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Notations

f(x) pdf function
F (x) cdf function
λ arrival rate
M(Xk) k-th moment of random variable X
E[X] mean of random variable X
V ar(X) variance of random variable X
α initicial probability of a PH distribution
T generator matrix of a PH distribution
1 a column vector of ones
π stationary vector of a CTMC
φk lag-k correlation
µ service rate
ρ server utilization
I unitary matrix
Bi first phase of the ith Erlang distribuion
Ei last phase of the ith Erlang distribution
λp arrival rate of packet-in messages
λs arrival rate of synchronization messages
A controller assignment matrix
M number of switches migrations
λb mean batch size
L(Si) the load of server i
L(Ci) CPU utilization of server i
L(Mi) memory utilization of server i
ri rank of server i
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Abstract

Online services and applications have grown rapidly in the last decade. The network is neces-

sary for many services and applications. Many technologies are invented to meet the requirements

of online services, such as micro-services and serverless computing. However, the traditional net-

work architecture suffers from several shortages. It is difficult for the traditional network to adapt to

new demands without massive reconfiguration. In traditional IP networks, it is complex to manage

and configure the network devices since skilled technicians are required. Changing the policy of a

network is also time consuming because network operators need to re-configure multiple network

devices and update access control lists using low level commands. The management and configura-

tion becomes more complex and challenging, when the traffic in a network changes frequently.

SDN (Software-defined networking) is an innovative approach to manage networks more flexible.

It separates the control plane from forwarding devices and uses a centralized controller to manipulate

all the forwarding devices. The separation offers many benefits in terms of network flexibility and

management. The controller can provide a global view of a network. Using the controller, network

operators can manage and configure all the network devices at a high level interface. With SDN, a

network can adapt to new demands by updating the applications in the controller.

However, all these benefits come with a performance penalty. Since the controller manipulates

all the forwarding devices, the performance of the controller impacts the performance of the whole

network. In this thesis, we investigate the performance of SDN controllers. We also implement a

benchmark tool for OpenFlow controllers. It measures the response time of an OpenFlow controller

and fit a phase-type distribution to the response time. Based on the distribution of the response

time, we build a queueing model for multiple controllers in an OpenFlow network and determine

the optimal number of controllers that can minimize the response time of the controllers. We design

an algorithm that can optimize the mapping relationship among the switches and controllers. The

load of controllers can be balanced with the optimized mapping relationship.
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Zusammenfassung

Online-Dienste und -Anwendungen sind in den letzten zehn Jahren rasant gewachsen. Das Netz-

werk ist für viele Dienste und Anwendungen erforderlich. Viele Technologien wurden erfunden,

um die Anforderungen von Online-Diensten wie Microservices, serverlosen Computing zu erfül-

len. Die herkömmliche Netzwerkarchitektur leidet jedoch unter mehreren Engpässen. Es ist für das

traditionelle Netzwerk schwierig, sich ohne massive Konfigurationen an neue Anforderungen anzu-

passen. In herkömmlichen IP-Netzwerken ist die Verwaltung und Konfiguration der Netzwerkgeräte

komplex, da erfahrene Techniker benötigt werden. Das Ändern der Switching-Regeln ist ebenfalls

zeitaufwändig, da Netzwerkbetreiber mehrere Netzwerkgeräte neu konfigurieren und Zugriffssteue-

rungslisten in Befehlen auf niedriger Ebene aktualisieren müssen. Die Verwaltung und Konfigura-

tion kann komplexer und anspruchsvoller werden, wenn sich der Datenverkehr in einem Netzwerk

häufig ändert.

SDN (Software-defined Networking) ist ein innovativer Ansatz zur Verwaltung von Netzwer-

ken. Es trennt die Steuerebene von der Netzwerkschicht und verwendet eine zentrale Steuerung, um

alle Switches zu manipulieren. Die Trennung bietet viele Vorteile in Bezug auf Netzwerkflexibili-

tät und -verwaltung. Allerdings komme all diese Vorteile mit einer Leistungseinbuß einhergekom-

men. Da der Controller alle Weiterleitungsgeräte manipuliert, wirkt sich die Leistung des Control-

lers auf die Leistung des gesamten Netzwerks aus. In dieser Arbeit untersuchen wir die Leistung

von SDN-Controllern. Wir implementieren auch ein Benchmark-Tool für OpenFlow-Controller, um

an die Reaktionszeit eines OpenFlow-Controllers eine Phasenverteilung anzupassen. Basierend auf

der Verteilung der Reaktionszeit erstellen wir ein Warteschlangenmodell für mehrere Controller im

OpenFlow-Netzwerk, und ermitteln die optimale Anzahl von Controllern, die die Reaktionszeit der

Controller minimieren können. Wir entwerfen einen Algorithmus, der die Zuordnungsbeziehung

zwischen den Switches und Controllern optimieren kann. Die Last der Controller kann mit der opti-

mierten Zuordnungsbeziehung balanciert werden.

v



vi



Acknowledgements

I would like to thank my supervisor Prof. Dr. Katinka Wolter. In my four years at Berlin, she

helped me a lot on my work. She provided lots of valuable advice and guidance in my research. She

taught me writing papers and presentation. She carefully revised my papers sentence by sentence. I

deeply admire her positive work attitude and professional skills. She is more than a perfect super-

visor during my life at Berlin. Before I came to Berlin, I never lived abroad. I thought it might be

difficult to get along with foreigners because of the different culture, but she made everything easy.

She helped me to start a new life at Berlin and led me on my research.

I am very grateful for the love and support of my parents. I was a very disobedient child. I

dropped out of school in the 8th grade, but they did not gave up on my education. They sent me

back to school so that I could continue my study. Thanks for the patience and tolerance.

I would like to thank my wife Dr. Yanhua Chen. We met each other at college, and our love has

been lasted for more than a decade. We got our B.S. degrees together, got our M.S degrees together,

and came to Berlin together. She always accompanies and supports me.

Thanks all my colleagues. They are very nice and friendly. I enjoyed working with them very

much. I wish to thank Guang Peng, Han Wu, Dr. Tianhui Meng and Dr. Yi Sun. They shared their

ideas and discussed the problems I faced. They helped me when I am stuck. Thanks for their help

and company.

My financial support is from China Scholarship Council. I am very thankful to China Scholarship

Council providing me such an opportunity to study at Free University of Berlin.

vii



viii



Contents

Notations i

Abstract iii

Zusammenfassung v

Acknowledgement vii

I Introduction 1

1 Basic Concepts and Problems 3
1.1 Overview of SDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Performance of the Control Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Performance Improvement with Multiple Controllers . . . . . . . . . . . . . . . . 7

1.4 Performance Improvement with Buffer Management . . . . . . . . . . . . . . . . 7

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 13
2.1 Overview of OpenFlow Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 OpenFlow Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 OpenFlow Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ix



2.2.2 PH Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Markovian Arrival Process . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 M/PH/1 Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Related Work 31
3.1 Performance Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Benchmarking Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Performance Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Performance of Multiple Controllers . . . . . . . . . . . . . . . . . . . . . . . . . 37

II Tools for Performance Modeling 41

4 HyperStar2: Easy Distribution Fitting of Correlated Data 43
4.1 Fitting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Constructing the D0 matrix . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.2 Constructing the D1 matrix . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Evaluation of HyperStar2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 An OpenFlow Controller Performance Evaluation Tool 57
5.1 The OFCP Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Design Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Performance Evaluation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

III Performance of the Control Plane 67

6 The Performance of Multiple controllers 69
6.1 The Number of Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

x



6.1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.1.3 Derivation of the Analytical Model . . . . . . . . . . . . . . . . . . . . . 74

6.1.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Balancing the load of Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.2 Controller Assignment Algorithm . . . . . . . . . . . . . . . . . . . . . . 86

6.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Buffer management 97
7.1 The Limitations of Existing Buffer Management . . . . . . . . . . . . . . . . . . . 97

7.2 The Proposed MPT Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Queueing Model of the OpenFlow Controller . . . . . . . . . . . . . . . . . . . . 101

7.3.1 Controller Performance of General Buffer . . . . . . . . . . . . . . . . . . 101

7.3.2 Controller Performance of the MPT . . . . . . . . . . . . . . . . . . . . . 104

7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4.1 Queueing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8 Server Load Balance in OpenFlow Networks 113
8.1 Load balance for online service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Server Load Balancing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2.1 Load Balancing Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2.2 OpenFlow Based Load Balancer Implementation . . . . . . . . . . . . . . 116

8.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3.1 Experiment Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.3.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9 Conclusions and Outlook 123
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Bibliography 127

xi



List of Figures 141

List of Tables 145

About the Author 147

xii



Part I

Introduction

1





Chapter 1

Basic Concepts and Problems

In this chapter, we introduce the components in SDN and compare SDN with traditional IP net-

work. Also we describe the performance problem in SDN and the ways to improve the performance

of SDN. We summarize the main contribution of this thesis.

1.1 Overview of SDN

With the development of computer networks, more and more applications and services are running

on the internet, such as video conferencing, online storage and instant messaging. The management

and configuration of different applications and services have become highly complex and challeng-

ing, especially when the traffic in a network changes frequently. Many researchers invested a lot of

effort to come up with a general management paradigm that can simplify and improve network man-

agement with high flexibility [26, 32, 102]. However, the traditional IP network is an obstacle to the

flexible network management. The network devices are controlled in a distributed way in traditional

IP networks. Network protocols run in the routers and switches. Each device makes forwarding

decisions independently. The distributed control makes the management of traditional IP networks

difficult and complex [14]. The network operators have to configure each router and switch individ-

ually to apply a high level network policy. Usually, the commands for routers and switches are in

low level and vender specific. Besides the complex configuration, there are no automatic response

mechanisms in the traditional IP networks. Network measurement and analysis show that traffic in

a network may change very frequently [15, 63, 152]. It is difficult to adapt to the load changes for

a network without automatic reconfiguration. Also dynamic faults are a challenge for traditional IP

networks.
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CHAPTER 1. BASIC CONCEPTS AND PROBLEMS

In traditional IP networks, the bundled control plane and data plane are integrated inside network

devices. The control plane in a network device is usually the firmware, and it is not easy to change

the functions implemented in the firmware. The immutable functions decrease flexibility and hinder

innovation and evolution of networks. A new protocol may take very long time to be fully deployed.

For example, IPv6 started more than a decade ago and it is still not completed. Adding new functions

to a network without changing any hardware is not feasible in practice [44, 104].

As a new computer network architecture, SDN is considered a promising way towards the future

internet [109]. SDN decouples the control plane from forwarding devices and allows one separate

controller to manipulate all the switches in a network. The controller in SDN is usually a piece of

software that makes the network very flexible and innovative. SDN can also hide the details of the

physical infrastructure and enable efficient network management [71, 144, 145]. The architecture of

SDN is shown in Figure 1.1.

Control plane

Data plane

Figure 1.1: The architecture of SDN

The control plane in SDN is usually a programmable controller. The data plane in SDN is a set

of switches that are not implemented with intelligence. The SDN switches cannot make routing
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1.2. PERFORMANCE OF THE CONTROL PLANE

decisions. They can only forward packets following the instructions from the controller. A SDN

switch sends requests to its controller to get instructions when it cannot find forwarding rules. The

controller manages all the switches in a network. It maintains a global view of a network. Based

on the global view, the controller manages the network resources more reasonably and may make

better routing decisions than the traditional IP networks that are managed in a distributed way.

As its core advantage, SDN offers a high flexibility in the control plane. Network operators

can change the routing of some traffic flows without influencing other flows. Researchers can test

their new protocols in the existing hardwares [85]. The programmable controller also simplifies the

management of networks. Network operators do not have to configure every device manually. The

applications in the controller can gracefully make changes of the network topology or traffic route.

SDN makes automatic network management feasible [93, 136].

1.2 Performance of the Control Plane

The flexibility of SDN comes at a performance penalty. First, a software controller is usually

slower than a logical hardware unit embedded in traditional switches. As we can see from Figure

1.2, in a traditional switch, the control plane is part of the switch, it is a piece of hardware, which

has high performance and forwards packets at linear speed. Second, the communication between the

controller and switches introduces a new delay in the network. There are no logical units in SDN

switches, so the SDN switches have to get instructions from the controller. The communication

between the controller and switches degrades the performance of a network. The difference between

traditional switches and SDN switches is shown in Figure 1.2.

data plane

control plane

Traditional switch

data plane

SDN switch

control plane

Figure 1.2: The difference between traditional switches and SDN switches

OpenFlow is a popular implementation of SDN. It was first proposed by Nick McKeown to enable

research experiments [85]. In OpenFlow networks, switches can only forward packets following the
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instructions given by a centralized controller. There are one or more flow tables in an OpenFlow

switch, and the flow entries are stored in the flow tables. OpenFlow switches forward packets

following the instructions in the flow entries that match the packets. When a packet arrives at

an OpenFlow switch and the switch cannot find any flow entries matching the packet, the switch

will send the header of the packet to its controller through a packet-in message to obtain new flow

entries. The controller will install flow entries into the switch through flow-modify messages. The

switch can find forwarding rules for the packets with the same headers after flow entries are installed.

Therefore, only the first packet in a flow needs to be sent to the controller.

OpenFlow continues to receive a lot of attentions from researchers, but most work focuses on its

availability, scalability and functionality [3,16,34,154]. The performance of OpenFlow has not been

investigated much to date. This may become an obstacle for wide deployment. It is a prerequisite to

understand the performance and limitations of OpenFlow for its usage in production environment.

Most researchers improve the performance of the control plane of OpenFlow in the following two

aspects:

Multiple controllers
A single controller is sufficient in most medium size networks [52], but multiple controllers

can improve the performance, scalability and availability of the networks [35]. Therefore,

multiple controllers are widely used in practice. With multiple controllers, load balancing can

reduce the communication latency. New controllers can be deployed or removed dynamically

to adapt to variable traffic in a network. Moreover, multiple controllers can also avoid a single

point of failure as well as improve the security of the control plane [97, 115].

Reduce the communication
The communication between the controller and switches is a new delay in OpenFlow net-

works. Reducing the packet-in messages from switches to the controller can improve the

performance of OpenFlow networks significantly [61, 64]. The packet-in messages consume

computing resources in switches and controllers, and bandwidth between control plane and

data plane. Too high consumption of computing resources and bandwidth may cause a delay

in the process of some requests from switches, some requests may even be dropped. The

performance of a network may be degraded in such scenario.

6



1.3. PERFORMANCE IMPROVEMENT WITH MULTIPLE CONTROLLERS

1.3 Performance Improvement with Multiple Controllers

The forwarding devices in the network have to send messages to the controller when there are no

flow entries for the arriving packets. The communication between the controller and the switches

increases the transmission latency. With emerging big data, the overhead will be worse than ever,

since the massive traffic in the data plane triggers a lot of requests. It is a significant challenge for

the capability of the SDN controllers. To reduce the transmission latency, multiple controllers are

deployed into one network, the controllers manage network flows cooperatively [50, 134]. Never-

theless, the multiple controllers introduce a new problem: how many controllers should we use to

minimize the flow setup time? Enough controllers must be deployed into a network, so that the

controllers are able to handle network traffic. The multiple controllers require communication with

each other to maintain a view of the network [76]. The communication overhead can be signifi-

cant if there are a large number of controllers in a network. Therefore, more controllers may not

yield better performance. We must determine the optimal number of controllers to achieve the best

performance.

Another problem in the multiple controllers scenario is how to balance the load among all the

controllers. The mapping relationship between switches and controllers is statically assigned in

some systems [67]. The static assignment may lead to high flow setup time because the traffic in

a network fluctuates frequently. A network usually experiences heavy traffic in daytime and light

traffic at night [111]. The flow arrival rate may change in short time scales even when the total

traffic does not change [63]. The dynamic traffic in a network may cause unbalanced load among

controllers. One controller may receive more requests than its capacity while another controller are

at low utilization. An overloaded controller leads to high flow setup time for the switches under its

management, and the high flow setup time may cause congestion and degrade the performance of

the whole network [79]. When multiple controllers are deployed, the assignment between switches

and controllers should be considered to achieve good performance.

1.4 Performance Improvement with Buffer Management

The OpenFlow specification [41] defines a buffer in the OpenFlow switch to reduce the traffic

in OpenFlow channels. If an OpenFlow switch cannot find any forwarding rules for a packet, it

sends a packet-in message to its controller to request flow entries. The packet-in message contains

the packet that triggers the packet-in message. OpenFlow switches will send a part of a packet

with a buffer identification instead of the whole packet to a controller when a packet-in message is

7



CHAPTER 1. BASIC CONCEPTS AND PROBLEMS

sent. Reducing the size of a packet-in message is the default way to reduce the traffic in OpenFlow

channels. However, an OpenFlow switch buffers packets in packet-granularity [84]. Under this

model, the number of packet-in messages cannot be reduced. An OpenFlow controller may receive

many packet-in messages belonging to the same flow in a very short time if a host sends many

packets and all the packets are in one flow. This may happen very often when a user sends a heavy

UDP stream. For connection-oriented TCP traffic, the flow entries are installed during the three-way

handshake. TCP traffic does not generate bursts of packet-in messages often. However if there is

large dynamic traffic in a network, such as a data center network, the flow entries in the switches may

be updated very frequently. Flow entries for a TCP connection may be deleted before the connection

completes. This will result in a lot of TCP packets which can not match any flow entries, and lead

to many identical packet-in messages [15]. If bursts of packets belonging to one flow arrive at an

OpenFlow switch, the OpenFlow controller will continuously receive identical packet-in messages

until a flow entry is installed in the switch. This action will consume computing resources of the

controller and increase the delay of the network.

OpenFlow switches send all the mismatched packets to controllers. Under this model, OpenFlow

switches may send many unnecessary packet-in messages during the flow setup process [101]. The

unnecessary packet-in messages will happen if the first packet in a flow is sent to the controller,

and many packets in the same flow arrive before the switch receives a response from the controller.

These unnecessary messages will increase the workload in both switches and controllers. As a result,

the network performance will be degraded, and some OpenFlow messages may be delayed or even

dropped. Many switches have a mechanism to limit the overall rate of packet-in messages, which

only allows switches to send requests to the controller below a certain rate. This mechanism cause

the problem that packet-in messages of non-heavy flows are also dropped at high rate when packets

of both heavy flows and non-heavy flows are sent to the controller. An example of non-heavy flows

is DNS requests. There are only a few packets in a DNS request. This problem would cause a

significant delay in the setup of flow entries for non-heavy flows.

To further reduce the transmission workload in OpenFlow channel, we design a flow-granularity

mismatched packet buffer model to only send the first packet of a flow to the controller. It is a sim-

ple and efficient solution. We can store the mismatched packets at flow-granularity. Only the first

packet of a flow is sent to the controller. The controller can get enough information for installing

flow entries when the first packet-in message is received. The OpenFlow switches can stop sending

packet-in messages belonging to the same flow to the controller, and wait for forwarding instruc-

tions. The OpenFlow switch only sends another packet-in message if a timeout expires. All the

other mismatched packets in the same flow can be cached in the buffer of the OpenFlow switch and

8
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will be forwarded after the flow entries are installed.

1.5 Contributions

The main contributions of this thesis are to analyze and improve the performance of OpenFlow

networks with multiple controllers. We develop two tools to analyze the performance of OpenFlow

networks. Also we propose some schemes to improve the performance of OpenFlow networks. The

efficiency of the schemes is confirmed by either experiments or simulations.

We give a summary of these contributions in the following.

The performance of controllers is a major attribute that must be considered when designing an

OpenFlow network. A model-based analysis method can provide valuable insights into the network

performance. Researchers have contributed models for the performance of OpenFlow networks. We

make a simple survey about the performance models to show their similarity and difference. Be-

sides the modeling, there are also researchers developed benchmark tools for OpenFlow controllers.

All the benchmark tools use virtual OpenFlow switches to send generated packets to a controller

and measure the response time of the controller, but they focus on different aspects. We give a

comparison of the tools and show their key features.

Multiple controllers are necessary in a large OpenFlow network. The mapping relationship among

the controllers and switches may impact the performance of the network. In addition, mapping

relationship needs to be adjusted when the traffic in the network changes. We also make a survey

about the assignment of multiple controllers.

Performance modeling can analyze the behavior of system. However, many benchmark tools only

provide users the minimum, maximum throughput as well as the mean and variance of response

time. Users cannot get the distribution of the response time of a system. The mean and variance

of the response time are the most commonly used metrics in application performance management.

However, in reality, the response time often has a long tail, the mean and variance cannot capture

the tail of the distribution of the response time. The distribution of response time is necessary to

many performance models. We develop a user-friendly tool to fit data trace into a PH (phase-type)

distribution or MAP (Markovian Arrival Process) [116]. The tool helps people to build queueing

models to evaluate the performance of controllers with the fitted result.

We also develop a benchmark tool for OpenFlow controllers [119]. Unlike other benchmark tools

that focus on throughput or mean response time, our tool helps users to build models for OpenFlow

networks and evaluate the performance of the controllers with the models. Our tool aims to provide

a simple way to analyze the performance of OpenFlow controllers. It measures the response time of

9
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an OpenFlow controller and provides the distribution of response time.

To reduce the flow setup time, multiple controllers are deployed into one network. Nevertheless,

the multiple controllers introduce new problems. We have to determine the number of controllers

that can minimize the flow setup time. The communication overhead may degrade the performance

of a network if there are many controllers in a network. We should also consider the management

and communication overhead because too many controllers in one network may increase the flow

setup time. We propose a queueing model to evaluate the response time of a controller [117]. Based

on a queueing model, we determine the number of controllers that can minimize the flow setup

time in an OpenFlow network [121]. We build a multiple controller prototype [29] and measure the

response time of controllers. We fit a PH distribution to the response time and determine the optimal

number of controllers based on the distribution.

The mapping relationship among the controllers and switches may also impact the performance

of an OpenFlow network. With dynamic traffic in a network, a controller may receive more requests

than its capacity. Meanwhile, the other controllers are at low utilization. An overloaded controller

leads to high flow setup time and degrades the performance of the whole network. We propose a

heuristic to solve this problem [118]. We design a greedy algorithm to generate a feasible assignment

as the input of the heuristic.

When bursts of packet-in messages happen in an OpenFlow network, the controller will receive

lots of requests in a very short time. This degrades the performance of the network. We propose

a buffer management method for OpenFlow switches to avoid bursts of packet-in messages [120].

The method can improve the network performance by reducing the workload of a controller.

OpenFlow controllers make networks very flexible. Many controller applications can offer differ-

ent features to a network. We implement a load balancer to improve the service running on top of

OpenFlow networks. The load balancer is a controller application. It modifies the packets between

clients and server to distribute requests to different servers. We also design a load balancing strategy.

Experimental results show that the proposed strategy can balance the load of servers and decrease

the response time [28].

1.6 Thesis Outline

In the first part of the thesis, we introduce the background of this thesis and some related work.

Part I has the following structure:

In Chapter 1, we describe the performance issues in OpenFlow networks and introduce the tech-

nical background of the thesis. The research field of this thesis is the performance of the OpenFlow
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control plane. We introduce the basic concept of OpenFlow networks and the performance issues of

OpenFlow controllers. This thesis focuses on performance improvements of OpenFlow controllers.

The multiple controllers and buffering mechanisms in OpenFlow switches are presented and the

contributions of this thesis are summarized.

In Chapter 2, the background of this thesis is introduced. We introduce the technical details of

OpenFlow networks and the mathematical knowledge used in this thesis.

In Chapter 3, a survey on the performance of controller is presented. We introduce the related

work in the different areas. First, we compare the existing performance models of OpenFlow net-

works and benchmark tools for OpenFlow controllers. Then we present some methods of perfor-

mance improvement and the assignment of multiple controllers.

We develop performance tools for OpenFlow controllers and introduce them in the second part.

Part II is structured as follows:

In Chapter 4, we present HyperStar2, a tool for fitting PH distributions or MAPs (Markovian

Arrival Processes) to empirical data. The tool targets engineers and scientists who find themselves

in need of distribution fitting for non-standard distributions but have little interest in the underlying

algorithms and parameter settings.

In Chapter 5, we present a user-friendly OpenFlow controller performance evaluation tool that

aims at helping network researchers to build performance models of OpenFlow controllers, and

network managers to understand the performance behavior of OpenFlow controllers. The tool uses

a virtual OpenFlow switch sending OpenFlow messages to a controller and measures the response

time. It fits the response time to a hyper-Erlang distribution.

The third part of this thesis introduces the schemes that improve the performance of OpenFlow

controllers. Part III is structured as follows:

In Chapter 6, we build a queueing model to evaluate the flow setup time of multiple controllers,

and use an optimization algorithm to determine the optimal number of controllers that can mini-

mize the flow setup time. To reduce the flow setup time and improve the performance of OpenFlow

networks, we propose a controller assignment scheme for multiple controllers. It adjusts the assign-

ment among controllers and switches dynamically based on the load of switches and the capacity

of controllers. We model each controller as an M/PH/1 queue and use a heuristic to optimize the

controller assignment based on the queueing model.

In Chapter 7, we focus on bursts of packet-in messages in OpenFlow networks. We build a

queueing model for bursts of packet-in messages and present a method that decreases the number of

packet-in messages using buffers in OpenFlow switches.

In Chapter 8, we implement a server load balancing in virtual environment. The controller collects

11
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the status of servers and distributes requests based on the load of servers.

In Chapter 9, the main part of this thesis is concluded and the outline of the future research

direction is pointed.

12



Chapter 2

Background

We introduce the technical background of this thesis in this chapter. An OpenFlow network

consist OpenFlow switches and controller. They communicate through OpenFlow channel. We

introduce the OpenFlow switches and OpenFlow controllers in Section 2.1. We fit a PH distribution

to the response time of an OpenFlow controller and use the PH distribution in a queueing models to

evaluate the performance of OpenFlow networks. The mathematical knowledge on PH distributions

and queueing models are introduced in Section 2.2.

2.1 Overview of OpenFlow Networks

An OpenFlow network contains OpenFlow switches and controllers. We introduce OpenFlow

switches and controllers separately.

2.1.1 OpenFlow Switches

An OpenFlow switch contains one or more flow tables and one or more OpenFlow channels, as

shown in Figure 2.1. The flow tables perform packet lookups and forwarding, and the OpenFlow

channels are used to connect to the controllers.

A flow table contains a set of flow entries. Flow entries are the forwarding rules. The controller

manipulates the behaviors of switches by adding, updating and deleting flow entries in the flow

tables. The components of a flow entry are shown in Table 2.1.

When a packet arrives at an OpenFlow switch, its header is extracted and used as lookup key. If

the switch finds a flow entry that matches the packet, it will apply the instructions in the flow entry

to the packet, the packet may be dropped, modified or forwarded. Otherwise, the packet will be sent
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Figure 2.1: The main components of an OpenFlow switch

Table 2.1: The components of a flow entry

Component Description
Match fields To match against packets. Consisting of ingress port and packet headers.
Priority Matching precedence of the flow entry.
Counters Record how many packets are matched.
Instructions Actions to apply to matched packets.
Timeouts Maximum time before the flow expires.
Cookie Used by the controller to manage flow entries. Not used in packets processing.
Flags Describe the way flow entries are managed.

to the controller. The packets processing of an OpenFlow switch is shown in Figure 2.2.

A flow entry matches a packet if all the match fields of the flow entry match the header fields from

the packet. The match fields include various protocol header fields, such as ethernet destination

address, IPv4 destination address and TCP source port. In addition to the protocol headers, the

ingress port can be also used for matching. An omitted field matches all possible values in the

header field. Only the flow entry with the highest priority is selected if there are multiple flow

entries match a packet. The counters in the selected flow entry are updated and the instructions in

the selected flow entry are executed. No flow entries are selected if there are multiple flow entries

with the same highest priority match a packet. This can only happen if a controller adds overlapping

flow entries and does not make the switch check overlaps.

When a packet arrives at an OpenFlow switch and the switch cannot find a flow entry that matches
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Figure 2.2: Packet processing in an OpenFlow switch

the packet, the packet will be dropped by default. However, a switch configuration can change this

default behavior. OpenFlow switches are configured to send unmatched packets to the controller.

Another way to handle the unmatched packets is adding a table-miss flow entry into an OpenFlow

switch. A table-miss flow entry omits all the match fields and has the lowest priority. These two

features make the table-miss flow entry match all the packets that are unmatched by other flow

entries. A table-miss flow entry is very similar to other flow entries. It can be added or removed by

the controller at any time. The instructions in the table-miss entry will be applied to the packets that

are unmatched by other flow entries.

When a switch sends a packet to the controller, it sends a packet-in message that contains the

packet to be sent. The main components of a packet-in message are shown in Table 2.2.

Table 2.2: The main components of a packet-in message

Component Description
Buffer ID ID assigned by switch.
Length Total length of the packet.
Reason The reason a packet is sent to controller.
Data The packet to be sent.

The buffer ID is a value used by a switch to identify a buffered packet. An OpenFlow switch

can implement buffering to reduce the traffic in the OpenFlow channel. If a packet is sent to the

controller, the OpenFlow switch does not have to send the whole packet. The switch can store

the packet in its buffer and send the header and a buffer ID to the controller. After a connection

is established the controller and switches negotiate how many bytes can be carried in a packet-in

message. When a packet-in message is sent to the controller, the packet-in message carries only

some fraction of the packet header (128 bytes by default) and a buffer ID If the switch has enough
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memory to buffer all packets that are sent to the controller,. Switches that do not have sufficient

memory or do not support internal buffering must send the full packet to the controller as part of

the packet-in message. As for large packets, the packet-in message can easily exceed the maximum

transmission unit. The switch has to split the packet-in message into two packets, which is an extra

processing step for both the switch and the OpenFlow channel.

The length is the total length of the packet that is sent to the controller. The actual length of

the data field is less than the length if the packet is buffered. The "reason" field indicates why

the packet is sent to the controller. The reason can be no matching flows (table-miss flow entry),

output to controller in instructions or packet has invalid TTL. The data field is the packet to be sent

to the controller. If the packet is buffered, the data field only contains the header of the packet.

When a controller receives a packet-in message, it may install a flow entry into the switch through a

flow-modify message so that the switch can find a match for the packets with the same header.

2.1.2 OpenFlow Controllers

The control plane manages all the underlying forwarding devices through the OpenFlow protocol

and maintains a global view of the network. Various applications can run in the control plane to

manage the network. If the demands change, one can develop and deploy relevant applications in

the control plane. Many applications are implemented by researchers, such as firewalls [103, 156],

traffic engineering [1, 2] and server load balancing [103, 142, 158]. The controller can also run

traditional network management services and protocols, such as network configuration protocol

(NETCONF) [36], Open Shortest Path First (OSPF) [88], simple network management protocol

(SNMP) [25]. Due to the advantages of programmable control plane, OpenFlow has been deployed

in many networks [39, 56, 94, 110, 132, 133]. Because of the global view of the network, controllers

can make better forwarding decisions than traditional network devices. The utilization of links

among Google’s data centers is 30-40%. Google use OpenFlow to increase the utilization to near

100% [56].

There are over 300 different controllers such as Flowvisor [122], Oflops [108], Beacon [37],

NOX [47], POX [65]. They are implemented in different programming languages. In this chapter

we only compare the features of four popular controllers, Ryu [95], Trema [73], FloodLight [89]

and OpenDaylight [86]. The other controllers are either deprecated or poorly documented.

The four controllers are open source software. Ryu is developed fully in Python language and

supported by NTT. There are many pre-defined components and applications in Ryu, such as BGP

(border gateway protocol), sFlow [98]. Trema is supported by NEC labs. It is developed in C

language and Ruby language. C language is used to achieve the performance, and Ruby language is
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used to provides easy API so that it provides effective productivity and high performance at the same

time. FloodLight is developed in Java language. It runs on any platform that supports Java. There

are a set of modules in FloodLight that offers different features, such as firewall, load balancer. All

the modules are well documented. OpenDaylight is an open source project under linux foundation.

It is implemented in Java language and use OSGi (Open Service Gateway Initiative) to manage the

modules. The modules can be installed or uninstalled in the OSGi console when the controller is

running. The comparison of the controllers is shown in Figure 2.3.

Table 2.3: compare controllers

Ryu Trema Floodlight Opendaylight
GUI Yes No Yes Yes
REST API Yes No Yes Yes
Programming language Python C/Trema Java Java
Supported platform Linux Linux Linux, Mac OS, Windows Linux, Mac OS, Windows
Modularity Medium Medium High High
Developer NTT NEC Bigswitch Linux foundation

An OpenFlow controller can add, update or delete flow entries into an OpenFlow switch using a

flow-modify message. The main components of a flow-modify message are shown in Table 2.4

Table 2.4: The main components of a flow-modify message

Component Description
Cookie Used by the controller to manage flow entries.
Command Type of flow-modify message.
Priority Matching precedence of the flow entry.
Match fields To match against packets.
Instructions Instructions to be executed.
Timeout Maximum time before the flow expires.

The command field can be add, modify or delete. For add requests, the switch must check for

overlapping flow entries in the flow table. If there is an overlap between an existing flow entry and

the flow-modify message, the switch refuses to add flow entries in the flow table. For modify re-

quests, if there are flow entries in the flow table have the same match fields with the flow-modify

message, the instructions field of the entries are updated with the value from the flow-modify mes-

sage. For delete requests, any flow entries in the flow table have the same match fields with the

flow-modify message are deleted.

An OpenFlow controller can also use packet-out message to send a packet to the network. A
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packet-out message contains a packet and a port number. When an OpenFlow switch receives a

packet-out message from a controller, it sends the packet in the message to the port indicated in the

message.

OpenFlow uses a centralized and programmable controller to manage switches. Network man-

agers can develop applications to improve the performance of the network and manage network

resources in an efficient way. Because the controller is responsible for the whole network, it un-

dertakes plenty of computing jobs and may become a bottleneck of the network. Distributed archi-

tecture is an effective way to avoid performance issues [46, 53, 55]. In the distributed architecture,

there are multiple controllers in the control plane. A large scale network may be split into several

domains, and each domain needs one controller to manage it [113]. The controllers exchange local

information with each other to maintain a global view. In general, there are two architectures of

distributed control plane, horizontal architecture and hierarchical architecture.

The horizontal architecture

OpenFlow starts with a single controller, such as NOX [47]. The single controller manages the

entire network. It may become a single point of failure and the performance of the system is limited.

To address these problems, some distributed controllers are proposed. Some researchers employ

horizontal architecture to build distributed control plane [67, 122, 134]. The model of horizontal

architecture is shown in Figure 2.3.

Controllers

Switches

Figure 2.3: The model of horizontal architecture

In the horizontal architecture, the controllers are deployed into different domains. The controllers

communicate with each other via east-west interfaces [12, 74]. Although each controller connects
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to only one domain, all the controllers are equal and can manage the entire network. They share

and maintain a global view together. The controllers make forwarding decision based on the global

view. All the controllers must synchronize their knowledge with others. When the topology of one

domain changes, all controllers will update the topology information synchronously. This commu-

nication overhead among the controllers is the main disadvantage of the horizontal architecture. It is

important to reduce the traffic of state synchronization, while keeping consistent information among

the controllers.

The hierarchical architecture

A main benefit of OpenFlow is the centralized controller. Based on the global view, the centralized

controller can control traffic more efficiently than a traditional network. However, maintaining

the global view may lead to an overloaded network if the state of the network changes frequently.

Inconsistent network information may degrade the performance of the network [76]. To overcome

the shortcomings of the horizontal architecture, a hierarchical architecture has been designed [50,

68, 75]. The hierarchical architecture model is shown in Figure 2.4.

Local 

controllers

Switches

Root 

controller

Figure 2.4: The model of hierarchical architecture

There are two types of controllers in the hierarchical architecture: root controllers and local con-

trollers. Local controllers can only manage their own domains. Meanwhile, root controllers manage

the whole network, and only root controllers have the global view of the entire network. Local con-

trollers must request to root controllers before handing inter-domain events. When a local controller
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receives a packet-in message, it calculates the best path. If all the switches along the path are in its

domain, the local controller will respond immediately. Otherwise, the local controller must request

to a root controller and execute the instructions from the root controller. In this way, the hierarchical

architecture avoids frequent communication among the controllers.

2.2 Mathematical Background

In this section we introduce the mathematical background of this thesis including exponential

distributions, PH distributions, MAP and the M/PH/1 queue .

2.2.1 Exponential Distribution

At first, we will introduce exponential distributions. Exponential distributions are the most basic

distributions in queueing models. Exponential distributions are usually used to describe the time

interval between two arrivals or the service time of a server. An exponential distribution is a contin-

uous probability distribution used to model the time we need to wait before a given event occurs. A

random variable X is distributed Exponentially with rate λ if the pdf (probability density function)

of X is:

f(x) =

{
λe(−λx) x ≥ 0

0 x < 0
(2.1)

The cdf (cumulative distribution function) of an exponential distribution is

F (x) =

{
1− e(−λx) x ≥ 0

0 x < 0
(2.2)

The mean of an exponential distribution is

E[X] =
1

λ
. (2.3)

The variance is

V ar[X] =
1

λ2
. (2.4)

The k-th moment is
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M(Xk) = λ−nn!. (2.5)

2.2.2 PH Distributions

Queueing models are often used for performance evaluation of computer systems, and PH distri-

butions are very popular to model the service time of systems [18]. PH distributions have been very

successfully used in distribution fitting as they are able to fit different outcomes of one experiment

into one distribution. These distributions are able to fit a large class of probability distributions on

the positive real axis. Because PH distributions can model various real-world phenomena, they are

very useful for performance evaluation.

First, we define one representation of PH distribution with a continuous-time Markov chain

(CTMC). Given a CTMC with one absorbing state, as shown in Figure 2.5, we start at state k with

probabilityαk and state will change as time goes. The time it stays on a state follows an exponential

distribution. Thus, it will take some time to reach the absorbing state (state 4 in Figure 2.5) from an

initial state and the time is a sum of samples from exponential distributions. For a given CTMC, a

PH distribution is the distribution of the time that can be observed along the paths to the absorbing

state. This can be summarized as follows:

1 32 4

λ12

𝜶1 𝜶2 𝜶3

λ13

λ14

λ23

λ34

Figure 2.5: A CTMC with one absorbing state

A PH distribution is defined as the distribution of the time to absorption in a CTMC with one

absorbing state.

Besides the intuitive definition, a PH distribution is commonly represented by a tuple (α,T ),

where α is a vector and T is a square matrix. The tuple describe the transient of a CTMC. α

represents the probability of initial state in the transient. T is a sub-matrix of generator of the

CTMC, it represents the transition rates among the states. We can refer (α,T ) as a Markovian

representation of a PH distribution if
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α = (α1,α2, · · ·αm) ∈ Rm, (2.6)

α1 = 1, (2.7)

α ≥ 0, (2.8)

and

T =


λ11 · · · λ1n

...
. . .

...

λn1 · · · λnn

 ∈ Rm×m (2.9)

is a non-singular matrix with

λii < 0, (2.10)

λij > 0 where i 6= j, (2.11)

and

T1 ≤ 0, (2.12)

∑
T1 < 0, (2.13)

where 1 is a column vector of ones. In the definition, we assume that there are m + 1 states in

the CTMC, the absorbing state is the m + 1 state, and the size of T is m ×m. With a Markovian

representation, the generator matrix of embedded CTMC is

T̂ =

T −T1

0 0

 ∈ Rm×m, (2.14)

Given a PH distribution (α,T ), the pdf is

f(x) = αeTx(−T1). (2.15)

The cdf is

F (x) = 1−αeTx1. (2.16)
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The kth moment is

E[Xk] = k!α(−T )−k1. (2.17)

There are m(m + 1) free parameters in an m-phase PH distribution. Too many free parame-

ters increase the computation in distribution fitting. PH distributions have different representations

based on the structure of Markov chian. Some representations can reduce the number of free pa-

rameters. We introduce two special cases of PH distributions, Erlang distribution and hyper-Erlang

distribution.

An Erlang distribution is the sum of k i.i.d exponential random variables with rate λ. We denote an

Erlang distribution Er(k, λ). There are only two parameters in an Erlang distribution. The CTMC

representation of an Erlang distribution is shown in Figure 2.6.

· · ·
λ λ λ

Figure 2.6: CTMC representation of an Erlang distribution

A hyper-Erlang distribution has a branch structure. Let (α,T ) be a representation of a PH distri-

bution. The representation has a branch structure if

T =


T1

T2

· · ·

Tn

 , (2.18)

where T1,T2, · · · ,Tn are the generator matrixes of the branches.

Within a branch structure, the following intuitive interpretation is admitted in terms of CTMC: a

representation consists of blocks of states, and the blocks are not connected. Therefore, only one

block can be visited in a transition. A hyper-Erlang distribution is a typical representation of branch

structure. Each branch of a hyper-Erlang distribution is an Erlang distribution. The CTMC of a

hyper-Erlang distribution is shown in Figure 2.7.

A PH distribution (α,T ) is a hyper-Erlang distribution if

αi > 0 if i ∈ {1, 1 + s1, · · · , 1 +
n−1∑
j=0

bj}, (2.19)
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· · ·
λ1 λ1 λ1

· · ·
λ2 λ2 λ2

· · ·
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· · ·

· · ·

· · ·

· · ·
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𝜶2
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Figure 2.7: CTMC representation of a hyper-Erlang distribution

else αi = 0, (2.20)

and

Tj ∈ Rbj×bj , (2.21)

Tj =


−λj λj

· · · · · ·

−λj λj

−λj

 , (2.22)

where j ∈ [1, n] and λj > 0.

2.2.3 Markovian Arrival Process

An essential feature of hyper-Erlang distribution is that an observation belongs to the Erlang

branch m always with probability αm. This creates no correlation in PH distributions. However, in

many data sets, such as those sampled from communication systems, there may be strong correlation

between inter arrival times. In such cases, to represent correlation, a MAP should be used instead

of a PH distribution. A MAP is also very often used to generate correlated packet arrivals. An

advantage of MAP is its ability to represent time correlation in arrival streams, as is commonly

observed in the internet traffic.

We can decompose the MAP into two parts: the part generating arrivals D1 and the part con-

trolling the internals of the generating process D0. In formal words, a MAP of order n is usually

defined by two n×nmatrices (D0,D1). MatrixD0 contains the rates of internal transition without
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an arrival and matrixD1 describes the transitions rate with an arrival.

D = D0 +D1 is an irreducible generator of the embedded n-state CTMC. Let ϕ be the steady

state probability vector of the embedded CTMC, then ϕ is the solution of the linear system ϕD =

0,ϕ1 = 1.

The CTMC embedded in a MAP is shown in Figure 2.8. A transition starts at state k with proba-

bility ϕk and the state will change as time goes. The time it stays in a state follows an exponential

distribution. If the transition goes through a dashed arch, we call it an arrival. Thus, it will take

some time before an arrival occurs from state i and the time is a sum of samples from exponential

distributions. For a given CTMC, a MAP is the distribution of the time that can be observed along

the paths. The solid arches are presented in the matrix D0 and the dashed arches are presented in

the matrixD1.

1 32 4
λ12

λ13

λ43

λ23

λ34

λ21

λ13 λ42

Figure 2.8: CTMC representation of a MAP

Define P = (−D0)
−1D1 as the state transition probability matrix of the embedded process. The

stationary vector πP = π,π1T = 1 includes the distribution just after an arrival. The steady state

distributions of the original and the embedded processes are related as

ϕ =
π(−D0)

−1

π(−D0)−11
= λπ(−D0)

−1. (2.23)

In steady state, the inter-arrival time X is PH distributed with initial probability vector π, and

generatorD0. Therefore, the pdf of the inter-arrival time is

f(t) = πeD0t(−D01). (2.24)

The k-th moments of the inter-arrival time process are given by

E[Xk] = k!π(−D0)
−k1T , (2.25)

25



CHAPTER 2. BACKGROUND

and the lag-k correlation is computed as

φk =
λ2π(−D0)

−1P k(−D0)
−11− 1

2λ2π(−D0)−1(−D0)−11− 1
. (2.26)

2.2.4 M/PH/1 Queue

An M/PH/1 queueing model consists of a single server in which the service time follows a PH

distribution, and the customers arrive into the system following a Poisson process. Such a queueing

model is shown in Figure 2.9.

9

PH
λ

Figure 2.9: M/PH/1 queueing model

Since PH distributions can approximate any non-negative distributions and a Poisson process can

be observed in many phenomena [42, 49], the M/PH/1 queue is widely used to describe system

behaviors [40, 45]. The mean service time is 1/µ = α(−T )−1e in an M/PH/1 queue with arrival

rate λ and service time t ∼ PH(α,T ) We denote the server utilization ρ = λ/µ.

An M/PH/1 queue can be studied as a QBD process with the state space E = {0, (i, j), i ≥
1, 1 ≤ j ≤ v}, where v is the phase of the PH distribution. The state 0 corresponds to the empty

queue, the state (i, j) corresponds to having i customers in the system and the service process in the

phase j. The generatorQ is given by

Q =



−λ λα 0 0 0

τ T − λI λI 0 0

0 τα T − λI λI 0

0 0 τα T − λI λI

0 0
. . . . . . . . .


. (2.27)

Denote x = x0,x1,x2, . . . the steady stationary probability vector. The steady state equations

are

− λx0 + x1τ = 0, (2.28)
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λx0α+ x1(T − λI) + x2τα = 0, (2.29)

λxi−1 + xi(T − λI) + xi+1τα = 0, (2.30)

where x0 is the probability that there are no customers in the system. xi = xi,0,xi,1,xi,2, . . . ,xi,v

and xi,j is the probability that there are i customers in the system and the service process in the phase

j. The probability that there are i customers in the system is
∑
xi.

Multiply Equation 2.29 and Equation 2.30 by 1 on the right, we get

xi+1τ = λxie, i ≥ 1. (2.31)

Multiply Equation 2.31 by α on the right and combine with Equation 2.30.

xi(λI − λ1α− T ) = λxi−1, i ≥ 2, (2.32)

and similarly,

x1(λI − λ1α− T ) = λx0α. (2.33)

Therefore,

xi = x0αR
i, i ≥ 1, (2.34)

whereR = λ(λI − λ1α− T )−1

Since x is the stationary probability vector,

∞∑
i=0

xi = 1, (2.35)
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∞∑
i=0

xi = x0 + x0α
∞∑
i=1

Ri

= x0 + x0αR(I −R)−1e

= x0 − λx0α(λ1α+ T )−11

= x0 − λx0αT−1(I + λ1αT−1)−11

= x0 − λx0αT−1
∞∑
k=0

(−1)kλk(eαT−1)k1

= x0 − λx0αT−1(I − λ(1− ρ)−1eαT−1)1

= x0 + x0ρ+ x0ρ
2(1− ρ)−1

(2.36)

so that x0 = 1− ρ.

The average number of customers in the queue can be obtained as

E[N ] =
∞∑
i=1

ixie

=
∞∑
i=1

ix1R
i−11

= x1

∞∑
i=1

d

dR
Rie

= x1
d

dR
(
∞∑
i=1

Ri)1

= x1
d

dR
((I −R)−1 − I)1

= x1(I −R)−2e

. (2.37)

According to Little’s law, we get the average response time E[S].

E[S] =
E[N ]

λ

=
x1(I −R)−21

λ

. (2.38)
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The mean waiting time is

E[TQ] = E[S]− 1

µ
. (2.39)

The mean number of customers in the system is

E[N ] =
∞∑
i=0

ixiαR
i. (2.40)
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Chapter 3

Related Work

OpenFlow offers flexibility by the programmable and centralized control plane. However, the

OpenFlow architecture introduces new delays and may influence the performance of the whole net-

work. OpenFlow pays a performance penalty due to the traffic between the switches and the con-

troller [59]. The controller should handle all the flows in the network and may become a bottleneck

of the OpenFlow network. The performance of the controller is a significant issue in a large network

because massive requests from the switches lead to long delays [13, 96]. Many researchers investi-

gated the performance of OpenFlow networks. In this chapter, we survey existing work about the

performance of OpenFlow networks.

3.1 Performance Modeling

Azodolmolky et al. used network calculus theory to model the performance of OpenFlow switches

and controllers [7]. They derived a closed form formula for packet delay and queue length. They

estimated the packet processing time of OpenFlow switches in the worst case. They also analyzed

how the buffer size impacts the performance of OpenFlow controllers and computed the required

buffer space of an OpenFlow controller. Their work can help network designers to have a quick

view of the performance of OpenFlow network and necessary buffer size of OpenFlow switches and

controllers. Furthermore, Azodolmolky et al. also applied network calculus theory to determine the

necessary buffer size of the root controller in a hierarchical controller scenario [8].

Jarschel et al. derived a queueing model for the packet processing delay of OpenFlow networks

and the blocking probability of OpenFlow switches [59]. They validated the model by a simulation

in OMNeT++ [140]. Their results show that the packet delay in a network mainly depends on
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the performance of the OpenFlow controller. They measured the response time of an OpenFlow

controller and concluded that the response time of the controller impacts the variation of the packet

sojourn time severely. Their work also shows that the probability of new flows arriving at OpenFlow

switches impacts the performance of OpenFlow significantly. Given certain parameters, their model

can analyze the packet delay in an OpenFlow network. Mahmood et al. proposed a method to

evaluate how much time a packet spends on average in an OpenFlow network [82]. They modeled

the data plane as a Jackson network and the controller as an M/M/1 queue. They derived the pdf

and cdf of the time spent by a packet in an OpenFlow network for a given path. Their model can

also determine how many packets a network can process given the average delay.

Xiong et al. used a Mx/M/1 queue to model an OpenFlow switch to estimate the packet for-

warding time [148]. They modeled the OpenFlow controller as a M/G/1 queue to estimate its

response time. By solving these two models, they obtained the average packet sojourn time and the

corresponding pdf in a network. They also measured the response time of an OpenFlow controller

using Cbench [123] and used the measured samples to evaluate their controller model. Yao et al.

aimed at obtaining the capacity of OpenFlow controllers [151]. They modeled the flow packet-in

requests from switches to the controller as a batch arrival process. They obtained an expression of

average flow setup time and determined the maximum number of switches a controller can manage.

Moreover, they extended the scene from a single controller to multiple controllers.

Mahmood et al. used a modified Jackson network to model OpenFlow networks [83]. They built

the model to estimate the average packet sojourn time and the distribution of the time spent in the

network by a packet. They evaluated their model in a simulation. They also analyzed the effects

of key parameters in an OpenFlow network including flow setup time, arrival rate at a controller,

packets sojourn time and network throughput. There was only one switch in their model but they

offered a simple case that showed how their model can be used in a scenario of multiple switches.

Javed et al. divided the flow setup time into deterministic delay and stochastic delay [60]. They

considered the transmission time as the deterministic delay and the response time of the controller

as the stochastic delay. They fitted a log-normal distribution to the response time of a controller

and modeled the flow setup process as an M/G/1 queue. They setup an OpenFlow network in

Mininet [130] and generated traffic by iPerf.

The models of OpenFlow networks are summarized in Table 3.1.
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Table 3.1: Models of OpenFlow networks

Reference Model Main purpose
Azodolmolky et al. [7] Network calculus Determining necessary buffer

size of OpenFlow switches and
controllers

Azodolmolky et al. [8] Network calculus Determining the necessary
buffer size of root controller

Jarschel et al. [59] M/M/1 Analyzing the forwarding speed
and blocking probability

Mahmood et al. [82] M/M/1 Determining controller capacity
Xiong et al. [148] Mx/M/1 and M/G/1 Analyzing throughput and pack-

ets sojourn time in a network
Yao et al. [151]. M/M/1 Determining the capacity Open-

Flow controllers
Mahmood et al. [83] M/M/1 Determining the packet sojourn

time
Javed et al. [60] M/G/1 Analyzing flow setup time

3.2 Benchmarking Tools

A controller administrates forwarding devices and provides an application interface to the users.

It plays a very important role in the entire network. The performance of controllers influences a

network severely. As we introduced in Chapter 2, there are many different controllers developed by

different organizations and written in different programming languages. That makes each controller

better suited for certain scenarios than others. Some researchers developed benchmark tools to

measure the performance of controllers. The benchmark tools can help users to choose the suitable

controller for their scenarios.

In [124] Sherwood et al. developed Cbench to benchmark different controller implementations.

Cbench creates a set of virtual switches sending requests to OpenFlow controllers, and it can be used

to measure the performance of the controllers. However, it can only obtain coarse-grained perfor-

mance metrics, such as minimum, maximum and average response time of a controller. Tootoonchian

et al. [135] used Cbench to measure several performance aspects of different OpenFlow controllers.

The authors measured the minimum and maximum controller response time, maximum through-

put, and the throughput and latency of the controller with a bounded number of packets. Their

experimental results showed that a single controller is not enough to manage a large scale network.

In [115], the authors developed hcprobe, a framework that can be used to test the performance
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of controllers. They also analyzed the performance of popular open-source OpenFlow controllers.

Hcprobe introduced an embedded domain-specific language for users to create custom tests. Jarschel

et al. developed OFCBenchmark, a more flexible benchmark tool based on Cbench [57]. Un-

like Cbench which creates independent switches OFCBenchmark creates a set of virtual switches

that generate and send LLDP packets to each other. The virtual switches act more like a network.

OFCBenchmark can get performance statistics for each virtual switch. In [58], Jarschel et al. fur-

ther developed OFCProbe. To emulate a real network, OFCProbe can create the payload of packet-in

messages from a PCAP file. Users can capture packets from a network and use OFCProbe to re-

play the traffic. In OFCProbe, each virtual switch can be assigned a file that contains the traffic

information.

The key features of different benchmark tools are summarized in Table 3.2.

Table 3.2: Models of OpenFlow networks

Reference Tool Key feature
Sherwood et al. [124] Cbench Generating basic performance metrics
Shalimov et al. [115] Hcprobe Custom tests by a specific language
Jarschel et al. [57] OFCBenchmark Emulating an OpenFlow network
Jarschel et al. [58] OFCProbe Replaying real traffic

3.3 Performance Improvement

The main overhead of an OpenFlow network is the communication on the OpenFlow channel.

The OpenFlow specification [41] defines a buffer in the OpenFlow switch to reduce the traffic in

an OpenFlow channel. OpenFlow switches will send a part of a packet with a buffer identification

instead of the whole packet to a controller to request the forwarding rules. This is the default way

to reduce the traffic in OpenFlow channels by reducing the size of packet-in messages. However,

the buffer is designed at packet-granularity. It can not reduce the number of messages. The buffer

can hardly improve the performance of an OpenFlow network. Many researchers are trying to im-

prove the performance of OpenFlow networks by reducing the number of messages from OpenFlow

switches.

Curtis et al. proposed DevoFlow to reduce the communication between switches and the con-

troller [34]. They analyzed the overhead of the OpenFlow architecture and concluded that Open-

Flow switches involve the controller too frequently both in flow setup and statistics-gathering. They

designed a new OpenFlow switch that can reduce the overheads. In DevoFlow, they put a CLONE
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flag in a match field of a flow entry. If the flag is clear, the switch behaves the same as a normal

OpenFlow switch. Otherwise, the switch creates a new flow entry. In the new flow entry, all the

flagged match fields are replaced by values matching the flow entry and other aspects are inherited

from the flow entry. The DevoFlow switches can handle some flows without controller so that the

traffic on the OpenFlow channel is reduced. Their result showed that DevoFlow used 10–53 times

fewer flow table entries and uses 10–42 times fewer control messages.

In [69], Daisuke et al. proposed a method to reduce CPU utilization in both OpenFlow switches

and controllers to reduce the traffic between them. They categorized packet-in messages into three

types: State Change, Flow Setup and Forward. The Forward type of messages are less important

than the others. Forward messages do not change the state of a network. They proposed a method to

identify Forward messages in switches and set a rate limiter for the Forward messages. They imple-

mented their method into Open vSwitch [99]. The evaluation showed that their method can reduce

the messages from switches and decrease the utilization of CPU in both switches and controller.

Mao et al. proposed FPB, a flow-granularity buffer management model for OpenFlow switches.

FPB has higher performance than the existing packet-granularity buffer management with less com-

munication overhead between switches and controllers. They built packet-in buffer table into a

switch. An entry in packet-in buffer table records the buffer information of a flow, which includes

the match fields, start index, current index, packet count and timeout. Before the switch sends a

packet to the controller, it looks for an entry in the packet-in buffer table that matches the packet.

If it finds a matched entry, the packet will be buffered in the packet-in buffer table. Otherwise, the

packet will be sent to the controller. They also designed a flow action pre-processing mechanism

to prevent packets disorder. To evaluate the FPB model, they built prototypes on both software and

hardware switches. Experimental results showed that FPB can effectively reduce the communication

overhead and decrease the probability of packets disorder.

A packet may be dropped in the flow installation process if the packet arrives earlier than its

corresponding flow rules at the switch. To solve this problem, Awan et al. proposed a new mech-

anism that ensured flow installation before the corresponding packet [6]. They measured the delay

between any two switches, and the delay between the switches and the controller. Based on the de-

lays, they determined the order of flow installations. In their approach, some switches are managed

in a proactive way. Therefore, the approach can reduce the communication overhead between the

switches and the controller. Their experimental results also show that the approach can reduce the

communication overhead significantly when there are lots of flows in the network.

Shirali-Shahreza et al. proposed ReWiFlow to reduce the programming complexity of flow entries

[125]. ReWiFlow adds a restriction into flow entry. ReWiFlow defines an order among all header
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fields that can appear in a flow entry. A header field can be in a flow entries only if the header

field before it is in the flow entry. ReWiFlow does not need any changes of the OpenFlow switch

specification. It is compatible with normal OpenFlow switches. Their experiments showed that

ReWiFlow can decrease the flow setup time and improve the performance of matching process.

The main workload for a controller is the installation of flow entries into OpenFlow switches.

Source routing is a good way to reduce flow entry installations because the path information is

embedded in the packet header. The controller only needs to install flow entries into the edge

switch to assign paths for flows, all the intermediate switches can get the forwarding instructions

in the packet headers. Soliman et al. first proposed source routing in OpenFlow networks [127].

Their experiments showed that source routing can reduce 77.6% traffic between the switches and

controller in a 34 nodes network, and the more nodes are in a network, the more the traffic will

be reduced. Since source routing is a very good way to reduce the communication between the

switches and the controller, many researchers applied source routing to improve the scalability and

performance of OpenFlow networks [11, 48, 77, 78, 128].

Source routing can reduce the load of controllers significantly. However, the OpenFlow protocol

does not support source routing. There are no bits reserved in the packet header for path information.

To implement source routing in an OpenFlow network, some researchers have encoded the path into

the header of each packet. When a packet arrives at a network, the switch modifies its header

and puts the path information into its header. When the packet leaves the network, the switch

removes the path information and restores its header. In [62], the authors discussed some possible

ways to implement source routing in OpenFlow networks. They observed that path information

can be encoded compactly into a single field in a large network. They also proposed an approach

to use source routing in data center networks. The experimental results show that the memory

utilization of the switches was linearly dependent on the network diameter if source routing was

applied. Moreover, the throughput was not negatively impacted when any feasible path can be

selected at the edge switches.

Ramos et al. presented SlickFlow, a resilient source routing approach in OpenFlow networks

[105]. In SlickFlow, two paths are encoded in a packet, a primary path and an alternative one. If

failures happen along the primary path, packets can be rerouted to the alternative path without the

controller. They implemented SlickFlow based on Open vSwitch and evaluated it in three topologies.

The experiments showed that SlickFlow can reduce the number of requests from the switches and

achieve failure recovery without the controller.
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3.4 Performance of Multiple Controllers

A single controller is not capable of managing all the switches in a large network. Some re-

searchers designed distributed controllers to improve the reliability and scalability of the control

plane [16, 70, 100, 153]. Distributed controllers act as a logically centralized controller. The con-

trollers should exchange network information to keep a consistent view of the whole network. There

are problems in the information exchange process, e.g., how to choose the number of controllers and

how to determine the assignment relationship between the switches and the controller. Many metrics

can be used for tackling these problems. Some researchers focus on a certain metric, while others

combine several metrics and try to find the best trade-off [112, 137].

Yao et al. used a capacitated K-center algorithm to avoid overloaded controllers [149]. Their

algorithm can reduce the number of required controllers and balance the load among the controllers.

Bari et al. proposed a heuristic algorithm to reduce the flow setup time and load of controllers

[9]. They used integer linear programming to solve the controller provisioning problem. Their

method can determine the optimal number of controllers and the best location of the controllers.

They developed a controller management framework that can collect relevant statistics from the

controllers and balance the load of controllers. Rath et al. proposed an algorithm based on non-

zero-sum game theory to distribute the requests from switches among controllers uniformly [106].

They deployed an optimization engine at each controller. The engine compared its load with its

neighbors and added a new controller or deleted an existing controller based on the comparison.

Hu et al. proposed BalanceFlow to balance the load of controllers by switch migrations [54]. They

designed one controller as super controller. The super controller can adjust the assignment among

the switches and controllers. When a controller is overloaded, the super controller runs a load

balancing algorithm to reduce the load of the controller. Cello et al. proposed an algorithmic solution

to balance the load of controllers [27]. They evaluated the solution based on Matlab simulations with

random traffic. The result showed that their method can reduce the variance of the load of controllers

by 40%. Wang et al. proposed a greedy algorithm to balance the load among controllers [141]. They

collected the load information from the controllers and decided whether to migrate switches. Then

they established a tradeoff between the migration cost and the load balancing to decide where to

migrate the overloaded switch.

Filali et al. formulated the controller assignment problem as a one-to-many matching game with

a minimum utilization each controller has to achieve [38]. To balance the load among controllers,

they proposed an algorithm to ensure a stable matching between switches and controllers. Zhang et

al. proposed an adaptive controller assignment scheme for multiple controllers that can dynamically
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adjust the number of controllers and the mapping relationship among controllers and switches [157].

They designed three algorithms for expanding the controller pool, shrinking the controller pool and

controller load balancing, respectively. Huque et al. combined the controller placement problem and

dynamic flow management [139]. They aimed at achieving high utilization at low power consump-

tion and maintenance cost. They proposed an algorithm to determine the number of controllers per

module for the dynamic load and the best locations of controller modules. Wang et al. formulated

the controller assignment problem as a stable matching problem and proposed a hierarchical two

phase algorithm that used matching theory and coalitional games to minimize the average response

time of the control plane [143].

Song et al. proposed a lightweight load balancing scheme for distributed controllers [129]. In

the scheme, switches are not migrated. Instead, idle controllers share workloads with overloaded

controllers. Therefore, their method can avoid the migration cost. Kyung introduced a load distribu-

tion method that can reduce the blocking probability [72]. When the load of a controller reaches a

certain threshold, the controller forwards incoming requests to another controller. Zhou et al. [159]

presented DALB, a distributed load balancing algorithm. DALB is a module of an OpenFlow con-

troller. It collects load information of the controller. If the load of a controller exceeds a certain

threshold, the controllers will elect a switch and migrate the switch to an idle controller. They built

a prototype based on the Floodlight controller and evaluated DALB by simulations.

Yu et al. proposed a load balancing mechanism based on load information [155]. They set a

threshold for each controller and used the threshold to determine which controller was most loaded.

They preferentially selected a switch with high message arrival rate so that the overloaded con-

troller can release the load as soon as possible. They implemented the framework for the Floodlight

controller and run the simulations in Mininet. Cheng et al. formulated the controller load balancing

problem as network utility maximization problem [30]. The objective of the network utility problem

is to serve as many as possible requests under the available controllers. They designed a distributed

algorithm that approximates the optimal solution. They implemented a prototype and evaluated their

algorithm in two real topologies. Yao et al. solved the controller placement problem with the node

weight, and migrated switches dynamically based on the network traffic to balance the load of con-

trollers [150]. They split a network into multiple domains and determined the best location for the

controller in each domain. To adapt dynamic flows, they also designed a switch migration algorithm

to balance the load among the controller. When a controller was overloaded, the controller migrated

the boundary switch with the arrival arrival rate to its neighbor.

In many works above, the researchers assumed that the service time of controller is constant.

However, our measurements show that the service time is random and the distribution of service
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has a heavy tail. In this thesis, we measure the service time of controllers, fit a PH distribution to

the service time, and build queueing models for the controllers. We optimize the performance of

controllers based on the queueing models.
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Tools for Performance Modeling
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Chapter 4

HyperStar2: Easy Distribution Fitting of
Correlated Data

PH distributions play an important role in the field of performance evaluation because PH distri-

butions can describe many real world phenomena. A PH distribution can be represented by a CTMC

2.2.2 so that models use PH distributions can be easily computed.

However, PH distributions cannot describe correlation in a data set. Many researchers use MAPs

to capture the correlation in empirical data. MAPs have a long history in stochastic modeling [91,92]

and are powerful modeling tools. MAPs, in theory, allow the representation of almost all relevant

stochastic behaviors that are observed in practice. MAPs are popular tools to characterize correlated

stochastic processes like inter-arrival times or sequences of correlated service times. MAPs were

proposed in [81] and are widely used for probabilistic analysis of communication network traffic.

One advantage of MAPs is that they have attractive properties from the viewpoint of stochastic

processes. MAPs are general classes of stochastic processes that contain most of the commonly used

arrival processes such as the Poisson process, the PH renewal process, and the Markov-modulated

Poisson process (MMPP). And any general point process can be approximated by appropriate MAPs

[5].

To capture empirical behavior by MAPs, the parameters of a MAP have to be fitted according to

some trace resulting from observations. The fitting problem of MAPs is a nonlinear optimization

problem that is very complex as there are many free parameters in the matrix representation [131].

Different fitting approaches have been proposed in the literature which all have their pros and cons.

The most general approach is to find a MAP that maximizes the likelihood according to the avail-

able trace. The EM algorithm [20] can be used for this purpose and many specific variants of the
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algorithm for MAP fitting are available [19]. EM algorithms have several disadvantages. They have

a slow convergence, may converge towards a local minimum and require a huge effort that grows

linearly in the length of the trace. So the EM algorithm is applicable only to small measurement

traces. A number of MAP fitting methods were published based on the two-phase approach [22],

which suggested splitting the task into two phases: fitting of the inter-arrival times in the first phase

by a PH fitting method and fitting the correlation in the second phase. However, it is still an open

question what are the statistics that capture the correlation structure of the trace the best. Alternative

approaches first derive some quantities from a trace, like higher order moments, joint moments or

lag-k auto-correlations and then fit the parameters of a MAP according to these quantities. Recent

results on the characterization of MAPs revealed the importance of joint moments. Some more

recent work on MAP fitting uses the lag-1 joint moment to fit the auto-correlations [21].

We have developed HyperStar2, a user-friendly tool which allows for intuitive user interaction

and provides direct user feed-back. Using HyperStar2 requires no knowledge of the underlying

mathematics or theoretical foundations. The tool is used by working directly with the empirical

data.

In this chapter, we discuss our cluster-based approach to PH distribution and MAP fitting. We

have implemented this approach as HyperStar2, a tool with a graphical user interface. The rest

of this chapter is structured as follows: we describe our cluster-based fitting approach in Section

4.1. Section 4.2 gives an overview of our implementation of the HyperStar2 tool. We evaluate the

method in Section 4.3 by numerical experiments. Section 4.4 concludes this chapter.

4.1 Fitting Algorithm

As we introduced in Chapter 2, a MAP is usually represented by two matrixes,D0 andD1, where

D0 contains the rates of internal transition without an arrival and D1 describes the transitions rate

with an arrival. There are two steps in our fitting algorithm. In the first step, we use a cluster-

based algorithm to fit a hyper-Erlang distribution to the samples. The hyper-Erlang distribution can

represent the internal transition without an arrival. The generator matrix of the fitted hyper-Erlang

distribution is D0. In the second step, we construct D1 based on the Hyper-Erlang distribution and

the clusters of samples. The samples are clustered in the first step. We count the transitions among

the clusters and transfer the transitions into theD1 matrix.
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4.1.1 Constructing the D0 matrix

The cluster-based fitting algorithm consists of splitting the samples into M clusters, fitting each

cluster with an Erlang distribution and performing cluster refinement where needed.

More formally, we split all the samples S = s1, s2, ...sn into M clusters C1, C2, ...CM using

the k-means algorithm [80]. Clustering aggregates similar samples in the same cluster and thereby

each sample belongs to exactly one cluster. The user can specify the number of clusters and the

position of the initial cluster centers by marking important peaks of the density in the GUI. An

Erlang distribution Qm is fitted to each cluster Cm. The Erlang distribution fitting method can

be chosen arbitrarily. The hyper-Erlang distribution (α,Q) is obtained as a mixture of the cluster

distributions. The initial probabilities α are obtained as the relative cluster sizes

α = (
|C1|
n
,
|C2|
n
, ...,
|CM |
n

), (4.1)

and the generator matrix is constructed from the branch sub-generator matrices.

In the cluster refinement, we assign the samples to new clusters using the strategy described

below. These two steps are repeated until either the parameters of each branch distribution no longer

change or a maximal number of iterations has been exceeded. We use a probabilistic re-assignment

strategy for the cluster refinement. For each sample si we compute a vector

ε =
1∑M

j=1 fj(si)
(f1(si), f2(si), ..., fM (si)), (4.2)

where fM is the pdf of the M th Erlang distribution. For each cluster Cj , we use this vector to

estimate the probability that the sample si is in the respective cluster. Let ε(j) denote the jth element

in ε then we assign the sample si to the cluster Cj with probability ε(j). After the assignment, we

obtain M new clusters. Then we fit an Erlang distribution to each cluster again. These two steps are

repeated iteratively until either the parameters in each Erlang distribution do not change or a maximal

number of iterations has been exceeded, whichever comes first. We store some result candidates in

the iterations. If the maximal number of iterations has been reached, we use the candidate with

maximum likelihood as result. In the refinement we record which cluster a sample belongs to for

the later correlation fitting.
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4.1.2 Constructing the D1 matrix

For a hyper-Erlang distribution, the probability of initial phase after an arrival is always α. For

a MAP, the probability of initial state after an arrival depends on the phase immediately before that

arrival andD1 describes the transition rates between phases, which are states of a CTMC.

Our approach is to analyze the relative frequency of transitions between clusters to construct the

matrix D1 based on the transition frequencies. When an arrival occurs, let η(i,j) be the probability

that the next phase is j given the current phase is i, we can obtain the element of D1 at row i

column j by scaling η(i,j) with a proper factor because D1 and η(i,j) describe the same thing using

different notation. In our MAP fitting algorithm, we construct D1 based on the relative frequency

of transitions between clusters.

After a hyper-Erlang distribution is fitted, a generator matrix Q for the hyper-Erlang distribution

is obtained. For MAP fitting we set D0 = Q. If there are ki phases in the Erlang distribution of

cluster i it follows thatD0 is a K ×K matrix, where

K =
M∑
i=1

ki. (4.3)

Because the matrixD0 is associated with transitions without arrivals and we use a generator matrix

of a hyper-Erlang distribution in our MAP fitting algorithm, transitions with arrivals only happen be-

tween Erlang branches. Every Erlang branch is associated to a sample cluster, we analyze transitions

between clusters to get the transitions between Erlang branches that are associated with arrivals. Let

C be a K ×K zero matrix and C(r,c) be the element at row r column c, we use matrix C to count

the transitions between clusters.

Let Bi be the first phase of the ith Erlang distribution and Ei the last phase of the ith Erlang

distribution. We can get

Bi =
i−1∑
a=1

ka + 1, (4.4)

Ei =

i∑
a=1

ka − 1.. (4.5)

If a sample belongs to the ith cluster and the next sample belongs to the jth cluster, where i may

be equal to j, we update the counter as below:
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C(Ei,Bj) = C(Ei,Bj) + 1.. (4.6)

We can setD
′
1 to the probability matrix for sample transitions

D
′
1 =

1

n− 1
C.. (4.7)

Let D
′

1(r,c) be the element of D
′
1 at position (r, c). Hence D

′

1(r,c) is the probability that the

sample generating process transits from state r to state c. We assume D
′

1(r,c) equals the probability

that transitions occur between states in the MAP. To get D1, we must convert the probability in D
′
1

to state transition rates by scaling every element in D
′
1 with a suitable factor. Let F be matrix of

factors, D1 is the Hadamard product of D
′
1 and F . The Hadamard product is a binary operation

that takes two matrices of the same dimensions and produces another matrix of the same dimension

as the operands where each element i, j is the product of elements i, j of the original two matrices.

The Hadamard product is denoted using the symbol ◦.

D1 = D
′
1 ◦ F ., (4.8)

D0 +D1 is an irreducible generator of a CTMC, so

(D0 +D1)1 = 0, (4.9)

where 0 is a row vector of zeros of the appropriate dimension and 1 is a vector of ones of the

appropriate dimension.

LetD1(r,c) be the (r, c) element ofD1 and let F(r,c) be the (r, c) element of F . Combining (4.8)

and (4.9), then we can get

D1(r,c) =

 −
D0(r)

D
′
1(r)

D
′

1(r,c) ifD
′

1(r) 6= 0

0 ifD
′

1(r) = 0
, (4.10)

where D0(r) is the sum of the r-th row in the matrix D0, D
′

1(r) is the sum of the r-th row in the
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matrixD
′
1.

D0(r) =

K∑
c=1

D0(r,c) (4.11)

D
′

1(r) =

K∑
c=1

D
′

1(r,c). (4.12)

.

4.1.3 Example

In this subsection we show in a simple example how the fitting algorithm works. Assume we

have a data set that contains 5000 samples. In our example the cluster-based fitting algorithm splits

the data set into two clusters and fits the first cluster with generator matrix Q1, second cluster with

generator matrixQ2, e.g.

Q1 =

(
−2 2

0 −2

)
Q2 =

(
−5 5

0 −5

)
TheD0 matrix is then the generator matrix of hyper-Erlang distribution

D0 = Q =


−2 2 0 0

0 −2 0 0

0 0 −5 5

0 0 0 −5


According to (4.4) and (4.5), we obtain

B1 = 1, E1 = 2

B2 = 3, E2 = 4.

If one sample is in the first cluster and the next is in the second cluster, we count one transition

from the first cluster to the second cluster. Assume in our set of 5000 samples we have 1754 pairs

with both samples from the first cluster, 750 transitions from the first to the second cluster, 1750

transitions from the second to the first cluster and 745 data pairs both from the second cluster. Then
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the counting matrix C is shown below.

C =


0 0 0 0

1754 0 750 0

0 0 0 0

1750 0 745 0

 .

We obtain for the relative frequenciesD
′
1

D
′
1 =


0 0 0 0

0.35 0 0.15 0

0 0 0 0

0.35 0 0.149 0


According to 4.10, we obtainD1 as

D1 =


0 0 0 0

1.4 0 0.6 0

0 0 0 0

3.5 0 1.49 0



4.2 Implementation

We implemented the fitting method in the tool HyperStar2. In earlier work [107] we found that the

human user can very often detect clusters much better than a fully automatic algorithm by marking

the peaks in the distribution as relevant values in the observations.

The GUI support allows users to fit a hyper-Erlang distribution or a MAP to a data set quickly

and accurately. The GUI mode is shown in Figure 4.1. The left panel displays the histogram and

empirical CDF for the data set in different tabs. The fitted pdf and cdf are also shown in the tabs

after fitting a hyper-Erlang distribution. If the fitting result is a MAP, the tools will create a third tab

to show the auto-correlation.

For most cases, users do not have to set the parameters, HyperStar2 can provide good fitting

results with the default values after simply clicking the Fit button on the right panel. If the user is

not satisfied with the fitting result, because either the distribution does not sufficiently well fit the
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Figure 4.1: User interface of HyperStar2 with fitted result

empirical data, or the theoretical and the empirical autocorrelation do not match as expected, the

peaks on the histogram can be marked differently and some fitting parameters can be set on the right

panel. The density peaks are used as the initial centers of K-means algorithm.

At the Limit data panel, the user can choose how many samples should be used for the fit or

what range of samples should be included in the fitting process. For very large data sets the fitting

algorithm might become too slow. In that case samples can be removed by their order, e.g. only

the first 75% samples are fitted if the user sets the size to 75. Another option is to reduce the range,

which means that only samples that lie within the set range are fitted. This can be also used to

remove obvious outliers. Parameters in the fitting tab are the most import ones, they are used by

the fitting algorithm and impact the fitting result. Table 4.1 lists the fitting parameters to control the

behavior of the fitting algorithm. The tool can export results after the fitting is done.

Table 4.1: Fitting parameters

Parameter Description(default value)
Fitter Distribution to be fitted (MAP)
Branch Number of branches to be fitted (6)
Reassignment Maximum number of iterations (20)
Shuffles Number of reassignments in an iteration (2)
Queue optimize Number of result candidates (10)
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4.3 Evaluation of HyperStar2

In this section we demonstrate the fitting properties of HyperStar2 by analyzing some examples.

We fit distributions and evaluate the goodness of fit by comparing the empirical and the theoretical

probability density function as well as the lag-k correlation. We also compare our results with results

from ProFiDo [10], which we found to be a very versatile fitting tool.

We show two examples that demonstrate the advantages and disadvantages of our tool. We first

generated samples from a given MAP and then study how well HyperStar2 is able to approximate

this distribution. We use samples that contain obvious peaks in the first example. There are not

many samples in the overlap area between clusters. Therefore, it is clear which cluster the samples

are assigned to, so the estimation of the relative frequency of transitions between cluster in the

sample sequence is highly accurate and the algorithm provides good correlation fitting. In the second

example, the samples do not contain obvious peaks. Hence, there are many samples in the overlap

area between clusters. These samples may be assigned to different clusters. The assignment may

not impact the density fitting very much, but we assume that it impairs the autocorrelation fitting,

since the estimate of relative frequencies in changes between clusters in the sample sequence has

much more uncertainty.

The branch parameter indicates into how many clusters the data is split. This is a very import

parameter in our algorithm, as it impacts the fitting result severely. So we show fitting results with

different number of branches in the two examples. The two examples show the advantages and

disadvantages of HyperStar2.

The first example uses a 6-state MAP with the following matrices. Using this generator there are

two states that contribute strongly to the dynamics of the model, while the remaining four states are

less influential. This can also be seen in Figure 4.2, where the empirical density has two peaks.

D0 =



−10 10 0 0 0 0

0 −10 0 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

0 0 0 0 0 −1
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D1 =



0 0 0 0 0 0

7 0 3 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0.3 0 0 0.7 0 0


The first data set consists of 25000 samples generated from this MAP. We fit the samples using

HyperStar2 and ProFiDo. Setting the branch parameter to 2, which means the algorithm splits the

data into 2 clusters and there are 2 Erlang branches in the hyper-Erlang distribution. HyperStar2

gives the following result.

D0 =



−9.892 9.892 0 0 0 0

0 −9.892 0 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

0 0 0 0 0 −1



D1 =



0 0 0 0 0 0

6.92 0 2.97 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0.283 0 0 0.717 0 0


Figure 4.2 shows the histogram of samples and the densities of the fitted distributions. The solid

line represents the pdf of the result from ProFiDo. The other three lines represent the pdf of results

from HyperStar2 using different parameter settings. The red line shows the 2-branch result from

HyperStar2, the yellow and blue lines show the results for 3 branches and 4 branches respectively.

From Figure 4.2 we observe that HyperStar2 fits this data set very well with 2, 3 or 4 branches.

ProFiDo provides a good fit of the density but is not able to capture the second peak and the gap
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between the peaks as precisely.

Figure 4.3 shows the autocorrelation function of the resulting MAP. As expected, the autocorrela-

tion function is fitted well by both tools. The figure indicates that the result with 2 Erlang branches is

the best of the results we have computed using HyperStar2. It is as good as the result from ProFiDo.

samples
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p
d
f

0

0.5

1

1.5

2
samples

HyperStar2(2 branches)

HyperStar2(3 branches)

HyperStar2(3 branches)

ProFiDo

Figure 4.2: The pdf of the first example

But for different numbers of Erlang branches the results are not as good. The 3-branch and 4-

branch results for the density are not as good as 2-branch result, but they are also very close to the

samples’ autocorrelation.

In the second example, we approximate the following MAP:

D0 =



−0.2 0.2 0 0 0 0

0 −0.2 0.2 0 0 0

0 0 −0.2 0 0 0

0 0 0 −0.5 0.5 0

0 0 0 0 −0.5 0.5

0 0 0 0 0 −0.5
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Figure 4.3: Correlation of the first example

D1 =



0 0 0 0 0 0

0 0 0 0 0 0

0.16 0 0 0.04 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0.02 0 0 0.03 0 0


We again generated 25000 samples from this MAP and fitted them with HyperStar2 and ProFiDo.

We used 2, 4 and 6 branches. It is not easy to see the peaks in this, so we did not mark any peak

on the histogram. Figure 4.4 and Figure 4.5 show the fitting results.

Figure 4.4 shows that both ProFiDo and HyperStar2 can fit the distribution very well. Although

there are 2 hyper-Erlang branches in the original MAP, HyperStar2 can still provide a good fit with

4, or 6 branches.

From Figure 4.5, we can see that ProFiDo fits the correlation better than HyperStar2. But the

distribution fit of HyperStar2 is still better than that of ProFiDo. We assume that HyperStar2 is less

suited to capture relatively small autocorrelation, which means that clusters have a strong overlap.

High autocorrelation typically shows as strongly distinct clusters and those are captured much better

by HyperStar2 than less distinct clusters.
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Figure 4.4: The pdf of the second example
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Figure 4.5: Correlation of the second example

4.4 Summary

In this chapter we have presented HyperStar2, a fitting tool for correlated data and the algorithms

behind it. We have shown that HyperStar2 can capture the shape of a distribution very well. Hyper-

Star2 can also fit an MAP to a data trace well, but autocorrelation is not represented as well as done

by ProFiDo if there are not obvious peaks in the histogram of samples.
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Chapter 5

An OpenFlow Controller Performance
Evaluation Tool

Since the OpenFlow specification does not dictate how a controller should be implemented, there

are different controllers developed by different organizations in different programming languages.

That makes each controller better suited for certain scenarios than others. The current OpenFlow

ecosystem is fragmented due to the variety of controller platforms. We must understand the differ-

ence between the controllers to choose an implementation or to analyze the behavior of an OpenFlow

network.

There are already benchmark tools to analyze the performance of an OpenFlow controller, such

as Cbench [124]. Cbench can provide users the minimum, maximum throughput as well as the mean

and variance of throughput. An example benchmark result from Cbench is shown in Figure 5.1.

The metrics Cbench provides may be enough for some users, but researchers who want to build

a performance model for OpenFlow controller or people who want to understand the reason of

the behaviors may need more detail. The mean and variance of the response time are the most

commonly used metrics in application performance management. However, in reality, the response

time often has a long tail, the mean and variance cannot provide enough insight into the performance.

So it is better to provide a distribution of response time. In this chapter, we introduce a user-

friendly tool to obtain the performance of OpenFlow controllers. Unlike other benchmark tools that

focus on throughput, our tool helps users to build models for OpenFlow networks and evaluate the

performance of the controllers with the models. So we can understand the behavior of OpenFlow

controllers and get a detailed analysis of the performance. Our tool aims at providing a simple

way to analyze the performance of OpenFlow controllers. It can estimate the performance of their
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Figure 5.1: A benchmark result from Cbench

network design with the model. To achieve this, we develop a tool named OFCP to help researchers

to build performance models. OFCP contains a virtual switch, which can send messages to and

receive messages from an OpenFlow controller. Packet-in messages are the most frequent in an

OpenFlow channel. So this tool focuses on the performance of the controller processing the packet-

in messages. The tool sends packet-in message to an OpenFlow controller, receives a flow-modify

message, records the round trip time, and fits the times into a hyper-Erlang distribution.

In this chapter, we discuss our OpenFlow controller performance evaluation tool. It is a tool

with a graphical user interface to help users to build performance model of OpenFlow controllers.

We provide a discussion of the implementation and the use of OFCP in common tasks. OFCP

implements a virtual switch to measure the response time of OpenFlow controllers and a distribution

fitting algorithm to fit the response time to a hyper-Erlang distribution. Our focus will be on the

illustration of OFCP in typical scenarios. With the tool, users can gather the response time of

OpenFlow controllers and fit the response time with a hyper-Erlang distribution. Furthermore, they

can export the result into other modeling tools to build and evaluate their model.

The rest of this chapter is structured as follows. In Section 5.1 we present the implementation of

OFCP. In Section 5.2 we discuss how to use the tool and present a performance evaluation result.

Finally, we conclude this chapter in Section 5.3
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5.1 The OFCP Tool

In this section we present the implementation of our performance evaluation tool.

5.1.1 Design Goal

The OpenFlow protocol introduce a new forwarding delay to the networks because of the com-

munication between the switches and the controller. The controller may become a bottleneck in a

large network. Many researchers have noticed this problem and built queueing model for OpenFlow

networks to measure the impact of the communication. Many studies assume that the message pro-

cessing time of controllers following exponential distribution [59,148]. Based on our measurements,

the exponential distribution cannot fit the message processing very well. At the same time, there are

no tools that offer the response time for individual messages, so we develop this tool. This tool can

not only evaluate the performance of OpenFlow controllers but also provide statistical details about

the response time of a controller. Researchers can use the tool to analyze the response time of an

OpenFlow controller and obtain the distribution of the response time. They can use the distribution

in their analytical model. One of our design objectives is to build a tool that is interactive and easy

to use. The architecture of OFCP is guided by the following design goals.

• Detailed analysis: The main purpose of the tool is to help researchers to build their models of

OpenFlow controllers. To achieve this, the mean response time and the variance is not enough.

Our performance evaluation tool should provide the response time and the fitted distribution

of the response time. If the users are not satisfied with the fitted result, they can also use other

fitting tools. In addition, it also provides other performance metrics such as the number of

outstanding packets.

• Interaction with modeling tools: This tool is used for building performance models of Open-

Flow controllers, but we only focus on response time analysis. Users need modeling tools to

build and evaluate their models. It would be helpful if this tool can interact with other model-

ing tools, e.g. JMT [17]. Users obtain controller response time, analyze the response time in

this tool and export the result to other modeling tools to build and evaluate their models.

• Flexibility: By default, the tool sends a message to the controller, waits for the response, and

sends the next message when a response message is received. This means that the tool can only

analyze the response time of a controller. Researchers may want to control the arrival process

of the messages in the performance evaluation. This is a common operation in a queueing

model. In addition, the researchers may have a different demand for different topics. The tool

should be adaptable to new scenarios. We want to develop a flexible tool to make it easy to
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adapt to different arrival processes.

• User-friendly: There are other open source OpenFlow benchmark tools, such as Cbench [124],

OFCBenchmark [57]. They are both command line tools and only work on a Linux platform.

One of our goals is to develop a user-friendly performance evaluation tool with a graphical

user interface. Users can get the performance metrics with some simple clicks.

5.1.2 Architecture

There are four main components in OFCP: virtual switch, time measurement, arrival process

configuration and distribution fitting. They are illustrated in Figure 5.2.

distribution 
fitting

arrival process 
configuration

virtual switch

connection 
manager

message 
encoder

message 
decoder

time 

measurement

Figure 5.2: The architecture of OFCP

The key components of the OFCP are the virtual switch and the distribution fitting. Figure 5.2

shows the structure of the virtual switch. It holds a connection to an OpenFlow controller, through

which it sends OpenFlow messages to the controller and receives messages from the controller. The

message encoder transfers OpenFlow messages into bytes and the message decoder does the reverse.

The time measurement component stores the time when an OpenFlow message is sent or received.

The time measurement is triggered by the message encoder and decoder. It records a time stamp

when the message encoder or decoder transfers each message. After the time measurement, the

distribution fitting component fits a hyper-Erlang distribution to the response time of the OpenFlow

controller.

By default, the virtual switch sends the next OpenFlow messages after it receives the response for
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the previous one. Consequently the controller only processes one request at any time. The user may

want to change the arrival process to meet their demands. This is done using the the arrival process

configuration component. The user can define the arrival process of the OpenFlow messages in this

component.

5.1.3 Implementation

OFCP is written in Java using the OpenFlowJ library [90], which exposes the OpenFlow pro-

tocol through a Java API. Experiments can be configured directly via the graphical user interface.

Configuration options include measurement time, arrival process.

When a virtual switch is created, it reads the configuration, performs the OpenFlow handshake

process and answers other controller requests. After the handshake is finished, an inside packet-

generator creates packet-in messages and sends them to the controller. The time between two mes-

sages can be configured in the arrival process configuration component. Each packet-in message

contains a packet header that the controller has not yet encountered. A packet-in message is identi-

fied by its buffer id. The controller responds to each packet-in message with a packet-out message

or flow-modify message using the same buffer id to identify the corresponding packet-in message.

The time measurement component is informed that a request or response arrives by the encoder

and decoder. Before a packet-in message can be sent, it should be encoded into bytes. The encoder

informs time measurement component the buffer id, The time measurement component records the

buffer id and the time stamp. After a packet-out or flow-modify message is received, the message

decoder transfers the bytes into an OpenFlow message, it parses the buffer id and informs the time

measurement component. The time measurement component gets another time stamp and calculates

the response time for the request.

After the measurement is finished, the distribution fitting component gets the measured samples

from the time measurement component and fits the response time to a hyper-Erlang distribution

using the fitting algorithm described in Chapter 4.

The OFCP has a graphical user interface, the users can see the response time in real time. They

can also see the cdf and the pdf of the distribution of the response time after the distribution fitting.

5.2 Performance Evaluation Result

In this section we demonstrate the usage of our tool. We discuss its functionality and show an

example of the performance evaluation of Ryu controller.

The tool helps researchers to build a performance model of OpenFlow controllers and the network
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managers to understand the behaviors of OpenFlow controllers. It measures the response time of the

controller and fits a hyper-Erlang distribution the response time. The users can use the distribution

to build and validate their model. So the first step is to measure the performance of OpenFlow

controllers. There are two modes, latency and throughput. In latency mode, the tool measures

the response of the controller, it sends packet-in messages following the given arrival process and

measures the response time. In throughput mode, the tool sends as many as possible packet-in

messages, and measures how many response messages it receives. the default mode is to measure

the response time because the response time is more relevant for building models. The users can also

configure the duration of the measurement. There are two ways to configure it, measurement time

and sample number. By configuring the measurement time, the measurement will last for the given

time. If a sample number is given, the tool will gather samples until it reaches the given number.

The arrival process is essential in a queueing model. The users can configure the arrival rate, by

which the tool will send packet-in messages following the given arrival rate. For now, the tool only

supports Poisson process. By default, after the response for the previous one is received. It makes

the controller only process one message at any time. All the configurations can be set on the right

panel of the tool. The detailed configuration are shown in Table 5.1.

Table 5.1: The detailed configuration

Parameter Default Comment
IP address 127.0.0.1 IP address of the controller
Port 6633 TCP port of the controller
Mode Latency The measurement mode (latency or throughput)
Duration 30 How long the measurement lasts (in seconds)
Sample number 10000 How many samples to gather
Arrival mode Once a time The mode of packet-in arrival at the controller
Arrival rate 500 The arrival rate of Poisson process

We set up a Ryu controller and use the tool to measure the response time of Ryu. The Ryu

controller runs on ubuntu 18.04 with 4G memory and 2.3GHz CPU. There is a Ryu application for

benchmark in the Ryu repository. We modify the benchmark application to make it send a flow-

modify message with a buffer id. Then we run it and measure the response time. The measurement

process is shown is Figure 5.3. OFCP sends a packet-in message to the Ryu controller and wait for

a flow-modify message from the Ryu controller and records the response time. The next packet-in

message is sent when OFCP receives a flow-modify message. After this process runs for 10 seconds,

OFCP stops sending packet-in message and fit a hyper-Erlang distribution to the response time. The

result is shown in Figure 5.4.
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Figure 5.3: The measurement process

Figure 5.4: The response time of Ryu controller

We can see the configuration on the right of Figure 5.4. We use the latency mode to measure the

response time of the controller, and the measurement runs for 10 seconds. The response time of

the Ryu controller is shown on the left of Figure 5.4. The x-axis shows the number of the gathered

samples, and the y-axis shows the response time in nanosecond. The line chart is updated in real

time when the measurement is running.

After the measurement completes, we fit the distribution to the measured response time. The pdf

of the fitted distribution is shown in Figure 5.5. It fits a hyper-Erlang distribution to the samples. We

can see in the figure that there is a long tail in the distribution, which happens often in real world

systems. As illustrated in the figure, the fitted distribution captures the peaks and valleys of the
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histogram. It even captures the little peak in the long tail. The fitted distribution is a hyper-Erlang

distribution with 6 Erlang branches. The parameters of the Erlang branches are shown in Table 5.2

Figure 5.5: The pdf of fitted distribution

Table 5.2: The parameters of the Erlang branches

Probability Phase Rate
0.349 134 3.16E − 4

0.01 590 2.01E − 4

0.203 48 7.99E − 5

0.051 11 7.54E − 6

0.105 25 2.97E − 5

0.279 87 1.73E − 4

5.3 Summary

An OpenFlow controller is an essential component in an OpenFlow network. It is key to under-

standing the performance for researchers and managers of productive networks. In this chapter, we

have introduced our tool to evaluate the performance of OpenFlow controllers. It provides users not

only with the performance metrics but also fits a distribution to the response time of the OpenFlow

controller. Through the distribution of response time, users can understand the underlying reason for
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the controllers’ behaviors. We also present a cluster-based fitting algorithm that fits a hyper-Erlang

distribution the samples. The fitting result shows that the algorithm can fit the response time of

OpenFlow well. Since hyper-Erlang distributions have Markovian representation, the fitted result

can be easily used in analytical and simulation approaches to performance evaluation.
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Performance of the Control Plane
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Chapter 6

The Performance of Multiple controllers

The growth of network traffic has been immense over the last years. The latest Cisco Visual

Networking Index [33] reported that the annual run rate for global IP traffic was 1.2ZB in 2016 and

the global IP traffic will increase nearly threefold from 2016 to 2021, the annual global IP traffic

will reach 3.3ZB per year by 2021. As a consequence handling the increasing traffic effectively

and providing high quality service becomes an important challenge. OpenFlow is considered a

promising way and has attracted a lot of attention from both researchers and industry. OpenFlow

offers the high flexibility by separating the control plane from the data plane and using a centralized

controller.

The communication between the controller and the infrastructure increases the transmission la-

tency. With the emerging big data, the overhead will be worse than ever, since the massive traffic in

the data plane triggers a lot of requests on the OpenFlow channel. It is a significant challenge for

the capability of the OpenFlow controller. Multiple controllers have to be deployed in one network

if a single controller is not capable of handling the massive traffic. Many researchers have noticed

the shortages of a single controller. They studied the performance of multiple OpenFlow controllers

by analytical modeling and experiments [3, 138, 143, 147].

In this chapter, we use a queueing model to evaluate the performance of multiple controllers.

We measure the response time of an OpenFlow controller using OFCP and determine the optimal

number of controller with different rates of synchronization messages and packet-in messages. We

also proposed a heuristic to study on the controller assignment problem. We model each controller as

an M/PH/1 queue to capture its response time and optimize the assignment between the switches

and controller to minimize the response time. We evaluate our solution in Mininet.
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6.1 The Number of Controllers

To reduce the flow setup time, multiple controllers are deployed into one network and the con-

trollers manage network flows cooperatively [50, 134]. Nevertheless, the multiple controllers intro-

duce a new overhead, the communication among the controllers. On one hand, more controllers

provide more computing resources. On the other hand, more controllers incur more communica-

tion overhead. Therefore, we have to determine the optimal number of controllers. In this section,

we propose a queueing model to evaluate the service time and communication overhead of multi-

ple controllers and determine the number of controllers that can minimize the flow setup time in

OpenFlow networks. Our solution takes into account the random arrival process and service time.

We formulate the performance of a controller based on queueing theory and determine the optimal

number of controllers based on the response time of the queue.

6.1.1 System Description

We give an overview of the system before introducing the performance model. In this section,

we consider a large OpenFlow network. There are two components in the network: the Open-

Flow switches and the controllers. In OpenFlow networks, all forwarding decisions are made by

the controller. The switches are forwarding devices, which can only forward packets following the

instructions from the controller. The controller is usually implemented as a piece of software. The

controller can add, delete and modify flow entries into OpenFlow switches proactively and reac-

tively. An OpenFlow switch contains one or serval flow tables, which stores a set of flow entries.

A flow entry consists of match fields, a set of instructions and counters. When a packet arrives at

an OpenFlow switch, the switch tries to find a flow entry that matches the header of the packet. If

a flow entry is found, the instructions in the flow entry will be executed. The packet will be for-

warded, modified or dropped. Otherwise, the switch will send a packet-in message to the controller.

The controller may install a flow entry into the switch, so that the packets in the same flow need not

be forwarded to the controller.

Since the network is assumed to be very large, a single controller is often not capable of all the

requests to all the switches. The switches are split into domains, each switch can be only in one

domain. For each domain, there is a controller to manage the switches. Therefore one switch can be

only controlled by one controller.

Since there are no controllers that manage all the switches in the network, a controller can not

collect the network information of the whole network. The controllers have to exchange their infor-

mation about the network. This communication causes additional overhead. The more controllers

70



6.1. THE NUMBER OF CONTROLLERS

here are in a network, the higher is the overhead. Therefore, a controller receives less of the volume

of the requests from switches with increasing number of controllers. At the same time it spends

more time on communication with other controllers.

When a packet arrives at a switch, the switch checks its flow table to find a matching flow entry. If

a match is found, the packet will be forwarded according to the forwarding rule. If no matches can

be found, the switch will send a packet-in message to the controller which contains the header of

the packet. The controller computes a path and installs the necessary flow entries into the switches

along the path. There are two possible cases in the flows installation: (1) the path is inside one

domain, (2) the path across more than one domain. In the first case, all the switches along the

path are in one domain and controlled by one switch. Then the switch installs flow entries into all

the involved switches. However, in the second case, the switches along the path are not controlled

by one controller and the controller can only install flow entries into the switches in its domain.

The controller must invoke other controllers to install the flow entries into the switches out side its

domain. In this case, the controller will spend more time to install flows. Therefore, there are two

kinds of jobs for a controller, and the controller will serve them at different rates.

The first case is shown in Figure 6.1.a. A packet arrives at switch 1, and there are no forwarding

rules for it. Switch 1 sends a packet-in message to controller 1. The controller computes a path

Switch 1→ Switch 2. As all switches along the path are in domain 1, the controller installs flow

entries into all the involved switches.

The second case is shown in Figure 6.1.b. When a packet arrives at switch 1 and its destination is

at switch 4, switch 1 can not find a match for the packet and sends a packet-in message to controller

1. Controller 1 computes a path for the packet, the path is switch 1→ switch 2→ switch 3→
switch 4. Switch 1 and Switch 2 are in the same domain and controlled by controller 1, controller

1 installs flow entries into Switch 1 and Switch 2. The flow setup is not completed, because the path

also contains Switch 3 and Switch 4, which are controlled by controller 2. Therefore, controller 1

cannot install flow entries into them and it has to invoke controller 2 and controller 2 installs flow

entries into Switch 3 and Switch 4, so that Switch 3 will not send packet-in to controller 2 when

the packet arrives at Switch 3. A controller must should process the packet-in messages from the

switches in its domain. Meanwhile, it also should process the invocations from other controllers.

6.1.2 Problem Formulation

In this section, we consider a queueing model for the controllers to capture the flow setup time.

The controllers are modeled as servers in the queueing model. We approximated the service time of

the controllers using PH distributions.

71



CHAPTER 6. THE PERFORMANCE OF MULTIPLE CONTROLLERS
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switch 1 switch 2

a

controller 2controller 1

switch 1 switch 2 switch 3 switch 4

b

flow installation controller invocationpacket-in path

Figure 6.1: Flow setup process under multiple controllers

As we introduced in Section 6.1.1, there are two kinds of jobs for a controller. A controller has

two different service rates for them. If the controller can complete the flow installation without

involving other controllers, the service time is termed as single controller response time. If the

controller invokes other controllers to complete the flow installation, the service time is termed as

multiple controllers response time. The single controller response time and multiple controllers

response time are denoted as t1 and t2. We approximate both t1 and t2 by PH distributions. In the

invocation process, a controller receives invocations and installs flow entries into switches. It does

not need to invoke other controllers, so it will spend time t1 to complete the flow installation.

For simplicity, we apply the following reasonable assumptions. The packet-in messages arrive

at each switch at the same rate, and the destinations of flows are uniformly distributed. We also

assume that the controllers are powerful enough to handle all the requests from the network that the

performance of the controllers is homogeneous, and the controllers have unlimited capacity to store

the requests in the queue.
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Network traffic measurements have indicated that flow arrival in packet switching networks follow

Poisson process [146]. We assume that the packet-in messages arriving at controller follow a Poisson

process. We denote the total arrival rate of packet-in messages for all controllers λp.

If there are n controllers in the network, the packet-in messages arrive on average at each switch at

rate λp/n, and the probability that a controller can not finish the flow installation alone is (n−1)/n.

For simplicity, we assume that the invocations from other controllers also follow a Poisson process.

We denote the arrival rate of invocations λi. If we tag one controller, there are n−1 controllers send

invocations to the tagged one, and each of them sends invocations at rate of λp/(n− 1). We have

λi =
(n− 1)λp

n2
. (6.1)

The controllers send and receive synchronization messages in order to maintain a consistent

network-wide view in all controllers. We assume critical events that make the controllers synchro-

nize the state follow a Poisson process, and the arrival rate at each controller is λs. For a controller,

the arrival rate of the message exchange is (n− 1)λs.

The controller spends time t1 ∼ PH(α1,T1) on a request, if the controller can handle the request

alone. Otherwise, the controller spends time t2 ∼ PH(α2,T2). The queueing system is illustrated

in Figure 6.2. The arrival rate of message exchange is (n − 1)/λs, the arrival rate of packet-in

messages is λp/n, and the arrival rate of invocations is λi. The controller spends time t1 with

probability γ1, spends time t2 with probability γ2.

𝑃𝐻2

𝑃𝐻1
𝛾1

𝛾2λ𝑖

λ𝑝/𝑛

(𝑛 − 1)λ𝑠

Figure 6.2: The queueing model for flow installation

For the jobs from the switches, a controller spends time t1 with probability 1/n, and it spends

time t2 with probability (n − 1)/n. For the message exchange, a controller always spends time t1.

The probability that a switch spends time t1 on a job is γ1, and probability that a switch spends time

t2 on a job is γ2 = 1− γ1. We have
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γ1 =
n2(n− 1)λs + nλp

n2(n− 1)λs + nλp + (n− 1)λp
. (6.2)

6.1.3 Derivation of the Analytical Model

The combination of Poisson processes is still a Poisson process, the arrival rate can be denoted as

λ = (n− 1)λ+ λi +
λp
n
. (6.3)

The distribution of the service time is the combination of PH(α1,T1) and PH(α2,T2) with

probability γ1 and γ2. We denote the distribution of the service time PH(α,T ). We have

α = (γ1α1, γ2α2), (6.4)

T =

(
T1 0

0 T2

)
. (6.5)

Therefore, we can use an M/PH/1 queue to describe the flow installation process with arrival

rate λ and service time t ∼ PH(α,T ). The mean service time is 1/µ = α(−T )−1e. We denote

the server utilization ρ = λ/µ. The probability that there are no jobs in the system is x0 = 1 − ρ.

We can obtain the average flow setup time E[S] as

E[S] =
E[N ]

λ

=
x0αR(I −R)−21

λ
.

(6.6)

The optimal number of controller can be obtained by optimizing the following expression.

n = arg min
n

E[S]. (6.7)

We use PSO [66] implemented in PySwarms [87] to get the optimal number of controllers. The

fitness function is the mean response of the controllers the parameter to be optimized is the number

of controllers.
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6.1.4 Evaluation

In this section, we introduce the measurement of the flow setup time of our prototype, and evaluate

the queueing model with different parameters by queueing analysis.

Measurement of Response Time

We also implement a prototype of multiple controllers based on the Ryu framework. The archi-

tecture of the prototype is shown in Figure 6.3. The controller applications communicate with each

other via a centralized message queue. Each controller listens to a topic. a controller invokes another

controller by sending messages to its related topic.

Message queue

Topic 1 Topic 2 ··· Topic n

Controller 1 Controller 2 · · · Controller n

Figure 6.3: The architecture of the prototype

We use the tool introduced in Chapter 5 measures the response time, and fits the response time

to a hyper-Erlang distribution. We run the controller application on ubuntu 18.04 with 4G memory

and 2.3GHz CPU. The single controller response time and fitted pdf is shown in Figure 6.4. The

parameters of fitted hyper-Erlang distribution are shown in Table 6.1. The multiple controllers

response time and fitted pdf is shown in Figure 6.5. The parameters of the fitted hyper-Erlang

distribution are shown in Table 6.2.
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Table 6.1: Distribution of single controller response time

Probability Erlang distribution
0.306983 Er(667, 0.001657)
0.053984 Er(209, 0.000354)
0.096460 Er(381, 0.000741)
0.226080 Er(421, 0.000946)
0.030528 Er(24, 0.000035)
0.285965 Er(1669, 0.003911)

Figure 6.4: The single controller response time
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Table 6.2: Distribution of multiple controllers response time

Probability Erlang distribution
0.277380 Er(1544, 0.002967)
0.212247 Er(744, 0.001343)
0.311721 Er(485, 0.000995)
0.114605 Er(263, 0.000425)
0.055441 Er(135, 0.000188)
0.028607 Er(47, 0.000053)

Figure 6.5: The multiple controllers response time
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Queueing Analysis

To capture the performance of the multiple controllers, we evaluate the proposed queueing model

with different arrival rates of packet-in messages and synchronization messages.
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Figure 6.6: Arrival rate and service rate

We assume that all the controllers send synchronization messages at rate of 25 per second, the

switches send packet-in messages at rate of 1000 per second, and all switches get the same number

of packet-in messages. Figure 6.6 shows the arrival rate and service rate of a controller with different

numbers of controllers.

The arrival rate decreases with the number of switches before 9 and increases with the number of

switches after 9. Additional controllers will share the load of packet-in messages and come with new

synchronization messages. When the number of controllers is small, additional switches can share

a large volume of packet-in messages and bring a few additional synchronization messages. When

the number of controllers is large, additional switches share a small volume of packet-in messages

and bring a large number of synchronization messages. Therefore, the arrival rate decreases with the

number of controllers before a certain point and increases with the number of controllers after that

point. The service rate always increases with the number of switches, the rate of ascent is slower

and slower, because the probability of a controller sending invocations decreases with the number

of controllers.
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Figure 6.7: Flow setup time with different packet-in rate
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Figure 6.8: Flow setup time with different synchronization rate

Figure 6.7 shows the flow setup time with different number of controllers and arrival rate of

packet-in messages. The arrival rate of synchronization messages is fixed at 25 per second, the

arrival rate of packet-in is in the range of [500, 2000] per second, and the number of controllers is in
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the range of [35, 51].

We can see that the flow setup time decreases with the number of controllers at first, and increases

after a certain number. Because the service rate decreases slower and slower with the number of

controllers, the arrival rate decreases before the inflection point and increases with the number of

controllers at linear speed after the inflection point. If there are enough controllers to process the

packet-in messages, the extra controllers will decrease the flow setup time because of the communi-

cation overhead.

Figure 6.8 shows the flow setup time with different number of controllers and arrival rate of

synchronization messages. The arrival rate of packet-in messages is fixed at 1000 per second. the

arrival rate of synchronization messages is in the range of [25, 31] per second, and the number of

controllers is in the range of [30, 50]. We can see that the flow setup time is similar to Figure 6.7.

The flow setup time increases with the number of controllers at first, and decreases after a certain

number. As illustrated in the figure, the flow setup time increases very rapidly with the rate of

the synchronization messages when the number of controllers is large. This can be explained with

the fact that the synchronization messages cause high overhead when there are a large number of

controllers.
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Figure 6.9: The optimal number of controllers

Figure 6.9 shows the optimal number of controllers that achieve the minimum flow setup time with

different rates of packet-in messages and synchronization messages. We can see that the optimal

number of controllers decreases with the rate of synchronization messages and increases with the
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rate of packet-in messages. The controllers must process the requests from the switches, so the

more packet-in messages there are, the more controllers we need. However, multiple controllers

need inevitable synchronization messages. The more synchronization messages are sent the lower

is the optimal number of controllers.
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6.2 Balancing the load of Controllers

When multiple controllers are deployed in an OpenFlow network, the assignment between switches

and controllers impacts the performance of the network. The flow setup time can be minimized if

the load of controllers is balanced. The variance of the utilization of the controllers is usually used

as the metrics to determine whether the load of controllers is balanced.

There are two significant issues in a network with multiple controllers, the assignment problem

and the placement problem. In this section, we only focus on the assignment problem that de-

termines the mapping between controllers and switches to achieve a low flow setup time. Some

studies of the controller assignment problem exist [38, 157]. Most of them consider static assign-

ment switches to controllers. However, the traffic load in a network changes frequently. The static

assignment of controllers and switches may cause load imbalance among controllers. As a result,

the switches that connect to overloaded controllers suffer from a high flow setup time and some

controllers even cannot be fully utilized. A static controller assignment is not suitable for variable

traffic. Therefore, it is important to study controller load balancing for low flow setup time. We

investigate the controller assignment problem aiming at minimizing flow setup time. We measure

the service time of controllers and estimate the flow setup time using a queueing model. Then we

formulate the controller assignment problem as an optimization problem to minimize the flow setup

time.

6.2.1 Problem Formulation

System Overview

We consider a large OpenFlow network. There are two components in the network: the OpenFlow

switches and the controllers. A switch may connect to one or more controllers but only has one

master controller, as shown in Figure 6.10.

Since there are multiple controllers in the network, the switches should be split into some domains

and each domain is assigned to one controller. Each switch can be only in one domain. For each

domain, there is a controller to manage the switches. Therefore, one switch can be only controlled

by one controller. Given a set of switches, the controller load balancing problem is to divide the

switches into a collection of mutually exclusive and collectively exhaustive subsets and assign each

subset to a controller so that the average flow setup time is as low as possible.

The initial controller assignment can be solved as controller placement problem. However, the

controller placement problem does not consider the dynamic load of networks. Once the assignment
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Switch to controller Control flow

Domain 3Domain 1 Domain 2

Controllers

Switches

Figure 6.10: OpenFlow with multiple controllers

and positions are chosen, they are constant. Each controller manages the switches in its domain. A

real network may have significant variations in traffic characteristics. Therefore, the static assign-

ment may face some problems when the traffic load changes. For example, when a switch receives

burst flows, its controller will receive a lot of flow requests in a short time. An overloaded controller

may degrade the performance of the whole network. To avoid this, the controller assignment should

be changed with the traffic in the network. The controller assignment problem is to find an assign-

ment between the switches and controllers that can minimize the flow setup time and makes the least

number of migrations.

Switch Assignment to Controllers

We assume that flow requests arrive at a controller following a Poisson process. We use a PH

distribution to describe the response time of a controller, since PH distribution are a very flexible

class of distributions for performance modeling. As PH distributions have Markovian representation,

they can easily be used in analytical and simulation approaches for performance evaluation. We

consider anM/PH/1 queueing model for the controllers to capture the performance of a controller.

The controllers are modeled as servers in a queueing model. The requests from switches under each

controller are the jobs for the controllers. The queueing model for a controller is depicted in Figure

6.11. There are m switches managed by a controller. Each switch sends requests to the controller

following a Poisson process. The i-th switch send requests to the controller at rate λi. We denote

the arrival rate at a controller as λ =
∑m

i=1 λi. The service time of the controller follows a PH

distribution (α,T ).

In a distributed architecture of the control plane within an OpenFlow network, the control plane
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Figure 6.11: Queueing model of a controller

consists of a set of controllers. The set of controllers is denoted C = {ci|i = 1, 2, ..., n}. The

capacity of controller ci is µi, which is the maximum number of requests controller ci can process

per second. The average load of controller ci is λci , which is the number of requests controller ci
receives per second. The data plane consists of a set of switches. The set of switches is denoted by

S = {sj |j = 1, 2, ...,m}. We assume the rate of new flows arrival at switch sj is denoted by λsj ,

and the switch sends requests to its controller at the same rate.

The assignment among controllers and switches is denoted by an n×mmatrixA. The assignment

matrix A is binary. Aij = 1 if controller ci manages switch sj . Otherwise, Aij = 0. A switch can

connect to one or more controllers at the same time, but only one controller is its master controller

during each time interval. Therefore, the sum of the elements in a column ofA is 1.

We consider two delays that will be incurred when multiple controllers are deployed in a network:

the flow setup time and the switch migration time.

1) Flow setup time. There are multiple controllers in a large network. Each controller manages a

subset of switches in the network. The rate of packet-in messages arriving at controller ci is

λci =

m∑
j=1

Aijsj . (6.8)

The distribution of the flow setup time of controller ci is PH(αi, Ti). The utilization of controller

ci is ρci . We can obtain the average flow setup time of controller ci:

E[Sci ] =
αiRi(1− ρi)(I −Ri)

−21

λci
. (6.9)

The average response time of all controllers is
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E[S] =

m∑
j=1

λj
λ
E[Sj ]. (6.10)

2) Switch migration time. Dynamic changes in traffic load may disturb the load balancing among

controllers. The switches should be migrated with the traffic load to improve the performance of the

network. Denote the time cost of migrating a switch from one controller to another as σ. Assume

that the previous assignment matrix is Ap, and the current assignment matrix is Ac. We define a

matrix B as the XOR between Ap and Ac. Bij = 1 if the switch sj is migrated out of or into

controller ci, Otherwise,Bij = 0. The number of switch migrations is

M =

∑n
i=1

∑m
j=1Bij

2
. (6.11)

Therefore, the switch migration time is

∆ = Mσ. (6.12)

The controller assignment problem can be formulated as an optimization problem. The objective

is to find an assignment that minimizes the weighted sum of the flow setup time and switch migration

time.

minimize w1E[S] + (1− w1)∆, (6.13)

where w1 is constant. The network operator can use w1 to adjust the relative significance of the two

costs. Furthermore, the following constraints must be satisfied.

n∑
i=1

Aij = 1, (6.14)

λj < µj , (6.15)

Aij ∈ {0, 1}, (6.16)

∀i ∈ {1, 2, ..., n}, ∀j ∈ {1, 2, ...,m}, . (6.17)

Constraint (6.14) assures that each switch must have only one master controller. Constraint (6.15)
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assures that the number of requests each controller processes cannot exceed its capacity. Constraint

(6.16) and (6.17) are numerical constraints.

6.2.2 Controller Assignment Algorithm

We describe an algorithm for solving the dynamic controller assignment problem. In order to

improve the performance of a network, the assignment among switches and controllers must be

adjusted with the state of the network since the traffic in a network may change quickly.

The controller assignment problem is similar to the number partitioning problem, which is known

to be NP-complete. Here, the set of numbers consists of the flow arrival rates of the switches.

We divide the switches into multiple subsets and assign a controller to each subset. The controller

assignment problem should avoid too many migrations when the traffic load of switches changes.

To obtain the optimal solution, we design a heuristic for solving the controller assignment problem

named LANS (Late Acceptance Neighbor Search). It accepts the current controller assignment

matrix Ã and provides a new controller assignment matrix A that can minimize the weighted sum

of the flow setup time and switch migration time.

Initial Solution

Due to the changes of traffic, the current controller assignment matrix Ã may not satisfy all

constraints. We design a greedy algorithm that generates a feasible controller assignment matrix.

The output of this algorithm is the input of LANS.

More specifically, the greedy algorithm tries to balance the load of the controllers with the least

number of migrations. It migrates switches from the most loaded controller to the least loaded

controllers. It sorts the controllers by their utilizations. Let ρmin denote the minimum utilization of

all controllers, the target controller that accepts the migrated switches is selected randomly among

the controllers whose utilization is less than 1.1ρmin. After the source controller and target controller

are selected, the algorithm tries to balance the load between them in one migration. The pseudocode
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of the greedy algorithm is shown in Algorithm 1.

Algorithm 1: Generate initial solution
Input: set of switches, S

set of controllers, C

previous assignment matrix, Ã

Output: new assignment matrix,A

1 while true do
2 M ← most loaded controller in Ã;

3 L← target controller; ;

4 d← λMµL−λLµM
µL−µM ;

5 Ss ← null;

6 if µM > µL then
7 Sg ← switches in M with arrival rate greater than d;

8 if Sg 6= ∅ then
9 Ss ← switch with the lowest arrival rate in Sg;

10 end
11 else
12 Sl ← switches in M with arrival rate less than d;

13 if Sl 6= ∅ then
14 Ss ← switch with the most arrival rate in Sl;

15 end
16 end
17 if Sl 6= ∅ then
18 break;

19 end
20 migrate Ss from M to L;

21 update Ã;

22 A← Ã;

23 end

In line 3, the target controller is the least loaded controller. We calculate the difference of the

load between the most loaded controller and the target controller based on their service rate in line

4. If the arrival rate of a switch equals to d and we migrate the switch, the two controllers will have

the same utilization. From line 6 to line 16, we are trying to balance the load of two controllers

with one migration. We collect all the switches meet the requirement and migrate the switch whose
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arrival rate is closest to d. After a migration, the most loaded controller may change. Then, we try

reduce the load of the most loaded controller, until any migrations will cause the load of the target

controller more than the most loaded controller. After these migrations, any migration will lead the

least loaded controller to the most loaded controller. This algorithm is greedy. It tries best to make

the two controllers balanced for every iteration.

Algorithm 2: LANS

Input: initial assignment matrix, Ã

Output: new assignment matrix,A

1 calculate initial cost function C(Ã);

2 specify Lh;

3 for all k ∈ {1, 2, ..., Lh}fk = C(Ã);

4 first iteration N ← 0, Nidle ← 0;

5 while true do
6 construct a candidate solutionA;

7 calculate a candidate cost function C(A);

8 if C(A) > C(Ã) then
9 Nidle ← Nidle + 1;

10 else
11 Nidle ← 0;

12 end
13 calculate the virtual beginning v ← NmodLh;

14 if C(A) < C(Ã) or C(A) < fv then
15 accept the candidate C(Ã)← C(A);

16 else
17 reject the candidate;

18 end
19 if C(A) < fv then
20 update the fitness array fv ← C(Ã);

21 end
22 if N > minimum iterations and Nidle > N ∗ 0.02 then
23 break;

24 end
25 increase the iteration number N ← N + 1;

26 end
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LANS

LANS starts from the output of the heuristic and further optimize the assignment by searching for

neighbors iteratively. The idea of LANS is that the acceptance condition is taken from the search

history. LANS maintains a list of fixed length that saves the previous values of the cost function.

The cost of a candidate is compared with the last element in the list and if it has a lower cost, the

candidate is accepted. The list is updated when an acceptance happens. The pseudocode of LANS

is shown in Algorithm 2.

In line 2, Lh is the length of the list that saves the previous values. We define the following moves

to generate a candidate.

• Relocation: select a random switch and migrate it to a random controller.

• Exchange: select two switches randomly from two different controllers and swap their assign-

ments.

Using one of these moves, we construct a candidate in line 6. The moves are chosen randomly. We

determine whether the new candidate is accepted in line 14. If the new candidate has lower cost than

its previous candidate or its virtual beginning, it is accept. Then we can construct the next candidate

from it. If the new candidate has lower cost than its virtual beginning, we update the cost of its

virtual beginning in line 20.

6.2.3 Evaluation

In this section, we introduce the measurement of the flow setup time of our prototype, and evaluate

the performance of different controller assignment schemes.

In our experiments, we setup a network with 32 switches with Mininet. We generate flows be-

tween the end hosts. The source and destination of each flow are chosen randomly. The distribution

of controller response time is measured in Chapter 5. We run the experiments under two types of

traffic. In case 1, the flow arrival rate follows a real data set from CAIDA [23]. In case 2, the flow

arrival rate follows the characteristics of traffic described in the work of Gebert [43] The generated

flows span 24 hours. The traffic we generate is shown in Figure 6.12 and 6.13.

In order to evaluate the performance of LANS, we compare LANS with the dynamic controller

assignment algorithm DCP-SA in the work of Bari [9] in terms of the flow setup time, migrations

and CV (Coefficient of Variation) of utilization of the controllers. DCP-SA uses simulated anneal-

ing algorithm to optimize the controller assignment. The simulation runs for 24 hours and both

algorithms are executed every 5 minutes.
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Figure 6.12: Case 1: generated traffic
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Figure 6.13: Case 2: generated traffic

The flow setup time is the main latency of controllers in OpenFlow networks. It is important to

decrease the flow setup time to improve the performance of an OpenFlow network. We analyze the

mean flow setup time of each assignment for LANS and DCP-SA. The result is shown in Figure
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6.14 and 6.15.
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Figure 6.14: mean flow setup time in case 1
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Figure 6.15: mean flow setup time in case 2

The mean flow setup time under both algorithms increases with total traffic load because the
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capacity of controllers is limited. We can see that the mean flow setup time under LANS is lower

than using DCP-SA for most assignments. The mean flow set up time under LANS is 1.1ms and

0.9ms in the two cases. It is 8% and 17% lower than using DCP-SA, respectively.
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Figure 6.16: Number of migrations in case 1

0 6 12 18 24

Time (hour)
2

4

6

8

10

12

14

16

M
ig

ra
tio

ns

LANS
DCP-SA

Figure 6.17: Number of migrations in case 2
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The cost of switch migration is an inevitable overhead in the multiple controllers situations.

Switches must be migrated as rarely as possible to reduce the overhead of migration. The num-

ber of migrations of LANS and DCP-SA is shown in Figure 6.16 and 6.17. Given the same initial

assignment, different algorithms lead to different new assignments. Therefore, the two algorithms

may start from different assignments in the execution. It is not necessary to compare every point in

the figure. The mean number of migrations under LANS and DCP-SA are 8.3 and 9.1 in case 1, 9.7

and 10.7 in case 2. LANS makes 0.8 migrations less than DCP-SA on average and 228 migrations

less than DCP-SA in total in case 1, 1 migration less than DCP-SA on average and 288 migrations

less than DCP-SA in total in case 2.
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Figure 6.18: Case 1: CV of utilization

The load balancing of controllers impacts the performance of controllers significantly in the multi-

ple controllers situations. If the load is well balanced across the controllers, the balanced controllers

keep a network in high performance. We use CV of utilizations of the controllers to measure how

balanced the controller are. The smaller the CV is, the better is the controllers balanced. The CV

of the utilization of the controllers is shown in Figure 6.18 and 6.19. We can see that the CV under

LANS is lower than DCP-SA, which indicates that LANS is more efficient to balance the controllers

in a network. The balanced controllers lead to a fast flow setup time as we see in Figure 6.14 and

6.15.
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Figure 6.19: Case 2: CV of utilization

6.3 Summary

In this chapter, we have determined the optimal number of controllers in OpenFlow networks.

We built a queueing model to evaluate the performance of multiple controllers. There are three

types of jobs in the controllers, and there are two service rates in the controllers for different jobs.

The average service rate of the controllers increases with the number of controllers and the rate of

ascent is slower and slower. The arrival rate at a controller decreases with the number of controllers

when the number of controllers is small, and increases with the number of controllers when the

number of controllers is large. We develop a tool to measure the response time of our prototype and

fit the response time to a hyper-Erlang distribution. We use the fitted distribution in the queueing

analysis. The queueing analysis shows the optimal number of controllers decreases with the rate of

synchronization messages and increases with the rate of packet-in messages.

We study on the controller assignment problem in the scenario of multiple controllers. Since the

controller assignment problem is NP-complete, we proposed a heuristic to solve it. We also design

a greedy algorithm to generate a feasible assignment as the input of the heuristic. We measure

the flow setup time of a controller and model each controller as an M/PH/1 queue to capture its

performance. The queueing model is used in the heuristic for the fitness function. The heuristic

avoids a local minimum by keeping a candidate list. It accepts a candidate if the candidate has a
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lower cost after a certain number of steps. We evaluate our solution in Mininet. The results show that

our solution can balance the controller better, reduce the flow setup time and make less migrations

less than DCP-SA.
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Chapter 7

Buffer management

The burst packet-in message may decrease the performance of a controller even degrade the per-

formance of the whole network. In this chapter, we describe the reason of burst packet-in mes-

sages and avoid the burst packet-in message using the buffer in OpenFlow switches. We model our

method and the general OpenFlow switch using queueing models, and evaluate the performance of

our method in simulations.

7.1 The Limitations of Existing Buffer Management

When a packet arrives at an OpenFlow switch, the switch tries to find a flow entry that matches

the packet. If the switch finds one, instructions in the flow entry will be executed and the packet

may be forwarded, modified or dropped. If no matching flow entries are found, the switch will check

whether the buffer is full. If the buffer is not full, the switch stores the packet in the buffer, and sends

a packet-in message to the controller, which contains the header of the packet and a buffer ID. If the

buffer is full, the switch sends a packet-in message with the whole packet to the controller. After the

controller receives the packet-in message, it will install flow entries in the switch, so that the switch

can deal with packets with the same header without consulting the controller.

As we introduced in Chapter 2, the buffer can reduce the load of switches and the traffic in

OpenFlow channel, but it only reduces the size of a packet-in message. Considering that a user

accesses a video stream over UDP, the video server sends many packets to a switch. When the first

packet in the flow arrives at the switch, there is no suitable flow entry for the packets in the flow,

the switch must request a forwarding rule from the controller. The other packets in this flow will

continuously arrive before the controller replies. The switch has to forward all the packets to the
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controller until a flow entry is installed in the switch.

We use Mininet and deploy a Ryu controller on a laptop to analyze the number of packet-in

message in one flow arriving at the Ryu controller when burst packets happen. We simulate a switch

and two hosts in Mininet, the topology is shown in Figure 7.1. We run iPerf on host A generating

UDP traffic at rate 10M/s. Figure 7.2 shows the distribution of the number of packet-in messages

in a burst. There are about 8 packet-in messages for one flow, but the controller can install a flow

into the switch by receiving the first packet-in message in a flow. The other packet-in messages

are useless for the controller. The burst of packet-in messages will degrade the performance of an

OpenFlow network, because it increases the workload for both switches and controllers. A switch

usually does not have a strong CPU, creating and sending so many packet-in messages exhaust their

processing capacity. The controller only needs one packet-in message to install a forwarding rule,

most of the packet-in messages are unnecessary in this case.

Controller

SwitchHost A Host B

SwitchHost A Host B

packet packet

b

Figure 7.1: Topology for burst messages test

Burst packets happen not only in UDP streams but also in TCP streams. TCP flows transmit

packets after the three-way handshake, so the forwarding rules are installed during the establishment

of the connection. However, a switch can see 105 flows per second [15] and the forwarding rules

for connected TCP flows may be replaced based on the limited size of flow tables. Besides, Benson

also pointed out that when there is an ON/OFF mode in data center traffic [15], the flow entries for

established TCP connections may be removed in the OFF time. The burst packets can significantly

degrade the performance of OpenFlow networks, even turning the controllers into a bottleneck of

the OpenFlow network. We need a mechanism to minimize the effect of burst packet.

7.2 The Proposed MPT Model

The burst of packet-in messages can significantly degrade the performance of OpenFlow net-

works, even the controllers become the bottleneck of the OpenFlow network. In order to overcome
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Figure 7.2: Burst of packet-in on the controller

the deficiency of buffer management in existing OpenFlow switches, we propose a novel model of

buffer management to avoid bursts of packet-in messages, named MPT (Mismatched Packets Table).

We add a packet table in the switches. The MPT stores the headers of mismatched packets. With

MPT, the OpenFlow switch sends the first packet to the controller, while other packets in the same

flow are buffered at granularity of a flow. Considering that the packet-in message may be lost in the

connection between the switch and the controller, the switch will send a second packet-in message

to the controller after a random time.

Host

packet-in

new flow Flow 
table

MPT
Controller

Switch

flow-modify

Figure 7.3: Overview of the MPT

Figure 7.3 shows how MPT works. A switch tries to find a match the MPT before the mismatched

packet is sent to the controller. If the switch cannot find a matching entry, it forwards the packet

to the controller and creates an entry in the MPT. The entry contains the header of the mismatched

packet. If the switch finds a matching entry in the MPT, it means that a packet with the same header

has been sent to the controller. The switch keeps the packet in buffer and sends it to the controller
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after an exponential random time. The MPT also modifies the processing of flow-modify messages.

When the switch receives a flow-modify message that adds a flow entry into the switch, the switch

should install a flow entry, delete all the entries in MPT that match the flow entry and apply the

instructions to all the packets in the buffer that match the flow entry. The entries in the MPT should

be removed after a certain time, and all the packets in the buffer that have the same header with the

expired entries should be also removed. The workflow of MPT is illustrated in Figure 7.4.

packet arrives

match a 
flow entry

apply
instructions

send a part of 
package to 
controller

buffer
is full

send the whole 
package to 
controller

yes

yes

no

no

Figure 7.4: Workflow of MPT

The MPT aims to reduce the packet-in messages, it makes the controller not being overloaded

by the burst packets. The workload of a controller with MPT is lower than the general switch.

Therefore, the controller can process the requests from switches faster, which decreases the delay in

the controller and the flow completion time.
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7.3 Queueing Model of the OpenFlow Controller

We introduce queueing models of an OpenFlow controller with general switches and MPT switches.

7.3.1 Controller Performance of General Buffer

If the time interval between packets arrivals is shorter than the flow setup time, packets burst will

happen. The forwarding process of burst packets is shown in Figure 7.5. When the first packet

of a flow arrives, the switch cannot find a matching entry and sends it to the controller. Many

other packets in the same flow arrive before the switch receives a response from the controller. The

switch still cannot find any matched flow entries for the packets, and has to send all of them to the

controller. So the controller receives many packet-in messages in a very short time, and replies a

flow-modify message for each one. The switch creates a flow entry when it receives the first flow-

modify message, so the packets in the same flow can be forwarded directly. The switch receives

many flow-modify messages, because it sends many packet-in messages to the controller. The switch

should replace the installed flow entry for every flow-modify message from the controller.

Controller

SwitchHost A Host B

packet packet

packet-in flow-modify

SwitchHost A Host B

packet packet

a

b

Figure 7.5: Burst packets forwarding process with general switch

Some analytical models of OpenFlow networks suppose that the packet-in messages arrive at a

controller following a Poisson process [59] because network traffic measurements have indicated

that flow arrival in packet switching networks follows a Poisson process [146] and they assume the

switches only send the first packet of a flow to the controller. These models are suitable for the

modeling of the controller performance only if the second packet of a flow arrives after the flow

entry installation. However, in the burst packets scenario, the time interval between packets is much

shorter than the flow setup time. Many packets arrive before a flow entry is installed. Previous

studies showed that packets in networks arrive as batches [31]. Some packets arrive at a switch at
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the same time as a batch. Xiong’s work showed that the arrival of packet batches following Poisson

process [148].

We assume a packet arrives at a switch at time t and it is sent to the controller via a packet-

in message. The controller receives the packet-in message after an additional time ∆t. The time

difference ∆t consists of flow table lookup time and the transmission time of the packet-in message

from the switch to the controller. The lookup time depends on the size of the flow table and the

transmission time depends on the distance between the switch and the controller. Both are fixed

in a given network. So ∆t tends to be constant in a given OpenFlow network. Consequently, it

can be assumed that the packet-in message stream from switches is equivalent to the packets arrival

process in terms of a stochastic process. We assume that the number of packet-in messages in a

batch follows a Poisson distribution. At the same time, other flows are arriving at the switches that

will not cause a burst of packet-in messages. For simplicity, we assume that the processing time of

the packet-in messages can be modelled as an independent, identically random variable following

an exponential distribution. Then we can formulate a class based queueing model to analyze the

behavior of an OpenFlow controller. There are five characteristics of this queueing model: (1) there

are two types of packet-in messages in the system, (2) the two types of packet-in messages both

arrive at a controller following a Poisson process, (3) the first type of packet-in messages arrives at a

controller as a batch, (4) the number of packet-in messages in a batch follows a Poisson distribution,

(5) the processing time of the controller conforms to exponential distribution. The queueing model

is shown in Figure 7.6.

𝜇𝑐

λ𝑛

λ𝑏λ𝑝

Figure 7.6: The queueing model of the controller

We denote the rate of batch arrivals λb, the mean number of packet-in messages in a batch λp,

the rate of single packet-in arrivals λn, the processing time of the controller µc. If a single packet-in

message arrives at the controller, we also consider it as a batch arrival, but there is only one packet-

in message in the batch. The batch arrival rate is λb + λn. With probability λn
λb+λn

, there is one

packet-in message in the batch. With probability λb
λb+λn

, the number of packet-in messages in the
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batch following Poisson distribution.

Suppose a batch with m packet-in messages arrives at a controller, where n packets are waiting

for the service. Then the lth (l = 1, 2, ...,m) packet-in message in this batch has to wait until the

n + l − 1 packet-in messages before it is processed. Then the controller will spend 1/µc time to

process it. Let the total time that the lth packet-in message in the batch spends in the controller be

Tl. We get

Tl =
n+ l − 1

µc
+

1

µc

=
n+ l

µc

. (7.1)

The average packet-in message processing time of the batch is Tb. We can get E[Tb] from Eq.

7.2.

E[Tb] =
1

m

m∑
l=1

Tl

=
n

µc
+

1

m

m∑
l=1

l

µc

=
n

µc
+
m+ 1

2µc

. (7.2)

Furthermore, we can calculate the average packet-in message processing time of the controller

E[Tp].

E[Tp] =

∞∑
n=0

∞∑
m=1

TbPmPn

=
1

µc

∞∑
n=0

nPn +
1

2µc
(
∞∑
m=1

mPm + 1)

, (7.3)

where Pm is the probability that there are m packet-in messages in a batch, Pn is the probability

that there are n packet-in messages in the controller when a batch arrives.

With probability λb
λb+λn

, the number of packet-in messages in a batch conforms to a Poisson

distribution with parameter λp. With probability λn
λb+λn

, there is one packet-in messages in a batch.
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We can obtain

∞∑
m=1

mPm =
λbλp + λn
λb + λn

. (7.4)

The relationship between the mean queue length E[Q] and the mean service time is shown in Eq.

7.5.

E[Q] =
∞∑
n=0

nPn

= E[Tp](
λb

λb + λp
λbλp +

λn
λb + λp

λn)

= E[Tp]
λ2bλp + λ2n
λb + λn

. (7.5)

Substituting Eq. 7.4 and Eq. 7.5 into Eq. 7.3, the average packet-in message processing time of

the controller can be computed as Eq. 7.6.

E[Tp] =
1

µc
E[Tp]

λ2bλp + λ2n
λb + λn

+
1

2µc
(
λbλp + λn
λb + λn

+ 1)

=
1

2

λbλp + 2λn + λb
µ(λb + λn)− λ2bλp − λ2n

. (7.6)

7.3.2 Controller Performance of the MPT

The packet-in message arrival process would be different if the switches in an OpenFlow network

use MPT. When a batch arrives at a switch, the switch sends the first packet of this batch to the

controller and add its header to the MPT. After that, the switch can find an MPT entry for all the

packets in this batch. The other packets are stored in the buffer and sent to the controller following a

Poisson process. If a flow arrives at a switch that will not cause the burst of packet-in messages, the

switch will send one packet-in message to the controller. In this case, switches with MPT behave the

same as general switches. The controller receives packet-in messages following a Poisson process

with MPT. The forwarding process of a burst of packets in an OpenFlow network with MPT is

shown in Figure 7.7. We can adopt a queueing model with job classes to analyze the behavior of

an OpenFlow controller. There are two types of packet-in messages in the system, both arrive at

the switches following a Poisson process. As we assume before, the service time of the controller
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follows an exponential distribution. The queueing model is shown in Figure 7.8.

Controller

SwitchHost A Host B

packet packet

packet-in flow-modify

Controller
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packet packet

packet-in flow-modify

Figure 7.7: Burst packets forwarding process with MPT

𝜇𝑐

λ𝑛

λ𝑚

Figure 7.8: The queueing model of the controller

We denote the rate of single packet-in arrival as λn, the rate that MPT sends packet-in messages

to the controller is λm, the processing time of the controller as µc. Merging the two types of the

packet-in messages, we can derive the packet-in messages arriving at the controller at rate λn +λm.

Let pi be the probability that there are i packet-in messages in the controller, and the mean number

of packet-in messages in the controller be E[N ]. E[N ] can be computed using Eq. 7.7.
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E[N ] =
∞∑
i=0

ipi

=
∞∑
i=0

i(
λn + λm

µc
)i(1− λn + λm

µc
)

=
λn + λm

µc − λn − λm

. (7.7)

The time a packet-in message spends in the controller is:

E[T ] =
E[N ]

λn + λm
=

1

µc − λn − λm
.. (7.8)

7.4 Evaluation

We evaluate the general buffer management and our proposed method with different parameters

by queueing analysis and simulations in this section.

7.4.1 Queueing Analysis

At first, we show how the burst of packet-in messages impacts the response time of the controller.

Suppose a general OpenFlow switch receives packets at batch arrival rate λb = 2K, and single

arrival rate λn = 10K per second. The controller processes the packet-in messages at rate µc =

16M per second. We analyze the mean packet-in message processing time of the controller with

different average batch sizes in Figure 7.9.

As illustrated in Figure 7.9, the response time of the controller increases exponentially when

the average batch size increases linearly. That means the average batch size does not cause the

performance problem significantly when it is small. But as the average batch size increases the

response time increases severely. As we measured in Figure 7.2, the average size of an arriving

batch is about 8, where the response time is twice that of a batch size two.

Suppose a general OpenFlow switch receives packets at batch arrival rateλb = 2K per second

and the average number of packets in a batch is λp = 8. The switch sends these packets to the

controller with the same rate. A switch with MPT also receives packets at batch rate λb = 2K per

second and the average number of packets in a batch is λp = 8. The switch with MPT puts these

packets in a buffer and sends packet-in messages to the controller following a Poisson process at rate
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Figure 7.9: Response time with different batch sizes

λm = 4, 8, 16K per second. At the same time, both switches receive packets with single arrival rate

λn = 10K per second. We calculate the mean packet-in message processing time of the controller

with different service rates in Figure 7.10.
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Figure 7.10: The mean response time with different service rates

As illustrated in Figure 7.10, the mean packet-in message processing time of the controller with

MPT at different service rates is shorter than the general one. Because the general switch sends too

many packet-in messages to the controller in a very short time, these packet-in messages consume

a lot of computing resource. When the service rate is low, which means the controller is not very

powerful, the difference between them is very big. The difference decreases when the service rate
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of the controller is increasing. With MPT, there is no batch arrival, the mean processing time of the

controller does not change much for the different arrival rates. Thus, we can say that the burst packets

degrade the performance of OpenFlow networks severely when the performance of the controller is

not high. The effect of burst packets may be not that important if the controller is very powerful, but

it still increases the mean processing time of the controller. At a service rate 1024M per second, the

response time of MPT is still 30% faster than the general switch. On the other hand, the difference

among the response time of MPT at different arrival rate is not that big. The times are nearly the

same after a service rate 256M per second. This is because the batch arrival is the main reason the

response time increases and the MPT avoids batch arrivals.

Fixing the service rate of the controller at rate µc = 512M per second, the average number of

packets in a batch at 8, the single arrival rate at λn = 10K per second, we vary the batch arrival

rate λb from 1K to 5K per second. The general OpenFlow switch sends all these packets to the

controller, and the switch with MPT sends packet-in messages to the controller at a rate λm =

8λb, 16λb, 32λb per second. We show the mean processing time of the controller with different

batch arrival rates in Figure 7.11.
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Figure 7.11: The mean response time with batch arrival rates

As we can see, the mean processing time of the controller with the general switch is longer than

our proposed method at any batch arrival rates. Because the burst of packet-in messages are the main

reason that increases the service time. The MPT can reduce packet-in messages very effectively in

the burst packets scenario. The mean processing time of MPT is stable when the batch arrival

rate is λm = 8λb, 16λb, the mean processing time of MPT increases when the batch arrival rate is

λm = 32λb. It still much faster than the general switches. The response time with different batch
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arrival rate increases nearly linearly. The response time of the general switch increases faster than

the MPT at any batch arrival rate. With λm = 16λb, the response time of MPT is 20% faster than the

general switch at batch arrival rate 1K per second, and this difference between the response increase

with the batch arrival rate.

7.4.2 Simulation

To evaluate how MPT works on OpenFlow controllers, we implement a simulator to capture the

behavior of controllers based on SimPy [126]. SimPy is a process-based discrete-event simulation

framework. Under this framework, the measurement of an OpenFlow controller are performed with

the following steps: (1) creating two processes for the switch and controller respectively; (2) creating

a queue for the communication between the switch process and the controller process; (3) the switch

process generates packet-in messages and puts them in the queue; (4) the controller process serves

the packet-in messages in the queue using a FCFS scheduling policy; (5) recording the response

time of the controller and the number of packet-in messages.
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Figure 7.12: The response time of the controller

In the simulation, we use the traffic data from passive network monitors of CAIDA. There are

2.43K UDP flows per second. The UDP flows contribute 19% of all flows in the networks, but

not all the UDP flows cause bursts of packet-in messages, so we take a percentage of the UDP

flows to generate the burst of packet-in messages, and the rest of the UDP flows only generate

one packet-in message. If there are n percent of UDP flows that generate the burst of packet-in

messages, the general OpenFlow switch will send packet-in message to the simulated controller at

rate λb = 24.3n, and the average number of packet-in messages in a batch is λp = 8. A switch

109



CHAPTER 7. BUFFER MANAGEMENT

that is simulated with MPT sends packet-in messages following Poisson process at different rates.

The simulated OpenFlow controller can process 128M packet-in messages per second. We run the

simulation for 100 seconds. The mean processing time of the controller with different service rates

is shown in Figure 7.12.

The mean processing time of the controller with our proposed method is 30% lower than the

general switch at least. Because a switch with MPT does not send useless packet-in messages to the

controller, which reduce the queue in the controller. The response time of general switch increases

very rapidly when the percent of UDP flows that generate the burst of packet-in messages increases.

The response time of MPT increases very slowly. Because the MPT reduce the number of packet-in

messages effectively, the burst of packet-in messages do not impact the performance of the controller

significantly.

In the second simulation, we use the same parameters but record how many packet-in messages

arrive at the controller. The result is shown in Figure 7.13.
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Figure 7.13: The number of packet-in messages

As we can see, the number of packet-in messages with the general switch is greater than MPT

at any batch arrival rates. When the batch arrival rate is low, the difference is not that big, but it

increases with the batch arrival rate. Because the a hight number of packet-in messages in a batch

let the number of packet-in messages increase fast. MPT can save 6% of the packet-in messages

when 10% of the UDP flows generate a burst of packet-in messages, and increases the reduction

with the volume of the UDP flows that generate the burst of packet-in messages.
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Figure 7.15: Number of packet-in message with MPT switch simulation

To evaluate how effective MPT can reduce the burst of packet-in messages, We use the virtual

swich in OFCP to simulate an OpenFlow switch. To simulate the general OpenFlow switch, the tool

continually sends packet-in messages to the Ryu controller until receives a flow-modify message.

To simulate the MPT switch, the tool repeats the following steps: send a packet-in message, wait
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an exponential random time, until it receives a flow-modify message. We do both experiments 2500

times, and analyze the number of packet-in messages arriving at the controller for one flow.

Figure 7.14 shows the result of the general switch simulation. At least, the controller receives

two packet-in messages for one flow, and the mean number of the packet-in messages for one flow is

4.06. With probability 0.3, the controller receives more than four packet-in messages. The controller

may even receive more than ten packet-in messages for one flow.

Figure 7.15 shows the result of the MPT switch simulation. With probability 0.95, the controller

only receives one packet-in message for one flow, and the mean number of packet-in messages is

1.06. With MPT, the controller may receive more than three packet-in messages for one flow, but

the probability is less than 0.01. The MPT can decrease the number of packet-in messages on the

controller effectively when burst packets happen. For most cases, the controller only receives one

packet-in message for one flow.

7.5 Summary

In this chapter, we have discussed how burst packets degrade the performance of the controller

in OpenFlow networks and have presented a method to reduce the packet-in messages by using

the built-in buffer in OpenFlow switches so as to reduce the workload of the controllers. This

method moves some workload of the date plane to the control plane. A switch looks up two time for

every mismatched packet, this may degrade the performance of a switches. However, switches are

usually hardware. They are much faster than controllers. Therefore, it is worth moving workload

to the control plane. The proposed method can reduce the unnecessary packet-in messages when

there are many UDP packets in an OpenFlow network. Queueing analysis and simulation results

indicate that our method can decrease the mean processing time of the controller very effectively

when the performance of the controller is not high. The queueing analysis shows that the response

time of MPT is 30% faster than the general switch. The simulation shows that MPT can save 6%

of the packet-in messages when there are 10% of the UDP flows that generate a burst of packet-in

messages. The controller receives more than four packet-in messages with probability 0.3 when

a general switch is used. Thee controller only receives one packet-in message for one flow with

probability 0.95, when a switch with MPT is used.
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Chapter 8

Server Load Balance in OpenFlow
Networks

Many online service providers use multiple servers to handle user requests. In order to minimize

the response time of requests and enhance user experience, requests from different users are handled

by different servers [114]. This reduces the amount of workload for each server. OpenFlow offers

high flexibility with the programmable controller. In this chapter, we implement a dynamic load

balancer based on the OpenFlow protocol. The dynamic load balancer collects the CPU and memory

utilization of each server and despatches user requests based the load of servers.

8.1 Load balance for online service

Load balancing methods can be used for web services, FTP services, business-critical applications

and other online applications [24]. Traditional load balancers are expensive, and the load balancing

policies need to be created in advance. The lack of flexibility leads to an inability to dealing with

variable traffic. Traditional load balancers require a dedicated administrator for maintenance and do

not allow the user to design flexible strategies based on their network conditions. Since all requests

are passed through a single piece of hardware, any failures on the load balancer will cause the

collapse of the entire service.

The various load balancing schemes have different deficiencies in modern online services. The

fundamental reason is that traditional network design has some shortcomings [104]. Under the im-

pact of new demands, the bottleneck of traditional network architecture has been reflected in many

aspects. Researchers are looking for new possibilities to meet changing demands. Controller appli-
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cations in an OpenFlow network can well overcome some shortcoming of traditional load balancing,

and provide a simple and effective solution with high flexibility. Due to the difference between tradi-

tional network and an OpenFlow network, they are inevitable difference between traditional network

and an OpenFlow network. New problems have emerged, such as the load balancing module de-

sign, monitoring the status of a server and the flexibility of load balancing. On the other hand, many

businesses in enterprise networks are migrating to virtual environments because virtualization tech-

nology can simplify the management and maximize the utilization of limited resources [4]. But the

load balancing technology is not mature enough in virtual environment, traditional load balancers

are under restrictions in virtualization environments.

We design and implement an OpenFlow-based dynamic server load balancing in a virtualized

environment. It is effective and flexible. New modules can be easily deployed in the controller

for implementing customizable policies. We deploy a single controller in the experiments, but our

method supports multiple controllers. Users can deploy multiple controllers to improve the perfor-

mance and robustness of the architecture.

8.2 Server Load Balancing Strategy

In this section, we introduce server load salancing strategy SBLB (Status-Based Server Load

Balancing). The load balancing architecture consists of an OpenFlow network with a controller and

server cluster which is connected to the OpenFlow network. The controller manages the OpenFlow

switches. At the same time it obtains status from the servers regularly.

Clients
OpenFlow
network

LAN

OpenFlow
controller

Server cluster

Figure 8.1: Load balance architecture based on OpenFlow

As is shown in Figure 8.1, each server has a static IP address. The controller maintains a server

address pool and obtains network topology. There is a virtual IP address used by clients to send
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requests. From the client’s perspective, the server cluster can be considered a server with the virtual

IP address. All the servers share the virtual address and all the clients will send their requests to the

virtual IP address. The clients treat the server cluster as one server whose IP address is the virtual

IP address. When a packet-in message arrives at the controller, the controller will check if the IP

address of the packet is the same as the virtual IP address, by which the servers provide service. If

not, the controller will forward the packet normally. Otherwise, the controller will select a server

to respond to the client based on the load balancing strategy. It will also add a flow entry to the

OpenFlow switch.

8.2.1 Load Balancing Strategy

There are three steps in the SBLB algorithm.

(1) Dynamically obtaining the current server load. We collect the status of servers. For server Si,

we collect its CPU utilization L(Ci), memory utilization L(Mi). This information does not directly

represent the load of a server, so we use a function to indicate the load of server Si.

L(Si) = w1L(Ci) + w2L(Mi), (8.1)

where w1 + w2 = 1. Because of these different type of parameters, which can have different effect

on the server, we introduce the weights w1, w2 to combine them together.

(2) Calculate the rank. Denote the initial rank of server Si as ri, When the server load balancing

system comes into use, ri is set as L(Si). Then the rank is updated according to Equation 8.2.

ri = ri +A3
√
ρ− L(Si), (8.2)

where ρ (the default value is 0.8) is the server utilization we want to achieve, and A is an adjustable

coefficient (the default value is 5). If A is too small, the historical state of the servers impacts the

rank effectively. Using Eq. 8.2, we can control the rank of a server in a non-linear way. This non-

linear rank can describe the load of servers reasonable because the relation between the requests

and response time is non-linear. If the relative load is ρ, the server’s rank will not change. If the

relative load is greater than ρ, it will become smaller. Otherwise, it will become larger. As the

server load changes, the rank will be adjusted. In order to avoid that the weight becomes too large,

we set the maximum of a rank to n, which can be adjusted. We set its default value to 5. If the rank

is greater than the maximum, we set the rank to the maximum. The maximum value of rank can

increase the probability of the most loaded server to be selected. If there are a lot of servers in the

cluster, we can choose a big value. The controller collects the server status periodically to query the
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load parameters, calculate the relative load, and update the rank of each server. This is a dynamic

feedback formula that will adjust the weights to a stable value. When a system achieves the desired

status, the rank will be constant. In practice, if the ranks of all the servers are very small, the server

cluster is considered overloaded. In this case, a new server needs to be added to the server cluster to

address this issue.

(3) Select a server. For each new incoming request, the controller selects a server to respond to

the client randomly. The probability that server Si is selected is ri∑
ri

. A server has a low utilization

will be selected by a high probability.

8.2.2 OpenFlow Based Load Balancer Implementation

The controller forwards the arriving packet try to reach the virtual host to a server based on the

SBLB. All clients use the virtual IP address to access the servers. A client should send an ARP

request for the virtual address before request. When an OpenFlow switch receives the ARP request,

it will send a packet-in message to the controller. The controller then send an ARP reply packet

through a packet-out message, which contains a virtual MAC address associated to the virtual IP

address. When a request arrives at an OpenFlow switch, the controller designates one server to

serve it according to the load balancing strategy, and adds a flow entry to the flow table. The flow

entry will modify the request packet’s destination MAC and IP address to the selected server’s MAC

and IP address and forward packet to the selected server. Meanwhile, it also adds a flow entry for

the response of the server, which will modify the response packet’s source MAC and IP address to

the virtual MAC and IP address.

We show an example of the workflow in Figure 8.2. The virtual IP address of web servers is

10.0.0.1. The client send an ARP request to obtain the associated MAC address of 10.0.0.1. When

the switch receives the ARP request, it sends a packet-in message to the controller. The packet-in

message contains the ARP request. The controller send a packet-out message to the switch when

it receives the packet-in message. The packet-out message contains an ARP reply with a virtual

MAC address e6 : 8e : f7 : fb : c1 : 55. The switch sends the ARP reply to the client following

the packet-out message. After the client receives ARP reply, it will send HTTP request using the

virtual IP address and the virtual MAC address. When the switch receives the HTTP request, it sends

packet-in message to the controller. The controller will select a server and install two flow entries

into the switch. One flow entry modifies the destination IP address and MAC address of HTTP

request to the IP address and MAC address of selected server. In this example, the switch modifies

the IP address and MAC address to 10.0.0.2 and a8 : 8e : f7 : fb : c1 : 7e. The other flow entry

modifies the source IP address and MAC address to the virtual IP address and MAC address. After
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Figure 8.2: Workflow of load balancer

the two flow entries are installed, the switch modifies the destination IP address and MAC address

of HTTP request and sends HTTP request to the selected server following the instructions in the

first flow entry. The selected server sends the response to the switch. When the switch receives the

HTTP response, it modifies the source IP address and MAC address to the virtual IP address and

MAC address, and sends the response to the client following the second flow entry. Then the HTTP

communication between the client and the selected server is completed.

Our load balancer consists of three modules as following: virtual machine management, load

balancing policy module and Floodlight, as shown in Figure 8.3. In the experiments, we use libvirt

[51] to implement virtual machine management module. This module is responsible for obtaining

the running status of each virtual machine periodically, and providing the result to the load balancing

policy module. The responsibility of the load balancing policy module is to select a server for the

client according to the SBLB algorithm when a request arrives. Using the load information from

virtual machine management module, the load balancing policy module calculates the aggregated

load of each server and then selects a server based on the load balancing strategy. The selected server

will process the client’s request. Floodlight module establishes a connection between the client and
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Figure 8.3: Modules of load balancer

the server by adding flow entries. When a request arrives, the Floodlight module will notify the

load balancing policy module. Load balancing module will then select a server and provide the

IP address of the selected server to Floodlight. The Floodlight module will establish a network

connection between the server and the client so that the client and the server communicate with each

other.

8.3 Experiment Results

We setup a virtualized network that contains four web servers, and one client and three OpenFlow

switches. The switches are connect to a Floodlight controller. The client runs a test application that

send requests to the web servers. The Floodlight controller balance the load of the web servers using

three strategies, SBLB, random and round robin. We compare SBLB with, random and round robin

in terms of response time, throughput, CPU utilization and memory utilization.

8.3.1 Experiment Environment

The experiments compare the performance of using different load balancing strategies in a virtu-

alized environment. As shown in Figure 8.4, there are four virtual machines as web servers and three

Open vSwitch instances as OpenFlow switches. The servers in the network map to the same virtual
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address and provide the same service. Since we must guarantee the consistency of the servers’ con-

tent so that they run the same application, we put the web application on the storage server and all

the server connect to the storage.

Controller
OpenFlow 

switches

Storage server

Client

Figure 8.4: Load balancing architecture in virtualization environment

In order to store the running status of the server, we store all the results into MySQL databases that

are collected by virtual machine management module. The load balancing policy module receives

data from the database to calculate the current load and informs Floodlight. The Ubuntu based client

runs Jmeter, a load test tool, to simulate 100 users accessing the service concurrently. And there are

the same configuration and hardware for all servers in the experiment.

8.3.2 Experiment Results

Under the random strategy, the controller randomly selects a server from the server list to process

the client request. Under the round robin strategy, the controller selects a server in order.

We analyze the system response time with the three different load balancing strategies, SBLB,

random and round robin. Figure 8.5 shows the system response time with the three different load

balancing strategies. The horizontal axis represents the number of clients accessing and the vertical

axis represents the system’s response time in seconds. As shown in Figure 8.5, compared to the
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round robin and random, the SBLB algorithm achieves lower response time. It provides a better

user experience in the experiment.

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

1 101 201 301 401 501 601 701 801 901

SBLB

Round Robin

Random

R
es

p
o

n
se

 t
im

e 
(s

)

Figure 8.5: Response time with different strategies
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Figure 8.6: Throughput with different strategies

We analyze the throughput of the load balancing architecture when different load balancing strate-

gies are used. Figure 8.6 shows the throughput chart of using three different load balancing strate-

gies. The graph shows the value of the amount of received data from web server per second. As

shown in Figure 8.6, the client sends about 375KB data per second when the SBLB algorithm is

used. And the client sends about 300KB data when round robin or random algorithm is used. SBLB

algorithm can improve the throughput of the system as compared to both other strategies.
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(a) Memory utilization with SBLB strategies (b) Memory utilization with round robin strategies

(c) Memory utilization with random strategies (d) CPU utilization with SBLB strategies

(e) CPU utilization with round robin strategies (f) CPU utilization with random strategies

Figure 8.7: CPU and memory utilization of each server

We also analyze the CPU and the memory utilization of each server using the three load balancing
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strategies. The results are shown in Figure 8.7. Figure 8.7a shows the memory utilization of the four

servers when the SBLB strategy is used. Figure 8.7b shows the memory utilization of the four

servers when the round robin strategy is used. Figure 8.7c shows the memory utilization of the four

servers when the random strategy is used. As can be seen from the three figures, when the SBLB

strategy is used, the four servers’ memory utilization are closer. When round robin or random

algorithm are used, there is a gap in the memory utilization of the four servers. This means that

the policy can allocate user requests more evenly, and make more effective use of memory for each

server.

Figure 8.7d shows the CPU utilization of the four servers when SBLB strategy is used. Figure

8.7e shows the CPU utilization of the four servers when round robin strategy is used. Figure 8.7f

shows the CPU utilization of the four servers when random strategy is used. As can be seen from the

three figures, the CPU utilization of the four servers are more balanced when the SBLB algorithm is

used. SBLB algorithm makes more effective utilization of CPU for each server.

SBLB can balance the memory and CPU utilization of the servers more effectively than the other

algorithm because it dispatches the user requests based on the status of the servers. SBLB updates

the memory and CPU utilization of the servers periodically, and calculates the rank of each server.

The lower the memory and CPU utilization of a server is, the more possibility it is selected. A user

request can be dispatched to a server with lower utilization.

8.4 Summary

This chapter described a dynamic load balancing method for server cluster based on OpenFlow

in virtual environments to balance the load of servers in a virtualized environment. The experiments

show that it is possible to make a flexible and effective load balancing in OpenFlow networks. Open-

Flow provides flexibility for implementation of different load balancing strategies, which makes it

convenient to use a software-defined method to use different load balancing strategies in different

network environment. Experimental results show that compared with the traditional load balanc-

ing strategy, such as round robin and random, the SBLB load balancing algorithm can decrease the

response time to provide a better user experience, make the utilization of server CPU and memory

more efficient, and balance the load of servers more effectively.
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Chapter 9

Conclusions and Outlook

9.1 Conclusions

OpenFlow is a new network architecture to overcome the shortage of traditional IP networks. The

programmable controller offers high flexibility and makes network management automatic. With

OpenFlow, the network operators can change the forwarding rules for traffic flows without influ-

encing other flows. New demands can be meet by updating applications running in the controller

instead of changing the hardware. The controller can also provide a global view of a network and

make routing decisions based on the global view. In this thesis, the main purpose has been to study

the performance of the OpenFlow controllers since the controller manages all the forwarding de-

vices in a network and it may become a bottleneck of the network. We fit PH distributions to the

response time of OpenFlow controllers, and build queueing models based on the fitted distributions

to model and optimize the performance of OpenFlow controllers.

PH distributions are used in performance evaluation very often since they can model the response

time of many systems. If the response time of a system is correlated, MAPs are more suitable

than PH distributions because PH distributions do not describe the correlation in empirical data.

We implemented HyperStar2 to obtain the distribution of response time of OpenFlow controllers.

HyperStar2 is a user-friendly distribution fitting tool with GUI. It helps the user, who does not

understand the underlying mathematical knowledge, to fit a PH distribution or MAP to their samples.

HyperStar2 uses a cluster-based algorithm. It splits samples into serval clusters, fits an Erlang

distribution to each cluster, and combines the Erlang distributions into a PH distribution or MAP.

We provide some numerical examples to show the abilities and limitations of HyperStar2. We find

that HyperStar2 can fit distributions very well but it does not provide good results if there are no

obvious peaks in the samples.
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There are several existing benchmark tools for OpenFlow controllers. However, they only provide

the very basic performance metrics. The metrics can offer a glimpse of the performance of an Open-

Flow controller but researchers need the distribution of the response time of an OpenFlow controller

to build a queueing model. Queueing models can help researchers to understand the behaviors of an

OpenFlow controller. We develop OFCP, a benchmark tool for OpenFlow controllers that provides

the distribution of response time of an OpenFlow controller. The distribution of response time can

be used in a performance model. OFCP employs a virtual OpenFlow switch to communicate with

an OpenFlow controller. The virtual OpenFlow switch sends packet-in messages to an OpenFlow

controller. The OpenFlow controller replies each packet-in message with a flow-modify message.

OFCP records the response time of the OpenFlow controller and fits a PH distribution to the response

time.

Multiple controllers are usually deployed in a large scale OpenFlow network because there are

lots of requests from the switches, one controller is usually not capable. To determine the optimal

number of controllers in an OpenFlow network, we evaluate the performance of multiple controllers

based on a queueing model. The queueing analysis shows that the average arrival rate at a controller

decreases with the number of controllers when the number of controllers is small, and the average

arrival rate at a controller increases with the number of controllers when the number of controllers

is large. Meanwhile, the average service rate of a controller increases with the number of the con-

trollers, and the rate of ascent decreases with the number of controllers. We fit a PH distribution

to the response time of the controller and put the distribution into a queueing model. Based on the

queueing model, we can determine the optimal number of controllers that minimizes the flow setup

time. The queueing analysis shows the optimal number of controllers decreases with the rate of

synchronization messages and increases with the rate of packet-in messages. Therefore, we suggest

to use a few powerful controller in a network if the state of the network changes frequently.

The imbalance load among multiple controllers may degrade the performance of a network. To

balance the load among the controllers, we design a heuristic to solve the controller assignment

problem. The heuristic starts from a feasible assignment and output an optimal assignment. We

also design a greedy algorithm to generate a feasible assignment as the input of the heuristic. We

model each controller as an M/PH/1 queue and approximate the average flow setup time of all

controllers. The combination of approximated flow setup time and the number of migrations are

considered as the fitness function in the heuristic. We evaluate our algorithm in Mininet and compare

the algorithm with DCP-SA. The results show that our algorithm can balance the load of controller

more effectively and make less switch migrations less than DCP-SA.

The burst of packet-in messages may degrade the performance of an OpenFlow network, be-
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cause it increases the workload for both switches and controllers. The buffering mechanism in an

OpenFlow switch can only reduce the size of a packet-in message. It can not reduce the number

of packet-in messages from OpenFlow switches. Therefore, the buffering mechanism can hardly

improve the performance of an OpenFlow network. We design MPT (Mismatched Packets Table), a

new buffering mechanism for OpenFlow switches to avoid bursts of packet-in messages. MPT can

reduce the number of packet-in messages. MPT buffers packets at a flow grain instead of packet

grain. An OpenFlow switch with MPT does not send unnecessary packet-in messages to its con-

troller. We evaluate MPT with queueing analysis and simulations. The results indicate MPT can

reduce the number of packet-in messages and decrease the average flow setup time. MPT can im-

prove the performance of an OpenFlow network effectively when the performance of the controller

is not high.

Load balancing can minimize the response time of servers and improve the user experience, but

traditional load balancers are expensive and not flexible. User can only choose the build-in strate-

gies. It is difficult to add new strategies to adapt to new demands. Besides, many online services

are migrated to virtualized environments, traditional load does not work well in virtualized envi-

ronments. We design and implement SBLB (State-Based Load Balancing), a controller application,

to balance the load of servers in virtual environments. SBLB collects server status and dispatches

requests based on the load of servers. There are three modules in SBLB. Virtual machine manager

gathers server status periodically. Load balancing strategy module selects a server when a request

comes. Floodlight installs flow entries into switches to establish connection between the client and

selected server. Our experiments show that SBLB can balance the load of servers effectively.

9.2 Outlook

Although some techniques and algorithms have been proposed in this thesis, the performance of

OpenFlow controller can be further studied. We suggest serval directions for future work.

The distribution of response time of an OpenFlow controller is a critical parameter in a queueing

model. HyperStar2 does not provide a good fitting result if there are no obvious peaks in the his-

togram of samples. Improving the accuracy of HyperStar2 can help researchers to build more precise

queueing models. In addition, HyperStar2 aims at helping users, who are not expert in distribution

fitting, to fit a PH distribution to their samples. The number of branches is an important parameter

in the fitting algorithm. It impacts the accuracy of fitting results severely. However, HyperStar2

can not determine the number of branches automatically, instead, it gets the parameter from user
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input. Therefore, inexperienced users may get inaccurate fitting result. Determining the number of

branches automatically can help inexperienced users and improve the accuracy of fitting result.

As we discuss in Chapter 6, the optimal number of controllers depends on the rates of flow re-

quests and synchronization messages. The traffic load in a network may change frequently. The

optimal number of controllers may change with the traffic. Since network conditions can change

over time, a dynamic controller provisioning algorithm can be designed to keep OpenFlow networks

always at high performance.

In the controller load balancing problem, we only consider the migrations and flow setup time.

These two metrics are important but there are some others metrics, such as synchronization cost,

delay between a switch and a controller. It may improve the performance of OpenFlow networks if

more metrics are considered in the model. Furthermore, combining the dynamic controller provi-

sioning problem and controller load balancing together can keep OpenFlow networks always at high

performance and use as least controller as possible.

An OpenFlow controller can install flow entries in different grains. Coarse-grained flows offer

less statistics information than fine-grained flows. However, coarse-grained flows can reduce the

load of controllers. For example, two flow entries can match all the packets between two hosts

if the two flow entries only match the source and destination MAC addresses. A trade-off can be

made between fine-grained control and performance in OpenFlow network. A controller can install

coarse-grained flows when it is under heavy load. Building a model for the trade-off may help

controller to determine the grains of flows.
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