. RTG Tools vcfeval returns a list of statistical measures for different

thresholds of the variant call quality field, including precision and recall. These values served

as input for the precision-recall curves (PR curves) shown in Appendix Figure A1.1 and used

for the calculation of the area under the precision-recall curve (APR).

Statistical Measures

We used precision and recall values for the validation of our approach. True positives (TP)

describe the number of correctly detected variants. False negatives (FN) are the number of
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undetected variants. False positives (FP) are the number of variants that were detected by

our pipeline but are not contained in the gold standard.

Recall is the relative number of variants of the gold standard that were found by our approach
TP

TP+FN . Precision is the fraction of variants called by our approach that are also present in

the gold standard TP
TP+FP .

Software Versions

Table 2.1 shows the software versions used for this study.

Table 2.1: List of software used in this study. Software with source Bioconda was installed
with the environment management software conda (https://conda.io) and obtained from the
Bioconda channel [105].

Name Version Source Used for

BEDTools 2.21.0 https://github.com/arq5x/bedtools2 VCFandBEDfile
processing

Bowtie 2 2.3.4.1 Bioconda Readalignment

GATK 3.8 Bioconda Alignmentfileprocessing

HiLive2 2.0 https://gitlab.com/rki_bioinformatics/hilive2 Real-time readalignment

RTG Tools 3.9 Bioconda Benchmarkofvariant calls

SAMtools 1.8 Bioconda SAM / BAMfile
processing

vcflib 1.0.0_rc1 Bioconda VCFfileprocessing

VCFtools 0.1.12 https:// sourceforge.net/projects/vcf tools/ VCFfileprocessing

xAtlas 0.1 Bioconda Fastvariant calling
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Code Availability

The source code of HiLive2 is available for public download on https://gitlab.com/rki_bioin

formatics/hilive2 and comes with extensive documentation and sample data. HiLive2 is also

available on Bioconda for easy installation (conda install –c bioconda hilive2).

Data Availability

Sequencing data of the individual NA12878 is publicly available on the NCBI Short Read

Archive (SRA) and on the EBI FTP server. Gold standard variant calls are publicly available

from the GIAB consortium. Human reference genome hg19 was obtained from the NCBI

FTP server. Exome capture targets are available from the manufacturers or from third party

resources.

2.3 Results

Implementation and Experimental Setup

To allow for faster NGS-based diagnosis and treatment, we developed a new real-time read

mapping algorithm that generates high-quality results. We combined our new software with

a fast variant caller to produce high-quality variant calls based on intermediate read mapping

results, while sequencing is still running. This approach allows reliable and fast variant

calling results without reducing the final sequencing coverage or quality. Therefore, we

adapted our real-time read mapper HiLive [92] that gives output at the end of sequencing,

using a novel algorithm based on the efficient FM-index [81] implementation of the SeqAn

library [106] for continuously analyzing sequencing results during runtime. The new version

(HiLive2) achieves scalability to larger indices such as the complete human reference genome.

At the same time, the algorithm comes with improved performance in terms of runtime,

memory and data storage and overcomes heuristic elements that were present in previous

version of HiLive. The high scalability and accuracy of HiLive2 enable the combination of

real-time read mapping results with complex follow-up analyses that has not been possible

with the previous version. To demonstrate the power of such analyses, we performed variant

calling on seven WES datasets of the human individual NA12878 from the CEPH Utah

Reference Collection (Table 2.2) using the real-time read mapping results of HiLive2 as

input data.
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Table 2.2: Summary of datasets evaluated in this study. Information about sequencing plat-
form, exome capture and coverage were adopted from Hwang et al. [112]

Accession No. Platform Exome capture Exome coverage Reads1 Read length

SRR098401 HiSeq2000 SureSelect v2 116.84 x 114 M 2 x 76 bp

SRR292250 HiSeq2000 SeqCap EZ v2 116.06 x 85 M 2 x 50 bp

SRR515199 HiSeq2000 SureSelect v4 298.45 x 167 M 2 x 100 bp

SRR1611178 HiSeq2000 SeqCap EZ v3 79.93 x 45 M 2 x 100 bp

SRR1611179 HiSeq2000 SeqCap EZ v3 79.84 x 45 M 2 x 100 bp

SRR1611183 HiSeq2500 SeqCap EZ v3 129.94 x 74 M 2 x 100 bp

SRR1611184 HiSeq2500 SeqCap EZ v3 111.90 x 64 M 2 x 100 bp

1 M = millions

For variant calling, we used the fast variant caller xAtlas which shows comparable accuracy

to established methods at much lower runtime [104]. We compared our results to read

mapping with Bowtie 2 [85] and variant calling with either xAtlas or GATK 3.3.017 for the

same datasets. For Bowtie 2 + GATK, we took the results from Hwang et al. [112] following

the GATK best practice procedure using Picard ReorderSam (http://broadinstitute.github.io

/picard/ ) and GATK IndelRealigner, BaseRecalibrator and HaplotypeCaller. Accuracy was

determined by comparing the results to the well-established high-confident variant calls for

the human individual NA12878 published by the GIAB consortium [108]. As benchmarking

method we used the area under the precision-recall curve (APR).

Accuracy of Real-time Results

In Illumina sequencing, all reads are sequenced in parallel. In each so-called sequencing

cycle, sequence information of one additional nucleotide is obtained for all reads. Thus, the

current length of a read equals the number of the respective cycle (e.g., 40 nucleotides after

cycle 40). To demonstrate the capability of our approach to provide interpretable results

during runtime, we applied our workflow at different stages of sequencing. We expected
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our live results to show higher accuracy for higher cycles due to the increasing amount of

available sequence information. At the same time, we analyzed whether the detected variants

in early sequencing cycles are as reliable as variants called at the end of sequencing. This

is a crucial criterion for the proposed workflow since interpretation of live results is only

meaningful when based on reliable variant calls. Therefore, besides comparing the APR

values of different sequencing cycles, we also examined precision and recall separately.

Figure 2.1 a shows the progression of the APR values for SNP calling in all analyzed datasets

Figure 2.1: The area under the precision-recall curve (APR) for SNP calling in seven datasets
at different sequencing cycles. SNPcallingwasperformedwithxAtlasusing real-time readmapping
resultsofHiLive2. Results for the samplesSRR1611178, SRR1611179,SRR1611183andSRR1611184
werecombinedtoasingledataseriesdueto theirhighsimilarity(SRR1611178-84). Errorbarsfor thisdata
series showthestandarddeviation. ReadsofSRR292250andSRR098401wereshorter than2 x 100 bp
which leads tomissingdatapoints. Thevertical, ticked line in themiddleof theplotdivides thefirst and
second read. a The gray columns show APR values using Bowtie 2 for read mapping and xAtlas (left)
andGATK(right) forvariant calling. Thedata forBowtie 2+GATKwere taken fromHwangetal. [112].
The real-time workflow with HiLive2 and xAtlas provides first results after 40 sequencing cycles (30
cycles forSRR292250). AnAPRgreater than0.9 is reachedafter75cycles forall datasetswithaminimal
read lengthof75 bp. Until endof sequencing, there is amoderate increaseof theAPR.bPrecisionwitha
quality threshold of1 for variant callingwithxAtlas. The results show noprecision lower than 0.89 forall
sequencingcycles. Ingeneral, precision increasesonlyslightlyover time. This indicates that results in
early sequencingcyclesarealready reliable. cRecallwithaquality thresholdof1 forvariant callingwith
xAtlas. The results showstrong improvements fromthe first results available until theend of the first read.
Theprogressionofall curves is similar to thatof theAPRcurve (Figure2.1 a), indicating thecorrelation
between those twomeasures. *Cycle50forSRR292250,cycle55forallotherdatasets. **Cycle76 for
SRR098401, cycle75 forall otherdatasets.
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with increasing sequencing time. In cycle 30, sequence information was not sufficient to

call any variants with the given parameter settings for six of seven datasets. For dataset

SRR292250, read mapping parameters were adapted by HiLive2 automatically due to the

short read length of 50 bp. This led to earlier results after 30 cycles, while first results

were available after cycle 40 for all other datasets. Results show a continuous increase of

the APR values for all cycles of the first read. In cycle 75, an APR larger than 0.9 was

achieved for all datasets with sufficient read length. Afterwards, the APR values continue

increasing moderately. When regarding the progression of precision (Figure 2.1 b) and recall

(Figure 2.1 c) over sequencing time separately, it can also be also observed that lower APR

values for earlier sequencing cycles are mainly caused by a lower recall while precision

changes only slightly with more sequence information available. The same conclusions are

supported by the individual PR curves for all datasets which show a large increase of the recall

but only minor changes of specificity over sequencing time (Appendix Figure A1.1). This

indicates that live results are highly reliable and can therefore serve for early interpretation

and problem-specific follow-up analyses. The increasing number of SNP calls in subsequent

cycles provides additional information for complementing the previous interpretation of the

data. However, the final results with HiLive2 show slightly lower maximum recall values

than the same workflow applied to read mapping results of Bowtie 2 (Appendix Figure A1.1).

This can be explained by the read mapping approach of HiLive2 which tolerates only a

specified number of errors for a read. Thus, regions with a high number of variations may

be lowly covered which leads to undetected variants. The same effect is somewhat stronger

for InDels as the mapping algorithm only tolerates InDels with a maximum length of three

nucleotides by default due to computational costs. While this behavior led to a lower recall

than based on read mapping with Bowtie 2, the results showed comparable or higher precision

(Appendix Figure A1.1). Thus, although focussing on SNPs in this study, our workflow can

also provide valuable insights about small InDels.

Turnaround Time of the Workflow

Besides the accuracy of results, turnaround time is the second crucial factor for NGS-based

real-time analyses. Thereby, live results should be available as soon as possible after the

data of the respective sequencing cycle was written without showing significant delay in any

stage of sequencing. We measured the turnaround time of real-time mapping with HiLive2

and subsequent variant calling with xAtlas for the same runs that delivered the accuracy
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Figure 2.2: Turnaround time of our workflow for datasets SRR1611184 (a) and SRR515199
(b). For eachcycle, the first vertical line indicates the time pointwhen the data for the respective cycle was
completelywritten. Thesecond lineshowswhen thealignmentoutputofHiLive2 iswritten. The third line
indicates theendofourworkflowresulting in theoutputofvariant calls for the respectivecycle. Vertical
lineswith the sameverticalpositionbelong to the sameoutput cycle.

results shown before. All computations were run on a 128-core machine (Intel Xeon CPU

E5-4667 v4 @ 2.20 GHz, 45 MB Cache) with 500 GB RAM, using a maximum of 65 threads

per dataset. Figure 2.2 shows an overview for the turnaround time of our workflow for

different sequencing cycles for datasets SRR1611184 and SRR515199. For SRR1611184,

variant calling results were available after a maximum of 35 minutes for all output cycles of

the first read and a maximum of 52 minutes for all output cycles of the second read. With

approximately 1 million reads per tile (or thread), these are realistic numbers for a real-case

scenario using benchtop sequencing devices. For SRR515199, the latency is way higher

reaching a maximum of more than three hours (193 minutes) for cycle 175. The higher

latency originates from analyzing approximately 2.5 times as many reads per tile (or thread)

as for dataset SRR1611184. This shows that the latency of real-time results strongly depends

on the number of reads that are analyzed per thread which varies with the available hardware

and the used sequencing device. In general, the analysis of high coverage datasets can be

significantly reduced by adapting the alignment parameters at the cost of accuracy. However,

for the sake of comparability, we ran all datasets with the same parameter settings in this
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study leading to a higher latency for higher coverage datasets. Results for the other datasets

are shown in Appendix Figure A1.2. Thereby, five of the seven datasets showed a maximum

latency of less than one hour from data output to interpretable results for each output cycle.

2.4 Discussion of Results

In clinical applications and infectious disease outbreaks, the turnaround time of analyses is a

critical factor for an effective treatment of patients. At the same time, a high analysis depth

and an open perspective for unexpected findings are further crucial criteria in such scenarios.

Therefore, despite its significantly higher turnaround times than alternative methods, NGS

presents an established analysis method in several time-critical applications. For example,

a comprehensive report of vancomycin resistant Enterococcus faecium infections in three

patients was created in 48.5 hours including over-night culturing using an Illumina MiSeq

benchtop sequencer [113]. Also in the field of acutely ill infants with suspected genetic

diseases, there were impressive improvements in the applicability of NGS-based diagnostics

including a 26 hours protocol for provisional molecular diagnosis [96]. However, even with

a significant speed-up of the computational analysis using faster software or specialized

hardware such as FPGAs, a decrease of turnaround time is strictly limited due to the

sequential paradigm of data creation and analysis. Motivated by this, Miller et al. [96]

introduced the idea to combine bioinformatics analysis using FPGAs, in particular the

DRAGEN system, with the concept of rapid pulsed whole genome sequencing [97] to

achieve near real-time analysis results. Such an approach would require a conversion of

sequencing data to FASTQ or BAM / CRAM format for each desired output cycle as these

are the only file formats supported by the DRAGEN system. At the same time, specialized

hardware is required and licenses must be purchased. Alternatively, a cloud service can be

used which can be problematic due to data protection guidelines and the required speed

of data transfer. However, to the best of our knowledge there is no study describing a

proof-of-principle for this idea. Another commercially available approach to speed up NGS

analysis is implemented in the Sentieon Genomics Tools, an optimized version of BWA and

GATK that overcomes the need of specialized hardware or cloud access [114]. On the other

hand, this software is not specifically designed to produce real-time results and involves

costs for licenses. Furthermore, both commercial systems are developed with a strong focus

on variant calling for human samples. In contrast, the workflow presented in this study is

open source, runs on a standard Linux machine and allows for easy and flexible adaption
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of the workflow for different scenarios. At the same time it is highly scalable and provides

high-quality analysis results without the need of acquiring specialized hardware, cloud access

and licenses.

The results of our study demonstrate the enormous potential of our approach to reduce the

turnaround time from sample arrival to meaningful analysis output by several hours up to

days depending on the used sequencing device. Thereby, live results in very early stages

of sequencing can already deliver highly confident results while the quantity of analysis

results (i.e., the number of called variants in this study) increases with a growing number of

sequenced nucleotides per read. Live analyses can therefore provide first relevant insights

into the data while the analysis becomes more comprehensive with ongoing sequencing. The

sensitivity of results in early sequencing cycles is thereby implicitly limited by the lower

total coverage when compared to the full read length as well as the relatively high number

of unambiguously mapped reads, especially in low complexity regions. To demonstrate the

power of our approach, we showed its application to human WES data including real-time

alignment of all reads to the full human reference genome hg19. We chose this type of data

due to its complexity and computational demands as well as the availability of high-quality

and extensively studied gold-standard datasets provided by the GIAB consortium. However,

our approach is not restricted to human WES data and the presented use case of variant

calling. We rather see an enormous potential of real-time read mapping to provide means for

a wide range of complex follow-up analyses for various types of data. Still, due to current

technical limitations of HiLive2 and runtime limitations of tools for subsequent analysis

such as variant calling, certain types of analyses that require huge amounts of data are only

feasible with limitations. For example, when applying the same SNP-calling workflow

as shown for the WES data to a 30 x WGS dataset (SRR6808334) [115] of the human

individual NA12878, the latency of real-time results was up to six hours while achieving

a maximum recall of 87 % with 97 % precision (Appendix Figure A1.3). Even for such

analyses, valuable insights could be gained for early sequencing cycles (e.g., 40 % recall with

90 % precision after 55 cycles and 62 % recall with 91 % precision after 75 cycles), but given

the high latency and comparatively low accuracy we only recommend our workflow for such

datasets in exceptional situations and when no other options are available. However, future

improvements, such as a decrease of I/O operations, in-tile multithreading and acceleration

of alignment output, could significantly reduce the latency of HiLive2 and make it more

applicable for higher throughput applications.

A second limitation of our approach comes up when dealing with multiplexed sequencing
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data which is usually applied for high-throughput applications to sequence more than one

sample within one sequencing run. While HiLive2 provides demultiplexing functionality and

can produce separate alignment files for each sample, the sequencing approach of Illumina

limits the early assignment of reads by sequencing the barcodes after completing the first read.

In doing so, it is not possible to distinguish between different samples before sequencing

of the first read has finished. A change in the sequencing order is not trivial as sequencing

the barcodes first would negatively influence the initial clustering that is performed during

the first couple of sequencing cycles and relies on a wide variety of sequences which is not

given for the barcodes, in particular when only having a low number of samples. When

single-end sequencing is sufficient, this can be overcome by performing asymmetric paired-

end sequencing. This means, that the first read is only sequenced for several base pairs to

enable proper clustering, followed by the barcodes and the complete second read. While

resulting in some additional runtime at the beginning of sequencing, this enables an early

assignability of reads to the samples. A different conceivable solution could be to include a

random sequence followed by inline barcodes at the beginning of the first read.

Alternative approaches to NGS for diagnosis can also be highly valuable for different

scenarios. Molecular approaches are usually highly reliable and provide answers to specific

questions in a very short timeframe and at much lower costs. For example, the detection

of 25 genetic mutations in M. tuberculosis that confer to drug resistances can be finished

in approximately two hours with a variation of the molecular GeneXpert test [98]. Even

when providing live results, such short turnaround times are currently not feasible with

NGS-based approaches due to the required time for sample preparation and clustering.

Another interesting technology for time-critical applications is ONT sequencing. It was

shown that metagenomic detection of viral pathogens can be achieved in less than six hours

[116]. While ONT shows a high portability and much faster sample preparation as additional

benefits, this and other current long-read technologies are still expensive and limited by their

comparatively low coverage and high error rates. It is therefore hard to reliably identify lowly

abundant pathogens, genetic variants, parallel infections or the presence of viral quasispecies.

Thus, especially when it comes to these or other questions going beyond the identification

of highly abundant pathogens in time-critical applications, real-time analyses for Illumina

sequencing can be of great benefit.

Concluding, we consider our new real-time workflow for Illumina sequencing to be a

complementary method to molecular tests and ultra-portable, long-read sequencing for

time-critical analyses. It fills the current gap of short turnaround times, an open-view
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perspective and high sequencing coverage which is essential for a plethora of applications

such as pathogen identification and characterization, identification of acute genetic diseases

or epidemiological analyses. Therefore, our approach is an important step for improving the

ability for fast interventions in exceptional clinical situations, personalized medicine and

infectious disease outbreaks.
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3 PriLive: Privacy-preserving Real-time Filtering for
Next-Generation Sequencing

In NGS, re-identification of individuals and other privacy-breaching strategies can be applied

even for anonymized data. This also holds true for applications in which human DNA

is acquired as a by-product, e.g., for viral or metagenomic samples from a human host.

Conventional data protection strategies including cryptography and post hoc filtering are only

appropriate for the final and processed sequencing data. This can result in an insufficient

level of data protection and a considerable time delay in the further analysis workflow.

We present PriLive, a novel tool for the automated removal of sensitive data while the

sequencing machine is running. Thereby, human sequence information can be detected

and removed before being completely produced. This facilitates the compliance with strict

data protection regulations. The unique characteristic to cause almost no time delay for

further analyses is also a clear benefit for applications other than data protection. Especially

if the sequencing data are dominated by known background signals, PriLive considerably

accelerates consequent analyses by having only fractions of input data. Besides these

conceptual advantages, PriLive achieves filtering results at least as accurate as conventional

post hoc filtering tools.

3.1 Background

Over the last decade, the amount of publicly available genomic data has increased by several

magnitudes. The development of new technologies that enable faster, cheaper and ultra-

portable DNA sequencing further accelerates the growth of data generation; a total number

of 100 million to 2 billion sequenced human genomes is estimated by 2025 [117], the latter

corresponding to approximately 25 % of the current global population. With this forthcoming

mass of produced sequencing data, the question of data protection becomes more and more

important. Until today, no general concept to securely store, share and analyze these data

with respect to data protection has been realized on a global scale. Consequently, researchers

receive insufficient support when dealing with sensitive data despite a potential lack of

instruction and knowledge. This does not only endanger the privacy of patients and their

relatives but may also result in legal actions against researchers if existing data protection

standards are not adequately respected.
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Several types of data have been shown to enable violations of privacy even if the related

metadata are anonymized. These include genome-wide association studies [118–120],

clinical proteomics data [121], phenotype-genotype correlation studies [122] and personal

genomes [123]. Thereby, a plethora of different privacy breaching strategies has been applied

including statistical procedures, phenotypic prediction and data linkage. A detailed review of

known privacy breaching strategies is provided by Erlich and Narayanan [124]. Most of these

workflows “require a background in genetics and statistics and, importantly, a motivated

adversary” [124]. Additionally, the results can be difficult to interpret and often involve a

degree of uncertainty. However, with the increasing mass and quality of available data as

well as technological advances, the reliability of privacy breaching techniques will be further

improved and new methods will occur in the future. It is therefore highly desirable to remove

sensitive information from the data, especially if it is not relevant for the analyses.

Most existing technical solutions for the protection of genomic data focus on human samples.

Common approaches include cryptography [125–127], specialized data structures (e.g.,

based on Bloom filters [128, 129]), differential privacy [130, 131], selective data retrieval

[132] or combinations of them. Besides human data, several types of non-human data exist

that may contain sensitive information. Examples for these are human metagenomic datasets

or viral sequencing data from a human host that can hardly be purified on a biological level

[133, 134]. The protection of such data is essential and seems to be comparatively simple

because the contained human information is usually of no interest for the analyses. Tools to

detect and remove human reads from NGS samples have already been developed for genomic

[135] and metagenomic [135–137] datasets. Nevertheless, the targeted removal of human

data is often neglected for several reasons such as an increased analysis time or concerns

about data loss. Another drawback of conventional data protection strategies is that they

can only provide a limited level of genomic privacy by design: First, the original unsecured

data is completely accessible in the timespan between data creation and the application of a

privacy-preserving procedure. Second, consequently, the original data can be (and often is)

stored further on besides the filtered data. Both aspects are potentially in conflict with legal

rights of many countries, for instance the European Union and its ‘Data Protection by Design

and by Default’ principle (Art. 25 EU General Data Protection Regulation). Moreover, this

behavior may cause a lack of data protection if the internal access to the original data is

not properly controlled or if the data are not sufficiently protected from attacks from the

outside. Thus, there is an actual need for a new concept to remove sensitive information

from NGS samples that (i) operates before the data is completely accessible, (ii) removes
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sensitive data irreversibly, (iii) requires no additional analysis time and (iv) is independent of

human interaction to enable institutional control for data protection. With PriLive we present

a new approach that meets these requirements and therefore provides the highest level of

genomic privacy for human-related NGS data.

3.2 Methods

In Illumina sequencing, hundreds of millions of short DNA fragments (reads) are analyzed

in parallel. Thereby, the nucleotide sequences of all reads are identified and written by

the sequencing machine base by base. Conventional sequence analysis tools for Illumina

data, e.g., read mapping [55, 138] and (de novo) assembly software [139], cannot operate

before the sequencing machine has finished and the raw data are converted to a human

readable file format (usually FASTQ). To the best of our knowledge, all existing mapping-

based, privacy-preserving read filtering strategies are based on conventional approaches

that require the full sequence information as input. We present a novel tool, PriLive, to

detect and remove human reads from Illumina HiSeq sequencing data (or similar) while

the sequencing machine is running. We use a k-mer based real-time read mapping strategy

that directly operates on the base call files that are produced by the sequencing machine. A

prior conversion of the sequencing data to a human readable file format is not necessary. All

available sequence information at a specific moment of the sequencing procedure is used to

compute intermediate alignment candidates. These alignments are extended with each new

base call that is produced by the sequencing machine [92]. Additionally to the mapping to a

reference genome of interest (foreground alignment), we implemented a second alignment

strategy to detect reads that should be removed from the data (background alignment). In the

field of data protection, this usually is a mapping to a human reference genome or parts of it.

As long as there is a promising foreground alignment candidate or the read maps to none

of both reference genomes, the sequence information is retained. Only reads that do not

map to the foreground reference genome but have a meaningful background alignment (e.g.,

human) are immediately removed from the sequencing data. The sequence information of all

succeeding sequencing cycles of a detected read can be removed right after it was produced

by the sequencing machine. By this approach, privacy-preserving real-time filtering with

PriLive finishes only a few minutes later than the sequencing machine and therefore provides

a significantly higher level of data protection than conventional tools.
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Algorithm

PriLive is based on the basic functionality of the real-time read mapping software HiLive

[92] which was designed for Illumina short read sequencing protocols (HiSeq or similar). In

each sequencing cycle, the next nucleotide of each read is identified. The resulting sequence

information is written to a connected hard drive in the binary BCL format. HiLive obtains

these base call files as an input to perform read mapping to a set of reference genomes when

the sequencing machine is still running rather than waiting for all data to be produced and

converted to a human readable file format (FASTQ for most other read mappers). HiLive

uses a k-mer approach for both alignment steps, i.e., to find candidate positions (seeding) and

to extend the resulting seeds. Several heuristic approaches are used to identify the minimal

number of errors in a candidate alignment. If a user-specified error threshold is reached, the

respective seed is discarded.

For read filtering with PriLive, we implemented a local alignment strategy for a set of

background reference genomes. This background alignment of a read runs in parallel to

the foreground alignment when the minimal number of errors, i.e., the edit distance, for

the foreground alignment ε is equal or larger than a specified threshold λ1 (ε ≥ λ1). If the

minimal number of errors ε exceeds a second threshold λ2 ≥ λ1 in the further sequencing

procedure (ε ≥ λ2) and there exist a significant background alignment, the respective

sequence information will be removed from the sequencing data (Figure 3.1). By default, λ1

and λ2 depend on the user-specified parameter -e (or --min-errors) that describes the number

of errors that are tolerated in the foreground alignment. This leads to the intuitive behavior

that λ1 and λ2 are higher if more errors in the foreground alignment are tolerated. The

minimal alignment score for the background alignment to remove a read depends on the read

length r, k-mer size k and λ1. The background alignment score itself describes the number

of matching nucleotides in the local alignment. This includes an anchor of consecutive

matches of length a ≥ k followed by an alignment strategy that allows for single nucleotide

mismatches (substitutions, insertions and deletions of length 1). Several consecutive errors

are not permitted. However, this limitation does not lead to a considerably lower sensitivity

since reads with longer, consecutive mismatch regions can be identified at a different position

of the read. The default parameters are designed for read filtering of genomic samples

including a foreground reference genome. Recommended parameter adjustments when using

PriLive without a foreground reference, e.g., for metagenomic samples, are described in the

next section.
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Figure 3.1: Alignment approach of PriLive. The similarity of a read to the foreground (FG) and
background (BG) reference genome has a strong impact on how the read is handled by PriLive. ε is the
minimal number of errors for a considered read when compared to FG at a given time of the alignment
procedure. λ1 and λ2 are the error thresholds for the foreground alignment to start the background
alignment in parallel and to allowthe removal of sequence information, respectively. (A)Highsimilarity
toFG.Thefirst thresholdλ1 isnotreachedsuchthatthebackgroundalignmentdoesnotstart. Thesequence
informationof the read is retained. (B)Somesimilarity toFG.Thefirst threshold λ1 is reachedsuch that
thebackgroundalignment is started inparallel. Thesecond threshold λ2 isnot reached, so thesequence
information is retained regardless of the background alignment score. (C) No significant similarity to
both FG and BG. Both thresholds λ1 and λ2 are reached such that the background alignment is started
in parallel. Since there is no significant alignment to BG the sequence information is retained. (D) No
significant similarity toFG.Both thresholds λ1 and λ2 are reached. Becauseof the significant alignment
toBGthesequence informationwill be removed in real-timeand thealignmentprocedure isnot continued
for the respective read.
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Parameter Selection

Parameters of PriLive should be selected according to the given application. The default

parameters of PriLive are designed for genomic samples of a known organism, i.e., when a

foreground reference is given. Thus, if PriLive is used with a foreground reference genome,

only minor changes of the parameter settings are necessary for most applications. The most

common adjustments are setting the -e parameter for the number of tolerated errors in the

foreground alignment according to the read length and the expected mutation rate of the

organism and the increase or decrease of --bg-score for a lower or higher filtering sensitivity,

respectively. If PriLive is used without a foreground reference, e.g., for metagenomic

samples, we recommend to set the number of tolerated errors for the foreground alignment

(-e) to 0. This implies λ1 = λ2 = 0 which means that the background alignment is started

from the beginning of the read. Additionally, for samples without a foreground reference,

we recommend to manually increase the value of --bg-score. This is necessary to achieve

a sufficient filtering specificity (if a foreground reference is available, specificity is mainly

achieved by keeping reads aligned to the foreground reference). At the same time, the value

of --bg-score should always be lower than half the read length to allow for filtering reads

with two or more consecutive errors in the middle of the read. An overview of the default

values of important parameters is provided in Table 3.1.

Table 3.1: Overview of important algorithmic parameters in PriLive. FG is the foreground
alignment, BG is the background alignment.

Parameter Variable Meaning Default value

--min-errors e # tolerated errors for FG Defined by the user (default: 2)

--CYCLES / -r r Read length Defined by the user (required)

k k-mer size Defined at compile-time (default: 15)

--bg-anchor a BG anchor length k + 4

--bg-start λ1 # errors in FG to start BG log2(max(1, e))

--bg-discard λ2 # errors in FG to discard a read Min: e + 1− log2(max(1, e));
Max: e + 1

--bg-score BG score to discard a read max(30, 35 · (log10(r− (max(1, λ1)
−1) · k))− 1)
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Technical Details

Reads detected by PriLive are covered by calls of the ambiguous base N in the original

base call files that are written during the sequencing procedure. This is done by replacing

the respective bytes that encode the nucleotide and the quality of the base call by 0-bytes.

It should be noted that quality values given in consequent data processing steps can be

negatively affected by this. To ensure that PriLive works properly, the base call data must be

organized as specified for Illumina HiSeq (bcl2fastq v1.8.4 User Guide, 2013). This must be

especially considered when using base calling software other than provided by Illumina or

special hardware set-ups. When using PriLive for decontamination or host removal other

than human, the modification of the base call files can be deactivated. PriLive then only

returns a list of filtered reads that can be considered in a later step of the analysis workflow.

It is also possible to create copies of the original data in an encrypted (hybrid AES256/RSA

encryption) or unencrypted manner.

Reference Genomes and Index Building

Index files were built for the tools PriLive, DeconSeq [135] and BMTagger [137]. For

lobSTR [140], the index files were retrieved from the lobSTR project website. The human

index files were generated for the human reference genome hg38. For the CPXV index we

used the NCBI sequence for cowpox virus Brighton Red (NC_003663.2). For the index

that contains the flanking regions of the short tandem repeat (STR) markers on the human

Y-chromosome (Y-STRs), some preprocessing was necessary. We retrieved the positions of

the Y-STRs from a BED file that is provided for Y-STR genotyping with lobSTR. Afterwards,

we searched for these positions in the corresponding reference from the hg19 resource bundle

for lobSTR. For each marker, we added the upstream and downstream flanking regions of

100 bp length to our final reference genome. The STRs themselves were not included in the

reference.

Index building for PriLive was performed with default parameters for all reference genomes.

For the human reference genome hg38, all k-mers that occur more than 1000 times were

trimmed (-t 1000). Trimming was not used for all other reference genomes. Index building

for BMTagger and DeconSeq was performed as recommended for the purpose of human

host removal.
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Datasets

Simulated dataset CPXV_1. 10 M reads of cowpox virus Brighton Red (CPXV) and the

human reference genome hg38 were simulated with an edit distance of 0 to 9 (1 M each).

The reads are single ended and of length 150 bp. Simulation was done with the mason read

simulator [141] using different error rates. The reads for the final data subsets were selected

by the NM:i tag of mason′s BAM output files. This procedure was performed in the same

manner for CPXV and human reads.

Simulated dataset CAMI_1. One sample of the Toy Test Dataset High_Complexity (HC_

Sample1) of the Critical Assessment of Metagenome Interpretation (CAMI) study [142]

was used as metagenomic dataset. The dataset includes approx. 75 M metagenomic reads

of length 2 x 100 bp (paired end). As background data, 10 M reads of the human reference

genome hg38 were simulated with the mason read simulator. These reads of 2 x 100 bp

(paired end) have an average error rate of 2 %.

Real dataset Venter_1. The original J. Craig Venter sequencing data (ftp:// ftp.ncbi.nih.gov/p

ub/TraceDB/Personal_Genomics/Venter/ ) have been produced by Sanger sequencing. We

removed the first 50 bp of each read for quality reasons (as suggested in Gymrek et al. [123]).

The remaining sequence information was split in non-overlapping 150 bp long fragments and

saved in FASTQ format. The paired-end information and quality of the Sanger reads were

not considered. The resulting Illumina-like reads were used as an input for all analyses of the

J. Craig Venter sequencing data. Although certain common effects in Illumina sequencing

are not considered in this procedure, we expected these data to show a more realistic behavior

than simulated data because of their real biological background.

Real dataset HiSeq_1. The dataset HiSeq_1 is a reproduction of an in-house sequencing run

of the human HeLa derivative HEp-2 (ATCC CCL-23) that was infected with cowpox virus

Brighton Red (ATCC VR-302) according to standard procedures [143]. The sequencing

library was prepared with NexteraXT library generation. The sequencing procedure was

performed on an Illumina HiSeq 1500 instrument (Illumina, San Diego, CA, USA) with

2 x 101 bp paired-end reads in rapid mode. The sample of interest was identified using the

real-time demultiplexing functionality of PriLive. For the reproduction of the sequencing

run, the original base call files were copied to the input directory for PriLive using the

time stamps of the original sequencing procedure. In doing so, the base call files were

written to the input directory of PriLive in the same intervals as they have been written by

the sequencing machine. This guaranteed a similar behavior of PriLive as in a real-time
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application. The computation was run on a 128-core machine (Intel Xeon CPU E5-4667

v4 @ 2.20 GHz, 45 MB Cache) with 500 GB random access memory (RAM). The original

sequencing data are available at the NCBI SRA under accession number SRR5886855

(https://www.ncbi.nlm.nih.gov/sra/?term=SRR5886855).

Parameter Settings

BMTagger and DeconSeq were used with default parameters. PriLive was compiled with

a k-mer size of 15 (default value, adapted from HiLive [92]). The remaining parameters

were chosen according to the parameter selection guidelines described above. DeconSeq

and BMTagger use algorithmic parameters relative to the read length. To allow for a better

comparison of the tools, the number of tolerated errors for the foreground alignment (-e

or --min-errors) was set according to approximately 3 % of the given read length which

corresponds to the default value of PriLive for reads of length 75 bp. For samples without a

foreground reference (CAMI_1 and Venter_1), -e was set to 0 as previously described. For

the dataset CAMI_1, the minimal background alignment score (--bg-score) was set to 45 bp

which corresponds to almost half of the read length (100 bp) to ensure a high specificity

without missing background-related reads that have at least two consecutive errors. However,

although running without a foreground reference, this parameter was not set manually for

the dataset Venter_1 because of the special nature of the used background reference that

contains only the flanking regions of the Y-STR markers. Through the gap between these

two regions for each marker, the increase of the --bg-score parameter that only allows for

non-consecutive mismatches would lead to a lower sensitivity which was not desirable for

the given application case. For this special approach, parameter adjustments would also be

necessary when using DeconSeq or BMTagger which was not done in this study. All other

algorithmic parameters of PriLive were not adapted for any of the datasets described in this

study. The lobSTR workflow for Y-STR genotyping was applied as recommended by the

developers.

Statistical Measures

Sensitivity, specificity and F1 score were used for the validation of PriLive. True positives

(TP) describe the number of correctly detected background-related reads (e.g., human). False

negatives (FN) are the number of undetected background-related reads. False positives (FP)
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are the number of foreground-related reads that are classified as background-related and true

negatives (TN) are foreground-related reads that are correctly not detected as background

data. Sensitivity is the relative number of correctly detected background-related reads from

the complete background data TP
TP+FN . Specificity is the relative number of correctly not

detected foreground-related reads TN
TN+FP . The F1 score is the balanced harmonic mean of

precision TP
TP+FP and sensitivity, calculated by 2 · sensitivity·precision

sensitivity+precision .

3.3 Results

We compared the accuracy of PriLive in terms of sensitivity, specificity and F1 score to two

conventional privacy-preserving read filtering tools, DeconSeq and BMTagger. DeconSeq

was developed for genomic and metagenomic datasets. It is based on the read mapper BWA-

SW [144] and supports foreground and background reference genomes. BMTagger was

specifically designed for metagenomic datasets and therefore does not support foreground

reference genomes. The algorithm of BMTagger makes filtering decisions using an alignment-

free k-mer approach. Only if no clear decision was made by the alignment-free approach, a

complete alignment is performed using the read mapping software SRPRISM [145].

We used two simulated and two real datasets to evaluate the performance of PriLive on

genomic and metagenomic datasets (Table 3.2). The simulated viral dataset CPXV_1

contains reads of the human reference genome hg38 and cowpox virus Brighton Red (CPXV;

Accession number NC_003663). It includes 10 M reads of length 150 bp and 0 – 9 errors

(i.e., substitutions, insertions or deletions of length 1 bp) when compared to the respective

reference genome for both organisms. The simulated metagenomic dataset CAMI_1 consists

Table 3.2: Overview of the datasets used for validation.

Dataset Type Foreground data Background data Reads

CPXV_1 sim.
CPXV / 10 M /
0 - 9 errors

hg38 / 10 M /
0 - 9 errors

150 bp

CAMI_1 sim. Metagenomic / ~75 M hg38 / 10 M 2 x 100 bp

Venter_1 real JCV / ~135 M Y-STRs 150 bp

HiSeq_1 real CPXV Human (HEp-2) 2 x 101 bp
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of approximately 75 M reads of length 2 x 100 bp (paired-end) that were obtained from the

CAMI study [142]. These data were mixed with 10 M simulated reads from the human

reference genome hg38 with an average error rate of 2 %. As a real dataset, the sequencing

data of J. Craig Venter were used to examine the ability of PriLive to prevent re-identification

(Venter_1). Therefore, we reproduced a re-identification workflow [123] on the J. Craig

Venter sequencing data before and after read filtering with PriLive. Finally we used PriLive to

filter the data of an in-house Illumina HiSeq sequencing run. This dataset (HiSeq_1) contains

reads of a CPXV-infected human cell line. With this reproduced real-time application we

evaluated the ability of PriLive to finish read filtering only a few minutes later than the

sequencing machine.

Simulated dataset CPXV_1. Figure 3.2 shows the results of PriLive, DeconSeq and BMTagger

on the simulated date set CPXV_1. PriLive shows higher sensitivity than both other tools.

This is especially the case for reads with high error rates. Even with an edit distance as

high as 9 (6 % error rate), PriLive correctly identified 99.46 % of human reads whereas

DeconSeq and BMTagger only achieved a sensitivity of 95.62 % and 96.44 %, respectively

(Figure 3.2 a). At the same time, the specificity of PriLive was higher than 99.99 % up

to the user-defined maximum number of tolerated errors in the foreground alignment (4

errors for the presented data). For reads with a higher error rate specificity was slightly

worse but still in the same range as the specificity of DeconSeq (Figure 3.2 b). BMTagger,

despite not considering cowpox virus as foreground reference in contrast to both other

tools, showed the best specificity, especially for foreground-related reads with a high error

rate. However, the overall accuracy of PriLive was at least as good as the accuracy of both

other tools with a stronger focus on sensitivity to provide the highest possible level of data

protection. If a higher specificity is required, this can be achieved by changing one single

intuitive parameter (-e or --min-errors) which describes the number of tolerated errors for

the foreground alignment. Besides the final accuracy, PriLive also achieved strong real-time

results. After only half of the sequencing cycles, PriLive already had nearly full sensitivity

for reads that contain at most one error when compared to the human reference genome.

After 2 / 3 of the cycles, this also held true for reads with up to four errors. Additionally,

more than 95 % of all reads with up to six errors have been detected at this point in time

(Figure 3.2 c). These results show that the sequence information of most background-related

reads can be removed even before it is entirely produced.
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Figure 3.2: Removal of human reads for the simulated dataset CPXV_1. (a)Relativenumberof
correctly detected human reads (sensitivity) of PriLive, DeconSeq and BMTagger. All tools achieve
nearly full sensitivity for reads with a low number of mismatches. For reads with a higher number of
errors,PriLiveclearlyoutperformsbothother tools. (b)Relativenumberofundetectednon-humanreads
(specificity) of PriLive, DeconSeq and BMTagger. PriLive is set to consider all foreground alignments up
toaneditdistanceof4 (-e4). It thereforeachievesnearly full specificity forall cowpoxvirus readswith
up to fourerrors (indicatedby thedotted line). Forahighernumberoferrors, the specificityofPriLive is
still comparable to that of DeconSeq. (c) Relative number of human reads with an edit distance of 0 - 9
detected by PriLive in different cycles of the sequencing procedure. For human reads with a small number
of errors, PriLive achieves nearly full sensitivity after only half of the sequencing cycles. Reads with a
highernumberoferrors aredetected later in the sequencingprocedure. More than99.5 % ofall readswith
up to eight errors are detected at the end of the sequencing procedure; full sensitivity is achieved for all
readsup to threeerrors.
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Simulated dataset CAMI_1. PriLive, BMTagger and DeconSeq were tested on the simu-

lated metagenomic dataset CAMI_1 that contains a mixture of simulated human reads and

metagenomic reads of the CAMI study. The human reference genome hg38 was used as

background reference. No foreground reference was used. As described for metagenomic

datasets (Section 3.2), the parameters -e and --bg-score were set to 0 and 45, respectively.

In general, the results on the metagenomic dataset show similar tendencies as for genomic

data (CPXV_1). While PriLive achieved the highest sensitivity, BMTagger has the highest

specificity. DeconSeq showed intermediate sensitivity and lowest specificity of all tools. The

overall results of PriLive - in terms of the F1 score - were better than that of both other tools

for the given dataset (Table 3.3). This clearly shows the capability of PriLive to perform at

least as good as conventional tools on metagenomic data while - as the only tool - performing

in parallel to the sequencing machine.

Table 3.3: Read filtering results for the simulated metagenomic dataset CAMI_1.

PriLive (%) DeconSeq (%) BMTagger (%)

Sensitivity 99.98 99.96 99.94

Specificity 99.9920 99.9903 99.9958

F1 score 99.9614 99.9417 99.9560

Note: The best value of each row is shown in bold.

Real dataset Venter_1. To ensure that the removal of human reads reliably includes the

extinction of identification markers, we used PriLive to remove Y-STR marker regions from

the J. Craig Venter sequencing data. This dataset has previously been shown to be retraceable

to J. Craig Venter [123]. We converted the Sanger sequencing data (ftp:// ftp.ncbi.nih.gov/p

ub/TraceDB/Personal_Genomics/Venter/ ) to approximately 135 M Illumina-like reads of

length 150 bp. On these data, we reproduced the identification workflow. The tool lobSTR

[140] was thereby used to determine the Y-STR genotype. With this genotype, a database

query was performed on YSearch (www.ysearch.org) that provides related surnames and

geographical information to the input data. When combined with metadata of the sequencing

sample, this can enable the re-identification of the sample originator. We first performed the

described workflow with the converted, unfiltered J. Craig Venter sequencing data. We found
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Figure 3.3: Influence of human read removal on the Y-STR marker abundance for the J. Craig
Venter sequencing data. Thesolidblue line shows the relativeamountoffiltered reads. Thedotted red
line shows the absolute number of identified Y-STR markers. PriLive was used to remove all human reads
fromtheJ.CraigVenter sequencingdata. Before the removalofhumanreads, theVenter entryonYSearch
canbesuccessfully foundwith44 identifiedY-STRmarkers. WhenusingPriLive to removeallhuman
reads,only1singlemarker remains in thedataafteronly60sequencingcycles. After90cycles,allmarkers
are removedfromthedata.

two matches on YSearch that belong to Venter with the Y-STR genotype that was obtained

from the sequencing data: 30 of the 44 detected Y-STR markers matched the database entry of

Venter which is based on the publications of Gymrek et al. [123] (YSearch User ID: 5BXHS).

When compared with the original Venter database entry (YSearch User ID: VPBT4) we

observed 29 matching and 2 non-matching markers. As expected, re-identification of J. Craig

Venter was no longer possible after using PriLive to filter the entirety of human reads. All

Y-STR markers were removed from the data after only 90 sequencing cycles (Figure 3.3).

Besides removing all human-related reads we also performed a targeted removal of the

Y-STR markers. Therefore, we created an index for PriLive that contains the flanking regions

of known Y-STR marker sequences. When we used this index to filter the J. Craig Venter

sequencing data, only 0.75 % of all reads were filtered. Thereby, after 70 cycles, half of

the markers were already removed from the data. After 110 cycles, there were only six

markers left which was no longer sufficient to perform a database query on YSearch. After

130 cycles, it was no longer possible to identify a single Y-STR marker (Figure 3.4). Both

filtering procedures, either using the full human reference genome or only the Y-STR marker

regions, demonstrate that our privacy-preserving read filtering approach can find and remove

relevant identification markers from sequencing data even in early stages of the sequencing
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Figure 3.4: Targeted removal of Y-STR markers from the J. Craig Venter sequencing data
(Venter_1). Theplot shows the relativeamountoffiltered reads (solid line)and theabsolutenumberof
identified Y-STR markers (dotted line) when using PriLive during the sequencing procedure. For the
originaldata, theVenterentryonYSearchcanbesuccessfully foundwith44 identifiedY-STRmarkers.
WhenusingPriLive, after130cyclesnosinglemarkercouldbe identified fromthedata. At theendof the
sequencingprocedure, allY-STRmarkersareundetectedwhilemore than99 %ofallother reads remain
unaffected.

procedure. Thereby, the capability for the targeted removal of a defined set of identification

markers also enables the use of PriLive for human datasets.

Real dataset HiSeq_1. We reproduced an in-house sequencing run to verify scalability of

PriLive to a real sequencing experiment. The base call files in the input directory of PriLive

were created in accordance with the respective time stamps of the original base call files

from the sequencing procedure. PriLive was started with 64 threads and used a maximum of

120 GB RAM (allocated) and 190 GB disk space. The maximal delay of PriLive compared to

the creation of the base call files was approximately 5 h for the cycles 35 to 40 of the first read.

Afterwards the majority of human reads was identified and the algorithm was faster than the

sequencing machine. At the end of the first read and for the rest of the sequencing procedure,

PriLive operated in parallel to the sequencing machine and therefore only had a delay of a few

minutes (Figure 3.5). Thus, data protection was ensured in real-time and the analyses were

finished immediately after the sequencing procedure. Additionally, at the same point in time,

we obtained the complete alignment output to the foreground reference genome (cowpox

virus Brighton Red) in SAM format. From the final results, we determined the number

of mapped and filtered reads. The analyzed lane of the sequencing procedure contained

approximately 252 M reads in total. With consideration of the internal demultiplexing results,
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Figure 3.5: Turnaround time of PriLive in a reproduced real-time sequencing scenario. The
black line indicates the point in time when the base call files for a cycle are written. The 64 red lines
(mostof them arebundled) represent the tiles that areanalyzed independently fromeach otherbyPriLive.
Some tiles are analyzed faster than the average because of a bad sequencing quality of the respective
data. Thefirstbasecallfilesarewrittenby thesequencingmachineafter cycle25which leads toadelay
of approximately 3 h from the start of the sequencing procedure for the first cycle. In average, PriLive
is slower than the sequencing machine for the cycles 19 – 40 of the first read (R1). This delay is caught
up when R1 is completely sequenced. In the middle of the procedure the sequencing machine needs
additional initialization timefor thebarcodes (B1,B2)and the second read (R2). Sincemostofhuman
reads is alreadydetectedafter thefirst read (R1),PriLive is in real-timewith thesequencingmachine for
thecomplete second read (R2). Also insingle-endsequencing,PriLivewouldhavefinished immediately
after the sequencingmachine.

PriLive analyzed more than 155 M of these. Nearly 126 M reads were finally detected as

human, for roughly 22 M sequences there was a foreground alignment output for at least

one of both reads. The remaining unmapped reads included artifacts, low-quality reads and

cowpox virus reads that did not fulfill the selected mapping criteria. All these numbers

are in a range as expected for the given experimental setup. At the same time, there was a

second, unrelated sample on the same lane of the sequencing procedure. This sample could

be identified via a different barcode. It remained unaffected by the read filtering of PriLive as

the Illumina demultiplexing output was identical for filtered and unfiltered data. This shows

that the usage of PriLive poses no risk of data loss for other samples of the same sequencing

run.
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3.4 Discussion of Results

PriLive is a novel, powerful tool for data protection in human-related NGS procedures.

Conventional tools wait for the sequencing machine to finish and the data to be processed to

a human readable file format (e.g., FASTQ). PriLive is, to the best of our knowledge, the

first privacy-preserving read filtering software for NGS that operates while the sequencing

machine is running. This innovative approach facilitates the compliance with strict data

protection guidelines for NGS procedures. Although the actual computation time of PriLive

is higher than the runtime of conventional tools, final results can be provided even before

other filtering software is started. This reduces the delay of analysis time that exists in

conventional read filtering approaches to almost zero.

PriLive supports paired-end reads and live-demultiplexing to identify the data of interest in

a mixed sample. The support of foreground reference genomes makes PriLive suitable for

genomic and metagenomic applications. For both types of data, PriLive achieves comparable

or better results as the conventional tools BMTagger and DeconSeq. By the local alignment

approach, PriLive has a higher sensitivity than both tools, especially for high error rates.

Specificity is almost 100 % up to a user-defined error rate for the foreground reference

genome. Besides this, PriLive also provides high specificity for foreground-related reads

above this threshold (> 99.8 %) and for metagenomic applications (> 99.98 %). Thus, there is

only a minimal risk of losing relevant information.

Compared to conventional methods, the level of data protection is strongly increased when

using PriLive since the sequence information of human reads is not completely available

at a single point in time, neither in a human readable file format nor as raw data. In our

study, more than 99 % of all human reads were filtered within the first 2/3 of the sequencing

cycles. This is a highly relevant benefit since several scenarios for potential violations of

data protection guidelines are addressed: attacks from outside and inside, lacks of data

protection due to an uncontrolled spread of sensitive data (e.g., through service providers

or cooperating institutions) and accidental findings during the analyses. We showed that

PriLive reliably identifies reads that enable re-identification of individuals. When performing

a targeted removal of the Y-STR markers from the J. Craig Venter sequencing data, PriLive

removes relevant information for Y-STR genotyping while only filtering 0.75 % of the reads

in total. Besides protecting the privacy of patients, PriLive also simplifies the handling of

data for researchers. In conventional workflows they usually have full access to unfiltered

data. Each single researcher is therefore responsible for data protection. With PriLive it is
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possible to remove sensitive information even before the data is handed over for analysis.

Thus, storing, analyzing, sharing and publishing data can be performed with looser data

protection restrictions. When established, our strategy facilitates institutional control for a

maximum of data protection.

While we showed that PriLive can help to significantly improve data protection, there always

remains a trade-off between detecting as many human reads as possible and not losing

relevant data. Since even small residues of human data in a sample may allow for re-

identification [118, 146], the respective thresholds should be selected with care. Additionally,

when PriLive is used to filter specific marker regions as demonstrated for the Y-STR markers

of J. Craig Venter, the level of data protection is strongly dependent on the completeness

of the selected markers. Therefore, in many cases re-identification may still be possible at

present or in future. Depending on the experimental design and the given type of data, it

should be considered to couple PriLive with its strength in real-time protection with further

strategies such as cryptography.

The combination of high accuracy, a strong level of data protection and a minimal delay in

analysis time makes PriLive perfectly suitable for a plethora of applications. This includes,

but is not limited to, clinical and research studies, outbreak analyses and precision medicine.

Additionally, PriLive can also be applied to use cases apart from data protection, for example

the removal of data from expected contaminants, hosts (also other than human) or genomic

regions that are not of interest. In combination with additionally provided functionality,

e.g., real-time read mapping and demultiplexing, PriLive can speed up a variety of analysis

workflows without a notable loss of data quality. This includes that conventional analyses can

be performed immediately after the sequencing procedure without an additional filtering step

but also that real-time analyses during the sequencing procedure can be further accelerated.
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Over the past years, NGS has been applied in pathogen diagnostics with promising results.

Yet, long turnaround times have to be accepted as the analysis can only be performed

sequentially after sequencing has finished and the interpretation of results can be further

complicated by contaminations, clinically irrelevant sequences, and the sheer amount and

complexity of the data. We implemented PathoLive, a real-time diagnostics pipeline for the

detection of pathogens from clinical samples hours before sequencing has finished. Based

on real-time alignment with HiLive2, mappings are scored with respect to common contami-

nations, low-entropy areas, and sequences of widespread, non-pathogenic organisms. The

results are visualized using an interactive taxonomic tree that provides an easily interpretable

overview of the relevance of hits. For a human plasma sample that was spiked in vitro with

six pathogenic viruses, all agents were clearly detected after 40 sequencing cycles. For a

real-world sample from Sudan the results clearly indicated the presence of Crimean–Congo

hemorrhagic fever virus which was confirmed via PCR. For both samples, clinically irrele-

vant hits were correctly not highlighted. The results indicate that our approach is valuable

to obtain fast and accurate NGS-based pathogen identifications and correctly prioritize and

visualize them based on their clinical significance.

4.1 Background

The identification of pathogens directly from patient samples is a major clinical need.

While highly accurate pathogen detection methods such as PCR, cell culture, or amplicon

sequencing exist, such routine procedures often fail to identify the underlying cause of a

patient’s symptoms due to their targeted behavior [147–150]. As a complementary approach,

metagenomics NGS has been proposed as a valuable technique for clinical application.

NGS facilitates the detection and characterization of pathogens without a priori knowledge

about candidate species. Further it generates a sufficient amount of data to detect even

lowly abundant pathogens without targeted amplification of specified sequences allowing for

unbiased diagnostic analysis.

Current tools to address NGS-based pathogen identification can be divided into two major

categories, either aiming to discover yet unknown genomes [151–168] or to detect known
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species in a sample [49, 169–187]. From an algorithmic perspective, a further distinction can

be made between alignment-based methods [49, 151–154, 169–180], alignment-free methods

[155–158, 181–184] or combinations of both [159–168, 185, 186]. While alignment-free

methods usually deliver faster results, they are mostly limited to the detection of sequences

whereas alignment-based methods potentially allow for a more extensive characterization of

the sample. Regardless of the algorithmic approach, existing methods based on unbiased

metagenomics NGS face various obstacles, especially concerning the ranking of the results

according to their clinical relevance and the long overall turnaround time [188–195]. The

lack of good ranking methods is based on the fact that the distinction of clinically relevant

and irrelevant data is not trivial. First, the dominating part of the sequences in a metagenomic

patient sample usually originates from the host genome. Second, there are nucleic acids

of various clinically irrelevant species such as endogenous retroviruses (ERVs) or non-

pathogenic bacteria which commonly colonize a person. For these reasons, the number

of reads hinting towards a relevant pathogen can be very limited and even be as low as a

handful of individual reads. To put it more generally, it is a widespread misconception to

rely only on quantitative measures when ranking the importance of candidate hits as not the

amount but the uncommonness of a species in a given sample may give critical indications

on its relevance. Based on the premise that a large proportion of the produced reads may

stem from the host genome, species irrelevant for diagnosis, or common contaminations,

even highly accurate methods struggle with false positive hits potentially concealing the

relevant results. This central problem is getting even worse when considering that even

microbial databases are contaminated with human sequences [196]. Existing pipelines tackle

this problem in different ways. One common strategy is to ignore sequences that occur in

a reference database of host and contaminating sequences [157, 162, 177, 180, 181, 185].

While facilitating cleaner results, it may lead to a premature rejection of relevant sequences

and does not solve the problem of human contaminations in reference databases as those

“derive primarily from high-copy human repeat regions, which themselves are not adequately

represented in the current human reference genome” [196]. Thus, such sequences cannot be

filtered based on a host database and could be falsely classified in the consequent workflow.

Further, the definition of precise contamination databases proves rather difficult and has not

yet been adequately solved. Thus deleting any results to gain a better overview comes at

great risk of overlooking the true cause of an infection. A different strategy are intensity

filters, as implemented, for example, in SLIMM [171], that disregard sequences with low

genome coverage. As the author states, this step eliminates many genomes which introduces
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the risk of losing information that might be relevant in the following diagnostic process.

This problem even intensifies for marker-gene based methods such as MetaPhlAn2 [175],

as large parts of the sequenced reads cannot be assigned due to the miniaturized reference

database. While this may lead to a better ratio of seemingly relevant assigned reads to those

from the background, it comes with the risk of disregarding relevant candidates. Another

fundamental problem of NGS-based pathogen identification approaches is the fact that

sequencing and analysis is very time consuming. Even when considering the enormous

reduction of sequencing time in the last years, current mid- and high-throughput devices still

have maximum runtimes of more than a day (NextSeq 550) and up to two (NovaSeq 6000)

or three days (HiSeq X), respectively. The resulting turnaround times of two to four days

including data processing and analysis are not short enough for many critical scenarios such

as sepsis, postoperative and other life-threatening infections and infectious disease outbreaks.

To obtain actionable results within an appropriate time frame, it is crucial to reduce the time

span of the entire workflow from sample receipt to complete diagnosis. However, existing

approaches to speed up NGS-based diagnostics come with significant disadvantages such

as a highly reduced throughput and data quality [197], massive reduction of analyzed reads

or targets [97] or the need of specialized hardware that involves additional costs and a low

flexibility to adapt the workflow to a given scenario [96].

As a general complement to real-time analysis of short-read sequencing data, there are several

promising studies for pathogen detection using the MinION handheld device which is partic-

ularly useful for field studies and produces longer reads of up to several hundred kilobase

pairs. While allowing very fast throughput times, these devices yield only approximately

a million reads with comparably low per-base qualities, limiting their areas of application

to targeted sequencing so far [116, 197–200]. Therefore, from today’s perspective, NGS is

the only technology providing sufficient amount and quality of data for many applications

in clinical diagnostics. The currently high turnaround times from sample arrival to final

diagnosis make it necessary to develop efficient methods to generate, analyze, and understand

large metagenomics datasets in an accurate and quick manner to pave the way for NGS as a

standard tool for clinical diagnostics. This enforces NGS-based diagnostics workflows to

generate and evaluate large numbers of reads to facilitate adequate sequencing depths while

at the same time reducing the time span between sample receipt and diagnosis. To overcome

the named obstacles, we present PathoLive, an NGS-based real-time pathogen detection tool.

We present an innovative approach to handle the occurrence of common contaminations,

background data and irrelevant species in a single step. To tackle the problem of long overall
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turnaround times, we based our novel approach on the real-time read mapper HiLive2 that

enables the analysis of sequencing data while an Illumina sequencer is still running [201].

This enables PathoLive to perform nucleotide-level analysis based on NGS providing an

open view and high accuracy in short turnaround times while generating an intuitive and

interactive visualization of results that highlights organisms of high clinical significance.

4.2 Methods

Implementation

In order to generate a quick, easy and robust pathogen diagnostics workflow, we implemented

PathoLive. Our workflow follows a different paradigm than other frameworks to tackle the

existing problems, as shown in Figure 4.1: (i) prepare informative, well defined reference

databases, (ii) automatically define contaminating or non-pathogenic sequences beforehand,

(iii) use HiLive2 for accurate real-time alignment of Illumina sequencing data, (iv) visualize

the potential risk of candidate pathogens and present results in an intuitive, comprehensible

manner. The details for each of these steps are provided in the following sections.

(i) Preparation of Reference Databases

In order to save computational effort during the post-processing of the real-time aligned reads,

reference databases including the full taxonomic lineage of organisms are prepared before

the first execution of PathoLive. For this purpose user selectable databases, for example

the RefSeq Genomic Database [202], are downloaded from the file transfer protocol (FTP)

servers of the NCBI and annotated accordingly with taxonomic information from the NCBI

Taxonomy Database. While preserving the original NCBI annotation of each sequence,

additional information is appended to the sequence header. This information consists of each

taxonomic identifier (TaxID), rank and name of each taxon in the lineage of the respective

organism. Afterwards, user definable sub-databases of taxonomic clades relevant for a

distinct pathogen search are automatically created. The database updater used for this

purpose is available at https://gitlab.com/rki_bioinformatics/database-updater. The viral

database used in this manuscript can be downloaded as a single compressed FASTA file from

Zenodo (https://doi.org/10.5281/zenodo.2536788) and is ready to use for viral diagnostics

with PathoLive.
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Figure 4.1: Workflow of PathoLive including four main modules. (i) Reference information
from NCBI RefSeq is automatically downloaded and tagged with taxonomic information; (ii) NGS
datasets from the 1000 Genomes Project are downloaded, trimmed and searched for sequences from
the pathogen database from step (i), marking abundant stretches as clinically irrelevant; (iii) Reads
fromtheclinical samplearemapped to thepathogendatabaseobtained from(i) in real-time,producing
intermediatealignmentfilesinBAMformatatpredefinedtimepoints; (iv)resultsarevisualizedinaneasily
understandablemanner,providingall available informationwhilepointing to themost relevant results.
Only thestepshighlighted ingreenarecalculated inexecution time, steps inwhiteareprecomputation.
Graphical results arepresentedonlyminutesafter the sequencerfinishesacycle ifdesired.
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(ii) Identification and Labeling of Clinically Irrelevant Hits

A main obstacle in NGS-based diagnostics is the large amount of background noise contained

in the data. This includes various sources of contamination such as artificial sequences,

ambiguous references and clinically irrelevant species, which hinder a quick evaluation of

a dataset. Defining an exhaustive set of possible contaminations is a yet unachieved goal.

Furthermore, deleting those sequences defined as irrelevant from the set of references carries

the risk of losing ambiguous but relevant results. Since in this step, raw sequencing data from

a human host is examined, the logical conclusion is to contrast it to comparable raw datasets

instead of processed genomes. We implemented a method to define and mark all kinds of

undesired signals on the basis of comparable datasets from freely available resources. For

this purpose, raw data from 236 randomly selected datasets from the 1000 Genomes Project

Phase 3 [203] were downloaded, assuming that a large majority of the participants in the

1000 Genomes Project were not acutely ill with an infectious disease. These reads are quality

trimmed using Trimmomatic [204] and mapped to the selected pathogen reference database

Figure 4.2: Two examples of fore- and background coverage plots. The upper, green bars show
thecoverageofagivengenomein the foregrounddataset, namely the readssequenced fromthepatient
sample. The lower, redpart indicates inhowmanydatasets fromthe1000GenomesProject a sequence is
abundant. Bases covered in background datasets are regarded as less informative. Left: Fully covered
genome of human mastadenovirus B, showing no hits resulting from data from the 1000 Genomes Project.
Right: Coverage of human endogenous retrovirus (HERV) K113, partly covered in the patient dataset
andcompletelycovered in∼ 110datasets fromthe1000GenomesProject. Basedon these illustrations,
Human mastadenovirus B can be considered a relevant hit while HERV K113 is rightly found in the
dataset, butnot consideredaclinically relevant candidatedue to its commonprevalence inhealthyhuman
individuals.
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using Bowtie 2 [85]. Whenever a stretch of a sequence is covered once or more in a dataset

from the 1000 Genomes Project, the overall background coverage of these bases is increased

by one. Coverage maps of all references from the pathogen database hit at least by one

dataset are stored in the serialized pickle file format. Stretches of DNA found in this data are

marked as of lower clinical significance and visualized as such in later steps of the workflow.

The coverage maps of the background abundances are thereto plotted in red color against

the coverage maps of the reads from the patient dataset in green color on the same reference

(Figure 4.2). This enables highlighting presumably relevant results without discarding other

candidate pathogens, providing the best options to interpret the results in-depth but still in an

efficient manner. The code for the generation of these databases is part of PathoLive.

(iii) Using HiLive2 for Real-time Alignment of Reads

We used HiLive2 (version 2.1) to produce real-time alignments of sequencing data. Thereby,

the sequencing data is directly loaded in raw BCL format without the need to perform a

file conversion step. Alignments are updated with each new sequencing cycle and output in

BAM format can be created for any sequencing cycle. As changes in the mapping positions

mainly occur in early sequencing cycles, we recommend to create output in shorter intervals

at the beginning of sequencing. Options for integrated real-time demultiplexing and adapter

trimming are available. For algorithmic details of HiLive2, see Section 2.2.

(iv) Visualization and Hazardousness Classification

A key hurdle in a rapid diagnostics workflow, which is often underestimated, is the presen-

tation of results in an intuitive way. Many promising efforts have been made by different

tools, e.g., providing coverage plots [180, 205] or interactive taxonomy explorers [152, 181].

While being hard to measure and thus often ignored, the time it takes for groups of experts to

assess the results and come to a correct conclusion should be considered. Our browser-based,

interactive visualization is implemented in JavaScript using the data visualization library

D3 [206]. For an example of the visualization, see Figure 4.4 in the results section. While

providing all available information on demand, the structure of a taxonomic tree allows an

intuitive overview at first glance. Detailed measures are available on genus, family, species

and sequence level. For the calculation of scores for a given node n, we define t(n) as the

total number of read alignments to an underlying species of n. b(n) is the total number of

bases being covered by all reads with respect to n. Accordingly, bbg(n) describes the number

of bases being covered by the background database and b f g\bg(n) is the number of bases
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being covered by the foreground but not by the background data. In total, we provide three

different scores for each node n of the tree:

(a) Total Hits Tn, being the total number of hits to all underlying sequences in this branch:

Tn := t(n)

(b) Unambiguous Bases Un, representing the total number of bases covered in the foreground

data but not in any background dataset:

Un := b f g\bg(n)

(c) Weighted Score Wn, being the ratio of unambiguous bases for the foreground data to the

number of bases covered by the background database and logarithmically weighted by the

total number of alignments:

Wn :=
Un

max(bbg(n), 1)
· log(Tn)

While the Total Hits Tn can be useful to get a general impression of the abundance of

sequences in the sample, the Unambiguous Bases Un provides a first comparison to the

background dataset. The Weighted Score Wn introduces an intensified metric of how often a

sequence is found in a healthy individual, and thereby allows drawing stricter conclusions

from the background data. Not only exactly overlapping mappings of fore- and background

are regarded, but also the overall abundance of a sequence within the background data is

considered. The values of the selected scoring scheme are reflected in the thickness of

the branches, which draws the visual focus to higher rated branches. Users can switch

between the three scores via the respective buttons in the interactive visualization. In order to

enable users to make early decisions regarding the handling of a sample as well as to further

enhance the intuitive understanding of the results, the hazardousness of detected pathogens is

color-coded based on a biosafety level (BSL) score list [207]. To improve BSL classification,

minor changes were manually applied to improve matches to the organism names in the

reference database. The BSL score gives information on the biological risk emanating from

an organism. Therefore, it qualifies as a measure of hazardousness in this use case. The

BSL-score is color-coded in green (no information / BSL-1), blue (BSL-2), yellow (BSL-3)

or red (BSL-4), and the maximum hazardousness-level of a branch is propagated to the parent

nodes. Phages are displayed in grey, as they cannot infect humans directly, but may imply
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information on the presence of bacteria. Details about the sums of all three available scores

of all underlying species are provided on mouse-over (see Figure 4.4 in the results section).

When expanding a branch to sequence level, additional plots of the foreground coverage

calculated in step (iii) as well as the abundance of bases in the background datasets calculated

in step (ii) are shown when hovering the mouse over the node (Figure 4.2). These plots thus

provide an intuitive visualization of the significance of a hit. The hits of a species in the

patient dataset are shown in green while background hits are drawn in red on a correlating

coverage plot. This way, it is easy to evaluate if a sequence is commonly found in non-ill

humans and therefore can be considered less relevant, or if a detected sequence is very unique

and could therefore lead to more certain conclusions.

Validation

We compared the results of PathoLive to two existing solutions, Clinical Pathoscope [177] and

Bracken [208]. We selected Clinical Pathoscope for its very sophisticated read reassignment

method, which promises a highly reliable rating of candidate hits. It also is perfectly tailored

to this use case. Other promising pipelines such as SURPI [180] or Taxonomer [181] were

not locally installable and had to be disregarded. Bracken, a method based on metagenomics

classification with Kraken [184], was included in the benchmark as one of the fastest and

best known classification tools which makes it one of the primary go-to methods for many

users. The experiment is based on a real sequencing run on an Illumina HiSeq 1500 in

High Output Mode. We designed an in-house generated sample in order to have a solid

ground truth. We ran all tools using 40 threads, starting each at the earliest possible time

point when the data was available from the sequencer in the expected input format. For the

non-real-time tools, the base calling was executed via Illumina’s standard tool bcl2fastq

and the runtime was regarded in the overall turnaround time. Clinical Pathoscope and

Bracken were both run with default parameters, apart from the multithreading. The reference

database for PathoLive was built from the viral part of the NCBI RefSeq [209] downloaded

on 2016-07-06. For Clinical Pathoscope we downloaded the associated database from

http://www.bu.edu/jlab/wp-assets/databases.tar.gz on 2017-12-09 and used the provided

viral database as foreground and the human database as background. The results of Bracken

were generated based on the viral part of the NCBI RefSeq downloaded on 2017-12-18. The

Bracken database was generated with default parameters and an expected read length of

100 bp. Please note that, in contrast to all other results shown in this manuscript, the live
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analysis of the in-house sample was performed using read-mapping results of HiLive, the

predecessor of HiLive2. However, we repeated the analysis using HiLive2 and obtained

similar results with respect to accuracy (Appendix Figure A2.1 and Appendix Table A2.1).

To validate the functionality of PathoLive on real data, we applied it to a diagnostic human

serum sample from an outbreak of hemorrhagic fever virus in Sudan in 2014 [210]. The

sequencing data of this sample was only available in preprocessed FASTQ format. To convert

the available FASTQ files back to BCL format, trimmed reads were extended to the required

length with calls of the ambiguous nucleotide N. In general, this procedure could influence

the results by introducing random hits. However, we observed that most reads still contained

the adapter sequences. As all sequence information after a detected sequencing adapter is

ignored from analysis when using the adapter trimming functionality of HiLive2, the applied

procedure during format conversion should not have any significant effect on the results

in this special case when compared to data directly coming from the sequencing machine.

Still, even for reads missing an adapter sequence, this would lead to a decrease of aligned

reads which further hampers the identification of pathogens and therefore does not limit the

validity of the final results. The conversion step from FASTQ to BCL format itself was done

by concatenating each read pair in a single FASTQ file and execution of the fastq2bcl script

which is delivered with HiLive2. The total length of all reads was 2 x 301 bp, corresponding

to a total of 602 sequencing cycles (multiplex barcodes were not included).

Sample Preparation

Viral RNA metagenomics studies were performed with a human plasma mix of six different

RNA and DNA viruses as well-defined surrogate for clinical liquid specimen. The informed

consent of the patient has been obtained. This 200 µL mix contained orthopoxvirus (Vaccinia

virus VR-1536), flavivirus (yellow fever virus 17D vaccine), paramyxovirus (mumps virus

vaccine), bunyavirus (rift valley fever virus MP12-vaccine), reovirus (T3 / Bat / Germany

/ 342 / 08) and adenovirus (human adenovirus 4) from cell culture supernatant at different

concentrations. The sample also contains dependoparvovirus as proven via PCR. The

sample was filtered through a 0.45 µM filter and nucleic acids were extracted using the

Qiagen QIAamp Ultrasense Kit following the manufacturers’ instructions. The extract was

treated with Turbo DNA (Life Technologies, Darmstadt, Germany). The complementary

DNA (cDNA) and double-stranded cDNA (ds-cDNA) synthesis were performed as previously

described [211]. The ds-cDNA was purified with the Qiagen RNeasy MinElute Cleanup Kit.
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The purification method takes ∼ 6 h to complete. The Library preparation was performed

with the Nextera XT DNA Sample Preparation Kit following the manufacturers’ instructions.

NGS libraries were quantified using the KAPA Library Quantification Kits for Illumina

sequencing. If the starting amount of 1 ng of nucleic acid was not reached the entire sample

volume was added to the library. The diagnostic sample from Sudan was prepared according

to [210, 212], including inactivation of the human serum in Qiagen Buffer AVL, extraction

with Qiagen QIAamp Viral RNA Mini Kit and DNA digestion using the Thermo Fisher

TURBO DNA-free Kit. A sequencing library was created using the Illumina Nextera XT

DNA Library Preparation Kit. The sample was sequenced on an Illumina MiSeq.

4.3 Results

Pathogen Detection in a Spiked Viral Mixture

The human plasma sample spiked with a viral mixture was subjected to sequencing on an

Illumina HiSeq 1500 in High Output mode on one lane. PathoLive was executed from the

beginning of the sequencing run using 40 threads. Results were produced after 40, 60, 80 and

100 cycles or after 36, 55, 74 and 93 hours, respectively. Raw reads usable for the testing of

other tools were available only after 95 hours as they had to be converted to FASTQ format

first. As a ground truth, we selected all sequences associated to the species described as

abundant above. Turnaround time, runtime and results are shown in Table 4.1. The area

Table 4.1: Results of PathoLive, Clinical Pathoscope and Bracken on an Illumina HiSeq High
Output run of a human plasma sample spiked with different viruses. Input data denotes the
number of cycles the sequencer finished before results were generated. The turnaround time
specifies total time passed from the start of the sequencer to result presentation, whereas tool
runtime is the time taken to generate results from the input data. ROC-AUC denotes the area
under the ROC-curve as a combined measure of TPR and FPR. Best values are printed bold.

PathoLive Pathoscope Bracken

Inputdata [cycle] 40 60 80 100 100 100

Turnaround time[h] 36 55 74 93 95 95

Tool runtime[m] 22 25 18 4 25 13

ROC-AUC 0.94 0.92 0.92 0.90 0.88 0.45
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Figure 4.3: ROC-plot of benchmarked tools on a spiked dataset. Lines have slight offsets in x-
andy-dimensions for reasonsofdistinguishability. WecomparedPathoLive toClinicalPathoscopeand
Brackenona realhumansample containing7viruses. PathoLiveperformsbest regarding theROC-AUC
at all sampled times (cycle 40, 60, 80 and 100) when compared to the results of the other tools after the
sequencing runcompleted read1 (cycle100).

under the curve (AUC) of the receiver operating characteristic (ROC) was calculated using

the 14 highest ranking species, as given by the tested tools. The top 14 of the identified

species are considered because hits appearing after twice the number of true positives cannot

be expected to be regarded by a user in this experiment. Furthermore, none of the tested

tools found more true positives within the next 50 hits. The ROC-plot (Figure 4.3) denotes

the true positive rate (TPR) and false positive rate (FPR) for each threshold n ≤ 14, whereby

a threshold n means that the best n hits are taken into account. This means that only the rank

of the hits was considered while disregarding the actual score. For PathoLive, the ranks were

determined by the Weighted Score Wn, for Clinical Pathoscope we used the ‘final guess’

metric and for Bracken, the species with most estimated reads were ranked highest.
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Figure 4.4: Example of the interactive taxonomic tree of results. It shows thevisualized resultsof
thedescribedplasmasampleat cycle80basedon theweightedscore. Thicknessof thebranchesdenotes
thesumofscoresofunderlyingsequences. Thecolorcodesfor themaximumoftheunderlyingBSL-levels
(red=4, yellow=3, blue=2, green=1 or undefined; phages are shown in grey). On mouse-over, detailed
information (hereongenusMastadenovirus) isdisplayed. Theselectedscore (here: weightedscore) is
highlighted in grey. The visualization clearly highlights all spiked pathogens through the thickness of
their clades,whileother speciesare shownonly in smaller cladesand therefore ranked lower.

We were able to detect all abundant spiked species in the library after only 40 cycles of the

sequencing run using PathoLive. While the overall number of false positive hits decreases

with the sequencing time, the weighted score and the number of unambiguous bases yield

accurate results throughout all reports. Reported phages are included in these numbers,

although they are optically grayed out in the visualization, as they cannot infect vertebrates

directly. As an example report, a screenshot of the resulting interactive tree of results after

80 cycles is shown in Figure 4.4.
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Identification of Crimean-Congo Hemorrhagic Fever Virus in a Real
Sample from Sudan

A central issue in pathogen identification, especially for viruses, is the potentially low

number of pathogenic reads in the sample. Therefore, we demonstrated the performance

of PathoLive on real data that is known to contain a low number of reads of interest.

We analyzed a human serum sample from Sudan that was confirmed via PCR to contain

Crimean–Congo hemorrhagic fever virus (CCHFV) but only shows a small amount of

related reads in the corresponding Illumina sequencing data (45 out of 1,178,054 reads were

reported by Andrusch et al. [212] to unambiguously belong to CCHFV). When running

PathoLive with default parameters and having adapter trimming activated, Bunyaviridae

was the family with the highest weighted score over the complete sequencing procedure

when not considering phages and the ‘unassigned family’ branch. Thereby, the score of

Bunyaviridae was consistently equal to the score of the underlying species CCHFV while

other underlying species did not contribute to the overall score of the family. Figure 4.5

shows the development over time for all families that reach a score of 500 in at least one

output cycle. It can be seen that the weighted score of CCHFV (represented by the family of

Figure 4.5: Development of the weighted score calculated by PathoLive over the sequencing
procedure for all families reaching a score higher than 500 in at least one output cycle. Colors
of the plots correspond to the underlying biosafety level in the last cycle, i.e., green for BSL-1, blue for
BSL-2andyellowforBSL-3. Phagesaredisplayed in graycolor. The dotted sectionofeach line indicates
the shift fromthefirst to the second readof the2 x 301 bpdata.
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Figure 4.6: Visualization of the final results of PathoLive for cycle 602. (a) Tree structure on
family level. (b,c)Tooltips for the sequence levelofalignments for twoCCHFVreferencesequencesof
theBunyaviridae family. (d)Tooltip for thesequence levelofalignments forHIV 1of theRetroviridae
family. (e)Tooltip for the sequence levelof alignments for aGranulovirus referenceof theBaculoviridae
family.

Bunyaviridae) is in the top three of all identified families after only 30 sequencing cycles

which corresponds to 5 % of the sequencing procedure. At this time point, only 16 reads

were aligned to CCHFV. Thus, indications for the correct finding are already possible within

a short time span and based on only a couple of available reads while the result is more

and more emphasized with ongoing sequencing. The only other family reaching a score

higher than 500 and not exclusively containing phages was Retroviridae, being mainly driven

by the species HIV 1. However, a more detailed view on the sequence level shows that

all mappings to HIV 1 cluster in a small region of approximately 1,000 bp (Figure 4.6 d)

while the alignments to CCHFV distribute over the complete genome (Figure 4.6 b,c). This

67



4. PathoLive - Real-time Pathogen Identification from Metagenomic Illumina Datasets

strongly indicates that CCHFV is more likely to be a true positive. Figure 4.6 further shows

the family level visualization of the PathoLive tree structure (Figure 4.6 a) and an example

for Granulovirus of the Baculoviridae family that shows a high total number of mappings,

but all of those being located in regions that are covered in the background database leading

to a weighted score of 0 (Figure 4.6 e). The overall results for this sample show the strength

of PathoLive to pronounce interesting findings at first glance while still allowing for a more

detailed perspective that is often important for interpretation.

4.4 Discussion of Results

NGS has been shown to be state of the art for pathogen detection, reaching out into clinical

usage as well. Although TGS approaches are also becoming more and more influential,

the discovery of lowly abundant pathogens is still problematic due to the relatively low

number of reads. Additionally, the comparably low coverage and high error rates still

hamper certain types of complex follow-up analyses such as the detection of antimicrobial

resistances or the geographical origin of a pathogen. On the other hand, long-read sequencing

technology show an immense potential for real-time diagnostics in the future, especially

when considering the continuously decreasing error rates, shorter sample preparation times,

arising higher throughput devices such as the PromethION, as well as valuable technology-

specific features such as the read until functionality for that first attempts have been made to

separate microbial reads from host DNA during the sequencing procedure [199, 213]. All

these aspects considered we assume long-read sequencing technology a valuable complement

to NGS-based diagnostics in future with distinct properties and therefore potentially different

application areas.

The high turnaround time of NGS-based diagnostics is a major drawback compared to

targeted molecular methods. Past efforts to speed up NGS-based diagnostics have been made

but often come with significant disadvantages: Quick et al. introduced a fast sequencing

protocol for Illumina sequencers that allows obtaining results after as little as 6 hours [197].

This speedup is accompanied by lower throughput and lower data quality, making it less

suitable for whole genome shotgun sequencing approaches without a priori knowledge. Other

approaches aiming at performing analyses of intermediate sequencing data, such as presented

by Stranneheim et al. [97] and Miller et al. [96], require either a massive reduction of the

amount of analyzed reads or targets [97] or the application of specialized hardware such

as FPGAs which are, for example, used for the DRAGEN system [96]. Such specialized
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hardware approaches come with additional costs, either for purchase and infrastructure of

local solutions or for the use of a cloud system. At the same time, such approaches provide

a low level of flexibility in the analysis and are not algorithmically optimized for working

with incomplete data. PathoLive does not require the use of specialized hardware and

provides accurate diagnostics results in real-time, illustrated with an easily understandable

and interactive visualization. This strongly facilitates to get insights into a clinical sample

before the sequencer has finished. Real-time output before the sequencing process of the first

read has finished lacks information about multiplex indices, though. Therefore, early results

of multiplexed sequencing runs can only be assigned to a specific sample after sequencing

of the multiplex-indices. For paired-end sequencing runs, this still means analyses are still

possible far before the sequencer ends, and single-end sequencing runs can produce results

at the very moment the indices have been sequenced. A solution for this problem would be

to sequence the indices before the first read, which attracts some problems for the sequencer

regarding cluster identification, but is currently worked on. The algorithmic functionality for

this is already available. As a working solution, many sequencing devices allow paired-end

sequencing with different lengths for the first and second reads. It is thereby possible to

sequence only a short fragment of the first read to get early access to the multiplex indices.

Thus, this approach can be used to obtain de facto single-end reads (i.e., the full second read)

while having the multiplex information available from the beginning of the read.

For pathogen identification, we changed the basis for the selection of clinically relevant hits

from pure abundance or coverage-based measures towards a metric that takes information

on the singularity of a detected pathogen into account. Still, we decided not to completely

trust the algorithmic evaluation alone, but provide all available information to the user in an

intuitive interactive taxonomic tree. While we assume that this form of presentation allows

users to come to the right conclusions very quickly, more sophisticated methods for the

abundance estimation especially on strain level exist. Implementing an additional abundance

estimation approach comparable to the read reassignment of Clinical Pathoscope [177] or

the abundance estimation of Bracken [208] could enable more accurate results, albeit this

would not be applicable trivially to the overall conception of PathoLive.

The sensitivity and specificity of PathoLive varies with the time of a sequencing run. In

the beginning, when only little sequence information is available, only a small number of

nucleotides specify a candidate hit, leading to comparably high false positive rates. At the

end of a sequencing run on the contrary, the number of sequence mismatches in the longer

alignments may lead to the erroneous exclusion of hits, especially when sequencing quality
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decreases. However, this behavior is implicitly considered by the HiLive2 algorithm which

allows for an increasing number of mismatching nucleotides with increasing length of the

reads. Still, the results can vary over runtime with the optimal outcome being measured at

intermediate cycles if the alignment parameters are not well-suited for the specific sample or

if the sequencing quality decreases stronger than expected.

Besides these challenges which are unique to PathoLive, we do also struggle with similar

problems as conventional approaches. First, the definition of meaningful reference databases

is difficult. No reference database can ever be exhaustive since not all existing organisms

have been sequenced yet. Besides that, there may be erroneous information in the reference

databases due to sequencing artifacts, contaminations or false taxonomic assignment. The

definition of the hazardousness was especially complicated, as to our knowledge no well-

established solution for the automated assignment of this information exists. Therefore, the

basis for our BSL-leveling approach might not be exhaustive, leading to underestimated

danger levels of pathogens that are missing in the list of organisms with a BSL of at least 2.

Furthermore, in-house contaminations, some of which are known to be carried over from run

to run on the sequencer while others may come from the lab, could interfere with the result

interpretation of a sequencing run. Especially since no indices are sequenced for the first

results of PathoLive, comparably large numbers of carry-over contaminations might lead

to false conclusions. Candidate lab contaminations should therefore be thoroughly kept in

mind when interpreting results.

Using in-house generated spiked human plasma samples, we were able to show the advan-

tages of PathoLive not only concerning its unprecedented runtime but also the selection

of relevant pathogens. Additionally, we also show the high sensitivity of our approach by

identifying CCHFV in a real sample from Sudan based on only a few dozens of reads. While

being very fast and accurate, a limitation of PathoLive lies in the discovery of yet unknown

pathogens. This is due to the limited sensitivity of alignment-based methods in general,

which hampers the correct assignment of highly deviant sequences. As this would imply

tedious manual curation, it is not the core task of this tool.

Concluding, PathoLive is a helpful tool for accurate and yet rapid detection of pathogens in

clinical NGS datasets. The key advantages are the real-time availability of analysis results as

well as the intuitive and interactive visualization with down-prioritization of likely irrelevant

candidates.
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5.1 Summary

NGS is currently the state-of-the-art technology when it comes to nucleotide-level DNA

sequence analysis. It can be applied in a broad range of applications including, but not limited

to, the detection of (rare) genetic diseases and heterogeneous inherited disorders [214–219],

cancer classification and identification of therapeutic targets in tumor therapy [220–224] and

the identification of disease-causing organisms and characterization of pathogens, especially

with respect to potential antimicrobial resistances [225–227]. When compared to other

methods, such as molecular testing or PCR, NGS provides a more open view and can be

applied for untargeted analyses. In contrast, alternative methods are usually specific to a

single biomarker and therefore require presumptions, even when combining multiple tests.

However, while providing the highest throughput on the market, high-quality results and

comparably low costs, the turnaround time of NGS-based approaches from sample arrival

to interpretable analysis outcome is still critically high when considering life-threatening

scenarios and public health threats such as infectious disease outbreaks. Several approaches

for speeding up NGS analysis workflows have already been proposed, especially in the

field of clinical diagnostics. This includes commercially available software such as the

DRAGEN system [96] and Sentieon solutions for secondary DNA analysis [114]. However,

many of these approaches rely on the utilization of FPGAs, are optimized for the analysis of

human samples and only provide results after sequencing has finished. Therefore, the major

bottleneck of sample preparation and sequencing time remains unchanged. Methodological

approaches such as rapid pulsed WGS (rpWGS) have been developed to analyze intermediate

sequencing results in certain intervals but rely on a massive reduction of data or database

size [97].

In this thesis, methods for the real-time analysis of Illummina sequencing data are introduced.

The new approaches enable shorter turnaround times from sample arrival to analysis results

without the need of specialized hardware. All presented methods are based on the concept of

real-time read alignment which was first implemented in HiLive [92]. Chapter 2 presents an

improved version of this approach using a seed-and-extend algorithm based on the FM-index.

The reduced computational requirements, higher scalability and high quality results enable

more complex follow-up analyses than before, as demonstrated by a real-time workflow
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performing variant calling on human WES data.

Chapter 3 introduces PriLive and shows the benefit to analyze the unprocessed base call data

instead of converting them to a human-readable file format such as FASTQ. That way, it is

possible to use PriLive for removing human sequences from raw data such that no copy in

any file format containing sensitive information remains available, unless any unprocessed

image files are permanently stored. As human data is removed immediately after being

identified (i.e., before the end of sequencing), this enables real-time data protection which

no other method could provide before. The results of the experiments in Chapter 3 show

that PriLive performs at least as good as conventional post hoc approaches while providing

real-time data protection and reliable preservation of foreground-related reads.

PathoLive, on the other hand, shows the use of real-time alignment results as a basis for

pathogen identification. While many other methods rely on a ranking of results based on the

pure abundance of alignment hits, PathoLive highlights hits of high interest by comparing

the mapping positions with background signals that usually occur when sequencing human

samples. Further, PathoLive provides an intuitive and interactive visualization of results

that shows the pathogenic potential of identified organisms and a detailed view on mapping

occurrences in a foreground and background database. Chapter 4 shows the performance of

PathoLive on an in vitro spiked dataset of six viruses and on a real-world dataset from Sudan

containing a low concentration of Crimean–Congo hemorrhagic fever virus. All relevant

organisms were clearly identified while other hits, even with a higher number of alignments,

were correctly reported to be of low significance.

Concluding, the presented tools provide NGS-based real-time analysis solutions for a plethora

of time-critical applications. Thereby, the applicability of the approaches range from data

protection to the identification of pathogens and even nucleotide-level analysis such as SNP

calling. The probably most important characteristic of the real-time sequencing approach

is the correctness of results even in early sequencing cycles. By showing high precision in

every stage of sequencing, all presented methods provide reliable results that can serve as a

basis for early interpretation and decision-making while giving more extensive insights with

ongoing sequencing.

5.2 Outlook

This thesis describes advanced methods for real-time analysis of Illumina sequencing data.

All approaches provide high-quality results and open up new possibilities in time-critical
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sequencing applications. Until today, the presented methods were mostly applied for ex-

plorative analysis in exceptional situations such as infectious disease outbreaks. However,

with future improvements, the concept shows the potential to be established in clinical

routine application, for example in sepsis diagnostics, screening for post-operative infections

and detection of antimicrobial resistances. Still, the successful transfer to clinical routine

application requires further development of the presented methods. In this section, I provide

an outlook about such potential future developments, including technical aspects of Illumina

sequencing, improvements of existing approaches, new approaches and the integration of

other technologies into the concept of NGS-based real-time analysis.

Illumina Sequencing

With the presented real-time analysis methods, results can be produced during runtime of the

sequencing device. Still, Illumina sequencing comes with the additional bottleneck of high

sample preparation times. While a 30 minutes library preparation kit exists for amplicon

sequencing [228], the currently fastest available library preparation protocol for untargeted

sequencing is the Nextera DNA Flex Library Prep Kit with a total preparation time of

three to four hours from DNA extraction to normalized library [229]. Therefore, a further

acceleration of the library preparation would be desirable to reduce the turnaround time from

sample arrival to analysis output. When coupled with the methods for real-time analysis

presented in this thesis, this could make NGS-based approaches applicable in situations that

currently require the speed of molecular methods.

A second technical limitation for the application of the presented real-time methods affects

the analysis of multiplexed sequencing data. Multiplexing is used to combine several samples

in a single sequencing run which reduces costs and increases sample throughput. While the

analysis of multiplexed data is generally supported by all presented methods, the barcodes are

usually sequenced after the first read. Thus, reads can only be assigned to the correct sample

after the first read was completely sequenced. Efforts should be made to design a sequencing

protocol that allows to sequence the barcodes first without negatively affecting the cluster

generation. Thereby, it would be possible to obtain real-time results for several samples of the

same sequencing run even for the first read, making the application of real-time sequencing

cheaper and more scalable. One potential approach to achieve this could be the introduction

of a short random sequence followed by the barcode at the beginning of the first read. As an

interim solution, some Illumina sequencing devices support asymmetric read lengths. This
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function can be used to sequence only a small fraction of the first read and have the barcodes

available at an earlier stage of sequencing.

Modular Toolkit for Real-time Analysis of Illumina Reads

Currently, all tools for the real-time analysis of Illumina sequencing data are developed as

standalone software. Thus, high efforts are required to maintain and further develop the

tools. The organization of all methods in a common modular toolkit would be a possible

approach to overcome these obstacles. When sharing a common data structure and enabling

an exchange of analysis results, this would increase the flexibility in application as several

approaches could be reused and combined with each other. Additionally, the maintenance

of the software would be significantly facilitated as new features would only need to be

implemented once to be available for all tools. That way, common preprocessing steps

such as adapter or quality trimming could be coupled with each type of analysis. Further,

even the major analyses could be combined with each other. For example, PriLive could

be used in combination with PathoLive to enable real-time data protection and pathogen

identification at the same time. As a second example, reads that could not be mapped to

a reference genome in real-time could be used to perform other explorative analyses, for

example investigating their pathogenic potential or searching for similar sequences in a

larger database. It would also be easier to integrate functionalities for smaller tasks such as a

real-time version of bcl2fastq or real-time quality control that can be executed in parallel to

any type of analysis. Concluding, the integration of all tools in a common modular toolkit

shows a high potential to make real-time analysis of Illumina sequencing data more efficient,

flexible and maintainable.

Scalability and User Interaction

For the new generation of Illumina high throughput sequencing devices, particularly the

NovaSeq Series, further improvements of the scalability of the real-time alignment approach

should be pursued. However, this will require some conceptional changes. For example, the

number of reads per tile is continuously increasing with modern sequencers. Therefore, it

would be useful to enable the possibility of in-tile multithreading while it is currently only

possible to use a single thread per tile. Further, the output of alignment files is a crucial

bottleneck with increasing amounts of sequencing data and should be reengineered. From
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the algorithmic perspective, a support of even larger indices such as the bacterial RefSeq

[230] could be achieved by the use of a distributed index approach such as the DREAM

framework of the SeqAn library [231]. Additionally, such a distributed index would allow to

introduce user-driven real-time analysis decisions, for example by prioritizing or omitting

certain subindices based on intermediate results. Such a concept to enable user interactions

would also imply an advanced graphical user interface for presenting the current analysis

results and allow an intuitive adaption of parameters.

Alignment-free Methods

An approach that became very popular over the last years is the use of efficient alignment-free

analysis methods. Such methods overcome the computationally expensive alignment step,

usually by evaluating k-mer frequencies or informational content such as, for example, the

Kolmogorov complexity [232]. For extensive reviews about alignment-free methods, I refer

to Zielezinski et al. [233] and Ren et al. [234].

Prominent examples for alignment-free methods in the field of NGS analysis include Kallisto

[49] for transcript quantification and Kraken [184] for metagenomics classification. Usually,

alignment-free analyses are fast and memory-efficient while still providing accurate results.

On the other hand, due to the lack of alignment information, full nucleotide-level results are

not provided which limits their use to a certain range of applications.

In metagenomics classification, other application-specific limitations such as the so far

memory- and runtime-inefficient building and updating process of reference databases are

addressed by a new generation of tools, namely ganon [183] and Kraken 2 [182]. While a

real-time version of Kraken has already been published [101], the recent improvements of

alignment-free metagenomics classification tools provide the possibility to use much larger

and up-to-date databases which has a massive impact for the analysis outcome [188]. The

integration of these new, more scalable tools in the real-time approach would be highly

desirable to make use of the full spectrum of available sequences.

Alignment-free approaches can also be used for many other types of analyses, for example

for the comparison of two or more samples, prediction of virus-host interactions or the

identification of horizontal gene transfer [234]. While some of these applications are usually

not relevant in a time-critical context, others like the comparison of samples can be of high

interest such as the comparison of samples that can be used to investigate whether infections

of several individuals are related to each other or not. Therefore, such approaches should be
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considered to be integrated into the concept of real-time sequencing.

Reference-free Methods

All real-time approaches for NGS presented in this thesis are based on a reference database.

This can lead to incomplete or incorrect analysis outcome when analyzing samples that

contain highly variable or yet unknown organisms, or organisms that are simply not contained

in the selected reference database. To fill this gap, reference-free (or taxonomy-independent)

binning approaches could be integrated either for complementary analysis or to analyze

reads that could not be classified by the reference-based methods. Especially when followed

by an assembly step, such an approach could serve as a basis to detect organisms that are

not present in a reference database or to identify highly variable organisms in real-time.

However, the reference-free real-time binning of sequences is algorithmically complicated as

sequence similarities can massively change with ongoing sequencing. Thus, it is uncertain

whether it is possible to find an approach that is efficient enough to be applied in real-time

and still accurate in all stages of sequencing.

A completely different concept of reference-free analyses is the prediction of certain prop-

erties of an unidentified organism where a read originated from. For example, there exist

deep-learning based methods to predict the pathogenic potential of a DNA sequence [235].

When applied in real-time, such an approach could identify previously unclassified reads that

could be relevant in the context of an infection and therefore deliver candidates for further

explorative analysis.

Integration with ONT Sequencing Data

In comparison to Illumina sequencing, third-generation sequencing technologies provide

much longer reads and implicitely support the real-time analysis of sequencing results.

Oxford Nanopore Technologies sequencing, namely the MinION, can additionally be used

for sequencing and analysis in the field where no laboratory and computational hardware

are available, as for example successfully proven in the Antarctic Dry Valleys [236] and on

the International Space Station [237]. However, while the throughput of this technology is

continuously increasing with newly released devices, there are still several obstacles for the

establishment of ONT sequencing as a standalone sequencing solution for many applications,

especially in clinics. First, base calling is computationally expensive and error-prone. It was
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stated in several recent studies that the use of ONT requires “dramatic improvements” [35]

to be used in public health laboratories, especially due to the high numbers of false positive

SNP calls. This is an even greater issue in real-time analyses as these require rather fast than

the most accurate methods. Additionally, many real-time applications require untargeted

analysis workflows such that specifically tailored base calling approaches (e.g., trained for

a specific organism) cannot be applied. Another issue derives from the general technical

approach of ONT sequencing which can hardly resolve the length of homopolymers (length

> 4 bp) leading to a high number of false positive InDel calls in such regions. This can have

major effects for certain analyses, including the identification of several antibiotic resistances

that are associated with such homopolymeric regions [238, 239].

For these reasons, it makes generally sense to combine the strengths of both technologies by

integrating Illumina and ONT sequencing results. In the field of genome assembly, software

for such a combined approach already exists [240–242] and was shown to improve results

when compared to assemblies using data of a single sequencing technology [243–246]. For

many time-critical applications such an integration of both technologies in real-time could

considerably increase the spectrum possible analyses, especially those based on assemblies.

While using very short intermediate Illumina reads are not promising for standalone assembly,

they could be very valuable when polishing real-time assemblies obtained from ONT se-

quencing to reduce the number of wrong base calls. Such assembly-based real-time analyses

could improve the identification of antibiotic resistances, phylogenetic and epidemiological

analyses or the identification and classification of yet unknown or highly variable pathogens.
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Appendix 1 - Reliable Variant Calling during Runtime of Illu-
mina Sequencing
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Appendix Figure A1.1: PR curves for seven WES datasets of human individual NA12878 for
a real-time variant calling workflow using HiLive2 and xAtlas. Red curves show results for the
first read, blue curves show results for the second read and the gray curve show results based on read
mapping with Bowtie 2. The left figure for each dataset shows the PR curve for SNPs, the right figure
shows PR curves for short InDels. ForSNP calling, recall increaseswith longer sequencing time while the
precision is high from theverybeginning. Final results show at least the sameprecision as results basedon
Bowtie 2 but have slightly lower recall. For short InDels, an additional preprocessing-step was performed
to left-align all InDel positions in the read mapping results. The general tendency of the results is very
similar to those for SNPs but results show much lower recall than based on Bowtie 2. This is because
HiLive2canonlyfindconsecutive InDelsup toa lengthof3with theusedparameter settings. As longer
InDels are included in the gold standard, 18 - 24 % of gold standard InDels cannot be identified based
on read mapping results with HiLive2. The particularly low recall for InDels in dataset SRR292250 is
becauseof the short read lengthof50 bp.
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Appendix Figure A1.2: Turnaround times for the variant calling workflow for seven WES
datasets and different sequencing cycles. Thex-axisdescribes the turnaround timefromstarting the
sequencer inminutes. They-axisdescribes the sequencingcycle. Thefirstvertical lineofeachdatapoint
indicates the timepointwhen thesequencingcyclewaswrittenby thesequencingmachine. Thesecond
vertical line shows when read mapping with HiLive2 finished and the third vertical line represents the
availability of final variant calling results with xAtlas. The presented turnaround times do not include
left-aligning InDels that was necessary tocall InDels. Sequencing timewassimulatedwith a simulator for
Illuminasequencing.
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Appendix Figure A1.3: Precision, recall (a) and turnaround times (b) for the variant calling
workflow for the WGS dataset SRR6808334 and different sequencing cycles. a Precision and
recall forSRR6808334 indifferent sequencingcycles. Thex-axisdenotes theoutputcycles. They-axis
denotes the values for precision and recall. b The x-axis shows the turnaround time from starting the
sequencer inminutes. They-axisdescribes the sequencingcycle. Thefirstvertical lineofeachdatapoint
indicates the timepointwhen thesequencingcyclewaswrittenby thesequencingmachine. Thesecond
vertical line shows when read mapping with HiLive2 finished and the third vertical line represents the
availabilityoffinalvariantcalling resultswithxAtlas. Sequencing timewassimulatedwithasimulator for
Illuminasequencing.
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Appendix 2 - Real-time Pathogen Identification from Metage-
nomic Illumina Datasets

Appendix Figure A2.1: Example of the interactive taxonomic tree of results of PathoLive for
a spiked dataset when using HiLive2 for read alignment. The visualized results of the described
plasmasampleat cycle80basedon theweightedscoreare shown.
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Appendix Table A2.1: Comparison of AUC values of PathoLive for a spiked dataset when using
HiLive and HiLive2 for read alignment.

Cycle AUC value with HiLive AUC value with HiLive2

40 0.94 0.94

60 0.92 0.92

80 0.92 0.92

100 0.90 0.88

Accession Numbers

For the creation of the background database we used the datasets from the 1000 Genomes

Project Phase 3 with the following accession numbers:

SRR190845, SRR068180, ERR251013, ERR251014, SRR099960, ERR229780,

SRR189815, ERR015529, SRR099967, SRR099969, ERR251012, ERR251011,

SRR099961, ERR013139, SRR099959, ERR013142, SRR701450, SRR098436,

ERR018404, ERR015530, ERR251010, ERR251009, ERR015533, SRR098442,

ERR015517, ERR013112, SRR701451, ERR015880, ERR019906, ERR015763,

ERR013144, SRR707169, ERR015762, SRR099955, ERR018557, ERR015532,

ERR013156, ERR015515, ERR013145, ERR013161, ERR013152, ERR016162,

ERR013158, ERR018405, SRR098439, SRR043393, ERR018402, ERR018547,

SRR707168, SRR741387, ERR018420, ERR016155, SRR062639, SRR062636,

SRR741386, SRR101476, SRR101463, SRR101475, SRR043351, ERR015879,

SRR101469, SRR718071, ERR016351, SRR062637, ERR016161, ERR018418,

ERR018419, SRR101474, SRR060290, SRR037754, SRR037755, ERR031937,

SRR101473, SRR051599, ERR031965, SRR060294, ERR016168, ERR013101,

ERR016167, ERR031933, SRR101466, SRR101470, SRR764703, SRR037756,

SRR101472, SRR035595, SRR038565, ERR016158, SRR060289, ERR016345,

SRR037753, SRR764730, ERR016157, SRR035596, SRR101471, SRR101478,

ERR016350, SRR701480, SRR044231, SRR765995, SRR101464, SRR044232,

ERR031964, SRR101465, SRR035677, ERR034564, SRR060292, SRR060291,

SRR044233, SRR766045, ERR031932, SRR707198, SRR060293, SRR101467,
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SRR711355, ERR031936, ERR031935, SRR044235, SRR060295, SRR060296,

ERR016160, SRR711356, SRR035676, SRR707196, SRR038561, SRR038564,

ERR031934, SRR038563, SRR043360, SRR035673, SRR043357, SRR043396,

SRR035600, SRR101477, SRR043410, SRR035674, SRR038562, SRR035675,

SRR043354, SRR043384, SRR043392, SRR101468, SRR035594, SRR035593,

SRR035672, SRR043379, SRR043372, SRR035591, SRR043378, SRR043381,

SRR043386, SRR035592, SRR043370, SRR768526, SRR043382, ERR016005,

SRR043405, SRR035590, SRR035601, SRR037782, SRR035589, ERR013146,

SRR037783, ERR018521, ERR013131, SRR718072, SRR764729, SRR701483,

SRR764704, SRR037777, ERR019904, SRR070801, ERR018523, SRR070516,

ERR015527, SRR233084, SRR316803, SRR233083, SRR233086, SRR233075,

SRR233102, SRR233105, SRR233085, SRR233088, SRR233069, SRR233079,

SRR233087, SRR233074, SRR233101, SRR233082, ERR016166, ERR016159,

ERR016156, ERR016169, ERR018403, ERR016163, ERR016165, ERR016164,

SRR098444, SRR098432, SRR098438, SRR233073, SRR316801, SRR098437,

SRR098441, SRR098433, SRR233107, SRR233106, SRR098435, SRR233097,

SRR233104, SRR233094, SRR233078, SRR233091, SRR233096, SRR233071,

SRR233100, SRR233099, SRR233089, SRR107017, SRR101146, SRR101150,

SRR101144, SRR101145, SRR101147, SRR101148, SRR101149, SRR043361,

SRR043362, SRR035485, SRR043383, SRR043408, SRR043367, SRR035484,

SRR043356
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Zusammenfassung

‘Next-Generation Sequencing’, im Speziellen die Illumina Sequenzierung, ist die derzeit
meistgenutzte DNA-Sequenziertechnologie. Jedoch sind für zeitkritische Analysen aufgrund
des sequentiellen Paradigmas der Datenerzeugung und -analyse die Durchlaufzeiten zu
hoch. In der klinischen Anwendung und bei Ausbrüchen von Infektionskrankheiten ist es
entscheidend, die Zeit vom Probeneingang zum Analyseergebnis zu verkürzen um Patienten
optimal zu behandeln und einer weitere Krankheitsausbreitung zu verhindern. Gleichzeitig
ist eine Analyse auf Nukleotidebene erforderlich um eine Spezies-Level-Klassifizierung
und die Bestimmung spezifischer Eigenschaften, wie z.B. antimikrobiellen Resistenzen, zu
ermöglichen. Um eine frühere Verfügbarkeit von Analyse-Ergebnissen zu erreichen wurde
die Echtzeit-Alignierungssoftware HiLive entwickelt, welche DNA-Sequenzen während der
Sequenzierung aligniert. Jedoch lieferte HiLive die Ergebnisse bislang nur am Ende eines
Sequenzierlaufs und hatte keine ausreichende Auflösung und Skalierbarkeit.

In dieser Arbeit präsentiere ich einen neuen Echtzeit-Alignierungsalgorithmus, der in HiLive2
implementiert wurde. HiLive2 basiert auf dem FM-index, kann zu jedem Zeitpunkt der
Sequenzierung Ergebnisse liefern und erreicht eine höhere Skalierbarkeit der Größe von
Referenzdatenbank und Datensatz. Durch die Detektion von Varianten basierend auf den
Echtzeit-Alignierungen von humanen Sequenzierdaten zeige ich, dass HiLive2 qualitativ
hochwertige Folgeanalysen ermöglicht. Außerdem stelle ich PathoLive vor, eine Pipeline
zur Echtzeit-Identifizierung von Krankheitserregern aus metagenomischen Datensätzen.
Basierend auf den Ergebnissen von HiLive2 führt PathoLive eine gewichtete Einstufung der
identifizierten Organismen durch. Dabei werden Sequenzen, die auch in Proben von gesun-
den Menschen vorkommen, in den Ergebnissen weniger stark berücksichtigt. PathoLive
bietet eine intuitive und interaktive Visualisierung, welche die Interpretation der Ergebnisse
erleichtert. Ich zeige, dass PathoLive basierend auf nur wenigen Dutzend Sequenzen die
Identifizierung des Krim-Kongo-Hämorrhagisches-Fieber-Virus in einer Probe aus dem
Sudan ermöglicht. Neben den analytischen Herausforderungen sind Patientenproben im
Hinblick auf den Datenschutz problematisch, da die Daten des humanen Wirts zur Identi-
fizierung des Patienten verwendet werden könnten. Für diese Problematik präsentiere ich
PriLive, welches noch während des Sequenzierlaufs das Entfernen humaner Sequenzen aus
den Rohdaten ermöglicht. Hierdurch kann ein deutlich höheres Datenschutzniveau erreicht
werden als mit herkömmlichen post hoc Ansätzen, da die humanen Sequenzen auch während
des Sequenzierungsprozesses zu keinem Zeitpunkt in voller Länge vorliegen.
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