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Summary 

LRP2 is an endocytic receptor of the LDL receptor gene family expressed on the apical surface 

of absorptive epithelia in the embryonic and the adult mammalian organisms. Binding a 

functionally diverse array of ligands, including morphogens, this receptor plays a crucial role 

not only in endocytosis but also in regulation of signal transduction in various cell types during 

embryonic development and in adulthood. LRP2 is best known for its ability to mediate cellular 

uptake of the morphogens sonic hedgehog (SHH) and bone morphogenetic protein (BMP) 4, an 

activity required to establish SHH and BMP signaling centers in the embryonic neural tube. 

Loss of receptor expression in gene targeted mice or in patients with inheritable LRP2 gene 

defect (Donnai Barrow syndrome) results in disturbances in neural tube neurogenesis and in 

malformation of the embryonic forebrain. 

Intriguingly, expression of LRP2 persists in ependyma cells of adult mammalian brain. 

Ependymal cells are part of the neurogenic niche of the subventricular zone (SVZ), one of two 

regions of the adult mammalian brain capable of sustained neurogenesis. A possible role for 

LRP2 in adult neurogenesis was supported by earlier work documenting a decreased 

proliferative capacity in the SVZ of adult receptor mutant mice. Still, the molecular details of 

receptor function in adult neurogenesis remained obscure. I addressed this important question 

by performing detailed investigations of the adult neurogenesis and relevant ependymal cell 

functions in wild-type and LRP2-deficient mouse models as well as in brain explants and 

primary ependymal cell lines derived thereof. 

In my studies, I uncovered defects in SHH signaling in LRP2-deficient mice in the rostral but 

not the caudal regions of the SVZ. A region-specific impact of receptor deficiency in the SVZ 

was also observed for other morphogen pathways, including BMP and WNT, as well as for 

mTOR activtity in this niche. The region-specific alterations in morphogen signaling in the SVZ 

coincided with a loss of the neural stem cell population and with impaired neurogenesis in the 
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rostral but not the caudal region of the LRP2-deficient SVZ. Finally, the regional specificity in 

LRP2 action in the adult brain was substantiated by documenting aberrant accumulation of SHH 

in the caudal SVZ. 

Jointly, the above findings argued for a global effect of LRP2 activity on spatial control of adult 

neurogenesis in the mouse brain. This hypothesis received experimental support by 

documenting a defect in coordination of motile cilia beating in ependymal cells of LRP2 

deficient mice. Because coordination of cilia beating is essential to control the flow of the 

cerebrospinal fluid (CSF) in a caudal to rostral direction, these findings suggested disturbed CSF 

flow and, hence, faulty distribution of morphogens to underlie the region-specific impact of 

receptor deficiency on morphogen signaling and adult neurogenesis in the SVZ. The molecular 

mechanism of LRP2 action in motile cilia function still remains to be fully established. 

However, my observations of the localization of LRP2 to the endocytically active ciliary pocket 

and of an altered distribution of endocytic markers in motile cilia from receptor mutant cells 

supports a role for LRP2 in controlling endocytic processes that safeguard coordinated cilia 

beating and thereby proper morphogen distribution in the neurogenic niche of the SVZ. 
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Zusammenfassung 

LRP2 ist ein Endozytoserezeptor der LDL Rezeptor Genfamilie und wird auf der apikalen 

Zelloberfläche absorbierender Epithelien in embryonalen und adulten Organismen exprimiert. 

Durch die Bindung funktionell unterschiedlicher Liganden, einschließlich der Bindung von 

Morphogenen, übernimmt dieser Rezeptor nicht nur eine essentielle Rolle in der Endozytose 

aber auch in der Regulierung von Signaltransduktionskaskaden in verschiedenen Zelltypen 

während der Embryonalentwicklung sowie im adulten Organismus. Am besten wurde die 

Aufnahme der Morphogene Sonic Hedgehog (SHH) und knochenmorphogenetisches Protein 

(BMP) 4 durch LRP2 charakterisiert. Diese wird benötigt um die Signalzentren innerhalb des 

embryonalen Neuralrohres zu etablieren. Der genetisch bedingte Verlust der 

Rezeptorexpression in LRP2-defizienten Mäusen oder der vererbte LRP2 Gendefekt in 

Patienten (Donnai-Barrow-Syndrom) führt zu Beeinträchtigungen der Neurogenese im 

Neuralrohr und zu Fehlbildungen des embryonalen Vorderhirns. 

Interessanterweise bleibt die LRP2 Expression in adulten Ependymzellen des Gehirns erhalten. 

Ependymzellen sind Teil der neurogenen Nische der subventrikulären Zone (SVZ), eine von 

zwei Regionen im adulten Gehirn, die für eine anhaltende Neurogenese verantwortlich sind. 

Eine mögliche Rolle für LRP2 in der adulten Neurogenese wurde durch frühere Studien bereits 

postuliert. In diesen wurde gezeigt, dass adulte Rezeptor-defiziente Mäuse unter einer 

geringeren Proliferationsrate in der SVZ leiden. Dennoch blieb die molekulare Funktionsweise 

des Rezeptors während der adulten Neurogenese unklar. Mit Hilfe detaillierte Untersuchungen 

der adulten Neurogenese sowie Untersuchungen zu relevanten Aufgaben der Ependymzellen in 

Wildtyp Mäusen und LRP2-defizienten Maus Modellen, als auch in Gehirnexplantaten und 

primären Ependym Zellkulturen bearbeitete ich diese Fragestellung. 

In meinen Studien konnte ich Defekte im SHH Signalweg in LRP2-defizienten Mäusen in 

rostralen aber nicht caudalen Regionen der SVZ feststellen. Dieser regionsspezifische Rezeptor 
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Defekt in der SVZ konnte auch in anderen Morphogen-Signalwegen wie dem BMP und dem 

WNT Signalweg aber auch in der mTOR Signalaktivität in dieser Nische nachgewiesen werden. 

Die regionsspezifischen Veränderungen in den Morphogen-Signalwegen in der SVZ gingen 

einher mit einem Verlust der neuronalen Stammzell Population sowie einer beeinträchtigten 

Neurogenese in der rostralen aber nicht caudalen Region der LRP2-defizienten SVZ. 

Schließlich konnte die regionsspezifische Aktivität von LRP2 im adulten Gehirn auch durch 

eine Anreicherung von SHH in der caudalen SVZ bestätigt werden. 

Insgesamt zeigen die genannten Ergebnisse eine globale Wirkung der LRP2 Aktivität auf die 

Kontrolle der adulten Neurogenese im Mausgehirn. Diese Hypothese wird durch die 

Dokumentation von Defekten im koordinierten Schlagen beweglicher Zilien von 

Ependymzellen in LRP2-defizienten Mäusen bestätigt. Das koordinierte Schlagen der Zilien 

reguliert den Fluss der Zerebrospinalflüssigkeit (CSF) in einer caudal nach rostral verlaufenden 

Richtung. Meine Ergebnisse legen eine gestörte Richtung des CSF Flusses sowie eine 

fehlerhafte Verteilung der Morphogene nahe, die durch die regionalspezifischen Auswirkungen 

durch den Verlust der Rezeptoraktivität auf Morphogen-Signalwege und Neurogenese in der 

adulten SVZ ausgelöst werden. Der molekulare Mechanismus der LRP2 Aktivität auf die 

beweglichen Zilien muss noch genauer aufgeklärt werden. Dennoch unterstützen meine 

Beobachtungen zur Lokalisation von LRP2 in der endozytotisch aktiven ziliären Tasche, und 

eine veränderte Verteilung von endozytotischen Markern im beweglichen Zilium in Rezeptor- 

defizienten Zellen eine Rolle von LRP2 in der Regulierung endozytotischer Prozesse, die 

koordiniertes Schlagen der Zilien und somit eine richtige Verteilung von Morphogenen in der 

neurogenen Nische der SVZ sicherstellen. 
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1 Introduction 
 

1.1 LRP2, a member of LDLR gene family 
 
 

The low-density lipoprotein receptor-related protein 2 (LRP2) is one of seven core members of 

the low-density lipoprotein receptor (LDLR) gene family (Joachim Herz, 2001), a group of 

endocytic receptors found in vertebrate and non-vertebrate species (Figure 1.1). All members of 

this gene family are type 1 transmembrane proteins consisting of an amino terminal extracellular 

domain (ECD), a single transmembrane segment, and a short carboxyl terminal cytoplasmic tail 

(Joachim Herz, 2001). In their ECD, these receptors mainly possess motifs for extracellular 

binding and subsequent intracellular release of ligands (M. S. Brown, Herz, & Goldstein, 1997). 

The diversity of ligands bound by various family members is tremendous and defined by the 

specificity of recognition motifs formed by clusters of complement-type repeats (CR) in the 

ECD. The spatial conformation of individual CR is defined by four internal disulfide bridges 

that form a Ca2+ binding element (Bieri, Djordjevic, Daly, Smith, & Kroon, 1995; Fass, 

Blacklow, Kim, & Berger, 1997). Another structural feature of the ECD are epidermal growth 

factor precursor homology domains formed by epidermal growth factor-type repeats and ß- 

propellers. These domains are responsible for pH-dependent release of ligands internalized by 

these receptors into endosomes (Rudenko et al., 2002). The cytoplasmic tail domains of the 

different receptor species vary greatly. They contain motifs that direct internalization of the 

receptors from the cell surface by binding to components of the clathrin lattice present in plasma 

membrane invaginations called clathrin-coated pits (Bansal & Gierasch, 1991; W. J. Chen, 

Goldstein, & Brown, 1990). In addition, the tail domains entail recognition sites for a multitude 

of adaptor proteins that link these receptors to intracellular sorting and transduction machineries 

(Gotthardt et al., 2000). The structural organization described above characterizes the core 

members of LDLR gene family, called LDLR (Yamamoto et al., 1984), LRP1 (J. Herz et al., 

1988), LRP1B (C. X. Liu et al., 2000), LRP2 (Saito, Pietromonaco, Loo, & Farquhar, 1994), 

the very low-density lipoprotein receptor (VLDLR) (Takahashi, Kawarabayasi, Nakai, Sakai, 
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& Yamamoto, 1992), the apolipoprotein E receptor-2 (APOER2) (Schmechel et al., 1993), and 

LRP4 (Nakayama et al., 1998) (Figure 1.1). 

 
 

In addition to the core members, three additional receptors are included in the LDLR gene 

family, namely LRP5 (Dong et al., 1998; Hey et al., 1998) and LRP6 (S. D. Brown et al., 1998) 

as well as the sorting protein related receptor containing LDLR class A repeats (SORLA) 

(Jacobsen et al., 1996; Mörwald et al., 1997) (Figure 1.1). They are classified as distant family 

members because of their slightly different structural organization. LRP5 and LRP6 have an 

inverted organization of CR clusters and EGF precursor homology domains (S. D. Brown et al., 

1998; Dong et al., 1998; Hey et al., 1998). SORLA has an additional so-called vacuolar protein 

sorting 10 protein (VPS10P) domain not seen in the other receptors (Jacobsen et al., 1996). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: Members of the low-density lipoprotein receptor (LDLR) gene family in vertebrates 

(modified from (Carlo et al., 2013)). 
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To the left of the figure, the core members of the gene family, the LDLR, the very low-density lipoprotein 

receptor (VLDLR), as well as the LDLR-related protein (LRP) 8, LRP4, LRP1, LRP1B, and LRP2 are shown. 

To the right side of the figure, the structurally more distant related members like LRP5, LRP6, and sorting- 

related receptor with A-type repeats (SORLA) are displayed. 

 
 
 

1.1.1 LDL receptor-related protein 2 (LRP2) 
 
 

LRP2 was initially identified as an autoantigen in Heymann nephritis, an experimental rat model 

for active and passive immune-induced glomerular nephritis. (Kerjaschki & Farquhar, 1982). 

Subsequent cloning efforts revealed the primary polypeptide sequence of a huge 600 kDa 

protein termed megalin or LRP2. The corresponding gene is located on human chromosome 2, 

2q31.1 (Hjälm et al., 1996; Saito et al., 1994; Xia et al., 1993a) and on mouse chromosome 2, 2 

C2|2 40.74 cM (Xia et al., 1993b). Based on more detailed analyses, LRP2 was characterized as 

a type-1 transmembrane glycoprotein containing 4660 amino acids. Its ECD is composed of 

four repetitive arrangements that include a total of 16 EGF-type repeats, 8 ß-propellers, and 36 

CR (Saito et al., 1994) (Figure 1.1). The intracellular domain of LRP2 contains two classical 

NPxY motifs and one NPxY-like element, all of which determine sorting of this receptor to and 

from the apical cell surface (Gotthardt et al., 2000; Takeda, Yamazaki, & Farquhar, 2003). Yeast 

two hybrid screen as well as targeted analyses identified several proteins interacting with the 

intracellular domain of LRP2. One well characterized binding protein is Disabled2 (Dab2), 

which binds to the NPxY motifs in LRP2. Absence of Dab2 binding disrupts the ability of LRP2 

to perform endocytosis and phenocopies defects seen in cells lacking the receptor (Oleinikov, 

Zhao, & Makker, 2000, p. 2; Tao, Moore, Smith, & Xu, 2016). 

 
 

In mammals, expression of LRP2 is restricted to specialized absorptive epithelia in the 

embryonic and adult organism. In the adult, LRP2 is mainly found in the proximal tubules of 

the kidney, the endometrium of the uterus, in pneumocytes and Clara cells in the lung, in 

principal cells of the epididymis, as well as in ependyma and choroid plexus of the brain (Hermo, 

Lustig, Lefrancois, Argraves, & Morales, 1999; Kounnas, Haudenschild, Strickland, & 
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Argraves, 1994; G. Zheng et al., 1994). Although the function of LRP2 in various epithelial 

tissues of the adult organism is incompletely understood, it is generally perceived as a high 

capacity clearance receptor that scavenge a multitude of ligands from the extracellular space. 

Mainly, this concept is derived from studies on the role of this receptor in the kidney and 

reproductive organs. In the kidney, LRP2 is expressed on the apical cell surface of epithelial 

cells of the renal proximal tubule, a segment of the nephron specialized in reabsorption of 

metabolites filtered through the glomeruli, such as glucose, amino acids, and phosphate. LRP2 

contributes to proximal tubular resorption processes by internalizing low-molecular weight 

plasma proteins from the glomerular filtrate. Absence of receptor activity in mouse models with 

obligate (Nykjaer et al., 1999) or kidney-specific (J. R. Leheste et al., 1999) Lrp2 gene defects 

results in failure to reabsorb filtered plasma proteins, such as carriers for vitamin D (J. R. Leheste 

et al., 1999), vitamin A (W. Liu et al., 1998) , and vitamin B12 (Moestrup et al., 1996) and their 

bound ligands. This condition is called low-molecular weight proteinuria and is also seen in 

patients with inheritable LRP2 deficiency (Kantarci et al., 2007). A similar function in resorption 

of plasma carrier proteins and their bound cargo was documented in reproductive organs of 

mice, where LRP2 mediates uptake of androgens and estrogens bound to the sex hormone 

binding protein (Hammes et al., 2005). In mice lacking LRP2, absence of this clearance pathway 

for sex steroids results in phenotypes reminiscent of deficiency for estrogen and androgens. 

These pathologies encompass defects in maturation of the reproductive organs during puberty 

such as maldescent of the testes into the scrotum in males (cryptorchidism) as well as the 

impaired opening of the vaginal cavity in females (Hammes et al., 2005). 

 
 

1.1.2 Role of LRP2 in formation of the embryonic forebrain 
 
 

Apart from its function as clearance receptor in absorptive epithelia of adult organism, LRP2 

also plays an essential role during embryonic development, specifically in the formation of 

forebrain and facial structures. This notion was recognized early on by the severe forebrain 

malformations observed in mice with targeted Lrp2 gene disruption, a phenotype known as 

holoprosencephaly (HPE) (Kruszka & Muenke, 2018). Characteristic features of HPE in animal 

models and in patients are distinct malformations of the face and forebrain structures, including 
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an open fontanelle, craniofacial dysmorphology and, in severe cases, a centrally placed single 

eye (cyclopia). Underlying cause of these defects is the lack of separation of the brain into two 

hemispheres and the resultant fusion of the forebrain (prosencephalon) into a single structure, 

the holoprosencephalon. 

HPE is the most common forebrain anomaly in humans affecting 1 in 250 pregnancies (Kruszka 

& Muenke, 2018). It can be caused by numerous genetic as well as environmental impacts (e.g., 

fetal alcohol syndrome). Studies in genetically engineered mouse models of HPE documented 

impairment in several morphogen pathways involved in formation of the dorso-ventral axis of 

the neural tube as the molecular cause of this malformation. Specifically, an increase in BMP 

and WNT signaling activities in dorsal neural tube were shown to cause HPE (Golden et al., 

1999; Shimogori, Banuchi, Ng, Strauss, & Grove, 2004). Similarly, disturbances in ventral 

neural tube patterning were also identified as reason for HPE. In this respect, signaling by the 

morphogen sonic hedgehog (SHH) emerged as crucial for ventral cell fate specification in neural 

tube, and as cause of HPE (Inoue, Nakamura, & Osumi, 2000; Rubenstein & Beachy, 1998; Sur 

& Rubenstein, 2005). Consequently, loss of SHH activity in the ventral neural tube due to SHH 

gene disruption leads to HPE in humans and mice (Chiang et al., 1996; Roessler et al., 1996). 

Findings implicating LRP2 in neural tube specification and forebrain formation stemmed from 

early work documenting HPE-like phenotypes in mice with targeted Lrp2 gene disruption (T. 

E. Willnow et al., 1996). Further investigations documented a severe decrease in the thickness 

of the neuroepithelium in the rostral forebrain of mutant mice, a defect accompanied by 

decreased SHH signaling activity in the ventral and increased BMP4 activity in the dorsal neural 

tube (Spoelgen et al., 2005). In vitro studies demonstrated the ability of LRP2 to bind SHH 

(McCarthy, Barth, Chintalapudi, Knaak, & Argraves, 2002) and BMP4 (Spoelgen et al., 2005), 

arguing for a role of this protein as a morphogen receptor during embryonic development 

(Thomas E. Willnow, Christ, & Hammes, 2012). A primary role for LRP2 in SHH signaling 

was substantiated by further investigations by Annabel Christ and Annette Hammes in the 

Willnow lab who identified LRP2 as central player in establishment of the SHH signaling 

domain in the rostral diencephalon ventral midline (RDVM), the major forebrain organizer 

region. During neurulation, the RDVM receives inductive signals by SHH secreted from the 

prechordal plate (PrCP), a rostral extension of the notochord. From the PrCP, SHH moves by 
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unknown mechanisms to the overlaying RDVM to induce midline formation and ventral fate 

identity of the developing forebrain. According to current hypotheses, LRP2 plays an essential 

role in this process by forming a complex with the SHH receptor Patched 1 (PTCH1) on the 

surface of the neuroepithelial cells in the RDVM. Formation of this co-receptor complex 

increases the sensitivity of the ventral neuroepithelium for the limited amounts of SHH reaching 

the RDVM (Christ et al., 2012; Christ, Herzog, & Willnow, 2016). Experiments in cell lines and 

neural tube explants suggested that LRP2 facilitates surface binding and internalization of 

SHH/PTCH1 complexes, a prerequisite for pathway activation (Christ et al., 2012). In addition, 

LRP2 may also facilitate recycling and re-secretion of SHH, a mechanism to increase local 

morphogen concentrations in the RDVM (Christ et al., 2012). 

 
 

1.1.3 LRP2 acts as a clearance receptor during eye development 
 
 

In addition to its function in SHH signaling the developing forebrain, LRP2 adopts a similar 

role as SHH receptor in the developing mammalian eye (Christ et al., 2015). In the eye, SHH is 

produced by retinal ganglion cells, forming a morphogen gradient in central to peripheral 

direction that provides mitogenic signals to retinal progenitors (Y. P. Wang et al., 2002). 

However, SHH activity is absent from the distal margin of the developing retina, the ciliary 

marginal zone (CMZ), where progenitor cells remain quiescent (S.-H. Cho & Cepko, 2006; S. 

Zhao, Chen, Hung, & Overbeek, 2002). This phenomenon restricts growth of the mammalian 

eye, whereas in amphibians and fish progenitor cells in the retinal margin proliferate, resulting 

in continuous eye growth throughout adult life (Lamba, Karl, & Reh, 2008). Recently, the role 

of LRP2 as a clearance receptor for SHH in the murine CMZ was discovered by the Willnow 

lab. In detail, LRP2 mediates the uptake and lysosomal catabolism of SHH in the CMZ, 

preventing its activity spread from the central retina into the retinal margin. This clearance 

mechanism eliminates mitogenic stimuli for progenitors in the CMZ, keeping this niche in a 

quiescent state. In LRP2-deficient mice, the concentration of the morphogen in the CMZ 

increases, resulting in the expansion of the retinal progenitor cell pool and in hyperproliferation 

in the tip of the retina. This hyperproliferative phenotype of retinal margin was also seen with 
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insufficiency of inhibitors of SHH signaling as with heterozygosity of Ptch1 mutations or 

absence of SUFU (Y. P. Wang et al., 2002). 

 
 

1.1.4 Donnai-Barrow/ Facio-oculo-acoustico-renal (FOAR)-syndrome 
 
 

The consequences of Lrp2 mutations described initially in mouse models are recapitulated by 

phenotypes documented in patients with Donnai-Barrow (DBS) /Facio-oculo-acoustico-renal 

(FOAR)-syndrome, an autosomal-recessive disorder (DBS/FOAR, OMIM: 222448) caused by 

inheritable mutations on human LRP2. Thus, patients with DBS have low-molecular weight 

proteinuria as well as facial and forebrain abnormalities, including agenesis of the corpus 

callosum and an enlarged anterior fontanelle. They also suffer from visual and hearing 

impairment, frequently from diaphragmatic hernia and mental retardation (Avunduk, Aslan, 

Kapicioğlu, & Elmas, 2000; Chassaing et al., 2003; Donnai & Barrow, 1993; Gripp et al., 1997; 

Khalifa et al., 2015; Pober, Longoni, & Noonan, 2009). LRP2 mutations identified in 

DBS/FOAR mainly represent frameshift or nonsense mutations in the ECD of the receptor, 

resulting in the expression of truncated soluble receptor fragments. No apparent genotype- 

phenotype correlation is observed in these individuals (Kantarci et al., 2007; Pober et al., 2009). 

 
 
 

1.2 Cell biology of SHH signaling 
 
 

Recent years witnessed the elucidation of the complex cell biology of SHH production and 

signaling in cells in vitro and in vivo. Initially, SHH is produced as a precursor protein called 

full length SHH (SHH-FL). Due to autocatalytic activity of the carboxyl terminal domain of the 

precursor, SHH-FL is subsequently cleaved into an 19 kDa amino terminal (SHH-N) and a 25 

kDa carboxyl terminal fragment (SHH-C) (Bumcrot, Takada, & McMahon, 1995; Lee et al., 

1994; Porter et al., 1995). SHH-N becomes post-translationally modified by attachment of a 

cholesterol moiety at its carboxyl terminal end and a palmitoyl moiety at its amino terminus. In 
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this dual lipid modified form, SHH-Np constitutes the fully active form of the morphogen 

released by cells (Chamoun et al., 2001; Pepinsky et al., 1998) . 

 
 

Transport and secretion of SHH-Np is a complex multistep process. According to current 

hypotheses, SHH-Np is released from cells by three possible mechanisms; (i) by forming high 

molecular weight aggregates, (ii) in a complex with lipoprotein particles, or (iii) by attaching to 

exovesicular carriers (Choudhry et al., 2014). In detail, in the supernatant of cultured cell lines, 

SHH is mainly found as multimers formed by interaction of SHH monomers through their lipid 

moieties. The twelve-pass transmembrane receptor Dispatched (Dsp), that interacts with the 

cholesterol moiety in SHH-Np, facilitates release of such multimers from the plasma membrane 

for long range signaling (Choudhry et al., 2014). On target cells, specific types of heparan sulfate 

proteoglycans, such as Dally and Dally-like help to transfer multimeric SHH-Np to PTCH1. 

In the fruit fly, hedgehog tends to attach to the surface of lipoprotein particles, i.e., 

macromolecular structures that serve to transport lipids and lipid-soluble vitamins in the 

circulatory system. Attachment to lipoproteins enables long-range trafficking of lipid-modified 

hedgehog molecules and may foster interaction of the morphogen with lipoprotein receptors of 

the LDLR gene family (Eaton, 2006). A third proposed mode for SHH transport suggests that 

the morphogen can be attached to extracellular vesicular structures, called nodal vesicular 

particles (NVPs) and be transported by cilia- generated fluid flow by the node during mouse 

embryonic development. NVPs consist of lipophilic granules, surrounded by an outer membrane 

derived from microvillar structures (Eaton, 2006). One final model for SHH-Np transfer 

between neighboring cells is through formation of cell protrusions. These protrusions may 

enable direct transfer of plasma-membrane-linked SHH-Np to adjacent cells as shown in tissue 

cultures (Incardona et al., 2000). The transport via cell protrusions has been confirmed in 

another study using single-cell real-time imaging in chick embryos. In this study, it has been 

shown that SHH remains associated with a specialized class of actin-based filopodia. 

Furthermore, it has been demonstrated that in the responding cell SHH co-receptors are 

distributed in filopodial extensions and form a stabilized interaction with filopodia containing 

SHH ligand and therefore establish long range transport (Sanders, Llagostera, & Barna, 2013). 
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In target cells, SHH signaling starts by binding of SHH-Np to the 12-pass transmembrane 

receptor PTCH1 present on the cell surface. Central to SHH signal reception is a cellular 

organelle called the primary cilium (Figure 1.2). Upon SHH binding, PTCH1 localizes from the 

ciliary shaft to the base of the ciliary axoneme. This leads to the release of the inhibitory action 

of PTCH1 on Smoothened (SMO), a 7-pass transmembrane receptor that acts as primary 

mediator of SHH signal transduction into cells. Specifically, release of inhibition by PTCH1 

allows SMO entry into the axoneme of primary cilia (Rohatgi, Milenkovic, & Scott, 2007). So 

far, no clear evidence exists concerning the mechanism of SMO inhibition by PTCH1 as no 

stoichiometric interaction has been documented between these two proteins (J. Taipale, Cooper, 

Maiti, & Beachy, 2002). Some hypotheses suggest that this interaction proceeds indirectly 

through messenger lipid molecules that are transported by PTCH1 and regulate SMO activity 

(J. K. Chen, Taipale, Young, Maiti, & Beachy, 2002; Jussi Taipale et al., 2000). The discovery 

of various synthetic (J. K. Chen, Taipale, Young, et al., 2002; Frank-Kamenetsky et al., 2002) 

and natural compounds, such as the steroidal alkaloid cyclopamine (J. K. Chen, Taipale, Cooper, 

& Beachy, 2002; Jussi Taipale et al., 2000) which trigger SMO activity independently of SHH, 

substantiated this hypothesis. In vertebrates, a homologue of PTCH1, called PTCH2 also plays 

a regulatory role in SHH signaling. It was demonstrated in cell culture that PTCH2 can mediate 

the SHH response in Ptch1-/- cells (Alfaro, Roberts, Kwong, Bijlsma, & Roelink, 2014). In 

addition, it was shown that PTCH2 similar to PTCH1 acts as SHH antagonist during vertebrate 

neural tube patterning through feedback inhibition(Holtz et al., 2013). 
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Figure 1.2: Sonic hedgehog signaling cascade in the primary cilium (modified from (Briscoe & Thérond, 

2013)). 

 
The scheme on the left side represents the processes at the primary cilium in the absence of the morphogen 

sonic hedgehog (SHH) (panel off). In this case, patched homolog 1 (PTCH1) is placed in the primary cilium, 

suppressing smoothened (SMO) activity. Suppression of SMO results in phosphorylation of transcription 

factors (Glioma-associated oncogene homolog 2) GLI2 and (Glioma-associated oncogene homolog 3) GLI3 

by protein kinase A (PKA), glycogen synthase kinase 3 beta (GSK3β) and casein kinase 1a (CK1α) located 

at the base of the primary cilium. Phosphorylated variants of GLI2 and GLI3 are subjected to proteolytic 

cleavage to their repressor forms (GLI2R and GLI3R). The scheme on the right side depicts activation and 

down-stream signaling of the pathway in the presence of SHH (panel on). Upon binding of SHH, PTCH1 

exits the primary cilium relieving suppression of SMO. PTCH1/SHH are internalized, where PTCH1 

undergoes lysosomal degradation and SHH recycles back to the plasma membrane, recovering morphogen 

concentrations on the cell surface. Following phosphorylation by G protein-coupled receptor (GPCR) kinase 

2 (GPRK2) and CK1α, activated SMO localizes to the cilium in close proximity to the activator proteins, 

(Ellis-van Creveld syndrome protein) EVC and EVC2. SMO activation enables complex formation of 

suppressor of fused (SUFU) with GLI2 and GLI3, facilitating entry of the transcription factors into the cilium. 

In the cilium, they are protected from the proteolytic cleavage and remain in their full-length activator forms 

that can enter the nucleus to activate SHH target gene transcription. 
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After SHH binding at the cell surface, PTCH1 is internalized and undergoes lysosomal 

degradation (Figure 1.2). Relief of inhibition by PTCH1 causes conformational changes in SMO 

that trigger phosphorylation at multiple sites in the carboxyl terminal domain of the protein by 

G-protein coupled receptor kinase 2 (GPRK2) (W. Chen et al., 2004). Subsequently, SMO 

moves into the axoneme of the primary cilium, either by lateral plasma membrane transport or 

by intracellular vesicle trafficking (Milenkovic, Scott, & Rohatgi, 2009; Yu Wang, Zhou, 

Walsh, & McMahon, 2009). The translocation is mediated by ß-arrestin and the kinesin-like 

protein 3A (KIF3A) (W. Chen et al., 2004; Kovacs et al., 2008). The pivotal point in the SHH 

signal transduction process is SMO binding to Ellis-van Crefeld (EVC/EVC2) proteins at a 

distinct ciliary location (Dorn, Hughes, & Rohatgi, 2012). This interaction results in activation 

of GLI transcription factors that transmit SHH signals into the nucleus for induction of targeted 

gene transcription. In vertebrates, three GLI proteins are found, named GLI1, GLI2, and GLI3. 

GLI1 is the main activator of SHH signaling and is induced in expression upon SHH pathway 

activation (Ding et al., 1998; Hynes et al., 1995; B. Wang, Fallon, & Beachy, 2000). By contrast, 

GLI2 and GLI3 are always expressed but exist in an activator or repressor form, dependent on 

the presence or absence of SHH (Dai et al., 1999; Sasaki, Nishizaki, Hui, Nakafuku, & Kondoh, 

1999). In detail, in the absence of SHH, the suppressor of fused (SUFU) sequesters GLI2 and 

GLI3 at the base of the cilium and initiates their phosphorylation by protein kinase A (PKA) 

and glycogen synthase kinase 3β (GSK3β) (Figure 1.2). Phosphorylation results in proteolytic 

cleavage of the transcription factors into their repressor forms (Dai et al., 1999; Kise, Morinaka, 

Teglund, & Miki, 2009; Tuson, He, & Anderson, 2011). Following SHH signaling, SMO 

translocation into the ciliary axoneme triggers the accumulation of SUFU/full-length GLI2/3 

complexes in the tip of the primary cilium (Cheung et al., 2009; Endoh-Yamagami et al., 2009). 

There, SUFU/GLI2/GLI3 complexes dissociate and GLI2 and GLI3 proteins move to the 

nucleus to induce the expression of target genes (Humke, Dorn, Milenkovic, Scott, & Rohatgi, 

2010; Tukachinsky, Lopez, & Salic, 2010) (Figure 1.2). Due to the similarity in DNA binding 

motifs, GLI activator and GLI repressor proteins compete with each other for access to the GLI 

binding sites in target genes. Accordingly, the output of the SHH pathway is determined by a 

fine balance between levels of GLI activator and repressor forms. 
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1.2.1 The SHH receptorsome 
 
 

As an essential signaling pathway during embryonic development and in the adult organism, 

several mechanisms have evolved to control SHH signal reception spatially and temporarily. 

One well studied mechanism is the control of signal reception through local morphogen 

gradients as elucidated in molecular detail in explants of the chick neural tube. In response to 

SHH concentration gradients, subtypes of ventral interneurons and motor neurons are produced 

along the ventral to dorsal axis of the neural tube (Dessaud, McMahon, & Briscoe, 2008). 

Conjunctional expression of homeodomain transcription factors in progenitor cells, instruct their 

differentiation towards distinct cells fates in neural tube. These factors are divided into two 

classes, based on their response to SHH signaling simulation. Class I transcription factor 

encompasses PAX7, DBX1, DBX2, IRX3, and PAX6 that repress gene expression upon SHH 

pathway activation. Expression of class 2 proteins, for instance NKX6-1, NKX2-2, NKX2-9 is 

induced, when SHH signaling is on. In response to different SHH concentrations, various cross- 

repressive interactions of class I and class II transcription actors occur, eventually leading to the 

formation of distinct neuronal subtypes in the neural tube (Jessell, 2000). 

 
 

However how exactly progenitors transform dynamic changes in SHH levels into special gene 

expression programs was shown by James Briscoe and coworkers who identified the regulatory 

logic of Pax6, OLIG2 and Nkx2.2 transcriptional circuits to interpret graded SHH signals. Based 

on in silico modeling, they suggest a model of morphogen interpretation when at earliest time 

points of ventral neural tube patterning, low SHH signals translate into low levels of intracellular 

GLI activity. These levels are not sufficient to induce OLIG2 and Nkx2.2, or to repress existing 

Pax6 expression. As development progresses and SHH levels increase, a gradient of GLI 

activity induces OLIG2 transcription and represses Pax6 (Balaskas et al., 2012). Still further 

increasing GLI1 activity levels ultimately induce Nkx2.2 and repress Pax5 and OLIG2. 

 
 

A novel concept of control of SHH signal reception evolved in recent years with the 

identification of several SHH binding proteins. These surface proteins act as auxiliary SHH 
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receptors that cooperate with PTCH1 to positively or negatively regulate SHH signaling in target 

cells. They are jointly referred to as the SHH receptorsome (Figure 1.3). 

 
 

The first identified SHH co-receptor was the hedgehog interacting protein (HHIP). It is a 

glycoprotein tethered in plasma membrane via its hydrophobic carboxyl terminus. Its amino 

terminal domain consists of frizzled-fold domain, a ß-propeller and two EGF-type repeats 

(Ohata & Alvarez-Buylla, 2016). The ß-propeller domain binds all three vertebrate hedgehog 

proteins, including SHH, with high affinity. HHIP is part of a negative regulatory loop of SHH 

signaling as it is transcriptionally induced upon SHH signal activation and suppresses SHH 

signal initiation (P. T. Chuang & McMahon, 1999; P.-T. Chuang, Kawcak, & McMahon, 2003). 

Mice deficient for HHIP show increased hedgehog signaling, resulting in developmental defects 

in lung and bone (Chuang et al., 2003). 
 
 
 
 

 
 

Figure 1.3: Structural organization of SHH binding proteins, SHH receptorsome (modified from 

(Christ et al., 2016)). 

Protein Patched Homolog 1 (PTCH1), Protein Patched Homolog 2 (PTCH2), Cell-adhesion molecule-related, 

down-regulated by oncogenes (CDO), Brother of CDO (BOC), Growth arrest-specific 1 (GAS1) and 

hedgehog interacting protein (HHIP) are depicted in schematic illustration. 
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Asterisks highlight the binding site for SHH in the various proteins. Blue star marks the regions involved in 

interaction with PTCH1. 

 
 
 

As mentioned above, PTCH2 is another regulator of signaling in the SHH receptorsome. It 

shares almost 56% homology with PTCH1 (Motoyama, Takabatake, Takeshima, & Hui, 1998). 

Despite its ability to interact with SMO and SHH, PTCH2 has a reduced SHH signaling 

suppressing ability as compared with PTCH1 (Rahnama, Toftgård, & Zaphiropoulos, 2004). 

Mice deficient for PTCH2 are viable and show no obvious defects, suggesting that PTCH1 can 

compensate for the loss of PTCH2 deficiency. However, combined loss of mutations in Ptch1 

and Ptch2 aggravate phenotypes seen for PTCH1-deficient mice (Holtz et al., 2013; Jeong & 

McMahon, 2005). 

 
 

Three other members of the SHH receptorsome have been identified due to their involvement 

in SHH signaling during forebrain development. These receptors encompass the cell-adhesion 

molecule-related, down-regulated by oncogenes (CDO), brother of CDO (BOC), and growth 

arrest-specific 1 (GAS1) (Figure 1.3). CDO and BOC share structural and functional similarities 

and positively regulate SHH signaling. They are orthologues of interference hedgehog (Ihog) 

and brother of ihog (Boi) in Drosophila (Tenzen et al., 2006; Yao, Lum, & Beachy, 2006). They 

are cell surface glycoproteins, belonging to a subgroup of the immunoglobulin (Ig) superfamily 

of cell adhesion molecules. In their ECD, they carry four or five Ig-like domains and three 

fibronectin-type III repeat (FNIII) repeats (Fn1-3). CDO and BOC are anchored to the plasma 

membrane through a single trans-membrane domain, followed by an intracellular domain that 

differs by length between the receptor species and that may explain their functional distinctions 

(Kang, Mulieri, Hu, Taliana, & Krauss, 2002; Mulieri, Okada, Sassoon, McConnell, & Krauss, 

2000). The third FNIII domain in both receptors binds SHH (Kavran, Ward, Oladosu, Mulepati, 

& Leahy, 2010; McLellan et al., 2008). GAS1 is tethered to the plasma membrane through a 

glycosyl-phosphatidylinositol (GPI) anchor. GAS1 shares structural similarity with glial cell- 

derived neurotrophic factor receptors α (GFRα) (Cabrera et al., 2006; Stebel et al., 2000) and 

binds SHH in its extracellular domain. 
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The physiological relevance of CDO, BOC, and GAS1 for SHH signaling during forebrain 

development is documented by loss of function phenotypes seen in patients and mouse models 

lacking these receptors. Thus, inheritable GAS1 mutations in humans, that decrease its affinity 

for SHH, result in phenotypic features reminiscent of HPE (Pineda-Alvarez et al., 2012). Also 

missense mutations in Cdon, that disrupt interaction of human CDO with other members of 

receptorsome, cause HPE (Bae et al., 2011). In mouse models, deficiency for GAS1 (Allen, 

Tenzen, & McMahon, 2007; Seppala et al., 2007) or CDO also causes HPE-related defects (Cole 

& Krauss, 2003; W. Zhang, Kang, Cole, Yi, & Krauss, 2006). As for BOC, loss-of-function 

mutations do not show apparent forebrain development defects. However, murine Boc mutations 

exacerbate forebrain malformations when introduced into the Cdon or Gas1 mutant mouse lines 

(Allen et al., 2007; W. Zhang, Hong, Bae, Kang, & Krauss, 2011). Mice harboring loss-of- 

function mutations in all three receptor genes simultaneously die at earlier stages of 

embryogenesis (E9.5). They do so as a consequence of total ablation of SHH signaling 

transduction as they exhibit defects in heart development and neural tube patterning also seen 

in Smo-/- or Shh-/- embryos (Allen et al., 2011; X. M. Zhang, Ramalho-Santos, & McMahon, 

2001). 

 
 

1.2.2 LRP2 as a novel member of the SHH receptorsome 
 
 

Recent research in the Willnow lab established LRP2 as yet another member of the SHH 

receptorsome (Christ et al., 2012). This conclusion was based on the ability of the receptor to 

interact with SHH and PTCH1, and on the alterations in SHH signaling observed in mice lacking 

this receptor (as described above). 

While the importance of LRP2 for SHH signaling has unambiguously been documented in 

mouse models, the molecular mechanism how this receptor controls SHH signal transduction 

remains a matter of investigations. By now, three different modes of receptor action have been 

proposed. In the RDVM, LRP2 promotes SHH signaling in neuroepithelial cells by acting as a 

co-receptor to PTCH1. Receptor interaction promotes binding of SHH and triggers 

internalization of PTCH1/SHH complexes, a prerequisite for relieving inhibition of SMO. In 
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addition, LRP2 may promote recycling of SHH in this cell type to increase the limiting 

concentration of the morphogen in the ventral neural tube (Christ et al., 2012). Studies in whole 

embryo cultures (WECs) have shed some light on endocytic compartments involved in sorting 

of SHH with PTCH1 or with LRP2. Thus, all three proteins initially localize to early endosomes, 

marked by Rab4, representing the first step in receptor/ligand internalization from the cell 

surface. In addition, immunoreactivity for PTCH1 is seen in lysosomes characterized by the 

presence of the lysosomal marker protein Lysosomal-associated membrane protein 1 (LAMP1). 

This observation argues for lysosomal catabolism of the SMO inhibitor subsequent to SHH 

binding. By contrast, LRP2 and SHH immunostainings are absent from lysosomes but 

accumulate in Rab11-positive recycling endosomes, suggesting recycling and re-secretion of 

the morphogen from the apical cell surface (Christ et al., 2012). 

 
 

In the CMZ of the retina, LRP2 antagonizes SHH signaling by acting as a clearance receptor for 

the morphogen, depleting the ligand required to engage PTCH1 (Christ et al., 2015). To do so, 

LRP2 is ideally situated on the apical surface of epithelial cells in the CMZ. In this cell type, 

binding of SHH to LRP2 results in delivery of the morphogen to lysosomes, whereas the 

unliganded receptor returns to the cell surface via the recycling endosomal route (Christ et al., 

2015). A third mechanism of LRP2 action in SHH signaling involves transcytosis of the 

morphogen as shown in the optic nerve (ON) (Ortega et al., 2012). In this tissue, LRP2 is 

expressed in oligodendrocytes where it mediates uptake of the morphogen from the apical and 

re-secretion via the basolateral cell surface. LRP2-mediated transcytosis of SHH creates a 

morphogen gradient in the developing ON that directs migration and proliferation of 

oligodendrocyte progenitor cells. 

In conclusion, depending on the cellular context, LRP2 may act as an agonist, an antagonist or 

transcytosis factor, modulating the trafficking and activity of this morphogen. However, the 

molecular mechanisms governing the switch in activity in SHH signaling, SHH clearance, or 

SHH transcytosis are still unclear. 
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1.3 LRP2 expression in the adult brain 
 
 

As well as during embryonic development, LRP2 expression also persists in the central nervous 

system of the adult organism (G. Zheng et al., 1994). Specifically, immunohistological analyses 

by Chandresh Gajera from the Willnow lab (Gajera et al., 2010) documented the presence of the 

receptor in the ependyma, a layer of polarized epithelial cells that covers the entire luminal 

surface of the brain ventricles. The ependymal layer forms a barrier between brain parenchyma 

and ventricular cavity and it participates in propulsion of the cerebrospinal fluid (CSF) through 

the ventricular system (Cathcart & Worthington, 1964; Worthington & Cathcart, 1963). To do 

so, ependymal cells exhibit a specialized apicobasal polarity characterized by a bundle of around 

40 motile cilia placed on their apical cell surface facing the ventricular lumen. These motile cilia 

beat in a coordinated manner, both within individual bundles and across all bundles of the tissue. 

This coordinated beating directs proper circulation of the CSF in the ventricular system in a 

rostral to caudal direction (Lehtinen et al., 2011). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.4: Maturation steps of ependymal cells (modified from (Ohata & Alvarez-Buylla, 2016)). 
 

Ependymal cells are derived from radial glial cells (RGCs) around embryonic day (E) 14 of mouse 

development. RGCs contain primary cilia that are localized at the center of the apical cell surface. From E16 

onwards, the flow of the cerebrospinal fluid (CSF) displaces the cilia from the center of the cell, resulting in 
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acquisition of translational cell polarity. Between postnatal day (P) 2 and 5, active ciliogenesis takes place, 

resulting in formation of motile cilia bundles on the immature E cells. At this time of development, the CSF 

flow is too weak to define the direction of motile cilia beating. Thus, motile cilia show a random, non- 

coordinated beating orientation (visualized by randomly oriented red arrowheads in the figure). Upon 

maturation of the ventricular system and an increase in CSF force in the first 3 weeks of postnatal life, motile 

cilia on mature E cells adopt a synchronized direction of beating determined by the direction of CSF flow. 

The E cells have acquired so-called rotational polarity. 

 
 
 

Ependymal cells originate from a specific subset of radial glial cells (RGCs) that complete their 

proliferative phase between embryonic day (E) 14 and 16 in the mouse (Spassky et al., 2005a; 

H. Zhao et al., 2019) (Figure 1.4). At postnatal day 1, mainly radial glial cells but no ependymal 

cells are seen in the ventricles. However, until P7, ependymal cells gradually appear in the 

ventricular epithelium as the number of radial glial cells decrease. By P15-30, formation of the 

ependymal cell layer has been completed and radial glial cells are completely absent from this 

tissue (Tramontin, García-Verdugo, Lim, & Alvarez-Buylla, 2003). In the murine brain, the 

differentiation process whereby multiciliated ependymal cells form from radial glial cells 

containing a single primary cilium encompasses not only growth of the ciliary axoneme but also 

acquisition of polarity. This step is followed by ciliary bundle displacement, so-called 

translational polarity, and finally by ciliary beating coordination, so-called rotational polarity 

(Figure 1.4) (Boutin et al., 2014). The significance of LRP2 for development and functional 

integrity of the ependyma is unclear as yet. 

 
 

1.3.1 Architecture of the neurogenic niche in ventricular- subventricular zone 
 
 

Initial studies reported the self-renewal capacity of ependymal cells (Bruni, 1998; Johansson et 

al., 1999). However, no experimental support for this hypothesis was obtained in later studies 

(Spassky et al., 2005a), in line with findings that multiciliated epithelial cells bearing numerous 

basal bodies are postmitotic (Lange, Faragher, March, & Gull, 2000) and that the ependymal 

layer in the mammalian brain does not regenerate after injury (Sarnat, 1992). Still, the ependyma 
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bears considerable significance for proliferative processes in the adult brain, specifically in the 

generation of new neurons in a process called adult neurogenesis. 

 
 

Initially, the concept of adult neurogenesis in the mammalian brain was met with considerable 

skepticism. According to established dogmas, cells in the brain proliferate during development 

but cease to do so before puberty. Today, we know that two main regions of continuing 

neurogenesis exist in the adult mammalian brain, namely the subventricular zone (SVZ) of the 

lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. The 

SVZ resides below the ependymal cell layer in close proximity to lateral ventricular lumen. 

Figure 1.5: Composition of 

ventricular and subventricular 

zones in the wall of the lateral 

ventricles (modified from (Daniel 

A. Lim & Alvarez-Buylla, 2016)). 
 

The neurogenic unit of the 

subventricular zone (SVZ) is 

composed of neural stem cells (B1 

cells, in blue), activated B1 cells (in 

purple), fast dividing progenitors 

(C cells, in green) as well as 

neuroblasts (A cells, in red). White 

arrows indicate the direction of 

neurogenic  differentiation  from B 

cells to C cells to A cells. Ependymal cells (E cells, in yellow) are multi-ciliated postmitotic epithelial cells 

that form the ventricular zone (VZ). The VZ separates the neurogenic niche of the SVZ from the lumen of the 

ventricle. Anatomically, the V-SVZ is divided in three domains. The apically located domain I contains E 

cells and the apical processes of B1 cells that carry the primary cilium and protrude through the ependymal 

cell layer. The intermediate domain II consists of the cells bodies of B cells and most other cells of the 

neurogenic unit. Basally located domain III contains the basal processes of B1 cells that interact with blood 

vessels. The extent of the SVZ, the VZ and the ventricular lumen are highlighted by colored lines above the 

schematic. For comparison, a histological hematoxylin and eosin stained coronal section of the adult mouse 

brain depicting the lateral ventricular system is shown in the upper left corner. 
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It contains neural precursor cells, that constantly divide and differentiate into newborn neurons. 

Jointly with the ventricular zone formed by the ependyma, this niche of the brain is referred to 

as the ventricular- subventricular zone (V-SVZ). Four main cell types are found in the V-SVZ, 

the ependymal cells (E cells), the neural stem cells (B1 cells), fast dividing progenitors (C cells), 

and neuroblasts (A cells) (Doetsch, García-Verdugo, & Alvarez-Buylla, 1997). 

As illustrated in Figure 1.5, the V-SVZ is organized into three anatomical domains, based on 

spatial localization of the B1 cells. In domain 1 (apical), ependymal cells and apical processes 

of B1 cells are found. The intermediate domain 2 consists of the cell bodies of B1 cells that are 

in close proximity with A and C cells. Finally, domain 3 contains basal processes of B1 cells, 

which interact with blood vessels (Daniel A. Lim & Alvarez-Buylla, 2016). 

Type B1 cells can be in a quiescent or an activated state in the niche. Glial fibrillary acidic 

protein (GFAP), glutamate aspartate transporter (GLAST), and brain lipid-binding protein 

(BLBP) are markers commonly used to characterize B1 cells. Nestin was shown to be expressed 

mainly in activated B1 cells (Doetsch, Caillé, Lim, García-Verdugo, & Alvarez-Buylla, 1999; 

Doetsch et al., 1997; García-Verdugo, Doetsch, Wichterle, Lim, & Alvarez-Buylla, 1998). Time 

lapse imaging showed that activated B1 cells undergo asymmetric division, constantly renewing 

the B1 cell population and also giving rise to C cells (Codega et al., 2014; Mich et al., 2014). 

Markers for C cells are the transcription factors achaete-scute family BHLH transcription factor 

1 (Ascl1) and distal-less homeobox 2 (Dlx2) (Doetsch et al., 1997). C cells are able to divide 

three more times symmetrically to expand their own population before differentiating to A cells 

(Ponti, Obernier, & Alvarez-Buylla, 2013). Type A cells usually undergo one to two more 

symmetric divisions in SVZ and on their migratory path to the olfactory bulb (OB) (Ponti et al., 

2013). This coordinated migratory path from the SVZ to the OB is called the rostral migratory 

stream (RMS) (Lois & Alvarez-Buylla, 1994; Lois, García-Verdugo, & Alvarez-Buylla, 1996; 

Ponti et al., 2013; Wichterle, Garcia-Verdugo, & Alvarez-Buylla, 1997). Once A cells have 

reached the OB, these differentiated neuroblasts undergo radial migration to integrate into the 

interneuron layers of the OB. Various morphogen pathways control adult neurogenesis in the 

SVZ, including signaling by SHH. SHH determines fate acquisition by neural stem cells in the 

niche and the proper distribution of newborn neurons in OB cell layers (Ihrie et al., 2011). 
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1.4 Role of LRP2 in adult neurogenesis in the SVZ 
 
 

Although ependymal cells do not actively participate in the formation of newborn neurons, they 

are essential to sustain ongoing adult neurogenesis by providing the proper milieu in the V-SVZ 

for B cells to proliferate and to differentiate. In this respect, several mechanisms have been 

proposed whereby ependymal cells may support adult neurogenesis in the SVZ. Ependymal 

cells produce the BMP inhibitor noggin which provides an inductive signal for neurogenesis 

and inhibits gliogenesis (Chmielnicki, Benraiss, Economides, & Goldman, 2004; D. A. Lim et 

al., 2000). Ependymal cells also expresses a pigment epithelium-derived factor, which initiates 

self-renewal of neural stem cells (Ramírez-Castillejo et al., 2006). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6 LRP2 is expressed at the apical cell surface and at the base of motile cilia of ependymal cells 

(modified from (Gajera et al., 2010)). 

(A) Immunohistological detection of LRP2 on the apical surface of the ventricular zone of the lateral 

ventricles of the adult mouse brain. LRP2 expression predominantly is seen on the lateral and ventral medial 

side of the ventricular epithelium facing the neurogenic niche (arrowheads). Little receptor expression is seen 

at the medial side of the lateral ventricles (indicated by an asterisk). (B) Higher magnification images of 

immunostainings of LRP2 (red) on the apical cell surface of ependymal cells in the lateral (white arrowheads) 

but not the medial wall (white asterisk) of the VZ. Ependymal cells and B cells are marked by 

immunodetection of S100β (green) or glial fibrillary acidic protein (GFAP; blue), respectively. (C) En face 

view of the lateral ventricular wall in whole mount preparations of the adult mouse brain. Staining for β- 

catenin (blue) marks the surface of the ependymal cells that adopt a pinwheel arrangement around a centrally 
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located B cell. For clarity, one pinwheel is highlighted by white dotted lines. (D) Immunodetection of EGFP 

reporter, expressed under control of the human glial fibrillary acidic protein promoter (hGFAP-EGFP; green), 

LRP2 (red), and β-catenin (blue) revealed LRP2 expression on the apical surface of ependymal cells. No Lrp2 

expression is seen on the apical extensions of hGFAP-EGFP+ B cells. (E) Speckled localization pattern of 

LRP2 (red) is visualized on the base of motile cilia (labeled for CD 133 in green), both located on the apical 

surface of ependymal cells (stained for β-catenin in blue). 

 
 
 

LRP2 expression in the ependyma is restricted to ependymal cells located in the lateral and the 

most ventral part of the medial ventricular wall (Figure 1.6 A). By contrast, no receptor 

expression is seen in the remainder of the medial ventricular wall. Intriguingly, this expression 

pattern mirrors the localization of the active neurogenic niche in SVZ underlying the lateral but 

not the medial walls of the ventricular zone. Further detailed investigations on enface 

preparations of the lateral ventricular walls visualized LRP2 on the apical surface of the 

ependymal cells. In this enface view, ependymal cells are seen in their natural configuration in 

a pinwheel-like arrangement around the apical cell protrusions of B cells that extend to the 

ventricular lumen (Figure 1.6 B). On the apical cell surface, LRP2 localizes mainly to the base 

of the motile cilia but only sparsely to the ciliary axoneme (Figure 1.6 B). 

An important contribution of LRP2 activity to adult neurogenesis was shown earlier by testing 

the number of proliferating C cells generated in receptor mutant mice (Gajera et al., 2010). Using 

BrdU incorporation to mark proliferating cells in the SVZ, the number of BrdU-positive cells 

(C cells) was markedly decreased in LRP2-deficient animals as compared with littermate 

controls. This proliferative defect was seen exclusively in adults but not in newborn mice, 

suggesting a specific role for LRP2 in adult neurogenesis. This assumption was further 

corroborated by documenting a significantly reduced number of B1 cells in the SVZ in brains 

lacking LRP2. Based on the unique localization of LRP2 on the ependyma facing the SVZ and 

on the impaired neurogenesis in this niche, an important role for this receptor in adult 

neurogenesis was proposed (Gajera et al., 2010). Yet, the cellular function of LRP2 in 

ependymal cells and how this activity contributes to adult neurogenesis remained unclear. 

Answering this question was the main goal of my thesis project. 
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2 Aim of my work 
 
 

LRP2 is an endocytic receptor for a broad array of functionally diverse ligands including 

morphogens. The receptor is best known for its role in uptake and signaling of SHH, required 

to control neurogenesis in the developing forebrain. Expression of the receptor persists in 

ependymal cells of the adult brain, a cell type that neighbors the neurogenic niche in the SVZ 

of the adult mammalian brain. Yet, the relevance of this receptor for adult neurogenesis in 

mammals remains poorly explored. 

 
 

My studies aimed at substantiating a proposed role for ependymal LRP2 in control of adult 

neurogenesis and at elucidating the underlying molecular mechanism of receptor function in this 

niche. 

 
 

Towards these overall aims, I explored the architecture and neurogenic potential of the SVZ in 

control mice and in animals genetically deficient for this receptor using quantitative 

immunohistology and in vivo proliferation assays. These studies were complemented by 

investigations of ependymal cell functions, including endocytosis, morphogen signaling, and 

motile cilia activity in brain tissue explants, as well as in primary ependymal cell lines derived 

from wild-type and receptor-deficient mice. 
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3 Material and methods 
 

3.1 Animals 

3.1.1 Transgenic mice strains 
 
 
All animal experimentation was carried out according to MDC guidelines following approval 

by local authorities (X9017/17,  G  0256/13,  G002/14).  Adult  mice  were  group housed  with 

food and water available ad libitum under a fixed 12-hrs light/dark cycle. Adult (10-12- week 

old) and newborn (0-2 days old) mice were used in the experiments as stated. 

Animals compound heterozygous for two different Lrp2 null alleles were used as LRP2- 

deficient mouse model (Lrp2-/-). One allele (Lrp2+/-) was generated by targeted gene disruption 

as described by Willnow et al, 1996. This line was crossed with the Tcf/Lef_LacZ reporter strain 

(Mohamed, Clarke, & Dufort, 2004). The second mutant allele (Lrp2267/+) was derived in an 

ENU mutagenesis screen for novel gene mutations causing forebrain malformations. In line 267, 

replacement of the nucleotide T by A created a stop codon at amino acid position 2721 of the 

LRP2 polypeptide, eliminating receptor expression (Zarbalis et al., 2004). LRP2-deficient mice 

(Lrp2-/-)  used  in  this  study  were  derived  from  F1  crosses  of  (Tcf/Lef_LacZ;  Lrp2+/-) and 

Lrp2267/+ animals. Mice having only one of the targeted Lrp2 alleles (heterozygous) were 

phenotypically identical to wild-type animals (Lrp2+/+). Therefore, both genotypes were 

combined and referred to as control (Ctr) animals in this thesis. To explore WNT signaling in 

Lrp2 mutant and control mice, the activity of the lacZ transgene under control of the Tcf/Lef 

promotor was scored. To test SHH signaling, the Gli1_LacZ transgene (JAX; Stock 008211) 

was introduced in the mice carrying the Lrp2 mutant alleles. 

 
 

3.1.2 BrdU injections 
 
 

5-bromo-2'-deoxyuridine (BrdU) is a synthetic nucleoside analogue that is incorporated into 

replicating DNA instead of thymidine. This fact can be used to trace proliferating cells in vitro 

and in vivo. In my experimental setup, the BrdU incorporation assay was applied to quantify the 
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number of replicating cells during 24-hour period in the SVZ region of adult mice. In detail, an 

injection solution was prepared by dissolving BrdU (Sigma Aldrich, Cat. no. B5002) at a 

concentration of 10gm/ml in sterile saline buffer (0.9% NaCl). To facilitate the dissolving 

process, the solution was sonicated for 10 minutes, followed by further shaking at 300 rpm for 

45 minutes at room temperature in the dark. For BrdU labeling in vivo, adult mice were injected 

intraperitoneally with one single dose of BrdU at 50 mg/kg body weight. 

 
 

3.2 Molecular biology 

3.2.1 Genomic DNA preparation 
 
 

Tissue for genotyping was obtained from ear clips of mice and placed in a tube.75 µl alkaline 

lysis reagent (25 mM NaOH, 0.2 mM EDTA) was added directly. Samples were heated to 95ºC 

for 10 minutes to an hour (30 minutes is optimal). Next, tubes were left to cool to 4ºC (optional). 

Subsequently 75 µl neutralization buffer (40 mM Tris-HCl) was added. DNA can be used 

immediately for PCR genotyping. 

 
 

3.2.2 PCR genotyping 
 
 

Genotypes of mice were determined by polymerase chain reaction (PCR) using pairs of primers 

specific for wild-type or the targeted Lrp2 gene alleles as described in the following. 

Primer pair BPA/G21 was used to amplify a 300 bp fragment that was specific for the gene- 

targeted allele of Lrp2. The primer pair G20/G21 amplified a 200 bp fragment specific for the 

wild-type allele of Lrp2. 

The primer pair 2-ENU-MseI-For and 2-ENU-MseI-Rev was used to amplify the Lrp2 gene 

region carrying the point mutation in line 267. Restriction digest of the generated PCR 

fragment was used to detect the presence of a MseI restriction site generated by the mutation, 

In this analysis, the wild-type allele gave a single PCR band of 294 bp size. The mutant allele 
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was identified by the presence of two fragments of 239 bp, and 55 bp sizes. 
 

To detect the Tcf/Lef_LacZ reporter, primers LacZ forward and LacZ reverse were used, 

resulting in a specific PCR product of 600 bp. 

The Gli1-LacZ reporter was identified using the primers oIMR7888, oIMR9034 and 

oIMR8770. While primer pair oIMR7888 and oIMR9034 amplified the wild-type PCR product 

(261bp), primer pair oIMR9034 and oIMR8770 amplified the mutant PCR product (480 bp) 

generated by insertion of the LacZ reporter into the Gli1 gene locus. 

The nucleotide sequence of the primers is shown in Table 1. 
 
 
 

Table 1: List of primers used for PCR genotyping. 
 
 

G21 J (common) 5’CATATCTTGGAAATAAAGCGAC3’ 

G20 J 5’GACCATTTGGCCAGCCAAGG3’ 

BPA J 5’GATTGGGAAGACAATAGCAGGCATGC3’ 

2-ENU-MseI-For 5’GTA ACT GGA AGG CAT CTT CTC 3’ 

2-ENU-MseI-Rev 5’CTC ATC TGA GGT GTC ATT GTC 3’ 

oIMR7888 (common) 5’GGGATCTGTGCCTGAAACTG 3’ 

oIMR8770 (Mu_rev) 5’ TCTGCCAGTTTGAGGGGACGAC3’ 

oIMR9034 (Wt_rev) 5’ AGGTGAGACGACTGCCAAGT3’ 

LacZ forward 5’ CAG TGG CGT CTG GCG GAA AAC CTC3’ 

LacZ reverse 5’GGC GGC AGT AAG GCG GTC GG3’ 

 
 
 

3.3 Protein biochemistry 
 

3.3.1 Dissection of the ventricular forebrain region for western blot analyses 
 
 

For western blot analyses of the murine ventricular system, rostral ventral, rostral dorsal, caudal 
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ventral and caudal dorsal regions of lateral ventricles were dissected from the brains of adult 

mice as shown in Figure 3.1. 

 
 

Figure 3.1: Dissection of the 

lateral ventricles of the adult 

mouse brain in a regional specific 

manner (modified from (Xiong et 

al., 2017)(“The Mouse Brain in 

Stereotaxic Coordinates, 

Compact—3rd Edition,” n.d.)). 

 
 
 
 
 
 
 
 
 

ventral and dorsal regions of SVZ used for western blot analysis. 

The picture illustrates the three 

coronal cuts (1, 2, 3) placed to 

separate the ventricular region of 

the brain into rostral (1-2) and 

caudal (2-3) regions. Blue and red 

squares highlight the dissected 

 
 
 

To do so, mice were sacrificed by cervical dislocation and the dissected fresh brains were 

transferred into ice cold 0.1 M Phosphate-buffered saline (1X DPBS) in a Petri dish. All further 

dissection steps were performed under a stereomicroscope. Specifically, the brain was trimmed 

from the anterior region by consecutive coronal cuts using a sharp disposable scalpel (cat. no. 

5518075) until the lateral ventricles emerged (step 1, Figure 3.1). Subsequently. coronal 

trimming was performed from the caudal region (step 3, Figure 3.1) to the area where the two 

lateral ventricles merged. Finally, one more coronal cut was placed right through the middle of 

the trimmed tissue block (to separate it into rostral and caudal regions (step 2, Figure 3.1). 

As a next step, all brain parenchymal tissues were removed by a scalpel and only the 

subventricular regions were left in the rostral and caudal tissue pieces. Afterwards, each 

ventricle was dissected by a horizontal cut with a scalpel into ventral (highlighted by a red 

square, Figure 3.1) and dorsal (highlighted by a blue square, Figure 3.1) halves. The ventricular 
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regions from each brain hemispheres were collected in separate Eppendorf tubes (cat. no. 

0030120086) and snap-frozen instantly in liquid nitrogen. Tissue samples were stored at -80° C 

until further use. 

 
 

3.3.2 Preparation of tissue lysates 
 
 

For lysis of lateral ventricular wall tissue samples, 400 µl of lysis buffer (20mM Tris pH 8, 

10mM EDTA, 1% NP40. 1% Triton) containing complete protease inhibitor cocktail (1 tablet, 

(Sigma Aldrich cat. no. 11836145001) dissolved in 50 ml lysis buffer) were added directly to 

each tissue sample, in 2 ml Eppendorf tubes. Subsequently, tissues were homogenized by 

ultraturrexing for 30 seconds. The homogenized tissues were incubated at least 1 hour on ice 

and centrifuged afterwards for 10 min. and 1400 rpm at 4°C. 

 
 

3.3.3 Protein concentration determination 
 
 

Protein concentrations in lysed tissue samples were determined using the bicinchoninic acid 

(BCA) assay. This method is based on the principle that, in alkaline medium, protein reduces 

Cu2+ to Cu1+ ions. Upon this reaction, two molecules of BCA bind one cuprous ion, resulting in 

a purple-colored reaction product that shows absorbance at 562 nm linear in range with protein 

concentration in the sample. 

 
 

3.3.4 SDS polyacrylamide gel electrophoresis 
 
 

Proteins were separated according to their molecular mass on gels containing 12% 

polyacrylamide. To do so, protein samples were mixed with sample buffer (containing 4X 

concentrated Laemmli buffer, 8 % Sodium dodecyl sulfate (SDS), 40% glycerol, 1µl 

bromephenol blue mixed with 10% ß-mercaptoethanol), incubated for 5 min at 95°C, loaded 
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on gels, and resolved at 50 V in SDS-PAGE running buffer (50 mM Tris-HCl pH 8.4, 196 mM 

glycine, 0.1% SDS). After electrophoresis, the gels were either subjected to western blotting. 

 
 

3.3.5 Western blotting 
 
 

Western blotting was performed by transferring proteins electrophoretically from 

polyacrylamide gels onto Hybond-C nitrocellulose membrane, with 0.2µm pore size (GE 

Healthcare, USA, cat. no. 10600001). Protein transfer was performed in transfer buffer (25 

mM Tris-HCl, 192 mM glycine; pH 8.4) at 100 V for 2 hours or at 20 V overnight using a 

standard tank transfer set-up. The efficiency of the transfer was evaluated by staining the 

protein bands on the membrane with Ponceau S solution (0.1% (w/v) Ponceau S in 5% (v/v) 

acetic acid). Afterwards, the membrane was incubated with blocking solution (133 mM NaCl, 

1.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, 0.08% Tween 20, 5% FCS, 5% dry milk 

powder; pH 7.4) for 1 hour at room temperature (RT). 

The primary antibody was applied in binding buffer (133 mM NaCl, 1.7 mM KCl, 4.3 mM 

Na2HPO4, 1.4 mM KH2PO4, 0.08% Tween 20, 5%dry milk powder; pH 7.4) at dilutions of 

1:500 to 1:1000, depending on the antibody used. Incubation with the primary antibody was 

carried out at 4°C overnight on a rocking platform. Non-specifically bound antibodies were 

removed the next day by washing the membrane twice for 15 min in washing-buffer I (133 

mM NaCl, 1.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, 0.08% Tween 20, 0.1% SDS, 

1% NP-40; pH 7.4), followed by twice incubations in washing-buffer II (133 mM NaCl, 1.7 

mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, 0.08%Tween 20; pH 7.4). Finally, the 

membrane was incubated with peroxidase-conjugated secondary antibody (1:1000 in binding 

buffer) for 1 hr at RT. After washing twice for 15 min with washing-buffer I and twice for 15 

min with washing-buffer II, the membrane was incubated with detection solution (Super Signal 

West PicoStable Peroxide/luminol enhancer solution, Pierce, USA). Immunoreactive bands 

were detected using a CCD-camera (Fujifilm LAS-1000/ Intelligent Dark Box, Fujifilm,Japan) 
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3.4 Dissection and culturing of lateral ventricles from the mouse brain 
 
 

3.4.1 Dissection of mouse brain lateral ventricular walls for the en face visualization 
 
 

Mice at 10-12 weeks of age were subjected to cervical dislocation. Brains were dissected 

quickly and transferred into a Petri dish filled with ice cold 1X Dulbecco's phosphate-buffered 

saline (1X DPBS), obtained from commercially available 10X concentrated DPBS (cat. no. 

14200075). Further dissection procedures were performed under a stereomicroscope. 

 
 

Figure 3.2: Dissection 

steps for lateral 

ventricular wall whole 

mounts        (LWWMs) 

(modified from 

(Labedan et al., 2016)). 

 
The procedure for 

preparation of LWWM 

for the en face 

visualization of 

ependymal      cells      is 

presented. (A) Adult mouse brain removed from the scull. Dashed red line indicates the cut to separate the 

brain into two hemispheres (as shown in B). (C) The dashed red line indicates the cut for removal of the 

cerebellum. (D-F) Subsequent cuts to dissect the hippocampus are indicated. (G-H) Hippocampus and medial 

ventricular wall are removed by cuts on the area indicated by the red arrow. (I) Removal of the cortical wall 

along the dashed red line. (J) Lateral wall is highlighted by the dashed red line. 

 
 
 

A detailed visualization of the lateral ventricular wall whole mounts (LWWM) dissection 

procedure is depicted in Figure 3.2. As a first step, the brain was divided in two hemispheres 

(Figure 3.2 A). Subsequently, a coronal cut was placed a few mm anterior from cerebellum, to 

reveal the hippocampus in the cross-section (Figure 3.2 B-E). Via a small incision on the dorsal 
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end, connecting the hippocampus and cortex (pointed by an arrow in Figure 3.2 F-H), forceps 

were inserted into the ventricular space. By applying gentle force to the forceps, the 

hippocampus with attached medial ventricular wall was removed and opening up the surface of 

lateral side of ventricular wall (Figure 3.2 H-J). The excessive cortical area around lateral 

ventricles were removed using watchmaker scissors. After this preparation, LWWMs were 

either incubated with ligands for uptake studies or immediately fixed for 15 minutes in fixation 

solution (4% PFA, 0.1% Triton-X100) for further immunostaining procedures. 

 
 

3.5 Primary cultures of mouse brain ependymal cells 
 

To prepare culturing of the cells, 252 mm surface culture flasks (CellStar, cat. no. 690 170) were 

coated with poly-L-lysine (Sigma cat. no. P6282) to create an adhesive surface for cells. For 

coating, flasks were incubated with 2 ml of sterile 10% poly-L-lysine/MilliQ water solution in 

a cell culture incubator for 24 hours. Afterwards, the flasks were washed with sterile MilliQ 

water and kept for up to 2 weeks in a cell culture incubator until further use. 

For the experimental procedure, mice at 0 to 2 days of age (P0-P2) were used. The neonates 

were quickly decapitated using a scissor. The brains were dissected carefully and transferred to 

ice cold 1x DPBS solution in a Petri dish. Under a stereomicroscope, the meninges were 

removed from the brains by pulling from the anterior to posterior brain region with fine forceps 

(cat. no. 11251-20 Dumont #5 Forceps). Subsequently, the olfactory bulbs, the cerebellum and 

the hippocampal structures were removed. The remaining brain tissue was transferred into 2 ml 

Eppendorf tubes filled with 500 µl 1x DPBS. Eppendorf tubes were stored on ice until all brains 

were dissected. Afterwards, the DPBS solution was removed and brain samples were washed 

twice with Hanks' Balanced Salt solution without calcium and magnesium (HBSS (-/-), Thermo 

Fisher, cat. no. 14170112). Afterwards, each brain sample was incubated for 8 minutes with 100 

µl of 10 mg/ml Papain (Worthington, cat. no. 3126), diluted in 900 µl of activation buffer (5 

mM L-cystein, 1 mM EDTA, 0.05 mM ß-mercaptoethanol in HBSS (-/-)) to perform the 

enzymatic digestion of the tissue. To stop the digestion reaction, 1 ml of stop solution (10% fetal 

bovine serum (FBS) (GIBCO, cat. no.10270), 0.05 mg/ml DNAase (Worthington, Cat. no. 
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2139) in Liebovitz’s-L15 medium (GIBCO, cat. no.11415) was added directly to each brain 

sample. The brain sample was recovered from the reagent mixture by centrifugation at 1000g 

for 4 minutes at 4oC. The supernatant was discarded and the brain pellet diluted in 1 ml of 

proliferation medium (10% FBS, 1% Penicillin/ Streptavidin (GIBCO, cat. no.15140) in DMEM 

(GIBCO, cat. no. 31966)). The cells were suspended by gentle pipetting up and down for 20 

times by micropipettes (Gilson pipette pipetman classic (200µl-100µl), cat. no. F123602). Then, 

1 ml of the cell suspension was transferred to poly-L-lysine-coated flasks and 4 ml of 

proliferation medium was added immediately. The flasks were transferred to cell culture 

incubator and kept at 37°C in 5% CO for 24hrs2. On the following day, the proliferation medium 

was refreshed and the cells incubated for 5-6 days until reaching confluency. Then, cell cultures 

were washed three-times in 3 ml HBSS by vigorous shaking to detach and remove the glial cells 

from the surface of the culture dish. Thereafter, 1 ml of 0.05% trypsin/EDTA solution (GIBCO, 

cat. no 25300) was added to recover all cells from the flask surface. The cells were suspended 

in 11 ml of proliferation medium and cultured on poly-lysine coated sterile coverslips placed in 

12-well plates. As soon as the cell cultures reached confluence on coverslips (after 2-3 days), 

the proliferation medium was replaced by differentiation medium (1% Penicillin/Streptavidin 

(GIBCO, cat. no.15140) in DMEM (GIBCO, cat. no.31966) and incubated under the same 

conditions as before until day10 (10 DIV). At this time point, a maximum number of cells was 

differentiated to vital poly-ciliated ependymal cells as evident by observing motile cilia beating 

of ependymal cells under a microscope using a 20x objective. Cells can stay in culture for up to 

21 days. 

 
 

3.6 Ligand uptake assays 
 
 

For investigating the uptake of SHH ligand by ependymal cells, uptake studies were performed 

in primary ependymal cell cultures and in lateral ventricular wall whole mounts (LWWM). In 

detail, a recombinant fusion protein composed of the active amino terminal fragment of SHH 

(SHH-N), attached to glutathione -transferase (GST) was used for these experiments. GST- 

SHH-N was produced recombinantly in bacteria and purified by glutathione affinity 
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chromatography as described previously (GST-SHH-N used in my studies was kindly provided 

by Kristin Kampf (technician). 

For uptake studies in ependymal cells, differentiated cultures grown on coverslips, were 

incubated at DIV10 in differentiation media containing 10 µg/ml GST-SHH-N. After 2 hours 

of incubation, cell cultures were washed 3 times with ice cold 1x DPBS for 5 minutes each step. 

Afterwards, the cell cultures were fixed for 6 minutes in 4% PFA/DPBS, washed again 3 times 

with 1x DPBS and then kept in 1x DPBS solution at 4°C until performing immunostainings. 

To test ligand uptake by ependymal cells in LWWM, freshly dissected brain tissue samples 

were incubated for 1.5 hours with 10 µg/ml GST-SHH-N in DMEM medium. After a quick 

wash in ice cold 1x DPBS, the tissues were fixed in 4% PFA/DPBS solution for 15 minutes at 

room temperature. Further staining procedures were performed as described for en face 

preparations below. 

 
 

3.7 Histology 

3.7.1 Preparation of mice for histology 
 
 

To anaesthetize mice, 50 mg pentobarbital per 1 kg body weight was injected intraperitoneally 

(IP). Anesthesia of mice was tested by applying a gentle pressure to the animal’s toes using 

forceps. When no pedal reflex was noticed, the animals were considered fully anaesthetized 

and were subjected to intracardiac perfusion. Foremost, perfusion pump was set up and 

perfusion needle was attached to the pump. To clean up tubes, 100 ml of normal tap water was 

pumped through the tubes. Thereafter the open end of perfusion tube was placed in a beaker 

filled with ice cold 1X concentrated DPBS solution. Slow steady flow of the liquid was 

adjusted by controlling rotation speed of the pump (around 120 rotation/minutes). In the 

beginning the thoracic cavity of anaesthetized mice was opened in a way that the heart was 

easily accessible. While holding the beating heart steady with forceps a needle attached to the 

perfusion pump, was directly inserted into the protrusion of the left ventricle. After the needle 

was fixed in the heart and the heart was connected to the perfusion pump, the pump was 
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switched on and ice cold 1x DPBS was pumped into the blood circulation of the mouse. 

Immediately, a cut in the right atrium was made with a sharp scissor, to provide an exit for the 

inserted solution. After 3-4 minute, when the blood was cleared from body and liver turned 

pale, perfusion was continued with 4%PFA in 1x DPBS solution for 15 minutes. Afterwards, 

brains were dissected and further fixed overnight in 4% PFA in 1x DPBS at 4°C. 

 
 

3.7.2 Paraffin tissue sectioning 
 
 
 

 
 
 

3.7.3 Free floating sections 
 
 

Brain samples fixed overnight were washed twice in 1X DPBS for 5 minutes and transferred 

into 30% sucrose in 1x DPBS solution for equilibration at 4°C. After approximately 2 days of 

incubation, the samples were fully infiltrated and sank to the bottom of the storage tube. 

Thereafter, the brains were kept in cryoprotectant (CP) (25% glycerol, 25% ethylene glycol, 

0.1M phosphate buffer) until further use. For histology, the brain samples were attached on a 

metallic platform of a Leica SM2000R Sliding Microtome. Dry ice placed around the metallic 

Following overnight fixation, brain tissue samples were washed in 1x DPBS and subjected to 

paraffin infiltration. In the first step brains were dehydrated by incubating the samples in graded 

ethanol solutions of 70%, 80%, 90%, 96% and 99% ethanol (2 hrs. each step). Following 

dehydration, the samples were incubated twice for 2 hrs. in Roti-Histol (Roth, Karlsruhe, 

Germany, cat. no. 6640.1). The samples were pre-infiltrated with paraffin wax for 2 hrs. at 67°C 

and finally infiltrated with fresh paraffin wax overnight at 67°C. The entire process from the 

dehydration with ethanol to the final infiltration with paraffin wax was performed using an 

automated Leica TP 1020 Automatic Tissue Processor setup. Finally, the infiltrated tissues were 

embedded in wax blocks and sectioned in 10-12 µm coronal sections using a motorized rotary 

microtome (Microm HM355S). Tissue sections were collected on superfrost plus glass slides 

(Meltzer-Fischer Scientific) and stored at RT until further processing for 

immunohistochemistry. 
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platform froze the brains quickly. Frozen samples were sectioned into 40 µm coronal sections. 

The free-floating sections were stored in CP in 96-well plates at -20ºC until further staining. 

For immunostaining, the floating sections were transferred to trans-well chambers (Costar, 

Corning) using a small paintbrush (size 2) always kept in free floating conditions during the 

entire staining procedure. 

 
 

3.7.4 Cryosections 
 
 

After overnight incubation in 4% PFA/DPBS solution, the brains were equilibrated in 30% 

sucrose/DPBS until fully infiltrated. The brains were embedded in Tissue-Tek OCT (Sakura, 

Japan) on dry ice, and stored at -20ºC. The tissues were cut into 10-15 µm coronal sections on 

a rotary cryotome (Leica, Germany), placed on glass slides, and stored at -20 ºC. 

 
 

3.7.5 Immunohistochemistry 
 
 

Various immunohistochemical techniques were applied for detection of the targeted antigen on 

sections, based on antigen epitope accessibility, antibody quality and tissue sectioning 

technique. All performed staining procedure can be categorized in 3 main types of 

immunohistological techniques: direct, indirect and enzymatic ‘sandwich’ methods. 

 
 

3.7.6 Detection of β-galactosidase (lacZ) activity 
 
 

Expression of the β-galactosidase (lacZ) transgene inserted into the mouse genome in various 

reporter strains was detected by enzyme-based histochemical staining using a chromogenic 

substrate for β-galactosidase, such as 5-bromo-4-chloro-3-indolyl-β-D -galactoside (X-gal). To 

do so, freshly dissected mouse brains were gently fixed for three hours in 4%PFA/DPBS and 

subjected to cryosection using a cryotome. Before immunostaining, glass slides containing the 



Material and methods 

36 

 

 

tissue sections were taken from the freezer and thawed at RT for 5 minutes. Then, the sections 

were fixed for 5 minutes in ice cold fixation solution (1x DPBS pH7.4, 2 mM MgCl2, 5 mM 

EGTA, 0,2% glutaraldehyde). The sections were washed in 2mM MgCl2 in DPBS and 

permeabilized with detergent solution (2 mM MgCl2, 0.01% sodium deoxycholate, 0.02% NP- 

40 in DPBS) for 5 to 10 minutes. Detection of enzyme activity was performed by applying 

detergent solution, containing 1x DPBS (pH7.3), 2mM MgCl2, 0,01% Sodium Deoxycholate, 

0,02% NP-40, 5mM Potassium Ferrocyanide, 5mM Potassium Ferricyanide, 20mM Tris (pH 

7.3) and freshly added X-gal (20 mg/ml). After overnight incubation at 37°C in a humid 

chamber, the sections were rinsed several times in 2 mM MgCl2 in 1x DPBS and then in water. 

After drying, the sections were mounted using the Roti-Histo-Kit II and visualized, under a 

bright field microscope. 

 
 

3.7.7 Immunofluorescence stainings of adult brain tissue sections 
 
 

For immunohistology, free floating tissue sections were first washed with TBS (83.9 mM Tris- 

HCl, 16 mM Tris base, 154 mM NaCl) and then with TBST (TBS with 0.1% Triton X-100) for 

5 to 10 minutes before incubating them for 1 hour in blocking solution (TBS with 0.3% TritonX 

and 10% donkey serum). Afterwards, sections were incubated with primary antibodies in 

blocking solution overnight at room temperature or at 4°C, depending on the antibody used. The 

next day, the sections were washed 3 times with TBS and incubated with secondary fluorophore- 

conjugated antibodies in TBS for 2-3 hours. Thereafter, the sections were washed thoroughly 

with TBS and TBST before mounting them on glass slides in fluorescent mounting medium 

(Dako). The class slides were left to dry overnight at RT in the dark. Images were taken under 

a confocal SPE microscope (Leica). 
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3.7.8 Immunofluorescence staining of cell cultures 
 
 

Primary ependymal cell cultures adhered to 20 mm glass coverslips were washed 3 times in 1x 

DPBS while placed in 12-well plate. Thereafter, the cells were fixed for 6 minutes by incubation 

in 4% PFA/DPBS solution. After three more washing steps in 1x DPBS solution, a 1 hr. 

incubation step in blocking solution (10% donkey serum and 0,1% Triton in 1%BSA/DPBS) 

followed. Cells were incubated with primary antibodies in blocking solution at 4°C overnight. 

The next day, the cultures were washed 3 times with 1x DPBS and incubated in secondary 

antibody solution in 1x DPBST (1x DPBS containing 0.1% Triton X-100) at RT for 2 hours. 

After several washing steps with 1x DPBS and 1x DPBST, the coverslips were mounted on 

glass slides using Dako fluorescent mounting medium. 

 
 

3.7.9 Immunostaining of SVZ whole mounts for en face visualization 
 
 

Dissected lateral ventricular wall whole mounts (LWWM) were fixed in a freshly prepared 

solution of 4% PFA with 0.1% Triton X-100 for 12 min at RT. Next, brains were washed 3 

times for 10 minutes in 1ml of 0.1% Triton X-100 in 1x DPBS on a rocking platform. Following 

fixation, further sub-dissection of the LWWM tissue was carried out to remove the underlying 

striatum from lateral wall preparation. This step significantly improved the staining quality as it 

facilitated the penetration of antibody solution into the tissue block. Subsequently, the tissue 

samples were incubated in blocking solution (3% BSA in 1x DPBS,) for 1 hr. at RT, followed 

by treatment with primary antibodies diluted in blocking solution overnight at 4ºC. The next 

day, the tissue samples were washed 3 times with 0.1M DPBS for 10 minutes at RT, before 

incubation with secondary antibodies diluted in 0.1M DPBS for 1 hour. Afterwards, the samples 

were washed 3 times in 1 ml of 0.1% Triton X-100 in 1x DPBS (10 min at RT). After a final 

dissection of excessive striatal and cortical tissue attached to lateral ventricular walls, the tissue 

samples were placed on glass slides with ependymal surface facing up. Mounting medium 

(Dako, cat. no. S302380) was applied directly on the samples and coverslips placed slowly on 
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top to avoid trapping of air bubbles. The slides were air dried at RT for a day and then stored at 

4ºC until imaging under a confocal microscope (preferably within one week after mounting). 

 
 

3.7.10 Thyramide signal amplification 
 
 

For detection of ID3 on free floating brain sections, thyramide signal amplification (TSA) was 

applied to improve signal detection of this low-abundance targets in fluorescence 

immunohistochemistry (thyramide amplification kit, Perkin Elmer #NEL702). This 

amplification procedure is based on the fact that, in the presence of low concentrations of H2O2, 

horseradish peroxidase (HRP) converts a fluorescent-labeled thyramide substrate into a highly 

reactive product which binds covalently to tyrosine residues in proteins in close proximity to 

the enzyme. 

As a first step in the staining procedure, free floating brain sections were collected and washed 

in washing buffer TNT (0.1M Tris-HCl pH 7.5, 0.15 M NaCl, 0.005% Tween-20). Afterwards, 

the sections were treated with 1% H2O2 in TNT for 1 hour and then permeabilized in TNT 

containing 0.2% Triton X-100 and 0.2% Tween-20 for 30 minutes. The tissue sections were 

placed on glass slides and left to dry for several minutes. Once the glass surface was free from 

water drops, circles were drawn around each section using a PAP pen (Abcam, cat. no. ab2601). 

This creates a hydrophobic boundary around the tissue section enabling the application of small 

volumes of reagents directly onto the tissue. Next, the slides were incubated with primary anti- 

ID3 antibody solution (1:500) in TNB buffer (0.1M Tris-HCl pH 7.5, 0.15 M NaCl) overnight 

at 4°C in a humid chamber. The following day, the slides were washed several times with TNT 

buffer and incubated with secondary donkey-anti-biotin-SP antibody solution (diluted 1:200 in 

TNB) for 2 hours at RT. Biotin-SP is a trade name for biotin with a 6-atom spacer positioned 

between biotin and the protein to which it is conjugated. The spacer makes Biotin-SP antibodies 

more accessible to streptavidin. After several washing steps with TNT buffer, the sections were 

treated with streptavidin-conjugated HRP (1:200 dilution in TNB) for one hour. Finally, the 

thyramide-fluorophore solution (diluted 1:100 in amplification buffer) was applied on the 
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sections for 8 minutes, before the slides were washed thoroughly in TBN, air dried shortly and 

mounted under cover slips using the PVA-DABCO mounting medium. 

 
 

3.7.11 Immunostaining using peroxidase reaction 
 
 

As an alternative to the use of fluorophore-conjugated secondary antibodies, bound primary 

antibodies were detected using a biotin-labeled secondary antibody followed by signal detection 

using avidin-coupled peroxidase and diaminobenzidine. In this procedure, the antibody against 

antigen of our interest, is conjugated with a peroxidase enzyme. Upon hydrogen peroxide 

availability, peroxidase enzyme catalyzes the DAB, to its oxidized form, forming a brown 

precipate. As a first step in the procedure, paraffin sections of the adult SVZ were deparaffinized 

by two incubations in Roti-Histol R (Roth, Germany), rehydrated by subsequent washes in 99%, 

80%, 50%, 30% ethanol solutions and H2O (3 minutes for each solution). Next, the sections 

were incubated in 2.4% H2O2 in 1xTBS for 30 min at RT to quench endogenous peroxidases 

activity. Afterwards, the sections were washed in 2 N HCl for 1.5 hrs at 45°C by gentle agitation 

to denature the double-stranded genomic DNA and make the inserted BrdU molecules 

accessible for primary antibody detection. Subsequently, 0.1 M borate buffer (pH 8.5) was 

applied for 15 min at RT to stop the HCl reaction. Finally, the sections were washed for 5 

minutes in TBS and TBST before blocking unspecific epitopes with 3% donkey serum in 

blocking buffer (10% BSA, 0.1% Triton X-100 in TBS) for 2 hrs at RT. Thereafter, the sections 

were incubated with primary anti-BrdU antibody (diluted 1:100 in blocking solution) overnight 

at RT. The following day, several washing steps in TBS and TBST followed before incubation 

of the sections with biotin-conjugated donkey-anti-rat antiserum (1:100) for 1 hour at 37°C. 

Afterwards, the ABC-HRP-kit (VECTASTAIN Elite, cat. no. PK-6100) was used to perform 

binding of biotinylated peroxidase complex to the secondary antibodies. The colorization was 

performed by incubation of the sections in 3’-diaminobenzidine (DAB) solution (one drop of 

DAB in 1 ml of TBS buffer) for 3 minutes. Finally, the sections were washed, briefly air dried, 

and then mounted in poly mount organic mounting medium (Roth, Germany). Imaging was 

performed under a bright field microscope. 
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3.7.12 Summary of antibodies used in IHC methods and WB analysis 
 
 

Table 2: List of the primary antibodies. 
 
 
 

Antigen Host Source Catalogue Number Dilution 

Arl13b rabbit Proteintech 17711-1-AP 1:500 

BrdU rat Abd serotec, 

Oxford, UK 
OBT 0030 1:500 

EEA1 rabbit Cell Signaling 3288 1:100 

FOP mouse Abnova H00011116-M01 1:1500 

GFAP mouse Merck Mab360 1:500 

GST mouse Sigma Aldrich G1160 1:50 

γ-tubulin mouse Abcam Ab11316 1:400 

ID3 rabbit Abcam Ab41834 1:100 

LRP2 guinea 

pig 
Eurogen tech. DE14027 1:1500 

OLIG2 goat R&D systems AF2418 1:20 

P4EBP1 rabbit Cell Signaling 2855 1:50 

4EBP1 rabbit Cell Signaling 9644 1:100 

pS6RP rabbit Cell Signaling 2211S 1:50 

Rab4 rabbit Abcam Ab13252 1:100 

Rab9 rabbit Cell Signaling 5118 1:50 

Rab8 rabbit Abcam Ab188574 1:100 

Rab11 rabbit Abcam 5589 1:100 
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Rab17 rabbit Abcam Ab155135 1:100 

Rab23 rabbit Abcam Ab230200 1:100 

Rab35 rabbit Abcam Ab230838 1:100 

S6RP rabbit Cell Signaling 2317 1:200 

SHH rabbit Sigma SC9024 1:500 

SHH rat Eurogentech DE18151 1:100 

SOX2 goat Santa Cruz SC17320 1:200 

Tubulin mouse Sigma Aldrich T6793 
1:400 (IF) 

1:500 (WB) 
ZO1 rabbit Invitrogen 61-7300 1:500 

 
 

Table 2 provides an overview of antibodies used in this thesis. It lists the host species, the 
commercial source, as well as the working dilution. 

 
 

Table 3: Immunohistological conditions for staining protocol. 
 
 
 

 
Antigen 

 
Sample 

Type 

 
Blocking 

Solution 

 
Detection 

method 

 
Washing 

Buffer 

 
 

Incubation 

Arl13b LWWM 3% BSA in DPBS indirect IF DPBS 4°C, ON 

 
 

BrdU 

 
paraffin 

section 

10% BSA, 3% 

donkey Serum, 

0.1% Tritonin in 

TBS 

immuno 

peroxidase 

staining 

 
 

TBS 

 
 

RT, ON 
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EEA1 

 
cell 

culture 

1%BSA, 10% 

donkey serum, 

0,1% Triton in 

DPBS 

 
 

indirect IF 

 
 

DPBS 

 
 

4°C, ON 

FOP LWWM 3% BSA in DPBS indirect IF DPBS 4°C, ON 

 
 

GFAP 

 
free 

floating 

1% BSA, 10% 

donkey serum, 

0.3% Triton in TBS 

 
 

indirect IF 

 
 

TBS 

 
 

RT, ON 

 
 

Ms GST 

 
cell 

culture 

1%BSA, 10% 

donkey serum, 

0,1% Triton in 

DPBS 

 
 

indirect IF 

 
 

DPBS 

 
 

4°C, ON 

Rab GST LWWM 3% BSA in DPBS indirect IF DPBS 4°C, ON 

γ-tubulin LWWM 3% BSA in DPBS indirect IF DPBS 4°C, ON 

 
ID3 

free 

floating 

 
TNB (from the kit) 

thyramide 

signal 

amplification 

 
TNT 

 
4°C, ON 

 
LRP2 

 
cell 

culture 

1%BSA, 10% 

donkey serum, 

0,1% Triton in 

DPBS 

 
 

indirect IF 

 
 

DPBS 

 
 

4°C, ON 

 
OLIG2 

 
free 

floating 

1% BSA, 10% 

donkey serum, 

0.3% Triton in 

TBS 

 
 

indirect IF 

 
TBS 

 
RT, ON 

 

P4EBP1 

 
free 

floating 

1% BSA, 10% 

donkey serum, 

0.3% Triton in 

TBS 

 
 

indirect IF 

 

TBS 

 

4°C, ON 
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4EBP1 

 
free 

floating 

1% BSA, 10% 

donkey serum, 

0.3% Triton in 

TBS 

 
 

indirect IF 

 

TBS 

 

4°C, ON 

 
pS6RP 

 
free 

floating 

1% BSA, 10% 

donkey serum, 

0.3% Triton in 

TBS 

 
 

indirect IF 

 
TBS 

 
4°C, ON 

 

Rab4 

 
cell 

culture 

1%BSA, 10% 

donkey serum, 

0,1% Triton in 

DPBS 

 
 

indirect IF 

 

DPBS 

 

4°C, ON 

 
 

Rab9 

 
cell 

culture 

1%BSA, 10% 

donkey serum, 

0,1% Triton in 

DPBS 

 
 

indirect IF 

 
 

DPBS 

 
 

4°C, ON 

 

Rab8 

 
cell 

culture 

1%BSA, 10% 

donkey serum, 

0,1% Triton in 

DPBS 

 
 

indirect IF 

 

DPBS 

 

4°C, ON 

 

Rab11 

 
cell 

culture 

1%BSA, 10% 

donkey serum, 

0,1% Triton in 

DPBS 

 
 

indirect IF 

 

DPBS 

 

4°C, ON 

 

Rab17 

 
cell 

culture 

1%BSA, 10% 

donkey serum, 

0,1% Triton in 

DPBS 

 
 

indirect IF 

 

DPBS 

 

4°C, ON 

 

Rab23 

 
cell 

culture 

1%BSA, 10% 

donkey serum, 

0,1% Triton in 

DPBS 

 
 

indirect IF 

 

DPBS 

 

4°C, ON 
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Rab35 

 
cell 

culture 

1%BSA, 10% 

donkey serum, 

0,1% Triton in 

DPBS 

 
 

indirect IF 

 
 

DPBS 

 
 

4°C, ON 

 

S6RP 

 
free 

floating 

1% BSA, 10% 

donkey serum, 

0.3% Triton in 

TBS 

 
 

indirect IF 

 

TBS 

 

4°C, ON 

 

Rb. SHH 

 

wb 

0.08%  Tween  20, 

5% dry milk 

powder in binding 

buffer 

 
 

WB 

Washing 

Buffer I 

&II 

4°C, ON 
 

agitation 

 
 

Rat SHH 

 
cell 

culture 

1%BSA, 10% 

donkey serum, 

0,1% Triton in 

DPBS 

 
 

indirect IF 

 
 

DPBS 

 
 

4°C, ON 

SOX2 
 

free 

floating 

1% BSA, 10% 

donkey serum, 

0.3% Triton in 

TBS 

 
 

indirect IF 

 

TBS 

 

RT, ON 

Tubulin LWWM 3% BSA in DPBS indirect IF DPBS 4°C, ON 

 

Tubulin 

 

WB 

0.08%  Tween  20, 

5% dry milk 

powder in binding 

buffer 

 
 

WB 

Washing 

Buffer, I 

&II 

4°C, ON 
 

agitation 

ZO1 LWWM 3% BSA in DPBS indirect IF DPBS 4°C, ON 

 
 

Table 3 describes the specific experimental procedures applied to visualize the listed antigens. 
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3.7.13 In Situ hybridization technique 
 
 

For in situ hybridization, I used 10 µm cryosections of adult mouse SVZ, which left to air dry 

for 30 minutes at RT before starting the hybridization procedure. To do so, the slides with the 

brain sections were placed in sterile incubation chambers pretreated with RNAse inhibitor from 

Sigma-Aldrich (cat. no. R2020). After washing with DPBST for 5 min at RT, the sections were 

fixed in 4% PFA in DPBS for 10 min at RT. Subsequently, the sections were washed 3 times in 

DPBST for 5 min and then incubated in 10 µg/ml of Proteinase K in 1x DPBS for 8 min. 

Subsequently sections were fixed again in 4% PFA in DPBS for 10 minutes. After several 

washing steps in 1x DPBS, the sections were placed in an incubation chamber humidified with 

50% formamide in H2O, and incubated for 3 hrs at 60°C in hybridization buffer , consisting of 

50% formamide, 10% dextran sulfate, 1x salt solution (stock 10x: 1.96 M NaCl, 0.11M TrisHCl 

(pH 7.5), 0,01M Tris base, 0.056M NaH2PO4xH2O, 0.059M NaH2PO4, 0.05M EDTA in 

MilliQ water), 1 mg/ml tRNA, 1x Denhardt’s solution (stock 50x: 1% Ficoll, 1% 

Polyvinylpyrrolidone, 1% BSA from Thermo Fischer, cat. no. 750018) in MilliQ water. 

Subsequently, the tissue sections were incubated overnight at 60°C with 1ng/µl RNA probes 

(See details in Table 4) in hybridization buffer, preheated to 95°C for 5 minutes. The next day, 

the sections were washed twice for 30 minutes in solution 1 (mixture of 10 ml formamide, 4 ml 

saline-sodium citrate buffer (20x SSC) pH 7.0, 5 ml MilliQ H2O, 1 ml 20% SDS) and solution 

2 (mixture of 10 ml formamide, 2 ml 20x SSC pH 7.0, 8 ml MilliQ H2O). Afterwards, washing 

was performed in maleic acid buffer (MABT) (0.49M maleic acid, 0.73M NaCl, 0.1% Tween- 

20 in MilliQ water) twice for 5-10 min at RT, before the sections were incubated in blocking 

solution (MABT, 2% Roche blocking reagent’s buffer (cat. no. 11096176001), 20% sheep 

serum) at RT for 2-4 hrs. Next, the sections were treated overnight at 4°C with sheep anti- 

digoxigenin antibody conjugated with alkaline phosphatase (anti-DIG-AP, Sigma Aldrich, cat. 

no. 11093274910) dissolved 1:1500 in blocking solution. The following day, the sections were 

washed 5 times in MABT solution for 20 minutes each, and then twice in NTMT solution (5M 

NaCl, 1M TrisHCl pH9.5, 1M MgCl2, 0.1% Tween-20 in MilliQ water) for 10 minutes each. 

The staining solution was prepared by gradually dissolving 10% Polyvinyl alcohol (PVA) in 

NTMT solution. To facilitate dissolving, the mixtures was heated gradually to 85°C and then 

slowly cooled down to RT. Then, 4.5 µl of nitro blue tetrazolium (NBT) and 3.5 µl of 5-bromo- 
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4-chloro-3-indolyl-phosphate, 4-toluidine salt (BCIP) solution (Sigma Aldrich, 11681451001) 

were added to 1 ml of staining solution. The sections were incubated in staining solution until 

signals were clearly visible (1 to 18 hrs). Then, the slides were washed in 1x DPBS, air dried at 

RT, and mounted in Roti-Histo-Kit II mounting medium. Image acquisition was performed 

under a bright field microscope. 

 
 

3.7.14 RNA probes generation procedure 
 

3.7.14.1 Enzymatic digest of DNA 
 
 

Corresponding restriction enzymes described in Table 4, were incubated with certain amount of 

DNA and buffer at a ratio of 0.5 U enzyme/µg DNA. The digest was incubated at 37°C for 2 hrs 

to overnight. All restriction enzymes were obtained from New England Biolabs, USA. 

 
 

3.7.14.2 In-vitro transcription of digoxigenin-labelled RNA 
 
 

To generate digoxigenin (DIG)-labelled probes for in situ hybridization (ISH) a DIG labeling 

Kit was used (Roche, Switzerland, cat.no. 11175025910). Linearized template plasmid- DNA 

(1 µg) was incubated with transcription buffer (40 mM Tris-HCl, 6 mM MgCl2, 10 mM 

dithiothreitol, 2 mM spermidine; pH 8.0), 1 mM ATP, 1 mM GTP, 1 mM CTP, 0.65 mM UTP, 

0.65 mM DIG-11-UTP, 40 U RNA polymerase and 20 U RNase inhibitor. After adjusting the 

volume of the reaction to 20 µl samples were incubated for 2 hrs at 37°C. Template DNA was 

removed by incubating the reaction setup with 20 U DNase I at 37°C for 15 min. The RNA was 

purified using the RNeasy Mini Cleanup Kit (Qiagen, Germany). 
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Table 4: Mouse in situ hybridization probes. 
 
 
 

Gene name Probe Restr.-site Promotor 

Brother of Cdon Boc antisense SalI T7 

Boc sense HindIII Sp6 

Cell adhesion molecule-related/down- 

regulated by oncogenes 

Cdon antisense XhoI T7 

Cdon sense NotI T3 

Glioma-associated oncogene 
 

homolog1 

Gli1 antisense NotI T3 

Gli1 sense XhoI T7 

Protein patched homolog 1 Ptch1 antisense SalI T3 

Ptch1 sense NotI T7 

Smoothened Smo antisense SacI T7 

Smo sense SacII Sp6 

 
 

Table 4 describes the specific restriction sites and promotors on DNA, used for generating the 

listed RNA probes. 

 
 

3.8 Quantification 
 

3.8.1 Nuclear signal quantification 
 
 

Based on the signal characteristics and the aims of the experiment, the quantification method 

and parameters used varied for each experiment. Typically, protein expression levels that have 

a nuclear loclasiation, were determined by counting individual cells nuclei. 
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To calculate the number of BrdU positive cells, 12 histological sections were taken from rostral 

and caudal forebrain regions of each animal (Figure 3A). The entire SVZ region on each coronal 

section was imaged under a bright field microscope (Leica DMI6000B inverted microscope) 

equipped with a 20X objective. The lower half of SVZ region was considered the ventral, the 

upper half the dorsal domain. For nuclear proteins visualized by immunofluorescence staining, 

the confocal Leica SPE microscope was used (20X objective). In this instance, one single image 

was taken from the very ventral and one from very dorsal part of SVZ. The nuclear signal was 

quantified in each picture using the ImageJ software (Figure 3.3 B). For most proteins (e.g., 

SOX2, ID3, pS6RP), the expression levels were quantified separately for the lateral and medial 

sides of ventricular walls. 

 
 

Figure 3.3: 

Quantification of 

the nuclear 

immunosignals. 

For counting of 

BrdU- (A) and ID3- 

(B) positive cell 

nuclei, the indicated 

parameters   of   the 

ImageJ software were used. BrdU-positive nuclei were counted in the entire ventral SVZ area. For ID3- 

positive cells, medial and lateral ventricular walls were counted separately. 

 
 
 

3.8.2 Cytoplasmic signal quantification 
 
 

For the proteins with cytoplasmic localization, such as GFAP, mean gray values (MGV) from 

the region of interest (ROI) were used as a basis for calculation of signal, intensities. In the 

imageJ software, the ROI was first defined by the free select tool and then the respective MGV 

determined using the inserted macro (Figure 3.4). Using the move tool, the selected shape of the 

ROI was transferred to a neighboring region devoid of specific GFAP signals to determine the 
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MGV of the background to be subtracted from the MGV of the specific expression domain. The 

resultant value was taken for further quantification. Signal intensities of medial and lateral 

ventricular walls were quantified separately using the average of MGVs from three consecutive 

sections from each animal. 

 
 

Figure 3.4: Mean gray value 

(MGV) quantification in the 

region of interest (ROI) using 

ImageJ. 

 
As shown for GFAP 

immunostaining in this figure, 

signal intensities for proteins 

with cytoplasmic localization 

were quantified in the selected 

ROI using the shown settings in 

ImageJ. 

 
 
 
 
 

3.8.3 Western blot signal quantification 
 
 

The Image Studio software was used to quantify signal intensities on densitometrical scanned 

images of replicate western blots. Rectangle shapes drawn around each protein band of interest 

were used to calculate the signal intensities following subtraction of background values from 

blot regions close by (Figure 3.5). On each western blot, the tubulin bands were also quantified 

using the same principle. The ratio of each specific signal to tubulin signal intensities was used 

to calculate relative protein amounts of proteins of interest. The mean value derived from 

individual signal intensities of four WT samples on each blot was set to 100% and used as 

reference for normalization for each sample value on the same blot. 
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Figure 3.5: Quantification of 

signal intensity levels for 

protein bands in western blot 

analyses. 
 

 
 
 
 
 
 
 
 
 
 
 
 

intensities were quantified by the software using the shown settings. 
 
 
 

3.8.4 Co-localization analysis 

Intensities of protein bands on 

western blots were quantified 

using the Image Studio Lite 

software. Signal intensities were 

quantified in the region of 

interest (selected by a yellow 

square). Around each manually 

selected area, the background 

 
 

To determine co-localization of immunosignals from two proteins on the same image, the 

overlap of signals from two respective color channels was calculated using Fiji software. In 

detail, images from both channels were opened and set to 8-bit format (Figure 3.6 B). The cell 

surface perimeter of the cells was marked as ROI on images where the protein of interest was 

visualized by green fluorescence signal (Figure 3.6A). Then, the co-localization plugin of the 

software calculated the overlap of the signal in the first channel with that of the signal in the 

second channel in the ROI. The Manders´ co-localization coefficient TM1 values, describing 

the extent of co-localization, were taken for further quantification. From each image, three 

individual regions were used for quantification of TM1 values. 
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Figure 3.6: Co-localization 

analysis performed in Fiji 

software. 

(A) Representative pictures of 

individual green and red channels 

from the same double colored image 

are presented. The area of interest is 

selected on the green channel 

image. (B)Both images were set to 

8-bit format. The co-localization 

macro in Fiji software was used to 

calculate the overlap coefficient of 

green signals with red in the 

selected area. For further analysis, 

the overlap coefficient described by 

the Mander’s threshold (TM1) was 

considered. 

 
 
 

3.8.5 Quantification of ciliary patch organization in ependymal cells of lateral 
ventricular walls 

 
 

To visualize and quantify cilia beating parameters in post-fixed ependymal cells of the mouse ventricular 

region, en face preparations of this tissue were immunostained for γ-tubulin, FOP and ZO1 as described 

above. The Biotool software developed by Paul Labedan and Camille Boutin (Labedan et al., 2016) was 

used for further analyses (Figure 3.7A-D). As a first parameter, the coordination of patch displacement 

was analyzed. To do so, the select tool in the software was applied to trace the contours of individual 

ependymal cells (blue) and their respective ciliary patches (red) (Figure 3.7A). The software calculated 

the geometric centers of the marked areas and defined two vectors for each cell, one that described the 

basal body (BB) patch displacement relative to the 
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Figure 3.7: 

Quantitative 

analyses of ciliary 

patch organization 

and activity by the 

Biotool software. 

Exemplary images of 

en face preparations 

of the lateral 

ventricular wall in 

LRP2-deficient 

mouse brains 

immunostained for 

ciliary basal body 

markers FOP; green, 

γ-Tub, red as well as 

for   the   apical   cell 

surface marker ZO1; blue, opened on biotool software are depicted. (A) Using the select tool, perimeters of 

ciliary patch (red line) and ependymal cells (white line) are defined. (B) Next, the software generates two 

vectors, indicating the direction of ciliary patch displacement relative to center (blue) and one indicating the 

patch displacement mean vector (pink). An algorithm in Biotool calculates the angle made by these 2 vectors 

for each cell. (C) Afterwards, unit vectors (vCil) in one ciliary patch connecting immunosignals for FOP and 

γ-tubulin (green to red) in each individual cilium are drawn in Biotool (white). For each patch, mean resultant 

vector based on vCils is generated by the software (purple). (D) Color code representation, indicating the 

divergence of patch displacements in a field of ependymal cells. Colors towards more blue color spectrum 

indicate high variability in patch displacement values and directions within a field. 

 
 
 

center of each cell (blue), and one (pink), describing the mean vector of displacement in the 

entire microscopic field (Figure 3.7 B). The angle made by those two vectors for each cell was 

defined as vPatchD. This parameter reflected the direction of patch displacement in a tissue. 
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When the patch displacement value of individual ependymal cells diverged from that of the 

microscopy field, the software assigned a color in the green to blue color spectrum to this cell 

(Figure 3.7D). 

To describe the beating orientation of a motile cilia patch, the angle vPatchO parameter was 

introduced. This parameter is the angle between two vectors, namely the vector (white) 

connecting immunosignals for FOP and γ-tubulin (green to red) in individual cilia of a patch 

and the mean vector of all vectors (purple) in the analyzed field (Figure 3.7 C). The angle 

vPatchO parameter was used to evaluate the coordination of cilia orientation between all cells 

in a field. The angle between vPatchD and vPatchO vectors (vPatchD&vPatchO) were also 

quantified by the software to query the coordination of patch beating orientation with patch 

displacement from the cell center. Each individual cilium beating coordination within a cell was 

characterized by vCil vectors and used to calculate the circular standard deviation (CSD) value 

for each cell. A higher CSD value indicates a more non-coordinated beating of individual cilia 

within a cell. To describe the percentage of the apical cell surface occupied by a BB patch, the 

area percentile value was quantified by dividing the patch area by the cell surface area for each 

cell. The extent of patch displacement relative to center of the cell (strength) was determined by 

an algorithm in Biotool software. Counts of cilia numbers in individual patches were also 

generated by Biotool. 

 
 

3.8.6 Statistical Analyses 
 
 

For statistics, two-tailed Student’s t test was applied using Graph Pad Prism 10. All data were 

presented as standard error of mean (SEM). 

For circular variables (such as angles) circular statistical analysis were applied. In the course of 

our experimental setup, controls and LRP2-deficient genotypes were compared using the 

Watson’s U2 test in the circular statistics software program Oriana. Difference in data were 

considered significant with p<0.05. 
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3.8.7 Bright field 
 
 

For acquisition of the non-fluorescent images, the bright field Leica DMI6000B inverted 

microscope were used. To image entire SVZ or SGZ areas in BrdU-stained sections, the 

stitching tool was applied to combine individual images of the ROI. 

 
 

3.8.8 Laser scanning confocal microscopy 
 
 

The Leica SPE confocal microscope at the MDC imaging core facility (head: Anje Sporbert) 

was used to acquire high-resolution multicolor optical images from immunofluorescent images. 

All multicolor pictures were taken in sequential scanning mode to avoid bleed through of 

signals. For some markers, serial stack images covering the entire depth of the specimen were 

taken. Using the maximum projection tool in the Leica software, optical series were merged in 

one picture. For each staining protocol, parameters for image acquisition, such as speed, 

resolution, pinhole, line average, detector gain, offset and other parameters were set to optimal 

values and kept unchanged when acquiring comparative images from different genotype groups. 
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4 Results 
 

4.1 Role of LRP2 in establishment of the signaling milieu in the adult 
mouse subventricular zone 

 
 

As a core member of the LDL receptor gene family, LRP2 shares several functional and 

structural similarities with other receptors of this gene family, such as LRP1, the very-low- 

density lipoprotein receptor (VLDLR), the ApoE receptor 2 (LRP8), as well as LRP4 , and 

LRP1b (Joachim Herz, 2001)(Howell & Herz, 2001). These evolutionary conserved receptors 

engage in uptake of multiple ligands, not restricted to cholesterol homeostasis, but 

encompassing numerous other cellular processes. With relevance to my studies, members of this 

gene family are implicated in signaling by various morphogens, including SHH (Christ et al., 

2012), WNTs (He, Semenov, Tamai, & Zeng, 2004; Pinson, Brennan, Monkley, Avery, & 

Skarnes, 2000), or BMPs (Derwall et al., 2012; Spoelgen et al., 2005, p. 2). Consequently, loss 

of receptor activities cause defects in morphogen activities during embryonic development and 

results in severe congenital malformations in animal models and patients (Thomas E. Willnow, 

Hammes, & Eaton, 2007). Specifically, earlier studies in LRP2-deficient mice identified 

malformations of the developing forebrain resulting in a phenotype reminiscent of 

holoprosencephaly (T. E. Willnow et al., 1996). These earlier observations lead the ground work 

for later identifying the role of LRP2 as SHH receptor in signaling of this morphogen during 

forebrain patterning (Christ et al., 2012). 

In the adult brain, LRP2 expression persists in ependymal cells, the epithelia lining the walls of 

lateral ventricles. This so-called ventricular zone (VZ) is in close proximity to the subventricular 

zone (SVZ), the brain region with a unique capacity to act as a stem cell niche for generating 

new neurons in the adult mammalian brain (adult neurogenesis). The relevance of LRP2 activity 

for adult neurogenesis in the SVZ niche was substantiated by recent work demonstrating 

reduced neurogenic activity in the SVZ of receptor mutant mice (Gajera et al., 2010, p. 2). Loss 

of neurogenesis in LRP2 mutant mice had been correlated with increased BMP signaling in the 

SVZ (Gajera et al., 2010). However, it remained unclear whether hyperactivity of BMP was the 

primary cause or rather a secondary consequence of altered SHH signaling in this niche. Also, 
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previous studies had focused on a global role of the receptor LRP2 in adult neurogenesis in the 

SVZ ignoring the obvious heterogeneity in structural and functional organization of this niche 

in the brain (Gajera et al., 2010). To address these questions, my thesis work now focused on 

elucidation of receptor functions in SHH signaling in a region-specific manner in this stem cell 

compartment of the adult mammalian brain. 

 
 

4.1.1 Region-specific analysis of SHH signaling in the SVZ of adult wildtype and LRP2 
mutant mice 

 
 

4.1.1.1 Examination of expression of Gli1, a downstream target of SHH signaling in the 
SVZ 

 
 

Adult LRP2-deficient mouse models manifest features of HPE, including craniofacial 

dysmorphology associated with a shortened snout and an open fontanelle. Also, histological 

analyses revealed an enlarged lumen of the lateral ventricular system, albeit with no discernible 

structural alterations in VZ and SVZ composition comparing mutant animals with littermate 

controls(Gajera et al., 2010). Also, histoanatomical investigations demonstrated an unchanged 

layering of the brain cortex and the olfactory bulbs, as well as no differences in hippocampal 

organization comparing mutant to control mice (Gajera et al., 2010). Based on these 

observations, LRP2 mutant mice were considered an adequate model to study the role of LRP2 

in the adult brain, specifically in SHH signaling in VZ and SVZ. 

To explore the consequences of LRP2 deficiency for SHH signaling in the SVZ, mice 

heterozygous for the mutant Lrp2 allele were crossed with the Gli1_lacZ reporter strain (see 

method sections for details). Expression of lacZ driven by the endogenous Gli1 promoter 

enables testing the activity of the SHH signaling pathway by investigating activity of the lacZ 

gene product β-galactosidase. Breeding of mice positive for the Gli1_lacZ transgene and 

heterozygous for the Lrp2 null allele generated Gli1_lacZ transgenic offspring either Lrp2+/+, 

Lrp2+/-, or Lrp2-/-. As for this and all subsequent studies in this thesis, Lrp2+/+ and Lrp2+/- animals 

were considered as control animals and were jointly compared to Lrp2-/- receptor mutant mice. 
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To evaluate the regionality of SHH activity in control and receptor mutant mice, analysis of lacZ 

activity in the SVZ was performed separately in rostral and caudal regions of the mouse brains. 

In addition, lacZ activity was always scored in the dorsal versus the ventral SVZ domain. As 

shown in Figure 4.1, in the rostral region of the control brain, Gli1 expression was strongest in 

the ventral but gradually decreased towards the dorsal domain of the SVZ. Compared with 

controls, the SVZ of Lrp2-/- mice displayed a prominent decrease in lacZ activity, both in ventral 

and dorsal domains, suggesting loss of SHH activity in this region of the mutant SVZ niche. 

 
 

Figure 4.1: Decreased SHH signaling in the SVZ of 

LRP2-deficient mice. 

 
Overview of Gli1 expression pattern along the 

subventricular zone (SVZ) in adult LRP2-deficient mice 

and littermate controls crossed with the Gli1_lacZ 

reporter strain. X-gal staining was performed on 10 µm 

thick coronal brain sections to visualize the Gli1 

expression pattern. Exemplary images of a total of three 

sections from the rostral region of each mouse brain are 

shown. For each section, the dorsal and the ventral SVZ 

regions are depicted separately. A total of five animals 

per genotype were analyzed. In controls (Lrp2+/+ and 

Lrp2+/-), Gli1 shows the strongest expression in the 

ventral   domain    of   the   SVZ    (highlighted    by   an 

arrowhead), while the signal gradually decreases towards the dorsal SVZ region. In LRP2-deficient tissue, 

Gli1 expression as deduced from the X-gal signal is decreased in both SVZ regions. 
 
 
 

As for the caudal brain region, lacZ activity was decreased in the SVZ of control mice, both in 

the dorsal and the ventral domain (Figure 4.2). 
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Figure 4.2: SHH signaling is retained in the caudal SVZ 

of LRP2-deficient mice. 

 
Gli1 expression levels were examined in the caudal region 

of the SVZ in LRP2-deficient mice and littermate controls 

crossed with the Gli1_lacZ reporter strain. X-gal staining 

was performed on 10 µm thick coronal brain sections to 

visualize the Gli1 expression pattern. Exemplary images of 

a total of three sections from the caudal region of individual 

mouse brains were analyzed (five animals per genotype). 

For each section, dorsal and ventral SVZ regions are 

depicted separately. In ventral and dorsal SVZ regions, Gli1 

expression levels are similar comparing both genotypes. In 

the ventral medial wall of the LRP2-deficient SVZ 

(indicated by an asterisk), the Gli1 expression domain is 

more intense and spreads towards the medial septum area 

(highlighted by white arrowheads). 

 
Levels of Gli1 expression were also examined more directly by in situ hybridization (ISH) in 

rostral and caudal regions of the SVZ. 

 
 

Figure 4.3: Reduced level of 

ventral Gli1 expression in the 

rostral SVZ of LRP2-deficient 

mice as shown by in situ 

hybridization. 

 
In situ hybridization (ISH) 

analysis on 10 µm thick coronal 

brain sections demonstrates 

distribution of Gli1 transcripts 

along the rostral SVZ in adult 

Lrp2-/- and control mice 

(Lrp2+/+ and Lrp2+/-). Dorsal and ventral regions of each brain section are shown separately. To control for 
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unspecific ISH signals, histological sections from control mice were alternatively incubated with the Gli1 

sense probe. In antisense treated samples, Gli1 expression levels are pronounced in the ventral SVZ region 

from control mice (highlighted by arrowhead). In mice lacking LRP2, Gli1 mRNA levels are notably 

decreased in the ventral but unchanged in the dorsal SVZ region. Exemplary images of three sections from 

each brain (four animals per genotype) are shown. 

 
 
 

In line with findings using lacZ, Gli1 RNA levels were reduced in the rostral SVZ area of LRP2 

deficient mice compared with littermate controls (Figure 4.3). 

 
 

Figure 4.4: In situ hybridization analysis of 

Gli1 expression in the caudal SVZ. 
 

ISH on coronal brain sections documents similar 

levels of Gli1 transcripts in the ventral caudal 

regions of the SVZ in control (Lrp2+/+ and Lrp2+/- 

) and Lrp2-/- mice (ISH signals marked by 

arrowheads). By contrast, Gli1 signals in the 

lateral wall of the dorsal caudal SVZ (marked by 

asterisk) are increased in Lrp2-/- as compared to 

control brains. Exemplary images of a total of 

three sections from each brain (four animals per 

genotype) are shown. 

 
 
 

Of note, no changes in Gli1 ISH signals were observed in the caudal SVZ of mutant mice, 

contrasting the data from the Gli1_lacZ reporter experiments, where activity in the mutant 

caudal domain was up (Figure 4.4). 
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4.1.2 Detection of components of the SHH receptorsome in the SVZ 
 
 

My observations were in line with the previous findings, documenting the strongest Gli1 

expression in the ventral SVZ region in of adult mice (Ihrie et al., 2011). However, the detailed 

examination of Gli1 expression and activity on coronal brain sections of mutant mice uncovered 

a differential impact of LRP2 deficiency on this signaling domain in rostral versus caudal brain 

regions. To get a better understanding of the regional specification of SHH signaling along the 

rostro-caudal axis of the SVZ, I have investigated the regional distribution of various members 

of the so-called SHH receptorsome in the SVZ of adult mice. 

Using ISH analyses, I documented that the distribution of Smo transcripts in ventral and dorsal 

regions of the rostral SVZ were unchanged between genotypes (Figure 4.5). 

 
 

Figure 4.5: Levels of Smo 

expression are unchanged in 

the rostral SVZ of LRP2- 

deficient mice. 

 
ISH analysis on 10 µm thick 

coronal brain sections was 

performed to show 

Smoothened (Smo) mRNA 

distribution along the rostral 

SVZ in adult Lrp2-/- and 

control mice (Lrp2+/+ and 

Lrp2+/-). Dorsal and ventral 

regions for each section are shown separately. To monitor for unspecific ISH signals, histological sections 

from control mice were alternatively incubated with the sense RNA probe (sense). Along the rostral SVZ 

(lateral wall marked by an asterisk), Smo transcripts are detected (highlighted by white arrowheads) with no 

apparent differences in intensities comparing Lrp2 genotypes. Exemplary images of three sections from each 

brain (four animals per genotype) are shown. 
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Also, examinations of the caudal SVZ failed to reveal any apparent changes in Smo ISH in the 

SVZ of Lrp2-/- as compared with control mice (Figure 4.6). 

 
 

Figure 4.6: Levels of Smo expression are 

unchanged in the caudal SVZ of LRP2-deficient 

mice. 

ISH for Smo on coronal sections of the caudal SVZ 

in adult Lrp2-/- and control mice (Lrp2+/+ and Lrp2+/-

). Dorsal and ventral regions of each section are 

depicted separately. Smo mRNA levels (white 

arrowheads) show an equal spread in all regions of 

the SVZ comparing both genotypes. Exemplary 

images of three sections from each brain (four mice 

per genotype group) are shown. 

 
 
 

Concerning expression of Ptch1, ISH signal intensity levels were also similar in medial and 

lateral walls of the rostral SVZ in both genotypes (Figure 4.7). 

 
 

Figure 4.7: Ptch1 expression 

in the rostral SVZ. 

 
ISH analysis of Protein 

patched homolog 1 (Ptch1) 

transcript levels on 10 µm 

thick coronal brain sections of 

the rostral SVZ in adult Lrp2-/- 

and control mice (Lrp2+/+ and 

Lrp2+/-). Dorsal and ventral 

regions for each section are 

shown separately. To monitor 

unspecific ISH signals, 
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histological sections from control mice were alternatively incubated with the sense probe (sense). In antisense 

treated samples, Ptch1 expression levels (white arrowheads) are robust in both lateral (and medial walls of 

SVZ regions from Lrp2-/- and control mice. Exemplary images of three sections from each brain (four animals 

per genotype) are shown. 

 
 
 

By contrast, Ptch1 transcript levels in the caudal SVZ were generally low as compared to the 

rostral SVZ, but distinctly increased in the mutant brain. This effect was particularly obvious in 

the dorsal domain (Figure 4.8). 

 
 

Figure 4.8: Ptch1 transcript levels are 

increased in the caudal SVZ of Lrp2-/- animals. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

with littermate controls. 

ISH analysis of Protein patched homolog 1 

(Ptch1) mRNA distribution along the caudal SVZ 

on 10 µm thick coronal brain sections from adult 

Lrp2-/- and control mice (Lrp2+/+ and Lrp2+/-). 

Dorsal and ventral regions for each section are 

shown separately. Exemplary images of three 

sections from each brain (four animals per 

genotype) are shown. Ptch1 mRNA signals 

(marked by arrowheads) are elevated in the lateral 

wall of SVZ (asterisk) in Lrp2-/- mice compared 

 
 
 

Cdon showed a relatively strong level of expression in both genotypes in the entire rostral SVZ 

with levels unchanged in LRP2 mutants compared with littermate controls (Figure 4.9). 
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Figure 4.9: Cdon 

expression in the rostral 

SVZ region. 

ISH analysis of Cdon 

transcript levels on 10 µm 

thick coronal sections of the 

rostral SVZ of adult Lrp2-/- 

and control mice. Dorsal and 

ventral SVZ regions for each 

brain are shown separately. 

To monitor unspecific 

binding of ISH probes, 

histological sections form control mice were alternatively incubated with the sense Cdon probe (sense). In 

antisense treated samples, Cdon expression levels (highlighted by arrowheads) are robust in both lateral and 

medial walls of SVZ region from Lrp2-/- and control mice. Exemplary images of a total of three sections from 

each brain (four animals per genotype) are shown. 

 
 
 

In the caudal SVZ, Cdon signals were reduced as compared to the rostral SVZ, with a slight 

increase of Cdon expression in the ventral, caudal SVZ (Figure 4.10). 

 
 

Figure 4.10: Cdon expression in the caudal SVZ 

region. 

 
ISH analysis of Cdon transcript levels on 10 µm thick 

coronal sections of the caudal SVZ of adult Lrp2-/- and 

control mice. Levels of Cdon transcripts are similar in 

control and Lrp2-/- mice (ISH signals marked by 

arrowheads). Slightly increased Cdon signals are 

noticeable in the lateral wall (asterisk) of the ventral 

caudal SVZ of Lrp2-/- mice as compared to control 
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brains. Exemplary images of a total of three sections from each brain (four animals per genotype) are shown. 
 
 
 

Assessment of Boc transcript levels by ISH was technically more difficult because of the low abundance 

in SVZ regions. 

 
 
 

Figure 4.11: Levels of 

Boc transcripts are 

moderately decreased in 

the LRP2-deficient SVZ. 

ISH analysis of Brother of 

Cdon (Boc) transcripts 

was performed on 10 µm 

thick coronal brain 

sections of the rostral SVZ 

in adult Lrp2-/- and control 

mice (Lrp2+/+ and Lrp2+/- 

). Dorsal and ventral 

regions for each section are shown separately. To monitor unspecific ISH signals, histological sections from 

control mice were alternatively incubated with the sense Boc probe (sense). In antisense treated samples, Boc 

expression levels (white arrowheads) are decreased in the ventral tip of the lateral (astrisk) and medial walls 

of Lrp2-/- mice as compared to controls. Dorsal lateral walls in both genotypes retain similar Boc expression 

levels. Exemplary images of a total of three sections from each brain (four animals per genotype) are shown. 

 
 
 

Based on the data shown in here, Boc seemed to have moderately decreased transcript levels in 

rostral SVZ regions of LRP2-deficient animals (Figure 4.11), while signal intensities in the 

caudal SVZ seemed comparable in both Lrp2 genotypes (Figure 4.12). 
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Figure 4.12: Boc transcript levels are 

unaltered in the caudal SVZ of LRP2- 

deficient mice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

shown. 

ISH analysis of Boc transcripts (white 

arrowhead) was performed on 10 µm thick 

coronal sections of the caudal SVZ of Lrp2-/- 

mice as compared to control (Lrp2+/+ and Lrp2+/-

) animals. The lateral wall is highlighted by an 

asterisk. Slightly increased signal intensity can 

be noticed on the lateral wall of the dorsal caudal 

Lrp2-/- SVZ (highlighted by an asterisk). 

Exemplary images of a total of three sections 

from each brain (four animals per genotype) are 

 
 
 

In summary, examination of rostral and caudal regions of SVZ revealed no apparent changes in 

expression levels of SHH signaling upstream components in LRP2 mutants compared with 

littermate controls. Variability in receptor expression patterns along the rostro-caudal axis of the 

SVZ between both genotypes, did not explain the regional specific impact of LRP2 on Gli1 

expression levels. 

 
 
 

4.1.2.1 Distribution of SHH in rostral and caudal SVZ regions of the adult mouse brain 
 
 

As a next step to explore the SHH signaling activity along the rostral to caudal axis of the adult 

SVZ, I assayed the distribution of this morphogen in four different areas of the control and Lrp2- 
/- SVZ, namely in the rostral dorsal (RD), the rostral ventral (RV), the caudal dorsal (CD), and 

the caudal ventral (CV) areas. 
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The primary translation product of mouse Shh is a polypeptide chain consisting of 437 amino 

acids and a predicted molecular mass of 47.8 kDa. Removal of the hydrophobic signaling 

peptide, consisting of 25 amino acid residues, results in SHH full length (SHH-FL) protein with 

a molecular mass of 45kDa (Bumcrot et al., 1995) (Roelink et al., 1995). Autoproteolytic 

activity of the carboxyl terminus cleaves SHH-FL into an amino terminal and a carboxyl 

terminal fragment, designated SHH-N and SHH-C, respectively. SHH-C is degraded after 

cleavage in the ER (X. Chen et al., 2011), while SHH-N is covalently modified with a 

cholesterol moiety at the carboxyl terminus. Thereafter, SHH-N is covalently modified with 

palmitate, resulting in the dual lipidated active form of the morphogen called SHH-Np. SHH- 

Np tends to attach to the cell membrane, resulting in formation of multimeric aggregates which 

are eventually released from the cell to act as paracrine signaling molecules (Bumcrot et al., 

1995). 

Using western blot analysis, I quantified the levels of SHH-FL and SHH-Np in the four dissected 

domains of the adult SVZ. As shown in figure 4.13, for micro-dissected samples from the dorsal 

(Figure 4.13 A) and ventral (Figure 4.13 B) regions of the rostral SVZ no obvious differences 

were observed in levels of SHH-FL both in the dorsal (Figure 4.13 C) and ventral (Figure 4.13D) 

SVZ regions comparing control with LRP2 mutant mice. Similarly, no statistically significant 

difference in levels of SHH-Np were detected in the rostral dorsal and rostral ventral domain of 

SVZ (Figure 4.13 B, E, F). 
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Figure 4.13: Levels of full length and active forms of SHH in the rostral SVZ region. 
 

(A, B) Western blot analysis of full-length (SHH-FL) and amino terminal fragment (SHH-Np) of SHH was 

performed on dissected regions of the dorsal (A) and ventral (B) domains of the rostral SVZ of four LRP2- 

deficient mice and four littermate controls (Lrp2+/+ and Lrp2+/-). Immunoreactive bands representing SHH- 

FL or SHH-Np are indicated. Tubulin (Tub) was detected as loading control. (C-F) Densitometric scanning 

of replicate western blots (as exemplified in panels A and B) documents identical levels of SHH-FL in dorsal 

(C) and ventral (D) regions of the rostral SVZ in LRP2-deficient mice and littermate controls. Similarly, levels 

of SHH-Np are unchanged in the dorsal (E) and ventral (F) SVZ comparing genotypes. A total of sixteen 

animals from each genotype were used for quantification of SHH levels. Unpaired Student’s t-test was applied 

to test for differences between controls and Lrp2-/- mice. 

 
 

By contrast, examination of the caudal area of the SVZ revealed a remarkable difference with 

levels SHH-Np being significantly higher despite unchanged levels of SHH-FL in LRP2- 

deficient mice in comparison to control animals (Figure 4.14 A-B). Quantification analysis 

confirmed similar levels of SHH-FL in caudal dorsal and caudal ventral regions from both 
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genotypes (Figure 4.14 C, D). By contrast, the SHH-Np levels were two-fold higher both in the 

dorsal and rostral SVZ of Lrp2-/- mice compared with controls (Figure 4.14 E, F). However, this 

difference was only statistically significant in the dorsal SVZ region (Figure 4.14 F). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.14: Increased levels of SHH-Np in the caudal SVZ of LRP2-deficient mice. 
 

(A, B) Western blot analysis of full-length (SHH-FL) and amino terminal fragment (SHH-Np) of SHH was 

performed on dissected regions of the dorsal (A) and ventral (B) domains of the caudal SVZ comparing four 

LRP2-deficient mice and their littermate controls (Lrp2+/+ and Lrp2+/-). Immunoreactive bands representing 

SHH-FL or SHH-Np are indicated. Tubulin (Tub) was detected as loading control. (C-F) Densitometric 

scanning of replicate western blots (as exemplified in panels A and B documents unchanged levels of SHH- 

FL in dorsal (C) and ventral (D) regions of the caudal SVZ of LRP2-deficient mice compared with littermate 

controls. By contrast, levels of SHH-Np are increased in the dorsal (E) and ventral (F) SVZ domains of LRP2- 

deficient mice. Statistical significance of differences between controls and LRP2- deficient animals was 

determined by unpaired Student’s t-test. A total of sixteen animals per genotype were used in this experiment. 

*, p<0.05 
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Taken together, I uncovered a significant increase in the abundance of the active form SHH-Np 

in the caudal SVZ region of LRP2 mutant mice. Such an increase was not seen for the 

intracellular precursor SHH-FL. These data argued for altered distribution of the secreted 

morphogen along the rostral to caudal axis in the LRP2-deficient SVZ. Accumulation of SHH- 

Np in the caudal SVZ coincided with a substantial increase in expression of the downstream 

target Gli1 in the caudal SVZ of LRP2 mutant mice, indicating higher activity of SHH signaling 

in this area of the mutant brain. By contrast, a decrease in Gli1 transcripts in the rostral region 

of the mutant SVZ, albeit at unchanged SHH-Np levels, argued that a SHH signaling defects in 

the rostral SVZ may be due to other defects than a shift in rostro-caudal SHH-Np distribution. 

 
 

4.1.3 Activity of the BMP signaling pathway in the SVZ 
 
 

Earlier investigations of BMP signaling during forebrain development in wildtype and LRP2- 

deficient embryos suggested a role for LRP2 in BMP signaling. Based on the increase in BMP 

activity seen in LRP2-deficient embryos, an antagonistic function, possibly as clearance 

receptor for BMP4, was proposed (Spoelgen et al., 2005, p. 2). A suggested function as 

clearance receptor for BMP4 was substantiated by subsequent investigations in adult mutant 

mice by documenting an increase in levels of pSMAD and ID3, downstream effectors and 

targets of BMP signaling in the SVZ, respectively (Gajera et al., 2010). 

 
 

To investigate the region-specific consequences of LRP2 deficiency for BMP signaling in the 

mouse SVZ, I re-analyzed levels of ID3 in rostral and caudal SVZ regions of the mouse brain 

separately. Immunohistological analysis of the rostral SVZ region showed an increased density 

of cells immunopositive for ID3 (ID3+) in the walls of the lateral ventricles in LRP2 deficient 

mice (Figure 4.15 A, B). As depicted in exemplary images from the rostral SVZ region, ID3+ 

cells (shown by arrowheads in figure 4.15 C) were distributed in similar densities along the 

medial and lateral sides of the dorsal ventricular walls in control animals (Figure 4.15 A, D). 

However, in the ventral domain of the rostral SVZ region in LRP2 mutant mice, the number of 

ID3+ cells were substantially increased compared to controls (Figure 4.15 B). This difference 
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was confirmed by statistical analysis of multiple replicate stainings, substantiating an increase 

in ID3+ cell counts in the entire rostral ventral SVZ region, in both sides of the walls (Figure 

4.15 E, F). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.15: ID3 levels are increased in the rostral SVZ of LRP2-deficient mice. 
 

(A-C) Coronal 40 µm sections of the rostral SVZ of adult mouse brains of the indicated Lrp2 genotypes were 

subjected to immunohistological detection of inhibitor of DNA binding 3 (ID3). Dorsal (A) and ventral (B) 

domains of the rostral SVZ of each section are shown separately. In panel B, the lateral wall of the SVZ is 

indicated by an asterisk. A higher magnification of the boxed area in panel A is given in (C), highlighting ID3 

positive cells (green signals) by arrowheads. (D-F) Cells positive for ID3 were quantified in the indicated 

regions of rostral SVZ (as exemplified in panels A and B). A total of six controls and five Lrp2-/- mice were 

scored. For the dorsal SVZ region (D), only cells in the lateral wall were quantified. For the ventral SVZ, cells 

in the medial (E) and lateral walls (F) were scored. The number of ID3 positive cells is significantly higher in 

medial (E) and lateral (F) walls of the rostral ventral SVZ of LRP2-deficient mice compared with controls. 

No significant difference in cell numbers were observed in the lateral wall of the dorsal rostral SVZ 

(D) as tested by unpaired Student’s t test. *, p<0.05; **, p<0.01 
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Performing the same comparative analysis in caudal regions of SVZ, I failed to detect a 

consistent difference in ID3+ cell numbers in the dorsal or ventral SVZ comparing Lrp2 

genotypes (Figure 4.16 A-F). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.16: ID3 levels are unchanged in the caudal SVZ of LRP2-deficient mice. 
 

(A-C) Coronal 40 µm sections of the caudal SVZ of adult mouse brains of the indicated Lrp2 genotypes were 

subjected to immunohistological detection of inhibitor of DNA binding 3 (ID3). Dorsal (A) and ventral (B) 

domains of the caudal SVZ of each section are shown separately. The lateral wall is marked by an asterisk in 

panel B. A higher magnification of the boxed area in panel A is given in (C), highlighting ID3 positive cells 

(green signals) by arrowheads. (D-F) Cells positive for ID3 were quantified in the indicated regions of caudal 

SVZ (as exemplified in panels A and B). A total of six controls and five Lrp2-/- mice were scored. For the 

dorsal SVZ (D), only cells in the lateral wall were quantified. For the ventral SVZ, both cells in the medial 

(E) and the lateral walls (F) were scored. The numbers of ID3 positive cells are unchanged in the medial (E) 

and lateral (F) walls of the ventral and the lateral wall of the dorsal SVZ (D) of LRP2-deficient mice compared 

with controls. Statistical analysis was performed using unpaired Student’s t test. 

 
 
 

In conclusion, the region-specific alterations in SHH signaling along the rostral to caudal axis 

of the LRP2-deficient SVZ were paralleled by similar regional changes in BMP signaling. 

Specifically, BMP signaling was more active in the rostral SVZ, an area where SHH signaling 
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was decreased in the mutant brain. These findings substantiated a region-specific impact of 

LRP2 on the opposing activities of BMP and SHH signaling in the adult SVZ. However, the 

data did not resolve which of the two morphogen pathways, BMP or SHH, may be the primary 

target of LRP2 deficiency. 

 
 

4.1.4 Analysis of mTOR activity in the SVZ of LRP2 mutant and control mice 
 
 

Activation of mTOR is pivotal in fate determination of various cells types in embryonal and 

adult neurogenic niches (Paliouras et al., 2012). This pathway encompasses two signaling 

complexes, mTORC1 and mTORC2. In both cases, signal transduction works through 

phosphorylation of two downstream targets, called S6-RP and 4EBP1(Sarbassov, Ali, & 

Sabatini, 2005). Several reports suggested that mTOR may play an important role in 

maintenance of neural progenitor cell pools during embryonal development, but it may also be 

indispensable for generation of sufficient numbers of differentiated progeny in the adult SVZ. 

Specifically in transient amplifying progenitors, mTORC1 seems crucial for amplification and 

further differentiation (Zoncu, Efeyan, & Sabatini, 2011). Of note, a growing body of evidence 

also highlights a crosstalk between mTOR and SHH in induction of cell proliferation, processes 

governing malignant tumor formation (Pócza et al., 2014; Wu et al., 2017). 

Based on my above data, I hypothesized a role for LRP2 in SHH-dependent mTOR signal 

transduction in the SVZ. I tested this hypothesis by performing co-immunostainings for SOX2, 

a marker of neuronal stem cells and transient amplifying progenitors with mTOR targets pS6RP 

or p4EBP1 in the SVZ of control and LRP2-deficient adult mice. These analyses were 

performed on rostral and caudal regions of the SVZ separately to query the impact of LRP2 

activity on mTOR activation in a region-specific manner. 

Examination of rostral regions of the SVZ revealed no apparent differences in pS6RP positive 

cell numbers between Lrp2 -/- and controls in the dorsal domain (Figure 4.17 A). 



Results 

73 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.17: Levels of pS6RP are elevated in the rostral SVZ of LRP2-deficient mice. 
 

(A-C) The activation of the mTOR pathway in adult LRP2-deficient and control mice was tested by 

immunohistological detection of phospho-S6 ribosomal protein (pS6RP; green) on 40 µm coronal sections 

from rostral regions of the brain. To test for expression of pS6RP in neuronal stem cells, co-staining for the 

marker sex determining region Y-box 2 (SOX2) was performed (red). Images of the dorsal (A) and ventral 

(B) domains of the rostral SVZ in the respective animals are shown separately. The lateral wall is indicated 

by an asterisk in panel B. In panel C, a higher magnification image of the boxed area in panel A is shown. 

Cells positive for pS6RP (green, white arrowhead) or for pS6RP and SOX2 (yellow arrowhead) are 

highlighted. (D-F) The total number of pS6RP positive cells (with or without SOX2 expression) was 

quantified on SVZ sections as exemplified in panels A and B. The average cell number from three consecutive 

sections of each mouse brain (five animals per genotype) was used for analysis. The total number of pS6RP 

positive cells is significantly higher in the medial wall of the ventral rostral SVZ of Lrp2-/- mice compared to 

littermate controls (E). No difference in pS6RP positive cell numbers are seen in the lateral wall of the dorsal 

(D) or the ventral (F) SVZ as tested by unpaired Student’s t test. **, p<0.01 
 
 
 

Strikingly, in the ventral domain, both on lateral and medial sides of the walls, pS6RP 

immunopositive cell numbers were increased almost twice (Figure 4.17 B). Statistical analysis 

of pS6RP positive cell counts (highlighted by arrowheads in figure 4.17 C) confirmed no 

changes of mTOR activity in dorsal region of SVZ (Figure 4.17 D) but a significant increase in 
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the medial wall of the ventral SVZ in Lrp2-/- mice ´compared with littermate controls (Figure 

4.17 E). 
 

The same analysis, as in the rostral SVZ, was also performed in the caudal SVZ. The total 

number of pS6RP-positive cells in the caudal SVZ was not changed in LRP2 mutants compared 

with controls (Figure 4.18 A-F). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.18: Levels of pS6RP are comparable in the caudal SVZ regions of LRP2-deficient mice and 

controls. 

 
(A-C) Immunohistological detection of phospho-S6 ribosomal protein (pS6RP) levels (green) on 40 µm 

coronal sections from the caudal SVZ regions of mice of the indicated Lrp2 genotypes. To test for expression 

of pS6RP in neuronal stem cells, co-staining for marker sex determining region Y-box 2 (SOX2) was 

performed (red). Images of the dorsal (A) and ventral (B) domains of the caudal SVZ in the animals are shown 

separately. The lateral wall is highlighted by an asterisk in panel B. In panel C, a higher magnification image 

of the boxed area in panel A is shown. Cells positive for pS6RP (green, white arrowhead) or for pS6RP and 

SOX2 (yellow arrowhead) are highlighted. (D-F) The total number of pS6RP positive cells (with or without 

SOX2 expression) was quantified on indicated SVZ sections exemplified in panels A and B. The average cell 

number from three consecutive sections of each mouse brain (three animals per genotype) was used for 

statistical analysis. No difference in numbers of pS6RP positive cells are seen in the caudal SVZ of both 

genotypes as tested by unpaired Student’s t test. 



Results 

75 

 

 

In addition, I also counted cells that were positive for both SOX2 and pS6RP (Figure 4.19 A). 

Double immunopositive cells represented almost the half of the entire pS6RP positive cell 

population in SVZ. Cell counts and statistical analyses (Figure 4.19 B-D) confirmed a 

statistically significant increase in SOX2 positive cells responsive to mTOR signaling in the 

ventral rostral SVZ of mutant compared to control brains (Figure 4.19 C, D). 

 
 

Figure 4.19: The neuronal stem 

cell population responsive to 

mTOR signaling is expanded in 

the rostral SVZ of LRP2-deficient 

mice. 

(A) The activation of the mTOR 

pathway in neuronal stem cells of 

the SVZ of adult LRP2-deficient 

and control mice was tested by 

immunohistological detection of 

phospho-S6 ribosomal protein 

(pS6RP; green) and the neuronal 

stem cell marker sex determining region Y-box 2 (SOX2; red) on 40 µm coronal sections from the rostral 

brain. (B-D) Cells doubly positive for SOX2 and pS6RP (yellow) were quantified. The average cell number 

from three consecutive sections of each mouse brain (five animals per genotype) was used for statistical 

analysis. The number of neuronal stem cells positive for pS6RP are significantly higher in the medial (C) and 

lateral (D) walls of the Lrp2-/- ventral SVZ. No difference in pS6RP positive cell numbers are seen in the 

lateral wall of the dorsal (B) SVZ comparing both genotypes by unpaired Student’s t test. *, p<0.05 

 
 
 

Visualization of pS6RP and SOX2 double positive cells in caudal SVZ regions (Figure 4.20 A) 

revealed no obvious changes in the lateral wall of the dorsal (Figure 4.20 B) or in the medial 

wall of ventral SVZ in both genotypes (Figure 4.20 C). Interestingly, the number of SOX2 

positive cells expressing pS6RP were slightly increased in the caudal ventral SVZ region of 

mutants, particularly in the medial ventricular wall (Figure 4.20 C). However, this trend was not 

statistically significant. 
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Figure 4.20: The numbers of 

pS6RP and SOX2 doubly positive 

cells are unchanged in the caudal 

SVZ of LRP2- deficient mice. 

(A) Coronal sections (40 µm) from 

the caudal SVZ of mice of the 

indicated Lrp2 genotypes were 

stained for phospho-S6 ribosomal 

protein (pS6RP; green) and the 

neuronal stem cell marker sex 

determining region Y-box 2 

(SOX2; red). (B-D) The number of cells doubly positive for SOX2 and pS6RP (yellow signals) were 

quantified and the average cell number from two consecutive sections of each mouse brain (three animals per 

genotype) was used for statistical analysis. The number of pS6RP positive neuronal stem cells is unchanged 

in the tested SVZ regions in Lrp2-/- mice compared to control mice as shown by unpaired Student’s t test. 

 
 

In summary, I found a strong increase in the number of pS6RP positive cells in the rostral SVZ 

region of LRP2 mutants. To test whether this change was the result of an increase in mTOR 

activity or simply refleceted increased expression levels of S6RP, I assessed the levels of total 

and phosphorylated forms of S6RP in the SVZ by immunohistological analysis (Figure 4.21 A- 

F). 
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Figure 4.21: Mice lacking LRP2 have reduced levels of S6RP in the rostral ventral SVZ. 
 

(A, B) Immunohistological detection of S6 Ribosomal Protein (S6RP; green) on coronal sections of the rostral 

SVZ of mice of the indicated Lrp2 genotypes. Dorsal (A) and ventral (B) domains of each section are 

visualized separately. The lateral side of the ventricular wall is highlighted by an asterisk in panel B. In panel 

C, a higher magnification image of the boxed area in panel A is shown. The region of interest (ROI) used for 

quantification of S6RP positive cell numbers is highlighted by a dotted line. (D-F) Mean gray values (MGV) 

of the ROI were quantified on SVZ sections exemplified in panels A and B. The average MGV from three 

consecutive sections of each mouse brain (four animals per genotype) was used for statistical analysis by 

unpaired Student’s t test. The MGV is significantly lower in the medial wall of the ventral rostral SVZ in 

Lrp2-/- mice compared with controls (E). No differences in MGV are seen in the lateral walls of the dorsal 

(D) or the ventral (F) rostral SVZ. *, p<0.05 
 
 
 

Only the rostral SVZ region was taken for examination as pS6RP levels were significantly 

increased in the rostral region of LRP2-deficient mice compared to controls (Figure 4.17 and 

Figure 4.18). Examination of the dorsal region found no apparent differences between genotypes 

in S6RP levels (Figure 4.21 D). Surprisingly in LRP2 deficient mice, the intensity and also the 

area of S6RP immunosignals was prominently decreased in the rostral ventral SVZ (Figure 4.21 

B) with statistically significant changes in medial (Figure 4.21 E) but not the lateral walls of the 

lateral ventricles (Figure 4.21 F). This result contrasted the data obtained for pS6RP expression 
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in the same region before (Figure 4.17 B-F). Current observations indicated an even higher 

extent in increase of pS6RP, driven by elevated mTOR pathway activation upon LRP2 

deficiency in the rostral SVZ region than initially concluded (Figure 4.17). 

One of the well-established substrates of mTOR signaling is eukaryotic translation initiation 

factor 4E (eIF4E)-binding protein 1 (4EBP1) (Hay & Sonenberg, 2004). Phosphorylated forms 

of 4EBP1 play a central role in cap-dependent translation process. Upon activation of the 

mTORC1 complex, S6 kinase 1(S6K1) and 4EBP1 are phosphorylated. In its phosphorylated 

state, eIF4E dissociates from phosphorylated 4EBP1 and initiates the recruitment of eukaryotic 

translation initiation factor 4 G eIF4G to promote protein translation globally by binding to the 

5′-cap at mRNAs, (Ma & Blenis, 2009). To examine how p4EBP1 levels were affected by LRP2 

deficiency, p4EBP1 immunopositve cells were counted in the entire SVZ region in Lrp2-/- and 

control mice. To monitor phosphorylation of 4EBP1 in transient amplifying progenitors, co- 

staining was performed with the marker SOX2. Figure 4.22, shows the results of the 

quantification of p4EBP1 immunopositive cells in the rostral SVZ region of mutant and control 

mice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.22: Levels of p4EBP1 are increased in the rostral SVZ region in LRP2 deficient mice. 
 

(A-C) The activation of the mTOR pathway in adult LRP2-deficient and control mice was tested by 

immunohistological detection of phosphorylated 4E-binding protein (p4EBP1; green) on 40 µm coronal 
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sections from the rostral SVZ. To visualize the expression of p4EBP1 in neuronal stem cells in the SVZ, co- 

staining for stem cell marker sex determining region Y-box 2 (SOX2; red) was performed. Images of dorsal 

(A) and ventral (B) domains of the rostral SVZ in each animal are shown separately. The lateral side of the 

wall is highlighted by an asterisk in panel B. In panel C, a higher magnification image of the boxed area in 

panel A is shown. Cells positive for p4EBP1 (green, white arrowhead) or for p4EBP1 and SOX2 (yellow 

arrowhead) are highlighted. (D-F) The total number of p4EBP1-positive cells (with or without SOX2 

expression) was quantified on SVZ sections exemplified in panels A and B. The average cell number from 

three consecutive sections of each mouse brain (four animals per genotype) was used for statistical analysis 

by unpaired Student’s t test. The total numbers of p4EBP1 positive cells are unchanged in the medial (E) and 

lateral (F) walls of the ventral rostral SVZ in Lrp2-/- mice compared with controls. By contrast, a significant 

increase in p4EBP1 positive cell numbers is seen in the lateral wall of the dorsal rostral SVZ (D) of mutant 

mice. **, p<0.01 

 
 
 

In the ventral domain of the control SVZ, sparse immunosignals for p4EBP1 were seen 

compared with the dorsal SVZ (Figure 4.22 A, B). Cells immunopositve for p4EBP1 are 

indicated by an arrow in Figure 4.22 C. On average, 6 to 8 p4EBP1 positive cells were counted 

in the ventral domain per section and slightly more in the dorsal domain of the SVZ in controls 

(Figure 4.22 D-F). 

In LRP2-deficient mice, p4EBP1 immunosignals were increased almost two-fold in both ventral 

and dorsal domains of the rostral SVZ compared with controls (Figure 4.22 D-F). This change 

was statistically significant in the dorsal SVZ region (Figure 4.22 D). 

Alterations in levels of mTOR signaling components in LRP2 mutants in the rostral SVZ were 

recapitulated by comparable alterations in the dorsal but not in the ventral domain of the caudal 

SVZ (Figure 4.23 A-F) with an almost 30% increase in the number of p4EBP1 immunopositive 

cells in the dorsal SVZ of LRP2 mutants (Figure 4.23 A, C, D). By contrast, the number of 

p4EBP1 positive cells in the ventral domain of the caudal SVZ of LRP2 mutants were slightly 

decreased (Figure 4.23 B, E, F). 
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Figure 4.23: The level of phosphorylated 4EBP1 is increased in the caudal dorsal SVZ of Lrp2-/- mice. 
 

(A-C) Activation of the mTOR pathway in adult LRP2-deficient and control mice was tested by 

immunohistological detection of 4E-binding protein (p4EBP1; green) on 40 µm coronal sections from caudal 

SVZ regions. To visualize p4EBP1 expression in neuronal stem cells, co-staining for stem cell marker sex 

determining region Y-box 2 (SOX2) was performed (red). Images of the dorsal (A) and ventral (B) domains 

of the caudal SVZ are shown separately. In panel B, the lateral side of the SVZ wall is marked by an asterisk. 

In panel C, a higher magnification image of the boxed area in panel A is shown. Cells positive for p4EBP1 

(green, white arrowhead) or for p4EBP1 and SOX2 (yellow arrowhead) are highlighted. (D-F) Total numbers 

of p4EBP1-positive cells (with or without SOX2 expression) were quantified on SVZ sections exemplified in 

panels A and B. The average cell number from three consecutive sections of each mouse brain (two animals 

per genotype) was used for statistical analysis using unpaired Student’s t test. Total numbers of p4EBP1 

positive cells are unchanged in medial (E) and lateral (F) walls of the ventral caudal SVZ in Lrp2-/- brains. By 

contrast, an increase in p4EBP1 positive cell numbers are seen in the lateral wall of the dorsal caudal SVZ 

(D). *, p<0.05 

 
 
 

Next, I again examined the expression levels of total 4EBP1 in rostral SVZ to exclude the 

possibility that higher levels of p4EBP1 seen in Figure 4.22 were the result of elevated levels of 

the substrate 4EBP1 (Figure 4.24 A-F). The area of expression and the signal intensity levels 

for total 4EBP1 were not altered in the dorsal SVZ (Figure 4.24 A, C, D). Contrary in the ventral 
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tip of rostral SVZ, both in medial and lateral walls, 4EBP1 levels were markedly decreased in 

LRP2 mutants compared with controls (Figure 4.24 B, E, F). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.24: Total levels of 4EBP1 positive cells decline in the rostral SVZ of LRP2-deficient mice. 
 

(A-C) Immunohistological detection of cells positive for 4E-binding protein (p4EBP1; green) in the rostral 

SVZ of mice with indicated Lrp2 genotypes. Images of the dorsal (A) and ventral (B) SVZ regions are 

visualized separately. In panel B, the lateral side of the ventricular wall is highlighted by an asterisk. In panel 

C, a higher magnification image of the boxed area in panel A is shown. The region of interest (ROI) taken for 

quantification of p4EBP1 positive cell numbers is highlighted by a dotted line. (D-F) Mean gray values 

(MGV) of the ROI were quantified on SVZ sections exemplified in panels A and B. The average MGV from 

three consecutive sections of each mouse brain (six animals per genotype) was used for statistical analysis by 

unpaired Student’s t test. The MGV is significantly lower in the medial (E) and lateral (F) walls of the ventral 

SVZ in Lrp2-/- compared with control mice. No difference in the MGV is detected in the lateral wall of the 

dorsal SVZ (D). *, p<0.05; **, p<0.01 

 
 
 

4.1.5 Analysis of WNT signaling pathway in the SVZ of LRP2 mutant and control mice 
 
 

The canonical WNT pathway is pivotal during embryogenesis, implicated in specification of 

body axis and morphogenesis, but also in control of stem cell proliferation and differentiation 
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(van Amerongen & Nusse, 2009). In the adult SVZ, WNT/β catenin signaling is activated in 

precisely determined regions at specific time points. Given the importance of WNT signaling in 

the adult SVZ neurogenesis, I also aimed to explore the consequences of LRP2 deficiency for 

WNT signaling in this niche. To do so, I employed the Tcf/lef_lacZ reporter strain of mice 

(Mohamed et al., 2004). In this strain, expression of lacZ is driven by the promoter of Tcf/Lef, 

a downstream target in the canonical WNT signaling pathway. Similar to my approach with the 

Gli1_lacZ reporter (Figure 4.1 and Figure 4.2), I introduced the Tcf/lef_lacZ transgene into the 

line heterozygous for the Lrp2 null allele by breeding of the two strains. By subsequent breeding 

of animal transgenic for Tcf/lef_lacZ and Lrp2+/-, I generated homozygous Lrp2 mutants and 

controls carrying the reporter gene for characterization of Tcf/lef_lacZ activity. Performing lacZ 

activity assays on histological sections of the adult SVZ, I documented reduced activity of the 

WNT pathway in the rostral SVZ of Lrp2-/- as compared with control mice (Figure 4.25). 

 
 

Figure 4.25: WNT signaling is decreased in the 

rostral SVZ of LRP2 deficient-mice. 

LacZ activity was examined by X-gal staining on 10 µm 

coronal sections of the rostral SVZ in LRP2-deficient 

mice and littermate controls crossed with the 

Tcf/lef_lacZ reporter strain of mice. Exemplary images 

of a total of three sections of each mouse brain were 

analyzed (three animals per genotype). For each section, 

the dorsal and the ventral SVZ regions are depicted 

separately. The lateral side of the ventricular wall is 

highlighted by an asterisk. In ventral and dorsal SVZ 

regions, Tcf/lef expression levels, as deduced from the 

X-gal signal, are decreased in Lrp2-/- animals. 

 
 
 
 

Upon examination of the caudal SVZ region, no obvious changes in the dorsal domain of the 

SVZ were detected comparing genotypes (Figure 4.26). However, I noticed a decreased signal 
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for Tcf/lef_lacZ activity in the medial ventricular wall of the ventral SVZ in mutants compared 

with controls (Figure 4.26). 

 
 

Figure 4.26: WNT signaling is slightly decreased in 

the caudal SVZ of LRP2 deficient-mice. 

 
LacZ activity was examined by X-gal staining on 10 µm 

coronal sections of the caudal SVZ in LRP2-deficient 

mice and littermate controls crossed with the Tcf/lef_lacZ 

reporter strain of mice. Exemplary images of a total of 

three sections from the caudal region of each mouse brain 

are shown. For each section, the dorsal and the ventral 

SVZ regions are depicted separately. A total of three 

animals per genotype were analyzed. In control mice, 

Tcf/lef_lacZ shows the strongest expression in the medial 

wall (asterisk) of the ventral SVZ. In LRP2-deficient 

mice, Tcf/lef_lacZ expression, as deduced from the X-gal 

signal, is slightly decreased in ventral and dorsal SVZ 

regions. 

 
 
 

These findings confirmed once more the regional specificity of LRP2 action in the adult SVZ, 

an activity that impact multiple morphogens (SHH, WNT, BMP) and regulatory pathways 

(mTOR) in this neurogenic niche. 

 
 

4.2 Neurogenesis 
 
 

4.2.1 Loss of LRP2 decreases the population of fast dividing cell in the rostral but not in 
caudal SVZ 

 
 

So far, my studies had identified a region-specific effect of LRP2 activity on morphogen 

signaling in the neurogenic niche of the SVZ. Specifically, they documented distinct alterations 
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in the rostral versus the caudal SVZ in mutant mice that hinted towards a regulatory role of this 

receptor in control of morphogen signaling along the rostral to caudal axis of the ventricular 

system. The following experiments were conducted to test whether this region-specific impact 

of LRP2 activity on morphogen signaling was paralleled in a similar region-specific impact on 

adult neurogenesis. 

 
 

In the germinal niche of the SVZ, three main cell types are relevant for neurogenesis. Neural 

stem cells (also called B cells) exhibit self-renewing capacity. They proliferate to produce new 

neural stem cells but also to differentiate into fast dividing progenitors (called C cells). Although 

C cells have a residual capacity for self-renewal, they mainly differentiate into neuroblasts (A 

cells). Neuroblasts migrate from the SVZ via the rostral migratory stream (RMS) to the olfactory 

bulbs (OB). During this migration process, A cells undergo further differentiation and finally 

integrate into OB as interneurons (Adachi et al., 2007; Lois & Alvarez-Buylla, 1994). 

To examine the effect of LRP2 deficiency on the proliferative capacity of the SVZ niche, I 

performed BrdU incorporation assays in LRP2 mutant and control mice in vivo. In my approach, 

I intraperitoneally injected BrdU, a synthetic nucleoside analogue into mice. BrdU is 

incorporated into replicating DNA instead of thymidine. Immunostaining for BrdU on 

histological sections enables detection of proliferating cells, as in the SVZ. To explore the 

regionality of LRP2 deficiency on cell proliferation in this niche, I again analyzed the rostral 

and caudal regions of the SVZ separately. Also, for the rostral region (Figure 4.27 A), I scored 

BrdU positive cell counts separately for the respective dorsal and ventral SVZ domains (Figure 

4.27 B, C). As shown by arrowheads in figure 4.27 D, BrdU positive cells were considered for 

quantification in SVZ area. Statistical analysis of BrdU positive cells counts on replicate 

histological sections revealed a significant reduction in cell proliferation in the dorsal domain 

of the rostral SVZ in LRP2-deficient mice as compared with littermate controls (Figure 4.27 B, 

E). A similar impact of LRP2 deficiency on reducing the BrdU+ cell counts was also seen in the 

ventral domain of the rostral SVZ (Figure 4.27 C, F). 
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Figure 4.27: The 

number of fast 

proliferating neuronal 

progenitors is reduced 

in ventral and dorsal 

areas of the rostral 

Lrp2-/- SVZ. 

(A-D) Fast dividing 

progenitor cells in the 

SVZ were labeled by 24 

hours in vivo application 

of 5-bromo-2'- 

deoxyuridine (BrdU). 

Subsequently, BrdU 

positive cells were 

immunodetected on 12 

µm coronal sections of 

the rostral SVZ in control 

and LRP2-deficient mice. 

SVZ overviews (A) as 

well as separate views of the dorsal (B) and ventral (C) domains of the rostral SVZ of each section are given. 

A higher magnification of the boxed area in panel C is given in panel D, highlighting BrdU positive cells by 

arrowheads. (E, F) Cells positive for BrdU were quantified in the indicated regions of the rostral SVZ 

(exemplified in panels B and C). A total of five animals per genotype were scored. The average cell number 

from twelve consecutive sections of each mouse brain was used for statistical analysis by unpaired Student’s 

t test. Cell numbers are significantly decreased in the dorsal (E) and ventral (F) rostral SVZ in LRP2-deficient 

mice. *, p<0.05 

 
 
 

In the caudal SVZ, no significant difference in the numbers of BrdU+ cells were observed 

comparing both genotypes (Figure 4.28). 
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Figure 4.28: The numbers 

of fast proliferating cells 

are similar in caudal SVZ 

regions of LRP2-deficient 

mice and their littermate 

controls. 

 
(A-D) Fast dividing 

progenitor cells in the SVZ 

were labeled by 24 hours 

application of BrdU in vivo. 

Subsequently, BrdU 

positive cells were 

immunodetected on 12 µm 

coronal sections of the 

caudal SVZ in control and 

LRP2-deficient mice. SVZ 

overviews (A) as well as 

separate views of the dorsal 

(B) and ventral (C) domains 

of the caudal SVZ  of  each 

section are given. A higher magnification of the boxed area in panel C is given in panel D, highlighting BrdU 

positive cells by white arrowheads. (E, F) Cells positive for BrdU were quantified in the indicated regions of 

caudal SVZ (exemplified in panels B and C). A total of five animals per genotype were scored. The average 

cell number from twelve consecutive sections of each mouse brain was taken for statistical analysis by 

unpaired Student’s t test. No obvious differences in BrdU positive cell counts were detected in dorsal (E) or 

ventral (F) SVZ regions comparing LRP2-deficient mice with littermate controls (Lrp2+/+ and Lrp2+/-). 

 
 

I also inspected the impact of LRP2 deficiency on the proliferative capacity of C cells in the 

subgranular zone (SGZ) of the hippocampus, the second neurogenic niche in the adult 

mammalian brain. In line with the absence of LRP2 expression in this niche in the wildtype 
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brain (Gajera et al., 2010), receptor deficiency did not impact the numbers of BrdU+ cells in the 

SGZ in mutants as compared to control mice in a 24 hours chase experiment (Figure 4.29). 

 
 

Figure 4.29: The number of 

fast proliferating cells in the 

subgranular zone of the 

hippocampus is unchanged 

in LRP2 mutant mice. 

(A-B) Fast dividing 

progenitor cells in the 

subgranular zone (SGZ) of the 

hippocampus were labeled by 

24 hours application of BrdU 

in vivo. Subsequently, BrdU 

positive cells were 

immunodetected on 20 µm 

sections of the hippocampi of 

mice with indicated Lrp2 

genotypes. In panel B, BrdU 

positive cells in the SGZ are 

highlighted by arrows. (C) 

Number of BrdU positive cells in the SGZ of LRP2-deficient and control mice. The average cell number from 

seven consecutive sections of each brain was taken for quantification and statistical analysis by unpaired 

Student’s t test. No significant difference in cell numbers were observed comparing both genotypes. 

 
 
 

These findings served as an important control that the reduction in proliferative capacity seen 

in the rostral mutant SVZ was the consequence of the local loss of LRP2 activity rather than a 

global effect on brain activities. 

 
 

4.27.2 Depletion of the neural stem cell pool in the SVZ niche of LRP2-deficient mice 
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To identify the cause of the reduced proliferative capacity of C cells in the mutant SVZ, I 

investigated the number of neuronal stem cells (B cells) in the rostral and caudal SVZ of the 

respective mouse strain. To do so, I stained histological sections of the rostral and caudal SVZ 

of mutant and control mice for GFAP, a marker of B cells (Gajera et al., 2010). In the rostral 

SVZ, the immunosignal intensity for GFAP was not altered in the lateral wall of the dorsal SVZ 

but was markedly decreased in the ventral tip of the SVZ in LRP2 mutants as compared with 

controls (Figure 4.30 A-F). Quantification and statistical analysis of intensity levels of 

fluorescent signal (highlighted in figure 29 C) confirmed unchanged GFAP levels in dorsal SVZ 

(Figure 4.30 D) but a reduction in the ventral region of LRP2 deficient mice as compared to 

controls (Figure 4.30 E, F). This change was statistically significant in the ventral lateral wall 

(Figure 4.30 F). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.30: The neuronal stem cell pool is depleted in the rostral SVZ of mice lacking LRP2. 
 

(A-C) Immunohistological detection of cells positive for glial fibrillary acidic protein (GFAP), a marker of 

neuronal stem cells. Coronal 40 µm sections of the rostral SVZ from control (Lrp2+/+ and Lrp2+/-) and Lrp2- 
/- animals are shown. Maximal projection of optical section series are presented (interval of imaging in the Z- 

axis is 1.52 µm). In panel C, a higher magnification image of the boxed area in panel A is shown. The region 

of interest (ROI) taken for quantification is highlighted by a dotted line. (D-F) Mean gray values (MGV) of 

the ROI were quantified on rostral SVZ sections exemplified in panels A and B (asterisk indicates the lateral 

wall of the ventricle). The average MGV from three consecutive sections of each mouse brain from six 

controls and five Lrp2-/- animals was used for statistics by unpaired Student’s t test. The MGV is significantly 
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lower in the lateral wall of ventral rostral SVZ in Lrp2-/- mice as compared with controls (F). No statistically 

significant differences in the MGV are observed in the medial wall of ventral SVZ (E) or in the lateral wall 

of the dorsal (D) SVZ. *, p<0.05 

 
 
 

The GFAP positive B cell count in the caudal SVZ was not affected by LRP2 deficiency (Figure 

4.31). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.31: The neuronal stem cell pool is unchanged in the caudal SVZ of LRP2-deficient mice. 
 

(A-C) Immunohistological detection of cells positive for glial fibrillary acidic protein (GFAP), a marker of 

neuronal stem cells. Coronal 40 µm sections of the caudal SVZ from control (Lrp2+/+ and Lrp2+/-) and Lrp2- 
/- animals are given.  In panel C, a higher magnification image of the boxed area in panel A is shown. (D-F) 

Mean gray values (MGV) of the regions of interest (ROI) were quantified on the indicated regions of the 

caudal SVZ as exemplified in panels A and B (lateral side of the ventricular wall highlighted by an asterisk). 

The average MGV from three consecutive sections of each mouse brain (four animals per genotype) was used 

for statistical analysis by unpaired Student’s t test. No statistically significant differences in MGVs are 

observed comparing both genotypes. 

 
 
 

Another commonly used marker of the B cell population is SOX2. As compared to the diffuse 

cytoplasmic signal of GFAP, the nuclear immunosignal for this transcription factors greatly 

facilitates counting the number of B cells in the SVZ niche (Figure 4.32 A-F). Again, dorsal and 
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ventral regions of rostral SVZ region were examined separately (Figure 4.32 A, B). 

Quantification of the number of SOX2 positive nuclei, as highlighed in figure 4.32 C, 

documented no apparent changes of immunopositive B cells in the dorsal domain of rostral SVZ 

in LRP2 mutants (Figure 4.32 A, D). In the ventral region of rostral SVZ, LRP2 deficiency 

significantly impacted the population of SOX2 immunopositive cells (Figure 4.32 B, E, F) as B 

cell numbers were robustly decreased in the lateral ventricular wall of ventral rostral SVZ in 

LRP2 deficient mice in comparison to controls (Figure 4.32 F). No consistent differences were 

noted in the medial ventricular wall of the same region (Figure 4.32 E). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.32: The neuronal stem cell pool is depleted in the rostral SVZ of mice lacking LRP2. 
 

(A-C) Immunohistological detection of cells positive for glial fibrillary acidic protein (GFAP), a marker of 

neuronal stem cells. Coronal 40 µm sections of the rostral SVZ from control (Lrp2+/+ and Lrp2+/-) and Lrp2- 
/- animals are shown. Maximal projection of optical section series is presented (interval of imaging in the Z- 

axis is 1.52 µm). In panel C, a higher magnification image of the boxed area in panel A is shown. The region 

of interest (ROI) taken for quantification is highlighted by a dotted line. (D-F) Mean gray values (MGV) of 

the ROI were quantified on rostral SVZ sections exemplified in panels A and B (asterisk indicates the lateral 

wall of the ventricle). The average MGV from three consecutive sections of each mouse brain from six 

controls and five Lrp2-/- animals was used for statistics by unpaired Student’s t test. The MGV is significantly 

lower in the lateral wall of ventral rostral SVZ in Lrp2-/- mice as compared with controls (F). No statistically 
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significant differences in the MGV are observed in the medial wall of ventral SVZ (E) or in the lateral wall 

of the dorsal (D) SVZ. *, p<0.05 

 
 
 

Examination of SOX2 immunopositive cell numbers in the caudal SVZ region found no 

alterations in the dorsal domain of Lrp2-/- as compared with controls (Figure 4.33 A-D). In 

contrast to the rostral SVZ (Figure 4.32 B-F), an elevation of SOX2 positive B cells in the 

ventral domain of the caudal SVZ was noted when compared with controls (Figure 4.33 B). This 

effect was specifically seen in the medial ventricular wall with statistically significant change 

between genotypes (Figure 4.33 E). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.33: LRP2 deficient mice show an increase in SOX2 positive neuronal stem cell levels in the 

ventral medial wall of caudal SVZ. 

(A-C) Immunohistological detection of cells expressing the neuronal stem cell marker sex determining region 

Y-box 2 (SOX2) on 40 µm coronal sections from the caudal SVZ of LRP2-deficient and control mice. Dorsal 

(A) and ventral (B) domains of the caudal SVZ of each section are shown separately. The lateral wall is 

highlighted by an asterisk in panel B. A higher magnification image of the boxed area in panel A is given in 

(C). (D-F) Cells positive for SOX2 were quantified in the indicated regions of caudal SVZ (exemplified in 

panels A and B). A total of six control (Lrp2+/+ and Lrp2+/-) and five Lrp2-/- mice were scored. For the dorsal 

SVZ (D), only the cells in the lateral wall were quantified. For the ventral SVZ, cells both in the medial (E) 
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and lateral walls (F) were scored. The numbers of SOX2 positive cells are significantly increased in the medial 

wall of the ventral SVZ (E) as determined by unpaired Student’s t test. *, p<0.05 

 
 
 

4.27.3 The oligodendrocyte lineage is unaffected in the SVZ of Lrp2-/- mice 
 
 

In the SVZ, a small population of cells of the oligodendroglial lineage maintain their 

proliferative capacity. To examine the consequences of LRP2 deficiency on this 

oligodendroglial cell population, I have visualized oligodendrocytes by staining for the marker 

OLIG2 (Gajera et al., 2010). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.34: The population of OLIG2 positive oligodendrocytes is unchanged in the rostral SVZ of 
LRP2 mutant mice. 

 
(A, B) Imunohistological detection of OLIG2 (green) on 40 µm coronal sections of the rostral SVZ in control 

and in LRP2-deficient mice. (C, D) The numbers of OLIG2 positive cells in dorsal (C) and ventral (D) 

domains of the rostral SVZ were quantified on three consecutive sections per brain of four animals per 

genotype. No statistically significant differences in cell numbers were detected by unpaired Student’s t test 

comparing both genotypes. 
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Quantification of the number of OLIG2 immunopositive cells failed to show obvious alterations 

in LRP2 mutants compared with littermate controls, neither in rostral (Figure 4.34) nor the 

caudal SVZ regions (Figure 4.35). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.35: The number of OLIG2 positive oligodendrocytes in the caudal SVZ is similar in LRP2- 
deficient and controls mice 

 
(A, B) Imunohistological detection of OLIG2 (green) on 40 µm coronal sections of the caudal SVZ in control 

and in LRP2-deficient mice. (C, D) The numbers of OLIG2 positive cells in dorsal (C) and ventral (D) 

domains of the caudal SVZ were quantified on three consecutive sections per brain of four animals per 

genotype. No statistically significant differences in cell numbers were detected by unpaired Student’s t test 

comparing genotypes. 

 
 
 

4.3 Motile cilia on ependymal cells 
 
 

In summary, the region-specific analysis of cell populations in the SVZ of control and LRP2- 

mutant mouse brains substantiated distinct effects of LRP2 activity on neurogenic processes in 
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the rostral versus the caudal area of this niche. Based on the concurrent alterations in numbers 

of B cells (Figure 4.30 and Figure 4.32) and proliferative C cells (Figure 4.27), LRP2 likely 

exerts a primary regulatory role on the size of the stem cell pool in the SVZ, secondarily 

impacting the number of C cell progeny derived thereof. This receptor activity specifically 

impacts cell fates in the neuronal but not the oligodendroglial lineages in the SVZ. This regional 

specificity in LRP2 activity was surprising given the fact that expression of this receptor in the 

wildtype brain is seen uniformly in the ependymal cell layer from rostral to caudal regions of 

the SVZ (Gajera et al., 2010). Conceptually, my findings argued against a cell autonomous 

function for LRP2 in ependymal cells. Rather, they suggested a global effect of LRP2 activity 

on the regionality of the SVZ niche. 

A process that may affect regionality of the SVZ niche is the flow of the cerebrospinal fluid 

(CSF) through the ventricular system distributing nutrients but also so signaling molecules in a 

region specific manner (Telano & Baker, 2019; Veening & Barendregt, 2010). Flow of the CSF 

is driven by the activity of motile cilia present on ependymal cells (Olstad et al., 2019). By 

coordinated beating of the motile cilia on the apical surface, ependymal cells determine CSF 

flow and direction of neuroblast migration (Doetsch & Alvarez-Buylla, 1996; Jiménez, 

Domínguez-Pinos, Guerra, Fernández-Llebrez, & Pérez-Fígares, 2014). Based on the distinct 

expression of LRP2 on the apical surface of the ependymal cells, I explored a role for this 

receptor in control of motile cilia activity and cilia beating defects as the possible underlying 

cause of the region-specific alterations on SVZ activity in the LRP2 mutant SVZ. 

 
 

4.3.1 Ciliary patches display non-coordinated displacement in ependymal cells of LRP2- 
deficient mice 

 
 

To explore the functional integrity of the motile cilia in control and LRP2 mutant ependymal 

cells, I employed an experimental strategy developed by Camille Boutin (Boutin et al., 2014; 

Labedan et al., 2016). In this technique, freshly dissected lateral ventricular wall  whole mounts 

(LWWM) from adult mouse brain (Figure 3.2) were shortly fixed and stained for ciliary basal 

body markers FGFR1 Oncogene Partner (FOP) and tubulin and for the cell surface marker 
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Zonula Occludens-1 ZO1. Tissue samples were mounted and coverslipped in fluorescent 

mounting medium for the further en face inspection. Serial stack images covering the entire 

depth of the specimen was taken on a confocal microscope Leica SPE and then merged using 

the maximum projection tool in the Leica software. Using the Biotool software (Labedan et al., 

2016), the contours of individual ependymal cells (blue) and their respective ciliary patches 

were traced (Figure 3.7 A). 

Figure 4.36: Ciliary 

patch displacement 

in ependymal cells of 

LRP2-deficient mice. 

(A) En face 

preparations of the 

lateral ventricular wall 

in control and LRP2- 

deficient mouse brains 

were immunostained 

for ciliary basal body 

markers FGFR1 

Oncogene Partner 

(FOP; green) and 

gamma tubulin (γ- 

Tub; red), as well as 

for the apical cell 

surface marker zonula 

occludens-1 (ZO1; 

blue). Arrows indicate 

the direction of ciliary 

patch displacement 

relative to the cell 

center in 

representative 

ependymal cells (B) 

Color       coding     of 
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individual ependymal cells, describes the degree of patch displacement relative to the cell center in the field 

of interest. The stronger the displacement asymmetries of a patch is, the further the color shifts towards the 

red or blue color spectrum. (C) Angle vPatchD value for each cell represents the angle between the vector of 

displacement from the cell center and the mean vector of displacement in the entire field of observation. 

Circular dispersion of vPatchD parameter angles around the mean in control and LRP2-deficient ependymal 

cells are represented. Circular statistical analysis (Watson U2 test) carried on vPatchD values of 358 cells from 

control and 374 cells from LRP2-deficient mice confirms a statistically significant difference in ciliary patch 

displacement between the two genotypes (p<0.001). 

Subsequently, the software calculated the geometric centers of the marked areas and 

characterized the ciliary patch displacement relative to the center of each cell. 

Initially, I tested the impact of LRP2 deficiency on displacement of the ciliary patch on the 

apical cell surface relative to the center of the ependymal cells (Figure 4.36). The ciliary basal 

bodies are initially widely scattered in immature ependymal cells, but upon further 

differentiation they cluster in an off-centered patch. In adjacent cells, ciliary patches acquire the 

same direction of the displacement from the cell center, matching the direction of CSF flow 

(Mirzadeh, Han, Soriano-Navarro, García-Verdugo, & Alvarez-Buylla, 2010). 

As depicted in immunostained en face preparations in Figure 4.36 A, ependymal cells in the 

control SVZ manifested a coordinated and directed displacement of the ciliary patches relative 

to cell center. This was not the case for the LRP2-deficient SVZ, where patches of many 

ependymal cells showed a random displacement (Figure 4.36 A). 

In Figure 4.36 B, the coordination of the patch displacement is illustrated by color codes 

assigned by Biotool software. In controls, the dominance of green color is an indicator of 

coordinated and directed patch displacement. By contrast, a shift to blue and red color spectra 

in LRP2 mutants highlights the non-coordinated displacement of the patches within the field of 

view. The integrated angle values vPATCHDs, characterizing the degree of patch displacement, 

are depicted in the circular statistics graphs in figure 4.36 C as dispersion around the mean for 

each genotype. The degree of displacement coordination abnormalities in mutants is reflected 

in a wider dispersion range around the mean in the circular statistics graph of LRP2-deficient 

mice compared with controls (Figure 4.36 C). 
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4.3.2 Absence of LRP2 affects the coordinated beating of motile ciliary patches on 
ependymal cells 

 
 

To test how LRP2 activity impacts coordination of the cilia beating direction, I scored the FOP 

and γ-Tub protein expression patterns on ventricular LWWM preparations by en face 

visualization. Thus, immunostained images used for patch displacement characterization 

(Figure 4.37 A) were also analyzed for ciliary beating orientation. Motile Cilia beating is driven 

by longitudinally arranged 9 doublets of microtubules around a central pair of microtubule. 

Anchoring point of those microtubular structures are the basal bodies. A protruding appendage 

from basal body, the so-called basal foot invariably points in the direction of the effective cilia 

stroke, revealing the orientation of each cilium (Marshall & Kintner, 2008). Accordingly, in my 

analysis, inspection of the relative localization of the basal foot marker γ-Tub to the basal body 

FOP was used to determine the orientation of the ciliary beating (Figure 4.37). 

The orientation of ciliary patch beating is highlighted by arrows in figure 4.37 A. Exemplary 

image show coordinated ciliary beating orientation in ependymal cells within the field of interest 

in the control mice. By contrast, in Lrp2-/- mice, many randomly beating ciliary patches were 

observed in the region of interest (Figure 4.37 A, B). The overview of the quantification of the 

ciliary beating orientation in the Biotool software is shown in figure 4.37 B as a group of vectors 

pointing at the γ-Tub position relative to FOP in each cilium within a patch. 

As a quantitative parameter, I evaluated the vPATCHO angle value that describes the beating 

orientation of the motile cilia in each cell within the field of analysis. The circular dispersion 

analysis, describing the dispersion around the mean of vPATCHO values for each genotype, 

revealed statistically significant changes between controls and LRP2 deficient mice (Figure 4.37 

C), substantiating misaligned orientation of ciliary patches between adjacent ependymal cells in 

the lateral ventricular walls of LRP2 deficient mice in comparison to controls. 
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Figure 4.37: The beating orientation of the ciliary patch is not coordinated in Lrp2-/- ependymal cells. 



Results 

99 

 

 

(A) En face preparations of the lateral ventricular wall in control and LRP2-deficient mouse brains were 

immunostained for ciliary basal body markers FGFR1 Oncogene Partner (FOP; green) and gamma tubulin (γ-

Tub, red), as well as for the apical cell surface marker zonula occludens-1 (ZO1; blue). Arrows indicate the 

ciliary patch beating orientation in representative ependymal cell as deduced from the orientation of the 

immunosignals for FOP and G-TUB. (B) Depiction of vectors from FOP (green) to γ-Tub, (red) signals 

indicate the orientation of individual cilia in ependymal cells of control and LRP2 mutant brains. (C) The 

angle VpatchO value represents the angle between the vector of ciliary orientation of the patch and the mean 

vector of orientation in the field. Circular dispersion of vPatchO parameter angles around the mean in control 

and LRP2 deficient mice are depicted. Circular statistical analysis (Watson U2 test) on vPatchO values of 337 

cells from controls and 342 cells from LRP2-deficient mice confirms a statistically significant decrease 

(p<0.05) in coordination of ciliary beating in LRP2 mutant cells as compared to control cells (five animals 

per genotype). 

 
 
 

4.3.3 Ependymal cells in LRP2 deficient mice show misalignment in motile ciliary patch 
localization and beating orientation 

 
 

According to earlier reports, ciliary beating orientation within a patch and patch displacement 

directions are aligned in ependymal cells of adult murine brain (Boutin et al., 2014). 

So as a next step in my analyses, I calculated the angle created by patch displacement and ciliary 

beating orientation vectors, designated vPATCHD&vPATCHO. As presented in exemplary 

images in Figure 4.38 A, the beating orientation (highlighted by pink arrows) and the patch 

displacement direction (indicated by white arrows) were well aligned in control ependymal 

cells. By contrast, vPATCHD and vPATCHO vectors indicated random directions in LRP2 

mutants (Figure 4.38 A). These observations were also reflected in the circular dispersion graphs 

around the mean, where parameters from LRP2 mutants displayed a wider range of angle values 

compared with controls (Figure 4.38 B). 
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Figure 4.38: Ciliary patch localization and beating orientation are not coordinated in ependymal cells 

of Lrp2-/- mice. 

(A) En face preparations of the lateral ventricular wall in control and LRP2-deficient mouse brains were 

immunostained for ciliary basal body markers FGFR1 Oncogene Partner (FOP; green) and gamma tubulin (γ-

Tub, red), as well as for the apical cell surface marker zonula occludens-1 (ZO1; blue). White colored arrows 

show the direction of ciliary patch displacement. Pink arrows indicate the orientation of ciliary patch beating. 

In ependymal cells from control mice, ciliary beating orientation and ciliary displacement match within each 

cell. This match is not seen in LRP2-deficient ependymal cells. (B) vPatchD&vPatchO values represent the 

angle between the vector of displacement and the vector of orientation. Circular dispersion of 
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vPatchD&vPatchO parameter angles around the mean in control and LRP2-deficient mice are shown. Circular 

statistical analysis (Watson U2 test) comparing values of 337 cells from control and 342 cells from LRP2- 

deficient mice confirms statistically significant differences in ciliary patch displacement and beating 

orientation comparing the two genotypes (p<0.001). 

 
 
 

4.3.4 Individual cilium beating directions are not synchronized within a ciliary patch in 
LRP2 mutant mice 

 
 

Beating directions of individual motile cilia within a ciliary patch are coordinated (Boutin et al., 

2014). 

 
 

Figure 4.39: The beating direction of 

individual cilia within a ciliary patch is 

not coordinated in ependymal cells of 

Lrp2-/- mice. 

(A) En face preparations of the lateral 

ventricular wall in control and LRP2- 

deficient mouse brains were 

immunostained for ciliary basal body 

markers FGFR1 Oncogene Partner (FOP; 

green) and gamma tubulin (γ-Tub, red), 

as well as for the apical cell surface 

marker P (ZO1; blue). Beating 

orientation of individual cilia within a 

patch are defined by a unit vector (vCil) 

connecting the two dots (green and red). 

(B) These vectors were used to calculate 

the circular standard deviation (CSD) 

values for each patch. In this 

presentation, each dot represents an 

individual  cell,  while  Y-axis represents 
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CSD values of the cell. vCil vectors were randomly oriented in many cells of LRP2 deficient mice, resulting 

in high CSD values. 

(C) Distribution of cells according to Vcil CSD values are represented. CSD values are depicted on X-axis 

from 0 to 100, by frequency interval 10. On the Y-axis, corresponding cell numbers are represented. Higher 

extent of control cells has lower CSD values, and oppositely more cells from LRP2 deficient mice posess 

higher CSD values. CSD values of 363 ependymal cells were quantified for LRP2 deficient mice and 

compared with CSD values of 391 cells from controls (five animals per genotype). Unpaired t test analysis 

revealed statistically significant difference between genotypes with p<0.0001. 

Images used in previous investigations (Figure 4.36-4.38) were analyzed in this respect in 

wildtype and LRP2 mutant brains. In detail, the orientation vectors connecting basal feet marker 

γ-Tub and basal body marker FOP characterize beating orientation for an individual cilium 

within a ciliary patch. 

This coordination of individual ciliary beating orientation within a patch was confirmed in 

control cells of the adult SVZ (Figure 4.39 A). By contrast, examination of the same number of 

ependymal cells in LRP2 mutants revealed many cells with non-coordinated cilia beating within 

a patch (Figure 4.39 A). 

After manually defining vectors for orientation of each individual cilium in a given patch, 

circular standard deviation (CSD) values for each cell patch were generated by the Biotool 

software. In Figure 4.39 B, each cell is represented as a dot. Higher CSD values indicate more 

asynchronicity and non-coordination of individual cilium beating within a patch. In LRP2 

mutants, the number of cells with high CSD values were significantly increased compared with 

littermate controls. Representation of the CSD values on the X-axis by distribution intervals of 

10 demonstrated a higher number of control cells in the range of 0 to 20 CSD value. By contrast, 

in the range of 30 and higher CSD values, the numbers gradually increased in LRP2 mutant 

cells, indicating elevated non-coordinated beating within a patch in the mutants (Figure 4.39 C). 
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4.3.5 The numbers of motile cilia but not the size of the ciliary patch is altered in LRP2 
mutant ependymal cells 

 
 

As a next question, I have addressed whether LRP2 activity may influence the number of motile 

cilia per cell patch. Based on previous analysis, the numbers of individual cilia in cell patches 

were determined using the Biotool software (Figure 4.40 A, B). In these analyses, significantly 

increased numbers of cilia were observed in ependymal cell patches of LRP2 mutants compared 

with controls (Figure 4.40 C). 

 
 

Figure 4.40: The number of 

motile cilia in a ciliary patch are 

increased in Lrp2-/- ependymal 

cells. 

 
(A) En face preparations of the 

lateral ventricular wall in control 

and LRP2-deficient mouse brains 

were immunostained for ciliary 

basal body markers FGFR1 

Oncogene Partner (FOP; green) 

and gamma tubulin (γ-Tub, red), 

as well as for the apical cell surface 

marker zonula occludens- 

1 (ZO1; blue). (B) Unit vector 

(vCil) connecting the two dots 

(green and red) was defined 

manually in the software. Those 

individual vCil vector numbers 

correspond to cilia numbers in the 

patch. (C) Cilia number per patch 

were counted in individual 

ependymal cells and averaged for 

each animal (five mice per 

genotype).  Analysis  by unpaired 
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Student’s t test documents a significant increase in cilia number per patch in Lrp2-/- mice as compared with 

controls. *, p<0.05) 

Despite this increase in number of motile cilia, the patch area and cell surface area covered by 

ciliary patches were similar in both genotypes (Figure 4.41 A-D). Also, the parameter describing 

the ratio of apical cell surface area to cilia patch area was unchanged in LRP2 mutants compared 

with controls (Figure 4.41 C). Finally, despite the direction of patch displacement from the cell 

center not being coordinated in LRP2 mutant cells (Figure 4.36), the extent of displacement 

from the center (Strength) was similar to that in the control genotype (Figure 4.41 E). 

 
 
 

Figure 4.41: The 

extent of ciliary 

patches and of 

ependymal cell 

surface are 

unchanged in mice 

lacking LRP2. 

 
(A) En face 

preparations of the 

lateral ventricular wall 

in control and LRP2- 

deficient mouse brains 

were immunostained 

for ciliary basal body 

markers FGFR1 

Oncogene Partner 

(FOP; green) and 

gamma tubulin (γ- 

Tub, red), as well as 

for the apical cell 

surface marker zonula 

occludens-1      (ZO1; 

blue). (B) Patch areas of ependymal cells in control and LRP2 mutant mice are given. (C) The percentage of 
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the apical cell surface occupied with ciliary patches in control and LRP2 mutant mice are given. (D) The 

surface area of individual ependymal cells in control and LRP2 mutant mice is shown. (E) Strength parameter 

estimating the amount of ciliary patch displacement relative to the center of ependymal cells is given. All 

parameters (B-E) were quantified in 363 ependymal cells from Lrp2-/- and 391 ependymal cells from control 

mice. Five mice per genotype were used. No statistically significant differences between the two genotypes 

were detected using unpaired Student’s t test. 

 
 
 

4.3.6 Ciliary axonemal structures are unchanged in ependymal cells of Lrp2-/- compared 
with control brains 

 

My analyses of motile cilia beating described above were based on visualization of the position 

of the basal body marker FOP relative to the position of the basal foot marker γ-tubulin. To 

confirm that the observed alterations reflected changes in cilia beating not structural 

organization, I stained for additional markers of motile cilia in LRP2 mutant and control SVZs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.42: The structure of the ciliary axoneme is comparable in ependymal cells of Lrp2-/- and control 

mice. 
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En face preparations of the lateral ventricular wall of control and LRP2 mutant brains were immunostained 

for acetylated tubulin (Tub; green) and ADP-ribosylation factor-like protein 13B (ARL13B; red) to visualize 

the ciliary axoneme. Also, localization of LRP2 was documented (blue). Color channels are shown separately 

as well as in merged configuration. No discernable difference in the patterns of the two axoneme proteins are 

seen comparing LRP2-deficient and control cells. 

 
 
 

Specifically I immunostained for acetylated tubulin (Tub) and ADP-ribosylation factor-like 

protein 13B (ARL13B), two markers of the ciliary axoneme (Mirvis, Stearns, & James Nelson, 

2018). As shown in figure 4.42, no discernable differences in immunosignals for either protein 

were seen in LRP2 mutant compared with control cells. My observations supported previous 

findings from electron microscopy analyses indicating structural integrity of the ciliary axoneme 

in LRP2 mutant mice (Gajera et al., 2010). 

 
 

4.4 LRP2 mediates endocytic uptake of SHH by ependymal cells 
 
 

4.4.1 Analysis of SHH uptake using primary ependymal cultures 
 
 

A role for LRP2 in the endocytic uptake of SHH-N was initially reported in cultured cells 

(McCarthy et al., 2002) and in the rat epididymis in vivo (Morales et al., 2006). Later studies 

substantiated the relevance of LRP2 as SHH receptor by documenting its ability to act as 

auxiliary binding site for the morphogen on neuroepithelia cells in the neural tube. LRP2- 

mediated binding and uptake of SHH-N in this cell type facilitates morphogen signaling through 

its cognate receptor PTCH1(Christ et al., 2012). LRP2-dependent uptake of SHH-N was also 

documented in the cells of the embryonic retina. However in this tissue, receptor-mediated 

clearance of SHH-N reduces rather than promotes morphogen action (Christ et al., 2015). 

Whether LRP2 also mediates endocytic uptake of SHH-N in multiciliated ependymal cells in 

the adult SVZ and whether such uptake may promote or antagonize SHH action remained 

unclear. 
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Here, I addressed this question by using a primary cell culture model of ependymal cells. For 

this experimental procedure, mice at 0 to 2 days of age (P0-P2) were used. Freshly dissected 

walls of lateral ventricles were digested with papain solution to obtain a single cell suspension 

which was plated on culture dishes. As soon as the cultures reached confluency (after 2-3 days), 

the proliferation medium was replaced by differentiation medium to trigger their differentiation 

to ependyla cells.(Delgehyr et al., 2015, p. 2) From differentiation day 10 (10 DIV) onwards, 

cells in culture expressed actively beating motile cilia, a feature reminiscent of fully mature 

ependymal cells in the adult murine brain. 

To study endocytic uptake of SHH in primary ependymal cells, I treated cultures derived from 

control and LRP2 mutant embryos at 10 DIV with a fusion protein of glutathione S-transferase 

and SHH-N (GST-SHH-N) produced and purified from bacteria as previously described (Christ 

et al., 2012). Following incubation for 2 hours, the cells were fixed and immunostained for GST- 

SHH-N using an antibody directed against GST. As shown in Figure 4.43, multiciliated 

ependymal cells lacking LRP2 fail to take up GST-SHH-N as compared with control cells. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.43: Ependymal cells from LRP2-deficient mice fail to take up GST-SHH-N during 2 hours of 

ligand incubation. 
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Ependymal cultures (differentiation day 10, DIV10) from Lrp2-/- and control mice (Lrp2+/+ and Lrp2 +/-) were 

treated with 10 µg/ml GST-SHH-N for 2 hours at 37°C with 5% CO2 and 95% humidity. Subsequently, cells 

were fixed and immunostained for GST-SHH-N (using anti-GST IgG; green), acetylated tubulin (a Tub; red), 

and LRP2 (blue). Cell nuclei were counterstained with DAPI (white). Color channels are shown individually 

and in merged configuration. Reduced uptake of GST-SHH-N is seen in LRP2-deficient ependymal cells as 

compared to control cells. 

 
 
 

A similar defect in endocytic uptake of GST-SHH-N was also observed after 24 hours of 

incubation (Figure 4.44). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.44: Ependymal cells of LRP2-deficient mice fail to take up GST-SHH-N during 24 hours of 

ligand treatment. 

 
Ependymal cell cultures derived from Lrp2-/- and control mice were treated at DIV10 with 10 µg/ml GST- 

SHH-N. After 24 hours of incubation, the cells were fixed and immunostained for GST-SHH-N (using anti- 

GST IgG; green), acetylated tubulin (Tub; red), and LRP2 (blue). Cell nuclei were counterstained with DAPI 

(white). Color channels are shown individually and in merged configuration. A significant reduction in uptake 

of GST-SHH-N is seen in LRP2-deficient ependymal cells as compared to control cells. 
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To more directly monitor the cellular fate of SHH-N, I repeated the above experiments using an 

antibody directed against SHH. Immunocytochemical analysis of post-fixed ependymal cultures 

treated with GST-SHH-N for 2 hours substantiated a significant decrease in the capacity of 

mutant ependymal cells to internalize SHH-N (Figure 4.45). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.45: Ependymal cells of LRP2 deficient mice fail to take up GST-SHH-N ligand during 2 hours 

of ligand treatment. 

 
Ependymal cell cultures derived from Lrp2-/- and control mice were treated at DIV10 with 10 µg/ml GST- 

SHH-N. After 2 hours of ligand incubation, cells were fixed and immunostained for SHH (using anti-SHH 
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IgG; red) and acetylated tubulin (a Tub; blue). Cell nuclei were counterstained with DAPI (white). Color 

channels are shown individually and in merged configuration. Little uptake of SHH-N is seen in LRP2- 

deficient ependymal cells as compared to control cells. As a control, cultures of control ependymal cells not 

incubated with GST-SHH-N were subjected to the same staining procedure to monitor levels of endogenous 

SHH present in these cells (lower panels). No immunosignal for SHH is seen under these conditions. 

 
 
 

4.4.2 Analysis of SHH uptake using ventricular lateral wall whole mounts (LWWM) 
 
 

To test the in vivo relevance of my previous findings with GST-SHH-N uptake in cultured cells, 

I treated en face preparations of the VZ from controls and Lrp2-/- mice with recombinant GST- 

SHH-N. For internal control, freshly dissected preparations from one brain hemisphere were 

treated with GST-SHH-N, while the other hemisphere was treated with GST. After ligand 

treatment, the tissue samples were fixed and immunostained for GST-SHH-N. Despite a slight 

deterioration of the ependymal layer integrity after 1.5 hours of incubation, most ependymal 

cells retained the characteristic pattern of FOP immunopositive ciliary bundles (Figure 4.46). 

 
 

Following detection of GST-SHH-N by anti-GST antibody, uptake of GST-SHH-N was clearly 

seen in control but not in LRP2 mutant tissues (Figure 4.46), recapitulating my findings in 

primary ependymal cells. No specific immunosignal was seen in the hemispheres treated with 

GST, confirming that the intracellular immunosignal detected with anti-GST antisera 

represented GST-SHH-N. 
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Figure 4.46: En face preparations of the lateral ventricles from adult LRP2-deficient mice fail to take 

up exogenous GST-SHH-N. 

 
Freshly dissected lateral ventricles from LRP2-deficient and control mice were treated for 1.5 hours with 

10µg/ml GST-SHH-N (upper panel) or 10µg/ml GST (lower panel). Subsequently, tissues were fixed and 
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immunostained for GST (green), FOP (red), and LRP2 (blue). Whole mounts of the lateral ventricle from 

LRP2-deficient mice fail to take up GST-SHH-N, whereas uptake of this ligand is prominent in control cells. 

No uptake of GST is seen in either genotype. 

 
 
 
 

4.4.3 Localization of internalized SHH ligand in various cellular compartments 
 
 

Next, I traced the intracellular fate of internalized SHH in primary wildtype ependymal cells. 
 
 
 

Figure 4.47: Internalized SHH-N 

is mainly found in early 

endosomal and recycling 

compartments of ependymal cells. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

endosome), and Rab9 (late endosomes). 

(A-C) Ependymal cell cultures 

derived from control mice were 

treated at DIV10 with 10 µg/ml 

GST-SHH-N. After 2 hours of 

ligand incubation, the cells were 

fixed and immunostained for GST- 

SHH-N (green), LRP2 (blue), and 

either early endosome antigen 1 

(EEA1; panel A), Ras-related 

protein antigen 11 (Rab11; panel B) 

or Rab9 (panel C). Color channels 

are shown individually or in merged 

configuration. (D) Localization 

analysis using the thresholded 

Mander's value TM1 documents the 

extent of co-localization of GST- 

SHH-N with EEA1 (early 

endosomes), Rab11 (recycling 
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For this, primary ependymal cultures were treated with GST-SHH-N (Figure 4.47 A-C), fixed, 

and co-immunostained for GST-SHH-N and markers of early, late, and recycling endosomal 

compartments. Co-localization analysis of ependymal cells stained for EEA1 and GST-SHH-N 

revealed a substantial localization of the ligand with this marker of early endosomal 

compartment (Figure 4.47 A, D). A similar extent of co-localization was seen for GST-SHH-N 

with the recycling endosomal compartment marker Rab11 (Figure 4.47 B, D). By contrast, the 

extent of co-localization was significantly lower for the late endosomal marker Rab9 (Figure 

4.47 C, D). 
 

In conclusion, SHH internalized by LRP2 in ependymal cells seemed to undergo a recycling 

rather than a late endosomal/lysosomal fate. 

 
 

4.5 LRP2 determines localization of Rab GTPases in motile cilia 
 
 

Over 70 G proteins of the so-called Rab GTPases superfamily have been discovered. Rab 

proteins are localized to all membrane compartments of cellular organelles, including 

endoplasmic reticulum, Golgi, endosomes, lysosomes, and the nucleus, just to name a few. 

In epithelial cells, Rab GTPases are implicated in trafficking of junctional proteins and, 

consequently, in establishing cellular polarity. As well as controlling vesicular trafficking in the 

endosomal-lysosomal system. Rab GTPases have also been shown to interact with ciliary 

compartment proteins and to determine trafficking processes in primary cilia (Blacque, 

Scheidel, & Kuhns, 2017). 

 
 

4.5.1 Early endosomal compartment markers are reduced in cell body and motile cilia 
of ependymal cells lacking LRP2 

 
 

So far, the relevance of Rab proteins for functional integrity of motile cilia has not been 

investigated. However, my observation of LRP2-dependent sorting of SHH-N to Rab positive 
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compartments of the endosomal system (Figure 4.47) prompted me to test the impact of LRP2 

activity on potential sorting of Rab proteins to and from motile cilia in primary ependymal cells. 

 
 

Initially, I stained primary ependymal cells treated with GST-SHH-N for early endosomal 

markers Rab4 and EEA1. In control cells, Rab4 displayed an obvious perinuclear pattern (Figure 

4.48 A). In addition, the protein also showed extensive localization to the ciliary axoneme as 

documented by co-staining for tubulin (Figure 4.48 B). In LRP2-deficient ependymal cells, 

levels of Rab4 in the cell body (Figure 4.48 C) and in motile cilia (Figure 4.48 D) were 

significantly decreased, in line with the obvious endocytic defect in cells lacking LRP2. 

 
 

Figure 4.48: 

Localization of early 

endosomal marker 

Rab4 in motile cilia and 

in cell soma of 

ependymal cells. 

Ependymal cell cultures 

derived from control  (A, 

B) and Lrp2-/- (C, D) 

newborn mice were 

treated at DIV10 with 10 

µg/ml GST-SHH-N. 

After 2 hours of ligand 

incubation, the cells were 

fixed and immunostained 

for early endosomal 

marker Rab4 (green), 

ciliary  axoneme  marker 

acetylated tubulin (a Tub; red) and LRP2 (blue). Cell nuclei were counterstained with DAPI (white). Color 

channels are shown individually or in merged configuration. Single plane of section images from the cell 

body (A, C) or the ciliary axoneme (B, D) were chosen from an optical series and displayed separately. 
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Prominent immunosignals for Rab4 are seen in the axoneme of the motile cilia and in the cell body in control 

but not in LRP2 mutant ependymal cells. Immunosignals for the axoneme marker acetylated tubulin are 

comparable in cells from control and Lrp2-/- mice. 

 
 

Early endosome antigen 1 (EEA1) is a membrane bound protein that interacts with Rab5 and 

plays an important role in early endosomal trafficking(Jovic, Sharma, Rahajeng, & Caplan, 

2010). EEA1 is widely used as a marker for early endosomes. In my studies, EEA1 was strongly 

expressed in ependymal cells where it localized to the base of the motile cilia (Figure 4.49 A, 

B). As seen for Rab4 before, levels for EEA1 were decreased in the soma of ependymal cells 

from LRP2 deficient mice (Figure 4.49 C) and no EEA1 signal was noted at the level of the cilia 

(Figure 4.49 D). 

 
 

Figure 4.49: EEA1 

levels in ependymal 

cells and motile cilia of 

Lrp2-/- and control mice. 

Ependymal cell cultures 

derived from control  (A, 

B) and Lrp2-/- (C, D) 

newborn mice were 

treated at DIV10 with 10 

µg/ml GST-SHH-N for 2 

hrs. Subsequently, the 

cells were fixed and 

immunostained for early 

endosome antigen 1 

(EAA1; green), axonem 

marker acetylated tubulin 

(a Tub; red), and LRP2 

(blue).  Cell  nuclei were 

counterstained with DAPI (white). Color channels are shown individually or in merged configuration. Single 
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plane of section images from the cell body (A, C) or the ciliary axoneme (B, D) were chosen from an optical 

series and displayed separately. In cell bodies and at the base of the ciliary axonome, levels of EEA1 

(representing early endosomes) are significantly reduced in Lrp2-/- ependymal cells compared with controls. 

Immunosignals for the axoneme marker acetylated tubulin are comparable in both genotypes. 

 
 
 

Jointly, these data documented a significant decrease in the early endosomal compartment of 

LRP2-deficint ependymal cells, both in the cell body and in the motile cilia. 

 
 

4.5.2 Recycling endosomal compartment markers are unchanged in ependymal cells and 
in motile cilia lacking LRP2 

 
 

Next, I investigated the impact of LRP2 deficiency on the composition of the recycling 

compartment in primary ependymal cells. To do so, I tested for the subcellular pattern of Rab35. 

As a regulator of rapid recycling, Rab35 is localized mainly to the plasma membrane and to 

early endosomal structures (Kouranti, Sachse, Arouche, Goud, & Echard, 2006, p. 35; Sato et 

al., 2008). 

Immunostaining for Rab35 in ependymal cells treated with GST-SHH-N indicated localization 

pattern of this protein to cell body and the motile ciliary axoneme of control cells (Figure 4.50 

A, B). Examination of LRP2-deficient ependymal cells failed to detect any obvious differences 

in this pattern (Figure 4.50 C, D). 
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Figure 4.50: Levels of 

Rab35 in cell body and 

motile cilia of 

ependymal cultures. 

 
Ependymal cell cultures 

derived from Lrp2-/- and 

control mice at DIV10 

were treated with 10 

µg/ml GST-SHH-N for 2 

hrs. Thereafter, cell 

cultures were 

immunostained for fast 

recycling endosome 

marker Rab35, axoneme 

marker acetylated tubulin 

(a Tub; red), and for 

LRP2 (blue). Cell nuclei 

were counterstained with 

DAPI (white). Color channels are shown individually or in merged configuration. Single plane of section 

images from the cell body (A, C) or the ciliary axoneme (B, D) were chosen from an optical series and 

displayed separately. Immunosignals for Rab35 are seen in the cell body and ciliary axoneme of ependymal 

cells with no apparent differences comparing control and Lrp2-/- cultures. 

 
 

Rab11 GTPase is considered a specific marker for the slow recycling compartment in the 

endosomal circuitry. In my immunostainings, Rab11 showed a pronounced perinuclear pattern 

in ependymal cells of controls (Figure 4.51 A). In addition, Rab11 localized to the base of the 

cilia but not to axonemal structures (Figure 4.51 B). No consistent differences in the Rab11 

pattern were noted comparing Lrp2 -/- and control ependymal cells (Figure 4.51 C). Also, 

analysis of motile cilia in Lrp2-/- ependymal cells recapitulated the same basal localization as 

seen for controls (Figure 4.51 B, D). 
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Figure 4.51: Levels of Rab11 in 

cell body and motile cilia of 

primary ependymal cells. 

Ependymal cell cultures derived 

from Lrp2-/- and control mice at 

DIV10 were treated with 10 µg/ml 

GST-SHH-N for 2 hrs. Thereafter, 

cell cultures were immunostained 

for recycling endosome marker 

Rab11 (green) and axonem marker 

acetylated tubulin (a Tub; blue). 

Cell nuclei were counterstained 

with DAPI (white). Color channels 

are shown individually or in 

merged configuration. Single plane 

of section images from the cell 

body (A, C) or the ciliary axoneme 

(B, D) were chosen from an optical 

series   and   displayed separately. 

Rab11 can be detected in the cell 

body (A, C) and at the base of the ciliary axoneme (cyan signal in B and D) with no apparent difference 

in levels comparing the two genotypes. 

In summary, my investigation of rapid and slow recycling compartment markers failed to reveal 

obvious differences in subcellular localization in ependymal cells and motile cilia comparing 

Lrp2 genotypes. 
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4.5.3 LRP2 deficiency impacts distribution of Rab GTPases involved in transcytosis and 
cell signaling in ependymal cell body and motile cilia 

 
 

Several recycling endosome markers are involved in control of transcytosis as well. For 

example, Rab8a can be found not only in slow recycling compartments but also in vesicular 

structures that traffic to the basolateral membrane of polarized cells. It is therefore considered 

as a apico-basal recycling marker (Henry & Sheff, 2008). 

In ependymal cells from controls, Rab8a showed extensive immunostaining in the cell body 

(Figure 4.52 A). It also showed localization to the axoneme and the base of motile cilia (Figure 

4.52 B). Ependymal cells from Lrp2-/- exhibited a similar subcellular localization of Rab8a to 

cell body (Figure 4.52 C) and motile cilia (Figure 4.52 D). 

 
 
 

Figure 4.52: Rab8a 

expression in cell body 

and motile cilia of 

primary ependymal 

cells. 

 
Ependymal cell cultures 

derived from Lrp2-/- and 

control mice at DIV10 

were treated with 10 

µg/ml GST-SHH-N for 

2hrs. Thereafter, cell 

cultures were 

immunostained for the 

apico-basal recycling 

endosome marker Rab8a, 

for axoneme marker 

acetylated tubulin (a Tub; 

red), and for LRP2 (blue). Cell nuclei were counterstained with DAPI (white). Color channels are shown 

individually or in merged configuration. Single plane of section images from the cell body (A, C) or the ciliary 

axoneme (B, D) were chosen from an optical series and displayed separately. In the cell body, Rab8a levels 
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are comparable between Lrp2-/- and control ependymal cultures (A, C). Also, Rab8a can be detected in the 

axoneme of the motile cilia with no apparent difference in intensities comparing the two genotypes (B, D). 

 
 
 

Another marker characterizing transcytosis and apico-basal recycling processes is 

Rab17(Hunziker & Peters, 1998; Zacchi et al., 1998, p. 17). It localized to subcellular structures 

in the cell body with no apparent differences in pattern and intensity comparing control and 

LRP2-deficient ependymal cells (Figure 4.53 A, C). 

 
 

Figure 4.53: Rab17 

levels in cell body and 

motile cilia of 

ependymal cells. 

 
Ependymal cell cultures 

derived from Lrp2-/- and 

control mice at DIV10 

were treated with 10 

µg/ml GST-SHH-N for 

2hrs. Thereafter, cell 

cultures were 

immunostained for 

apico-basal recycling 

endosome marker Rab17 

(green), axoneme marker 

acetylated tubulin (a Tub; 

red), and for LRP2 (blue). 

Cell nuclei were 

counterstained with DAPI (white). Color channels are shown individually or in merged configuration. Single 

plane of section images from the cell body (A, C) or the ciliary axoneme (B, D) were chosen from an optical 

series and displayed separately. Rab17 levels are unchanged in Lrp2-/- ependymal cultures compared with 

control cells (A, C). At the level of the cilia, Rab17 protein can be detected at the base but not in the ciliary 

axoneme of ependymal cells (B, D), with no apparent difference comparing genotypes. 
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In motile cilia of control cells, Rab17 localized to the ciliary base (Figure 4.53 B), a pattern also 

shared by LRP2 mutant cells (Figure 4.53 D). 

 
 

Rab23 is a marker for recycling endosomes with a regulatory role in trafficking processes during 

SHH signaling (Evans, Ferguson, Wainwright, Parton, & Wicking, 2003, p. 23; Fuller, 

O’Connell, Gordon, Mauti, & Eggenschwiler, 2014, p. 23; L.-Q. Zheng, Chi, & Li, 2017, p. 23). 

In ependymal cells from controls, Rab23 showed sparse distribution in the cell body and an 

obvious absence from motile cilia structures (Figure 4.54 A, B). 

 
 

Figure 4.54: Rab23 

expression in cell body 

and motile cilia of 

ependymal cells. 

 
Ependymal cell cultures 

derived from Lrp2-/- and 

control mice at DIV10 

were treated with 10 

µg/ml GST-SHH-N for 

2hrs. Thereafter, cell 

cultures were 

immunostained for 

recycling endosome 

marker Rab23 (green), 

for axoneme marker 

acetylated tubulin (a Tub; 

red), and for LRP2 (blue). 

Cell nuclei were 

counterstained with DAPI (white). Color channels are shown individually or in merged configuration. Single 

plane of section images from the cell body (A, C) or the ciliary axoneme (B, D) were chosen from an optical 

series and displayed separately. 
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In the cell body, Rab23 levels are robust in Lrp2-/- ependymal cultures but barely detectable in 

controls (A, C). Similarly, Rab23 levels are significantly increased in the axoneme of motile 

cilia of mutant as compared with control ependymal cells (B, D). 

Strikingly, in Lrp2-/- cells, the levels of Rab23 were notably elevated as compared with controls, 

including prominent localization to the motile ciliary axoneme (Figure 4.54 C, D). 

 
 

4.5.4 Late endosomal compartment markers in ependymal cells and motile ciliary 
structures are not affected by absence of LRP2 

 
 

As a late endosomal compartment marker, I examined Rab9 levels and distribution in ependymal 

cell body and motile ciliary structures. 

Figure 4.55: Rab9 expression in 

cell body and motile cilia of 

ependymal cells. 

Ependymal cell cultures derived 

from Lrp2-/- and control mice at 

DIV10 were treated with 10 µg/ml 

GST-SHH-N for 2 hrs. Thereafter, 

cell cultures were immunostained 

for late endosome marker Rab9 

(green) and for axoneme marker 

acetylated tubulin (a Tub; blue). 

Cell nuclei were counterstained 

with DAPI (white). Color channels 

are shown individually or in merged 

configuration. Single plane of 

section images from the cell body 

(A, C) or the ciliary axoneme (B, D) 

were chosen from an optical series 

and displayed separately. In the cell 
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body, Rab9 levels are comparable between Lrp2-/- and control ependymal cultures (A, C). Rab9 cannot be 

detected in ciliary axoneme in both genotypes (B, D). 

 
 
 

These studies showed comparable levels of Rab9 in the cell body in both genotypes (Figure 4.55 

A, B). In motile ciliary structures, no Rab9 positive immunosignal was detected in LRP2- 

deficient or control cells (Figure 4.55 C, D). 
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5 Discussion 
 
 

Previous research in the Willnow lab showed that LRP2 is expressed in ependymal cells 

neighboring the stem cell niche in the SVZ of the adult mouse brain. Loss of receptor expression 

resulted in depletion of the B cell population and in reduced proliferative capacity of their 

progeny, the C cells (Gajera et al., 2010). While these findings established a role for LRP2 in 

adult neurogenesis, the molecular mechanism of receptor action remained less clear. Based on 

the ability of the receptor to bind BMP4 (Spoelgen et al., 2005) and on the increased activity of 

the BMP pathway in the mutant SVZ (Gajera et al., 2010), a function as a clearance receptor in 

BMP signal suppression during neurogenesis was proposed. This hypothesis was recently 

challenged by findings that during embryonic neurogenesis LRP2 acts in SHH signaling (Christ 

et al., 2012). Further refining the mode of receptor action in adult neurogenesis, and whether it 

also acts as a SHH receptor in this context was the main goal of my thesis project. 

 
 

Studying the cellular and molecular pathways that define the functional integrity of the V-SVZ 

niche in wild-type and LRP2 mutant mice in vivo, and in SVZ explants and primary ependymal 

cell cultures derived thereof, I now substantiated a role for LRP2 in SHH signaling in the adult 

brain. Specifically, I uncovered a decrease in progenitor cell proliferation in the rostral but not 

the caudal SVZ of LRP2-deficient mice. These regional specific defects in adult neurogenesis 

coincide with loss of SHH uptake and SHH signaling in the rostral and an aberrant accumulation 

of SHH in the caudal SVZ of mutant animals. Because coordinated beating of motile cilia is lost 

in ependymal cells lacking LRP2, I propose a model whereby the activity of this receptor may 

be required to direct proper cilia-driven flow of the CSF throughout the ventricular system of 

the brain. Directionally flow of the CSF assures proper distribution of signaling molecules, 

including SHH, and controls region-specific aspects of adult neurogenesis in the SVZ. Although 

the molecular mechanism of LRP2 action in ciliary movement could not be fully established in 

this work, my findings of an altered distribution of endocytic markers in the LRP2-deficient 

ependyma argues for a specific role of this endocytic receptor in directing endosomes to the 

motile ciliary compartment. 
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5.1 LRP2 controls SHH activity in a region-specific manner in the SVZ 
 
 

My initial goal was to query a role for LRP2 in SHH signaling in the adult SVZ. 
 
 
 

The relevance of this morphogen pathway for adult neurogenesis had been shown by several 

labs previously. Thus, SHH-responsive cells, characterized by Gli1 expression were found in 

cells located in the ventral SVZ region (Ihrie et al., 2011). Most of these cells had neural stem 

cell (B1 cell) characteristics (Palma et al., 2005). These cells were quiescent as administration 

of antimitotic drugs into SVZ region of mice in vivo to acutely eliminate proliferative cells did 

not impact their progenies (Ahn & Joyner, 2005). Further experimental evidences showed that 

conditional deactivation of Shh in adult mice resulted in the reduction of interneurons derived 

from the ventral but not the dorsal SVZ (Ihrie et al., 2011). These results were in line with 

findings that, following induced expression of activated SMO progenitors of the dorsal SVZ 

region acquire the fate of ventral progenitors (Ihrie et al., 2011). One model proposed that the 

region-specific activity of SHH in the ventral SVZ may be explained by a morphogen expression 

domain located in the ventral forebrain. 

 
 

Whether any of these functions in SHH signaling depends on LRP2 was unknown. To study 

SHH signaling in the SVZ of control and LRP2 mutant adult mouse brain, I initially assessed 

the expression levels of Gli1 in the entire dorso-ventral and rostro-caudal axis of the SVZ using 

the Gli1-lacZ reporter mouse model and ISH analysis. In the rostral region of the control Gli1- 

lacZ reporter mouse brain, Gli1 expression was strongest in the ventral but gradually decreased 

towards the dorsal domain of the SVZ. The SVZ of Lrp2-/- mice displayed a prominent decrease 

in lacZ activity, both in ventral and dorsal domains as compared to controls, suggesting loss of 

SHH activity in this region of the mutant SVZ niche. Similarly, using ISH, I documented highest 

Gli1 transcript levels in the ventral tip of the SVZ but almost no Gli1 signal in more dorsal 

regions (Figure 4.1, figure 4.3). As shown for the Gli1-lacZ reporter model, Gli1 transcript 

levels were also prominently decreased in the SVZ of Lrp2-/- mice. These observations are in 
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line with previous findings describing SHH signaling mainly in the ventral region of the SVZ 

(Ihrie et al., 2011). 

As for the caudal brain area, Gli1-dependent lacZ activity was decreased in the SVZ of control 

mice, both in the dorsal and the ventral domains (Figure 4.2). By contrast, in LRP2 mutants, 

SHH signaling as deduced by lacZ staining was increased, particularly in the ventral SVZ region 

(Figure 4.2). Of note, no changes in Gli1 ISH signals were observed in the caudal SVZ of mutant 

mice, contrasting the data from the Gli1_lacZ reporter experiments, where activity in the caudal 

domain was up in the mutant (Figure 4.4). 

 
 

While the above findings provided strong experimental support for my hypothesis of a role for 

LRP2 as SHH receptor in the adult brain, I was surprised by the observation that the decrease 

in SHH signaling in mutant brains was specific for the rostral SVZ. Thus, no changes in Gli1 

mRNA levels were observed comparing genotypes (Figure 4.4). In the Gli1_lacZ reporter mouse 

model, SHH-induced lacZ activity in the caudal SVZ, particularly in the ventral medial wall, 

was even higher in mutants as compared with controls (Figure 4.2). These observations were 

particularly puzzling considering the uniform expression of LRP2 along the rostro-caudal axis 

of the SVZ (Gajera et al., 2010). 

 
 

What may be the reasons for this spatial heterogeneity in LRP2 activity in the V-SVZ? Before 

further exploring this question, I considered several factors that may underlie the regional 

differences in morphogen activity in V-SVZ. Initially, I considered two factors that may 

contribute to regional-specific aspects of SHH signaling in the V-SVZ, namely distinct 

expression patterns of members of the SHH receptorsome along the dorso-ventral and rostro- 

caudal axis of the brain ventricle or the discrete localization of the SHH source relative to its 

target domain. These analyses are discussed in the following. 
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5.1.1 Expression of members of the SHH receptorsome along the dorso-ventral and 
rostro-caudal axis of the SVZ 

 
 

To untangle the regional specification of SHH signaling along the rostro-caudal axis of the SVZ, 

I examined the regional distribution of various members of the SHH receptorsome in the SVZ 

of adult mice. 

 
 

Previous studies identified several SHH binding proteins, including PTCH1, GAS1, CDO, and 

BOC that control the spread of SHH signaling through the embryonic neural tube, by either 

enhancing or blocking signaling in a cell-autonomous manner. PTCH1 sequesters SHH and 

demonstrates a cell-autonomous inhibitory role on signal transduction by endocytosis and 

degradation of the morphogen (Incardona et al., 2000). As a part of negative-feedback regulatory 

loop in SHH signaling, Ptch1 is also a transcriptional target of SHH signaling and is 

consequently upregulated in the ventral neural tube. GAS1, CDO and BOC also bind SHH, but 

act as cell-autonomous activators of SHH signaling. In contrast to PTCH1, the latter receptors 

are transcriptionally repressed by SHH signal activation. (Dessaud et al., 2008). 

To test the relevance of members of the SHH receptorsome for SHH signaling in adult brain, I 

examined the expression domains of these receptors in various SVZ regions in controls and 

Lrp2-/- mice. ISH analyses revealed no obvious differences in transcript levels for Smo, Ptch1, 

Cdon and Boc comparing rostral-ventral, rostral-dorsal, caudal-ventral and caudal-dorsal SVZ 

regions in both genotypes (Figure 4.5-4.12). These findings argued that the distinct impact of 

LRP2 activity on SHH signaling in the rostral but not the caudal SVZ is not explained by spatial 

differences in the expression pattern of this receptor or of other members of the SHH 

receptorsome. 
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5.1.2 Production and spatial distribution of SHH in SVZ 
 
 

In the developing neural tube, SHH is produced by cells of the prechordal plate and initiates 

signaling in the overlaying neuroepithelium to pattern the ventral neural tube. Interaction with 

LRP2 sequesters SHH on the apical surface of the ventral neuroepithelial cells, increasing local 

concentrations of the morphogen. After birth, morphogen producing centers typically shrink in 

size and are confined to discrete cell clusters, decreasing diffusion of these signaling molecules 

throughout the brain parenchyma. As for SHH, several regional sources were found in adult 

brain (Ihrie et al., 2011). In detail, Shh transcripts were detected in the medial septum, the ventral 

forebrain, and in infrequent cells close to the ventral but not to the dorsal SVZ regions (Ihrie et 

al., 2011). Using tamoxifen-inducible ShhCre; R26YFP reporter mice, the precise expression 

patterns for Shh in postnatal development were further refined documenting Shh expressing cells 

predominantly in the medial and ventral septum, in the preoptic nuclei near the hypothalamus, 

and in the bed nuclei of the stria terminalis (BNST). Some SHH-positive cells were also 

observed in cortical brain regions. With relevance to SHH signaling in the V-SVZ, SHH positive 

cells in the BNST located in close proximity to the ventral tip of the lateral ventricles. 

Apparently, SHH produced in BNST cells is transferred via anterograde transport along the 

axons and is secreted distally at axon terminals close to the ventral tip of the SVZ (Traiffort, 

Moya, Faure, Hässig, & Ruat, 2001). While the above studies provided important information 

about the local source of SHH in the adult brain, i.e. SVZ, these studies described Shh gene 

transcription spatially, but did not specify the localization of full length (SHH-FL) versus the 

active forms (SHH-Np) of this morphogen. 

 
 

To explore the consequence of LRP2 activity on the distribution of the secreted morphogen, I 

examined levels of SHH-FL and SHH-Np in different regions of the SVZ by western blot 

analysis. Specifically, I scored SHH-FL and SHH-Np intensity levels in four dissected domains 

of the adult SVZ. My studies documented that SHH-FL levels were not changed in micro- 

dissected samples from the dorsal (Figure 4.13 A, C) and ventral (Figure 4.13 B, D) regions of 

the rostral SVZ in LRP2 mutants compared with control mice. Similarly, no statistically 

significant differences in levels of SHH-Np were detected in the rostral dorsal and rostral ventral 
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domains of the SVZ (Figure 4.13 B, E, F). Also, the examination of the micro-dissected medial 

septum showed no obvious differences in levels of SHH-FL and SHH-Np comparing genotypes 

(data is not shown). Based on these results, I concluded that LRP2 activity does not impact 

expression and maturation of SHH in the rostral ventral forebrain. The situation was different 

however for the caudal SVZ. Here, SHH-Np levels were increased two-fold, both in the dorsal 

and ventral regions of the caudal SVZ in LRP2 mutants as compared to littermate controls 

(Figure 4.14 A, B, E, F). No changes in SHH-FL levels were observed comparing both 

genotypes (Figure 4.14 A, B, C, D). 

 
 

In summary, my analysis of the nascent and active forms of SHH identified remarkably higher 

levels of the secreted active SHH-Np in the caudal SVZ of LRP2 mutants. By contrast, levels 

of the precursor SHH-FL, reflecting protein production in the source, were not affected. 

Increased levels of SHH-Np in the caudal SVZ mirrored the shift of Gli1 expression levels from 

the rostral to the caudal SVZ domain in LRP2 mutants described above. Thus, I hypothesize 

that the increased levels of the active form of the morphogen are the primary cause of higher 

SHH signaling activity in the caudal region of Lrp2 deficient mice. Dose-dependent actions of 

SHH was shown earlier by James Briscoe and colleagues as an essential regulatory mechanism 

for ventral neural tube patterning (Balaskas et al., 2012). 

 
 

5.1.3 LRP2 impacts adult neurogenesis in the rostral but not caudal regions of the SVZ 
 
 

Having identified altered levels and activity of SHH-Np in the rostral versus the caudal regions 

of the LRP2-deficient SVZ, I next explore whether these region-specificity in morphogen 

signaling would be paralleled by similar region-specific alteration in adult neurogenesis. Defects 

in adult neurogenesis in the SVZ of LRP2 mutant mice had been reported before (Gajera et al., 

2010). Yet, these studies did not investigate this phenotype along the dorso-ventral or rostro- 

caudal axis of the ventricular system. 
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Previous investigations of the neurogenic niche in the mouse brain revealed its heterogeneity in 

terms of cell density and composition along the rostro-caudal and dorso-ventral axis (Azim et 

al., 2012; Falcão et al., 2012; Mirzadeh, Merkle, Soriano-Navarro, Garcia-Verdugo, & Alvarez- 

Buylla, 2008). Also, depending on localization, B cells exhibit distinct differentiation fate. Thus, 

B cells having a more rostral localization in the SVZ generate granular cells (GCs) placed in 

more superficial layers of the OB, as compared to B1 cells residing in the caudal SVZ (Kelsch, 

Mosley, Lin, & Lois, 2007). Later studies documented that region specificity in NSCs 

differentiation is also seen along the dorso-ventral axis. These experiments used selective 

electroporation of cells in sub-regions of the V-SVZ to untangle the link between the location 

of the B cells in medial, dorsal and lateral walls of the lateral ventricles and the ultimate 

localization of their progeny in the various layers of the OB (de Chevigny et al., 2012; 

Fernández, Croce, Boutin, Cremer, & Raineteau, 2011). According to these studies, B cells 

residing in the medial wall of ventricles tend to generate periglomerular cells (PGCs) (>85%), 

whereas those in the lateral wall primarily adopt a granule cells (GC) fate (>90%). 

 
 

To explore the consequences of the region-specific impact of LRP2 deficiency on the extend of 

adult neurogenesis, I analyzed the proliferative capacity of progenitor (C) cells in the wild-type 

and the LRP2-deficient SVZ. These analyses revealed an almost 50% decreased proliferation in 

the ventral and dorsal SVZ in LRP2-deficient as compared to control mice (Figure 4.27). 

Overall, these observations were in accordance with findings reported by Gajera and colleagues 

showing a globally decreased proliferation in the Lrp2-/- SVZ (Gajera et al., 2010). However, 

upon my further examination of the caudal SVZ, I failed to detect any consistent changes in 

proliferative capacity between both genotypes in those brain regions (Figure 4.28). Further 

examination of the neural stem cell population in the SVZ by staining for GFAP or SOX2 

produced the same pattern of local changes in the rostral but bot not the caudal SVZ of mutants 

(Figure 4.30-4.33). These results tied in well with the observed region-specific changes in SHH 

signaling activity in the SVZ of LRP2 mutant mice. 
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5.2 Activity alterations in BMP, WNT/β catenin and mTOR signaling 
pathways predominate in the rostral SVZ region of LRP2 mutants 

 

Multiple signaling pathways control SVZ neurogenesis. So, as a next question, I wanted to test 

how LRP2 deficiency may affect such neurogenic signaling pathways. 

 
 

Among various morphogens, BMP4 and BMP7 provide regulatory signals for adult 

neurogenesis (Mikawa, Wang, & Sato, 2006; Peretto et al., 2004). Specifically, ectopic 

induction of BMP signaling by overexpression of BMP7 results in a decrease in proliferation in 

the SVZ. Suppression of BMP signaling by increasing the action of the antagonist Noggin 

changes the differentiation fate of B cells towards the oligodendroglial linage (Colak et al., 

2008). A possible role for LRP2 in BMP-dependent regulation of adult neurogenesis was 

suggested in a previous study that documented elevated levels of phosphorylated forms of 

SMAD3/5/8 and of ID3, downstream targets of BMP signaling in the LRP2-deficient SVZ 

(Gajera et al., 2010). Because LRP2 is able to bind BMP4 and to deliver it to cellular catabolism, 

a possible role for this receptor as clearance receptor for BMP was proposed earlier. In this 

model, LRP2 would promote stem cell proliferation by antagonizing the anti-proliferative 

actions of BMPs in the niche. However, increase of BMP signaling in the LRP2 mutant niche 

may also be a secondary consequence of alterations of other signaling pathways in the SVZ. My 

current observations confirmed previous findings by showing increased ID3 levels in the SVZ 

of LRP2-defcient mice as compared to controls. Again, these changes were specific to the rostral 

SVZ region whereas no differences were observed caudally (Figure 4.15-4-16). Although my 

new findings substantiated earlier work by Gajera and colleagues, they did not ultimately resolve 

whether the BMP pathway may be a direct or indirect target of LRP2 activity. Earlier 

investigations on neural tube development revealed the importance of an antagonistic crosstalk 

between SHH and BMP signaling in dorso-ventral patterning of the floor plate (Patten & 

Placzek, 2002). Consequently, loss of SHH signaling in the LRP2-deficient neural tube resulted 

in a secondary increase in BMP signals (Spoelgen et al., 2005). The same mechanism may be 

operable in the SVZ and the decreased levels of SHH activity in this niche may secondarily 

increase BMP signaling in the LRP2 deficient SVZ. Irrespective of the exact mode of action, 
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my finding on the BMP signaling pathways still fully substantiated the region-specific action of 

LRP2 in the V-SVZ. 

 
 

In addition to SHH and BMP, I also characterized the consequences of LRP2 deficiency for Wnt 

signaling in the SVZ. Multiple lines of evidence suggest an indispensable role of Wnt signaling 

in cell proliferation and differentiation, not only during embryonic development but also in the 

adult organism. With relevance to my studies, alteration in Wnts are connected with impaired 

neurogenesis in the adult SVZ (Hirota et al., 2016). Mechanistically, there are several ways of 

Wnt signal conduction, namely canonical Wnt/β-catenin signaling, the Wnt/Ca2+ pathway, and 

the Wnt/planar cell polarity pathway (Komiya & Habas, 2008). Canonical Wnt signaling acts 

through transfer of β-catenin into the nucleus, initiating downstream target gene transcription 

through TCF/LEF transcription factor (MacDonald, Tamai, & He, 2009). In the Wnt/Ca2+ 

pathway, Wnt5a and Wnt11 activate cyclin-dependent kinase 2 and protein kinase C to increase 

cellular Ca2+ concentration. Elevated Ca2+ levels, in turn, stimulate serine/threonine phosphatase 

activity of calcineurin, which dephosphorylates nuclear factor of activated T-cells (NFAT) 

transcription factors. This results in NFATs’ import into the nucleus and transcription complex 

formation to initiate or to repress the transcription of target genes (Peifer & McEwen, 2002 ). 

Wnt/planar cell polarity operates mainly through cytoskeletal rearrangements (Komiya & 

Habas, 2008). 

 
 

As part of my thesis work, I collaborated with the group of Nikolaus Rajewski in using 

differential gene expression analysis of single cell transcriptomic data from Lrp2-/- and control 

SVZ regions. In these studies, I identified a significant decrease in β-catenin expression levels 

in transient amplifying progenitors (C cells) of the Lrp2-/- SVZ. To test whether those changes 

reflected changes in canonical Wnt signaling, I scored Tcf/Lef expression levels in rostral and 

caudal SVZ regions using a lacZ reporter mouse. Decreased levels of the lacZ reporter activity 

in the receptor-deficient SVZ confirmed my assumption of Wnt/β-catenin pathway inactivation 

in the absence of LRP2. Although not proven experimentally by me or others as yet, a direct 

role for LRP2 in canonical Wnt signaling seems plausible. This assumption is based on the 
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reported function of several members of the LDL receptor gene family as coreceptors to Frizzled 

in Wnt signal transduction (He et al., 2004; Pinson et al., 2000). However, my findings cannot 

exclude that the changes in Wnt activity may also stem from alterations in SHH and/or BMP 

activities. For example, previous studies reported a role for SHH as an upstream activator for 

expression of the Wnt signal transducer Tcf3/4, which, in turn, regulates cell cycle progression 

in neural progenitor cells (Alvarez-Medina, Dreau, Ros, & Martí, 2009). In addition, a number 

of recent studies discussed the existence of feedback loops whereby Wnt initiates SHH 

activation but active SHH suppresses the Wnt pathway (S.-W. Cho et al., 2011; Martinez-Ferre, 

Navarro-Garberi, Bueno, & Martinez, 2013; Winkler, Mahoney, Sinner, Wylie, & Dahia, 2014). 

 
 

Finally, I explored the consequences of LRP2 action for activity of the mTOR pathway in the 

SVZ. In these studies, I showed that levels of the downstream targets of mTOR activation, 

pS6RP and p4EBP1m were markedly higher in LRP2 mutants (Figure 4.17-4.24). Again, these 

changes were specific for the rostral SVZ region (Figure 4.17 and figure 4.22), while no obvious 

alterations were observed caudally (Figure 4.19 and figure 4.23). As an initiator of CAP- 

dependent protein translation, high levels of mTOR activity typically reflect an active cell 

metabolism and correlate with higher proliferative capacity of cells (Hay & Sonenberg, 2004; 

Laplante & Sabatini, 2009; Ma & Blenis, 2009). 

 
 

Increased mTOR activity in the mutant SVZ seems to contradict the decrease in proliferative 

capacity seen in the rostral SVZ. However, this apparent contradiction may be explained by a 

model wherein mTOR activation in LRP2 mutant SVZ may occur in slow dividing cell 

populations (i.e., stem cells) not marked by BrdU incorporation during a 24 hours period (as 

used in my work). In line with this hypothesis, almost half of the pS6RP immunosignals were 

found in SOX2-positive neural stem cells in controls and LRP2 deficient mice (Figure 4.18). 

Accordingly, I propose that increased mTOR activity in the neural stem cell population may 

affect stem cell fate determination, particularly turning B cells from a quiescent into an activated 

state. As a consequence, a depletion of the quiescent neural stem cell pool in LRP2 mutants may 

occur, eventually resulting in a decreased rate of proliferation of fast dividing progenitors seen 
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in this mouse model. Obviously, this hypothesis has to be taken with caution until further 

confirmed by more experimental evidence. 

 
 

Also, how exactly LRP2 activity may affect mTOR needs further exploration. Increased activity 

of mTOR in the rostral SVZ region of LRP2 mutants may be a consequence of elevated BMP 

signaling. As demonstrated in lung carcinomas, BMP2 induced-activation of the PI3K/mTOR 

pathway is essential for regulation of stem cell differentiation (Langenfeld, Kong, & 

Langenfeld, 2005). Alternatively, alterations in SHH activity may be the underlying reason as a 

crosstalk between SHH and mTOR exists (Sharma et al., 2015; Yan Wang et al., 2012). 

 
 

5.3 CSF flow and morphogen distribution in the SVZ 
 
 

Obviously, changes in the proliferative capacity of the SVZ in LRP2 mutant mice may be 

explained by a direct role of LRP2 in signaling through BMP, Wnt, and/or SHH in this niche. 

Such a cell autonomous action of the receptor should occur in E cells, the only cell type in the 

SVZ that expresses this receptor. However, this hypothesis is challenged by my observations 

that LRP2 activity impacts these pathways in the rostral but not the caudal V-SVZ, although 

expression of this receptor is seen uniformly throughout the lateral ventricles. Therefore, I 

explored an alternative explanation for a more global role of this receptor in control of 

morphogen action, namely through regulation of CSF flow. Coordinated beating of motile cilia 

on ependymal cells regulate the CSF flow and thereby morphogen distribution in the ventricular 

system (Mirzadeh et al., 2008; Spassky et al., 2005b). In the adult neurogenic niche, CSF flow 

is involved in the gradient formation of chemorepellents, like Slit, that instruct neuroblast 

migration from SVZ to OBs (Nguyen-Ba-Charvet et al., 2004; Sawamoto et al., 2006). 
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5.3.1 Motile cilia on ependymal cells 
 
 

Motile cilia are hair-like organelles, consisting of a basal part anchored in the cell membrane 

and of an axoneme, extending from the cell surface. The basal part of the cilium is composed of 

the basal body, associated with the basal feet, transitional fibers or alar sheets, and striated 

rootlets. Besides a role in cell surface anchoring, the basal apparatus determines the beating 

direction of motile cilia. In their axonemes, motile cilia possess a central pair of microtubules 

surrounded by nine outer doublet microtubules, connected by inner and outer dynein arms. 

Dynein arms generate ATP-dependent sliding movements of the microtubules, resulting in a 

whip-like beating motion. In mature ciliated cells, the basal feet are pointing in the same 

direction. This direction matches the effective stroke direction of the ciliary shaft, providing 

coordinated beating of a ciliary bundle on a cell (Satir, Heuser, & Sale, 2014). Alignment of 

basal body orientation in epithelial cells of the skin of Xenopus laevis larvae for example is a 2- 

step process. In the first step, PCP pathway activity in non-ciliated outer cells instructs the 

docking of basal bodies in intercalating ciliated epithelial cells, creating bias in cilia beating 

orientation along the embryonic axis. This ciliary beating orientation bias creates a weak 

directional fluid flow, which in turn refines the ciliary alignment via a positive feedback loop 

(Mitchell, Jacobs, Li, Chien, & Kintner, 2007; Mitchell et al., 2009). In ependymal cells of the 

mouse brain, no such bias in basal body orientation exists during development. Instead, the CSF 

flow itself provides the first long-range polarization bias leading to ciliary alignment at the level 

of the entire tissue. Before ciliogenesis, CSF is secreted by the choroid plexus and absorbed in 

the foramen of Monroe, defining CSF flow in a caudo-rostral direction. The hydrodynamic 

forces generated by this directed CSF flow align the randomly beating motile cilia on murine 

ependymal cells towards the flow orientation (Guirao et al., 2010). Still, also in the mouse brain, 

Vangl2, a core component of the PCP pathway, plays an indispensable role in coordination of 

cilia beating. Being localized to several ciliary structures, Vangl2 may acts as a sensor of 

hydrodynamic forces, initiating polarization of the cytoskeleton and reorientation of basal 

bodies towards the flow direction (Guirao et al., 2010). According to recent observations, Wnt5a 

directly controls the level of Vangl2 phosphorylation in a dose-dependent manner. Vangl2 

phosphorylation plays an essential role in regulation of developmental processes in mammals. 
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Additionally, phosphorylation-dependent endocytosis of Vangl2 is critical for PCP obtainment 

(Yang et al., 2017). 

 
 

5.3.2 Role of LRP2 in functional integrity of motile cilia on ependymal cells 
 
 

Previous immunohistological analyses reported LRP2 localization at the base of the motile 

cilium in ependymal cells (Gajera et al., 2010). To uncover a so far unknown role for LRP2 in 

motile cilia function, I applied an experimental technique developed by Camille Boutin (Boutin 

et al., 2014; Labedan et al., 2016). In this procedure, lateral ventricular wall whole mount 

(LWWM) preparations are immunostained for the basal body marker FGFR1 Oncogene Partner 

(FOP), the basal foot marker gamma tubulin (γ-Tub), and the apical cell surface marker zonula 

occludens-1 (ZO1). This combination of markers not only allows the visualization of the ciliary 

bundle localization on individual ependymal cells, but also to deduce beating direction as 

detailed in the method and result section. 

 
 

Initially, I tested the impact of LRP2 deficiency on the displacement of the ciliary patch on the 

apical cell surface relative to the center of the ependymal cell (Figure 4.36). In immature 

ependymal cells, the ciliary bundles are scattered on the apical cell surface. Upon further 

differentiation, they cluster in an off-centered patch towards the direction of CSF flow. 

Eventually adjacent cells acquire the same direction of displacement from the cell center, 

acquiring translational polarity (Mirzadeh et al., 2010). My studies confirmed that ciliary 

patches in control ependymal cells have a coordinated and directed displacement relative to cell 

center. By contrast, the LRP2 mutant cells showed a random displacement of ciliary patches 

relative to the cell center (Figure 4.36 A). Using the same approach, I also scored the relative 

localization of the basal foot marker γ-Tub to the basal body marker FOP. Since the basal foot 

invariably points in the direction of the effective cilia stroke, the relative localization of both 

markers to one another reveals the beating orientation of individual cilia (Marshall & Kintner, 

2008). The average vectors, characterizing ciliary patch beating direction for each ependymal 

cell, were oriented randomly in LRP2 mutants. By contrast, in littermate controls these vectors 
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pointed in a uniform direction. In many ependymal cells from LRP2 deficient mice, the cilia 

also manifested a non-coordinated orientation within the patch, a situation not seen in control 

ependymal cells (Boutin et al., 2014; Mirzadeh et al., 2010). Finally, the total number of cilia in 

individual patches was increased in LRP2 mutants compared with controls (Figure 4.40). 

Despite all those changes, the general geometric characteristics of cells and patches were similar 

between genotypes. No difference in patch area and cell surface area covered by ciliary patches 

were observed between LRP2 mutants and littermate controls (Figure 4.41 A-D). Also, the ratio 

of apical cell surface area to cilia patch area was similar in LRP2 mutants as compared to 

controls (Figure 4.41 C). Furthermore, the structural organization of the ciliary axoneme seemed 

unperturbed in mutant cells as deduced from immunostainings for markers of the axoneme 

including acetylated tubulin (Tub) and ADP-ribosylation factor-like protein 13B (ARL13B) 

(Figure 4.42). My conclusion of a normal anatomy is in line with previous observations using 

scanning EM to characterize structural aspects of motile cilia architecture in LRP2-deficient 

mice (Gajera et al., 2010). 

 
 

Taken together, my studies were the first to identify a role for LRP2 in coordination of cilia 

beating in ependymal cells. They suggested aberrant distribution of morphogens (i.e., SHH) due 

to a disturbed CSF flow as the underlying cause for the region-specific defects in adult 

neurogenesis that I uncovered in receptor-mutant mice. Because the structural architecture of 

individual cilia seemed normal, I suspected a crucial role for LRP2 in coordination of ciliary 

beating. 

 
 

What may be the molecular mechanisms behind this regulatory role of LRP2? 
 
 
 

Previous investigations demonstrated the importance of two pools of cortical actins in the 

coordination of motile cilia beating in epithelial cells of Xenopus laevis larvae. The first pool is 

apical actin, forming a mesh-like network in the plane of the basal body. The ciliary axoneme 

extends from the apical cell surface through holes in this mesh. The second actin pool is 
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localized slightly subapically below the cell surface. This pool of actin consists of aligned short 

filaments, connecting neighboring cilia. In detail, these actin filaments connect the basal body 

of one cilium with the distal tip of the striated rootlet of a neighboring cilium. Application of 

cytochalasin D to block subapical actin function impairs the coordinated beating of cilia and, 

consequently, reduces the CSF flow velocity. Subapical actin also impacts the uniform 

distribution of basal bodies within a cell and its disturbance widens the distance and randomizes 

the distribution of basal bodies (Werner et al., 2011). Mature ependymal cells acquire cell 

polarity already during embryonal development on radial glia cell stage. In further postnatal 

differentiation processes, translational polarity is established by the anterior migration of basal 

bodies in the apical membrane. Recently, non-muscle myosin II (NMII) was found to play a key 

regulatory role in this process (Hirota et al., 2010). Whether LRP2 impacts translational and 

rotational polarity of ependymal cells, affecting actin, NMII and overall cytoskeletal 

architecture is still elusive. 

 
 

5.3.3 LRP2 acts as endocytic receptor in ependymal cells 
 
 

Because LRP2 is an endocytic receptor and loss of receptor activity impairs endocytosis in cells 

of the adult kidney (Jörg R. Leheste et al., 2003), I considered a defect in the endocytic 

machinery of ependymal cells as the underlying cause of ciliary beating defects seen in receptor 

mutant E cells. 

 
 

Although not known for motile cilia yet, recent studies suggest a link between endocytosis and 

activity in primary cilia. As transmission electron microscopy analysis demonstrated, the 

membrane of the ciliary pocket is rich in clathrin-coated pits, indicating a higher potential for 

endocytic cargo trafficking in this region of the primary cilium (Fonte, Searls, & Hilfer, 1971; 

Haycraft et al., 2005; Jensen et al., 2004). Another feature of ciliary pocket area is its interaction 

with the actin cytoskeleton. Several lines of evidences illustrated a connection of actin cables 

with ciliary basal bodies and the role of this cytoskeletal structures in the migration and docking 

of basal bodies to the membrane (Vladar & Axelrod, 2008). Dynamic rearrangements of actin 
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cytoskeletal structures determine the curving and bending of the ciliary axoneme. The actin 

remodeling around ciliary pocket may also play a transductory role for mechanosensory stimuli. 

 
 

Several lines of evidence suggest a role for actin polymerization in endocytosis processes from 

apical cell membrane in polarized cells (Hyman, Shmuel, & Altschuler, 2006; Sandvig, 

Torgersen, Raa, & van Deurs, 2008). Actin polymerization creates thicker apical cortex. How 

this structure contributes to endocytosis was elusive until recently when a role for NMII emerged 

as a primary regulator of tension in the cortical actin network (Chandrasekar et al., 2014). 

Actomyosin works in a manner analogous to a purse-string around the coated pit. Upon 

decreased cortical pressure, (e.g., due to membrane expansion) the network around the coated 

pit contracts and increases the tension (pulls the strings). If the tension is higher than normal 

(e.g., due to increased actin polymerization), the network relaxes (loosens the strings). The NMII 

contraction regulates membrane curving, coated pit progression as well as recruitment of other 

membrane curvature proteins to form the neck. Several other lines of evidence suggest a role 

for myosin IV (MIV) in endocytosis at the apical membrane of polarized cells (Buss, Luzio, & 

Kendrick-Jones, 2002). Interestingly MIV interacts with Dab2, a cytosolic adaptor that controls 

the endocytic activity of LRP2 (Dance et al., 2004; Morris et al., 2002). Jointly, these results 

suggest the existence of molecular links between endocytic ligand uptake and modulation of actin 

dynamics, that may also be relevant for ciliary functions. 

 
 

Similar to previous observations in the developing neural tube (Christ et al., 2012) and retina 

(Christ et al., 2015), I documented the inability of receptor-deficient primary ependymal cells 

to internalize the receptor ligand SHH-N (Figures 4.43, 4.44, and 4.45). SHH-N internalized by 

LRP2 was directed to early as well as recycling endosomes as shown by co-staining for the 

respective compartment markers EEA1 and Rab11 (Figure 4.47 A-D). I confirmed a defect in 

internalization of the ligand in freshly dissected LWWM preparations from mutant mice (Figure 

4.46). These findings substantiated the role of LRP2 as endocytic receptor in the adult 

ependyma, and indicated possible defects in handling of SHH by this tissue in mutants in vivo. 

LRP2 has two intracellular NPXY domains of which the distal NPXY motif interacts with 



Discussion 

140 

 

 

DAB2 (Oleinikov et al., 2000) to mediate endocytosis (Nagai et al., 2005; Shah, Baterina, 

Taupin, & Farquhar, 2013; Traub, 2009). Potentially, LRP2-mediated endocytosis may also 

proceed via clathrin-independent pathways involving small GTPase ADP-ribosylation factor 6 

(Arf6) and caveolin 1 (Bento-Abreu et al., 2009; Oleinikov et al., 2000). Once in the early 

endosomal compartment, the proximal NPXY domain of LRP2 binds to a clathrin-associated 

sorting protein termed autosomal recessive hypercholesterolemia (ARH). This interaction 

tethers LRP2 to dynein motor complexes which facilitates further receptor transport from early 

to recycling endosomal compartment. Whether LRP2 mediates uptake and possibly recycling 

of SHH in ependymal cells via clathrin-dependent or -independent mechanisms was not further 

explored in my thesis project. 

 
 

Based on prior work in embryonic tissues, loss of SHH uptake in ependymal cells from mutant 

mice may not be too surprising. However, my studies also detect an impact of LRP2 deficiency 

on trafficking of Rab proteins to motile cilia that was unexpected. In epithelial cells, Rab 

GTPases are involved in trafficking of junctional proteins and in cell polarity formation. Several 

Rab GTPases interact with ciliary proteins and determine epithelial transport processes into the 

axoneme of primary cilia (Blacque et al., 2017). For example, Rab8 and Rab11 are involved in 

early steps of ciliogenesis. Interestingly, I found higher levels of Rab8a in the cell body and in 

motile cilia of Lrp2-/- ependymal cells (Figure 4.52). This observation fits well with the slightly 

increased number of cilia in mutant cells (Figure 4.40). Another important finding was my 

documentation of elevated levels of Rab23 in cell body and in motile cilia of LRP2-deficient 

ependymal cells (Figure 4.54). Several studies reported an inhibitory role of Rab23 on SHH 

signaling in primary cilia, downstream of SMO and upstream of the GLIs (J. T. Eggenschwiler, 

Espinoza, & Anderson, 2001; Jonathan T. Eggenschwiler, Bulgakov, Qin, Li, & Anderson, 

2006; Y. S. Lim & Tang, 2015). 

 
 

How may LRP2 controls trafficking of Rabs to motile cilia? A clue to answer this question may 

stem from the distinct localization of the receptor at the ciliary pocket, as shown for primary 

cilia (Christ et al., 2012). As for motile cilia, ciliary pockets may fuse and several cilia emerge 
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from one pocket. Despite this difference, motile ciliary pockets otherwise share many structural 

features with primary ciliary pocket and their role in endocytosis is quite plausible (Molla- 

Herman et al., 2010). Possibly, LRP2 due to its localization in the endocytically active 

membrane compartment of motile cilia, may actively sort early endosomes in or out of this 

organelle. Alternatively, LRP2 may act in the IFT transport machinery by regulating Rab 

GTPases transport into the axoneme (Deane, Cole, Seeley, Diener, & Rosenbaum, 2001). 

 
 

5.4 Summary and outlook 
 

My results have refined a role for LRP2 in neurogenesis in the adult SVZ by documenting an 

impact of receptor deficiency on the rostral but not the caudal domain of this niche. Changes in 

the rostral SVZ of the LRP2 mutant brain include alterations in signaling of SHH, BMP and 

WNTs, as well as in mTOR-related activities. These alterations are the likely cause of the 

depletion of the stem cell pool and the decrease in proliferative capacity of progenitor cells seen 

in this subdomain of the V-SVZ. Based on the cumulative evidence obtained in my work, I 

propose the loss of LRP2-dependent endocytic activity in ependymal cells as the underlying 

reason for these defects. In a simple model, loss of LRP2-dependent uptake and recycling of 

SHH in ependymal cells may alter the morphogenic milieu of the underlying SVZ niche. In this 

scenario, impaired SHH activity in the rostral SVZ affects the balance of various competing 

morphogen pathways in the stem cell niche, ultimately compromising neurogenesis. A more 

exciting hypothesis may be that the endocytic activity of LRP2 is required for coordination of 

motile cilia beating. 
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Figure 5.1: Schematic representation of ventricular-subventricular zone (V-SVZ) from control and 
Lrp2-/- mice (en face view). 

The schematic illustrates the V-SVZ from control and LRP2-deficient mice in an en face presentation. In 

control brains, coordinated beating of the cilia on ependymal cells directs the cerebrospinal fluid (CSF) flow 

in a caudal to rostral direction (blue arrow). Directional CSF flow safeguards distribution of morphogens 

throughout the entire ventricular lumen and establishes the proper milieu for neurogenesis in the rostral SVZ 

region. In LRP2-deficient mice, loss of LRP2 activity results in uncoordinated cilia beating and, consequently, 

in morphogen accumulation in the caudal SVZ domain. Absence of proper morphogen (i.e., SHH) signaling 

in the rostral SVZ, causes depletion of the neural stem cell pool and impairment of progenitor (C) cell 

formation in this region of the niche. 

 
 
 

In this hypothesis, uncoordinated cilia beating seen in the mutant disturbs the directed flow of 

CSF, causing defects in morphogen distribution along the rostral to caudal axis of the lateral 

ventricles (Figure 5.1). The latter hypothesis receives support from the aberrant accumulation 

of active SHH-Np in the caudal domain of the LRP2-deficient SVZ and from a concomitant 

region-specific defect in adult neurogenesis. Although rather speculative at present, impaired 
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endocytic activity in LRP2-deficient ependymal cells may affects apical membrane dynamics 

in this cell type, inducing cytoskeletal disarrangements at the ciliary base and impairing 

coordinated positioning of the basal body, a prerequisite for coordinated cilia beating (Figure 

5.1). Obviously, both models are not mutually exclusive and several activities of this 

multifunctional endocytic receptor may be necessary to assure the functional integrity of 

ependymal cells, an essential cell type in the neurogenic niche of the adult V-SVZ. 
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