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Abstract

It is shown that the recently introduced positivity and causality preserving string-local quantum field 
theory (SLFT) resolves most No-Go situations in higher spin problems. This includes in particular the 
Velo–Zwanziger causality problem which turns out to be related in an interesting way to the solution of 
zero mass Weinberg–Witten issue. In contrast to the indefinite metric and ghosts of gauge theory, SLFT 
uses only positivity-respecting physical degrees of freedom. The result is a fully Lorentz-covariant and 
causal string field theory in which light- or space-like linear strings transform covariant under Lorentz 
transformation.

The cooperation of causality and quantum positivity in the presence of interacting s ≥ 1 particles leads to 
remarkable conceptual changes. It turns out that the presence of H -selfinteractions in the Higgs model is not 
the result of SSB on a postulated Mexican hat potential, but solely the consequence of the implementation 
of positivity and causality. These principles (and not the imposed gauge symmetry) account also for the 
Lie-algebra structure of the leading contributions of selfinteracting vector mesons.

Second order consistency of selfinteracting vector mesons in SLFT requires the presence of H -particles; 
this, and not SSB, is the raison d’être for H .

The basic conceptual and calculational tool of SLFT is the S-matrix. Its string-independence is a powerful 
restriction which determines the form of interaction densities in terms of the model-defining particle content 
and plays a fundamental role in the construction of pl observables and sl interpolating fields.
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1. Introduction and history of the problem

The positivity property of quantum states guaranties the probabilistic interpretation of quan-
tum theory. It enters the mathematical formalism through the identification of states with unit 
rays in a Hilbert space on which the quantum observables act as operators. In quantum field the-
ory (QFT), or more generally for models with infinitely many degrees of freedom, it is often more 
appropriate to identify states with positive linear functionals on operator algebras. Thanks to the 
existence of a canonical construction2 this formulation in terms of expectation values permits a 
return to the more common Hilbert space setting.

Its validity in quantum mechanics is guarantied by Heisenberg’s canonical quantization of 
positions and momenta in conjunction with the von Neumann uniqueness theorem which insures 
that irreducible representations of the Heisenberg commutation relations are unitarily equivalent 
to the Schrödinger representation. Born’s identification of the absolute square of the Schrödinger 
wave function with the probability density for finding a particle at a particular position connects 
positivity with spatial localization.

This situation undergoes significant changes in relativistic QFT where the positivity of field-
quantization looses its “von Neumann protection” in the presence of higher spin s ≥ 1. The first 
such clash with positivity was noticed by Gupta and Bleuler who observed that quantized mass-
less vector potentials are incompatible with Hilbert space positivity. In the absence of interactions 
it is straightforward to restore positivity by passing from potentials to field strengths, but the use 
of local gauge invariance to preserve at least part of positivity in the presence of interactions 
leads to a loss of important physical operators and states.

This includes in particular all interacting fields which interpolate charge-carrying particles 
in the sense of large time scattering theory. Such interpolating fields play an indispensable role 
in connecting the causal localization- and quantum positivity-principles of QFT with observed 
scattering properties of particles. Their absence in quantum gauge theory (GT) is accompanied 
by a loss of mathematical tools of functional analysis. The proofs of structural properties as 
TCP and Spin&Statistics theorems use Hilbert space positivity in an essential way and have no 
substitute in indefinite metric Krein spaces. This reduces the use of GT to perturbative rules for 
dealing with indefinite metric- and ghost-degrees of freedom (the BRST formalism).

Positivity-obeying massive tensor potentials and their spinorial counterpart are provided by 
Wigner’s unitary representation theory of positive energy particle representations of the (covering 
of the) Poincaré group, but they come with an increase of their short distance scale dimension3

with spin dsd = s + 1 which prevents their use in renormalized perturbation theory involving 
fields with higher spin s ≥ 1. It turns out that this worsening of short distance behavior with 
increasing spin is accompanied by a m−s divergence for small masses. Hence a formulation of 
QED in terms of positivity-maintaining point-local potentials is not possible.

2 The “reconstruction theorem” in [1] is a special case of the more general Gelfand–Naimark–Segal (“GNS”) recon-
struction theorem [2].

3 It is most conveniently obtained from property of the field’s 2-ptfct x → λx for λ → 0.

http://creativecommons.org/licenses/by/4.0/
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In his well-known monograph Weinberg presents a systematic construction of the intertwiner 
functions which relate Wigner’s spin s momentum space particle creation and annihilation opera-
tors a#(p, s) associated with the unitary (m, s) representations with covariant pl free fields which 
act in the Wigner–Fock Hilbert space of the Wigner operators [3]. This interesting section in his 
book remained a torso since the (with increasing s) worsening short distance scale dimension of 
point-local fields prevents their use in renormalized perturbation theory as soon as s ≥ 1.

In the main part of his book Weinberg uses the positivity-violating (but renormalizability-
improving) gauge theoretic setting as obtained by Lagrangian quantization in which a perturba-
tive inductive argument secures the positivity of gauge invariant operators. For this reason one 
does not find GT in presentations of nonperturbative QFT.

The independence of short distance dimensions of quantized gauge fields from spin/helicity 
is a consequence of the spin independence of the classical dimension dcl = 4 of Lagrangians. 
For s = 0, 1/2 these fields agree with those obtained from the Wigner–Weinberg construction, 
but for s ≥ 1 the equality of the short distance dimension with the classical dimension in terms 
of mass units (“engineering” dimension), namely dsd = dcl = 1 for integer and 3/2 in case of 
half-integer spin, comes with an improvement of renormalizability at the price of the presence of 
unphysical degrees of freedom.

Whereas in older work [4] positivity problems for propagators of higher spin fields in GT have 
been at least partially addressed, more recent publications ([5], [6] and papers cited therein) are 
mainly concerned with classical geometric aspects of the Lagrangian gauge formalism for which 
these problems can be ignored.

The setting of string-local quantum field theory (SLFT) in the present article overcomes this 
conceptual gap between GT and constructions of fields based on Wigner’s representation theory 
by providing a positivity maintaining causal perturbative QFT formalism which includes the 
important physical interpolating fields of particles whose large-time properties account for a 
unitary S-matrix and which are missing in GT. After almost 70 years of GT this amounts to a 
paradigmatic shift which does not only affect renormalized perturbation theory but also requires 
to extend the nonperturbative setting of “axiomatic QFT” as presented in [1].

A convenient starting point is to recall the construction of positivity obeying quantum 
fields �a in Weinberg’s intertwiner formulation (for simplicity for massive tensor potentials):

�α(x) =
∫

(

s∑
s3=−s

eipxvα,s3(p)a∗(p, s3) + h.c.)dμm(p) + h.c., (1)

with dμm(p) = θ(p0)δ(p
2 − m2)d4p

The intertwiner functions v(p) convert the Wigner creation/annihilation operators a#(p, s3) into 
covariant fields �α ; their calculation uses only group theory [3]. They come with two indices, 
the s3 which runs over the 2s + 1 values of the third component of the physical spin, and a tensor 
index α = (μ1, ..μs) which refers to the 4s dimensional tensor representation of the Lorentz 
group of tensor degree s. The extension to fermions is straightforward but not needed for the 
problems addressed in the present work.

The momentum space Wigner creation/annihilation operators a#(p, s3), and hence also the 
covariant fields �α act in the Wigner–Fock Hilbert space obtained from the 1-particle Wigner 
representation by “second quantization”.4 Looking at the explicit form of the intertwiners and 

4 Note the difference to the standard use of “quantization” (in the words of Ed Nelson: “second quantization is a 
functor, whereas quantization is an art”).
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calculating the two-point function (2-ptfct) of � one finds that the latter scales as λ−2(s+1) for 
x → λx in the limit of small distances λ → 0 which leads to assigning the short distance dimen-
sion dsd = s + 1 to the point-local (pl) �.

This construction via intertwiners permits much more flexibility than Lagrangian or functional 
integral quantization in converting the unique (m, s) Wigner operators into fields with different 
prescribed covariance- and causal localization-properties than quantization; includes in particular 
string-local (sl) covariant quantum fields with improved (0 < dsd < s + 1) short distance prop-
erties. Such fields are localized on causally separable (i.e. allowing relative causal positioning) 
semiinfinite space- or light-like strings (rays) S = x + R+e, e2 = −1 or 0. Whereas in Wein-
berg’s construction the covariance under Lorentz transformations is sufficient since causality, the 
construction of sl fields requires the direct use of causal localization. The resulting covariant 
fields extend the linear part of the pl relative causality class to sl (with pl considered as a special 
case of sl) and Wick-ordered products thereof constitute the nonlinear members.

This huge set of sl free quantum fields associated to an irreducible Wigner representation 
contains in particular a sl tensor fields which is linearly associated with its pl counterpart. This 
sl tensor field appears together with s escort fields with lower tensor degrees [7], [45]. Escorts 
are reminiscent of negative metric Stückelberg fields in gauge theory, except that they do not add 
unphysical degrees of freedom to the physical a#(p, s3) Wigner operators but only differ in their 
intertwiner functions.

Positivity and hence the unitarity of the S-matrix in the resulting string-local QFT (SLFT) 
is automatic5 (no Nobel-prize worthy hard work as in gauge theory) and the chances to solve 
age-old infrared problems (large time scattering theory in QED, QCD confinement, ..) are sig-
nificantly enhanced.6 One prerequisite is the substitution of nonexistent positivity-maintaining 
pl potentials by sl counterparts and the according to the Weinberg–Witten No-Go theorem [9]
missing h ≥ 1 sl current and stress–energy tensors in [11] by suitably defined conserved sl sub-
stitutes. The smooth passing from massive sl two-point functions with 2s +1 degrees of freedom 
to their massless two-component helicity counterpart leads to a profound (indefinite metric- and 
ghost-free) understanding of the D-V-Z discontinuity problem [12,13].

An important step in the development of (SLFT) was the construction of fields for the class 
of massless infinite spin Wigner representations for which Yngvason’s 1970 No-Go theorem 
excluded pl fields [14]. For this class Weinberg’s group theoretic method is without avail; one 
rather had to resort to ideas from modular localization [34,35,15]. This paved the way for the 
construction of the simpler finite spin sl free fields, including the use of their short distance 
lowering and hence renormalization improving properties in interactions.

In the same work it was also realized that finite spin/helicity sl fields can also be obtained 
in a more direct way by integrating pl fields along semi-infinite lines. This direct construction 
is particularly useful for those sl potentials and their escorts which are linearly related to the 
pl spin s ≥ 1 potentials. Different from the pl potentials which diverge in the massless limit, 
the corresponding sl potentials pass to corresponding finite helicity potentials which have no pl 
counterpart.

An important support for a string-extended QFT comes from work by Buchholz and Fre-
denhagen who used the setting of algebraic QFT [16] to show that models with particle states 

5 The causal separation properties of sl fields are more than enough for deriving linked cluster fall-off properties and 
insure the e-independence of the (on-shell) S-matrix.

6 Recently Rehren showed that infinite spin fields can be obtained in terms of appropriately defined Pauli–Lubanski 
limits of finite spin escort fields [8].
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separated by spectral gaps which fulfill certain consistency properties with respect to the lo-
cal observables always contain interpolating operators localized in arbitrarily narrow spacelike 
cones (whose cores are strings). Perturbative SLFT is more specific by showing that in the pres-
ence of s ≥ 1 particles positivity together with causal localizability leads to noncompact causal 
localization whose tightest localized covariant generating fields are string-local.

The combinatorial nature of perturbation theory per se does not require positivity and works 
also for gauge theory, but without positivity provided by a Wigner–Fock Hilbert space the quan-
tum theory remains incomplete. SLFT reveals among other things that several limitations of 
gauge theory which are the cause of certain No-Go theorems of which the best known is the 
aforementioned Weinberg–Witten No-Go theorem (for a recent survey see [17]) are converted 
into Yes-Go statements in SLFT [11].

SLFT is the only formulation in which state-creating interpolating fields are separated from 
observables by spacetime localization properties. Whereas in the absence of interactions the lo-
calization of free fields associated to a Wigner representation (“kinematic localization”) may be 
chosen at will, that of interacting fields in SLFT is determined by the particle content of the 
interacting theory: observables are pl and interpolating fields are sl.

The space- or light-like interpolating fields can be placed in spacelike separated positions 
which is a prerequisite for the application of the LSZ scattering theory. The particle states in 
which the expectation values of observables are measured are constructed in terms of suitably 
defined large time asymptotic limits to the vacuum. A theorem of large-time scattering theory 
insures that the dependence on the interpolating operator in the large time limit is contained 
in its vacuum-to-one particle matrixelement which is then removed by passing to the correctly 
normalized particle states. This implies in particular that the e-dependence of sl fields does not 
affect particles and their scattering matrix.

The so-called cluster decomposition property of correlation functions of fields plays an im-
portant role in the derivation of scattering properties. It is a consequence of a mass gap and the 
existence of an arbitrary large number of sl fields in relative spacelike position. This applies 
to spacelike strings and (with some stretch of geometric imagination) also holds for lightlike 
strings; it is however violated for timelike strings. In the present work the terminology “nonlo-
cal” is avoided since its historical connotation may hinder to see that these fields can be brought 
into causally separated positions.

The reader is also reminded that the terminology “interaction density” instead of “interacting 
part of a Lagrangian” is not nitpicking; apart from interactions between s < 1 particles, interac-
tion densities constructed from sl Wigner fields are never interacting parts of Lagrangian.

Another important point which requires attention is the fact that the kinematical sl local-
izations of free fields in terms of line integrals over s ≥ 1 pl fields only serves to construct 
interaction densities whose S-matrix is independent on string directions. As mentioned the phys-
ical localization of the corresponding interacting fields is dynamical and generally different from 
that of their free counterpart used in the construction of the interaction density and the S-matrix.

A surprising property of SLFT is that in the presence of s ≥ 1 particles its positivity and 
localization properties determine a unique model in terms of its particle content whenever such 
a theory exists. This is a result of the strong restriction which the string-independence of the 
S-matrix exerts on interaction densities.

The quest for an intrinsic formulation in which the umbilical cord to classical field theory pro-
vided by quantization has been cut is almost as old as QFT. In the first (still pre-renormalization) 
presentation of quantum electrodynamics at an international conference in 1929 [18] Pascual 
Jordan expressed this in the form of a plea for an intrinsic understanding of QFT which avoids 
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the use of “(quasi)classical crutches”; a decade later his former collaborator Eugen Wigner took 
the first step in his famous classification of relativistic particles [19].

The second step was taken two decades later by Rudolf Haag [2] when he proposed an intrinsic 
formulation of QFT in terms of “causal nets of algebras” in which Wightman fields at best play 
the role of “coordinatizations” (in analogy to the use of coordinates in geometry).

With the arrival of the covariant formulation of quantized electrodynamics in the 50s, Jordan’s 
dictum and its partial realization in Wigner’s classification of noninteracting particles faded into 
the background; the new covariant computational rules of quantized electrodynamics took a firm 
hold and as a result the first covariant QFT was a positivity-violating gauge theory.

A somewhat unexpected aspect of these first successful calculations was the contrast between 
the precision of the experimentally verified perturbative results and the robustness of the calcu-
lated results against the use of quite different cutoff- and regularization-prescriptions, or even 
against different ways of implementing Lagrangian quantization (Gell-Mann–Low, Feynman 
path integrals, Bogoliubov’s generating S-functional).

The presence of gauge theoretic indefinite metric degrees of freedom in interaction densities 
involving s ≥ 1 particles led to conceptual problems. A formal proposal to overcome these short-
comings was made by Jordan [20]. It consisted in replacing the gauge dependent matter field7 by 
the formally gauge invariant string-local composite field

�(x) = ψK(x) exp ig

∞∫
0

AK
μ (x0, . . . , x3 + λ)dλ (2)

where the K refers to the gauge dependent Lagrangian field which acts in an indefinite metric 
Krein space which in addition to physical degrees of freedom contains also indefinite metric 
quanta (scalar and longitudinal photons).

After the discovery of renormalized perturbation theory Mandelstam used such representa-
tion as a starting point in his attempt to construct a perturbation theory which avoids the use 
of potentials in favor of working directly with gauge invariant fields [22]. Subsequently Stein-
mann [23] studied the problem of recovering positivity by constructing such fields � in higher 
order perturbation theory. Different proposals to recover positivity can be found in [24]. The con-
structions of such formally gauge invariant composite fields and their renormalization requires a 
lot of additional work and is of little interest unless it leads to new physical insights.

The SLFT perturbation theory in the present paper uses sl potentials with the s-independent 
short distance dimension dsd = 1 which “live” in a physical Wigner–Fock particle space. The 
starting point is the observation that there exist sl vector potentials Aμ(x, e) localized on causally 
separable spacelike strings S = x +R+e which together with their scalar sl “escorts” φ(x, e) are 
linearly related to their pl counterpart simple illustration is provided by the interaction density 
LP = AP

μjμ of massive QED which is related to its pl counterpart as Aμ(x, e) = AP
μ(x) +

∂μφ(x, e).
Its use in an interaction density of e.g. massive QED LP = AP

μjμ results in a relation LP =
L − ∂μφjμ in which the sl density L(x, e) has an improved short distance dimension dsd(L) = 4
(instead of dsd(LP ) = 5) and accounts for the first order contribution to the (on-shell) S-matrix 
in the adiabatic limit S = ∫

L to which the boundary term from Vμ = φjμ does not contribute.
This is in a nut-shell a perturbative implementation of the aforementioned abstract Buchholz–

Fredenhagen theorem; it secures the existence of interpolating sl fields whose directional smear-

7 Jordan used these fields for a pure algebraic derivation of Dirac’s geometric magnetic monopole quantization [21].



B. Schroer / Nuclear Physics B 941 (2019) 91–144 97
ing provides the B-F operators localized in arbitrary narrow spacelike causally separable cones 
and insures that their large-time scattering limits results in e-independent Wigner particles and 
their S-matrix.

The extension of this first order L to higher orders involves time-ordered products in the 
interaction densities L respective LP and leads to new powerful normalization conditions which 
ensure that the two different interaction densities lead to the same S-matrix. As a result of the 
with perturbative order growing number of counterterms, the LP theory by itself is physically 
useless; but being “guided” by the sl L, Vμ pair it becomes a well-defined physically useful 
companion which shares not only its parameters but also its S-matrix and local observables with 
the dsd(L) = 4 SLFT. Its only memory about its “unguided past” is the with perturbative order 
increasingly singular dsd → ∞ short distance dimension of its interpolating fields.

SLFT is an S-matrix theory in the sense that the particle content together with the string-
independence of S determines (in all cases studied up to now uniquely) the form of the interaction 
density. In a second step the construction of the S-matrix is extended to that of pl and sl interact-
ing fields.

Different from Lagrangian quantization the SLFT formalism does not prefer certain fields. All 
interacting fields which act in the same Wigner–Fock space and are members of the same causal-
ity class are on equal footing; which particle they interpolate depends only on the nontriviality 
on their vacuum-to-one-particle matrix elements.

Often new theoretical insights are the result of accidental observations. SLFT is not of this 
kind; what led to it is the rather deep connection of sl localization with modular localization
theory. The terminology “string” used in quantizations of classical actions (Nambu–Goto actions, 
world-sheets, ..) bears no relation to the causal localization of string-local quantum fields in the 
present work.

A definition of causal localization which avoids such misunderstandings is that in terms of 
modular localization. In fact modular localization permits to identify a pre-form of causal lo-
calization already within the Wigner positive energy representation space [25] before “second 
quantization” converts it into the algebraic form of Einstein causality in QFT. This idea paved 
the way for the construction of the QFT behind Wigner’s infinite spin representation.

Modular localization theory can be traced back to the Tomita–Takesaki modular theory of 
operator algebras of the 60s. It is one of a few mathematical theories to which physicists working 
on problems of statistical mechanics of open systems [26] made important contributions. It made 
its first appearance in the context with causal localization in the Bisognano–Wichmann theorem 
[27] which deals with modular properties of wedge-localized algebras. Modular operator theory 
and modular localization requires positivity and hence cannot be applied to GT and Lagrangian 
quantization.

As the result of accommodating thermal aspects and causal localization under one conceptual 
roof, it led to profound insights (thermal properties of “event horizons”) into Hawking’s black 
hole radiation [28]. A first survey about its history enriched by new results was presented by 
Borchers [29].

Modular localization also played an important role in the construction of QFTs from 
S-matrices of integrable models in d = 1 + 1 dimensions [30], [31]. Presently ideas from mod-
ular operator theory are being successfully applied to obtain a foundational understanding of 
entanglement entropy caused by causal localization (for a survey see [32], [33] and references 
therein).

Modular localization theory permits to extend Weinberg’s intertwiner construction to Wign-
er’s infinite spin representations and to obtain explicit expressions for the associated sl fields 
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[34–36], [37]. More recently these fields reappeared as “Pauli–Lubanski limits” of finite spin sl 
fields [8]. This made it possible to investigate physical properties of quantum matter through the 
study of its positivity-obeying causal localization structure and look for theoretical reasons why 
certain types of matter can not be seen in counters [38].

One should also mention a series of more recent publications [39], [40] in which covariant 
wave functions were constructed, but the much stronger result in the aforementioned work was 
overlooked. Relativistic wave equations for infinite spin appeared already in Wigner’s 1948 paper 
([41] 12.1–12.4). These different wave functions describe different covariant bases in Wigner’s 
irreducible representation space. But for studying physical manifestations of matter one needs to 
know its causal localizability which in case of infinite spin does not follow from covariance and 
needs the use of modular localization theory as used in the cited 2006 papers. In this way the 
1970 No-Go theorem [14] which excluded point-like localization was replaced by a sl Yes-Go 
theorem.

In fact the exclusion of linear pl fields is part of a more general No-Go theorem which rules 
out the possibility of constructing pl composites from the linear sl infinite spin fields. In its most 
general form the theorem excludes the existence of operator algebras localized in finite spacetime 
regions [42].

These theorems against pl localization of infinite spin matter may be seen as an extreme coun-
terpart of the Weinberg–Witten No-Go theorem against the existence of higher helicity conserved 
currents and energy-momentum tensors. The difference is that there still exist W-W local charges, 
whereas in case of infinite spin there are no nontrivial operators localized in finite regions.

Recall that the raison d’être of a relativistic quantum field theory (for the difference between 
QFT and relativistic QM, see section 3 in [43]) is the realization of the “Nahewirkungsprinzip” 
(action in the neighborhood principle) of Faraday and Maxwell which culminated in Einstein’s 
concept of relativistic covariance and causal localization. The positivity requirement of quantum 
probability turns the construction of models of QFT into a challenging problem which gauge 
theory did not solve.

It is the aim of this work to show how the recent SLFT formulation solves problems which 
have remained outside the range of GT (for a review of such problems see [17]). In [10], [11]
this was already achieved for the problem behind the Weinberg–Witten (W-W) No-Go theorem 
[9] and the s = 2 van Dam–Veltman–Zakharov (D-V-Z) discontinuity [12,13]. Here we add the 
causality problems raised by Velo and Zwanziger (V-Z) [44].

SLFT’s central point is however the presentation of a sl-based perturbation theory which in 
contrast to gauge theory preserves the Hilbert space positivity (no indefinite metric- and ghost-
degrees of freedom) without destroying the causal separability of fields. It leads in particular to 
interesting different physical interpretations of interactions between vector mesons and Hermi-
tian fields (Higgs models, but no SSB Higgs mechanism) [45].

The content of this paper is organized as follows.
The next section recalls and extends recent (partially already published) results concerning 

the construction of causally separable string-local free fields. It consists of 4 subsections which 
includes the construction of sl massless vector potentials and their canonically related massive 
counterpart.

The third section addresses the problem of interactions with external potentials. It is shown 
that the origin of the Velo–Zwanziger causality problem is the incorrect expectation that by mod-
ifying free field equations by adding linear couplings to external potential one preserves causality 
in the sense of causal propagation of Cauchy data. The solution of the V-Z problem has a close 
formal proximity to the solution of the Weinberg–Witten problem in [11].



B. Schroer / Nuclear Physics B 941 (2019) 91–144 99
Section 4 provides some background about modular localization. Its aim is to show that causal 
localization is incompatible with any form of quantization but important for understanding prop-
erties of causally localized quantum matter.

In section 5 the SLFT renormalization theory is applied to calculation of the S-matrix in vari-
ous models involving vector mesons including some speculative remarks on s ≥ 2 interactions.

Section 6 addresses problems of interacting sl fields in particular the model-dependent dis-
tinction between pl observables and sl interpolating fields.

The concluding remarks in section 7 summarize the new insights and present an outlook.

2. String-local tensor potentials and conservation laws

This section provides the kinematical prerequisites of SLFT i.e. the construction of those sl 
free fields which are used in later sections for the calculation of the S-matrix and interacting 
fields. The kinematic localization of free fields is not the same as the dynamic localization of 
their interacting counterparts (section 6).

2.1. Massless string-local potentials

The fact that even in the absence of interactions massless gauge potentials have no positivity-
maintaining pl counterpart led to a more foundational re-thinking regarding the relation between 
positivity and causal localizability for which the solution of the massless infinite spin problem in 
terms of sl fields served as a role-model [34,35]. The finite helicity problem is simpler since in 
this case there exists only one covariant family of sl potentials Âμ in the Wigner–Fock helicity 
Hilbert space whose field strength is the pl field strengths

∂μÂν(x) − ∂νÂμ(x) = Fμν(x) (3)

They have the form of a semi-infinite line integrals (strings, rays)

Âμ(x) = Aμ(x, e) :=
∫

Fμν(x + λe)eν =: (IeFμν)(x)eν (4)

U(a,�)Aμ(x, e)U(a,�)∗ = (�−1)νμAν(�x,�e)

with e representing a space- time- or lightlike vector which participate in the transformation 
under the homogeneous Lorentz group. Causal localizability requires the possibility of placing 
an arbitrary large number of such sl fields in relative spacelike separated positions (denoted 
as ×). This excludes the timelike case but permits space- and light-like strings8

[
Aμ(x, e),Aμ(x′, e′)

] = 0, x +R+
0 e×x′ +R+

0 e′ (5)

Spacelike unit vectors e with e2 = −1 are points on the d = 1 + 2 unit de Sitter space, whereas 
lightlike vectors e with e2 = 0 may be identified with points on the two-dimensional celestial 
sphere. A closer examination shows that line integrals of massless field strengths along lightlike 
lines are ill-defined (see below) but well-defined (as distributions in e) for spacelike e; time-like 
lines would violate causal separability.

8 This is less obvious in the lightlike case.
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The derivation of nonperturbative theorems (PCT, Spin&Statistics, cluster properties, LSZ 
scattering theory, ..) does not need pl fields; what is important is the preservation of causal sep-
arability i.e. the fact that one can place an arbitrary number of sl fields into relative spacelike 
position.

The mathematical status of sl fields requires a more careful look at their singularity structure. 
For this purpose it is convenient to compute their 2-point function (2-pfct). Starting from that of 
the field strengths

〈
Fμν(x)Fκλ(x

′)
〉 = ∫

e−ip(x−x′)MFμν,Fκλ(p)dμ0(p), dμm(p) = d3p

2
√ �p2 + m2

(6)

MFμν,Fκλ(p) = −pμpκgνλ + pμpλgνκ − pνpκgμλ + pνpλgμκ

and, using the fact that the λ-integration amounts to the Fourier transform of the Heavyside 
function and hence leads to distribution (pe)−1

iε = limε→0(pe + iε)−1 as boundary values of 
analytic functions, one obtains [11]

〈
Aμ(x,−e)Aν(x

′, e′)
〉 = ∫

e−ip(x−x′)MAμ,Aν (p, e, e′)dμ0(p) (7)

MAμ,Aν (p, e, e′) = Eμν(−e, e′) = −ημν + pμeν

(pe)iε
+ e′

μpν

(pe′)iε
− (ee′)pμpν

(pe)iε(pe′)iε
where the tensor Eμν turns out to be an important building block of higher helicity 2-pfcts. The 
scaling degree dsd is defined as the leading short distance contribution λ−2dsd of the 2-ptfct under 
the scaling ξ → λξ , ξ = x − x ′ for λ → 0 and can be directly read off from the large momentum 
behavior. Whereas dsd(F ) = 2, the line integration lowers the degree to dsd(A) = 1.

A more detailed study shows that sl potentials and their 2-pfcts are well-defined as distribu-
tions in e, e2 = −1 (the unit de Sitter space) and x. All operators and correlation function are 
of homogeneous degree zero and hence the de Sitter differential can be written in the covariant 
form de = deμ

∂
∂eμ

. For lightlike e′s and m > 0 the last term in (7) vanishes for e′ = −e and 
the distributional dependence of Aμ(x, e) on e changes to that of a function so that a directional 
testfunction smearing in e is not necessary. The identification of e′s in products of fields leads 
to a significant notational simplifications in perturbative calculations. The existence of momenta 
for which p is parallel to e excludes however massless limits lightlike strings.

For the timelike directions the denominators never vanish and no smearing is needed, but 
the causality requirement, namely the existence of an arbitrary number of causally separated sl 
fields, cannot be satisfied. Hence the choice e = e0 = (1, 0, 0, 0) leads to the nonlocal Coulomb-
(or radiation-) potential with AC

0 = 0 and spatial components

M
AC

i AC
j = δi,j − pipj

p2 (8)

“Freezing” this timelike string direction destroys the covariant transformation and one obtains 
a noncovariant inhomogeneous transformation law in which only the rotations and translations 
maintain their covariant appearance (see (12) below). Full covariance can be restored by letting 
the timelike direction participate in the Lorentz transformation, but the loss of causal localization 
remains. The Coulomb potential is used in quantum mechanics where relativistic covariance and 
causality play no role.

It is interesting to note that the Coulomb potential results also from averaging a spacelike 
string over spatial directions in the t = 0 plane orthogonal to the timelike e0 vector. There is no 
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direct way to undo this directional averaging; one rather has to return from AC to its covariant 
field strength F and obtain the associated sl potential as in (4). This directional averaging reveals 
a close formal connection between the axial- and Coulomb-“gauge”. Both potentials exist in the 
same Wigner–Fock helicity space, but only the covariant sl potential (4) is manifestly causal.

The use of sl potentials turns the so-called noncovariant axial- and lightcone-gauges into better 
manageable covariant Einstein-causal fields which act in a positivity maintaining Hilbert space.

It should be mentioned that in the literature the terminology “gauge” is used with two different 
meanings. In the covariant setting of QED perturbation theory it refers to a formal symmetry 
whose generator is a “gauge charge” which depends on unphysical indefinite metric degrees of 
freedom. On the other hand the Coulomb- or axial-gauge contains only the two helicity h = ±1
degrees of freedom and there is no symmetry-implementing gauge charge, although the additive 
contribution to the Lorentz transformation looks like a non-covariant gauge transformation (12)
re-expressing the Lorentz-transformed e = �e0 in terms of original e0.

It is not the aim of this work to change historically grown terminology. Here the terminol-
ogy “gauge” is exclusively used the situation in which unphysical degrees of freedom provide a 
covariant “gauge symmetry”. Quantum gauge symmetry is not a physical symmetry (and conse-
quently there is no physical sense in which it can be broken) but rather a formal tool to extract a 
physical theory as a subtheory from an unphysical formalism.

The large momentum behavior of the 2-pfct determines the short distance behavior of the field 
whereas the distributional behavior in e depends on the dimensionality of spacelike e-directions 
on which pe vanishes. The case of lightlike e′s is a bit more tricky. For massive p the pe denom-
inator does not vanish since p and e only touch at lightlike infinity and as a result the sl fields are 
functions in e.

This changes in a radical way for massless p; in that case for each e there are lightlike p′s on 
which pe vanishes and as a result massless fields localized on lightlike strings do not even exist 
in the sense of distributions.9 Lightlike sl fields have an interesting connection with light-cone 
quantization. In the massless case they reveal in a much clearer way the problematic nature of 
“lightcone quantization” [46].

The main purpose of this work is to offer a positivity- and causality-preserving alternative 
to gauge theory which avoids the use of the quantization parallelism to classical field theories 
by starting from Wigner’s manifestly positivity-preserving particle representation theory. The 
important point is that spacetime localization properties already exist in the pre-form of modular 
localization within Wigner’s particle theory. They can be used to construct pl or sl intertwiner 
functions which convert Wigner’s creation and annihilation operators into covariant pl or sl free 
fields.

The perturbative construction of the S-matrix and of interacting sl fields does not need mod-
ular localization theory. For problems as localization entropy [33], [32] and nonperturbative 
constructions [31] its use is however indispensable. In the context of the present paper its im-
portance is based on pinning causal localization to quantum positivity; whereas Lagrangian 
quantization of fields allows the presence of unphysical degrees of freedom, modular localization 
excludes them. More remarks on modular localization will be deferred to section 4.

The construction of sl potentials in terms of pl field strengths (4) permits an iteration to a 
scalar potential �

9 I am indebted to Henning Rehren for drawing attention to the nonexistence of massless lightlike string localized 
fields.
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Aμ(x, e) − Aμ(x, e′) = ∂μ�(x, e, e′), � = (Ie′IeFμν)(x)eμe′ν (9)

The � represents a field which is localized on the 2-dimensional conic region λe + λ′e′, λ,

λ′ ≥ 0. In the massless limit this flux � is logarithmically divergent. The logarithmic divergence 
is expected to lead to an e, e′ dependent continuous set of superselection rules which extend the 
Wigner–Fock helicity space.

This is reminiscent of the behavior of the exponential of a massive scalar free field in d = 1 +1
in the massless limit10 which played an important role in the work on “bosonization” of mass-
less fermions and anyons [48]. In that case the massless limit of the properly mass-normalized 
exponentials leads to the superselection property

〈
eia1ϕ(x1) . . . eianϕ(xn)

〉
= 0 if

n∑
1

ai �= 0, (10)

corresponding to ai -“charge” conservation.
The “photon cloud” in the e-direction associated with exp igϕ is expected to cause a direc-

tional superselection rule which appears in the form of eigϕψ in the large time behavior of electric 
charge carrying fields and causes the modification of LSZ scattering theory. In this way one 
may hope to obtain a genuine spacetime understanding of the infrared momentum space recipes 
in [49].

The interest in this problem is also motivated by the existence of rigorous results derived 
from an appropriate formulation of the quantum Gauss law [50]. This theorem states that in-
teracting electric charge-carrying operators ψ are accompanied by spacelike extended “photon 
clouds” whose different asymptotic conic directions correspond to a continuum of superselec-
tion sectors within the same charge-carrying sector. This is the cause a spontaneous breaking of 
Lorentz symmetry [51].

The existence of a continuum of superselection sectors for free photons would suggest the 
existence of large time asymptotic charge-carrying matter fields of the form ψ0e

ig� with ψ0 a 
free matter field. Their large time asymptotic behavior is expected to play an important role in 
a future spacetime understanding of infrared properties which is outside the physical range of 
gauge theories.

For many applications it is useful to encode change in e (9) into changes of the Lorentz 
transformation law. A differential relation which is the basis for such conversion has the form 
([11] Corollary 3.3)11

deAμ(x, e) = ∂μu(x, e), de =
∑

i

dei
∂ei (11)

where u is an exact de Sitter one-form u = deφ. This conversion of directional de Sitter differ-
entials into x-derivatives plays an important role in passing from interactions in the presence of 
a mass gap to their massless limit.

In the present context the formula for the change of e′s can be used to compute the additive 
change which is necessary in order to maintain the timelike e0 direction of the Coulomb potential 
AC

i , AC
0 = 0. The resulting affine transformation formula

10 This infrared behavior was first observed in the coupling of a d = 1 + 1 current to the derivative of a massless scalar 
field (“infraparticle” [47]).
11 As mentioned therein this remains well defined since sl fields and their correlation functions are homogeneous func-
tions of degree zero in e and p.
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U(a,�)AC
i (x)U(a,�)∗ = (�−1)i

lAC
l (�x + a) + (�−1)i

μ∂μχ(x) (12)

is equivalent to that obtained by starting from the Wigner helicity representation and using trans-
verse polarization vectors [3].

A similar situation arises if one fixes an “axial” direction as e.g. e = (0, 1, 0, 0). In this case 
the causal localizability is preserved in both descriptions. Ignoring the spacetime localization 
aspect and treating the axial direction as a noncovariant gauge misses the necessity of directional 
smearing (smearing around a point in de Sitter space) and probably contributed to the abandon-
ment of the “axial gauge fixing”. But what became a curse in the axial gauge fixing turns out to 
be a blessing in the covariant SLFT setting.

Covariant gauges as used in covariant perturbation theory always require the presence of 
ghost-extended indefinite metric BRST degrees of freedom setting which reduces the physical 
range. SLFT cuts the umbilical cord between perturbative Lagrangian quantization and classical 
gauge theory and restores positivity.

2.2. A brief interlude, relation with concepts of algebraic QFT

The simplest illustration of the interplay between positivity and causality is provided by the 
Aharonov–Bohm effect. To see this recall that Einstein causality is the statement that the algebra 
of operators localized in the causal complement O′ of a spacetime region O belong to the com-
mutant A(O)′ algebra (the von Neumann algebra which consists of all operators which commute 
with A(O))

A(O′) ⊆A(O)′ or A(O) ⊆A(O′)′, Einstein causality (13)

A(O′) =A(O)′, Haag duality

The second line defines the somewhat stronger Haag duality which states that an operator which 
commutes with all operators localized in the causal complement of O must belongs to A(O).

Einstein causality is a defining property of relativistic QFT, but Haag duality may be violated. 
In the absence of interactions such a violation can be excluded for massive QFT’s but it does 
occur in the massless case when the 2s + 1 spin degrees of freedom are converted into the ±h

helicities. As observed in [52] (unpublished) Haag duality, which holds for simply connected 
spacetime regions, is violated for multiply connected regions as (genus one) tori.

In their proof the authors carefully avoid the use of gauge potentials associated to m > 0
massive is a property (g ≥ 1 tori). This violation is an intrinsic property of the operator algebra 
generated by the field strength Fμν of the h = 1 Wigner representation. But if one wants to under-
stand this in terms of vector potentials one must use the positivity-maintaining sl potentials which 
preserve a somewhat hidden topological properties of Wilson loops which cause the breakdown 
of Haag duality while it upholds Einstein causality [45]. The indefinite metric potentials cannot 
distinguish between the two; only the localization in the presence of positivity is physical.

The cause of “eeriness” about the Aharonov–Bohm effect [53] (but also of its popularity) is 
that we erroneously interpret the intuitively accessible geometric Haag duality with the more 
abstract Einstein causality, thus forgetting that the latter also admits operators which have no 
unambiguous causal localization region (e.g. the magnetic flux through a surface with a fixed 
boundary). The ideal solenoid in the A-B setup closes at spacelike infinity, which in the confor-
mal Wigner–Fock helicity world is a circle. In case of a finite tube one must place the electric 
circuit into a region of little magnetic backflow from north- to south-pole.
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This is a strong reminder that it is not possible to separate causality from positivity and a 
warning not to confuse the “fake localization” of gauge dependent objects with genuine causal 
localization of quantum matter. It points to a potential source of misunderstanding involved in 
transferring the perfectly reasonable classical notion of local gauge symmetries to QFT by at-
tributing a physical meaning to the formal observation that quantum gauge charges are “more 
local” than those corresponding to internal symmetries. It is also a reminder to rethink the phys-
ical meaning behind the terminology “gauging a model”.

From (11) it follows that a Wilson loop12 formed with Aμ(x, e) is independent of the choice 
of the direction e [45]. However it retains a topological memory of the string directions of the 
integrand which prevents a naive materialistic identification with a localization in a torus. One 
can choose e′s in such a way that this extension is spacelike with respect to any simply connected 
convex compact region.13 Yet it is not possible to completely forget that the vector potential has a 
directional e-dependence. An elegant formulation of this h ≥ 1 topological phenomenon directly 
based on field strengths and their duals in terms of “linking numbers” can be found in [54].

2.3. Massive string-local potentials

Before passing to the construction of massive sl fields it is helpful to recall the construction 
of their pl intertwiner functions v(p) which convert the m > 0 Wigner creation and annihilation 
operators a#(p, s) into covariant [3]. For the s = 1 Proca field they are the three polarization 
vectors vμ(p, s3) obtained by applying a rotation-free Lorentz boost to the spatial coordinate 
unit vectors. By definition they are Minkowski-orthogonal to pμ and hence correspond to the 3 
polarization vectors v obeying the completeness relation

1∑
s3=−−1

vμ(p, s3)vν(p, s3) = −ημν + pμpν

m2

MAP
μ,AP

ν (p) = −πμν(p), πμν(p) = ημν − pμpν

m2

where the πμν of the momentum space 2-pfct which also turns out to be the basic building block 
of all higher spin massive tensor potentials.

With a pl Proca potential Ap
μ one may associate two sl fields, the scalar sl field φ defined in 

terms of a line integral Ie of the e-projected Proca field AP
μeμ along e starting from the point x

φ(x, e) = (IeA
P
μ)(x)eμ, a(x, e) = −mφ(x, e) (14)

and the sl vector potential Aμ in terms of the field strength of the Proca potential

Aμ(x, e) = (IeFμν)(x)ev, Fμν(x) = ∂μAP
ν − ∂νA

P
μ (15)

whose massless limit coincides with (4).
The multiplication with m in (14) restores dcl = 1 and removes the mass singularity, so that 

the m = 0 limit is an e-independent massless scalar dsd(a) = 1 free field. In fact for all massive 
or massless sl tensor potentials dsd = 1 and 3/2 for halfinteger s whereas their pl counterparts 
increase linearly as dsd = s + 1 or dsd = s and diverge like m−s for m → 0.

12 By convoluting with a test function one can convert the Wilson loop integral into an operator localized on a solid 
torus.
13 In case the solenoid has open ends the Wilson loop should avoid the region of the north–south magnetic backflow.
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In particular the momentum space 2-pfct of the massive field strength and its massless asso-
ciated sl vector potential are identical to their massless counterparts. This permits to lower the 
number of degrees of freedom by passing from p ∈ H

↑
m to p ∈ V ↑ (and its “fattening” inver-

sion, see below). In the pl setting this is not possible or can only be achieved in the presence of 
indefinite metric degree of freedom (the DVZ discontinuity, the WW problem).

It is instructive to look at this degree of freedom balance in more detail [10,11]. With the help 
of a p-dependent 4-matrix J (complex conjugation changes the sign of e, tr = transposed)

Jμ
ν(p, e) = ημ

ν − pμeν

(pe)iε
, J (p,−e) = J (p, e) (16)

MAμ(−e),Aν(e) =: Eμν(e, e) = (JπJ tr )μν

the in e diagonal momentum space 2-pfct takes the form of the second line.14 It shows that the 
positivity of the sl 2-pfct is inherited from the pl positivity. The rank of the E-matrix accounts 
for the degrees of freedom is 3 as a result of J tre = 0 and the additional relation Eμνp

ν = 0 for 
p ∈ V + leads to a reduction from the three spin component to the two helicities h = ±1. This 
degree of freedom counting breaks down in the presence of indefinite metric.

This descend from p ∈ H
↑
m to V + permits an inversion, namely by continuous passing from 

momenta p ∈ V + to the mass shell H+
m (“fattening”) one creates a new physical degree of free-

dom which together with former ±1 accounts for the 3 degrees of freedom of spin s = 1. Such 
“magical” conversion of the particle content of two inequivalent Wigner representations can nei-
ther be achieved in terms of pl fields (no massless limit) or become contaminated by the presence 
of indefinite metric causing and ghost degrees of freedom of gauge theory. This is of particular 
interest in case of s = 2 [10,11] (see below). The use of sl fields is even more important for 
passing to the massless limit in the presence of interactions involving higher spins.

In the literature the terminology “fattening” had been used in connection with the Higgs model 
which describes the interaction between a massive vector meson with a massive real scalar 
field H as the result of spontaneous breaking of gauge symmetry (the Mexican hat potential). 
This idea contains two conceptual misunderstandings (which will be commented on in section 5
and the concluding remarks).

The real power of SLFT emerges in models of selfinteracting massive vector mesons where 
the preservation of 2nd order renormalizability requires the compensatory presence of a coupling 
to a Hermitian scalar H (Higgs) field15 and imposes a Lie-algebra structure on the leading terms 
in the Aμ self-interactions. In section 5 we will provide the arguments.

An important property of the previously introduced pl and sl vector potential and its scalar 
escort φ(x, e) is their linear relation

Aμ(x, e) = AP
μ(x) + ∂μφ, φ = − 1

m
a (17)

This property justifies to call the φ′s “escorts” of the sl potential, they share the same degrees 
of freedom. The appearance of the escort in form of a derivative is a consequence of Poincaré’s 
lemma. The linear relation between fields corresponds to that between intertwiners (J as before):

Jμ
νvν(p) = vν − pμ

(ve)

(pe)iε
(18)

14 Taking the same e would lead to the distributionally ill-defined denominator pe−iεpeiε .
15 This (and not SSB) is the raison d’être for the H (section 5).
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which follows directly from the definition (15). Each field contains the full information of the 
(m, s = 1) Wigner representation; the encoding of s = 1 into a scalar is only possible within sl.

It is not accidental that the massive vector potentials which result from “fattening” their unique 
massless counterpart play a distinguished role in the new SLFT renormalization theory. Their 
smooth connection represents the higher spin analog of the smooth relation between s < 1 mass-
less fields and their massive counterpart. The weakening of localization is necessary to preserve 
this smoothness in the presence of change of the number of degrees of freedom.

In the massless limit the AP
μ(x) and φ(x, e) diverge as m−1 whereas the Aμ(x, e) and a(x, e)

stay infrared finite. The relation (u was introduced in (11))

∂μAμ = −ma, deAμ = ∂μu (19)

u = −m−1dea (20)

leads to a divergence-free massless vector potential (Lorentz condition16) and a relation between 
two massless 1-forms in the de Sitter space of spacelike directions (that which remains of (17)). 
The purpose of the mass factors is to preserve the relation dsd = dcl for all sl fields. The massless 
limit of u is logarithmically divergent.

Escorts (whose number increase with s) do not contain new degrees of freedom since, as the 
pl AP , they are linear in the Wigner s = 1 creation/annihilation operators a#(p, s3) and only 
differ in their intertwiners. Rearrangements of degrees of freedom are quite common in quantum 
mechanical many-body problems.17 Escorts are rearranged s = 1 degrees of freedom which carry 
the full content of (m > 0, s) Wigner representations.

For s ≥ 2 the sl fields lead to new properties. As a result of a possible relation with gravitation 
the case s = 2 is of special interest. The intertwiner of spin s Proca potentials (the P in AP

... refers 
to Proca or alternatively to pointlike) must be a divergence- and trace-free symmetric tensor; 
this is a consequence of the way the 2s + 1 component subspace of spin is embedded in the 
3s-fold tensor product. Hence the intertwiners vμ1...μs (p, s3) convert the symmetric trace-free 
s-fold tensor product of three-component spin 1 polarization vectors into covariant tensors of 
tensor-degree s.

For the momentum space s = 2 2-pfct one obtains

MAP
μν,AP

κλ (p) = 1

2

[
πμκπνλ + πμλπνκ

] − 1

3
πμνπκλ (21)

where the numerical factors have their combinatorial origin in the symmetry and tracelessness 
and hence depend on the degrees of freedom. The sl 2-pfcts are of the same algebraic form and 
result by substituting πμν → Eμν(−e, e) [10,11]. As for s = 1 this can be seen by passing from 
the Proca potential to the field strength (as stands for antisymmetrization)

Fμ1ν1μ2ν2 = as
μ↔ν

∂μ1∂μ2A
P
ν1ν2

(22)

and using the two-fold momentum space I operation to pass from the field strength to the poten-
tials. Note that the symmetry of the Proca potential reduces the anti-symmetrization to a pairwise 

16 Note that this is an operator identity and not an imposed gauge condition.
17 A well-known case is the appearance of Cooper pairs encounters in passing to the low temperature superconducting 
phase. Without this rearrangement classical vector potentials would not become short range inside a superconductor (the 
London effect).
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operation μi ↔ νi . The resulting permutation properties of the resulting F are those of the lin-
earized Riemann tensor.

The new phenomenon for s > 1 is that the massless limit of this field strength is not the same 
as that obtained directly from the massless h = ±2 Wigner representation. Correspondingly the 
sl potential associated with the massless limit of F s=2 is different from that of F |h|=2

Aν1ν2(x, e) = (I 2
e F s=2

μ1μ2ν1ν2
)(x)eμ1eμ2 (23)

A(2)
ν1ν2

(x, e) = (I 2
e F |h|=2

μ1μ2ν1ν2
)(x)eμ1eμ2 (24)

This means in particular that the massive s = 2 sl potential obtained by fattening the A(2) is 
not the same as A although both account correctly for the 2s + 1 spin degrees of freedom and 
share their Wigner–Fock Hilbert space. The massless limit of A splits into the direct sum of the 
two |h| = 2 degrees of freedom and the h = 0 contribution which is the remnant of the s3 = 0
component. Conserved currents and stress–energy tensors preserve the number of degrees of 
freedom by converting the ±s3 components into |h| = s3 helicities of a Wigner–Fock tensor 
product space.

In order to show how these results are related to the van Dam–Veltman–Zakharov disconti-
nuity problem one must look at some details. Whereas fattening and taking the massless limit 
connect the 2-pfct of the 2-component massless helicity |h| = 2 potential A(2) with that of its 
5-component s = 2 by deforming the momenta of the 2-pfct between H↑

m and V ↑, the massless 
limit of A is a cul de sac from which a return to the original massive pure s = 2 tensor potential 
is not possible.

The relation between the massless limit of A with that of A(2) are easily seen to have the 
following form

A(2)
μν (x, e) = Aμν(x, e) + 1

2
Eμν(e, e)A

(0)(x, e) (25)

Eμν(e, e) = ημν + (eμ∂ν + eν∂μ)Ie + e2∂μ∂νI
2
e

where the momentum space Eμν has been rewritten as an integro-differential operator acting on 
a scalar sl field and the massless limit of A(0) is a (properly normalized) scalar escort. Combining 
this relation with that between the s = 2 pl field AP , its sl counterpart A and the derivatives of 
escorts (the s = 2 analog of (17)) one obtains

AP
μν = Aμν + derivatives of escorts

one concludes that in the adiabatic limit the interaction between “massive gravitons” and a trace-
free energy-momentum tensor source Tμν is [35]

lim
m→0

∫
AP

μνT
μν = lim

m→0

∫
AμνT

μν =
∫

(A(2)
μν − ημν√

6
ϕ)T μν (26)

where ϕ(x) =
√

3

2
lim
m→0

a(0)(x, e) (27)

The independence of the integrated massless A(2) contribution from the string direction follows 
from

∂eκ A
(2)
μν = m−1(∂μA(2)

κν + ∂νA
(2)
μκ) (28)

∂eκ Jμ
ν = − pμ

(pe)iε
Jκ

ν
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which in turn follows from the identity in the second line (for more details see [11]) and repre-
sents the s = 2 counterpart of the relation between de Sitter space 1-forms in (19).

The result confirms the van Dam–Veltman–Zakharov discontinuity: the massless limit of mas-
sive gravity differs from the result obtained directly with massless gravitons. But different from 
Zakharov’s calculation which identifies this contribution as being the relic of a unphysical gauge 
theoretical degrees of freedom, the present calculation shows that it is really the massless foot-
print of the physical s3 = 0 spin component. For the traceless stress–energy tensor of photons the 
last contribution vanishes whereas for couplings to matter (mercury perihelion) it remains.

This calculation permits a straightforward extension to any spin. The relation between the 
Proca potential, its sl counterpart and the associated sl escorts reads

AP
μ1...μs

= Aμ1...μs + sym.(∂μ1φμ2...μs + ∂μ1∂μ2φμ3... + · · · + ∂μ1 . . . ∂μs φ) (29)

where the φμ1...μi
is an s − i fold iterated line integral along e of the spin s Proca potential 

and the symmetrization is over all indices and the φ are already symmetric by construction. 
For our purposes it is more convenient to use a different basis of escorts which are obtained by 
descending from the sl Aμ1...μs in terms of divergences

AP
μ1...μs

= Aμ1...μs − sym.(
∂μ1

m
a(s−1)
μ2...μs

+ ∂μ1∂μ2

m2 a(s−2)
μ3...

+ · · · + ∂μ1 . . . ∂μs

ms
a(0)) (30)

ma(s−r)
μr ...μs

= −∂μa(s−r+1)
μμr ...μs

, a(s)
μ1...μs

:= Aμ1...μs

The second line shows that the a escorts start from the sl potential and descend by differentiation 
instead of descending from AP by line-integration. The a has the same dimension dsd = 1 =
deng, dinf r = 0, and are linear combinations of the φ escorts. As long as m > 0 each escort 
carries the full content of the Wigner spin s representation.

Although the a′s have a massless limit they still do not decouple. The van Dam–Veltman–
Zakharov discontinuity shows that for s = 2 the |h| = 2 and h = 0 contributions stay together 
and have to be separated with the help of an integro-differential operation (25). The analogous 
situation in the general case is that the even and odd s3 contributions remain coupled among 
themselves and can only be split in terms of their helicity content by the use of such integro-
differential operations [11]. Naturally one can obtain a spin s vector potential from fattening a 
massless helicity h potential if h = s.

The tensor vμ1..μ|h|(q, e) which appears in the relation of the helicity h tensor field A(|h|)
μ1..μ|h|

and the Wigner operator a#(q, h) (which extends the construction of A(2)
μν in (25) to arbitrary 

helicity h). This e-dependent polarization tensor v..(q, e) replace the only up to re-gauging de-
fined polarization tensor. If used in Weinberg’s soft scattering limit of a massless particle with 
momentum q scattering on n massive particles with momenta pi, i = 1, ..n [17, 4.1], one obtains 
the same conclusions except that the gauge theoretic argument is replaced by the e-independence 
which follows in first order from the fact that the directional derivative with respect to e on these 
polarization tensors can be written as a spacetime derivative ∂μ acting on such a tensor in anal-
ogy to (11). The use of sl polarization tensors instead of gauge symmetry is required by using 
positivity which guaranties the exclusive appearance of physical degrees of freedom.

The weakness of Lagrangian constructions of conserved currents and stress–energy tensors is 
that with the exception of low spins there is no guaranty that the so obtained classical expressions 
have the correct commutation relations with the quantum fields. It is much safer and easier to 
start from the commutation relations between Wigner’s generators of the Poincaré group and the 
Wigner particle operators a#(p, s3) and to rewrite them with the help of the intertwiners into 
covariant commutation relations.
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2.4. Infinite spin revisited

A simple illustration of such an “intrinsic quantum” construction of the stress–energy tensor 
has been recently presented in [8]. One starts from the expressions of the infinitesimal generators 
of translation Pμ and Lorentz generators Mμν in terms of the Wigner operators a#(p, s3)

Pμ =
∫ ∑

s3

a∗(p, s3)pμa(p, s3)dμ(p) (31)

Mμν = −i

∫
(δs3s

′
3
p ∧ ∂p + d(ω)t

s3s
′
3
)μνa

∗(p.s3)a(p, s′
3)dμ(p) (32)

The first step is to rewrite the contribution of the spin component ss to Pμ as

Pμ =
∫∫

dμ(p)dμ(p′)
∑
s3,s

′
3

(pμa∗(p, s3)δs3s
′
3
(2π)3δ(p − p′)(p10 + p20)a(p′, s′

3) (33)

(2π)3δ(p − p′) =
∫

e−i(p−p′)xd3x =
∫

e−i(p−p′)xd3x (34)

where in the second line used the cancellation of the p0 components.
What remains to do is to convert the Wigner operators via intertwiners into the covariant 

fields. For this one uses their completeness relation in order to write the unit operator in spin 
space as

gMNνMs3νNs′
s
= δs3s

′
3

where M and N represent the multi-tensor indices of the intertwiner. What remains is to use 
the Fourier transform (34) and pass from the Wigner operators to the fields. Using the fact that 
the a∗a∗ and aa contributions vanish as a result of the presence of

←→
∂ 0 and that aa∗ terms are 

absent in Wick-ordered products one verifies that

Pμ =
∫

T̃μ0(x)d3x, T̃μν(x) = −1

4

∫
: AP

μ1..μs
(x)

←→
∂ μ

←→
∂ 0A

P,μ1..μs (x) : (35)

where T̃μν is a contribution to the stress–energy tensor.
The full tensor density which generates all Poincaré transformations is of the form

Tμν = T̃μν + ∂ρ�μν,ρ (36)

To compute the second contribution, which is also a bilinear expression in the AP tensor fields, 
one starts from the bilinear expression for Mμν in terms of the a# Wigner operators which also 
contains a contribution the infinitesimal part of Wigner’s little group. The representation of the 
Poincaré group generators in terms of pl stress–energy tensors may be rewritten in terms of 
their sl counterparts [11]. For recent results about constructing infinite spin fields and their E-M 
tensors as Pauli–Lubanski limits we refer to [8].

Rehren’s construction of infinite spin quantum fields in terms of the Pauli–Lubanski limit is 
the most natural one; it corresponds to the use of the distinguished tensor potentials obtained 
by fattening its unique massless counterpart at fixed spin, except that it goes into the opposite 
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direction at fixed P-L parameter.18 The tensor field disappears in this limit and what remains 
(after appropriate adjustments) is the infinite family of escorts with arbitrary high tensor degree.

The nonexistence of the infinite spin tensor potential Aμ1μ2...∞ accounts for the absence of 
a relation which converts the differential de into a spacetime divergence as well as the absence 
of a gauge theoretic formulation. This is the reason why infinite spin matter cannot interact with 
ordinary quantum matter [38].

Of physical relevance is the existence of conserved currents and energy-momentum tensor in 
the sense of bilinear forms [8]. Hence expectation values of E-M tensors and possible gravita-
tional backreaction remain physically meaningful.

3. Causality and the Velo–Zwanziger conundrum

The Velo–Zwanziger conundrum is an alleged causality paradox which arose from the naive 
expectation that s ≥ 1 quantum fields, whose free field equations are modified by linear pl cou-
plings to external potentials, maintain their causal propagation. Formally it is closely related with 
the Weinberg–Witten No-Go theorem which excludes the existence of higher helicity conserved 
pl currents. This connection turns out to be useful for the solution of the V-Z conundrum.

3.1. Recalling the solution of the Weinberg–Witten problem and the associated local charges

In [11] it was shown that for massive s ≥ 1 free field one can construct sl tensor potentials 
whose associated conserved sl currents have finite massless limits even when according to the 
Weinberg–Witten (W-W) theorem physical (gauge-invariant) pl currents do not exist.

In the massive case both the pl and sl currents are members of the same local equivalence 
class which consist of all Wick-ordered composites of pl fields and their related sl counterparts. 
Their relative causality reads[

jP
μ (x), jν(x

′, e)
]

= 0 f or x×S(x′, e), S(x′, e) = x′ +R+e, e2 = −1 or 0 (37)

Their charge-densities differ by spatial divergences and hence they share the global U(1) gener-
ators. In the massless limit the sl spin potentials pass continuously to their massless counterpart 
(not possible with pl potentials) which act in the conformally covariant helicity Wigner–Fock 
space. The sl currents are bilinear in the charge carrying sl potentials [11].

The two currents (37) share the same “engineering” dimension (classical dimension in terms 
of mass units) dcl = 3, but possess different short distance scaling dimensions dsd(jP

μ ) =
2(s + 1) + 1 and dsd(jμ) = dcl = 3; this accounts for the fact that the sl jμ allows a massless 

limit whereas jP
μ diverges as jP

μ

m→0∼ m−2s (the W-W obstruction). As expected, the sl jμ(x, e)
admits a massless limit in which the 2s + 1 spin degrees of freedom decompose into a direct 
sum of s helicity and one scalar contribution so that the Wigner–Fock space turns into a tensor 
product of helicity spaces.

The presentation concerning the relation between pl and sl conservation laws in [11] was 
mainly focused on the stress–energy tensors (SET); in the following we present the correspond-
ing problem for conserved currents. A convenient illustration is provided by the sl current with 
the lowest W-W helicity h = 1 as follows.

18 In this way it selects a unique countable family of fields within the equivalence class of all relatively causal fields 
constructed in [35].



B. Schroer / Nuclear Physics B 941 (2019) 91–144 111
Using the linear relation AP
μ(x) = Aμ(x, e) − ∂μφ(x, e) between pl and its canonically asso-

ciated sl field and the gradient of its escort derived in the previous section (17) one finds that the 
pl and sl currents are related as (omitting Wick-ordering)

jP
μ = iAPν(x)∗←→∂μ AP

ν (x) = jμ(A(x, e)) + jμ(a(x, e)) + ∂κCκμ (38)

a(x, e) = mφ(x, e), Cκμ = iA∗
κ

←→
∂ μφ + iφ∗←→∂ μ∂κφ + h.c.

The first two contributions are conserved sl currents whose massless limit correspond to the 
current of the complex s = 1 sl field Aν(x, e) (which replaces the nonexistent pl W-W current), 
and that of a complex scalar field a(x) = limm→0 a(x, e). The m−2 W-W obstruction C does not 
contribute to the global charge.

The “obstructing” contribution ∂κCκμ carries both the leading short distance dimension 
dsd = 5 and the m−2 divergence which is the culprit for the W-W problem. This kind of decom-
position into s conserved dsd(j) = 3 sl currents, which pass for m → 0 to s sl helicity currents 
and a pl current of a scalar particle, exists for every spin s ≥ 1.

Using the free field equation for Aμ and φ one verifies that C-contribution is of the form of a 
spatial divergence and hence does not contribute to the infinite volume limit of the charges [11]

Q(AP ) = Q(A) + Q(a) (39)

i.e. the massless limit decomposes the three spin degrees into the ±1 helicities of Aμ and h = 0
carried by a. Before this limit both sl fields Aμ and a account for the three s = 1 degrees freedom.

For pl currents there exists extensive literature on the problem of relation between conserved 
currents, local charges, and their global limits [55], [56], [57], [58]. The basic idea is to start 
from a conserved current and define

Q = lim
R→∞Q(fR,fd), Q(fR,fd) := j0(fR,fd) (40)

fR(x) =
{

1 |x| < R

0 |x| > R + r
(41)

fd(x0) ≥ 0. suppfd ⊂ |t | < d,

∫
fd(x0)dx0 = 1 (42)

One then uses the conservation law of the current to show that the commutator [Q(fR,fd),A]
for A ∈A(O) is independent of the choice of the smearing function g(x) = fR(x)fd(x0) as long 
as O remains inside their timelike extended shell structure (41).

The local charge Q(g) which measures the charge of an operator A localized in |x| < R

converges towards the generator Q of the global U(1) symmetry. The concept of a local charge 
content becomes problematic in case of sl currents since the use of a rigid spacelike direction e

does not allow the causal separation of j0(fR, fd) from the localization region of A. The heuristic 
idea for achieving such a separation would be to “comb” the strings emanating from the shell 
between R and R + r into different directions so that they remain causally separated from A
∈ A(O). But then the strings emanating from points inside the shell would have to move to 
spacelike infinity outside the larger sphere and violate the localization inside the larger sphere.

In view of a recent proof of the so-called split property [59], which is known to secure the 
local implementation of global symmetries in massless h ≥ 1 [60], there is no problem with the 
existence of local charges for QFT’s with global symmetries; what is not clear is whether such 
charges can be described in terms of conserved currents.
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Meanwhile K.-H. Rehren informed me that his student M. Heep constructed local charges 
from sl currents by appropriate use of conformal transformations. The idea is to construct a 
local charge operator localized in a half-space, that is then mapped to a sphere by a conformal 
transformation. In this way the strings become “curled” and end in the north pole.

Hence the W-W No-Go theorem excludes pl currents, but does not affect the causal localiz-
ability of charges in arbitrary small spacetime regions.

3.2. The V-Z conundrum arises from an incorrect implementation of causality

A simple class of models for a critical examination of the V-Z conundrum is provided by 
linear couplings of conserved currents to external vector potentials the relevant property of the sl 
current is its lowered short distance dimension. A suitable setting for such problems is obtained in 
terms of Bogoliubov’s definition of the S-matrix and interacting local fields in terms of adiabatic 
limits of the Bogoliubov S-functional19

S := lim
g(x)→g

S(g), S(g) = T exp i

∫
g(x)Lint (x)d4x (43)

A(x)|Lint
= lim

g(x)→g

δ

iδf (x)
S−1(gL)S(g(x)Lint (x) + f A)|f =0 (44)

Here the interaction density Lint is a Wick-ordered product of not more than 4 free fields from 
the class of Wick-ordered composites of free fields and A|Lint

the interacting counterpart of A(x)

which is either a free field or a Wick-ordered product of free fields (the terminology “free” 
is used for linear fields and Wick polynomials). The interacting field has the form of a power 
series in g with retarded products of n L′s which is retarded in A(x). The linear Bogoliubov 
map A → A|Lint

does not preserve the algebraic structure but it maintains the property of causal 
separability. Hence fields constructed in this way maintain causality, and the solution of the V-Z 
problem consists in the proper computation of the interacting fields via (44).

The class of interactions with external potentials to be studied is of the form Lint = LP =
UμjP

μ with Uμ a external (classical) vector potential and jP
μ a conserved current as before. 

For the current of a scalar complex free field ϕ there is no problem; its conserved current has 
dsd(jP

μ ) = 3 and hence (with dsd(Lint ) = 3) renormalizable. This is the model on which Velo 
and Zwanziger base their propagation picture: namely the scalar field obeys a linear field equa-
tion which is linear20 in Uμ and they expect (erroneously, as will be seemed) that this holds 
independent of spin.

For s = 1 the dsd(LP ) = 5 and hence the pl model is nonrenormalizable. To reduce the dsd

from 5 to 4 one uses the relation (38) which rewritten in terms of the interaction density reads

LP = jP
μ Uμ = L − ∂κVκ, Cκμ = iA∗

κ

←→
∂ μφ + iφ∗←→∂ μ∂κφ + h.c (45)

L := j s
μUμ − Cκμ∂κUμ, Vκ = −CκμUμ, S(1) a.l.=

∫
LP d4x =

∫
Ld4x

where the decomposition (38) of jP
μ was used. Since dsd(Cκμ) = 4 the power counting bound 

dd(L) = 4 holds, the model is renormalizable and its first order S-matrix S(1) (the adiabatic limit 

19 Our use of the Bogoliubov’s formalism is close to that in [61], [62], [63].
20 Here and in the sequel linear stands for linear in Uμ and its derivatives.
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of the interaction density) is the same for the two densities and hence string-independent (the 
suitably defined adiabatic limit of the ∂V vanishes).

The decomposition of jP
μ (38), which previously served to solve the W-W problem (by con-

verting the pl current into its for m → 0 regular sl counterparts and a C-term, which carries the 
m−2 mass divergence but does not contribute to the global charge21), is now used to solve the 
V-Z causality problem. To achieve this one uses the fact that the C-term is a 4-divergence and 
disappears in the adiabatic limit which represents the S-matrix.

The two interaction densities LP and L share the same S-matrix; whereas the pl LP (x) side 
insures that the S-matrix is that of a causal interaction, the sl L(x, e) guaranties the renormaliz-
ability of S(1). The L(x, e) together with Vμ(x, e) forms what will be referred to as a L, Vμ pair. 
The first order S-matrix ((45) second line), which is the adiabatic limit of the interaction density, 
is the same for LP and L referred to as the linear relation (45). The LP represents the heuristic 
content of the interaction, but as a result of its bad short distance behavior it is not suitable for 
perturbative calculations. The short distance improved L weakens the localization but retains 
enough of it to keep fields causally separated and to maintain scattering theory.

The remaining problem is the extension of this idea to higher order. For convenience of no-
tation one uses a differential formulation of pl localization in the form of e-independence in 
the form de(L − ∂V ) = 0. It is convenient to use lightlike e′s since in this case no smearing is 
needed. The problem in higher order is the time-ordering. For the e-independence of the S matrix 
one needs the ∂ to act outside the time-ordering e.g.

de(T L(1)L(2) − ∂
μ
1 T Vμ(1)L(2) − ∂ν

2 T L(1)Vν(2) + ∂
μ
1 ∂ν

2 T Vμ(1)Vν(2)
?= 0 (46)

deT (L(1) − ∂V (1))(L(2) − ∂V (2)) = 0

and higher order extensions involving one Vμ and n − 1 L′s.
This is generally not possible without creating “obstructions” of the form of delta contribu-

tions of the form δ(x1 − x2)deL2(x1, e) which are quadratic in Uμ and its derivatives. Higher 
order violations may lead to contributions of higher polynomial degree in Uμ and derivatives; 
it is a characteristic property of obstructions in models of external potential interactions that all 
obstructions remain bilinear in the quantum fields.

These obstructions are absorbed in the form of induced contributions into a modified Bogoli-
ubov formalism by defining

Ltot = L + 1

2
L2 + ..

1

n!Ln + .. (47)

where Ln is of polynomial degree n in Uμ and its derivatives and remains quadratic in free 
fields. Note that induced contributions do not increase the number of parameters and hence must 
be distinguished from counterterms of pl renormalization theory.

In the s = 1 model (45) the L2 contribution can alternatively be encoded into a redefinition 
of time ordering

T0∂μφ(x1)∂νφ(x2) ≡ ∂μ∂νT0φ(x1)φ(x2) (48)

T ∂μφ(x1)∂νφ(x2) = T0∂μφ(x1)∂νφ(x2) + icgμνδ(x1 − x2)

∂μT ∂μφ(x1)∂νφ(x2) − T ∂μ∂μφ(x1)∂νφ(x2) = (1 + c)∂νδ(x1 − x2)

21 Using conformal invariance of massless helicity representations one can also show the existence of local charges (see 
remarks in previous subsection).
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and the validity of (46) for the T time-ordering requires to set c = −1. For s > 1 the kinematic T0
time-ordering contains more derivatives and one has accordingly more c′s which must be numer-
ically adjusted in such a way that the T time-ordering satisfies the higher order pair requirements 
beyond (46).

The following side-remark maybe helpful for the later extension of SLFT to a full QFT. The 
second order AμAμϕ∗ϕ term of scalar QED within the new SLFT can either be viewed as in-
duced or encoded into a change of time-ordering for the derivatives of the complex scalar field. 
But not all obstructions can be absorbed in this way. The H -selfinteractions of the Higgs model 
is a genuine second order induced term which results exclusively from the implementation of the 
positivity and causality principle of QFT (rather than from an imposed Mexican hat interaction).

The verification of the higher order pair relations will be deferred to a more complete treat-
ment of external potential problems. The expected result is:

Conjecture. Couplings of conserved currents to external potentials fulfill the higher order time-
ordered L, Vμ relation. For s = 1 the resulting field equations are quadratic in Uμ whereas for 
s > 1 they are of infinite order (expected since dsd(L) ≥ 5).

The form of the linear causal field equations (in particular the higher order U contributions) 
is determined by the form of the induced contributions.

The external potential formalism and its formal connection with the solution of the W-W 
problem works in an analogous way for s = 2. The sl potential Aμν(x, e) has two escorts, a 
vector aμ and a scalar escort a which can be chosen in such a way that the operator dimension 
for all fields is identical to their classical dimension dcl = 1 (or 3/2 for half-integer spin)

AP
μν = Aμν + m−1(∂μaν + ∂νaμ) + m−2∂μ∂νa (49)

jP
μ (x) = iAP∗

κλ

←→
∂μ APκλ = j s

μ(x, e) + ∂κCκμ

js
μ(x, e) = iA∗

κλ

←→
∂μ Aκλ − 2ia∗

κ

←→
∂μ aκ + ia∗←→∂μ a

In this case dsd(LP ) = 7 and dsd(jμ) = 3 and hence LP is by 3 units beyond the power-
counting bound dsd = 4. For s = 1 the ∂κCκμ carries the highest dsd = 7 contribution. After an 
additional linear disentanglement between Aμν and a one arrives at a decomposition of j s

μ which 
in the massless limit represents the h = 2, 1, 0 helicity contributions [11].

The use of this decomposition in the rewriting of LP = jP
μ (x)Uμ for s = 2 as a sl pair with 

LP = L − ∂V leads to a dsd(Cκμ) = 6 contribution which contains bilinear in φ = m−2a terms 
with more than 2 derivatives. In analogy to counterterms in every order in a nonrenormalizable 
full pl QFTs one expects to find induced terms in arbitrary high orders.

It is worthwhile to mention that there is also a gauge theoretic formulation in which the lin-
ear operator relation between the sl potential and its pl counterpart is replaced by the relation 
AK

μ (x) = AP
μ(x) + ∂μφK where the K refers to the Krein space and the resort φK is the Stück-

elberg negative metric pl scalar which adds additional unphysical degrees of freedom to the 
indefinite Krein space. This is the formulation of the Uni Zürich group [64], [65] adapted to the 
presentation used in the present paper.

The gauge theoretic analog to the pair relation is LK = LP + ∂μV K
μ . The model has a formal 

similarity with SLFT, but its pl interpolating fields are unphysical; positivity obeying interpolat-
ing fields are simply inconsistent with pl localization. The pair property works the same way, one 
only has to replace the de in (46) by the BRST s.
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However negative metric degrees of freedom lead to an unphysical realization of appropriately 
nonlinear modified causal pl V-Z equation and should be rejected inasmuch as gauge dependent 
pl currents have been discarded by W-W in their No-Go theorem. Classical field theory is free of 
positivity requirements and gauge theoretic causal propagation is perfectly compatible with its 
principles. But the nonlinear dependence on external potential which was overlooked by V-Z is 
also needed for the classical propagation of Cauchy date.

Recently there have been attempts to solve the V-Z conundrum in terms of String Theory [68], 
[17]. These authors extract a system of pl equation in d = 3 + 1 via dimensional reduction from 
the Virasoro algebra in 10 dimensions and found nonlinear modifications in case of constant 
external fields.

But the fact that there is nothing stringy about their pl equations raises the old question: what 
do string-theorist really mean when they claim that their objects are stringy in spacetime. Does 
their use of the terminology “string” perhaps refer to a circular structure in a 10-dimensional 
target space whose Fourier components correspond to the irreducible Wigner components of the 
highly reducible superstring representation?

Their strings bear no relation with causal localization in spacetime but rather seem to refer to 
Born’s quantum mechanical localization related to the spectral decomposition of the x operator 
arises. Their use of world-sheet and Nambu–Goto actions point into this direction and the way 
in which they think of their localized objects as vibrating in space strengthens this presumption. 
Causal localization in spacetime is very different (for more see next section).

The next section explores important aspects of causal localization which, although known to 
some experts, remained outside the conceptual radar screen of most particle physicists.

4. Particle wave functions and causal localization

There is no concept in particle physics which led to more misunderstandings than that of 
causal localization in spacetime. The strings of String Theory obtained e.g. from quantized 
world-sheet or Nambu–Goto actions bear no relation causal localization. A concept which 
reveals such misunderstandings and corrects them in the clearest possible way is “modular lo-
calization”.

4.1. Newton–Wigner localization and its causality-providing modular counterpart

Wigner’s theory of positive energy representations presents an interesting meeting ground of 
two very different localization concepts. On the one hand there is the quantum mechanical lo-
calization of dissipating wave packets whose center moves on relativistic particle trajectories. Its 
formulation in terms of quantum mechanical Born probabilities leads to the so-called Newton–
Wigner localization [70]. For a scalar m > 0 particle

(ψ,ψ ′) =
∫

ψ̄
←→
∂0 ψ ′d3x =

∫
ψ̄NWψ ′

NWd3x (50)

hence ψ̃NW (p) = (2p0)
−1/2ψ̃(p)

Hence an improper N-W eigenstate of the position operator xNW has a mass-dependent extension 
of the order of a Compton wave length. In scattering theory, where only the large-time asymp-
totic behavior matters, such ambiguities in assigning relativistic quantum mechanical positions 
at finite times are irrelevant; the centers of wave packets of particles move on relativistic velocity 



116 B. Schroer / Nuclear Physics B 941 (2019) 91–144
lines and the probability to find a particle dissipates as t−3 along these lines for all inertial ob-
servers. In fact Wigner never thought of his Poincaré group representation theory as an entrance 
into causal QFT; for him it remained part of relativistic QM.22

The more recent discovery of modular localization shows that causality properties are dor-
mant within Wigner’s positive energy representation theory; they are reflected in properties of 
dense subspaces obtained by applying algebras of local observables A(O to the vacuum state 
H(O) = A(O)� and projecting the so obtained dense set of states of a QFT to the one-particle 
subspace HWig(O) = E1H(O). That such spaces are dense in the Hilbert space (and conse-
quently their projection in the one-particle subspace) is a special case of a surprising discovery 
made in the early in the early 60s (the Reeh–Schlieder theorem [1], [2]) which showed that the 
omnipresence of vacuum polarization confers to QFT a very different notion of localization from 
that of Born’s quantum mechanical setting based on position operators.

The projection HWig(O) has the remarkable property that it can be constructed without the 
assistance of QFT solely in terms of data from Wigner’s representation theory and that in the 
absence of interaction one can even revert the direction and obtain the net of causally localized 
subalgebras directly from that of modular localized Wigner subspaces [25].

In this way one does not only gain a more profound understanding of QFT but one also 
learns that Weinberg’s pure group theoretic construction of intertwiners starting from Wigner’s 
representation theory is part of a much more general setting which, if properly used, leads to an 
extension of perturbative renormalizability. This important concept of modular localization was 
not available during Wigner’s lifetime (see remarks in the introduction).

The simplest way to see that the quantization of a relativistic classical particle associated with 
the action 

√−ds2 does not lead to a covariant quantum theory is to remind oneself that there 
exists no operator x which is the spatial component of a covariant 4-vector [35]. The conceptual 
problem one is facing is better understood by first showing that causal localization bears no 
relation to Born’s probabilistic quantum mechanical definition.

Starting from the quantum mechanical projectors E(R) for R ⊂R3 which appear in the spec-
tral decomposition of xop

xop =
∫

xdE(x) (51)

one has

E(R)E(R + a) = 0 for R ∩ (R + a) = 0

Define E(R + a) = U(a)E(R)U(a)∗ for a ∈ R4. Assuming that this orthogonality relation has 
a causal extension in the sense that E(R)E(R + a) = 0 for spacelike separated R×R + a

leads immediately to clash with positivity of the energy. This follows from the fact that the 
positivity of the energy leads to the analyticity of expectation values (ψ, E(R)E(R + a)ψ) for 
Ima0 > 0 which in turn implies their identical vanishing (the Schwarz reflection principle) and 
with ||E(R)ψ ||2 = 0 the triviality of such projectors E = 0.

A slight extension of the argument reveals that it can be dissociated from the position operator 
of quantum mechanics. It then states that in models with energy positivity it is not possible 

22 This perhaps explains why Wigner, inspite of his overpowering role in the development of 20th century quantum 
theory, never participated in the QED revolution and its QFT aftermath. For him his representation theory always re-
mained part of relativistic quantum mechanics (the quantum mechanical Newton–Wigner localization in section 3). An 
interesting discussion can be found in Haag’s memoirs [71] page 276.
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to describe causal localization (“micro-causality”) in terms of projectors and orthogonality of 
subspaces [72]. A profound intrinsic understanding of causal localization in QFT points into a 
very different direction from that obtained from the quantization of actions describing classical 
world lines or world sheets and Nambu–Goto action. The problems become insurmountable of 
one tries to construct actions in the presence of several of such objects and their distance.

Before presenting the relation to QFT it is worthwhile to mention a little known fact: it is 
perfectly possible to construct a relativistic description of interacting particles in relativistic QM 
build on macro-causality. For two particles this amounts to Poincaré group preserving modifica-
tion in the center of mass system, but for more particles it is more complicated ([43] section 3). 
Apart from the fact that it leads to a Poincaré-invariant S-matrix, it does (unlike Schrödinger 
theory) not permit a description in terms of second quantization.

4.2. Mathematical properties of modular localization

To prepare the ground for causal localization it is helpful to start with some mathematical 
concepts concerning relations between real subspaces H (linear combination with reals) of a 
complex Hilbert space H ⊂ H. The symplectic complement H ′ of a real space is defined as the 
closed real subspace (H ′ = H ′) defined in terms of the imaginary part of the scalar product in H

H ′ = {ξ ∈H; Im(η, ξ) = 0 ∀η ∈ H } (52)

H1 ⊂ H2 ⇒ H ′
1 ⊃ H ′

2 (53)

which turns out to be the real orthogonal space on the real iH (only real linear combinations).
A closed real subspace H is called “standard” if it is both cyclic and separating

H cyclic: H + iH =H (54)

H separating: H ′ ∩ H = {0}
(H + iH)′ = H ′ ∩ iH ′

Cyclicity and the separation property have a dual relation in terms of symplectic complements as 
written in the third line.

It is quite easy to obtain such standard spaces from covariant free fields. In the simplest case 
of a scalar field the Hilbert space H is the closure of the 1-particle Wigner space defined by the 
two-point function of the smeared fields

(f, g) = 〈
A(f )∗A(g)

〉 = ∫
f̃ ∗(p)g̃(p)dμ(p) (55)[

A(f )∗,A(g)
] = −i Im (f, g)

where dμ is the invariant measure on the positive mass hyperboloid. According to the Reeh–
Schlieder theorem [2] the one-particle projection of the dense subspace of causally O-localized 
states23 is dense in the one-particle Wigner space. O-localized real testfunctions define a dense 
real subspace H(O) and causal disjointness corresponds to “symplectic orthogonality” and pro-
duces a closed real subspace.

H(O′) = H(O)′ (56)

23 States localized in the spacetime region O are defined as the dense Reeh–Schlieder subspace obtained as A(O) |0〉
where A(O) is the O localized subalgebra of A.
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As a side remark we mention that the same construction applied to a higher halfinteger spin 
field leads to a corresponding situation

ZH(O′) = H(O)′, Z = 1 + iU(2π)

1 + i
(57)

where the unitary “twist” operator Z which is related to the factor −1 of the 2π rotation. The 
use of the twist operator allows to treat bosons and fermions under one common roof.

The important step for an intrinsic understanding of QFT (i.e. without the use of P. Jordan’s 
“(quasi-)classical crutches” of quantization) is to invert the previous construction: find a relation 
within Wigner’s representation theory which permits to define O-localized real subspaces which 
have the correct covariant transformation properties under Poincaré transformations [25]. For 
this purpose it is helpful to reformulate the above properties so that they take the form known 
from the mathematical Tomita–Takesaki theory of operator algebras which permits a direct con-
nection of positive energy Wigner representations with a “local net of operator algebras”. It 
provides a unified view in which Weinberg’s pl intertwiner formalism and its sl extension are 
seen as two ways of generating the same free field theory. As shown in previous sections the im-
provement of short distance properties is the basis for a new perturbative renormalization setting.

To achieve this one needs an additional mathematical tool. The first step consists in a suitable 
extension of the modular concepts. A standard subspace H comes with a distinguished operator. 
With D(Op) denoting the domain of definition of an operator one defines

Definition 1. A Tomita operator S is a closed antilinear densely defined involutive operator 
D(S) ⊂ H.

In physics one encounters such “transparent” operators only in QFT. It is easy to see that there 
exists a 1–1 correspondence between Tomita operators and standard subspaces H ; H ↔ S . This 
follows from the definition S(ξ + iη) = ξ − iη, ξ, η ∈ H , whereas the opposite direction is a 
consequence of the definition H = ker {S − 1}.

As a result of involutiveness, the full content of Tomita operators is contained in their dense 
domains which coincides with their range (“transparency”). Hence modular theory may be alter-
natively formulated in terms of subspaces (54) DomS of Tomita operators.

The polar decomposition of S = J�1/2 of S into an anti-unitary J and a positive opera-
tor � with D(S) = D(�1/2) leads to the unitary modular group �it acting in H and preserving 
the standard subspace �itH = H , whereas the modular conjugation maps into the symplectic 
complement J H = H ′.

A Tomita operator appears in a natural way in Wigner’s representation theory of positive 
energy representations of the Poincaré group P . It is obtained by defining �it

W0
in terms of the 

Lorentz boost operator which leaves the wedge W0 = {x; z > 0, |t | < z} invariant

�it
W0

= U(�W0(−2πt))

SW0 = JW0�
1/2
W0

, JW0 = T CP · Rπ

together with an anti-unitary J obtained by multiplying the TCP reflection T CP with a 
π -rotation R in the x–y plane as written in the second line, taking W0 into its causal complement.

The charge conjugation C maps an irreducible Wigner particle space into its charge conju-
gate and may need a doubling of the Wigner space whereas T P corresponds to the spacetime 
inversion x → −x. The preservation of energy requires the time-reversal T to be anti-unitary. 
Massless representations need a helicity doubling ±h.
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Unbounded operators S whose dense domain is stable (“transparent” in the sense domain =
range) are somewhat unusual in quantum physics; they appeared first in quantum statistical me-
chanics [2] and later in searches for an intrinsic understanding of causal localization of QFT 
(without referring to Lagrangian quantization) [27]. In the present context the dense subspace 
of the Wigner space (possibly doubled by charge conjugation) corresponds to wave functions 
which are “modular localized” in the wedge W0. Modular localization of Wigner wave func-
tions is closely related to causal localization of fields and provides an extension of the Weinberg 
intertwiner formalism which includes Wigner’s infinite spin class [35].

The construction proceeds as follows: start from Wigner’s positive energy representation 
theory, define the Tomita operator SW0 in the way described before, use the Poincaré trans-
formations to construct a net of modular localized real subspaces H(W) and use the second 
quantization functor (the Weyl or CAR functor) to pass to an interaction-free net of standard 
wave functions spaces H(W) to causally localized operator algebras A(W) acting in a Wigner–
Fock Hilbert space.

One also may directly construct real dense subspaces HO and their complexified counterparts 
D(SO) = HO + iHO ⊂ H corresponding to more general causally complete convex spacetime 
regions Oc as intersections:

HOc
=

⋂
W⊃Oc

HW (58)

HO =
⋃

Oc⊂O
HOc

whereas for more general regions the standard space is defined in terms of exhaustion from the 
inside (second line). For details we refer to [25].

The energy-positivity of the massive and the ± |h| massless Wigner representation classes 
plays an important role in establishing the isotony and causal localization of the “net of modular 
localized standard spaces”

isotony: HO1 ⊂ HO2 if O1 ⊂O2 (59)

causality: HO1 ⊂ H ′
O2

if O1×O2

where × denotes spacelike separation.
In the absence of interactions the passage from the spatial modular theory to its algebraic 

counterpart is almost trivial. One passes to the Wigner Fock space created by symmetrized tensor 
products and defines the O-localized operator algebra as the von Neumann algebra generated by 
the Weyl operators

A(O) =
{
eiA(h);h ∈ HO

}′′
, [A(h1),A(h2)] = i Im(h1, h2) (60)

with A(h) =
∫ s∑

s3=−s

(h(p, s3)a
∗(p, s3) + h.c.)dμ(p), h ∈ HO (61)

in terms of the Wigner creation/annihilation operators24 a#(p, s3) or their helicity counterparts. 
For half-integer spin or helicity the presence of the twist operator (57) leads to fermionic com-

24 The “second quantization” counterparts of the Wigner wave functions.
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mutation relation. In both cases the second quantization functor maps the spatial Tomita operator 
into its algebraic counterpart which acts in the (“second quantized”) Wigner Fock space H asso-
ciated with the Wigner one-particle space H

Salg

O A� = A∗�, A ∈ A(O)

In the sequel only the algebraic Tomita–Takesaki theory will be used and the superscript alg will 
be omitted for convenience.

Modular localized spaces H(O) and their associated noninteracting field algebras A(O) are 
by construction “causally complete” A(O) = A(O′′) and hence a fortiori Einstein causal (sec-
tion 2 (13)). The causal completion O′′ is obtained by taking twice the causal complement 
O →O′.

For wedge regions the modular group coincides with the unitary Wigner representation of 
the wedge-preserving Lorentz group; for all other regions the modular groups in m > 0 Wigner 
representations acts in a non-geometric (“fuzzy”) way. It is believed that this nongeometric ac-
tion becomes asymptotically (near the boundary of the causal completion) geometric.

Massless finite helicity theories have a larger set of regions related to Huygen’s principle in 
which modular groups act in a geometric way; this includes all regions which are images of 
wedges under the action of conformal transformation as e.g. finite double cones. Sl potentials 
whose semiinfinite spacelike lines remain inside wedges may under suitable conformal transfor-
mation pass to potentials localized on finite elliptic curves which connect two points on different 
edges of double cones; they can be viewed as substitutes for the nonexistent pl coordinatization 
of double cones.

It may also happen that the standard spaces for compact spacetime regions O are trivial 
HO = {0}. This occurs precisely for the Wigner’s zero mass infinite spin representation for which 
the tightest localized nontrivial spaces correspond to modular localization in arbitrary narrow 
spacelike cones. On the other hand zero mass finite helicity spaces are the most geometric rep-
resentation since their modular groups continue to act geometrically even for double cones; in 
fact they correspond to conformal transformations which preserve double cones. Unlike finite 
helicity fields infinite spin representations are massless but not conformal.

Modular localization plays also an important role in the understanding of topological peculiar-
ities of massless h ≥ 1 free QFT in connection with toroidal regions (thickened Wilson loops). 
Last not least without their use it would not have been possible to discover the intrinsic non-
compact localization of Wigner’s infinite spin matter and the string-like nature of its generating 
causally localized fields.

This raises the question if modular theory preserves its constructive power in the presence of 
interactions. It turns out that in that case one is required to use the stronger operator algebraic 
modular theory. Interacting theories share the same modular groups �it

W with their noninteract-
ing counterpart which is solely determined by the particle content.

The interaction enters through the dependence of the JW on the interaction which, using the 
fact that the incoming TCP is related with its outgoing counterpart through the S-matrix S [69], 
[30], amounts to

JW = J
(in)

W S (62)

Again the starting point is a von Neumann operator algebra A acting in a Hilbert space H which 
contains a vector � which is cyclic and separating under the action of A (in QFT the Reeh–
Schlieder property for A(O))
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cyclic: A(O)� is dense in H (63)

separating: A� = 0 ⇒ A = 0, A ∈ A(O)

The definition H = Asa(O)� (sa = selfadjoint part) or H = A(O)� connects the algebraic 
modular theory with its previously presented spatial counterpart. But there remains an important 
difference: the map between standard subspaces and algebras is generally not injective whereas 
the algebraically generated subspaces (63) always are.

The interaction-free situation remains exceptional in that there exists a functorial relation 
between modular localized Wigner subspaces and interaction-free causally localized subalgebras 
defined in terms of the Weyl map (60). This functorial map is lost in the presence of interactions 
in which case the relation between modular theory and particles becomes more involved.

4.3. A critical perspective based on modular localization

Most of what is presently known about modular theory comes from the Bisognano–Wichmann 
theorem [27] which clarifies the modular properties of wedge-localized subalgebras A(W). In 
models with a complete particle interpretation one can use the modular theory of free fields to 
derive the B-W theorem in the presence of interactions [81]. Of special interest is the relation 
of the modular conjugation J with the TCP operator which is known to be connected to the 
S-Matrix [69]. This is particularly useful in d = 1 + 1 integrable models whose S-matrix is 
known (62).

For integrable models without bound states this led to an interpretation of the Zamolodchikov–
Faddeev algebra in terms of modular localization in which the concept of “vacuum-polarization-
free generators” (PFG)25 plays an important role [30], [73]. This in turn led to existence proofs 
for certain d = 1 + 1 integrable models in terms of operator algebraic constructions based on 
modular theory [76]. For a recent account with many references to previous publications see [31]. 
These results complement those obtained in terms of the “bootstrap-formfactor” program in [75].

The important role of the S-matrix for modular localization in wedges has triggered attempts 
to reconstruct a full causal QFT from its “on-shell footprint” in form of its S-matrix [77,78]. 
These ideas are presently too weak for constructions in higher dimensions. Among the unex-
pected results of modular theory is the proof that models in d = 1 + 2 with anyonic statistics (or 
its nonabelian “plektonic” counterpart) have always nontrivial S-matrices [79].

Whereas the idea that a nonperturbative QFT is uniquely determined by its S-matrix remains 
still part of folklore, the S-matrix based perturbative SLFT construction in the previous section 
is the basis of the new perturbation theory. Different from the standard approach based on La-
grangian quantizations in which the S-matrix is obtained from the mass-shell restriction (the LSZ 
reduction formula) of time-ordered correlation functions of fields, SLFT inverts this situation by 
encoding the model-defining particle content into an interaction density of a perturbative defined 
S-matrix. This part of the construction uses exclusively pl or sl free fields which are directly 
related to the particles. Interacting (off-shell) quantum fields are constructed in a second step 
in which the higher order contributions to the interaction density (which were induced in the 
construction of S) serve as an input (44).

Each pl or sl field from the equivalence of free fields and their Wick-ordered composites has 
an interacting counterpart. Interacting fields which have nonvanishing matrixelements between 

25 The weakest assumptions under which PFGs exist were determined in [74].
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the vacuum and a one-particle state have after appropriate normalization the same large-time in-
and out-limits.

Finally we come to an important point whose clarification was promised at the beginning 
of this section namely the possible connection of sl quantum fields with String Theory. String 
theorists attribute a string-like localization to their objects without providing arguments in favor 
of causal localizability. Ideas based on worldlines, worldsheets, Nambu–Goto actions or strings 
start from classical relativistic mechanics and hope that quantization preserve these properties. 
This is evident from the way in which the covariant world-line action 

√−ds2 in [80] is used 
to prepare the ground for the subsequent presentation of world-sheets and Nambu–Goto actions. 
The futile attempt to place two of such vibrating quantum mechanical strings into a relative 
spacelike position reveals the problems which ST has with causal localization in spacetime.

Fact is that, apart from Lagrangian quantization of s < 1 fields, only the Wigner representation 
theory (which cannot be accessed by quantization) contains the seed for causal localization. 
Modular localization as a pre-form of causal localization needs positivity and is inconsistent with 
gauge theory. One cannot declare an object as “stringy” because its classical action suggests this. 
This type of misunderstanding is clearly visible in Polchinski’s use of the action of a relativistic 
particle as a preparatory step for relativistic worldsheet and Nambu–Goto actions.

This does not exclude the use of the quantum mechanical Newton–Wigner localization to 
describe the dissipation of wave-packets. One may even construct a macro-causal Poincaré-
invariant multi-particle theory which satisfies cluster decomposition properties and leads to a 
Lorentz-invariant scattering matrix ([43] section 3). Such a construction disproves the conjecture 
that relativistic particles and cluster properties alone will lead to QFT.

Proposals which avoid quantization of classical actions and try to find causal quantum matter 
in the target space of certain models of d = 1 + 1 conformal QFTs are less easy to dismiss. One 
such proposal is based on the Virasoro-algebra of a supersymmetric 10-component chiral con-
formal current model (the “superstring”). Its target space contains an algebraic structure which 
leads to a highly reducible unitary Wigner representation of the Poincaré group [83].

This is primarily a group theoretical observation which (apart from the ten spacetime dimen-
sions) fits well into Majorana’s 1932 project of finding algebraic structure which, in analogy 
to the O(4, 2) hydrogen spectrum, describes wave functions of families of higher spin/helicity 
particles. But why should one believe that the corresponding fields are sl in the absence of any 
supporting argument? Is the terminology perhaps related to picturing the tower of representations 
containing different masses and spins as Fourier components of a kind of internal circle? In that 
case the use of “string” for something bears no relation to spacetime and would be misleading.

Looking at the ST literature one gets frustrated about the disproportionate relation between its 
conceptual poverty as compared to its mathematical richness which its vague physical pictures 
lead to in the hands of mathematicians. The word “string” should be more than an “epitheton 
ornans” for a physically insufficiently understood mathematical formalism.

With additional conceptual care one can also avoid a widespread misunderstanding in the 
physical interpretation of the AdSn+1-CFTn isomorphism. It was certainly consequential to 
complement the observation of equality of the symmetry groups of the two spacetimes by the 
verification of a stronger Einstein causality-preserving isomorphism between the two QFTs. But 
unlike classical field theory the timelike completion property26 in QFT A(O′′) = A(O), (which 
roughly speaking describes causal propagation) is not a consequence of the spacelike Einstein 

26 The causal completion O′′ is the result of taking twice the causal complement.
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causality. Formally it is equivalent to Haag duality A(O′) = A(O)′ from which it results by tak-
ing the commutant on both sides and rewriting A(O′)′ by applying Haag duality to the (generally 
noncompact) region O′.

In the old days [86], [87] it was shown that Einstein causality and the causal dependency 
property (formally equivalent to Haag duality) are independent requirements. Causality without 
Haag duality occurs if there are “too many” degrees of freedom as in the case of the generalized 
free field; a phenomenon which has no classical analog (since the notion of quantum degrees of 
freedom has no classical counterpart).

This manifests itself in a sort of “poltergeist effect” in that there may be more quantum degrees 
of freedom streaming into the dependency region as time moves on than there were in the original 
appropriately defined initial (“Cauchy”) data; in operator-algebraic notation A(O) � A(O′′)
while Einstein causality A(O) ⊂ A(O′)′ is preserved.

In fact it is quite easy to construct Einstein-causal models for which this completion property 
is violated. Generalized free fields with a suitably large κ behavior of their Kallen–Lehmann 
spectral functions (containing a much larger cardinality of degrees of freedom than free fields) 
were used at the beginning of the 60s27 to show that the causal shadow property represents a 
separate requirement (initially called “the time-slice property”).

The heuristic picture is that “squeezing” a QFT with the natural cardinality of degrees of 
freedom corresponding to a n+1-dimensional QFT into an n dimensional spacetime (“holo-
graphic image”) causes an “overpopulation”; this is precisely what happens in the AdSn+1-CFTn

case [85]. The simplest illustration is obtained by projecting a free AdS field and noting that the 
resulting conformal field is a generalized free field of the kind used in [86], [87]. In the opposite
direction i.e. starting from a “normal” CFT one expects an “anemic” degree of freedom situation 
on the AdS side. As shown in [84] this is precisely what happens; in fact there are no degrees of 
freedom at all in compact AdS regions (double cones); to find any one has to pass to infinitely 
extended wedge-like regions in AdS.

The overpopulation of degrees of freedom distinguishes “holographic projection” from “nor-
mal” lower dimensional QFT and this explains the quotation marks in “pathology”; a holographic 
projection maintains the degrees of freedom of the original QFT and in this way prevents the con-
formal side to be a normal QFT. This is a point which had been ignored in most post Maldacena 
work.

A helpful viewpoint concerning such “overpopulated” models which one obtains by dimen-
sion reducing projections is to not consider them as autonomous QFTs but to view them rather 
as stereographic projections of the original QFT.

The degree of freedom issue is not limited to the AdS-CFT isomorphism but affects all 
attempts to extend (quasi)classical Kaluza–Klein dimensional reductions of lowering extra di-
mensions to full-fledged causal QFT. To the extent that such pictures are compatible with the 
principles of QFT28 they correspond to perform a stereographic projection on the original theory 
and not to pass to a lower dimensional QFT. This poses the question whether the fashion around 
extra dimensions would have occurred with a higher conceptual awareness about the subtle na-
ture of positivity and causal localization of relativistic quantum matter which forbid the use of 
naive quasiclassical arguments.

27 I am sometimes asked about the origin of this terminology. The answer is simple, it accounts for the fact that Haag 
had this idea already before I entered the collaboration; my contributions consisted in providing calculations involving 
generalized free fields.
28 Massaging Lagrangians is not the same as passing from one QFT to another.
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A breakdown of Haag duality for entirely different reasons occurs in local nets generated by 
massless helicity h ≥ 1 free field strengths. This “topological duality violation” was mentioned 
in section 2 where its relation to the Aharonov–Bohm effect and linking numbers was explained. 
It is lost in the positivity-violating gauge theoretical setting which cannot distinguish between 
the Haag duality and the somewhat coarser Einstein causality.

In his book on Local Quantum Physics Haag proposes an interesting extension from the estab-
lished one-fold duality for observable algebras to causally separated two double cone localized 
algebras. In fact he explores the possibility of the existence of a homomorphism from the ortho-
complemented lattice of causally complete regions in Minkowski space into that of von Neumann 
algebras of observables ([2], Tentative Postulate 4.2.1). For a region which consists of two space-
like separated double cones K1, K2 this requires A(K1 ∨ K2) =A(K1) ∨A(K2).

Haag notices with a certain amount of disappointment that duality is violated for doubly 
localized observable algebras associated to the conserved currents of free fields. This follows 
from the existence of a pair ψ(f )ψ(g)∗ with supp f ⊂ K1, supp g ⊂ K2 which commutes 
with A(K1 ∨ K2) but is not in A(K1) ∨ A(K2). He viewed this as a shortcoming of free fields 
which he expected to disappear in the presence of interactions. He uses the idea of a “gauge 
bridge” between ψ(f ) and ψ(g)∗ as a hint that a future positivity-maintaining replacement of 
gauge theory may satisfy this strengthened form of causality (“Haag duality”) may.

The string-bridges of SLFT do precisely this i.e. they prevent that Haag duality of two causally 
separated double cones is violated by a charge–anticharge pair. In contrast to gauge bridges which 
have no material content (since they can be changed by gauge transformation implemented by 
indefinite metric gauge charges) string-bridges consist of quantum matter. Hence the existence 
of string bridges provides a local method to distinguish an interacting net from a free one.

Another somewhat more metaphoric way of saying the same is that SLFT results from gauge 
theory by applying Occam’s razor to indefinite metric- and ghost-degrees of freedom. Gauge 
theory is its best placeholder within the setting of Lagrangian quantization.

Interestingly the same string bridges which save Haag duality of observables also allow to 
view interpolating fields as resulting from space- or light-like limits in which the anticharge 
component is disposed of at infinity but leaves a trail of quantum matter behind.

Whereas all sl fields in the absence of interactions can be obtained as semiinfinite line integrals 
from pl fields,29 this breaks down in the presence of interactions. In that case the necessarily sl 
localized interpolating s < 1 fields receive their sl localization metaphorically speaking through 
being “infected” by their contact with higher order s ≥ 1 sl potentials with which they share the 
interaction density. This will be exemplified in a number of models in the next section.

For anybody who has grown up with Haag’s way of looking at QFT it is deeply satisfying 
that the model-dependent division between gauge invariant observables and gauge dependent 
interpolating fields corresponds to the SLFT localization dichotomy between pl observables and 
sl interpolating fields.

The fault line, which unfortunately still separates the ST community from those who are 
working on the successful but still largely unfinished project of QFT, runs precisely alongside 
the issue of causality and its refinements. The recent progress on entanglement entropy [32], [33]
requires a profound understanding of causality in the context of operator algebras. The fact that 
these ideas are presently also leading to a revision of perturbative QFT raises hopes that this 
schism will be overcome.

29 Note that the interaction density and the S-matrix only uses such free fields.
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5. Renormalization in the presence of massive sl vector mesons

5.1. Remarks on scalar QED; induced interactions and counterterms

As mentioned in the introduction SLFT differs both in its concepts as well as in its cal-
culational techniques from Lagrangian- (or Euclidean action)-based quantization theories. In 
section 3 these differences played a role in the solution of the Velo–Zwanziger causality co-
nundrum and in the present section they will be exemplified in a full QFT.

The simplest nontrivial model for illustrating these differences (for reasons which will become 
clear in the sequel) is scalar QED.

Being an S-matrix-based QFT, the starting point of SLFT is an S-matrix which, following 
Bogoliubov, is formally written as a time ordered product of an interaction density L(x, e) as 
in (43). The construction of interacting sl fields uses Bogoliubov’s map (44) which converts free 
fields into their interacting counterparts whose large-time asymptotic behavior reproduces the 
scattering amplitudes associated to S. In this section we will be exclusively interested in the 
S-matrix; localization properties of interacting fields will be mentioned in section 6.

The simplest nontrivial model for which the preservation of positivity requires the use of sl 
localized fields is scalar QED. Here “nontrivial” refers to the appearance of a 2nd order induced 
term A · Aϕ∗ϕ and a 4th order counterterm (ϕ∗ϕ)2 which has no counterpart in spinorial QED.

The independence of the large-time LSZ limits of causally separable fields on their original 
localization is the basis of the SLFT perturbation theory. The following is in part a recollection 
of arguments presented in section 3.

In lowest order we may start with the pl interaction density LP = AP
μjμ, jμ = iϕ∗←→∂μ ϕ

and use the linear relation with its short distance improved sl counterpart and its escort AP
μ =

Aμ − ∂μφ to write

LP = L − ∂μVμ, with Vμ = jμφ (64)

S(1) =
∫

LP (x)d4x =
∫

L(x, e)d4x (65)

This solves two problems in one stroke, the highest short distance contribution to LP has been 
encoded into a divergence which drops out in the adiabatic limit (second line) so that S is string-
independent (the left hand side) as well as renormalizable (the right hand side).

Actually one may forget the LP and formulate the SLFT construction solely in terms of a 
L, Vμ pair fulfilling the L − ∂V = 0 pair condition. It turns out that the L, Vμ pair corresponding 
to vector mesons interacting with lower spin particles and possibly among themselves is uniquely 
determined: the interaction is completely determined in terms of its particle content! In other 
words the LP can be defined in terms a SLFT pair which is in turn defined of the particle content.

For the formulation of the higher order pair property it is convenient to use the differential 
form of the pair property (as in section 3) and write de(L − ∂μVμ) = 0. Further simplification is 
obtained by using the “Q-formalism” with

Qμ = deVμ = jμu, u = deφ (66)

deL − ∂μQμ = 0

The Qμ turns out to have a better m → 0 behavior; it is only logarithmically divergent and ∂μQμ

remains finite. The logarithmic infrared divergence is a perturbative spacetime indication that the 
massless limit of vacuum expectation values cannot be described in terms of Wigner–Fock space 
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which is simply a tensor product of a helicity space of photons with that of charge-carrying 
Wigner particles [50]. In other words the S-matrix based perturbative SLFT formalism indicates 
that its massless limits needs a (presently unknown) extended formulation of scattering theory.

A notational simplification for the higher order pair conditions is obtained by using lightlike 
strings (not possible for m = 0). In this case the massive sl fields are functions in e rather than 
distributions and hence all e may be set equal. The second order pair condition reads

deT LL′ − ∂μT QμL′ − ∂ ′μT LQ′
μ = 0 (67)

and the extension to higher than second order is straightforward. They have no counterpart in 
the standard pl setting and account for the strength of SLFT as compared to the standard pl 
perturbation theory.

Violations of these relations are referred to as obstructions. The Bogoliubov S-matrix for-
malism is preserved by encoding these obstructions into a redefinition of the interaction density 
L → Ltot = L + L2 + .. just as it was done for external potential interactions in section 3.

The time-ordering T which fulfills (67) is not necessarily the “kinematic” time ordering T0
which is defined by attaching a −i2π(p2 −m2 − iε) denominator to the momentum space 2-ptfct. 
The scaling rule of renormalization requires that T and T0 share the same scaling degree which 
in the presence of two derivatives leaves a normalization freedom〈

T ∂μϕ∗∂ ′
νϕ

′〉 = 〈
T0∂μϕ∗∂ ′

νϕ
′〉 + icgμνδ(x − x′) (68)

which leads to

∂μ
〈
T ∂μϕ∗∂ ′

νϕ
′〉 − 〈

T ∂μ∂μϕ∗∂ ′
νϕ

′〉 = i(1 + c)∂ ′
νδ(x − x′) (69)

with an initially undetermined c.
The fulfillment of the second order pair requirement (67) in the tree approximation fixes 

c = −1. The action of S on one-particles states as the identity operator S |p〉 = |p〉 takes care 
of the contribution from 2 contractions. The change of T0 to T in Tjμj ′

ν = T0jμj ′
ν − gμνδ in all 

Tjμjν accounts for the occurrence of the second order induced AμAμ |ϕ|2 term

T LL′ = T0LL′ − iδ(x − x′)L2 (70)

L2 = gAμAμ |ϕ|2 (71)

which is usually attributed to the implementation of gauge symmetry, but here it follows from 
the causality and positivity principle of interpolating fields which guaranties the e-independence 
of S.

The reason for using the kinematical time-ordering T0 instead of T is the comparison with 
GT. In SLFT it is more natural to use T in which case the second order L2 remains encoded 
in T LL′.

As already pointed out in section 3, GT has a formally similar structure. This is most clearly 
visible in a setting of gauge theory which avoids the standard Lagrangian quantization of gauge 
theory (for spins s ≥ 1 see [4]) in favor of a perturbative S-matrix formulation as in [64], [65]. 
The physical Aμ(x, e) and its escort φ(x, e) correspond to the gauge potential AK

μ and the Stück-
elberg field φK acting in a ghost extended Krein space; the authors show that AK − φK has 
properties expected from AP

μ .
The two S-matrix-based constructions share the same improved short distance behavior, but 

they achieve this in a very different way. Whereas in gauge theory this is the result of enforced 
compensations between positive and negative probabilities in intermediate states, the ultraviolet 
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improvement in SLFT accomplishes this by lessening the tightness of causal localization (but not 
abandoning it!) and in this way reducing the strength of vacuum polarization which is the only 
physical way to describe particles in terms of physical (i.e. not gauge) interpolating fields.

Though both SLFT and gauge theory have the same short distance dimensions and probably 
even share their Callen–Symanzik equations (and the related asymptotic freedom property en-
coded in the beta-function), gauge theory cannot account for the physics at finite distances let 
alone at long distances; infrared properties and the problem of confinement remain outside its 
physical range.

Last not least the functional-analytic and operator-algebraic methods used in deriving nonper-
turbative theorems from basic principles are not available in Krein spaces. For this reason gauge 
theory is shunned in books addressing the conceptual structure of QFT [1], [2]. The perturbative 
gauge theoretic construction of a unitary S-matrix reveals this tension between conceptual clarity 
and the efficiency of calculations which account for experimental observations; it is a blessing 
for the impressive achievements of the Standard Model but a curse for a on the principles of 
positivity and causal localizability formulated QFT of the books.

Considering these conceptual deficiencies the perturbative calculations of a gauge-invariant 
S-matrix of the Standard Model is a truly impressive achievement. The idea that it represents a 
successful placeholder of an unknown QFT is quite old and there have been many failed attempts 
to find the real thing. The close formal analogy between gauge theory and SLFT suggest that 
both may even exist side by side in a Krein extended Wigner–Fock space containing additional 
indefinite metric degrees of freedom.30

Presently there exist no higher than second order SLFT calculation. Higher order loop calcu-
lations in SLFT are much more laborious than calculations in gauge theory. The gauge theoretic 
4th order calculation establishes the existence of a c(ϕ∗ϕ)2 counterterm. In contrast to the sec-
ond order A · Aϕ∗ϕ contribution its strength c is a new parameter which is not determined by 
electromagnetism of the e.g. π+ meson.31

Could this counterterm in GT be an induced contribution in SLFT? This question is not as 
crazy as it sounds. The above LP theory is by itself nonrenormalizable; its short distance dimen-
sions and the number of counterterms increase with perturbative order. Yet if “guided” in the 
above sense by a L, Vμ pair it shares the finite number of possible free varying parameters with 
the SLFT L description.

The still missing answers to such questions are not only owed to the fact that the number of 
theoreticians who are presently working on SLFT problems can be counted on one hand but they 
also find their explanation in that the necessary calculations are more involved than those based 
on pl fields. The sl setting of QFT is the only known way to uphold the principles of QFT for all
fields.

The SLFT approach also touches on an old mathematical problem which arose from QFT in 
the late 60s. The question was whether fields with dsd = ∞ (polynomial unbounded) fields as 
e.g. Wick-ordered exponential functions of pl fields as expgϕ have a well-defined mathematical 
status. This led Jaffe to extend the notion of Schwartz distributions to a general class of distribu-
tions which still allows smearing with a dense set of compact localized Schwartz test functions.

The SLFT guided construction of the LP pl setting requires to identify pl observables in both 
settings and suggests to identify the interpolating state creating fields of the LP theory with Jaffe 

30 J. Mund seems to have discovered such a “hybrid” formulation (private communication).
31 Using such a model to describe electromagnetic interactions of charge-carrying pions one usually sets c = 0.
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fields. They correspond to the well-behaved sl interpolating fields: the two theories share not only 
the S-matrix but also their local observables whereas the states in the LP theory remain singular 
in the sense of Jaffe. Such singular fields are not required to have the usual domain properties 
which one needs to generate operator algebras from fields so that the algebraic localization of 
compact spacetime regions is fully accounted for by observables.

After having exemplified the main difference between gauge theory and SLFT in the model 
of scalar QED, the following subsections will present low order calculations in other models in 
which vector mesons couple to lower spin matter fields and among themselves. This includes 
in particular the Higgs models for which, different from the standard treatment, the form of the 
Mexican hat potential and its spontaneous symmetry breaking is not imposed but rather induced
as a consequence of e-independence of S. Even more surprising is that the division into ob-
servables and sl interpolating is very different from what one naively expects: neither the field 
strength Fμν nor the Higgs field is a pl observable.

5.2. The perturbative S-matrix in the SLFT setting

The appropriate formalism for the direct perturbative calculation of the on-shell S-matrix is 
based on the adiabatic limit of Bogoliubov’s operator-valued time-ordered S(g) functional. Its 
adjustment to SLFT has been mentioned in (43) in section 3 and further explored in the previous 
subsection.

Time-ordering of quantum fields mathematically represented by operator-valued distributions 
is characterized in terms of properties among which the causal factorization is the physically 
most important one. The Epstein–Glaser formalism [82] provides a perturbative computational 
scheme in which the time-ordering of n + 1 pl interaction densities is inductively determined 
in terms of the nth ordered time-ordered product. The formulation in the presence of sl fields is 
more involved and has not been carried out beyond second order. Preliminary results reveal that 
a systematic nth order construction requires the use of new concepts [95].

The E-G perturbation theory for the S-matrix can be extended to sl fields (44). The result is 
a formula which maps a field in the local equivalence class of Wick-ordered composites of free 
fields into the equivalence class of “normal ordered” relative local interacting fields which act 
in the same Wigner–Fock Hilbert space but are nonlocal with respect to their free counterparts. 
Nowhere does this formalism refer to Lagrangian quantization. For gauge theory this was first 
carried out in [61] where it was shown the time-ordering of the S-matrix passes to that of retarded 
products in terms of fields.

The power-counting restriction of renormalizability dsd(L
P ) ≤ 4 is violated if one of the 

spin/helicity of the particles is ≥ 1. For interactions involving particles with highest spin s = 1
the dsd(LP ) = 5 there are two ways to recover renormalizability. Either by converting LP into 
a “gauge pair” LK, V K

μ which requires the extension of the Wigner–Fock space by indefinite 
metric degrees of freedom and possibly BRST ghosts, or one maintains the physical degrees of 
freedom (and with it the positivity of the Wigner–Fock Hilbert space) by converting LP into sl 
L, Vμ pair.

For the rest of the paper we will stay with models which are sl renormalizable dsd(L) ≤ 4. 
This includes all couplings whose particle content consists of s = 1 coupled to s < 1 and among 
themselves. In the case of massless sl vector potentials the escort φ diverges as m−1 and the 
large-time LSZ derivation of the S-matrix breaks down (the on-shell restrictions of correlations 
develop logarithmic m → 0 singularities) and with it the S-matrix based SLFT construction.
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However some remnants of the SLFT construction can be saved; the exact one-form deφ

and hence also the Qμ = deVμ is only logarithmically divergent and ∂μQμ remains convergent. 
Hence even in case of breakdown of the S-matrix as a result of infrared problems the L, Qμ pair 
condition

deL − ∂μQμ = 0, Qμ = deVμ (72)

remains a nontrivial condition. In fact it is this weaker formulation of e-independence which 
corresponds to the BRST invariance of gauge theory.

In the previous subsection it was shown that, although the second order pair condition in its 
original form is violated, it is possible to encode the obstructing contribution L2 into a redefini-
tion of the interaction density. It is helpful to formulate this idea in a model-independent way.

The definition of second order obstruction against the naive form of the L, Qμ pair property 
reads (using lightlike e′s which can be identified)

O(2) := deT LL′ = T ∂μQμL′ − ∂μT QμL′ + T L∂ ′μQ′
μ − ∂ ′μT LQ′

μ (73)

O(2) = δ(x − x′)deL2(x, e)

Encoding them into interaction density one obtains

Ltot := L + gL2, S(g) = T exp
∫

ig(x)Ltot (x, e)d4x (74)

This change of bookkeeping which converts higher order obstruction into induced contribu-
tions Ln amounts a change of L → Ltot in the Bogoliubov S(g) is important. It affects the higher 
orders; the third order obstruction is now

O(3)(g, g, g) = de

[
T L(g)L2(g

2) + i

3
T L(g)L(g)L(g)

]
(75)

In models of interacting s = 1 vector mesons as the Higgs model or scalar massive QED the 
third order obstruction vanishes in the adiabatic limit and the induced contributions account for 
the Mexican hat potential. As a consequence the terms in this potential are induced and not 
postulated for the purpose of implementing SSB. This will be explicitly verified in the following 
subsections.

The L, Qμ pair condition and its higher order extension within the sl Bogoliubov–Epstein–
Glaser setting is also meaningful for dsd(L) > 4. The before mentioned “minimal” models 
contain only induced contributions but their number increases with the perturbative order. By 
definition of minimal there are no higher order counterterm parameters so the model depends 
only on those parameters which are already present in the interaction density L.

The conceptual and mathematical superior aspects of SLFT poses the question whether it is 
possible to pass directly from SLFT to pl ultra fields, thus avoiding the pl counterterm formalism. 
This problem will come up again in connection with cubic h = 2 selfinteractions in the next 
section (84).

5.3. External source models

Consider a vector potential coupled to an conserved classical current jμ [11]. The S-matrix 
and the interacting vector potential are
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LP = AP
μjμ = Aμjμ − ∂μ(φjμ), hence L = Aμjμ, Vμ = φjμ (76)

Se(g) = T exp i

∫
g(x)L(x, e)

g(x)→g→ S = exp ig

∫∫
jμi�F j ′

μ : exp ig

∫
AP

μjμ :

Aret
μ (x, e, e′) = Se

−1(g)
−iδ

δfμ(x, e′)
Se(g, j → j + f )|f =0 = Aμ(x, e) +

∫
Gret

μμ′jμ′

Gret
μμ′(x, e;x′, e′) = (−ημμ′ − ∂μeμ′Ie′ + ∂μ′e′

μI−e + (ee′)∂μ∂μ′IeI−e′)Gret (x − x′)

The direct use of LP with dsd(LP ) = dsd(AP
μ) = 2 leads to a delta function ambiguity gμνcδ(x−

x′) in the time-ordered AP
μ propagator which accounts for a replacement i�F → i�F + c

m2 δ in 
the second line. This in the pl formulation undetermined counterterm renormalization parameter 
in the S-matrix and in AP,ret

μ is absent in the less singular sl formulation.
In that case S is independent of c and (by use of current conservation) the interacting field does 

not depend on e′. As expected the field strength remains pl. Hence the avoidance of the direct use 
of AP

μ in the calculation maintains the predictive power of the model. If needed one can convert 
the sl setting with the help of φ(x, e) to a AP

μ . In contrast to the directly calculated AP
μ this via 

sl determined pl potential is “better”.
Passing from external source to external potential problems the differences between the direct 

pl results and those obtained via the sl detour are much stronger (section 3).

5.4. Hermitian H coupled to a massive vector potential

The coupling of a vector potential to a Hermitian scalar matter field H comes with a new 
phenomenon. In addition to a change of the time-ordered product of the H -field there is now a 
genuine induction of H -selfinteractions.

The “germ” of an interaction density (the “ignition”) for an Aμ, H field content is the 
mA · AH coupling, where the vector meson mass factor m accounts for the classical dimen-
sion deng = 4 and also indicates that the model has no nontrivial Maxwell limit (the reason why 
it was discovered a long time after QED). Its sl operator dimension is dsd = 3, hence the germ 
is a superrenormalizable sl interaction density. The first order L, Qμ pair property (Qμ = deVμ) 
requires the presence of the escort φ also in L and leads to (L, Qμ relation easy to check)

L = m

{
A · (AH + φ

←→
∂ H) − m2

H

2
φ2H

}
+ U(H), U(H) = mc1H

3 + c2H
4

Vμ = AμφH + 1

2
φ2←→∂μ H, de(L − ∂μVμ) = 0, LP = L − ∂μVμ. (77)

A systematic determination of this first order pair L, Vμ pair starting from the simplest coupling 
(the “germ”) gmA ·AH of the A-H particle content and a general ansatz for L and Vμ containing 
all kinematically possible dsd ≤ 4 terms (19 terms in L) which can be formed from H, Aμ and 
its escort φ shows that (77) is (up to ∂μ divergence terms and exact de differentials) is the unique 
solution [88]. However a verification that the L, Vμ pair satisfies the pair condition requires only 
the use of free field equations and the relations between Aμ and its escort and will be left to the 
reader.

The first order pair condition does not determine the strength of the H -selfinteractions since 
e-independent contributions to L simply pass through the pair condition. The necessity of their 
presence which includes the determination of the ci in (77) is seen in second and third order. 
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This “induction” of additional contributions with well-defined numerical coefficients is a new 
phenomenon of SLFT; there is a formal similarity with the imposition of the second order BRST 
gauge invariance on the S-matrix [64] but the essential difference is that the e-independence of S

is a consequence of the positivity and causal localization principle of QFT.
For the S-matrix one only needs the second order tree component to the obstruction O(2)

in (73) In addition to a second order change of the time ordering of the propagator involving 
derivatives of H which parallels that in (68) one now encounters a genuine second order induc-
tion (74)

L2 = g[(m2
H + 3c1m

2)H 2φ2 − m2
H

4
φ4 + c2H

4] (78)

Finally the vanishing of the third order tree contribution fixes the values of c1, c2 in terms of 
the three physical parameters of its field content which were already present in the germ namely 
g, m, mH . To allow for a comparison with the Higgs mechanism we write the result in the form

L
(2)
tot = mA · (AH + φ

←→
∂ H) − V (H,φ), V = g

m2
H

8m2 (H 2 + m2φ2 + 2m

g
H)2 − m2

H

2g
H 2

(79)

where L(2)
tot = L + g

2 L2. The appearance of a quadratic mass term is the result of writing the 
interaction density as if it would be part of a classical Lagrangian of gauge potentials. The reader 
may fill in the details of the straightforward calculations by himself or look up the more detailed 
presentation in [88].

Apart from a mass contribution the V looks like a field-shifted Mexican hat potential. But 
different from the Higgs mechanism it has not been obtained by postulating a Mexican hat po-
tential and subjecting it to a shift in field space. It is rather induced by a renormalizable A, H
field content and it is the unique renormalizable QFT with this field content. There is simply no 
room for imposing a Mexican hat potentials since the induction of the H and φ selfinteractions 
is a consequence of e-independence of the S-matrix which in turn is a consequence of scattering 
theory involving dsd = 1 causally separable space- or light-like strings.

The SSB picture of the Higgs model also reveals another common misunderstanding, this time 
about SSB. The Mexican hat potential together with the shift in field space is not the definition
of SSB but rather a way to implement such a situation when it is possible. The definition of 
SSB is rather the existence of a locally conserved current whose global charge diverges. This is 
only possible in the presence of massless Goldstone bosons and all verbal attempts to make SSB 
consistent with a mass gap (a photon becoming fattened to a vector meson by eating a Goldstone) 
only obscure the interesting correct understanding.

QFT is not a theory which can create the masses of its model-defining field content. In partic-
ular SSB is not about creating finite masses from an initially massless situation; to the contrary 
it is about how to place a massless particle (the Goldstone boson) into an interaction density so 
that the current conservation remains that of a symmetric theory but some local charges are pre-
vented to converge in the infinite volume limit to a finite global charge (the definition of SSB). 
The only known The prescription of a field shift on a Mexican hat potential as the “Higgs mech-
anism” has to be seen in a historical context; it helped to overcome the formal problems which 
one faces when one tries to extend Lagrangian quantization from Maxwell’s theory of charge-
carrying fields to a situation in which a vector potential couples to a Hermitian matter fields. 
There are numerous historical illustrations of situations for which important discoveries were 



132 B. Schroer / Nuclear Physics B 941 (2019) 91–144
made through formal manipulations which were later replaced by a derivation which is consis-
tent with the principles of QFT. Incorrect placeholder are useful but only up to the discovery of 
the real reasons.

A model of QFT is uniquely fixed in terms of its field content. The SLFT setting (which seems 
to be the only one consistent with all principles of QFT) for a Aμ, H field content starts with a 
AμAμH as the simplest coupling and the rest is done by induction using the L.Qμ pair property 
which converts the heuristic physical content of the ill-defined pl interaction density into the 
physically superior SLFT setting where the “induction” resulting from the implementation of the 
pair property to all orders unfolds the full content of SLFT.

5.5. Selfinteracting vector mesons

It is straightforward to check that there is no renormalizable L, Qμ pair for a self-coupled 
singlet (A ·A)2. The principles of QFT as embodied into the pair condition admit however selfin-
teractions between multiplets (“colored”) of vector potentials while imposing strong restrictions 
on the “multi-colored” coupling parameters. In this case the germ is a FAA selfinteraction and 
the general ansatz for the construction of a L, Vμ pair which includes the “colored” escorts is of 
the form

L =
∑

(fabcF
μν
c Aa,μAb,ν + habcdAa,μAb,νA

μ
c Aν

d) + terms inAa,μ andφ′
as (80)

where the couplings and the masses of the vector mesons are initially freely variable parameters 
but, as expected, the first and second order pair condition places strong restrictions on them [88], 
among other things the f and h are interrelated in the same way (Jacobi identities of reductive 
Lie-algebras) as in gauge theory [64]; in particular the A–φ and φ–φ couplings depend also on 
the masses of the vector mesons. The main distinction to gauge theory is that these properties are 
direct consequences of the principles of QFT and do not arise in the course of the gauge theoretic 
extraction of physics from a unphysical (positivity-violating) description through the imposition 
of gauge invariance.

The most interesting aspect of the SLFT formulation is that there remains a renormaliz-
ability destroying second order induced selfinteraction which, if left uncompensated, destroys 
renormalizability even though the interaction density fulfills the power counting restriction of 
renormalizability. The way to overcome this is to compensate this dsd = 5 term with a second 
order contribution from a A–H interaction with a scalar Higgs field.32 This is a totally different 
situation from the abelian A–H interaction for which such all second order terms stay within the 
power counting bound. Neither case bares any physical resemblance to spontaneous symmetry 
breaking since in both cases the field shifted Mexican hat potential is second order induced.

The idea of short distance compensations between contributions from different spins arose 
in connection with supersymmetry. Although not invented for this purpose, SUSY does im-
prove the short distance behavior somewhat but not enough to guaranty the renormalizability and 
preservation of supersymmetry in higher orders. The situation of selfinteracting vector mesons is 
different, in that the preservation of renormalizability is the raison d’être for the H . Nature does 
not have to decide between a symmetry and its SSB, rather the existence of the H is directly con-
nected to the preservation of its positivity and causality principles or in other words a massive 
A

μ
α field content by itself is not consistent.

32 A s ≥ 1 field would worsen the second order short distance behavior.
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Gauge symmetry is not a physical symmetry so there is nothing to break; all these physically 
incorrect pictures evaporate if one maintains causality and positivity which is perturbation the-
ory is only possible by starting with an sl L, Vμ or Qμ pair property. The fiber bundle like Lie 
structure of the fabc couplings is not the result of an imposed symmetry it rather arises from 
the string-independence of the S-matrix which in turn is a result of LSZ scattering theory of 
interacting causally separable positivity obeying quantum fields; hence the situation is very dif-
ferent from the superselection structure of unitary representation classes of observable algebras 
which leads to the notion of inner symmetries. This shows that quantum causality is much more 
fundamental than its classical Faraday–Maxwell–Einstein counterpart.

Having thus strengthened the conceptual understanding of interactions between vector mesons 
in the Standard Model one may ask whether SLFT contains also messages about their coupling 
to matter. In recent work [89] it was shown that SLFT does not only restrict the selfcouplings 
between vector mesons and requires the presence of a Higgs particle in the presence of selfin-
teracting massive mesons but it also restricts their coupling to the Fermion currents and their 
chirality properties. This is of particular interests for massive W±.Z vector mesons and the pho-
ton, a case for which the authors explain the restrictions from SLFT in detail.

5.6. The pair condition for higher spins

The extension of SLFT S-matrix construction to that of interacting higher spins s ≥ 2 is an 
important issue about which one presently knows little. There have been quite extensive inves-
tigations in a gauge theoretic equivalent of the pair condition by Scharf [64]. In view of formal 
similarities with SLFT it is interesting to take a closer look at some of his results.

Scharf looked at the simplest s = 2 selfinteraction which is of a cubic form trh3 where hμν

is the s = 2 massless tensor field. The physical interest in this model is connected with the use 
of hμν as a linear approximation of the gravitational gμν field. As in SLFT, the short distance 
dimension of integer spin gauge fields is equal to their classical dimension in terms of mass 
units namely dsd = 1. In [64] it was shown that there exists no gauge theoretic trilinear self-
interaction LK with dsd(LK) = 3 without involving derivatives of hμν , its trace hμ

μ as well as 
ghost fields and their anti-ghost. He found a cubic interaction density of dsd(L

K) = 5 which is 
above the power-counting bound of renormalization, but still presents a huge reduction from the 
dsd(LP ) = 11.

Taking into account that gravitational coupling carries a dimension and expanding the 
Einstein–Hilbert Lagrangian in a suitable way using κ = √

32πG as an expansion parameter, 
he arrived at a formal connection of the classical expansion with the quantum-induced correc-
tion up to second order; this was later extended to all tree orders [64,90]. The agreement of tree 
approximations with classical perturbation theory is not unexpected in itself, but in the present 
context it relates two competing ideas, one being of classical geometric origin (the Einstein–
Hilbert action) and the other the gauge theory of selfinteracting h = 2 particles.

Christian Gaß showed recently (private communication) that SLFT provides a simpler version 
of such a cubic selfinteractions in the form

L = κ(2∂ρhκλ∂σ hκλ + 4∂βhα
ρ∂αhβ

σ )hρσ , hμν := A(2)
μν (81)

deA
(2)
μν = ∂μaν + ∂νaμ, (82)

where hμν = A
(2)
μν is the sl helicity 2 potential from (25) section 2 (which already played a 

role in solving the D-V-Z discontinuity problem [11]). Using the relation between de and ∂μ of 
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the second line one easily verifies that deL is of the form ∂μQμ i.e. the above L belongs to a 
L, Qμ pair. Since massless h ≥ 1 fields are intrinsically sl, the corresponding minimal models 
are expected to be “ultra-distributions” which are localizable in spacelike cones.

For h = 1 there exists no colorless selfinteraction whereas for h = 2 the situation seems to be 
reverse since the existence of colored cubic selfinteractions can be excluded [91]. A proof based 
on Scharf’s S-matrix gauge formalism can be found in [92].

The fact that there are no renormalizable s = 2 selfcouplings does not exclude the possibility 
to find sl L, Qμ pairs of interactions between sl hμν with lower spin fields as H or/and Aμ. 
An ansatz for L which generalizes the Aμ, H particle content of the abelian Higgs model would 
be of the form (hμν massive)

L = mghμνh
μνH + U(H,h,φ) (83)

where the first term represents the “ignition” i.e. the simplest renormalizable (dsd = 3) interac-
tion associated with a h, H particle content and U contains all the remaining possible at most 
quadrilinear couplings between hμν , its 5 escorts φμ, φ and H . Their coupling strengths are 
determined from the first or second order (“induction”) pair condition.

The L, Qμ pair may be uniquely determined, but it is rather improbable that dsd(L) ≤ 4. 
It would be premature to dismiss L, Vμ pairs with dsd(L) > 4. The example of pl models 
with dsd(LP ) = 5, which in the standard pl renormalization theory leads to a with perturbative 
order increasing number of renormalization parameters but under the guidance of an S-matrix-
equivalent sl pair turns into an improved formalism. This upgraded LP description contains 
dsd → ∞ pl fields but shares its parameters, the S-matrix and its pl local observables with the 
SLFT renormalization theory.

Presently our understanding of the consequences of the higher order SLFT pair requirements 
is too scarce to say anything credible about L, Vμ pairs with dsd(L) > 4. A clarification of this 
important issue will be left to future research.

6. Dynamical string-localization of interacting fields

Free massive pl fields can not only be converted into their sl counterparts by integration along 
strings but the directional eμ∂μ differentiation on sl free fields permits also the return to its pl 
form. Together with their Wick-ordered composites they form the local equivalence (sl extended 
Borchers-) class B of free fields (pl fields are viewed as special cases of sl).

Recall that for the construction of the S-matrix corresponding to a prescribed particle content 
one uses pl fields for s < 1 and those special s ≥ 1 massive sl potentials which were constructed 
in section 2.3 by “fattening” their uniquely defined sl massless counterpart. Together with the 
uniquely defined pl Proca potential and a scalar sl field referred to as the escort they constitute a 
triple of relatively causally localized fields which act in the massive s = 1 Wigner–Fock space. 
They fulfill a linear relation which is the basis for the construction of renormalizable sl interaction 
densities with string-independent S-matrices.

This “kinematic” sl localization of s ≥ 1 free fields is important for the construction of the 
S-matrix ala Bogoliubov. But it does not account for the physical localization of the interacting 
fields which is not in the hands of the calculating physicists but is determined by the particle 
content of the model. To distinguish between the two the localization of the interacting fields 
will be referred to as “dynamic localization”.

To understand this important point it is helpful to recall the form of the Bogoliubov map which 
relates the pl or sl Wick-ordered free fields from the local equivalence class of free fields B to that 
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of normal ordered interacting fields B|L (44). For pl gauge theoretic interactions densities LK

this problem has been studied in [61].
One important result is that this perturbatively defined linear Bogoliubov map preserves the 

relative causality of fields but not the algebraic structure. This is in agreement with algebraic QFT 
which is based on the idea that the full physical content of QFT in the presence of interactions 
is contained in the net of spacetime localized algebras [2]. What is shared between B and B|L in 
case of massive vector potentials is the Wigner–Fock Hilbert space in which these fields act.

This transfer of pl causality undergoes significant changes in the presence of sl fields. As in the 
calculations in the previous section one uses a lightlike e, in this case no directional testfunction 
smearing is necessary.

For the understanding of changes in localization caused by the Bogoliubov map it is not nec-
essary to enter the details of perturbative renormalization. It suffices to understand the relations 
between free fields in B which result from the assumption that their interacting images of the 
Bogoliubov map into the target spaces B|Ltot and B|LP

tot
coalesce. Hence one may omit the pref-

actors S−1 in the Bogoliubov maps and write

S(g(x)LP
tot + λf ϕg)|λ=0

a.l.� S(g(x)Ltot + λf ϕ)|λ=0 (84)

ϕg|LP
tot

= ϕ|Ltot , ϕg(x, e) = ϕ(x, e) +
N∑

k=1

ϕk(x, e) (85)

where the ϕg|LP
tot

refers to the interacting image of ϕg under the LP
tot Bogoliubov map.

The information about the localization of an interacting field ϕ|Ltot is contained in the left 
hand side33 whereas its renormalizability status (finite or infinite dsd ) can be read off on the right 
hand side. Fields which are renormalizable and at the same time pl in the LP setting represent 
observables whereas renormalizable fields which are sl on the LP

tot side are sl interpolating fields.
The formal combined map of B into itself is highly non-linear and generally changes local-

ization properties; this is the price for the preservation of renormalizability. The ϕk(x, e) in (85)
are determined by the induction

ϕk+1(x, e) = ig

∫
T (LP

tot (x
′)−Ltot (x

′, e))ϕ(x, e) = ig

∫
[∂ ′μT ]Vtot,μ(x′, e)ϕk(x, g)d4x′

(86)

where [∂ ′μ, T ] denotes the difference between the ∂ acting outside and inside the time-ordering 
which either vanishes or contributes a δ-term.

In massive QED this conversion (85) has no effect on pl observables; fields as AP
μ and F =

curlAP simply pass through since with Vμ = φjμ and ϕ0 = AP
μ the right hand side (86) vanishes 

and hence

AP
μ(x)|LP = AP

μ(x)|L, Fμν |LP = Fμν |L (87)

The idea underlying such conversions was first used by Mund [93] in the context of massive 
spinor QED. He calculated higher orders for the charge-carrying ψ (spinor or complex scalar) 
and found consistency with

33 The important point is that the LP Bogoliubov map preserves localization; hence one can use it to find out whether 
the image of ϕ under L is sl or pl.
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ψ(x)|LP = eigφ(x,e)ψ(x)|L (88)

ψ(x)|L = e−igφ(x,e)ψ(x)|LP (89)

The formula is reminiscent of gauge transformation, however its physical content is quite differ-
ent.

A particularly interesting application of the conversion formalism arises in the Higgs model. 
Different from massive QED, neither the s = 1 field AP

μ |LP , nor HLP are local observables. 
Using the form of Vμ in (77) one finds that H is transformed into H1

H1(x, e) = −
∫

[∂ ′μ,T ]Vμ(x′)H(x)d4x′ = 1

2
: φ2(x, e) : (90)

i.e. H is against naive expectations not an observable but rather represents a sl interpolating field. 
The same holds for AP or its F = curlAP .

Allowing additive composite modifications H → H + polyn(H, AP ) which preserve the 
asymptotic scattering state of the H -particle does not change the situation. The same holds for 
the AP

μ or F = curlAP . Hence both fields which are linearly related to the particle content of the 
model are interpolating fields and do not represent observables. The fact that AP

μ |LP and F are 
observables34 in massive QED but not in the Higgs model shows that the observable-interpolating 
field dichotomy is not a kinematic property.

Hence fields representing local observables in the Higgs model are necessarily composite. 
A composite field which exists in every model is the interaction density LP

tot |LP
tot

= Ltot |Ltot . 

The right hand side was calculated in (79) and the computation of LP will be contained in a 
forthcoming publication [88].

A better understanding about the singular structure of pl fields may shed new light on the 
localizability of dsd = ∞ fields which arose in connection with summing up graphical structures 
in certain nonrenormalizable models [94]. This problem was taken up by Arthur Jaffe [66], [67]
who discovered a new class of singular distributions which still permit smearing with a dense 
set of compact supported Schwartz testfunctions. These Jaffe distributions had no impact on 
QFT because the unguided pl nonrenormalizability with its infinite number of renormalization 
counterterm parameters does not present a well-defined arena for physical applications. Such 
dsd = ∞ pl fields are probably too singular to generate operator algebras, but they may still 
create physical states in the SLFT-guided LP formalism.

In section 3.2 we sketched the application of this formalism to interactions with external 
potentials. Such interactions do not lead to loop contributions. This simplicity of only induced 
contribution promises an interesting mathematically controllable playground for the study of the 
pl localization properties of observables and that of sl interpolating fields.

SLFT is presently the last step in a process of dissociating QFT from its historic ties with 
Lagrangian quantization. When shortly after the discovery of renormalized QED Arthur Wight-
man presented his “axiomatic” formulation of QFT in terms of pl fields, it appeared to be the 
most appropriate intrinsic formulation which can be extracted from Lagrangian quantization and 
Wigner’s representation theory [1]. In his algebraic formulation of Local Quantum Physics (LQP) 
Rudolf Haag proposed a setting of QFT based on a net of localized operator algebras representing 
observables which removed the last vestiges of quantization [2].

34 The line integral over an observable commutes with “switching on” the interaction and does not represent an inter-
polating fields.
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The next step was taken in the 80s by Buchholz and Fredenhagen who showed that the ex-
istence of observable algebras and suitably defined particle states guaranties the presence of 
operators localized in arbitrary narrow spacelike wedges (whose cores are strings) which create 
these particle states from the vacuum [16]. These constructions were too far removed from the 
exigencies of renormalized perturbation theory in order to have a direct impact on calculations.

As a result it took more than 30 years to incorporate these observations into a new sl pertur-
bation theory in whose discovery the understanding of the noncompact localization of Wigner’s 
infinite spin matter was an important catalyzer [35]. Fortunately one does not have to go through 
the details of this history in order to do perturbative calculations. But what may be interesting to 
note is that, different from Wightman’s extraction of his axiomatic setting from what one learned 
from the mathematically rather ill-defined rules of Lagrangian quantization, the construction of 
SLFT took the opposite path by converting ideas from LQP into perturbatively accessible com-
putations.

Its most remarkable physical property is that observables are distinguished from interpolating 
fields in terms of localization, which is of course to be expected in a theory based on causal 
localization, but which GT could not accomplish.

There remains the question of how GT with its lack of quantum positivity for interpolating 
fields achieves to be such an amazingly successful description. This will be commented on in the 
concluding remarks.

7. Resumé, loose ends and an outlook

SLFT is a formulation of QFT in which renormalizable interacting fields maintain the tightest 
possible localization which is compatible with quantum positivity and causality. In contrast to 
gauge theory its physical range is not limited to local observables and the S-matrix but also 
includes string-local interpolating fields which mediate between the causality principles of QFT 
and the string-independent scattering properties of particles. All degrees of freedom are provided 
by Wigner’s particle representation theory.

As described in the introduction the discovery of SLFT was triggered by the construction of 
sl free fields associated to Wigner’s positive energy infinite spin representation [35]. Yngvason’s 
1970 No-Go theorem [14] precluded the existence of pl fields. It turned out that Wigner’s mass-
less infinite spin representation presents a much stronger barrier against pl localization than that 
observed by Weinberg and Witten in massless finite helicity representations. The Weinberg–
Witten No-Go theorem excludes the existence of conserved higher helicity pl currents and 
energy-momentum tensors; in view of the absence of massless pl vector potentials and the fact 
that the existence of pl massless limits depends on the short distance dimension dsd this is hardly 
surprising.

The infinite spin case excludes the existence of pl composites; more general: the causal lo-
calization of infinite spin matter is necessarily noncompact [42] in concordance with smearing 
sl fields with directionally compact localized test functions f (x, e), e2 = −1. Closely related is 
that infinite spin matter cannot interact with ordinary (finite spin) quantum matter, but through its 
energy-momentum tensor its backreaction on classical gravity may lead to a noncompact form 
of gravity. Quantum inertness combined with gravitational reactivity are properties attributed 
to dark matter [38]. Since the sl infinite spin energy-momentum tensor is known as a bilinear 
form [8] such a calculation appears feasible.

The existence of sl infinite spin field with finite dsd suggested that the renormalizability de-
stroying dsd = s + 1 increase of short distance dimension can be avoided by using sl fields. This 
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was the start for the construction of sl potentials for finite s, h which provided the positivity pre-
serving (the Gupta–Bleuler degrees of freedom avoiding) dsd = 1 potentials. As mentioned in 
section 3 the absence of pl currents does not exclude the existence of local charges which are 
localized in arbitrary small spacetime regions.

The weakening of causal localization in SLFT should not be misunderstood as (what is 
commonly referred to as) “nonlocal”.35 The use of covariant semi-infinite space- or light-like 
half-lines does not get into conflict with the causality prerequisites of scattering theory (namely 
the possibility of placing an arbitrary number of fields in relative spacelike positions), nor is the 
derivation of important structural theorems (TCP, Spin&Statistics) impeded.

Among the continuously many sl potentials only one for each s plays a role in SLFT perturba-
tion theory. The key observation for its construction is that the equation curlA = F for a sl mass-
less field Aμ(x, e) acting in the Wigner–Fock helicity space associated to the (m = 0, h = ±1) 
Wigner representation has a unique solution which replaces the positivity violating pl potential 
of GT.

By a process referred to as “fattening” (section 2) this solution selects among the many pos-
sible massive sl potentials (which act in the s = 1 Wigner–Fock Hilbert space of the unique 
pl Proca potential) a distinguished sl vector potential. Together with a canonically constructed 
scalar sl potential φ(x, e) (the escort) one obtains a triple of linear related fields Aμ − ∂μφ = AP

μ

which act in the s = 1 Wigner Fock space and belong to the linear part of the causal equivalence 
class of (Wick-ordered) free fields associated to the Wigner representation (m > 0, s).

The string independence expressed as the pair relation de(A − ∂φ) = 0 is the basis for con-
structing a renormalizable interaction density L(x, e) which couples the s = 1 sl A and φ fields 
to lower spin free fields which remain pl. Together with a suitably defined vector density Vμ one 
arrives at the pair relation de(L −∂V ) = 0 which insures the string-independence of the S-matrix 
which is obtained by taking the adiabatic limit of time-ordered product of the interaction den-
sity. The lowest order pair relation may need an extension by induced terms which result from 
the implementation of higher order pair conditions. This is a new phenomenon which has no 
counterpart in the old pl perturbation theory.

The interacting quantum fields associated to this S-matrix are constructed in terms of the 
Bogoliubov map which converts pl or sl fields from the causal equivalence class of Wick-ordered 
free fields into their normal ordered interacting counterpart. The restriction to pl s < 1 and sl 
s = 1 free fields is only necessary in the construction of the S-matrix; the Bogoliubov map can 
be applied to any (pl or sl, elementary or composite) field in the free field class.

Its interacting target fields have in general a different localization from their source fields. 
The target localization has to be determined in the LP setting (see previous section). Renormal-
izable (dsd < ∞) fields in the L target space (independent of their pl or sl localization) represent 
observables if their LP source fields are pl; otherwise they represent interpolating sl fields.

SLFT has been applied up to second order to all models in which vector mesons interact with 
themselves or with s < 1 particles. The by far conceptually most demanding and interesting QFT 
is the Higgs model which in its most simple (abelian) form is the QFT in which a vector meson 
interacts with a s = 0 Hermitian field. The first order pair turns out to be uniquely fixed and its 
second order implementation induces a H selfinteraction which looks as if it would come from 
spontaneous symmetry breaking on a postulated Mexican hat selfinteraction. The conceptual 
difference to SLFT is enormous.

35 The authors of [10] had problems with referees who rejected the work with the argument that SLFT is nonlocal.
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A similar but somewhat more elaborate second order calculation for selfinteracting massive 
vector mesons reveals that the coupling structure of the leading dsd = 4 contributions up to 
second order is that of a reductive Lie-algebra. The surprise is that, different from gauge theory, 
this apparent symmetry in the dsd leading contribution has not been imposed. In fact it is not 
even a symmetry in the sense in which this terminology is used to describe unitary implemented 
inner symmetries.

Whereas symmetries and their spontaneous or complete breaking of selfinteracting scalar par-
ticles can be freely imposed, there are strong restrictions from first principles on the form of s ≥ 1
SLFT selfinteractions which leave no such freedom; the form of selfinteractions in the presence 
of s ≥ 1 is fully determined by the particle content of the model and not at the disposition of 
the calculating theorist. The use of the positivity violating gauge symmetry obscures this impor-
tant insight. The chirality theorem [89] shows that these principles also affects the coupling of 
selfinteracting vector potentials to Dirac fermions.

Another somewhat unexpected property is that renormalizable interaction sl densities L
may produce second order sl dsd = 5 contributions which, if left uncompensated, destroy the 
e-independence of S as well as renormalizabilty. The only way to save such a model is to enlarge 
its particle content by a A–H interaction which induces a compensating second order A selfin-
teraction. This, and not SSB, is the raison d’être for the presence of an H -particle in models of 
selfinteracting massive vector mesons.

The application of the SLFT perturbation theory to the Higgs model leads to other foun-
dational questions whose answer may be trendsetting for the development of QFT. The ba-
sic interaction density A · AH for a Aμ, H particle content (the “ignition” from which the 
L, Vμ pair requirement uniquely induces all other contributions) is superrenormalizable since 
dsd(AAH) = dcl = 3. One does not expect that interactions induced by superrenormalizable 
couplings lead to higher order counterterms with new coupling parameters. A 4th order confir-
mation of this expectation does presently not exist (neither in SLFT nor in the gauge theoretic 
SSB setting).

Even more important is to find out if SLFT permits an extension to s ≥ 2. The remarks in 
section 5.6 on s = 2 selfinteractions show that dsd(L) = 5. To conclude that the theory is useless 
because it violates the power-counting bound is premature since (previous section) the main 
reason for dismissing interaction densities is that they lead to a with perturbative order increasing 
number of coupling parameters and not the fact that there are fields with an increasing short 
distance scaling degree. For the acceptance of a model it suffices that its S-matrix is well-defined 
and that its observables remain pl with bounded dsd , independent of whether the dsd of its sl 
interpolating fields increase with perturbative order.

Candidates with s = 2 potentials Aμν and superrenormalizable “ignition” of the form 
AμνA

μνH or AμνAμAν and induced L, Vμ pairs couplings with dsd(L) = 5 are expected to 
exist. As long as the number of counterterm coupling parameters does not increase with per-
turbative order and the physical predictability is maintained there is no obvious reason for their 
exclusion of such L, Vμ pairs. Only further research can resolve these challenging problems.

Can SLFT shed some light on the perplexing question why GT inspite of its obvious con-
ceptual shortcomings36 remained such an amazingly successful theory? This paradigmatic ques-
tion may have a positive answer. The LK, V K

μ pair property is a consequence of the relation 

36 Positivity is an indispensable property which secures the probability interpretation of quantum theory.
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AP
μ = AK

μ + ∂μφP,K where K refers to the Krein space of GT and φP,K is a scalar pl “hybrid” 
escort which mediates between the P and K formalism [96].

In the BRST formulation used in [64] the fields act in a Stückelberg- and ghost-extended
BRST space. The physical space, to which the action of AP

μ can be restricted, is defined in 
terms of BRST cohomology and observables are defined as objects invariant under the BRST 
operation s (sO = 0 for observables and sS = 0 for the S-matrix).

The advantage of the hybrid formulation proposed by Mund [96] is that, different from the 
formalism used in [64], Stückelberg- and ghost-degrees of freedom are not needed. Instead of 
spaces which are embedded in the sense of BRST cohomology one deals with factorization 
through Gupta–Bleuler subspaces.

An explicit expression for the mixed hybrid escort φP,K was recently calculated by Mund 
(private communication). The Proca potential lives in the transverse subspace to the mass shell 
pμψμ(p) = 0 which is embedded in the Krein space whereas the living space of fields is the full 
4-component Krein space. The triple relation can the be used to define a LK, V K

μ pair which is 
S-matrix-related to the physical LP formulation.

A favorable situation for studying infrared phenomena arises from the hybrid triple Asl
μ(x, e) =

AK
μ (x) + ∂μφsl,K(x, e). The AS

μ (without) lives on the physical subspace of the Gupta–Bleuler 
Krein space. All three contributions have a massless limit, but φs,K without the derivative has 
the typical logarithmic infrared divergence known from scattering theory of charge-carrying par-
ticles. Its exponential exp igφS,K(x, e) seems to provide the kind of directional superselection 
rule of photon “clouds” whose presence is required by a theorem [50]. This picture is a closer 
analog of (10) than the exp ig�(x, e, e′) constructed in (9).

This hybrid pair description does not only explain the close relation of a (from ghosts and 
negative metric Stückelberg fields liberated) Gupta–Bleuler GT with the positivity preserving 
SLFT, but it also shows that GT plays a useful constructive role for a better understanding of 
SLFT in QED. The hybrid relation reveals that the physical origin of quantum gauge theory 
is that one cannot squeeze causally spacetime localized pl vector potentials into the Wigner 
momentum space; this is only possible by permitting a noncompact but still causally separating 
localization.

In particular it contains information about the change of the Wigner particle space for the B|L
operators (previous section) in the massless limit. Whereas the fields in B live in a Wigner–Fock 
helicity space, their interacting images in B|L act on a larger space for whose construction one 
needs to form line integrals on indefinite Gupta–Bleuler potentials AK

μ (x) (still indefinite) and 
convert them into complex exponential fields (the photon clouds) whose associated Hilbert space 
is expected to show a similar infrared structure as the exponentials exp igϕ(x) of the indefinite 
logarithmic divergent massless d = 1 + 1 scalar fields (the ϕ-clouds).

The hope is to obtain a spacetime understanding of infrared phenomena including the large-
time behavior which replaces that of the LSZ scattering theory. This includes the vanishing of 
scattering between charge-carrying particles with only a finite number of outgoing photons.

This cannot be described solely in terms of free matter fields, rather the exponential sl depen-
dent photon cloud fields must play an important role. Similar to the ϕ-clouds in a two dimensional 
model (10) they are expected to “soften” the mass-shell singularity and account for the zero prob-
ability for the emission of a finite number of photons in collisions of charged particles whereas 
a perturbative expansion which ignores this change of the mass-shell leads to the logarithmic 
infrared singularities. As often, the devil is in the details.
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SLFT also suggests that behind confinement there could be a more radical off-shell pertur-
bative logarithmic infrared divergence of massless selfinteracting gluons. Such off-shell diver-
gences are absent in covariant gauges of nonabelian GT, but off-shell long distance singular 
behavior of self-interacting gluons in SLFT may be stronger than in GT [45], [38].

Most problems of SLFT remain unsolved; on particular the present state of knowledge about 
higher order perturbative renormalization is insufficient. Its strengths are that the new ideas 
passed many tests and that the promise to transcend the conceptual limitations of GT is too 
tempting to resist.

This may be attributed in part to the fact that its underlying ideas are in embryo and the num-
ber of researchers who know about their existence and decided to study them is still very small. 
There is no lack of researchers working on foundational problems of QFT extending the pio-
neering work of Wightman, Haag and others. Most theoreticians use the existing gauge theoretic 
formalism to solve problems of high energy particle physics or cosmology. During the last 5 
decades a lot of time has been invested in research on speculative ideas as String Theory, Mul-
tiverses, Supersymmetry and alike; the incentive was obviously to continue the success of the 
first three decades of QFT in which such speculative way of proceeding was very successful and 
which led to most of our by now household goods.

The lack of any tangible results of these attempts led meanwhile to feelings of somberness. 
The new insights into QFT provided by SLFT raise the question why loose time with speculative 
ideas if we still know so little about our most successful theory?
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