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Abstract

Background: In methylation analyses like epigenome-wide association studies, a high amount of biomarkers is
tested for an association between the measured continuous outcome and different covariates. In the case of a
continuous covariate like smoking pack years (SPY), a measure of lifetime exposure to tobacco toxins, a spike at zero
can occur. Hence, all non-smokers are generating a peak at zero, while the smoking patients are distributed over the
other SPY values. Additionally, the spike might also occur on the right side of the covariate distribution, if a category
“heavy smoker” is designed. Here, we will focus on methylation data with a spike at the left or the right of the
distribution of a continuous covariate. After the methylation data is generated, analysis is usually performed by
preprocessing, quality control, and determination of differentially methylated sites, often performed in pipeline
fashion. Hence, the data is processed in a string of methods, which are available in one software package. The
pipelines can distinguish between categorical covariates, i.e. for group comparisons or continuous covariates, i.e. for
linear regression. The differential methylation analysis is often done internally by a linear regression without checking
its inherent assumptions. A spike in the continuous covariate is ignored and can cause biased results.

Results: We have reanalysed five data sets, four freely available from ArrayExpress, including methylation data and
smoking habits reported by smoking pack years. Therefore, we generated an algorithm to check for the occurrences
of suspicious interactions between the values associated with the spike position and the non-spike positions of the
covariate. Our algorithm helps to decide if a suspicious interaction can be found and further investigations should be
carried out. This is mostly important, because the information on the differentially methylated sites will be used for
post-hoc analyses like pathway analyses.

Conclusions: We help to check for the validation of the linear regression assumptions in a methylation analysis
pipeline. These assumptions should also be considered for machine learning approaches. In addition, we are able to
detect outliers in the continuous covariate. Therefore, more statistical robust results should be produced in
methylation analysis using our algorithm as a preprocessing step.
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Background
Scientists using a linear regression model often ignore
the properties of the independent variable or covari-
ate. Especially, if the scientist is not aware of the use
of a linear regression in differential expression analysis,
because the regression analysis is hidden in the depths of
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a bioinformatical pipeline [1]. A classical at first glance
unsuspicious continuous covariate might be smoking in
pack years. A pack year is defined by the number of
cigarette packs smoked per day multiplied by the num-
ber of years the person has smoked. One cigarette pack
corresponds to 20 cigarettes. In a methylation study in
the context of a differential expression analysis, we there-
fore want to model the change in methylation of a given
CpG site by the amount of smoking pack years (SPY). In
simple, the modeling is done by correlating the methyla-
tion values at the respective site with the smoking quantity
for each patient and calculating a regression coefficient
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for smoking-dependent changes in methylation values.
A problem in the fitting process occurs, if many non-
smokers are included in the data analysis. Instead of a
cloud of points, a single spike emerges at the left space
of the covariate distribution. Other scenarios exist where
a spike at the right is occurring. As a result, the regres-
sion line might be biased towards the spike patients
(Additional file 1: Figure S1).
The modeling of an increased amount of zeros in the

non-negative dependent variable Y is discussed exten-
sively in statistic literature. If the outcome Y has a high
amount of zeros, the outcome distribution is skewed to
the left and must be modeled with care. This is called
zero inflation. Different authors have proposed different
solutions [2–7]. In contrast to these studies, we will con-
centrate on a spike at the left or right of the continuous
covariate space. Hence, the covariate x is of interest and
inflated with zeros. The covariate x has a spike of val-
ues at the left or at the right indicating the left or right
limit of values, respectively. In principle, the proposed
idea can also be used for categorical data, given a linear
regression is appropriate for the analysis, i.e. an appropri-
ate number of categories is available. To be concise, we
are not looking at zero inflated data of the outcome, but
at spikes at the limits of the covariate of interest. A possi-
ble example would be smoking pack years with a spike at
zero for “non-smokers" and a continuous trend for “smok-
ers" with different amounts of smoking pack years. To
group continuous data into categories, it is common to
define boundaries and then set all exceeding values to the
corresponding limit. For example, the last group is often
defined as “larger than” and clumping can occur. Sauer-
brei et al. (2019) [8] stated, that the spike at zero modeling
is relevant to the analysis of many studies, but practical
experience is limited.
In the case of one outcome in a clinical study and a vari-

able with a spike at zero, different approaches have been
suggested to model the dependencies, demonstrated on
data dealing with alcohol consumption as covariate and a
single outcome to determine odds ratio effects in a dose-
response setting [9, 10]. The modeling is always done on
a few models with one outcome, like a single expression
of a protein and different covariates, but not in the case of
thousands of biomarkers like CpG sites. The experiment
by Royston et al. (2010) [10] was designed to determine
the relationship between the covariate, dosage, and one
response. The authors conclude that if a spike at zero for
alcohol consumption can be observed, fractional polyno-
mials can be used for the modeling. Further, the approach
was also extended into a setting withmore variables with a
spike at zero in the samemodel using a bivariate approach.
In short, the spike part and the linear part are modeled
by specific dummy variables indicating if an observation
is included in the spike or not. However, software solution

is not available in common bioinformatics languages like
R or Python [11]. These type of modeling have also been
used in the analysis of survey data in satisfaction with
health care [7]. Lorenz et al. (2019) [6] applied their recent
research on survival data and used the approach on a
single protein expression in triple negative breast cancer
[12]. Although the application has a bioinformatical back-
ground, the modeling was limited to one single protein
and it was known, due to visual inspection, that a spike at
zero was present. In contrast, in our work, we check thou-
sands of biomarkers for the presence of a suspicious effect
of the spike at zero. Lastly, Lorenz et al. (2017) [13] give
examples and practical recommendations for the model-
ing of spike at zero. Lorenz et al. (2017) [13] summarize
the actual state of the modeling of spike at zero includ-
ing categorization of the covariate, fractional polynomial
modeling, or the inclusion of a binary indicator of spike
observations. They concluded after demonstrating on dif-
ferent biological examples, that general recommendations
are difficult to provide. The analysis pattern depends on
the main goal of the analysis. In our experimental case, we
have thousands of endpoints that have to be checked.
A spike at the limits of the data space can be mod-

eled. Especially at zero different methods are proposed
by Jenkner et al. (2016) [11] and Lorenz et al. (2017)
[13]. Both present approaches for low dimensional set-
tings with one outcome and a set of covariates with a
single spike at zero. In a genome-wide context thousands
of biomarkers have to be modeled and only a fraction, if
any, will have a spike at zero conflicting with the contin-
uous covariate space. Therefore, biomarkers with a spike
effect must be detected beforehand. Moreover, we must
decide if we want to model the spike. From a mathemat-
ical point of view modeling can provide a better model
explaining the variance by an improved fit. However, this
might not match the biological point of view of the data
modeling.
The bioinformatical analysis of high dimensional omics

data is run in a pipeline fashion [14, 15]. This is feasible
for the preprocessing and quality control of the samples
until the differential analysis step begins [16]. In the case
of an epigenome-wide association study (EWAS), not one
CpG site is analyzed but hundreds of thousands. Tomodel
all the biomarkers with the assumptions of a spike as a
part of the analysis pipeline does not make sense. First, a
modeling including a spike will have more parameters and
therefore will cost degrees of freedom resulting in statisti-
cally significant results being less likely. Second, to model
data without a need does not fit the idea of a sparse model.
If a spike has no influence on the data, the spike can be
ignored and the continuous variable can be dichotomized.
Therefore, the data can be analyzed by a simple group
comparison with one group including the spike patients
and the other group including the other patients. This can
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be done as long as no trend over the covariate can be
observed. If a trend can be detected, the biomarker should
be modeled differently. Nevertheless, a model including
the spike is biologically misleading. If the spike supports
the trend of the covariate, a simple linear regression can be
conducted. If instead the spike is averaging out the effect
or flips the direction of the effect, a severe biological inter-
actionmight be observable. In this case, a deeper look into
the biomarker and its dependencies is needed and a simple
modeling of the spike cannot be recommended.
In the following, we present an algorithm to detect sus-

picious interactions between values associated with the
spike in the covariate and the non-spike associated values
with the use of linear regression. We tested the algorithm
on five methylation array data sets and checked if our pro-
posed interactions are detectable in real life data or if the
presence of a spike at zero is only a theoretical problem.
Afterwards, we visualize the most suspicious interactions
for each data set and show the arising problems. Over-
all, only a small margin of CpG sites show suspicious
interactions between the spike and the linear part. How-
ever, in the analysis of EWAS, thoroughly scrutinized data
sets are key to the subsequent detection of valid associ-
ations. Standard pipelines therefore include the filtering
out of CpGs that lead to erroneous results, e.g., CpGs near
SNPs (single nucleotide polymorphism) or cross-reactive
probes. With this work, we present a method to over-
come the problem of possible interactions between a spike
and non-spike part introduced by a covariate and sug-
gest its implementation into standard QC workflows for
EWAS with continuous variables, therefore adding to the
generation of reproducible results.

Results
We ran the algorithms for spike at left (Algorithm 2) or
spike at right (algorithm in Additional file 1 section 3) on
all five data sets. No severe interactions were detected.
Nevertheless, we were able to show effects of the corre-
sponding spike and the reversal or negation of the linear
effect by the spike in some CpG sites. Table 1 shows
the results of the detection algorithm, the last two rows

pointing towards the most important findings, indicating
a reverse or negation influence of the spike.
In E-GEOD-32861, the spike showed no reverse or

negation effects. 486 CpG sites showed a negative linear
trend and 824 CpG sites have positive linear dependency
with SPY. For the remaining 24,990 CpG sites, a normal
group comparison between smokers and non-smokers
would be feasible. Note that there was a gap between the
SPY values of the non-smokers and the smokers. This
might be a possible cause for no interaction between the
spike and the linear part.
The E-GEOD-54643 data showed 1,025 reverse negative

or negation and 1,550 reverse positive or negation CpG
sites. Further, 9,297 CpG sites showed a negative linear
trend and 4,872 have a positive linear dependency. The
majority of the CpG sites, 468,768, can be analyzed by
a group comparison between smokers and heavy smok-
ers. Table 2 shows the Top 6 of the reverse positive or
negation CpG sites pictured in Fig. 1. The results must
be judged carefully because of the low sample size. Nev-
ertheless, we could demonstrate our concerns of a linear
regression on covariates with a spike at a given position on
this example. Most of the Top 6 findings were CpG sites
mapped in genes with clinically relevant functions. The
methylation site cg12195446 interacts with genes control-
ling the insulin household, cg10006614 is included in the
epithelial cell morphology, cg03466780 negatively regu-
lates the elongation of transcription by RNA polymerase
II and cg06536614 is near the gene TGFB1, which codes
an important growth factor.
E-GEOD-55454 had 75 RNN and 29 RPN CpG sites.

Figure 2 shows the results of the Top 6 strongest
deviations between the two regression lines. The CpG
site cg00073650 showed a strong effect through two
outliers in the lower region of the SPY values. Due
to the outlier, the regression line had a higher slope
and the predicted value for the spike at right at 60
SPY was higher than the threshold. The methylation
site cg00231920 is located in the genes TMEM23 and
PCED1A, which both play a role in the generation of
transmembrane proteins. CpG site cg01352108 maps to

Table 1 Results table of the ArrayExpress data and the data from Richter et al. (2019) [17]

Trend E-GEOD Richter†

32,861 54,643 55,454 68,825

Negative linear trend 486 9,297 333 3,763 18,452

No linear trend 24,990 468,768 25,172 440,539 768,951

Positive linear trend 824 4,872 788 4,722 14,845

Reverse negative or negation 0 1,025 75 13 1

Reverse positive or negation 0 1,550 29 5 22
† Richter et al. (2019) [17]

The trend columns summarizes Figure 5 into five categories
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Table 2 Genetic summary table of the results of the Top 6 findings in E-GEOD-54643

CpG ID Chr Start End Gene ID

included nearby

cg02533724 10 128,481,648 128,481,697 LINC01163 (ncRNA); AL390763.1 (ncRNA)

cg12195446 13 109,772,102 109,772,151 IRS2

cg10006614 14 95,410,951 95,411,000 SYNE3

cg08717807 16 85,497,808 85,497,857 GSE1

cg03466780 9 137,352,913 137,352,962 NELFB

cg06536614 5 136,080,692 136,080,741 TGFB1

Figure 1 shows a strong deviation between the inclusion and the exclusion of the spike at 20 SPY of the linear regression

KCKNK4, which is connected to the perception of pain
caused by heat, cg02699167 is utilized for formation
of membranes, cg05421673 plays a role in the inhibi-
tion of bone morphogenetic proteins, and cg06220521
has an important role in the regulation of vascular
remodeling.

E-GEOD-68825 had 13 RNN and 5 RPN CpG sites.
Additional file 1: Figure S6 shows the Top 6 of CpG sites
with the largest differences between the two regressions
models. Demonstrating the negative effect of the inclu-
sion of the spike into the regression model, Additional
file 1: Figure S7 shows again strong effects from possible

Fig. 1 Top 6 of the reverse negative or negation CpG sites of the data set E-GEOD-54643. The order was determined by the effect deviation
between the coefficients from two linear regressions, one associated with all data included and one with exclusion of the spike associated data. The
spike at right increases the regression line. Without the spike the regression effect would be negative, including the spike at right the regression
effect becomes positive. A biologist has to decide, if the CpG sites are biological connected or can be seen as outlier. Table 2 shows the position and
genes nearby of the CpG sites
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Fig. 2 Top 6 of the reverse negative or negation CpG sites of the data set E-GEOD-55454. The order was determined by the effect deviation
between the coefficients from two linear regressions, one associated with all data included and one with exclusion of the spike associated data. In
contrast to E-GEOD-54643 the spike at right decreases the regression line. Without the spike the regression effect would be positive, including the
spike at right the regression effect becomes negative. Again, a biologist has to decide, if the CpG sites are biological connected or can be seen as
outlier. Table 3 shows the position and genes nearby of the CpG sites

outliers. As example, the CpG sites cg09270247 and
cg25457956 showed a strong positive trend, which was
negated by the inclusion of the spike at 50. It seems that
themethylationwas increasing until 50 SPY andwas drop-
ping to a more constant level. Scientists should investigate
these samples with care and decide, whether they should
be excluded or whether they could include more insight
into unseen complex biological backgrounds. The effects
were not very large and in addition with the lack of infor-
mation on the data set, we will not go deeper into the
results.
The data by Richter et al. (2019) [17] showed 1 RNN

and 22 RPN CpG sites. Figure 3 shows the Top 6
of the strongest deviations of both regression analyses
for the reverse positive or negation CpG’s. All effects
were driven by one outlier, which had not been not
included in the original analysis by Richter et al. (2019)
[17]. The outlier with a SPY value of 47 had very
low m-values. Removing this patient from the analysis

would reduce the number of suspicious interactions
to zero.
In summary, we were able to show the effect of the

inclusion of the spike and the non-spike values in a lin-
ear regression. In the case of a low sample size the spike
has a larger effect than in the case of a higher sample
size. We were able to show, that outliers in the non-
spike values might also influence the regression analysis.
These outliers might not be detected by preprocessing
because the outliers are directly connected to the covari-
ate. Checking the validity of the assumptions is crucial
for the biological interpretation of the statistical analysis.
The results of the linear regression in our algorithm can
only be seen as a preprocessing step to detect suspicious
CpG sites connected with SPY. The researcher should
remove the detected CpG sites and discuss these CpG sites
separately. Our algorithm does not guide any statistical
decisions for the differential analysis for the other
CpG sites.
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Table 3 Genetic summary table of the results of the findings in E-GEOD-55454

CpG ID Chr Start End Gene ID

included nearby

cg00231920 20 2,840,614 2,840,663 TMEM239; PCED1A

cg01352108 11 64,291,358 64,291,407 KCNK4

cg02699167 3 33,277,532 33,277,581 FBXL2

cg05421673 17 56,594,214 56,594,263 NOG

cg06220521 13 94,601,914 94,601,963 GPR180

Figure 2 shows a strong deviation between the inclusion and the exclusion of the spike at 60 SPY of the linear regression

Discussion
Why do we not model the spike in the covariate distri-
bution? In bioinformatics, the analysis of a high amount
of biomarkers like CpG sites in epigenome-wide associ-
ation studies is common. In our work, we present a way
to address this challenge, i.e. detect suspicious interac-
tions between the spike values and the other values of
the covariate before streamlined association analyses. The
general idea would be to model these dependencies. As

only a small fraction of all CpG sites will be influenced
by the spike, we do not consider this approach appropri-
ate. If we would model all the biomarker considering the
spike and use more complex models like fractional poly-
nomials, we would face the following problems: First, the
model will often be more complex than needed.We would
need to estimate more shape parameters for the fractional
polynomials. This would violate the sparsity rule of a good
model and will cause a lower power because of the usage

Fig. 3 Top 6 of the reverse positive or negation CpG sites of the data set by Richter et al. (2019) [17]. The order was determined by the effect
deviation between the coefficients from two linear regressions, one associated with all data included and one with exclusion of the spike associated
data. In contrast to E-GEOD-54643 and E-GEOD-55454, the spike effect is very marginal. Both regression lines have nearly the same slope with the
same negative effect. It is clear to see that an outlier is causing the suspicious interactions
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of more degrees of freedom. Hence, less significant results
can be found. More importantly, for the vast majority of
biomarkers, the model will be more complex than needed.
The linear regression model is a simple and well suited
model and should be used if the assumptions are valid.
We present a possibility to detect CpG sites, which are
violating the assumptions and must be verified visually.
Guided by the results of our algorithm, it can be evaluated
whether the suspicious interactions are statistical noise or
whether the CpG sites may have an interesting biologi-
cal context that would explain unexpected spike effects.
This cannot and should not be done simply by statistical
modeling.
One could however argue that we introduce a pretest

to a bioinformatical analysis pipeline. This is partly true.
However, to avoid multiple testing problems and to avoid
an increase of the type I error due to many significance
test, we recommend to look and check only the suspicious
CpG sites. If the CpG site is in line considering the spike
and the non-spike data, a post-hoc analysis as planned
can be conducted. In this post hoc linear regression all
batch effects and other confounders can be included and
adjusted for. Therefore, our tested model is very simplistic
and has the only aim to check for the spike effects. We can
not recommend to use any effect measures from this anal-
yses for the biological interpretation. Bourgon et al. (2010)
[18] shows in his work the importance of independent
filtering and the connected increase of detection power
for high-throughput experiments. Hence, it is important
that the researcher decides, if possible detected suspi-
cious interaction will violate the linearity assumption of
the regression analysis or if the independent assumption
of the bioinformatical pipeline can not hold. We would
state, that a flipped or misleading effect is much more
problematic than a lower statistical power [1, 16].
As a side effect, our detection algorithm also allows to

run a quality check for outliers considering the covariate
with a spike, which would bias the differential association
analysis. The algorithm supports the decision on whether
a variable should be dichotomized or not. If no linear
trend can be observed in the non-spike associated data
values, it might be feasible to run a simple group compar-
ison or a means parametrization using a linear regression
with confounder adjustment. Again, we strongly recom-
mend to use a more complex model with confounder
adjustment for the full statistical analysis followed by
biological interpretation of the estimates.
If the experiment includes a high number of samples,

we would strongly recommend to change the decision rule
for the detection of a linear effect in the non-spike values.
With an increase of the sample size, we will observe sig-
nificant linear results even if the clinical effect is small and
therefore ignorable. Hence, we have added the possibility
to define a clinical threshold, which must be reached to

have a linear dependency in the non-spike data. This must
be decided manually by the scientists, who runs the spike
detection algorithm. Taking our findings into account,
only a small fraction of biomarkers should be suspicious. If
a large number of suspicious biomarkers is observed, the
cause might be the high sample size.
Differential analysis is important for further analysis

steps in a bioinformatical analysis pipeline. Significant
biomarkers are processed further on in pathway or enrich-
ment analysis. From a statistical point of view the analysis
of the data should hold the 5% family wise error rate. At
most 5% of the biomarkers should be significant although
the null hypothesis is true and no real effect of the methy-
lation or expression is present. The false discovery rate
(FDR) allows to choose a more liberal approach and to uti-
lize the full significance level. To achieve significant results
in genetics is very important. After the differential anal-
ysis a gene set enrichment or pathway analysis is often
conducted using the significant results of the differential
analysis. Hence, if only a low number of biomarkers is sig-
nificant, the enrichment analysis has problems to detect
differentially expressed pathways. As mentioned above
the independence of the filtering is important [18]. Nev-
ertheless, Allen (2017) [19] describes the problems with
multi omics data integration if not each omics layer does
not include outlier and is well preprocessed. If the differ-
ent layers should be combined, each of them should be
conform as expected. Spikes in the covariate are not typi-
cal in statistical modelling and problematic interactions in
biomarker should be removed beforehand.
From our point of view, not the low power is a problem,

though it is possible that one does not detect a potential
true pathway. However, a more severe problem would be
the direction of the effect. If the spiking covariate flips the
effect measure of the linear regression, the whole path-
way might be directing in the wrong direction. A potential
protective pathway will become a potential risk pathway
or vise versa. If all CpG sites are more or less in a linkage
disequilibrium, then one suspicious effect of the covariate
should be found in all CpG sites connected to a given path-
way. How strong this suspicious effects must be is open
for further research.
Further, in epigenetics many new approaches for

machine learning are proposed and used in direct appli-
cation [20, 21]. We will need data for machine learning
which hold the assumptions to the data. If not, we will not
model the dependencies in the data space but most likely
the spike effect, which will be very dominant. Especially,
if we want to use machine learning on the data, we must
know if interactions are present. In simple machine learn-
ing, approaches try to model the correlation structures. A
spike at a given position, which is not in consensus with
the rest of the data might cause a bias in the prediction
algorithm.
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Conclusion
We demonstrated in our work an algorithm to detect
interactions between the spike at the left or the right
of a continuous covariate in the setting of a differential
expression analysis. If the spike of the covariate is not
in conjunction with the linear part of the other values
of the covariate, a linear regression could deliver biased
estimates. Differential analysis based on significant CpG
sites and maybe swapped estimated effects of the linear
regression slope will be misleading. Our proposed algo-
rithm can be used for each covariate with a known spike
after preprocessing. Suspicious biomarkers can then be
checked visually. The scientist can decide, if the respective
biomarker should be included for further analysis or dis-
missed. In rare cases such a biomarker with a suspicious
interaction might be of special interest, especially if many
of the genes are located in the same genetic region. Fur-
ther, our approach can also be used for the detection of
potential outliers, which would bias the linear regression.
Finally, we used the algorithm on five real life data sets
and detected only slight deviations, mainly driven by low
sample sizes. Still, we would advice to check the covariate,
if the genetic study includes potential spiking covari-
ates. Machine learning, enrichment analysis or pathway
networks are often based on differentially expressed find-
ings and will be more robust, if the assumptions on the
differential analysis were valid.

Methods
The biological model
In this work, we concentrate on the distribution of the
covariate in a linear regression model. A genetic data
set consists of thousands of biomarkers, which are all
analyzed in the same way in a pipeline fashion. In the
context of this work, we assume the investigated biomark-
ers to be CpG sites in an EWAS. In a simple setting of a
covariate representing two treatment groups, the analy-
sis is straightforward. However, sometimes the covariate
of interest is not binary like smoking but continuous, like
smoking pack years (SPY) has many groups with order,
like the ASA physical status classification system, or has
joystick years as a analogy to smoking pack years. In the
study of Kuehn et al. (2014) [22] the influence of joystick
years on different regions of interest (ROI) in the brain was
analysed. With an increased number of considered voxels,
i.e. ROI’s, the problem of undetected spikes at zero could
occur.
In this work, we will concentrate on the differential anal-

ysis of CpG sites in EWAS. For the analysis of EWAS,
two large R packages are available: Champ [23] and
minfi [24]. Nevertheless, in both cases the differential
analysis is based on the limma package [25]. Therefore,
the differential analysis is done by a linear regression
adapted for the outcome with a linkage function or by

adjusting the variance with a Bayesian approach [26].
Subsequently, the regression analysis can be followed
by a gene set enrichment analysis or pathway analy-
sis, depending on the statistical outcome. In a normal
setting the assumptions on the covariate are neglected.
In the special case of smoking pack years a spike at
zero can be observed in the covariate distribution. Has
this spike an effect on the estimates of the regression
analysis?

Algorithm for the detection of suspicious interactions
In the following, we present an algorithm to detect sus-
picious interactions between methylation values of the
patients included in the spike and the methylation values
associated with the non-spike values of the covariate of
interest. So called β- orm-values usually representmethy-
lation values. A β-value can be roughly defined as the
percentage of methylation in one CpG site. When statis-
tical analysis is performed, m-values, which are based on
β-values, are used to gain a higher statistical accuracy. The
m-values are retrieved by dividing the methylated frac-
tion (β-value) of a CpG site by the unmethylated fraction
(1 − β-value) and then taking the natural logarithm of 2
of this outcome. This leads to a possible range of −∞ to
∞ for the m-values. In the following, m-values represent
methylation values. In addition, we decided to use smok-
ing pack years as the spiking covariate as an example. In
general, every variable with “non-users” and “users” can
have the property of a spike. Further, we also introduce the
detection of a spike on the right side of the value space like
a censoring of measurement values or a wanted maximum
value. In the case of smoking, we could think of a group
of heavy smoker, which spike on the right at a given SPY
value.
Figure 4 shows the inclusion of our spike effect detec-

tion algorithm in the general frame work of a methylation
analysis. First, standard preprocessing methods, available
in the common bioinformatics pipelines, will be used for
preprocessing raw data consisting of m-values and a con-
tinuous covariate x with a known spike position. In the
context of this work, we will not include any batch effects
or other confounders, but will only check, whether the
spike validates the linear dependency of the m-values or
has an altering interaction with non-spike values. After
the preprocessing of the m-values, the covariate x with a
known spike position will be checked for introduction of
suspicious interactions betweenm-values associated with
the spike and a possible linear effect of the non-spike asso-
ciatedm-values. Afterwards, a normal differential analysis
can be run. The association of them-values with the non-
spike part of the covariate x will in the following also be
referred to as the linear part of the covariate x and an
effect of this linear part will be called linear effect of the
covariate x.
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Fig. 4 Flowchart of integration of the detection of suspicious interactions in the general workflow of a methylation analysis pipeline. After the
preprocessing, the spike effect detection is run to determine the CpG sites which must be inspected visually if a relevant deviation is present.
Afterwards, normal post-hoc analysis can be run on the data

Figure 5 shows the possible outcomes of our spike effect
detection algorithm as a 3x3 plot matrix illustrating the
relationship between m-values associated with the spike
values and the linear effect of the non-spike associatedm-
values. The left column shows the position of the spike.
Although our algorithm is also able to detect a suspicious
interaction with a spike at the right of the covariate values,
in this Fig. 5, we concentrate on the spike at the left (see
Additional file 1 section 3 for the algorithm of the detec-
tion of the spike effects at the right). The spike can include
low, mid or high values, as indicated by the fourth, third
and second row, respectively. In the first row, the linear
effect of the covariate is shown. The effect can be increas-
ing, stable with no effect or decreasing. We combine these
three states of the spike, low, mid and high, with each of
the three possible tendencies of the covariate, increasing,
stable and decreasing.
First, the spike position can be in line with the linear

effect of the covariate, as depicted in subplot C and G. The

spike is located lower than the linear part and the linear
effect is increasing (Fig. 5C) or the spike is located higher
than the linear part and the linear effect of the covariate
is decreasing (Fig. 5G). Hence, the spike and the linear
effect of the covariate are in the same direction and a nor-
mal linear regression is feasible. Second, if we observe no
linear trend among the covariate, as shown in subplot D,
E, and F, a normal group comparison between the spike
and non-spike individuals is possible. We suggest to use
a linear regression with means parametrization to com-
pare both groups and adjust for further confounders if
needed. Third, suspicious interaction occurs if the spike
will negate or reverse the effect observed in the linear part
of the covariate, as in settings A and B or H and I. This will
not occur often, but if we observe such a pattern, we must
investigate these CpG sites first before we can go on with
the analysis pipeline.
How does the algorithm decide which of the scenar-

ios depicted in Fig. 5 applies to the m- and SPY values
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Fig. 5 Demonstration of possible interactions between a spike at zero and the trend in the remaining values of the covariate on an example of
normal distributedm-values generated by an Epigenome-wide association study. The covariate could have different spike at left positions shown in
the left columns: high, medium, and low values. The remaining, non-spike covariate values could have a positive trend (A, B, and C), no trend (D, E,
and F) or a negative trend (G, H, and I). The position of the spike and the trend can support each other (C, E, and G), cancel each other out (B and H),
or switch the biological interpretation (A and I)

in a given CpG site? First, we need to determine whether
a linear (clinical) effect φ can be observed in the m-
values associated with the non-spike part of the covari-
ate. Next, if a linear effect φ can be observed, we must
decide in which direction the effect is pointing. It would
be the easiest if φ was determined by the clinical inves-
tigator beforehand. Often this decision is not possible,
because the information on the relevant clinical effect φ

with emphasis on the outcome m-values is not known.
Algorithm 1 shows the determination of the linear (clini-
cal) effect φ of the covariate. It sets φ based on the p-value
of the β-coefficient associated with the non-spike part
of the covariate and the sign of this β . For φ, the val-
ues 1, −1 or 0 are returned by Algorithm 1 representing
a positive effect, negative effect or no effect, respectively.
Hence, we will say that there is a clinical relevant effect, if
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Algorithm 1: Algorithm for the determination of the
clinical effect φ if the clinical effect cannot be set
beforehand.
Data: β1 coefficient and p-value of β1 coefficient from

linear regression ofm-values at non-spike
position for one CpG site.

Result: Linear clinical effect φ information of the
m-values at non-spike position.

Default: Set φ to 0; no relevant clinical effect;
if pvalue(β1) ≤ 0.05 ∧ β1 > 0 then

Relevant positive clinical effect;
Set φ to 1;

end
if pvalue(β1) ≤ 0.05 ∧ β1 < 0 then

Relevant negative clinical effect;
Set φ to −1;

end
return φ;

a significant trend can be observed. We use the sign of the
regression coefficient to decide if the trend is increasing
or decreasing. If the covariate shows a increasing trend,
column two (φ = 1) of Fig. 5 is possible. One of the inter-
actions depicted in column four (φ = −1) is feasible if
the covariate shows a decreasing trend. Lastly, if φ is 0,
column three is achievable.
After we have decided whether a clinical effect can be

observed, we can look at the interaction between the spike
and the linear part. Again, if no clinical linear effect can
be observed, the given CpG site will not be investigated
further for suspicious interactions. Algorithm 2 shows the
whole sorting and effect detection algorithm for the spike
at left. The algorithm runs for all CpG sites. We define the
spike position on the left, normally zero. First, we run a
linear regression without the spike data. Second, as part
of Algorithm 2, we determine the clinical effect φ with
Algorithm 1. If a trend can be observed in the linear part
of the covariate, we must decide if a suspicious interaction
between the spike can be found. Is the spike in conjunc-
tion with the direction of the linear regression? Hence,
we set the mean of the spike associated m-values minus
two times the standard deviation as Q1 and the mean plus
two times the standard deviation as Q3. If we observe a
positive linear trend and the β0 coefficient of the linear
regression is lower than Q1, a suspicious interaction can
be observed, indicated by subplot A and B in Fig. 5. If a
negative trend of the covariate can be observed and the
β0 coefficient of the linear regression is greater than Q3,
again, a suspicious interaction can be observed. Then, we
are located in the subplots H and I of Fig. 5.

Algorithm 2: Detection algorithm for suspicious CpG
sites with spike at the left limit of x i.e. spike at left. The
data is divided into two groups by the defined spike
position Sleft . On the non-spike associated data a linear
regression is run. If a dependency, based on the clinical
relevance effect φ, can be found, the bounds (Q1, Q3) of
the spike associated data are compared to the intercept
of the regression β0 to reveal suspicious interactions
pictured in Fig. 5.

Data: Methylation data matrixMp×n with p CpG sites
and n samples and covariate x of size n;

Result: Set of CpG sites with suspicious regression
models

Define spike position Sleft of covariate x;
xlpos ← which entries of x are Sleft ;
xnlpos ← which entries of x are not Sleft ;
for i = 1 to p do

mleft ← M[ i, xlpos];mnotleft ← M[ i, xnlpos];
Get β0, β1 from simple linear regression with
model:mnotleft ∼ β0 + β1x[ xnlpos];
Set or determine clinical effect φ of covariate x by
Algorithm 1 with β1 and its p-value;
Q1,Q3 ← mean(mleft) ∓ 2sd(mleft);
if φ is 1 then

settings A, B, or C in Fig. 5 are possible;
if β0 < Q1 then

set CpG site i as suspicious with (possible)
reverse negative trend;
settings A or B in Fig. 5 are possible;

end
if β0 >= Q1 then

spike supports the linear trend of the
covariate x;
setting C Fig. 5 is possible;

end
else if φ is −1 then

settings G, H, or I in Fig. 5 are possible;
if β0 > Q3 then

set CpG site i as suspicious with (possible)
reverse positive trend;
settings H or I in Fig. 5 are possible;

end
if β0 <= Q3 then

spike supports the linear trend of the
covariate x;
setting G Fig. 5 is possible;

end
else

settings D, E, or F in Fig. 5 are possible;
linear regression for group comparison is
feasible;

end
end
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Because we can not really distinguish between subplots
A and B as well as H and I, we collapse them to “Reverse
negative or negation (RNN)” and “Reverse positive and
negation (RPN)”, respectively. The subplots D, E, and Fwill
be named “No linear trend”. The subplots C and G will be
called “Positive linear trend (PLT)” and “Negative linear
trend (NLT)”, respectively.
If we would assume a spike at the right, a swap in the

decision rules occurs. Further, we will not only look at the
β0 coefficient of the linear regression but the predicted
value by the linear regression at the spike position. This
predicted value will then be compared to Q1 and Q3. The
algorithm for the spike at right detection can be found in
the Additional file 1 section 3. Most importantly, the user
must define the spike position at the right before the use
of the Algorithm 2.
We used the algorithm to detect suspicious interactions

in five data sets, of which four are publicly available, to
check the appearance of such interactions. Overall only a
few data sets included an observable effect. Nevertheless,
the interaction can cause problems later in the pipeline
and should therefore be checked and considered.
For ranking of the CpG sites with suspicious interac-

tions, we ran two linear regressions on each CpG site.
Again, the m-values were the response and the SPY val-
ues served as the covariate x. One linear regression model
included both spike and non-spike patients and the other
excluded spike patients. The ranking was then based on
the deviation of the two linear regression coefficients
associated with the covariate x. The presented algorithm
is available as R code in the Additional file 2.

Data sets for the spike effect detection
We searched the ArrayExpress data base for data sets
including methylation profiling and smoking habits by
smoking pack years. Hence, we used the search term
<“Methylation profiling by array” & “pack years”> to find
overall six experiments. We downloaded the processed
files and the phenotype data of the experiments with the

following accession numbers: E-GEOD-32861, E-GEOD-
32867, E-GEOD-54643, E-GEOD-54690, E-GEOD-55454,
E-GEOD-68825. The experiments E-GEOD-32861 and E-
GEOD-32867 are associated with the same source. There-
fore, we decided to reanalyze the experiment with the
larger available sample size, namely experiment E-GEOD-
32861. Furthermore, E-GEOD-54690 had the same num-
ber of patients with the same entries of SPY as E-GEOD-
54643. We decided to analyze E-GEOD-54643 as the data
is the same. In addition, we were able to reanalyze the
data from Richter et al. (2019) [17] with a larger sample
size than analyzed in the publication. This was possible
as we ignored assessment problems and lab quality of all
samples. Finally, five data sets were analyzed for the exis-
tence of spikes in the covariate smoking pack years (SPY).
Table 4 shows a summary of the ArrayExpress data and
Richter et al. (2019) [17] data. In the following, we will
describe the analyzed data in more detail.
The E-GEOD-32861 data set was taken from the work

of Selamat et al. (2012) [27]. The data consisted of 118
preprocessed samples and 26,300 CpG sites and had
been acquired with the Illumina Infinium HumanMethy-
lation27 BeadChip.We looked at SPY as the covariate with
a possible spike at zero. The SPY values ranged from 0
to 120 with a mean of 25.31 ± 32.48. Therefore, we set
the spike at left to zero. We had 62 samples with a SPY
of zero, possible “non-smokers”, and 56 samples with dif-
ferent values of SPY. However, the SPY zero values were
misleading in this study. “Never-smokers” were defined as
having smoked less than 100 cigarettes a lifetime. The SPY
range of only the smokers was between 11 and 121. This
must be kept in mind for the discussion of the results of
this study by the spike effect detection.
Milenkovic et al. (2014) [28] had generated the E-

GEOD-54643 data. The data consisted of a small sam-
ple size of only 20 individuals with 485,512 CpG sites,
acquired with the Illumina Infinium HumanMethyla-
tion450 BeadChip. Only smokers were included in the
study. The covariate SPY’s mean was 17.15 ± 6.57 and it

Table 4 Summary table of the ArrayExpress data and the data from Richter et al. (2019) [17]

E-GEOD Richter†

32,861 54,643 55,454 68,825

Samples 118 20 38 113 75

CpG sites 26,300 485,512 26,397 449,042 802,271

SPY 25.31 ± 32.48 17.15 ± 6.57 49.85 ± 24.84 51.54 ± 31.46 4.33 ± 8.62

[0; 120] [7; 27.7] [13; 156] [8; 192] [0; 47]

Spike at‡ 0 20 60 50 0

Spike samples 62 6 7 49 45

Linear samples 56 14 31 64 30
† Richter et al. (2019) [17], ‡ according to publication

If the spike for SPY was not at zero, we set the spike accordingly
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ranged from 7 to 27.7. Therefore, we looked at the his-
togram of the SPY values and decided for a spike at right at
a SPY value of 20. Hence, 6 patients were grouped into the
spike group and 14 into the linear part. Due to the small
sample size, we expected more extreme outcomes.
Vucic et al. (2014) [29] had produced the data of E-

GEOD-55454. The study consisted only of 38 former
smokers and 26,397 CpG sites on an Illumina Infinium
HumanMethylation27 BeadChip. We observed a mean
SPY of 49.85 ± 24.84 with a range from 13 to 156. After
looking at the histograms of the SPY values we decided
to generate a spike at the right at 60 SPY. Therefore, we
determined 7 spike samples and 31 non-spike samples.
The accession number E-GEOD-68825 had no con-

nected publication and had been titled “Analysis of DNA
Methylation for LUSC using Illumina Infinium Human-
Methylation450 platform”. The data consisted of 113 sam-
ples with 449,042 CpG sites, acquired with the Illumina
Infinium HumanMethylation450 BeadChip. The SPY val-
ues ranged from 8 to 192 with a mean value of 51.54 ±
31.46. We decided after consulting the histograms of the
SPY value to set the spike at right at 50. Hence, we deter-
mined 49 spike patients and 64 non-spike samples. No
further information on the data was available at ArrayEx-
press.
Finally, we reanalyzed Richter et al. (2019) [17] on a data

basis larger than in the publication, to show possible com-
plications. The data consisted of 75 samples and 802,271
CpG sites that had been run on an Illumina Infinium
DNA MethylationEPIC BeadChip. In the publication, the
authors had preprocessed the data to remove reactive
probes and other ambiguous CpG sites resulting in 39
samples being analyzed.We used the larger set of available
samples to demonstrate the algorithm for the spike effect
detection. In this data set, we observed SPY values from 0
to 47 with a mean of 4.33±8.62. We set the spike position
at the left with a spike at zero. Hence, we had 45 patients
in the spike group and 30 in the non-spike group.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12859-020-3364-6.

Additional file 1: Supplementary material to the spike at right detection
and further figures of the data with the identifiers E-GEOD-32861,
E-GEOD-54643, E-GEOD-55454 and E-GEOD-68825 are available at
ArrayExpress.

Additional file 2: R code and example of the Algorithms 1 and 2 for the
detection of suspicious spike interactions.
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