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Abstract 

We assembled data from a global network of automated lake observatories to test hypotheses 70 

regarding the drivers of ecosystem metabolism. We estimated daily rates of respiration and gross 

primary production (GPP) for up to a full year in each lake, via maximum likelihood fits of a 72 

free-water metabolism model to continuous high-frequency measurements of dissolved oxygen 

concentrations. Uncertainties were determined by a bootstrap analysis, allowing lake-days with 74 

poorly constrained rate estimates to be down-weighted in subsequent analyses. GPP and 

respiration varied considerably among lakes and at seasonal and daily time scales. Mean annual 76 

GPP and respiration ranged from 0.1 to 5.0 mg O2 L-1 d-1 and were positively related to total 

phosphorus (TP) but not dissolved organic carbon (DOC) concentration. Within lakes, 78 

significant day-to-day differences in respiration were common despite large uncertainties in 

estimated rates on some lake-days. Daily variation in GPP explained 5% to 85% of the daily 80 

variation in respiration after temperature correction. Respiration was tightly coupled to GPP at a 

daily scale in oligotrophic and dystrophic lakes, and more weakly coupled in mesotrophic and 82 

eutrophic lakes. Background respiration ranged from 0.017 to 2.1 mg O2 L-1 d-1 and was 

positively related to indicators of recalcitrant allochthonous and autochthonous organic matter 84 

loads, but was not clearly related to an indicator of the quality of allochthonous organic matter 

inputs. 86 

  

  88 
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Introduction 

Gross primary production (GPP) and respiration are perhaps the two most fundamental 90 

processes in ecosystems. At the cellular or organismal level, they describe biochemical pathways 

that make organic carbon molecules and energy available to cells. When these cellular processes 92 

are integrated across an entire ecosystem, the result – ecosystem-level gross primary production, 

ecosystem respiration, or collectively ecosystem metabolism – describes biogeochemical and 94 

trophic processes occurring at the system level.  

There is substantial interest in understanding the controls on ecosystem metabolism in 96 

aquatic (Mulholland et al. 2001; Hanson et al. 2003; Roberts et al. 2007) and terrestrial (Lloyd 

and Taylor 1994; Baldocchi et al. 2001) systems. This interest dates back many years but has 98 

increased markedly in recent decades as research on global carbon cycles has expanded, because 

ecosystem metabolism is the primary control on carbon cycling in the biosphere. Lakes are 100 

hotspots for carbon cycling on the landscape, and play an appreciable role in regional and global 

carbon cycles (Cole et al. 2007; Tranvik et al. 2009). Consequently, understanding the controls 102 

on ecosystem metabolism in lakes is essential for describing the broader carbon cycle or 

predicting its response to ongoing environmental change. 104 

In this paper we use a unique dataset to test existing models of the controls on ecosystem 

metabolism in lakes. Previous studies of ecosystem metabolism have generally faced a tradeoff 106 

between the temporal and spatial intensity of their sampling – they have either compared a few 

temporally discrete measurements among many lakes, or have made continuous and temporally 108 

extensive measurements in up to a few lakes. We have combined the strengths of those two 

approaches, estimating daily rates of ecosystem metabolism for up to a full year in each of 25 110 

lakes from around the globe. We briefly describe patterns in gross primary production and net 
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ecosystem production, but focus our analysis on describing rates of respiration within and among 112 

these lakes, as detailed in the hypotheses below.  

 Our first objective was to quantify day-to-day variation in respiration within each lake, 114 

and ask to what extent this variation was attributable to uncertainty in the estimates or to 

ecological processes. While gradual seasonal changes in ecosystem metabolism have been well-116 

known for many years, recent studies using the free-water method have demonstrated substantial 

day-to-day variation around the seasonal mean (Cole et al. 2000; Staehr and Sand-Jensen 2007; 118 

Coloso et al. 2011a). In general it has been assumed that this variation is mostly due to 

methodological noise that should be averaged out to obtain more reliable estimates at coarser 120 

(weekly or monthly) temporal grains. This assumption has not been tested, because the direct 

calculation or ‘bookkeeping’ method of estimating metabolism from continuous dissolved 122 

oxygen (DO) data (Cole et al. 2000), which has been used in most studies to date, does not 

permit any quantification of the uncertainty surrounding the point estimate of respiration or GPP 124 

on a given day. In contrast, we estimated metabolic rates by maximum likelihood fits of a simple 

process model, and quantified the uncertainty in estimated rates with a bootstrap analysis. We 126 

used these results to test Hypothesis 1, that statistically significant day-to-day differences in 

respiration within a given lake would be rare. 128 

Our second objective was to describe the relationship between respiration and the 

autochthonous (GPP) and allochthonous (terrestrial organic matter) inputs to the lake. 130 

Conceptually, total respiration can be apportioned into components attributable to the respiration 

of autotrophs, or to the respiration of heterotrophs metabolizing various substrates (Fig. 1; (del 132 

Giorgio and Williams 2005). This conceptual model leads to Hypotheses 2 and 3. 
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Hypothesis 2 concerns the dependence of respiration on GPP. Respiration is coupled to GPP 134 

because, except at short time scales, autotrophs and heterotrophs cannot collectively respire more 

autochthonous primary production than the autotrophs produce; in other words, RAuto plus 136 

RHetero,Autoch cannot exceed GPP (Fig. 1). Data and models suggest that the proportion of GPP that 

is respired is high (≥80%) except in very eutrophic lakes, where substantial production escapes 138 

immediate respiration and is instead buried or exported (Caraco and Cole 2004). Hypothesis 2 

states that the respiration-GPP coupling should be high (slope of respiration on GPP between 0.8 140 

and 1.0) in oligotrophic and dystrophic lakes, but decrease substantially with productivity in 

eutrophic lakes. 142 

Hypothesis 3 concerns ‘background’ or ‘baseline’ respiration that is supported by 

allochthonous organic matter inputs and recalcitrant autochthonous organic matter, instead of by 144 

contemporary autochthonous production. Background respiration is equal to RHetero,Alloch plus 

RHetero,Autoch-Slow (Fig. 1). This rate is difficult to measure; several studies have estimated average 146 

background respiration across sets of lakes (del Giorgio and Peters 1994; del Giorgio et al. 1999; 

Cole et al. 2000) but to our knowledge only one has made lake-specific estimates to test potential 148 

drivers of variation (Mccallister and del Giorgio 2008). In principle, background respiration in a 

given lake should be related to the input, persistence, and degradability of refractory organic 150 

matter (del Giorgio and Williams 2005). This was the basis for our Hypothesis 3, that 

background respiration should increase with indicators of the quantity and quality of 152 

allochthonous organic matter loads and with indicators of the size of the available pool of 

recalcitrant autochthonous organic matter. 154 

 

Methods 156 
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Lakes included in this analysis were selected from among those affiliated with the Global 

Lake Ecological Observatory Network (GLEON), based on the availability of data required for 158 

the free-water method of estimating metabolism (Odum 1956; Cole et al. 2000; Van De Bogert et 

al. 2007). High-frequency time series of dissolved oxygen (DO), photosynthetically active 160 

radiation (PAR), water temperature profiles, and wind speed were measured at regular intervals 

on automated buoys at each lake.  Data sets were screened to remove out-of-range values, 162 

‘flatline’ sequences of identical values over many readings, and isolated anomalous readings that 

were not formally out of range but which were extreme outliers relative to the readings over the 164 

surrounding minutes, hours, and days. Gaps of <60 min in PAR and water temperature data were 

filled by linear interpolation, and gaps in wind speed data were filled with the mean daily wind 166 

speed as long as data were available for at least 80% of the time points for that lake-day. When 

gaps in the PAR, water temperature, or wind speed data exceeded these thresholds we discarded 168 

the lake-day from further analysis. We also discarded lake-days for which >20% of the DO 

values were missing. Additional details about the data set and the lakes are provided (Table 1). 170 

The complete data set is available from the first author upon request. 

We described diel dissolved oxygen dynamics for each lake-day with a simple model similar 172 

to those used by Van de Bogert et al. (2007) and Hanson et al. (2008): 

Yt+1 = Yt + ι • It - ρ + Ft + γt      (1) 174 

where Yt+1 and Yt are the dissolved oxygen concentrations at times t+1 and t; It is the 

photosynthetically active radiation; ι is a parameter describing the average rate of photosynthesis 176 

per unit of PAR; ρ is a parameter describing the average rate of respiration; Ft is the flux of O2 

between the lake and the atmosphere; and γt is the process error. The atmospheric flux was 178 

calculated as: 
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Ft = dt • -kt • (Yt - St) / zmix,t      (2) 180 

where kt is the piston velocity of O2 (Cole and Caraco 1998); St is the saturation concentration of 

O2 given the water temperature and local average atmospheric pressure (Weiss 1970); zmix,t is the 182 

mixed layer depth, calculated as the shallowest depth at which the rate of density change 

exceeded 0.075 kg m-3 m-1 (Coloso et al. 2011b); and dt is a dummy variable derived from zmix,t, 184 

which indicates whether thermal stratification above the dissolved oxygen sensor prevents 

oxygen exchange with the atmosphere (dt = 0) or whether the water column sampled by the 186 

sensor is free to exchange with the atmosphere (dt = 1). We used a Nelder-Mead optimization 

algorithm to find the values of ι and ρ (both constrained positive) that minimized the negative 188 

log-likelihood of the errors, γt, for a given lake-day. These process errors are autocorrelated: 

γt+1 = φ • γt + εt          (3) 190 

so for each lake-day we estimated the autocorrelation coefficient φ and the variance (σ2) of the 

uncorrelated, normal errors ε. We report the results as gross primary production (GPP=ι•ΣIt) and 192 

respiration (ρ), with units of mg O2 L-1 d-1. Examples of the input data and model fits are 

provided for several typical lake-days (Fig. 2). We used the R statistical package for model 194 

fitting and all subsequent analyses (R Development Core Team 2009). Model code is available 

from the first author upon request. 196 

We used a bootstrapping procedure to estimate the uncertainty in estimated GPP and 

respiration. For each lake-day we used the estimated φ and σ2 to generate a bootstrap time series 198 

of process errors γboot with the same autocorrelation structure as the real γ time series. These 

errors were added to the fitted Y values, creating a time series of dissolved oxygen pseudodata 200 

that we then used to fit Eq. 1. We repeated this process 10,000 times for each lake-day to obtain 

estimates of the variance and bootstrapped 95% confidence intervals for the parameters ι 202 
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and ρ. The bootstrap analysis revealed one lake-day (Rotoiti, 09 June 2009) for which estimates 

of ι and ρ were extremely uncertain; the standard deviation of the bootstrap estimates for these 204 

parameters on this lake-day were respectively 9000 and 94,000, whereas the maximum standard 

deviations across all of the other lake-days were 24 and 88. We therefore excluded this lake-day 206 

from further analysis. We tested Hypothesis 1 (significant day-to-day differences in respiration 

are rare) by looking, within each lake, for overlap between the 95% confidence interval (CI) for 208 

day n and the 95% CI for day n+1. 

We fit regression models to describe the relationship between respiration and GPP in each 210 

lake and to estimate respiration-GPP coupling and background respiration. Autocorrelation and 

partial autocorrelation plots indicated that time series of respiration and GPP were autoregressive 212 

processes (Chatfield 2004). Based on these plots we considered models as complex as fifth-order 

autoregressive, or AR(5). Including this many autoregressive terms improved fits in some lakes 214 

(as judged by Akaike information criterion, AIC), but AR(1) models were sufficient for most 

lakes and yielded estimates of the non-autoregressive model parameters that were quite similar to 216 

those obtained from the higher-order models. For simplicity of interpretation, we therefore chose 

to fit AR(1) models for all of the lakes. Specifically, we used R’s arima() function to find the 218 

maximum likelihood estimates of the parameters in the following equation: 

R20,t = α • R20,t-1 + β0 + β1 • P20,t + εt      (4) 220 

      εt ~ N(0,σ2) 

where R20,t and P20,t are the respiration and primary production on day t standardized to 20°C in 222 

order to remove the effect of mean daily water temperature on these rates (Holtgrieve et al. 

2010). The parameters of primary interest in this equation are β0 and β1, which describe 224 

respectively the ‘background respiration’ not directly tied to autotrophic production and the slope 
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of the relationship between R20 and P20 (Fig. 3). We fit Eq. 4 first to the nominal set of maximum 226 

likelihood estimates of respiration and GPP (we refer to this later as the ‘nominal fit’), and then 

to each of the 10,000 bootstrapped sets of estimates of respiration and GPP, in order to 228 

incorporate the uncertainty in the original estimates of respiration and GPP into the uncertainty 

in the estimated parameters of Eq. 4.  230 

The results of this analysis were used to test Hypothesis 2 (differences in respiration-GPP 

coupling with lake trophy) and Hypothesis 3 (background respiration related to allochthonous 232 

loads and recalcitrant autochthonous pool). For Hypothesis 2, we plotted the bootstrapped 

distribution of β1 for each lake against total phosphorus (TP) concentration, and asked whether 234 

the resulting plot conformed qualitatively to the predicted pattern. For Hypothesis 3, we used 

similar plots as well as simple linear regressions to test relationships between β0 and indicators 236 

of the quantity of allochthonous organic matter inputs, the quality of allochthonous organic 

matter inputs, and the quantity of autochthonous organic matter inputs to the recalcitrant, ‘slow’ 238 

pool. These indicators were, respectively, the ratio of watershed area to lake volume 

(Awatershed:Vlake); water color measured as absorbance at 440 nm (a440); and the β1 estimates, low 240 

values of which indicate that substantial phytoplankton production escapes water column 

respiration and may be deposited on the sediments. 242 

 

Results 244 

Lake characteristics 

The lakes in our data set ranged considerably in surface area (5•10-3 to 2.3•105 km2), mean 246 

depth (0.7 to 31 m), residence time (0.03 to 10.4 years), TP concentration (4 to 186 µg L-1), 

dissolved organic carbon (DOC) concentration (1.3 to 17.3 mg L-1), and other characteristics 248 



12 
 

(Table 1). They were predominantly in the north temperate zone, although four were subtropical 

and two were in the south temperate zone. Lakes with high Awatershed:Vlake tended to have short 250 

residence times and high TP and DOC concentrations, although TP and DOC were not 

significantly correlated (Table 2). DOC concentrations and water color (a440) also tended to be 252 

higher in small and shallow lakes (Table 2). 

Daily, seasonal, and annual rates of GPP, respiration, and net ecosystem production (NEP) 254 

Gross primary production and respiration varied considerably among lakes and at seasonal 

and daily time scales (Fig. 4). Peak rates of GPP varied among lakes from 0.4 to 25 mg O2 L-1 d-256 

1, and peak rates of respiration from 0.4 to 20 mg O2 L-1 d-1. Seasonal patterns in GPP and 

respiration were apparent in most of the lakes for which data sets spanned multiple seasons, 258 

although the timing of this seasonal variation, and its amplitude relative to shorter-term variation, 

was variable. For instance, Kentucky Lake had a much stronger mid-summer peak than Lake 260 

Pontchartrain even though the two lakes are at similar latitudes; tropical Yuan Yang Lake had a 

late, wet-season peak; and Lough Feeagh, which experiences a mild oceanic climate relative to 262 

its latitude, showed a clear but weak mid-summer peak (Fig. 4). 

Mean annual GPP and respiration were strongly related to TP concentration (p<0.0001 for 264 

log-transformed linear regressions), but not to DOC concentration (p>0.28; Fig. 5). This pattern 

held regardless of whether we used all of the available estimates of GPP and respiration for each 266 

lake or just the summer estimates, whether we used temperature-corrected or uncorrected rates, 

or whether we restricted the data set to include only days with reasonably narrow confidence 268 

intervals on respiration and GPP (coefficient of variation CV<50%). Mean daily NEP (GPP-

respiration) was between -1.0 and 1.0 mg O2 L-1 d-1 for most lakes, although several lakes with 270 

high TP and moderate DOC concentrations had large positive NEP (Fig. 5, Table 3). 
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Uncertainty and variability in respiration 272 

A surprising proportion of the day-to-day variability in respiration was apparently 

attributable to ecological variability, not just model uncertainty, in contrast to Hypothesis 1. 274 

Confidence intervals for estimates of respiration and GPP were wide for some lake-days and 

narrow for others (Fig. 6). Despite the fact that confidence intervals were sometimes wide, 276 

significant day-to-day differences in rates (as indicated by non-overlapping confidence intervals 

between day i and day i+1) were quite common, occurring on 2-50% of days (median 15%). The 278 

proportion of days on which these significant day-to-day differences occurred was negatively 

related to lake area and perhaps also to the time interval of the DO measurements (linear 280 

regression: y = 0.27 – 0.025•log10(lakeArea) – 0.0024•timeInterval; p<0.0001, p=0.06, p=0.09 

for partial t-tests of the intercept, lakeArea, and timeInterval coefficients). The negative 282 

relationship with lake area implies that large lakes exhibit either smaller day-to-day variability in 

respiration point estimates (i.e., less ecological variability), or larger within-day uncertainty 284 

around those point estimates (i.e., more model uncertainty). We considered the first explanation 

by calculating the standard deviation of the daily respiration rates for each lake, after taking first 286 

differences to remove the mean and seasonal trend from the respiration rate time series. This 

analysis did not reveal any effect of lake size on day-to-day variability in respiration. We 288 

considered the second explanation by calculating the coefficient of variation of the bootstrapped 

estimates of respiration for each lake-day, and comparing this set of CVs to lake area. This 290 

analysis showed that most lakes had some days on which the CV of the bootstrapped respiration 

rates was large (i.e., CV>100%; between 0% and 77% of days, median 14% of days, no 292 

relationship between proportion of days and lake area), and that there was a significant negative 

relationship between the CV of respiration and lake area only when these extreme days were 294 
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included in the data set. Thus days on which dissolved oxygen dynamics yield high uncertainties 

in respiration estimates occur in small and large lakes at similar frequency, but in small lakes the 296 

magnitude of that uncertainty rarely reaches the extremely high levels sometimes seen in large 

lakes. This agrees well with our intuition, based on visual inspection of daily DO-time plots from 298 

each lake, that small lakes generally exhibited diel oxygen dynamics that were less noisy and 

more similar to the sinusoidal pattern described by the model than were those in large lakes. 300 

Thus while ecological variability is similar across the lake size gradient, model uncertainty may 

be higher in large lakes due to large-scale water movements that cause significant deviations 302 

from expected diel DO curves.  

Nominal fits of the autoregressive models (Eq. 4) to the maximum likelihood estimates of 304 

respiration and primary production for each lake explained between 5% and 85% of the observed 

variation in R20 (Table 4, Fig. 7). The amount of explained variation was not related to the 306 

number of days for which metabolism estimates were available, nor to the average uncertainty of 

those metabolism estimates. Model predictions were generally higher than observations on days 308 

when observations were near-zero (Fig. 7, see e.g., Acton, Mendota, Sparkling), and in some 

lakes were lower than observations on days when observations were very high (Fig. 7, see e.g., 310 

Mendota, Müggelsee, Rotoiti). Standard errors for the parameter estimates from these nominal 

fits were generally fairly small (Table 4), and for β0 (but not β1) the bootstrapped standard errors 312 

were even smaller than the nominal ones. The reduction in the β0 standard errors in the 

bootstrapped relative to the nominal analysis indicates that incorporating the within-day 314 

uncertainty into the analysis of the among-day relationship between R20 and P20 improved our 

ability to estimate β0 precisely. 316 

Coupling of respiration to GPP 
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Coupling between respiration and primary production at the daily scale (β1) was generally 318 

strong in oligotrophic and dystrophic lakes and weaker in eutrophic lakes, as predicted by 

Hypothesis 2 (Fig. 8). Estimates of β1 were close to 1 for most lakes at TP up to 20-40 µg L-1, 320 

but decreased considerably as TP increased beyond that level. There were two major exceptions 

to this pattern: Lake Sunapee (TP=5.3 µg L-1) and Sparkling Lake (TP=10.0 µg L-1) had much 322 

lower β1 estimates than other lakes of similar productivity. Both of these lakes had many days 

with near-zero estimates of respiration, which caused the autoregressive model to over-predict 324 

respiration rates when they were low and under-predict them when they were high, and therefore 

drove low estimates of β1 (Fig. 7). Excluding these potentially invalid estimates, in general both 326 

oligotrophic and dystrophic lakes showed strong coupling of respiration and primary production 

with β1≈1; it was only in high-TP, moderate-DOC lakes that β1 was substantially less than 1. 328 

One lake (Taihu, TP=186 µg L-1, rightmost bar in Fig. 8) had a very uncertain estimate of β1, 

with 25th and 75th percentiles of 0.32 and 1.06. This uncertainty was largely due to the very high 330 

bootstrapped variances for the metabolism parameters ι and ρ  on  two days, 12 and 29 

December; these two days had the highest variances for these parameters of any lake-day 332 

excluding the one clearly anomalous day from Rotoiti that we discarded (see Methods). If these 

two days are excluded from the Taihu analysis, the median estimate of β1 is unchanged but the 334 

25th and 75th percentiles change to 0.49 and 0.70.  

Background respiration 336 

Background respiration varied across lakes in a manner consistent with the allochthonous 

load and autochthonous load effects described in Hypothesis 3 (Fig. 9). Median estimates of 338 

background respiration ranged from 0.017 to 2.1 mg O2 L-1 d-1. Background respiration increased 

with Awatershed:Vlake, an indicator of allochthonous organic matter load (Fig. 9A; p=0.005, 340 
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R2=0.31 for log-log regression). Similarly, background respiration was higher in lakes where the 

input of autochthonous organic matter to the relatively slow-turnover pool was high, as indicated 342 

by weak respiration-GPP coupling (Fig. 9B; p=0.005, R2=0.32 after dropping Sunapee and 

Sparkling, for which β1 estimates were suspect as described above; p=0.09 with all lakes 344 

included; β0 log-transformed). There was no correlation between Awatershed:Vlake and respiration-

GPP coupling (r=0.03), so their effects were orthogonal; partial t-tests indicated significant 346 

effects of each predictor on background respiration even with the other predictor included in the 

model (p<0.03). In contrast, there was not clear support for the prediction that background 348 

respiration would be negatively related to organic matter recalcitrance, as indicated by water 

color (a440; Fig. 9C). The data were suggestive of a quadratic relationship, whereby background 350 

respiration increased with water color up to a440=2.2 m-1 but decreased with further increases in 

water color beyond that point. However, neither quadratic nor linear terms for a440 were 352 

significantly related to background respiration (p>0.3, log-log regression).  

 354 

Discussion 

 In this paper we harnessed GLEON, a grassroots network of researchers and automated 356 

ecological observatories, to assemble a metabolism data set unique in its combination of 

temporally intensive, temporally extensive, and spatially extensive observation of lakes. 358 

Networked observatories are increasingly common in lakes, streams, oceans, and terrestrial 

ecosystems, so opportunities for research at this scale will continue to grow. While there are 360 

significant logistical challenges associated with this kind of work, the payoff is the ability to ask 

questions in ways that would have been impossible even a decade ago. In our analysis we 362 

focused on three questions about patterns in daily rates of ecosystem respiration, as well as a 
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more general description of average annual rates. We discuss our results regarding each of these 364 

topics below. 

Does average annual respiration increase with DOC? 366 

Limnologists increasingly view DOC concentration as a master variable, akin to TP 

concentration, which describes many aspects of the structure and function of lake ecosystems 368 

(Prairie 2008). With respect to ecosystem metabolism, a simple, common conceptual model is 

that DOC increases respiration, just as TP increases GPP; thus lakes with higher DOC 370 

concentrations should tend towards heterotrophy. We did not observe a relationship between 

DOC concentration and average annual respiration in this data set (Fig. 5). A slightly more 372 

elaborate conceptual model emphasizes several complexities: first, limnologists usually measure 

TP and DOC concentrations, whereas for some processes it is the loads rather than the 374 

concentrations that matter; second, loads or concentrations of TP and DOC may be correlated, 

although that correlation could differ regionally or as the result of anthropogenic activities; third, 376 

DOC quality varies; and fourth, the shading effect of DOC can reduce GPP and, thereby, the 

autotrophic component of respiration. These complexities may help to explain our results and the 378 

lack of consensus apparent in the literature about the effects of DOC on community or ecosystem 

respiration, with some surveys reporting a clear effect of DOC on respiration while others report 380 

no effect (Table 5). Resolving this puzzle will require that limnologists begin to couple 

measurements of respiration with characterization of organic matter loads in terms of quantity 382 

and quality (Prairie et al. 2002; del Giorgio and Williams 2005; Hanson et al. 2011). 

Uncertainty and variability in metabolism estimates 384 

 Our explicit consideration of uncertainty in metabolism estimates was an important and 

valuable part of our analysis. It is also relatively unusual; most estimates of aquatic ecosystem 386 
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metabolism to date have used a mathematical bookkeeping approach (Odum 1956; Cole et al. 

2000), which does not permit quantification of uncertainty. Recent developments of statistical 388 

metabolism models using maximum likelihood and Bayesian approaches, like the one that we 

used here, offer a useful alternative to the bookkeeping approach (Van De Bogert et al. 2007; 390 

Holtgrieve et al. 2010). While the simplicity of the bookkeeping approach will continue to 

dictate its use in some settings, we believe that broader use of statistical metabolism models will 392 

benefit the field. The uncertainty estimates that can be extracted from these models allow 

individual metabolism estimates, or apparent differences in metabolism between two time points, 394 

to be interpreted appropriately (Fig. 6). They also allow the methodological uncertainty in the 

estimates to be carried through to models seeking to explain the drivers of variation in metabolic 396 

rates, as in our bootstrap analysis of Eq. 4. This kind of analysis is analogous to a weighted 

regression, in which observations with high variance receive less weight in fitting the model. The 398 

high variance in metabolism estimates that we observed on some days underscores the value of 

such an analysis.  400 

As an example of the value of carrying through these uncertainties, and of the potential 

consequences of ignoring them, we compared two estimates of β1, the slope of respiration on 402 

GPP. The nominal point estimates (Table 4) are derived from fitting Eq. 4 to a single data set, the 

maximum likelihood point estimates of respiration and GPP for each day in a given lake. The 404 

bootstrap point estimates (medians in Fig. 8) are derived from fitting Eq. 4 to many bootstrapped 

data sets in order to account for the uncertainty in the respiration and GPP estimates for each day 406 

in a given lake. We saw that the nominal estimates were generally lower than the bootstrapped 

estimates (slope of bootstrapped on nominal = 0.81 ± 0.03 SE in simple linear regression). This 408 

occurred because in most lakes there were days with positive respiration and near-zero but highly 
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uncertain GPP, and/or days with positive GPP and near-zero but highly uncertain respiration. In 410 

other words, in most lakes plots of respiration vs. GPP show points lined up along x ~ 0 and/or 

along y ~ 0. When the uncertainty in these points is ignored, resulting estimates of β1 are biased 412 

lower; down-weighting these points in proportion to their uncertainty reduces or eliminates that 

bias. Lake Sunapee provides an extreme example of this effect, with a nominal β1 = -0.21 but a 414 

median bootstrap β1 = 0.16. Similar effects could occur in any analysis seeking to relate 

metabolism estimates to drivers like temperature, mixing depth, algal biomass, and so forth. 416 

 Where does this uncertainty come from? Generally speaking, process errors and low 

signal-to-noise ratios are the two important sources of uncertainty in metabolism models like the 418 

one described by Eqs. 1-3. Process errors occur when the dissolved oxygen concentration 

changes as a result of some process that is not explicitly included in the model, or due to the 420 

misspecification of a process that is in the model. For instance, horizontal or vertical mixing of 

water bodies with different DO concentrations (perhaps as a result of spatial heterogeneity in 422 

metabolic rates) can cause significant DO excursions (Gelda and Effler 2002; Lauster et al. 2006; 

Van De Bogert et al. 2012). Our model, like most others, does not attempt to explicitly model 424 

these mixing events, and therefore treats them as process errors. Low signal-to-noise ratios occur 

when changes in DO due to metabolic processes are small relative to sensor chatter, 426 

environmental patchiness, and other sources of stochastic variation in DO observations. A 

detailed analysis of parameter uncertainties from some of the lakes in our data set has been 428 

undertaken by K. Rose (unpubl.), who found that daily PAR (which affects the signal-to-noise 

ratio of the DO data) and lake number (an indicator of water column physical stability relative to 430 

destabilizing forces and therefore of process errors related to stratification and mixing) were both 

significant predictors of parameter uncertainty, especially in larger lakes. 432 
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Several methodological improvements could potentially reduce the uncertainty in 

metabolism estimates. Perhaps the simplest improvement to implement (and one with almost no 434 

marginal cost) is to measure DO concentrations fairly frequently, at intervals of 1 to perhaps 10 

minutes at the most, depending on the response time of the sensor. Our analysis indicated that 436 

frequent measurements probably reduced parameter uncertainty; this makes sense because more 

frequent measurements give a clearer picture of oxygen dynamics and therefore help to constrain 438 

model fits. Some other improvements are costlier or more difficult to implement, and therefore 

their utility should be assessed relative to the needs of the study. For instance, multi-440 

compartment or spatially averaging models could allow spatial heterogeneity and mixing 

dynamics to be incorporated explicitly instead of treated as process errors (Van De Bogert et al. 442 

2007; Staehr et al. 2012b; Van De Bogert et al. 2012), although such models are unlikely to 

improve on the simpler version that we used here without additional data to constrain the 444 

processes in question (Hanson et al. 2008). As another example, statistical filtering techniques 

and state-space models can help to improve the signal-to-noise ratio in DO data or allow the 446 

simultaneous quantification of observation and process errors, especially when DO 

measurements are made frequently (Coloso et al. 2008; Batt and Carpenter 2012). 448 

 A substantial amount of variability in respiration was not explained by temperature or 

GPP in our autoregressive models (Fig. 7). Previous studies that have sought to relate daily 450 

variability in respiration to a variety of predictor variables have similarly found substantial 

unexplained variability (Staehr and Sand-Jensen 2007; Tsai et al. 2008; Coloso et al. 2011a). As 452 

our study emphasizes, some of this unexplained variability is due to the uncertainty of the 

respiration and primary production estimates themselves. Some variability may also be 454 

attributable to spatial heterogeneity in rates, in combination with changes in the size or 
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orientation of the sensor footprint (Lauster et al. 2006; Van De Bogert et al. 2007; Van De 456 

Bogert et al. 2012). Finally, some variability should be due to the biomass, activity, and perhaps 

the composition of the heterotrophic assemblage, and to the quantity and quality of substrates 458 

available for respiration. Some of these factors have received attention in the literature already; 

for instance, Tsai et al. (2008), Staehr et al. (2010), and Coloso et al. (2011a) identified DOC or 460 

colored dissolved organic matter as significant predictors of daily respiration in at least some 

lake-years. There is a clear need, however, for further empirical studies and models to better 462 

describe why respiration varies at short time scales in lakes. 

Coupling of respiration to GPP 464 

Our results were broadly consistent with Hypothesis 2, which predicted that coupling 

between respiration and primary production should be strong in oligotrophic and dystrophic 466 

lakes, and weaker in eutrophic lakes where substantial production may escape immediate 

respiration. While the relationship between average respiration and average GPP across lakes has 468 

been well characterized (del Giorgio and Peters 1994; Duarte and Agusti 1998), with the 

exception of this study there are to date relatively few estimates of the relationship between daily 470 

(or similar) respiration and GPP within lakes (Staehr et al. 2010; Coloso et al. 2011a; Laas et al. 

2012). Those that are available generally indicate strong coupling of respiration to GPP. In a set 472 

of four fertilized lakes with TP between 10 and 100 µg L-1, weekly respiration and GPP 

estimates, when fit to the model of Caraco and Cole (2004), were consistent with a 90% d-1 rate 474 

of respiration (Cole et al. 2000). 

A recent study by Sadro et al. (2011) highlights the substrate limitation of heterotrophs that 476 

presumably drives tight coupling between respiration and GPP in oligotrophic systems. In 

oligotrophic, alpine Emerald Lake, these authors observed overnight respiration of up to 46% of 478 
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daytime GPP by heterotrophic bacterioplankton alone. Considering additional sources of 

respiration including autotrophs and metazoans, it is clear that most of each day’s GPP must be 480 

respired before the next day dawns in oligotrophic lakes like this. 

 Estimates of β1 (respiration-GPP coupling) were significantly greater than 1 in Kentucky 482 

Lake (lower bound of 95% CI = 1.06) and Lake Rotorua (lower bound of 95% CI = 1.04), 

indicating that unit increases in GPP in these lakes yielded, on average, greater than unit 484 

increases in respiration. At least two explanations for these surprising results seem possible. 

First, they may represent Type I errors; in constructing 25 confidence intervals at the 95% level 486 

to test the null hypothesis that β1 should be ≤ 1, one or two false positives could reasonably be 

expected. Alternatively, greater-than-unit increases in respiration with GPP could result from 488 

metabolic ‘priming’ of heterotrophs by autotrophs, whereby labile autochthonously produced 

organic matter enables degradation of otherwise recalcitrant allochthonous organic matter 490 

(Guenet et al. 2010; Townsend et al. 2011). Indeed priming effects could be occurring in the 

other lakes as well, but would not be detectable by our analysis except when they push the slope 492 

of respiration on GPP up over 1. Priming effects would tend to bias our estimates of background 

respiration (β0) towards lower values, because they would cause respiration of allochthonous and 494 

slow autochthonous pools to look like respiration of fast autochthonous pools in our analysis. 

 Our estimates of β1 provide an empirical test of a simple lake and river carbon cycle 496 

model put together by Caraco and Cole (2004). The Caraco and Cole model calculates a quantity 

similar to our β1, which we will call β1-CC. Specifically, for a given TP and water load, their 498 

model calculates GPP, burial, and export from empirical equations; calculates the respiration of 

autochthonous production (Raut) as the difference between GPP and the sum of export and burial; 500 

and then calculates the proportion of autochthonous production that is respired as Raut/GPP = β1-
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CC. This quantity should be somewhat greater than β1 because it accounts for respiration of 502 

autochthonous organic matter within both the fast and slow pools, while β1 accounts for only the 

fast pool.  504 

Estimates of β1-CC from Caraco and Cole’s (2004) model were close to 1 in oligotrophic and 

mesotrophic lakes, decreasing with water load to a minimum of ~ 0.9 at the highest water loads 506 

typical of lakes. In eutrophic systems, model estimates of β1-CC were slightly lower but still close 

to 1 across most of the range of lake-like water loads, although at high water loads there was a 508 

much more pronounced decrease in β1-CC, to ~ 0.6, due to increased export.  

In our study, TP concentrations spanned the oligotrophic to eutrophic gradient, and water 510 

loads (calculated as zmean / residence time) ranged from 1 to 75 m yr-1. Our results (Fig. 8) agreed 

with the predictions of the Caraco and Cole (2004) model in that β1 was usually near 1 in low-TP 512 

systems. Lough Feeagh was an exception to this pattern, with β1=0.71 and TP=7.3 µg L-1; this 

may be because Feeagh has a high water load (31 m yr-1) relative to its TP concentration, such 514 

that export of autochthonous production is probably high even though the concentration of 

autochthonous organic matter in the water column is not. Sparkling and Sunapee were also 516 

apparent exceptions to the pattern of high β1 at low TP, but the β1 estimates for these two lakes 

are probably invalid, as described in the Results. Our results also agree broadly with the model 518 

predictions in indicating that β1 is lower at high TP concentrations. However, we identified a 

surprisingly low TP threshold above which considerable autochthonous production escapes 520 

immediate respiration; while the model predicts almost no difference in β1-CC between 

oligotrophic and mesotrophic lakes, we saw that many mesotrophic lakes with TP as low as 20 522 

µg L-1 had β1 considerably less than 1. This suggests that export and/or at least short-term burial 

(sedimentation) increase relatively quickly with TP, implying that the spatial division of total 524 
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Raut among pelagic, benthic, and downstream compartments differs between oligotrophic 

systems and those that are naturally or culturally more eutrophic. Spatial displacement of 526 

respiration from the pelagic zones to other habitats may have important carbon cycle 

implications; for instance, organic matter that is degraded in the sediments is more likely to be 528 

anaerobically respired and returned to the atmosphere as methane than organic matter degraded 

in the water column (West et al. 2012). Another discrepancy between our results and the model 530 

predictions lies in the water load effect; we did not observe the predicted negative relationship 

between β1 and water load, considering either all lakes together or the oligo-, meso-, and 532 

eutrophic lakes separately (data not shown).  

Background respiration 534 

 The rates of background respiration that we estimated in this study were similar to those 

reported by previous studies that employed quite different approaches. In the following 536 

discussion we have converted rate estimates from their reported units to match the units used in 

this paper, assuming a respiratory quotient of 1 when necessary to convert from C to O currency. 538 

del Giorgio and Peters (1994) estimated average planktonic respiration and GPP in each of 20 

Québec lakes, which had summer TP concentrations between 5 and 46 µg L-1 and DOC between 540 

2.7 and 7.5 mg L-1. They took the intercept of the across-lake regression of respiration on GPP as 

an estimate of a common background respiration rate equivalent to 0.07 mg O2 L-1 d-1. A later 542 

simulation model suggested four-fold variation in background respiration among this same set of 

lakes (del Giorgio et al. 1999). McCallister and del Giorgio (2008) estimated lake-specific 544 

background respiration in 8 Québec lakes, including some of those studied by del Giorgio and 

Peters (1994), via measurements of the δ13C of respired C and a mass balance model. This 546 

approach allowed them to isolate the RHetero,Alloch component of background respiration (Fig. 1), 
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which varied between 0.05 and 0.12 mg O2 L-1 d-1. In the present study we estimated lake-548 

specific background respiration in 25 lakes by calculating daily estimates of respiration using the 

free-water dissolved oxygen method and regressing them on daily estimates of primary 550 

production from the same method. Over a range of DOC and TP concentrations similar to those 

in the studies above, we observed background respiration between roughly 0.02 and 0.5 mg O2 L-552 

1 d-1. Our estimates are thus similar to or slightly higher than those reported previously. The 

tendency for our approach to yield slightly higher estimates is expected because, unlike the bottle 554 

incubation or δ13C methods, our approach incorporates some signal of sediment respiration in 

addition to water column respiration (Van De Bogert et al. 2007). Nonetheless, the similarity in 556 

rate estimates across these studies is striking, and suggestive of quite general controls on rates of 

background respiration in lakes.   558 

The relationships that we observed between background respiration and Awatershed:Vlake (Fig. 

9A) and between background respiration and respiration-GPP coupling (Fig. 9B) were consistent 560 

with the hypothesized response of background respiration to  allochthonous and autochthonous 

inputs into a slow-turnover pool of organic matter. On the other hand, while Awatershed:Vlake is a 562 

good indicator of allochthonous organic matter loads (Canham et al. 2004), it is also correlated 

with nutrient loads (and therefore with TP; Table 2). This finding leads to asking whether the 564 

significant relationship between background respiration and Awatershed:Vlake might really be due to 

some nutrient-driven mechanism, rather than to allochthonous organic matter inputs. We 566 

assessed this possibility by fitting regression models including log-transformed TP, 

Awatershed:Vlake, or both as predictors of log-transformed background respiration, and comparing 568 

these models using AICc, the finite-sample corrected AIC (Burnham and Anderson 1998). This 

analysis indicated that Awatershed:Vlake by itself (AICc = 59) was a much better predictor of 570 
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background respiration than was TP by itself (AICc = 67), although including both predictors 

improved the fit (AICc = 55). This suggests that an effect of nutrients on background respiration 572 

exists but that it is considerably weaker than the allochthonous inputs effect. In contrast, 

respiration-GPP coupling by itself was not as good a predictor of background respiration (AICc = 574 

79) as TP by itself (AICc = 67), nor did adding respiration-GPP coupling to the TP model yield 

any improvement in fit (AICc = 68). This is consistent with our understanding of the 576 

autochthonous input mechanism indicated by the respiration-GPP coupling variable. Thus our 

results do seem to indicate that both allochthonous organic matter inputs from the watershed, and 578 

excess autochthonous production driven by nutrient enrichment, increase background respiration 

in lakes. 580 

In what is to our knowledge the only other study to compare empirical background 

respiration estimates among lakes, McCallister and del Giorgio (2008) observed only a weak 582 

positive relationship between the planktonic bacterial respiration supported by allochthonous 

organic matter (roughly RHetero,Alloch; Fig. 1) and DOC concentration. Thus while they saw a 584 

substantial range of variation in total planktonic bacterial respiration (roughly RHetero,Autoch-Fast +  

RHetero,Autoch-Slow + RHetero,Alloch; Fig. 1), this variation was attributable chiefly to increasing 586 

RHetero,Autoch in lakes with higher chlorophyll a concentrations, not to increasing RHetero,Alloch in 

lakes with higher DOC concentrations. In contrast, to the extent that Awatershed:Vlake is in fact an 588 

indicator of allochthonous organic matter loads independent of autochthonous primary 

production, our results suggest that RHetero,Alloch may in fact vary appreciably with allochthonous 590 

inputs, just as RHetero,Autoch varies with autochthonous primary production. Because loads and 

standing stocks are not necessarily strongly correlated, the RHetero,Alloch-DOC relationship that 592 

McCallister and del Giorgio (2008) observed and the background respiration - Awatershed:Vlake 
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relationship that we observed may be consistent descriptions of the same underlying processes. 594 

Future studies could explore these questions by coupling high-frequency measurements of 

respiration rates with direct measures of allochthonous loads and autochthonous primary 596 

production.  

We did not find clear support for the hypothesized negative effect of organic matter 598 

recalcitrance on background respiration. While there was no significant linear or quadratic 

relationship between background respiration and a440, the data are suggestive of a humped 600 

relationship in which background respiration at first increases with water color up to a440 ~ 2 m-1 

and then decreases with water color beyond that point. This pattern could occur if weakly 602 

chromophoric terrestrial inputs provide labile substrates without strongly affecting light and heat 

profiles, while strongly chromophoric inputs provide recalcitrant substrates, reduce 604 

autochthonous inputs to the slow pool via shading of phytoplankton, and reduce the extent of 

warm oxygenated sediments via thermocline steepening. Our data may suggest a compensation 606 

point between these positive and negative effects at water colors around a440 = 2 m-1. 

Alternatively, organic matter quality may be too complex to characterize adequately with a440 608 

within the context of this study, or may interact with other lake characteristics such as residence 

time (Guillemette and del Giorgio 2011). Again, coupling our temporally intensive and 610 

geographically extensive approach with more detailed measures of allochthonous loads may be a 

productive avenue for further study. 612 

Future directions 

 Taken as a whole, our results support and extend some long-standing conceptual models 614 

of aquatic ecosystem metabolism, such as the relationship between background respiration and 

allochthonous organic matter loads, while questioning others, such as the relationship between 616 
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annual average respiration and DOC concentration. Data sets like the one that we used here are 

expanding rapidly, and will continue to provide novel research opportunities for years to come. 618 

As we have highlighted repeatedly here, one of the most productive avenues for such research is 

likely to be the combination of automated sensor data with other methodologies that have 620 

different inferential strengths, such as large-scale experimentation and ‘traditional’ manual 

measurements of rates and concentrations that are not measurable by automated sensors. Work in 622 

this vein promises to continue to extend our descriptive and predictive understanding of 

metabolism and carbon cycling in aquatic ecosystems. 624 
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Table 1. Description of the lakes and data sets used in this analysis. Lat and Long give latitude and longitude in decimal degrees, 

positive values indicate north latitudes and east longitudes. Elev is the surface elevation of the lake above sea level (asl). zmax and zmean 

are the maximum and mean depth of the lake. Alake and Awtrshd are the area of the lake and its watershed. τ is the water residence time. 

TP, TN, Chl a, DOC, and a440 are mean summer epilimnetic values for total phosphorus, total nitrogen, chlorophyll a, dissolved 

organic carbon, and water color measured as absorbance at 440 nm. ∆T is the time interval between measurements of dissolved oxygen 

concentration. zDO is the depth at which the dissolved oxygen was measured. zT is the depths at which water temperature was 

measured; notation like (1-7, 2) indicates that the temperature was measured every 2 m from 1 to 7 m inclusive. hwind is the height 

above the lake surface at which wind speed was measured. Dates is the date range over which data were collected for this study. Notes 

contains references to footnotes describing data post-processing steps, in addition to those described in the main text, that were 

necessary in one or more lakes. na indicates data not available. 

 
 
Lake Lat Long Elev zmax zmean Alake Awtrshd τ TP TN Chl a DOC a440 ∆T zDO zT hwind Dates Notes 
   (m asl) (m) (m) (km2) (km2) (years) (µg L-1) (mg L-1) (µg L-1) (mg L-1) (m-1) (min) (m) (m) (m)   

Acton 39.575 -84.744 263 8 4 2.53 259 0.249 114 5.84 55.7 3.59 1.48 5 1.5 (1-7, 2) 4.9 22 Jul 2008 
04 Nov 2008 

1, 2  

 

Annie 27.207 -81.351 3.7 21 9 0.365 11 2 4.3 0.24 2.3 7.68 1.11 15 1.35 (0-18, 1) 10 01 Mar 2008 
27 Feb 2009 

 

Balaton  
(southwest basin) 
 

46.717 17.245 103 4 2 38.0 2750 0.25 72 1.66 17.7 7.7 1.38 10 1 var3 3 13 Jun 2008 
11 Oct 2008 

4, 5 

Crampton 46.210 -89.473 510 19 5 0.257 na na 8.9 0.32 2.6 3.8 0.55 5 1 1 3 5 8 9 2 01 Jun 2005 
09 Sep 2005 

1, 6  

 

Crystal Bog 46.008 -89.606 503 2.5 2 0.005 0.08 1.7 27 0.68 19.2 11.5 5.1 10 0.25 (0-2.25, 0.25) 2 30 May 2008 
05 Nov 2008 

6 

Feeagh 53.948 -9.575 0 45 14 4.00 8.3 0.47 7.3 0.13 1.8 7.8 3.96 2 1 (2-14, 3) (16-
22, 2)  27 32 

40 

1.5 01 Jan 2006 
30 Dec 2006 

 

Fredriksburg Slotsø 55.933 12.303 10 9 3 0.223 9.2 0.5 102.1 1.74 64.5 5.4 2.2 30 1 1 2 4 5 6 7 1.3 11 Apr 2006 
21 Nov 2006 

7 
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Hampensø 56 9.3333 79 14 4 0.76 9.2 1.4 22.7 0.58 5.3 3.1 0.48 30 1 0.5 1 2 3 4 5 7 
9 11 

1.3 19 Apr 2007 
30 Sep 2007 

7 

Kentucky 36.739 -88.109 109 18 6 970 104117 0.079 47 0.79 16.8 3.00 na 15 18 var9  10 01 Jan 2008 
30 Dec 2008 

1, 2 

Mendota 43.099 -89.652 259 25 13 39.4 604 4.5 85 0.96 3.8 5.24 0.75 1 0.4 0 0.5 1 1.5 (2-
20, 1) 

2 10 Jul 2008 
03 Nov 2008 

4, 6 

Mirror 41.807 -72.247 177 1.2 0.7 0.020 0.71 0.03 53 na 17.6 na 2 30 var10 var11 2 20 Mar 2003 
15 Oct 2003 

4 

Müggelsee 52.438 13.648 34 7.7 5 7.46 7000 0.11 105 0.91 33.5 8.01 na 60 1 (0.5-5, 0.5) 4 11 Mar 2008 
07 Dec 2008 

4, 12 

Onondaga 43.089 -76.208 110 19 11 12.0 642 0.25 35 na 17 3.6 1.7 60 313 (1-6, 1)14 2.5 05 May 2001 
27 Oct 2001 

 

Pontchartrain 30.316 -90.283 0 1.9 1.7 1603 12473 1.37 30 na na 6.9  15 1 1 13 21 Mar 2008 
31 Dec 2008 

 

Rotoiti -38.039 176.428 279 125 31 34.6 123.7 1.5 30.3 0.29 4.2 1.35 0.20 15 1 0.5 2 4 6 9 12 
15 18 19 

1.5 25 Jul 2008 
23 Jul 2009 

4, 6 

Rotorua -38.066 176.266 280 24 11 79.8 520.54 1.2 32.7 0.48 14.3 2.3 0.23 15 1 (0.5-20.5, 2) 1.5 13 Jul 2007 
12 Jul 2008 

4, 6 

Sparkling 46.008 -89.701 497 20 11 0.64 1.1 10.4 10 0.23 1.3 3.2 0.5 10 0.5 (0-5, 0.5) 6 7 
(8-12, 0.5) 13 

15 

2 09 May 2008 
26 Oct 2008 

 

St Gribsø 55.983 12.3 50 12 5 0.10 1.2 2.1 69 0.70 30.3 12.8 6.5 30 1 0.5 1 2 3 4 5 7 
10 

1.3 12 Apr 2006 
23 Nov 2006 

7 

Sunapee 43.383 -72.033 333 32 10 16.7 123.23 3.2 5.3 0.17 1.9 2.36 na 10 1 (0-4, 0.5) (5-
14, 1) 

2 01 May 2008 
30 Oct 2008 

 

Taihu 31.287 120.202 3 3 2 2338 36985 0.9 186 3.60 46 5.6 1.08 10 0.3 (0.3-1.8, 0.5) 5 09 Oct 2007 
30 Oct 2008 

4 

Trout 46.029 -89.665 495 36 15 16.1 47 4.6 13 0.20 1.7 2.8 1 10 0.5 (0-19, 1) 2 30 May 2008 
10 Nov 2008 

15, 16 

Trout Bog 46.041 -89.686 495 7.9 6 0.011 0.14 5.6 29 0.63 15 17.3 13.1 10 0.25 (0-3, 0.5) 4 5 2 30 May 2008 
10 Nov 2008 

6, 17 

Vedstedsø 55.167 9.333 25 12 5 0.09 0.32 4.6 19.5 0.55 41.2 4.8 1.1 30 1 1 2 4 5 7 9 11 1.3 14 May 2008 
30 Nov 2008 

7 

Võrtsjärv 58.317 26.013 34 6 3 270 3374 1 39.7 0.90 51.0 12.5 8.25 15 0.5 0.5 10 01 May 2009 
11 Aug 2009 

 

Yuan Yang 24.583 121.4 1670 4.5 1.7 0.036 3.74 0.1 6.4 1.88 11.6 8.41 5.29 10 0.25 (0-1, 0.25) 
(1.5-3, 0.5) 

2 25 Jan 2007 
15 Dec 2007 

18 

1Time stamps of zT (temperature profile) measurements were adjusted by 0-2 minutes to align profile at a single time point. 
2 PAR data measured at a coarser time scale were interpolated to match ∆T. 
3 Variable. One thermistor was at depth of 0.1 m, the others at fixed heights (0, 0.15, 0.40, 0.65 m) above bottom. These heights were converted to depths based 
on water level data. 
4 PAR derived from solar flux according to Britton and Dodd (1976). 
5 Temperature profile: 4 of 5 thermistors were deployed at fixed heights above bottom; for each time point these heights were converted to depths based on water 
level data. 
6 Some or all of PAR data was taken from a weather station < 10 km away from the buoy. 
7 DO: data recorded as % saturation, converted back to concentration following Weiss (1970). 
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8 The depth of the DO sonde varied from 0.3-3.1 m (mean 0.9, SD 0.5); we assumed a constant depth of 1 m when fitting the metabolism model. 
9 Variable. The shallow thermistor ranged from 0.3-3.1 m (mean 0.9, SD 0.5). The deep thermistor ranged from 2.1-5.6 m (mean 3.1, SD 0.7). 
10 The depth of the DO sonde was changed periodically, and varied from 0.35-0.65 m. 
11 Variable. The depths of the thermistors were changed periodically. In all periods thermistors were deployed at 5-8 depths between 0.05 and 1.10 m. 
12 Wind speed and PAR data were aggregated to an hourly time step to match ∆T. 
13 DO measurements were made with a profiling autosampler, and the depth of the DO measurement varied from 0.8 – 5.0 m (mean 3.0 SD 0.3 ). We assumed a 
constant depth of 3 m when fitting the metabolism model. 
14 Water temperature measurements were made with a profiling autosampler. The depths at each time point varied slightly around the indicated 1, 2, 3, 4, 5, and 
6 m. 
15 No water temperature data at zDO; used water temperature from 1 m depth. 
16 DO data were shifted down 3.02 mg L-1 over the entire data set based on calibration data. 
17 No water temperature data at zDO; used water temperature from 0.5 m depth. 
18 PAR values were shifted down 120 µmol m-2 s-1 to correct consistent nighttime offset from 0. 
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Table 2. Correlations (Spearman’s ρ) among lake descriptor variables. Only correlations 

significant at α=0.10 (without adjustment for multiple tests) are shown. Abbreviations for 

descriptor variables follow Table 1, plus WL (=zmean/τ) is water load and Vlake (=zmean•Alake) is 

lake volume.  

 

 
zmean Alake TP DOC a440 τ WL 

Alake - 
      TP - - 

     DOC -0.56 -0.38 - 
    a440 -0.48 -0.45 - 0.88 

   τ 0.38 - -0.54 - - 
  WL - - - - - -0.77 

 Awtrshd:Vlake -0.77 - 0.49 0.40 0.46 -0.70 - 
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Table 3. Mean daily net ecosystem productivity (NEP; mg O2 L-1
 d-1) in the 25 study lakes. 

Means were calculated over the entire period of record (Annual) or over the summer period only 

(Summer; 01 June through 31 August in the northern hemisphere, 01 December through 02 

March in the southern hemisphere). In either case n indicates the number of days of data used. 

 
Annual Summer 

Lake NEP n NEP n 
Acton 2.20 81 4.45 30 
Annie -0.06 356 -0.05 92 
Balaton -0.85 39 -0.97 21 
Crampton -0.02 52 -0.03 43 
Crystal Bog -0.19 147 -0.41 80 
Feeagh -0.13 339 -0.24 83 
Fredriksburg Slotsø 1.59 211 3.80 83 
Hampensø -0.01 165 0.17 92 
Kentucky -0.43 357 -0.88 91 
Mendota 1.33 98 1.95 39 
Mirror -0.38 138 0.18 48 
Müggelsee 0.59 223 1.75 79 
Onondaga -0.26 142 0.14 69 
Pontchartrain -0.68 232 -0.42 88 
Rotoiti -0.46 82 -0.68 43 
Rotorua -0.33 310 -0.43 77 
Sparkling 0.03 125 0.08 63 
St Gribsø 0.03 226 0.41 92 
Sunapee 0.33 175 0.68 92 
Taihu 0.43 245 0.64 91 
Trout -0.05 153 -0.07 80 
Trout Bog -0.15 153 -0.14 80 
Vedstedsø 0.34 201 1.03 92 
Võrtsjärv 0.04 45 0.01 30 
Yuan Yang -0.38 301 -0.15 91 
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Table 4. Parameter estimates for nominal fits of autoregressive models (Eq. 4) to the maximum 

likelihood estimates of respiration and primary production for each lake. Values in parentheses 

are standard errors. The parameters are α (first-order autoregressive parameter), β0 (intercept, mg 

O2 L-1 d-1), β1 (slope of respiration on primary production), and σ2 (error variance). 

 
 α β0 β1 σ2 
Acton -0.01  (0.15) 1.21  (0.47) 0.20  (0.10) 7.31 
Annie 0.31  (0.05) 0.07  (0.02) 0.90  (0.07) 0.02 
Balaton 0.05  (0.22) 1.17  (0.28) 0.85  (0.10) 0.86 
Crampton 0.04  (0.16) 0.02  (0.06) 1.01  (0.15) 0.02 
Crystal Bog 0.38  (0.08) 0.04  (0.14) 1.06  (0.09) 0.55 
Feeagh 0.01  (0.07) 0.30  (0.04) 0.68  (0.07) 0.37 
Fredriksburg Slotsø 0.32  (0.07) 0.90  (0.35) 0.51  (0.06) 5.56 
Hampensø 0.29  (0.08) 0.40  (0.14) 0.76  (0.08) 0.41 
Kentucky 0.00  (0.06) 0.21  (0.06) 1.09  (0.03) 0.69 
Mendota 0.28  (0.10) 0.33  (0.19) 0.29  (0.07) 0.85 
Mirror 0.63  (0.07) 2.62  (0.68) 0.58  (0.10) 5.95 
Müggelsee 0.22  (0.07) 1.02  (0.18) 0.36  (0.04) 3.18 
Onondaga 0.20  (0.09) 0.44  (0.15) 0.93  (0.07) 1.09 
Pontchartrain 0.39  (0.06) 0.77  (0.12) 0.78  (0.05) 0.92 
Rotoiti 0.59  (0.09) 0.60  (0.20) 0.76  (0.17) 0.62 
Rotorua 0.43  (0.06) 0.23  (0.06) 1.15  (0.05) 0.22 
Sparkling 0.37  (0.09) 0.12  (0.02) 0.12  (0.09) 0.02 
St Gribsø 0.17  (0.07) 0.66  (0.10) 0.67  (0.05) 0.48 
Sunapee 0.34  (0.09) 0.35  (0.06) -0.21  (0.09) 0.13 
Taihu 0.45  (0.06) 0.49  (0.16) 0.55  (0.04) 1.44 
Trout 0.18  (0.08) 0.05  (0.02) 1.09  (0.11) 0.02 
Trout Bog 0.23  (0.08) 0.20  (0.10) 1.00  (0.06) 0.66 
Vedstedsø 0.59  (0.07) 0.54  (0.21) 0.57  (0.09) 0.63 
Võrtsjärv -0.23  (0.17) 0.56  (0.24) 0.65  (0.12) 0.60 
Yuan Yang 0.74  (0.04) 0.51  (0.16) 1.08  (0.13) 0.58 
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Table 5. Reported relationships between respiration and DOC concentration. Respiration is a 

volumetric pelagic rate unless otherwise noted. 

 
Reference Study system DOC range 

(mg L-1) 
Relationship of respiration 
to DOC 

1. del Giorgio and Peters 1994 20 lakes southern Québec 3 – 8 none  
 

2. Carignan et al. 2000 12 Canadian Shield lakes, Québec 2 – 7 negative or none 
 

4. Hanson et al. 2003 25 lakes northern Wisconsin 2 – 25 positive 
 

5. Pace and Prairie 2005 63 mostly north temperate lakes, 
including studies 1 and 2 
  

~ 2 – 12 positive 

6. Sand-Jensen and Staehr 2007 
 

64 small lakes, Denmark na1 positive1 

 
7. Ask et al. 2012 15 lakes northern Sweden ~ 1 – 17 positive (pelagic),  

negative (benthic) 2 
 

8. Staehr et al. 2012a 
 

25 lakes Denmark 3 - 46 positive (volumetric), 
none (areal) 
 

9. This study 25 lakes globally 1 – 17 none 
 
1 This study used measured colored dissolved organic matter (CDOM, absorbance at 360 nm) and reported that 
CDOM was correlated with DOC concentration. CDOM ranged from 3 to 258 m-1. 
2 Relationships between respiration and DOC are for DOC expressed per area, as g m-2 
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Figure captions 

 

Figure 1. Ecosystem respiration can be conceptualized as the sum of several components 

reflecting respiration of different substrates by different organisms (del Giorgio and Williams 

2005). The components are: RAuto, respiration by autotrophs; RHetero,Autoch-Fast, respiration by 

heterotrophs of autochthonously-produced labile organic matter; RHetero,Autoch-Slow, respiration by 

heterotrophs of autochthonously-produced recalcitrant organic matter; and RHetero,Alloch, 

respiration by heterotrophs of allochthonous terrestrial organic matter. 

 

Figure 2. Examples of metabolism model input data and fits, for four consecutive days in Lake 

Annie. Data are photosynthetically active radiation (PAR), wind speed, mixed layer depth (zMix), 

and dissolved oxygen concentration (DO). For DO, points are observed values and line is the 

model fit. 

 

Figure 3. Daily temperature-corrected gross primary production (GPP20) and respiration (R20) for 

St. Gribsø, demonstrating the determination of background respiration (β0) as the intercept and 

respiration-GPP coupling (β1) as the slope of the relationship between R20 and GPP20 in a 

regression model that accounts for temporal autocorrelation (Eq. 4). 

 

Figure 4. Rates of gross primary production (gray points) and respiration (black points, plotted 

on negative scale to facilitate viewing) estimated at a daily scale in 25 lakes. Data are point 

estimates only; confidence intervals not shown. Lakes are positioned from top left to bottom 

right in order of increasing maximum daily GPP. Note that for the two southern hemisphere 
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lakes (Rotoiti and Rotorua), the x-axis labels should be shifted by 6 months to read ‘Jul’, ‘Jan’, 

‘Jul’. 

 

Figure 5. (A, B) Average annual gross primary production and respiration in the 25 study lakes 

were strongly related to total phosphorus concentration (p<0.0001), (D, E) but not to dissolved 

organic carbon concentration (p>0.28). (C, F) Net ecosystem production was ranged from 

slightly negative to slightly positive in most lakes, but was very positive in high-TP, moderate-

DOC lakes. 

 

Figure 6. Point estimates and bootstrapped 95% confidence intervals for respiration rates in two 

representative lakes. In lakes where confidence intervals are often narrow, as in Lough Feeagh, 

significant day-to-day differences in rates are common. In lakes where confidence intervals are 

usually wide, as in Kentucky Lake, it is more difficult to assess whether day-to-day differences 

in point estimates of rates are biologically meaningful. Confidence intervals for day i and day i+1 

are non-overlapping on 50% of days in Feeagh and on 12% of days in Kentucky. 

 

Figure 7. Comparison of fitted and observed rates of respiration (mg O2 L-1 d-1, corrected to 

20°C) in 25 lakes. Observed rates are the maximum likelihood estimates from the metabolism 

model (Eqs. 1-3). Fits are from first-order autoregressive models which included rates of primary 

production as a predictor (Eq. 4). The R2 of the model for each lake is indicated below the lake 

name.  Solid lines indicate the 1:1 relationship. 

 



44 
 

Figure 8. Coupling of respiration to primary production at a daily scale (β1) is strong in 

oligotrophic and dystrophic lakes, and weaker in eutrophic lakes. β1 is estimated as the slope of a 

regression of respiration on primary production after temperature correction (Eq. 4). Boxes show 

the 25th, 50th, and 75th percentiles of 10,000 bootstrap estimates of β1 for each lake. Gray boxes 

indicate lakes for which β1 estimates may not be valid (see main text). 

 

Figure 9. Background respiration, β0, varies with (A) allochthonous input, indicated by the ratio 

of watershed area to lake volume, which has units km-1; (B) input of autochthonous organic 

matter to the slow-turnover pool, indicated by the β1 parameter; low β1 equates to high inputs to 

the slow pool; (C) recalcitrance of dissolved organic matter, indicated by water color measured 

as absorbance at 440 nm. Background respiration is the portion of total community respiration 

that is not directly tied to autotrophic production, and is estimated as the intercept of a regression 

of respiration on primary production after temperature correction (Eq. 4). Boxes show the 25th, 

50th, and 75th percentiles of 10,000 bootstrap estimates of β0 for each lake. In one case (Lake 

Taihu) only the 50th and 75th percentile are plotted because the 25th percentile was negative. (B) 

Gray boxes indicate lakes for which β1 estimates may not be valid (see main text). 

 

 

 


