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Abstract  40 

Ecosystems can show sudden and persistent changes in state despite only incremental changes in 41 

drivers. Such critical transitions are difficult to predict as the state of the system often shows little 42 

change prior to the transition. Early-warning indicators are hypothesised to signal the loss of 43 

system resilience and have been shown to precede critical transitions in theoretical models, paleo-44 

climate time series, and in laboratory as well as whole lake experiments. However, the generality 45 

of early-warning indicators for detection of critical transitions in empirical time series of natural 46 

aquatic ecosystems remains largely untested. Here, we assessed four commonly used early-47 

warning indicators on long-term datasets of five freshwater ecosystems that have experienced 48 

sudden, persistent transitions and for which the relevant ecological mechanisms and drivers are 49 

well-understood. These case-studies were categorised by three mechanisms that can generate 50 

critical transitions between alternative states: competition, trophic cascade, and intra-guild 51 

predation. While early-warning indicators could be detected in most case-studies, agreement 52 

among the four indicators was low. In some cases, early-warning indicators were detected 53 

considerably ahead of the transition. Our results, however, show that, at present, early-warning 54 

indicators do not provide reliable and consistent signals of impending critical transitions despite 55 

using some of the best routinely monitored freshwater ecosystems. Our analysis strongly suggests 56 

that a priori knowledge of the underlying processes driving ecosystem transitions is necessary to 57 

identify relevant state variables to successfully monitor early-warning indicators. 58 

 59 

Significance Statement  60 

Early-warning indicators are statistical metrics of system resilience and have been hypothesized to 61 

provide advance warning of sudden shifts in ecosystems, so-called regime shifts. Here we test this 62 

hypothesis for four commonly used early-warning indicators. We used empirical time series from 63 

five freshwater ecosystems with documented sudden, persistent transitions hypothesised to 64 

represent critical transitions. Early-warning indicators were detected in several of these long-term 65 

records, and in some cases, indicators were detected several years before the transition. However, 66 

the indicators varied in their reliability, and agreement between indicators was low. Moreover, 67 

their applicability was strongly limited by the requirement of ecosystem-specific knowledge of 68 

transition generating mechanisms and their drivers to choose relevant state variables for analysis. 69 

 70 
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Introduction 71 

Ecosystems can show multi-state stability and occasionally sudden transitions from one regime to 72 

another despite only incremental changes in drivers (1-5). These critical transitions are 73 

characterised by the occurrence of alternative regimes under the same environmental conditions 74 

and by abrupt, discontinuous transitions between regimes when a critical threshold is exceeded. 75 

As each regime is stabilised by feedback loops, the thresholds for the forward and backward shifts 76 

may differ, resulting in hysteresis (5). A well-known example is the nutrient-driven shift between 77 

the clear, macrophyte-dominated and the turbid, phytoplankton-dominated regime in some 78 

shallow lakes (6). At ecosystem level, such fundamental reorganisations affect ecological 79 

processes and hence ecosystem services potentially incurring large economic costs. Therefore, 80 

reliable tools to assess ecosystem resilience are sought, ideally providing management with time 81 

to avert an impending critical transition (7). Stabilisation through feedback loops, however, often 82 

precludes a systematic response in state variables ahead of the shift, rendering prediction of 83 

critical transitions difficult (8). The development of early-warning indicators (EWIs) derived from 84 

bifurcation theory has drawn considerable interest for detecting critical transitions, particularly for 85 

their promise of generality. These EWIs have been shown to precede critical transitions in 86 

modelled (8-10), experimental time series (11-13), reconstructed paleo-climate records (14, 15) 87 

and whole-lake experiments (16). Up to now, however, an assessment of the generality and the 88 

detection power of EWIs on long-term monitoring data in aquatic systems is lacking (17). 89 

 90 

Early-warning indicators are statistical metrics that quantify the loss of temporal or spatial 91 

resilience and thereby provide advance warning of the potential proximity to a critical threshold 92 

(18). Several of these EWIs are related to critical slowing down, a characteristic property of 93 

dynamic systems close to catastrophic local bifurcations (19). A bifurcation marks a threshold 94 

where the stability properties of the state of the system change. As the system approaches such a 95 

threshold, the return rate to equilibrium after a small perturbation slows down so that the system 96 

tends to become more similar to its own past, resulting in an increase in autocorrelation at lag-1 97 

(AR-1) (20). This lack of decay of the impact of past perturbations also leads to a build-up in 98 

variance, typically measured as an increasing trend in standard deviation (SD) (21). A concurrent 99 

increase in SD and AR-1 in a time series also produces higher variability in low frequency 100 

processes compared to high frequency processes in the power spectrum of a time series, which 101 
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can be quantified as an increasing density ratio (DR) of variance at low to high frequencies (7,22). 102 

In addition to critical slowing down, the system tends to remain for longer at the basin boundary 103 

between the two alternative attractors resulting in a skewed distribution of the state variable (SK) 104 

(23). However, the expected trends in AR-1, SD, DR, and SK are not exclusive indicators of 105 

critical transitions as false positives and false negatives can occur (24). Hence, prior to the 106 

application of EWIs based on critical slowing down a careful analysis is needed of whether a 107 

system is actually undergoing a critical transition (25). 108 

 109 

Abrupt changes in the state of an ecosystem can develop from several mechanisms, including: i) 110 

linear tracking of large changes in environmental conditions, ii) non-linear but continuous 111 

(reversible) responses to gradual changes in environmental conditions, or iii) non-linear 112 

discontinuous (irreversible) responses to gradual changes in environmental conditions (26). While 113 

the first mechanism is distinguished by concurrent large changes in environmental drivers (e.g. a 114 

sudden increase in temperature), the difference between the other two mechanisms only becomes 115 

apparent when the driver is reversed. Hence, single step changes in time series cannot provide 116 

direct evidence of a critical transition (27). As empirical time series covering forward and 117 

backward shifts are rare, identification of critical transition in natural systems is difficult. 118 

However, by linking observed step changes to a mechanistic understanding of the driving 119 

processes that can give rise to bi-stability, one can hypothesise (but not prove) the existence of a 120 

potential critical transition (5, 28).  121 

 122 

Lakes have been proposed as particularly suitable ecosystems to test for EWIs associated to 123 

critical transitions. The modular nature of lakes additionally allows comparison across different 124 

lakes (29). In aquatic systems, a number of ecological mechanisms have been shown to generate 125 

critical transitions between alternative states. The most commonly identified mechanisms include 126 

i) competition between two or more species (2, 28), ii) trophic cascades through inclusion or 127 

exclusion of top predators (16) or parasites (30) resulting in overexploitation traps, and iii) intra-128 

guild predation through resource competitors that also prey on each other (31, 32). For the 129 

purpose of this paper, we selected 14 state variables of five well-documented freshwater case-130 

studies of critical transitions to test whether four commonly used EWIs (AR1, SD, SK and DR) 131 

can be detected reliably in advance of the transition. We assessed how often these EWIs showed 132 
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the same trends (agreement) and whether their behaviour depended on the mechanism, the type of 133 

state variable, the magnitude of the step, and the sampling frequency. Lastly, we also tested how 134 

many years ahead of the transition EWIs were detectable. To our knowledge, this study provides 135 

the first comprehensive assessment of EWIs in some of the best-documented aquatic time series 136 

collected following standard monitoring schemes.  137 

 138 

Results 139 

Selection of case-study ecosystems and state variables 140 

We selected five case-study ecosystems based on expert knowledge of well-described regime 141 

shifts that can be qualified as critical transitions in aquatic ecosystems: Lake Müggelsee 142 

(Germany, LMS), Lake Veluwemeer (The Netherlands, LVM) and Lake Zwemlust (The 143 

Netherlands, LZL), Lake Washington (United States, LW), and Lake Võrtsjärv (Estonia, LV). 144 

Based on the literature on these case-study ecosystems, we identified relevant critical-transition 145 

generating mechanisms, which guided our choice of 14 state variables for EWI analysis. A short 146 

summary of the case-studies, mechanisms, state variables and drivers is presented in Table 1. A 147 

more detailed description of each case-study and reasoning for the choice of the14 state variables 148 

is presented in the Supplementary Information Appendix (SI Case-studies S1).  149 

 150 

Transition detection and seasonal adjustment 151 

We used three complementary methods (piece-wise linear regression, Pettit and STARs, see 152 

Methods) to robustly assess the timing of transitions (breakpoints; i.e. large, persistent step 153 

changes) in the time series of each state variable. In 12 state variables we found one breakpoint 154 

and in two state variables two breakpoints (Table 2 and Figure 1), resulting in 16 pre-breakpoint 155 

time series (i.e. from start to step change) for further analysis. In all state variables, the timing of 156 

the breakpoints confirmed the timing of transitions reported in the literature. Information on the 157 

data structure including time period, sampling interval, number of data points and the percentage 158 

of missing values in the pre-breakpoint time series are summarised in SI Table S2. Each state 159 

variable showed significant differences in the pre- to post-breakpoint means (Table 2), with step 160 

magnitudes ranging from 0.24*standard deviation to 1.59*standard deviation (Table 2). Each pre-161 

breakpoint time series was detrended and seasonally adjusted using a Gaussian smoother with a 162 

bandwidth corresponding to 12 (for monthly data sets) or 26 (for fortnightly datasets) data points. 163 
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Testing the residual time series for remaining linear trends and seasonality showed in some time 164 

series a remaining, but much reduced seasonal signal (SI Table S2). 165 

 166 

Early-warning indicator analysis 167 

In 14 out of 16 analysed time series, a loss of resilience before the breakpoint was signalled by at 168 

least one of the four EWI metrics (coded ‘+’ in Table 2, detailed figures in SI Figures S3) based on 169 

the median of the trend distribution across yearly increments of rolling window sizes (see 170 

Methods). We found rising AR-1 and DR trends in 10 cases each (63 %), rising SD trends in 9 171 

cases (56 %), and increasing or decreasing SK trends (according to the direction of the state 172 

change) in 7 cases (44 %) (Figure 2, Table 2).  In some cases, AR-1 trends were increasing from 173 

negative values to positive ones (see SI Figures S3). We counted these trends as positive (coded 174 

‘(+)’ in Table 2). In several cases, indicators showed trends opposite to the theoretical expectation 175 

(coded ‘–’ in Table 2). Only the state variable phytoplankton biomass in Lake Müggelsee (LMS) 176 

showed the theoretically expected trends in all EWIs, while in two state variables (non-algal 177 

attenuation in Lake Veluwemeer (LVM) and cyanobacteria biomass in Lake Washington (LW)) all 178 

EWIs failed. The agreement between positive AR-1 and SD trends was low (5 cases), but higher 179 

between positive AR-1 and DR trends (10 cases). Logistic regressions showed no significant 180 

relationship (p < 0.05) between EWI behaviour and mechanism (competition, IGP, or trophic 181 

cascade), state variable level (species, group, or ecosystem), step change height, length of pre-182 

breakpoint time series, nor sampling interval (fortnightly or monthly).  183 

 184 

Robustness to rolling window size and significance of EWI trends 185 

We estimated the robustness of EWI trends to the size of the rolling window, shown as the 186 

distribution of trends around their median (boxplots in Figure 2 for AR-1 and SD and SI Figure S4 187 

for DR and SK). A large majority of trends were robust to rolling window size, as shown in the 188 

low number of trend distributions in which the boxplot extended to negative values. We also 189 

tested for the significance of the trends by estimating the rate of false positives using simulated 190 

surrogate time series (see Methods). Out of all 64 EWI trends (16 time series by four EWIs) only 191 

three trends were significant in more than 50% of the comparisons between data-based and 192 

surrogate-based trends. Additional 29 EWI were significant in less than 50% of comparisons, and 193 

32 EWI showed no significant differences between data-based and surrogate-based trends (grey 194 
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bars in Figure 2 and SI Figure S4).   195 

 196 

Early warning indicators in stepwise shortened time series 197 

To assess whether EWI trends could have been detected in incomplete time series that would have 198 

been available one or several years before the actual transition took place, we repeated the EWI 199 

analysis on stepwise shortened (yearly increments) time series of each state variable. In 14 (out of 200 

16) time series, at least one of the EWIs would have indicated a loss in ecosystem resilience 1 to 201 

>10 years before the critical transition. In three instances positive EWIs trends occurred just the 202 

year before the shift (SI Table S5), while in 17 instances the median of the EWI trend distribution 203 

remained positive (i.e. showing the expected sign) up to the minimum time series period that was 204 

analysed (three years).  205 

 206 

Discussion 207 

In this study we assessed the detectability of four commonly used EWIs (AR-1, SD, SK, and DR) 208 

in empirical time series of freshwater ecosystems. By combining high quality empirical time 209 

series with ecological understanding and standardised methods we showed that EWIs preceded 210 

critical transitions in natural aquatic ecosystems, in some cases even several years ahead of the 211 

shift, despite potential shortcomings of empirical datasets such as observation error, sparse 212 

sampling or low signal to noise ratio (9, 24, 33).  However, in a large proportion of cases the 213 

EWIs failed, and the cases with positive EWIs generally showed low or no significance. In 214 

addition, we found little agreement among signals and we observed no relationship between EWI 215 

trends and potential predictors, like ecological mechanism of shift, state variable level, magnitude 216 

of transition, or sampling interval.  217 

 218 

Use of ecological understanding in the choice of state variables 219 

The choice of case-studies and state variables in our study was based on expert knowledge of 220 

ecosystems that likely experienced critical transitions. Although this choice was based on 221 

ecological understanding of the mechanisms that can give rise to alternative states in aquatic 222 

ecosystems, it does not provide conclusive evidence that the regime shifts we analysed correspond 223 

to true critical transitions. Still, such a priori choices of state variables for EWI analysis implicitly 224 

excluded assumptions based on other transition types, such as responses to step changes in the 225 
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driver (34), but offered clear expectations of what EWI behaviour should precede a transition (25). 226 

As mechanisms generating critical transitions can operate at all ecosystem levels, relevant state 227 

variables range from discrete variables, such as species-specific biomass (e.g. (32)), to aggregated 228 

variables, such as Secchi depth, turbidity or metabolism (e.g. (12)). Additionally, the case-studies 229 

were chosen based on the availability of long time series of monitoring data of relevant state 230 

variables at sufficiently high temporal resolution and with few missing values (35). Despite our 231 

conscientious choice of ecosystems and state variables, we still found contradicting patterns in 232 

EWIs. 233 

 234 

Detection and agreement among indicators 235 

Not all EWIs were equally reliable in detecting impending transitions (Table 2). In 44 % of the 236 

total 64 cases the EWI failed. Only in 3 cases where signals were positive, trends were significant 237 

in more than 50% of data-based and surrogate-based trend comparisons. Our significance testing 238 

relied on estimating EWI trends in surrogate stationary data fitted to the original time series to 239 

determine the rate of false positives. Unfortunately, we lack records to act as controls for 240 

comparing trends from comparable aquatic systems where no transition took place to estimate the 241 

rate of true negatives (no alarm, or sensitivity) of the EWIs. Given the lack of such controls, one 242 

potential way to measure the no alarm rate is to derive trends from non-stationary models fitted to 243 

the data (36). It would be valuable in future work to compare trends in EWI in study systems that 244 

either did not show any changes or in which changes were brought about by large external shifts 245 

in drivers. 246 

 247 

Agreement between AR-1 and SD trends has been postulated as a minimum requirement to signal 248 

the approach of a transition (8). In our dataset, these two indicators concurrently increased in only 249 

5 out of 16 time series. Critical transitions with increasing AR-1 and decreasing SD have also 250 

been observed in other studies (36). Such inconsistent trends between indicators may occur in 251 

ecosystems that are subject to multiple concurrent regime-shift generating processes that may or 252 

may not interact via shared state variables and that may react differently to drivers and 253 

environmental noise (9). If such connected regime-shift processes work towards muffling variance 254 

in the measured state variable, the variance-based EWI signal may be suppressed (37). Transitions 255 

from cycles to stable points can also generate decreasing variation (38) and may explain 256 
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decreasing SD trends like in the Lake Müggelsee Cyclops vicinus abundances or the Lake 257 

Võrtsjärv functional group U biomass.   258 

 259 

In many cases autocorrelation (AR-1) was generally low and in some cases even negative (e.g. 260 

Lake Washington non-Daphnia cladocerans). Low AR-1 values (far from the theoretical value of 261 

1 where critical transitions occur) reflect that transitions in the real world are likely triggered well 262 

before the actual tipping point is reached (25, 39). Evaluating the full power spectrum for changes 263 

in power in aggregated low versus high frequencies over time indicated that higher order AR 264 

processes did not provide more information than the AR-1 . This suggests that the reported low or 265 

negative autocorrelation in our records probably originated from the too long sampling intervals in 266 

cyclic variables (e.g. population cycles) resulting in under-sampled cycles of fast growing 267 

plankton and its related variables. 268 

 269 

Successfully detecting EWIs has often been related to the availability of high sampling frequency 270 

data (40), although it has been shown that EWIs could still be detected robustly in infrequently 271 

sampled data as long as the time series were sufficiently long (41). Our study was based on data 272 

sampled at (or averaged to) fortnightly and monthly intervals. Monthly intervals are rather long 273 

compared to the generation or reaction times of the state variables tested in our study (e.g. 274 

phytoplankton generation times are in the order of days, therefore monthly averages of biomass 275 

aggregate multiple generations of phytoplankton). Nevertheless, we could not detect a relationship 276 

between sampling interval and the proportion of failing EWIs in our dataset. Finally, data 277 

preparation, in particular choices on detrending and seasonal adjustment methods, can affect the 278 

autocorrelation structure in time series and hence the outcome of EWI analyses. We used Gaussian 279 

filtering with a fixed bandwidth based on the sampling frequency to detrend and seasonally adjust 280 

the data before EWI analysis (see SI S6 for a comparison of seasonal adjustment methods). 281 

Despite data preparation, some time series still showed reduced traces of seasonality. Remaining 282 

seasonal signals may increase or decrease the intercept of the EWI trends but not the sign of the 283 

trend. 284 

 285 

Early detection based on incomplete time series 286 

Informative changes in some of the EWI metrics were already detectable several years preceding 287 
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the actual transition, although large differences in detection windows between state variables were 288 

observed. These differences may partly be explained by the fact that the actual shift is usually 289 

triggered by external stochastic perturbations which in turn are often independent of the drivers of 290 

ecosystem stability loss (42). However, in many cases EWIs indicated sustained instability over 291 

the period tested in our study which may be attributed to either a too short time span available for 292 

testing (e.g. Lake Zwemlust) or unrecognised interacting processes that promoted prolonged 293 

instability in these ecosystems.  294 

 295 

Conclusion 296 

Despite our informed and conscientious choice of case-study ecosystems and state variables, we 297 

found relatively low detectability of EWIs prior to the documented transitions, and when EWIs 298 

were detected, the agreement among EWIs was low. Our findings are in line with results from an 299 

assessment of the detectability of EWIs prior to non-linear transitions (43). Although it is 300 

encouraging that we could detect EWIs in some of our empirical aquatic time series using data 301 

derived from commonly used monitoring schemes that were not designed for this purpose, the 302 

lack of reliability and agreement between signals limits the potential application of EWIs to well-303 

understood ecosystems only (35). In such well-understood ecosystems, harnessing EWIs as 304 

metrics of resilience loss may help in planning for the unpredictable and could be part of strategic 305 

foresight programs for management and conservation (44). However, our analysis suggests that 306 

these metrics could be of added value only in combination with existing frameworks (e.g. 307 

alternative stable state theory) and in-depth ecosystem knowledge. Furthermore, taking into 308 

account the underlying assumptions and requirements of EWI analysis can inform managers about 309 

adaptations in  monitoring schemes by advising about relevant variables and temporal sampling 310 

resolution to adequately capture changes in the resilience of systems. One way forward may be 311 

the advent of automated, continuous high-frequency monitoring (35), ideally monitoring multiple 312 

lakes with similar properties for comparison (35). To increase our understanding of critical 313 

transition generating processes, ecosystem models, such as PCLake, can help to bridge the gap 314 

between simple minimal models and the full complexity of natural systems and allow combined 315 

analysis of e.g. food-web theory and alternative stable states theory and indicators of ecosystem 316 

resilience (45). Ideally, such insights can serve to broaden our search image in empirical EWI 317 

patterns instead of relying on a generic increase in variance without understanding the inherent 318 
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variability in ecosystems. In the meantime, the reliability of EWIs for predicting abrupt shifts in 319 

ecosystem state should be treated with caution.  320 

 321 

Methods 322 

Data preparation and breakpoint detection 323 

The data preparation and statistical analysis protocol was identical for all 16 state variable time 324 

series. Each time series was analysed at the highest temporal resolution available or at a lower 325 

resolution that resulted in fewer missing data (see SI Table S2). Lakes Müggelsee and Washington 326 

were analysed at fortnightly, all other case-studies at monthly intervals. As our time series 327 

methods require continuous and equidistant data, we imputed missing values up to a maximum of 328 

four consecutive time steps using a Kalman filter (46). Time series with longer gaps were 329 

shortened to start or end at the gap (e.g. Lake Võrtsjärv). Each time series was standardized by 330 

mean centering and standard deviation scaling for convenient comparison of step change heights. 331 

The timing of the step was determined by breakpoint analysis as step changes in the respective 332 

state variables may differ from the timing of whole-system step changes reported in the literature. 333 

Robust estimates of the timing of step change were achieved by employing three complementary 334 

breakpoint estimation methods: a) additive decomposition of time series in seasonal, trend and 335 

residual components and subsequent iterative fitting of piecewise linear season and trend models 336 

(47) using the R package “bfast” (48), b) testing for step changes in the average using the Pettitt 337 

test (49) and c) STARS, a combination of a sequential partial CUSUM method and a t-test (50). If 338 

at least two methods showed similar timing for a step change (± 12 months), the standardized 339 

original time series was split at that breakpoint. Differences between pre- and post-breakpoint 340 

means of the time series were tested with a Welch two sample t-test (51) (Table 2).  341 

 342 

Due to a one-year gap in the time series, breakpoint timing of two state variables (LV functional 343 

groups P (eutrophic epilimnion species) and U (summer epilimnion species)) was determined 344 

differently: here we assessed whether large changes in the biomasses of the functional groups 345 

occurred during the gap indicating a potential shift. The pre-1978 and post-1978 time series 346 

showed significantly different means for functional group U (Welch two-sample t-test, t=3.52, 347 

df=128, p< 0.001, difference in means = 0.29*standard deviation) and functional group P (Welch 348 

two-sample t-test, t=-4.67, df=439, p< 0.001, difference in means = 0.55*standard deviation) 349 
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suggesting that the shift in functional groups U and P occurred during the year 1978 (Table 2). As 350 

both of these time series showed no further breakpoints in the years after 1978, we conservatively 351 

assumed 1977 to be the transition year. 352 

 353 

Early-warning indicator analysis 354 

The pre-breakpoint time series was seasonally adjusted using a Gaussian smoother with a kernel 355 

bandwidth based on the number of data points per year (i.e. 12 for monthly and 26 for fortnightly 356 

datasets, see SI S6 for comparison of other methods). A bandwidth of one year was chosen to 357 

account for yearly recurring patterns while retaining informative low and high frequency 358 

variability other than long-term trend and season (15). In three residuals time series, local outliers 359 

were replaced by Kalman imputed values (LMS Dreissena (two outliers) and Aphanizomenon 360 

Period 1 and LW Cyanobacteria (one outlier each)). The residuals were then passed on to analysis 361 

of EWIs AR-1, SD, SK, and DR with testing for robustness to the size of rolling window and 362 

testing for significance (false positives) using the R package “earlywarnings”(9). Additionally, we 363 

confirmed that the static choice of fixed compared frequencies in the EWI density ratio (DR) was 364 

sufficiently capturing changes of the full power spectrum of the pre-breakpoint residuals time 365 

(based on its estimated smoothed Fast Fourier Periodogram). 366 

 367 

Robustness and significance testing 368 

The trends in the estimated temporal evolution of EWIs from the rolling-window approach were 369 

quantified by the non-parametric Mann-Kendall trend test, which tests for monotonic trends based 370 

on the Kendall τ rank correlation coefficient (9). As the size of the rolling window can affect the 371 

EWI trends (36), a robustness analysis was performed estimating the distribution of trends and 372 

proportion of trends that did not differ in sign from the median of the trend distribution. We did 373 

this by using yearly increments of the residuals time series covered by the rolling time-window 374 

(two to n-two years, function “sensitivity_ews” (9), where n was the number of years in each pre-375 

breakpoint time series). Significance testing was conducted by comparing the data-based EWI 376 

trend against a bootstrapped distribution of 200 surrogate time series-based EWI trends. The 377 

surrogate time series were generated based on an ARMA(p,q) model fitted on the residuals time 378 

series. The bootstrapped distribution of trends depicts the probability that a particular trend could 379 

occur by chance in time series of the same ARMA structure (function “surrogates_ews” in R-380 
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package “earlywarnings” (9)). The data-based EWI trend was deemed significant if it fell on one 381 

of the 5% tails of the surrogate-based trend distribution (α=0.1). This significance testing was 382 

repeated for all rolling window sizes and the proportion (%) of significant trends over all rolling 383 

window sizes was reported. 384 

 385 

Relationship of EWIs with state variable categories and agreement among signals 386 

The relationship between the occurrence of each EWI and predictor variables mechanism 387 

(competition, IGP or trophic cascade), state variable category (species, group, ecosystem), step 388 

change height, length of pre-breakpoint time series and sampling interval (fortnightly or monthly) 389 

was tested with logistic regressions (identity link for continuous predictors (step change height 390 

and time series length); logit link for categorical predictors) with Bonferroni corrected post hoc 391 

testing. The median of the trend distribution across all time-window sizes was used to assess 392 

agreement among EWIs. 393 

 394 

Early detection of early-warning indicators 395 

To assess how timely EWIs could have detected the approaching transition, we quantified EWI 396 

trends on stepwise shortened pre-breakpoint time series, starting with the full time period and 397 

continuing with stepwise reduction of the time series by cutting off the last year of data. The 398 

minimum time series length was set to three years to allow meaningful Kendall τ estimation. How 399 

many years before the shift an EWI could already have been detected was set by assessing the 400 

maximum number of stepwise reductions before the theoretically expected EWI trend disappeared 401 

(i.e. when the median of the Kendall τ trend distribution turned negative for AR-1, SD and DR or 402 

changed sign for SK). All data analyses and graphing were conducted using the R language 403 

environment for statistical computing (52) and associated library extensions. 404 
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Figure captions 443 

Figure 1: Time series of 14 selected state variables (black lines: competition, green lines: trophic 444 

cascade, blue line: intra-guild predation) of five lakes. Solid red lines indicate the timing of 445 

critical transitions (estimated by breakpoint analysis, see Methods). Dashed red lines indicate 446 

additional data-based breakpoints that were not used in this study as they were either not 447 

described in the literature (LMS phytoplankton biomass) or resulted from bio-manipulation (LZL 448 

Secchi depth).  449 

 450 

Figure 2: Robustness and Significance testing. Mann-Kendall trend distributions for EWIs AR-1 451 

and SD (panel) and per analysed time series (boxplots) and the proportion of significant differences in 452 

trends between data-based and surrogate time series across all rolling window sizes (significance, grey 453 

bar plots). Positive values of trends in the boxplots represent increasing EWI trends. Note almost 454 

in all time series the trends were robust to the choice of rolling window size. Significance testing 455 

was based on comparing indicator trends produced from stationary surrogate time series to the 456 

empirically reported for fixed rolling window size (see Methods). 457 

 458 

Table captions 459 

Table 1: Summary of case-study systems, state variables and drivers by mechanism: trophic 460 

cascade, intra-guild predation and competition 461 

 462 

Table 2: Overview for all 14 state variables (16 time series) listing the direction of the shift, 463 

timing of the break-point (year-month), step height (scaled to standard deviation), the two-sample 464 

Welch test significance, and for each EWI the sign of the median of the trend distribution (across 465 

all rolling window-sizes). Bold t (Welch) values are significant at α= 0.05 level. The tested EWI 466 

are autocorrelation at lag-1 (AR-1), standard deviation (SD), skewness (SK), and density ratio 467 

(DR). Median trends that corresponded with the theoretical expectation were coded with ‘+’, 468 

trends that showed the opposite to expectation with ‘-’. Brackets denote AR-1 trends crossing zero 469 

on the scale. 470 

 471 
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Table 1: Summary of case-study systems, state variables and drivers by mechanism: trophic 643 

cascade, intraguild predation and competition 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

Mechanism Case-

Study  

Shift in State 

Variable 

Driver Process Refer- 

ences 

Trophic 

cascade 

LW Increase in water 

transparency 

Increase in grazing 

pressure 
Longfin smelt (Spirinchus thaleichthys) preys 

on secondary consumer Neomysis which 

releases primary consumer Daphnia who grazes 

on producers (phytoplankton) 

(53, 

54) 

 LMS Increase in Dreissena 

polymorpha larvae  

Decrease in predation 

pressure 

Changes in dominant carnivorous zooplankton 

species coincided with increase in Dreissena 

larvae.  

(55, 

56) 

 LMS Decrease (period 1) 

and increase (period 

2) in Leptodora 

kindtii  

Increase (period 1) and 

decrease (period 2) in 

predation pressure 

Leptodora are a preferred prey for fish and 

likely indicate changes in overall fish predation 

pressure 

(56) 

Competition LMS Decrease 

phytoplankton 

biomass 

Re-oligotrophication Reduction in nutrients decreases phytoplankton 

growth, improving light climate favouring 

macrophyte reestablishment 

(57, 

58) 

 LMS Decrease in 

Aphanizomenon 

(period 1) 

Re-oligotrophication 

counteracted by spring 

warming  

Warmer springs promote cold-adapted 

cyanobacteria development 

(59) 

 LMS Decrease in 

Aphanizomenon 

(period 2) 

Re-oligotrophication Reduction in nutrients decreases phytoplankton 

growth, improving light climate favouring 

macrophyte reestablishment 

(57) 

 LW Decrease in non-

Daphnia cladocera 

Reduction in predation 

pressure on Daphnia 

Indirect effect of trophic cascade through 

increasing resource competition by Daphnia 

(53, 

54) 

 LW Increase in 

cryptophytes and 

decrease in 

cyanobacteria 

Re-oligotrophication Reduction in nutrients decreases cyanobacteria 

competitive ability and releases other  

phytoplankton from competition 

(53, 

54) 

 LZL Decrease in water 

transparency  

Eutrophication, 

epiphyte shading and 

herbivory 

Competition between submerged vegetation and 

phytoplankton under eutrophication and 

herbivory on macrophytes 

(60, 

61) 

 LVM Decease in non-algal 

attenuation 

reduction in nutrients 

and benthivorous fish  

Recovery of submerged vegetation cover and 

subsequent  stabilisation of sediments 

(62) 

 LV Increase in 

functional group P  

Decrease in  

functional group U 

Eutrophication Competition between functional groups P 

(eutrophic epilimnion species) and  U (summer 

epilimnion species) 

(63, 

64) 

 LV Increase in  

functional group H1 

Re-oligotrophication Competition between non-nitrogen fixing and 

di-nitrogen fixing species (functional group H1) 

(63, 

64) 

Intraguild 

predation 

LMS C. vicinus - C.  

kolensis dominance 

switch 

Reduction of  shared 

food source 

The inferior resource competitor C vicinus preys 

on juveniles of  the smaller C kolensis 

(32) 
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Table 2: Overview for all 14 state variables (16 time series) listing the direction of the shift, 652 

timing of the transition (year-month), step height (scaled to standard deviation), the two-sample 653 

Welch test significance, and for each EWI the sign of the median of the trend distribution (across 654 

all rolling window-sizes). Bold t (Welch) values are significant at α= 0.05 level. The tested EWI 655 

are autocorrelation at lag-1 (AR-1), standard deviation (SD), skewness (SK), and density ratio 656 

(DR). Median trends that corresponded with the theoretical expectation were coded with ‘+’, 657 

trends that showed the opposite to expectation with ‘-’. Brackets denote AR-1 trends crossing zero 658 

on the scale. 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 

Case-

Study 
State Variable 

Direction  

of Shift 

Break-

Point 

(Year-

Month) 

Step 

(scaled 

to SD) 

t 

(Welch) 

AR-1 SD SK DR 

LMS Phytoplankton mg L-1 Decrease 1990-5 0.803 9.92 + + + + 

 Aphanizomenon  mg L-1 P1 Decrease 1990-11 0.413 4.47 + + - + 

 Aphanizomenon mg L-1 P2 Decrease 2002-12 0.317 5.92 - + + - 

 Cyclops vicinus ind L-1 Decrease 1992-6 0.629 7.86 + - + + 

 Dreissena polymorpha larvae ind L-1 Increase 1993-9 0.388 -6.79 + + - + 

 Leptodora kindtii ind L-1 P1 Decrease 1987-11 0.776 6.58 - + - - 

 Leptodora kindtii ind L-1 P2 Increase 2005-7 0.239 -5.21 (+) - - + 

LW Secchi depth m Increase 1976-10 1.29 -21.94 + + - + 

 Cryptophyceae 100 µm3 L-1 Increase 1977-7 0.627 -13.16 (+) - - + 

 Cyanophyceae 100 µm3 L-1 Decrease 1973-4 1.587 9.33 - - - - 

 Non-Daphnia cladocerans ind L-1 Decrease 1976-8 0.783 6.09 - + + - 

LV H1 g/m3 Increase 1992-8 0.569 -6.75 (+) + - + 

 P g/m3 Increase 1977-12 0.281 -4.61 (+) - + + 

 U g/m3 Decrease 1977-12 0.532 3.17 (+) - + + 

LVM Non algal attenuation m-1 Decrease 1995-9 1.058 9.05 - - - - 

LZL Secchi depth m  Decrease 1992-9 1.098 7.97 (-) + + - 

 
Proportion of EWI trend distribution medians corresponding 

to the theoretical trend expectation 
  10/16 9/16 7/16 10/16 
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Figure 1 671 
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 673 
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Figure 2 680 

 681 

View publication statsView publication stats

https://www.researchgate.net/publication/310735445

