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Abstract

This paper studies how information control affects incentives for collusion
and optimal organizational structures in principal-supervisor-agent relation-
ships. I consider a model in which the principal designs the supervisor’s signal
on the productive agent’s private information and the supervisor and agent may
collude. I show that the principal optimally delegates the interaction with the
agent to the supervisor if either the supervisor’s budget is large or the value of
production is small. The principal prefers direct communication with the su-
pervisor and agent if the supervisor’s budget is sufficiently small and the value
of production is high.
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1 Introduction

In many organizations, a supervisor advises the principal on how to set the con-

tractual terms for a productive agent with private information. Honest advice from

the supervisor lowers the agent’s informational advantage and allows the principal

to reduce the agent’s information rent. However, this creates scope for collusion as

the agent is willing to pay the supervisor for biased advice that increases his rent.

Public procurement is a prominent example of such a setting.1 In many countries,

procurement officers at central purchasing bodies advise public buyers and corruption

is prevalent — often in the form of private suppliers paying bribes in exchange for

highly priced public contracts.2

The threat of collusion influences the optimal organizational design of principal-

supervisor-agent relationships. The extant literature studies whether hierarchical del-

egation is an optimal response to collusion, i.e., whether the principal can achieve the

payoff from the optimal centralized mechanism by contracting only with the supervi-

sor who in turn designs the agent’s contract (Faure-Grimaud, Laffont and Martimort,

2003; Celik, 2009). The literature assumes that the supervisor’s information about

the agent is exogenous to the principal and draws a different conclusion of the opti-

mality of delegation depending on the specific information structure that generates

the supervisor’s information.3

In this paper, I study whether delegation is an optimal response to collusion if

the principal can influence what the supervisor learns about the agent. In many

settings where the principal-supervisor-agent model can be applied, the development

of information technology has made the allocation of information endogenous. In

public procurement, most advanced economies have digitalized their procurement

systems. With an e-procurement system, the allocation of information to the different

1OECD governments spend an average of 29% of total expenditure on public procurement
(OECD, 2017).

2In a recent corruption scandal, an employee of the Italian central purchasing body, Consip, was
allegedly bribed for the award of a public contract worth 2.7 billion Euro (ANSA, March 1, 2017).
According to the OECD (2014), 57% of cases of foreign bribery payments were made to receive a
public contract. See Di Tella and Schargrodsky (2003) for more detailed evidence of this type of
procurement fraud in hospitals in Buenos Aires.

3Faure-Grimaud et al. (2003) prove that delegation is optimal in a model where the agent has one
of two types and the supervisor may observe one of two signal realizations. Celik (2009) demonstrates
that delegation may be strictly suboptimal when the agent has three types and the supervisor
observes the element of a partition of the agent’s type space in which the true type lies.
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stakeholders is an important choice variable.4 These technical developments bring up

not only the question of whether information control and delegation are substitutes

or complements, but also how information control could be used to fight collusion in

supervisory institutions.

To study endogenous information, I consider a standard principal-supervisor-agent

model as in Faure-Grimaud et al. (2003) and Celik (2009) and add information control

of the principal over the supervisor. The agent can produce a good for the principal

at a privately known cost. The supervisor observes a signal of the agent’s costs. In

the spirit of the literature on Bayesian persuasion (Kamenica and Gentzkow, 2011),

the principal exerts information control by choosing the information structure that

generates the supervisor’s signal. Under centralization, the principal offers a grand

contract to the supervisor and the agent. This centralized mechanism allows both

the supervisor and the agent to send messages to the principal. The supervisor and

agent collude by signing an enforceable side-contract that specifies side-payments

and coordinates their behavior under the grand contract. Under delegation, the

principal sets a grand contract under which only the supervisor can send messages.

The supervisor and agent can still sign a side-contract which now serves as a sub-

contract between the lower tiers of the hierarchy.

I show that the principal can implement the optimal centralized outcome by del-

egation if either the supervisor’s budget is large or the principal’s value of the good

is small. In particular, the principal can extract the full surplus by delegation if the

supervisor’s budget is large enough. By contrast, centralization outperforms delega-

tion if the supervisor’s budget is sufficiently small and the principal’s value of the

good is large. Moreover, a partially informed supervisor is optimal for the principal

whenever the supervisor’s budget is strictly positive.

As pointed out by Faure-Grimaud et al. (2003), the key difference between central-

ization and delegation is the agent’s outside option from rejecting the side-contract

offered by the supervisor. Under centralization, the agent can reject the side-contract

and still participate in the grand contract non-cooperatively. Under delegation, the

agent has to accept the side-contract in order to participate in the grand contract.

Thus, the principal can use the agent’s rent from the non-cooperative equilibrium

of the grand contract as an additional instrument under centralization. This instru-

ment might be valuable as the agent’s rent in the non-cooperative equilibrium of

4Twenty-nine OECD countries used a national e-procurement system in 2016 (OECD, 2017).
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the grand contract determines his bargaining position within the colluding coalition.

A higher rent improves the agent’s bargaining position and makes it harder for the

supervisor to find a profitable side-contract. If the instrument is valuable to the prin-

cipal, centralization is better than delegation. Otherwise, delegation is as good as

centralization.

With information control, the principal faces a trade-off between information elic-

itation and collusion prevention. If the supervisor receives additional information, the

agent’s informational advantage over the supervisor decreases. As long as the super-

visor shares her information truthfully, this is beneficial to the principal. However, it

also reduces information asymmetry in the colluding coalition and therefore enables

the supervisor and the agent to collude more effectively. Faure-Grimaud et al. (2003)

already note that the principal’s payoff is maximal if the supervisor’s signal has an

intermediate precision. In this paper, I analyze how this trade-off can be optimally

resolved in a model with an arbitrary type and signal space where precision cannot

be captured by a single parameter.

In Section 4, I derive upper bounds on the principal’s payoff for the cases of

centralization and delegation. These upper bounds exceed the principal’s payoff in

the absence of a supervisor whenever the supervisor has a strictly positive budget.

Thus, a supervisor may only be helpful to the principal if she can absorb some loss.

In Section 5, I present a combination of information structure and grand contract

with which the principal attains the upper bound on the payoff with delegation.

Under this combination, there is a cutoff cost level such that the good is produced if

the cost is (weakly) below the cutoff and the good is not produced otherwise. The

information structure generates a different signal realization for each type below the

cutoff. The types above the cutoff randomly generate one of these signal realizations.

This makes the signal noisy. Under the grand contract, the supervisor and agent

receive for production a total payment equal to the cutoff. The agent is offered

a price equal to the unique type below the cutoff that is possible after the signal

realization, the supervisor keeps the difference between the cutoff and this type as

a bonus if the agent accepts the offer. Without production, the supervisor has to

make a transfer to the principal. Clearly, the agent receives no rent under this grand

contract. The supervisor receives a positive rent with production and a negative

rent without production. In order to minimize the supervisor’s expected rent for any

signal realization, the information structure pools more types above the cutoff into
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signal realizations that lead to a higher bonus under production. Thus, the bonus and

the probability of production are negatively assorted. If the supervisor’s budget is

large enough, the principal can extract the full surplus in expectation by making the

supervisor the residual claimant under production while setting a sufficiently negative

payment without production.

In Section 6, I present the main results of this paper. First, delegation is optimal

if either the supervisor’s budget is large enough or the principal’s value of the good

is small. Second, centralization is superior to delegation if the supervisor’s budget is

sufficiently small and the principal’s value of the good is high. As discussed above,

delegation is inferior to centralization whenever the principal finds it optimal to use

the agent’s rent in the non-cooperative equilibrium of the grand contract as an in-

strument. If this is the case, the agent’s rent is strictly positive and the principal’s

payoff is bounded away from the full surplus. As the principal can extract the full

surplus under delegation if the supervisor’s budget exceeds a threshold, a continuity

argument implies that delegation remains optimal if the supervisor’s budget lies in

some region below the threshold.

Delegation is also optimal if the principal’s value of the good is small. In that case,

the cutoff separating producing and non-producing types is small and the probability

of production is low. Even if the supervisor’s budget is low, the principal can therefore

effectively reduce the expected rent of the supervisor by setting negative payments

for the supervisor in the relatively frequent case of no production. This is feasible

under delegation and can be achieved as in the grand contract described above. By

contrast, it is not feasible under delegation to impose losses on the supervisor with

production as the supervisor can always avoid production (and the associated losses)

by asking the agent for a prohibitively high bribe for the opportunity to produce.

If the principal’s value of the good is high, the mass of producing types is large

and it is more effective to extract rents from the supervisor by imposing losses with

production. I construct a combination of information structure and grand contract

under centralization that allows the principal to do this. I show that this combination

gives the principal a strictly higher payoff than the optimal payoff under delegation

if the principal’s value of the good is large and the supervisor’s budget is sufficiently

small. For this parameter range, the combination of information structure and grand

contract is near-optimal as its payoff is a first-order approximation of the upper bound

under centralization.
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As noted above, this paper contributes to the literature on collusive supervision

with adverse selection5 (Faure-Grimaud et al., 2003; Celik, 2009; Mookherjee, Motta

and Tsumagari, 2019) by introducing information control on the principal’s side. The

literature builds on the approach of Laffont and Martimort (1997, 2000) to mechanism

design with collusion by modeling collusion as an enforceable side-contract between

asymmetrically informed parties.6,7 In contrast to Faure-Grimaud et al. (2003), Celik

(2009), and this paper, Mookherjee et al. (2019) analyze a model of collusive super-

vision in which the colluding coalition can enter a side-contract before accepting the

contract offered by the principal.8 The participation decision of the agent and su-

pervisor can therefore be part of the collusive agreement in the side-contract.9 They

show that delegation is strictly suboptimal in this setting.10

In this paper, I model the principal’s control over the supervisor’s signal in the

spirit of the literature on Bayesian persuasion (Kamenica and Gentzkow, 2011; Rayo

and Segal, 2010). Thus, the principal can choose an arbitrary signal design at no

cost. In line with the literature on collusive supervision, I assume that the principal

cannot himself observe the signal realization and that the signal is observed by the

supervisor and the agent. Thus, the signal realization is public for the players of the

mechanism set by the principal.11

Bergemann, Brooks and Morris (2015) and Roesler and Szentes (2017) study the

implications of information design in models of bilateral trade. Bergemann et al.

(2015) analyze the payoffs for the buyer and seller that can result from varying the

information the seller possesses on the buyer’s valuation. Roesler and Szentes (2017)

study the optimal information acquisition of a buyer regarding her valuation. In the

current paper, the trading relationship between principal and agent is intermediated

5Collusion and delegation with two productive agents is studied under moral hazard by Baliga
and Sjöström (1998) and under adverse selection by Laffont and Martimort (1998).

6Che and Kim (2006) study the cost of collusion in a general mechanism design framework.
7Green and Laffont (1979) and Tirole (1986) study collusion with symmetric information, Crémer

(1996), McAfee and McMillan (1992), and Caillaud and Jehiel (1998) consider specific mechanisms.
8Mookherjee, Motta and Tsumagari (2018) apply the model of Mookherjee et al. (2019) to develop

a transaction cost-based theory of international vertical integration. Mookherjee and Tsumagari
(2017) consider a variant of this model with a stronger form of collusion.

9Further papers that study this form of collusion are Mookherjee and Tsumagari (2004), Dequiedt
(2007), Pavlov (2008), Che and Kim (2009), and Che, Condorelli and Kim (2018).

10Delegation is also often studied based on the model of Crawford and Sobel (1982). See Ivanov
(2010) for an analysis of information control in this model.

11See also the literature on information design in games (Bergemann and Morris, 2013, 2016;
Taneva, 2019; Mathevet, Perego and Taneva, forthcoming).

6



by a supervisor whose information can be varied.

This paper is also related to Ortner and Chassang (2018). They analyze a

principal-monitor-agent model under moral hazard and show that corruption can

be fought by introducing asymmetric information in the colluding coalition through

the use of random transfers. In contrast to the present paper, it is therefore the terms

of the contract and not the type of the agent which creates asymmetric information

within the coalition. Inducing asymmetric information on transfers is costless in their

setting as the principal only cares about expected transfers. Thus, the principal does

not face a trade-off between information elicitation and collusion prevention. This

trade-off is central to the analysis in this paper.12

The remainder of this paper is organized as follows. In Section 2 I illustrate the

benefits of information control in a simple example. Section 3 introduces the general

model. Section 4 sets up the principal’s problem and provides benchmark and pre-

liminary results. In Section 5 I characterize the optimal combination of information

control and grand contract under delegation. Section 6 provides conditions for the

optimality of either delegation or centralization under endogenous information. Sec-

tion 7 discusses several extensions of the model. Section 8 concludes. All proofs can

be found in the appendix.

2 An Illustrative Example

In this section, I present a simplified version of the general model to show how the

principal can benefit from information control while delegating the interaction with

the agent to the supervisor. The agent A can produce a good at cost θ which is

uniformly distributed on {1, 2, 3}. The principal P values the good by v ∈ (2, 3).

The supervisor S observes a signal σ about θ and is endowed with a budget ` ≥ 1.

In the absence of S, P optimally offers A the monopsony price p∗ = 1 and makes an

expected payoff of 1
3
(v − 1).

If S is perfectly informed about A’s cost and A is unable to pay bribes to S, P

can extract the full surplus by delegating the interaction with A to S. In particular,

S can be authorized to choose the price that P offers to A. As S is a disinterested

party, she finds it optimal to pick p = θ if θ ≤ 2 and p < 3 if θ = 3. Given this

12Negenborn and Pollrich (2018) study the optimal use of asymmetric information about the
contract in a general principal-supervisor-agent model.
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behavior, P ’s expected payoff is the expected full surplus of 2
3
v − 1.

With collusion and perfect information of S about A’s cost, this arrangement is

prone to manipulation. In particular, S may promise A to always choose the maximal

price P is willing to pay in exchange for a bribe. Under this form of collusion, P ’s

payoff – given the maximal price p – is Pr(θ ≤ p)(v − p), weakly smaller than the

monopsony payoff of 1
3
(v − 1). Thus, collusion destroys all benefits from supervision

if S is perfectly informed about A.

Can P be better off if S knows less about A’s costs? Suppose S perfectly learns

A’s cost whenever θ = 2 but cannot distinguish θ = 1 from θ = 3. The information

structure underlying S’s signal is depicted in Figure 1. S either observes the signal

realization σ = m and knows that θ = 2, or observes σ = hl and updates her beliefs

to the uniform distribution over {1, 3}.

Figure 1: Information structure of partially revealing signal

Costs Signal space

1

2

3

hl

m

Signal realization hl is released if costs are 1 or 3. Signal realization m is released if costs are 2.

Furthermore, suppose P authorizes S to pick a price offer p to A. P pays S a

transfer of 2−p if A accepts p, and S pays 1 to P if A rejects p. If the signal realization

is m, S optimally offers a price of 2 and receives a payoff of zero as A always accepts.

If the signal realization is hl, S optimally offers a price of 1. A accepts the offer if

θ = 1 and rejects if θ = 3. For θ = 1, S makes a profit of 1. For θ = 3, S makes a

loss of 1. This loss does not exceed her budget `. Thus, S receives an expected payoff

of 1
2
· 1 + 1

2
· (−1) = 0 after the signal realization hl. It follows that S accepts the

delegation contract after both signal realizations. The delegation contract is robust

to collusion as the total payment of P to S and A depends only on the production

decision. S therefore has no interest in increasing the price offer to A as this comes

at her own expense.
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Under this combination of a partially revealing information structure and a dele-

gation contract, P extracts the full surplus even though S and A can collude. This

follows from the observation that the production decision is efficient and neither S

nor A receives a positive rent in expectation. Thus, a partially informative signal and

delegation are optimal for P . This result extends to the general model as long as S’s

budget ` is large enough.

P ’s preferred information structure is non-monotone as it pools non-adjacent types

into the same signal realization. Such non-monotone information structures naturally

arise in settings where production costs are determined by two dimensions – a project-

specific and an agent-specific dimension – and where the supervisor observes only one

dimension.

Consider a procurement project that consists of two tasks. Each task is either

of type a or of type b. If both tasks have type a (b), the procurement project is an

a-project (b-project). If the tasks have different types, the procurement project is an

m-project. A is either specialized in tasks of type a or of type b. A’s costs are given

by 1 plus the number of tasks in which it is not specialized. A knows its specialization

and observes the project type. P knows neither the project type nor A’s specialization

and believes that the project type is independent from the specialization and that

each project type and each specialization is equally likely. Figure 2 summarizes this

description.

Figure 2: The determinants of A’s cost θ

a-specialist: 1/2 b-specialist: 1/2

a-project: 1/3 1 3

m-project: 1/3 2 2

b-project: 1/3 3 1

θ depends on project type and specialization. Each project type and specialization is equally likely.

If S observes only the project type but not A’s specialization, her learning process

can be represented by the information structure in Figure 1. If S observes that the

project is type a or b, she can infer that costs are going to be high or low. If S
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observes that the project is of type m, she knows that costs are intermediate. Thus,

P benefits from disclosing data about the project to S while hiding data about past

performances of A.

3 The Model

Principal and agent

The principal, P , seeks to procure a single indivisible good. The agent, A, can produce

the good at cost θ. A is privately informed about θ which is the realization of the

random variable θ̃ with distribution F (θ) = Pr(θ̃ ≤ θ) on Θ ⊆ R with Conv(Θ) =

[θ, θ]. P ’s value of the good is v ∈ R with v > θ. Given a transfer t from P to A, P ’s

payoff is vX − t and A’s payoff is t − θX where X ∈ {0, 1} denotes the production

decision. Production is efficient for v ≥ θ. The resulting expected full surplus is

W ≡
∫ v

θ

(v − θ)dF (θ).

If P and A are the only players, P cannot do better than to offer A the price13

p∗ = p∗(v) ≡ max arg max
p∈Θ

(v − p)F (p).

I denote the resulting monopsony payoff for P by W .

Supervisor and Information Control

The supervisor S learns about A’s cost θ by observing the realization σ of the signal

σ̃. The signal realization is also observed by A but not by P .14 S’s payoff equals

the net transfer she receives and does not depend on the production decision. S is

endowed with a budget ` ∈ [0,∞). She can never incur a loss that exceeds her budget.

Any signal can be represented by an information structure I = (Σ, µ). Σ ⊆ R is

a set of signal realizations with the generic element σ ∈ Σ and µ ∈ ∆(Σ × Θ) is a

probability measure on the set of possible realizations of cost and signal. The measure

µ induces a conditional distribution G(θ|σ) = Pr(θ̃ ≤ θ|σ̃ = σ) and a marginal

13See for instance Section 2.2. in Börgers (2015) for a proof of the optimality of a posted price.
14This assumption follows Faure-Grimaud et al. (2003), Celik (2009), and Mookherjee et al. (2019).
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distribution H(σ) = Pr(σ̃ ≤ σ). Following the literature on Bayesian persuasion, I

only impose the requirement of Bayes-consistency on the information structure, i.e.,∫
Σ

G(θ|σ)dH(σ) = F (θ) ∀θ ∈ Θ.

I denote by I the set of all Bayes-consistent information structures. For a given I,

the support of the random variables (σ̃, θ̃) and θ̃|σ are denoted by Supp(σ̃, θ̃) ⊂ Σ×Θ

and Supp(θ̃|σ) ⊂ Θ, respectively.

P exerts information control by choosing the information structure I ∈ I that gen-

erates S’s signal. This contrasts with the extant literature on collusion in principal-

supervisor-agent relationships where some information structure in I is exogenously

given. Following the literature on Bayesian persuasion, P can choose any information

structure in I at zero cost.

Allocations and payoffs

An allocation describes whether the good is produced and what transfers are ex-

changed between the parties. Formally, an allocation is given by

(X, tS, tA, τ) ∈ {0, 1} × R3,

where ti is the transfer from P to i ∈ {A, S} and τ is a side-transfer from A to S.

The allocation (X, tS, tA, τ) leads to payoffs of vX − tA − tS for P , tA − τ − θX for

A, and tS + τ for S.15

A and S each have an outside option. If S chooses her outside option, it follows

that tS = τ = 0 resulting in a payoff of zero for S. If A chooses his outside option,

X = τ = tA = 0 and A’s payoff is zero.

Centralization and delegation under collusion

Following Faure-Grimaud et al. (2003) and Celik (2009), I consider two forms of

organizational design: centralization and delegation.

Under centralization, P directly communicates with A and S. P offers A and S

15As A knows σ and θ, all monotone transformations u(·) of A’s payoff do not change the results.
Thus, one may allow A to be risk-averse or to have a limited budget.
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a (deterministic) grand contract

β =
(
X(mS,mA), tS(mS,mA), tA(mS,mA)

)
which determines the production decision and transfers from P to S and A as func-

tions of the messages mS and mA chosen by S and A from the sets MS and MA. If

a party rejects the grand contract, A and S receive their outside options. Closely

following the literature on collusion in mechanism design, I model collusion as an en-

forceable side-contract between S and A that coordinates the communication with P

and specifies side-transfers. As in Faure-Grimaud et al. (2003) and Celik (2009), I as-

sume that S proposes the side-contract to A in a take-it-or-leave-it offer.16 Formally,

S offers A a (deterministic) side-contract

γ = (ρ(msc;σ), τ(msc;σ))

which determines the communication with P and the side-transfer through the re-

porting strategy ρ : M sc × Σ → MS ×MA and the payment rule τ : M sc × Σ → R.

Both ρ and τ are functions of the message msc chosen by A from the set M sc and the

signal realization σ which is common knowledge of the colluding parties. If A rejects

the side-contract, A and S play the grand-contract non-cooperatively.

Under delegation, P communicates directly only with S via the grand contract

while S communicates with A via the side-contract. Formally, P offers S a grand

contract β with MA = {mA} and S offers A a side-contract γ. Under delegation, the

side-contract γ may be interpreted as a subcontract between P ’s main contractor S

and the subcontractor A. If S rejects the grand contract, A and S receive their outside

options. If S accepts the grand contract and A rejects the side-contract, A receives

his outside option and S is forced to send a message that induces no production.

With this definition of delegation, P can make direct transfers to A. This contrasts

with Faure-Grimaud et al. (2003) and Celik (2009) where the grand contract has to

satisfy tA = 0 under delegation. However, this difference is not substantial as tA, tS,

and τ can be interpreted as the net transfers in a setting where P pays tA + tS to S

and S pays tA − τ to A.17 The advantage of this paper’s definition of delegation is

that the cases of delegation and centralization can be treated in the same framework

16I show in Section 7 that this assumption is not crucial for the results.
17I further comment on this equivalence after defining P ’s problem under delegation in Section 4.
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by using a collusion-proofness principle in both instances. Moreover, this formulation

fits the leading example of public procurement where private firms are paid by public

buyers and not by the central purchasing body.

Timing and equilibrium concept

The timing of the game for the cases of centralization and delegation is the following:

t=0: P chooses an information structure I ∈ I.

t=1: S and A observe I and σ. A furthermore observes θ.

t=2: P offers a grand contract β.

t=3: Under centralization, S and A each accept or reject P ’s offer β. Under delega-

tion, only S accepts or rejects β.

t=4: S offers a side-contract γ to A.

t=5: A accepts or rejects γ.

I focus on perfect Bayesian equilibria (PBE) with passive beliefs in which S offers

direct and truthful side-contracts whenever they are optimal.18 In these equilibria, S

does not update her belief about θ if A rejects the side-contract off the equilibrium

path. Moreover, if the set of S’s best responses to a grand contract β contains a direct

and truthful side-contract, then S offers such a side-contract to A. This approach

follows the concept of weak collusion-proofness in Laffont and Martimort (2000).

Remarks on the model

P exercises information control through public information design as both S and A

observe the signal realization. An alternative modeling approach allows P to design

signals that are privately observed by A and S.19 There are two reasons for my

modeling decision. First, the model remains close to the literature with exogenous

information which assumes that the realization of the exogenously determined signal

is observed by both A and S (Faure-Grimaud et al., 2003; Celik, 2009; Mookherjee

et al., 2019). While the case of private signals is interesting, it is harder to compare

18See Fudenberg and Tirole (1991) for a definition of PBE.
19These signals might even be made dependent on a report of A.

13



to the literature which does not cover the case of private signals. Second, the model

fits my leading application of public procurement where private firms typically have

the right to know what data is collected about them by public authorities.

As in Faure-Grimaud et al. (2003) and Celik (2009), I restrict grand contracts and

side-contracts to be deterministic. In the context of public procurement, deterministic

mechanisms seem to comply better with the aim of rewarding public contracts in a

transparent way. Moreover, the restriction to deterministic grand contracts may

reflect the practical difficulty to commit to a stochastic mechanism.

As the subsequent analysis reveals, both assumptions turn out to be without loss of

optimality if the supervisor has a sufficiently large budget. In this case, the principal

can extract the full surplus with public information and deterministic mechanisms.

4 Preliminary Analysis

In this section, I use a collusion-proofness principle to formulate P ’s contracting

problems under centralization and delegation. I then derive upper bounds on P ’s

payoff for centralization and delegation. These upper bounds play a crucial role for

the analysis of optimal combinations of information structure and grand contract in

the subsequent sections.

Collusion-proofness principle

I first invoke a collusion-proofness principle. This approach follows Laffont and Marti-

mort (1997) and allows me to restrict attention to direct and truthful grand contracts

under which S offers A the direct and truthful null side-contract γ0 ≡ (ρ0, τ0) with

ρ0(θ;σ) ≡ (σ, σ, θ) and τ0(θ;σ) ≡ 0 for all (σ, θ) ∈ Supp(σ̃, θ̃).

Lemma 1. For any grand contract β, any information structure I, and any signal

realization σ ∈ Σ, S has an optimal side-contract γ which is direct and truthful.

For any equilibrium (with centralization or delegation) in which P offers the grand

contract β and S offers the side-contract γ, there exists a payoff-equivalent equilibrium

in which P offers β0 = β ◦ γ with MS = Σ and MA = Σ×Θ under centralization and

MS = Σ2 ×Θ under delegation, and S offers γ0.20

20The usual revelation principle does not apply as the side-contract is deterministic. The proof uses
a revelation principle in terms of payoffs due to Strausz (2003) and incorporates collusion-proofness.
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For centralization, the collusion-proofness principle implies that it is optimal for P

to offer a direct and truthful grand contract under which S does not benefit from non-

trivial collusion with A. For delegation, the collusion-proofness principle implies that

it is optimal for P to offer a direct grand contract under which S finds it optimal to

offer a side-contract which truthfully conveys S’s information σ and A’s information

(σ, θ) without using side-transfers.21

Centralization

Using the collusion-proofness principle, I now formulate P ’s optimization problem

under centralization. The grand contract is acceptable to both S and A if

E
[
tS(σ, σ, θ̃)|σ

]
≥ 0 (PCS), tA(σ, σ, θ)− θX(σ, σ, θ) ≥ 0 (PCA),

for all (σ, θ) ∈ Supp(σ̃, θ̃). Furthermore, S and A find it optimal to individually

report their private information truthfully if

E
[
tS(σ, σ, θ̃)|σ

]
≥ E

[
tS(σ̂S, σ, θ̃)|σ

]
(ICS),

tA(σ, σ, θ)− θX(σ, σ, θ) ≥ tA(σ, σ̂A, θ̂)− θX(σ, σ̂A, θ̂) (ICA),

for all σ, σ̂S ∈ Σ, (σ, θ), (σ̂A, θ̂) ∈ Supp(σ̃, θ̃). S’s limited budget (LB) implies that

the transfer from P to S needs to satisfy tS(σ, σ, θ) ≥ −` for all (σ, θ) ∈ Supp(σ̃, θ̃).
Finally, a grand contract is collusion-proof if S does not benefit from a non-trivial

side-contract that A prefers over the null side-contract, that incentivizes A to report

θ truthfully, and that respects S’s limited budget. Formally, the condition (CP c)

requires

γ0 ∈ arg max
γ

E
[
tS(ρ(θ̃; σ̃)) + τ(θ̃; σ̃)

]
s.t.

tA(ρ(θ;σ))− τ(θ;σ)− θX(ρ(θ;σ)) ≥ tA(σ, σ, θ)− θX(σ, σ, θ), (PCγ,c
A )

tA(ρ(θ;σ))− τ(θ;σ)− θX(ρ(θ;σ)) ≥ tA(ρ(θ̆;σ))− τ(θ̆;σ)− θX(ρ(θ̆;σ)), (ICγ
A)

tS(ρ(θ;σ)) + τ(θ;σ) ≥ −`, (LBγ)

21The terms of the side-contract are not observable by P . Thus, P might ask A and S to report
the terms of the side-contract to the grand contract. The collusion-proofness principle implies that
P does not benefit from requesting these reports from A and S.
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for all σ ∈ Σ, θ, θ̆ ∈ Supp(θ̃|σ).22 A side-contract γ is feasible under centralization if

it satisfies (PCγ,c
A ), (ICγ

A), and (LBγ). P ’s problem under centralization is

Pc : max
I,β

E
[
vX(σ̃, σ̃, θ̃)− tS(σ̃, σ̃, θ̃)− tA(σ̃, σ̃, θ̃)

]
s.t. (PCS), (PCA), (ICS), (ICA), (LB), (CP c).

A grand contract β is feasible under centralization if it satisfies all constraints in Pc.

Delegation

Under delegation, P offers the grand contract to S only. Thus, the grand contract

should respect S’s limited budget constraint (LB) and participation constraint (PCS).

A grand contract is collusion-proof under delegation if S picks the null side-contract

among all side-contracts that A prefers over the outside option, incentivize A to

report θ truthfully, and respect S’s limited budget. The constraint (CP d) captures

this formally:

γ0 ∈ arg max
γ

E
[
tS(ρ(θ̃; σ̃)) + τ(θ̃; σ̃)

]
s.t. (ICγ

A), (LBγ),

tA(ρ(θ;σ))− τ(θ;σ)− θX(ρ(θ;σ)) ≥ 0, (PCγ,d
A )

for all σ ∈ Σ, θ, θ̆ ∈ Supp(θ̃|σ).23 A side-contract γ is feasible under delegation if it

satisfies (ICγ
A), (LBγ), and (PCγ,d

A ). P ’s problem under delegation is given by

Pd : max
I,β

E
[
vX(σ̃, σ̃, θ̃)− tS(σ̃, σ̃, θ̃)− tA(σ̃, σ̃, θ̃)

]
s.t. (PCS), (LB), (CP d).

A grand contract β is feasible under delegation if it satisfies the constraints (PCS),

(ICS), (LB), and (CP d). The constraints (PCA) and (ICA) are not part of problem

Pd. Under delegation, A cannot directly agree to participate in the grand contract.

Instead, A participates in the grand contract if he accepts the side-contract. i.e., if

the constraint (PCγ,d
A ) is satisfied. Thus, (PCA) is not relevant under delegation.

Similarly, A does not report to the grand mechanism under delegation. Therefore,

22By the principle of optimality, (CP c) ensures that for all signal realizations σ ∈ Σ, ρ0(θ;σ) =
(σ, σ, θ) and τ0(θ;σ) = 0 are optimal for S given the posterior belief induced by σ.

23By the principle of optimality, (CP d) ensures that for all signal realizations σ ∈ Σ, ρ0(θ;σ) =
(σ, σ, θ) and τ0(θ;σ) = 0 are optimal for S given the posterior belief induced by σ.

16



the constraint (ICA) is not needed.

Finally, I come back to my earlier observation that it is immaterial whether we

allow P to make direct transfers to A under delegation or not.24 Formally, this

observation follows from a change of variable in program Pd by using tPS ≡ tA + tS

and tSA ≡ tA − τ instead of the variables tA and tS. The transfers tPS and tSA can

then be interpreted as transfers from P to S and S to A in a setting where P cannot

make direct transfers to A.

Difference between centralization and delegation

The key difference between centralization and delegation lies in A’s participation

constraints (PCγ,c
A ) and (PCγ,d

A ) for the side-contract. If A rejects the side-contract

under centralization, he still receives the payoff from the non-cooperative equilibrium

of the grand contract. Under delegation, a rejection of the side-contract implies that

A receives his outside option.

By contrast, the additional constraints (PCA) and (ICA) do not harm P under

centralization. To see this, note that A’s participation constraint for the null side-

contract under delegation (PCγ0,c
A ) is equivalent to (PCA). Moreover, the incentive

constraint for A under the null side-contract (ICγ0
A ) is equivalent to (ICA).

Under centralization, P has one more instrument than under delegation. In par-

ticular, P can directly control A’s payoff in the non-cooperative equilibrium of the

grand contract. If P increases this payoff, the constraint (PCγ,c
A ) becomes tighter and

the collusion-proofness constraint (CP c) is relaxed. Thus, centralization is always at

least as good as delegation. Moreover, delegation is optimal whenever P does not

benefit from using A’s rent as an instrument.

Benchmarks: Extreme information structures

Before I proceed with the analysis, I consider two benchmarks: the cases of uninfor-

mative and fully informative signal design. I show that P ’s optimal payoff is in both

instances the monopsony payoff W .

Independently of the information structure, P can always ignore S under central-

ization and guarantee a payoff of W by offering A the monopsony price p∗. Formally,

24Faure-Grimaud et al. (2003) and Celik (2009) do not allow such transfers under delegation.
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this is equivalent to the grand contract25

βp∗ ≡
(
X(σ̂S, σ̂A, θ̂), tS(σ̂S, σ̂A, θ̂), tA(σ̂S, σ̂A, θ̂)

)
= (1θ̂≤p∗(θ̂), 0, p

∗ · 1θ̂≤p∗(θ̂)).

Under the non-cooperative equilibrium of this grand contract, A accepts the price

offer if and only if θ ≤ p∗ and receives the payoff max{p∗−θ, 0}. Note that under any

side-contract γ = (ρ, τ), the total payoff of A and S is given by X(ρ(θ;σ))(p∗ − θ)
which is weakly lower than A’s payoff under the non-cooperative equilibrium. As any

side-contract needs to give A at least the non-cooperative payoff, S’s payoff has to be

weakly negative under collusion. It follows that collusion is not profitable for S. P

can therefore achieve at least the monopsony payoff under centralization.

With an uninformative signal, the monopsony payoff is also an upper bound for

P ’s payoff. To see this, note that any uninformative signal is equivalent to the case

Σ = {σ}. Thus, σ can be omitted as an argument in the grand contract and the

side-contract. The constraints (PCA) and (ICA) are therefore equivalent to

tA(θ)− θX(θ) ≥ max{0, tA(θ̂)− θX(θ̂)}.

Maximizing P ’s expected payoff subject to these constraints is equivalent to the

monopsony problem and results in a payoff of W .

The monopsony payoff is also an upper bound for P if the signal is fully infor-

mative. In this case, the relationship between signals and types is bijective. Thus,

we can again omit σ as an argument from the grand contract and the side-contract.

As we can ignore the constraint (ICγ
A) under complete information, the maximal

side-transfer can be derived from (PCγ,c
A ) as

τ(θ) = tA(ρ(θ))− θX(ρ(θ))− (tA(θ)− θX(θ)).

Using this and the fact that (CP c) requires tS(θ) ≥ tS(ρ(θ)) + τ(θ), we have

tS(θ) + tA(θ)− θX(θ) ≥ tS(ρ(θ)) + tA(ρ(θ))− θX(ρ(θ)).

Let t(θ) ≡ tS(θ) + tA(θ) and ρ(θ) = θ̂. Note that (PCS) and (PCA) imply t(θ) −
25The indicator function 1A(x) satisfies 1A(x) = 1 if x satisfies A and 1A(x) = 0 otherwise.
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θX(θ) ≥ 0. Maximizing P ’s expected payoff subject to the resulting constraint

t(θ)− θX(θ) ≥ max{0, t(θ̂)− θX(θ̂)}

is again equivalent to the monopsony problem and gives the payoff W to P .

Upper bounds on P’s payoff for any information structure

The constraints in P ’s optimization problems Pc and Pd simplify the structure of

transfers in any feasible grand contract considerably. The simple structure of transfers

allows me to derive upper bounds on P ’s payoff under centralization and delegation

that hold for any combination of an information structure and a grand contract.

Lemma 2. For any feasible grand contract under centralization or delegation, there

exist the functions t0A, t1A, t0S, t1S : Σ→ R such that for all (σ, θ) ∈ Supp(σ̃, θ̃)

i) ti(σ, σ, θ) = X(σ, σ, θ)t1i (σ) + (1−X(σ, σ, θ))t0i (σ) with i ∈ {A, S},

ii) t0A(σ) ≥ 0, p(σ) ≡ t1A(σ)− t0A(σ) ≥ sup{θ ∈ Supp(θ̃|σ) : X(σ, σ, θ) = 1},

iii) t0S(σ) ≥ −`, t1S(σ) ≥ −`, tjS(σ) < 0⇒ tj
′

S (σ) ≥ 0 for j, j′ ∈ {0, 1} and j 6= j′,

iv) tjS(σ) + tjA(σ) = tj for j ∈ {0, 1}.

Any feasible grand contract under delegation furthermore satisfies for all σ ∈ Σ

v) t1S(σ) ≥ 0.

Result i) states that the transfers to A and S in any feasible grand contract only

depend on the signal realization and the production decision. The intuition behind

this result is the following. A’s transfer for a given signal realization has to be the

same for all cost levels θ that lead to the same production decision. Otherwise, for any

signal realization, A would only report the two cost levels θ̂1 and θ̂0 which maximize

his transfer tA(σ, σ, θ) among all costs levels that lead to production – for θ̂1 – or no

production – for θ̂0. Similarly, if S’s transfer was different between two cost levels that

lead to the same production decision, S and A could sign a profitable side-contract

in which they – for a given signal realization – would only report the cost levels that

maximize the transfer tS(σ, σ, θ) for the two cases of production and no production.
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Result ii) makes the following point. Decompose A’s transfer into a fixum t0A(σ)

and a price p(σ) paid for production. For any feasible grand contract, the fixum has to

be positive as A perfectly anticipates the production decision before deciding whether

to participate in the grand contract. Moreover, the price p(σ) needs to always cover

A’s production costs as A would otherwise overstate the costs to avoid production.

Result iii) states first that S’s transfer to P can never exceed the bound ` – a

direct implication of S’s limited budget. Second, point iii) notes that S can never

make both a loss with and without production as this would obviously violate S’s

participation constraint (PCS).

Result iv) states that P can make the total transfer to S and A only contingent

on whether or not the good is produced. Whenever the total transfer to S and A

does not only depend on the production decision, S and A can sign a side-contract

which leads to the same production decision as without collusion but coordinates

their messages to P such that the highest total transfer to the colluding parties is

generated. As the production decision remains unchanged, such a side-contract is

always feasible. By fixing the total transfer, P induces a strong conflict of interest

between S and A as any increase in the transfer of one of the parties has to decrease

the transfer of the other party by the same amount.

Finally, result v) holds as S can avoid production under delegation by offering

a side-contract which always sends a message that induces no production while no

side-transfers are exchanged. This side-contract replicates A’s outside option. Hence,

A is willing to accept. Thus, P has to reward S for production under delegation.

The results of Lemma 2 can be used to derive upper bounds on P ’s payoff un-

der delegation and centralization. Let x be the (ex-ante) probability of production

induced by some grand contract, i.e.,

x ≡ E[X(σ̃, σ̃, θ̃)],

and let θ(x) be the x-quantile of the distribution F , formally defined as26

θ(x) ≡ min{θ ∈ Θ : F (θ) ≥ x}.

26If F has a strictly positive density f(θ) = F ′(θ) > 0, then F is invertible and θ(x) = F−1(x).
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The maximal social surplus under a grand contract with production probability x is

B1(x) ≡
∫ θ(x)

θ

(v − θ)dF (θ)

as it is cost-minimizing to let only the types below the x-quantile produce. To state

the following lemma concisely, I define27

B2(x) ≡ x(v − θ(x)) + (1− x)` and B3(x) ≡ x(v − θ(x)) +

∫ θ(x)

θ(x)−`
F (θ)dθ.

Lemma 3. Under delegation, P ’s payoff from any information structure and any

feasible grand contract with production probability x does not exceed

Bd(x) ≡ min{B1(x), B2(x)}.

Under centralization, P ’s payoff from any information structure and any feasible

grand contract with production probability x does not exceed

Bc(x) ≡ min {B1(x),max{B2(x), B3(x)}} .

As the participation of A and S in the grand contract is voluntary, P ’s expected

payoff from any grand contract with probability of production x cannot exceed the

maximal social surplus B1(x).

Next, I explain how the bound B2(x) arises. Due to Lemma 2, P pays expected

total transfers of E[tA(σ̃, σ̃, θ̃)+ tS(σ̃, σ̃, θ̃)] = xt1 +(1− x) t0 under any feasible grand

contract with production probability x. Moreover, Lemma 2 implies that S can never

incur a loss with production under delegation. As this also has to hold for some signal

realization σ′ ∈ Σ after which A produces for a cost weakly above θ(x) and A can

always guarantee himself a positive payoff, it follows that t1 = t1S(σ′) + t1A(σ′) ≥ θ(x).

Without production, S’s loss is at most `. Thus, t0 ≥ −`. Hence, P ’s payoff under

delegation satisfies x(v − t1)− (1− x)t0 ≤ x(v − θ(x)) + (1− x)` = B2(x).

While P cannot impose a loss on S with production under delegation, P may do

so under centralization by setting t1S(σ) < 0 for some σ ∈ Σ. In the proof of the

lemma, I show that P ’s payoff from imposing a loss on S with production under a

27I use the convention
∫ b
a
z(x)dx = −

∫ a
b
z(x)dx.
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grand contract with production probability x cannot exceed the bound B3(x). Using

integration by parts, this bound can be rewritten as

B3(x) =

∫ θ(x)

θ

(v − θ)dF (θ)−
∫ θ(x)−`

θ

(θ(x)− `− θ)dF (θ).

Based on this reformulation, the bound B3(x) can be interpreted as the difference

between the maximal social surplus generated under a grand contract with production

probability x and rent payments of θ − `− θ for each type θ ≤ θ − `.
I explain in three steps why P cannot avoid these rent payments. First, for any

grand contract with an ex-ante probability of production x, the highest producing

type lies weakly above θ(x). Thus, there exists a signal realization σ ∈ Σ such

that p(σ) ≥ θ(x). As S can at most incur a loss of `, the total payment to A and

S with production satisfies t1 ≥ θ(x) − `. Second, if S makes a loss in the case

of production, P cannot also impose a loss on S without production as this would

violate S’s participation constraint. As A always receives weakly positive payments,

this implies that the total payment to A and S without production satisfies t0 ≥ 0.

Third, consider the cost level θ with θ ≤ θ(x)− `. If A produces for this cost level, A

and S receive a joint rent of t1 − θ ≥ θ(x)− `− θ. This rent cannot be extracted as

the joint payment to A and S without production t0 is weakly positive.

5 Optimal Delegation

In this section, I present P ’s optimal combination of information structure and grand

contract under delegation. In particular, I construct an information structure and

a feasible grand contract under delegation which allow P to implement any ex-ante

probability of production x with an expected payoff equal to the upper bound Bd(x).

The optimal combination of information structure and grand contract under delega-

tion implements the production probability xd at which the function Bd(x) attains

its maximum.28

The key idea behind the optimal combination of information structure and grand

28Both functions Bd(x) and Bc(x) are upper semi-continuous and therefore attain a maximum on
[0, 1]. This follows from B1(x) being continuous and B2(x) and B3(x) being upper semi-continuous
as well as the fact that both the minimum as well as the maximum of two upper semi-continuous
functions is also upper semi-continuous.
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contract under delegation is the following. The signal provides enough information

to allow S to extract all rents from A in the case of production. At the same time,

the signal maintains S’s uncertainty about the production decision and allows P to

extract rents from S in the case of no production.

Next, I describe a combination of an information structure and a grand contract

that implements a production probability x and leads to a payoff of Bd(x) for P .

Figure 3 depicts a weighted information structure. The signal space of the weighted

information structure is the interval of types below the x-quantile, i.e., Σ = [θ, θ(x)].

If A’s cost satisfies θ ≤ θ(x), the signal realization σ = θ is drawn. If θ > θ(x),

some σ ∈ Σ is drawn according to the density function w(σ). I refer to w(σ) as a

weighting function as it determines the relative weights with which the types above

θ(x) are pooled as noise into the signal realizations in Σ. The weighting function

Figure 3: Weighted information structure

Types Θ

θ

θ

θ(x)

θ

θ(x)

Signal space Σ

θ σ = θ

w(σ)

A weighted information structure has the signal space [θ, θ(x)]. If θ ≤ θ(x), then the signal realization
σ = θ is generated. If θ > θ(x), some σ ∈ [θ, θ(x)] is drawn from the density w(σ).

w(·) characterizes the weighted information structure Iw and induces for any signal

realization σ ∈ Σ a conditional cdf29

G(θ|σ) =


0 if θ < σ,

f(σ)
f(σ)+(1−x)w(σ)

if θ ∈ [σ, θ(x)],

f(σ)
f(σ)+(1−x)w(σ)

+ (1−x)w(σ)
f(σ)+(1−x)w(σ)

F (θ)−F (θ(x))

1−F (θ(x))
if θ > θ(x).

29The marginal cdf over signal realizations is given by H(σ) =
∫ σ
θ

(f(σ′) + (1− x)w(σ′))dσ′.
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I combine a weighted information structure with a grand contract under delegation

that induces production if all reports coincide and lie below the threshold θ(x), i.e.,

X(σ̂S, σ̂A, θ̂) = 1σ̂S=σ̂A=θ̂≤θ(x)(σ̂S, σ̂A, θ̂). (1)

Under truthful reporting, the project is therefore realized whenever costs take the

lowest possible value given the signal realization. Furthermore, the transfer to A

covers the exact cost of production:

tA(σ̂S, σ̂A, θ̂) = θ̂X(σ̂S, σ̂A, θ̂). (2)

As the grand contract has to be feasible, Lemma 2 implies that the transfer to S is

tS(σ̂S, σ̂A, θ̂) = X(σ̂S, σ̂A, θ̂)(t
1 − θ̂) + (1−X(σ̂S, σ̂A, θ̂))t

0. (3)

Proposition 1. Under delegation, P can reach the payoff Bd(x) for any probability

of production x ∈ [0, 1] through the weighted information structure Iwx with

wx(σ) =
f(σ)

[
min{θ(x), θ̌(x)} − σ

]
+∫ min{θ(x),θ̌(x)}

θ
F (σ′)dσ′

and the grand contract βx defined by the equations (1), (2), and (3) with

t0 = −min


∫ θ(x)

θ
F (σ)dσ

1− x
, `

 and t1 = θ(x),

where θ̌(x) is defined as the unique solution to∫ θ

θ

F (σ)dσ = (1− x)(θ(x)− θ + `). (4)

The combination of information structure Iwx and grand contract βx optimally

resolves P ’s trade-off between information elicitation and collusion prevention under

delegation. S’s signal is very informative on A’s costs in case the good is produced.

This allows S to extract all rents from A by setting a price that equals A’s cost under

production. S earns the bonus t1−σ for production after the signal realization σ ∈ Σ.
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At the same time, the probability of a bonus payment G(σ|σ) decreases in the bonus

and enables P to extract S’s rent by a payment in the case of no production. In

contrast to the exact information on producing types, the optimal signal reveals no

information about the relative likelihood of high cost types. As the type of A does not

influence his payoff without production, P does not benefit from information about

non-producing types.

I now explain Proposition 1 in more detail. I start by arguing that the null

side-contract is feasible given the information structure and the grand contract in

Proposition 1. From A’s perspective, any grand contract that satisfies equations (1)

and (2) is equivalent to a price offer equal to the signal realization. Thus, under the

null side-contract, A’s participation constraint (PCγ0,d
A ) and incentive compatibility

constraint (ICγ0
A ) are satisfied and A never receives a positive rent.

Next, I show that S optimally responds to the information structure and the grand

contract in Proposition 1 by offering the null side-contract. Given some weighted

information structure Iw, a grand contract that satisfies equations (1)–(3), and the

null side-contract, S receives an expected payoff after the signal realization σ of

Pr(θ̃ = σ|σ̃ = σ)(t1 − σ) + Pr(θ̃ > σ|σ̃ = σ)t0 =
f(σ)(t1 − σ) + (1− x)w(σ)t0

f(σ) + (1− x)w(σ)
.

For t1 = θ(x) and t0 ≤ 0, S does not benefit from offering a side-contract under

which A never produces, as S would then receive the negative payoff t0. S would not

benefit from a side-contract under which some types in the interval (θ(x), θ] produce.

This would require S to pay A a side-transfer τ with σ + τ > θ(x). S’s payoff under

production would then be negative as t1 − σ − τ = θ(x)− σ − τ < 0. Together with

t0 ≤ 0, this implies that S’s payoff under such a deviation cannot exceed zero.

P optimally designs the weighting function to minimize the transfer t0 while sat-

isfying S’s participation constraint. Note that (PCS) holds for some weighted infor-

mation structure and grand contract satisfying equations (1)–(3) if

t0 = − min
{σ∈Σ:w(σ)>0}

{
f(σ)(θ(x)− σ)

(1− x)w(σ)

}
.

As S’s participation constraint is binding after the worst signal realization from S’s

perspective, P would like to make the worst signal as good as possible. In technical

terms, P faces a max-min-problem. Ideally, P would like to choose w(·) and t0 such
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that S’s expected payoff is zero for all signal realizations. A weighting function which

renders S’s expected payoff constant across all signal realizations is

w(σ) =
f(σ)(θ(x)− σ)

(1− x)c
,

where the constant c ∈ R+ – pinned down by
∫

Σ
w(σ)dσ = 1 – is given by

c =

∫ θ(x)

θ
F (σ)dσ

1− x
.

If c ≤ `, it is feasible to extract all rents from S by setting t0 = −c. In this case, P ’s

expected payoff equals the maximal social surplus under the ex-ante probability x,

i.e., B1(x). If c > `, P cannot extract the full social surplus. However, as I show in the

proof of Proposition 1, P can reach an expected payoff of B2(x) by setting t0 = −`,
w(σ) = 0 for signal realizations σ between θ̌(x) and the threshold θ(x), and w(σ)

such that the expected payoff of S is constant for the remaining signal realizations.30

Proposition 1 implies three important results as immediate corollaries. First, the

optimal combination of information structure and grand contract under delegation

follows directly from the proposition.

Corollary 1. An optimal combination of information structure and grand contract

under delegation is given by (Iwxd , βxd) with xd ∈ arg maxx∈[0,1]Bd(x).

Under the optimal grand contract with delegation, S receives a positive transfer

from P with production and makes a payment to P without production. Note that

this feature is shared with the optimal grand contract in Faure-Grimaud et al. (2003).

Second, Proposition 1 allows us to derive necessary and sufficient conditions for

partial information revelation to be optimal under both delegation and centralization.

Corollary 2. Under both centralization and delegation, an optimal information struc-

ture partially informs S about A’s cost θ if and only if xd ∈ (F (θ), 1) and ` > 0.

Recall from the analysis of the benchmarks that P can achieve at most a payoff

of W under either an uninformative or a completely informative signal. Note that

30The uniqueness of θ̌(x) follows from intermediate value theorem. See proof for details.
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W = maxx∈[0,1] x(v − θ(x)) and that Bd(x) can be expressed as

Bd(x) = x(v − θ(x)) + min

{∫ θ(x)

θ

F (θ)dθ, (1− x)`

}
.

Thus, xd ∈ (F (θ), 1) and ` > 0 is equivalent to maxx∈[0,1]Bd(x) > W . Under mild

conditions, P prefers a partially informative signal under delegation to either of the

extreme information structures under centralization. As Bc(x) = x(v − θ(x)) for

either x ∈ {F (θ), 1} or ` = 0, the same mild conditions are necessary and sufficient

for the optimality of a partially informative signal under centralization. Without S,

P can at most achieve the payoff W . Thus, the corollary also provides necessary

and sufficient conditions for P to benefit from hiring S under both centralization and

delegation.

Third, P can extract the full surplus whenever S’s budget is large enough.

Corollary 3. If S’s budget is large enough, P can extract the full surplus under

delegation: If v < θ and ` ≥ `(v) ≡ W/(1 − F (v)), then maxx∈[0,1]Bd(x) = W . If

v ≥ θ, then lim`→∞maxx∈[0,1]Bd(x) = W .

The full surplus is generated through the efficient production cutoff θ(x) = v.

Under efficient production, S becomes the residual claimant of all surplus in the

case of production. If v < θ, P can extract the full surplus through the payment t0

whenever

` ≥
∫ v
θ

(v − θ)dF (θ)

1− F (v)
=

W

1− F (v)
= `(v).

Thus, P can achieve the full surplus under delegation only if S can absorb at least a

loss of `(v) which is a multiple of the full surplus with a factor of 1
1−F (v)

. If v ≥ θ, P

can set a cutoff just below θ. As ` grows large, the production probability x can be

set arbitrarily close to 1, resulting in a payoff of almost W .

Faure-Grimaud et al. (2003) note that if S is risk neutral, P can achieve the same

profit as in the case where P can observe S’s signal. Corollary 3 is reminiscent of this

result as a sufficiently large budget for S may be viewed as an analogue to the risk

neutrality of S.

Celik (2009) points out that the suboptimality of delegation in his model is linked

to an informational double marginalization problem that arises under delegation.
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With information control, P avoids the problem of double marginalization by giving

S enough information about A to extract A’s rent completely. P uses S’s uncer-

tainty over the production decision to extract rents from S and may even achieve the

first-best surplus under delegation.

6 When is Delegation (sub)Optimal?

In this section, I provide conditions under which delegation is optimal. In particular,

I show that delegation is optimal if either S’s budget is large or the value of the good

is small. Furthermore, I show that delegation is suboptimal if the value of the good is

high and S’s budget is sufficiently strict. I denote the median cost type by m ≡ θ(1
2
).

Proposition 2. Delegation is optimal if either

i) S’s budget is large , i.e., ` ≥ ˆ̀(v) where ˆ̀ : [0,∞)→ [0, `(v)) or

ii) the value of the good is small, i.e., v < m.

First, I explain why delegation is optimal if S’s budget is large. I start with the

following observation.

Lemma 4. If delegation is suboptimal, P cannot extract the full surplus.

Recall that the central difference between delegation and centralization is A’s out-

side option when bargaining over the side-contract. Under centralization, A can reject

the side-contract and participate in the grand contract non-cooperatively. Under del-

egation, A can only participate in the grand contract by accepting the side-contract.

If centralization is superior to delegation, P finds it optimal to pay a positive rent to

A in order to limit the possibility of S finding a profitable side-contract. As A’s rent

is strictly positive, P cannot extract the full surplus.

We know from Corollary 3 that P can (approximately) extract the full surplus

under delegation if S’s budget is sufficiently large. Moreover, P ’s optimal payoff

under delegation is continuously increasing in ` as the bound Bd(x) is continuously

increasing in `. Thus, there exists a threshold ˆ̀ below the threshold `, such that

delegation is optimal if ` ≥ ˆ̀.

Next, I explain why delegation is optimal if the value of the good lies below the

median cost type. Corollary 2 shows that P only benefits from the presence of S if S
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can incur a loss in some states of the world. Under centralization, P can impose a loss

on S in the case of either no production or production. S’s participation constraint

prevents P from doing both. Under delegation, P can only impose a loss on S without

production. As the maximal loss to S is limited by `, P can reduce expected rent

payments through imposing losses under a grand contract with production probability

x by at most x` if the loss is incurred under production and (1 − x)` if the loss is

incurred without production. For x < 1
2
, P can reduce rents by more if S incurs a loss

without production. As x < 1
2

is optimal if v < m, delegation is optimal if v < m.

Reversing the argument above, centralization may be better than delegation if P

wants to implement a high production probability and S’s budget is small. Indeed, if

x > 1
2
, P may reduce S’s rent up to x` if S incurs a loss with production and only up

to (1−x)` for a loss without production. However, this argument ignores that P has

to pay a positive rent to A if S incurs a loss under production as A would otherwise

accept any side-contract that avoids production. The next proposition shows that P

can nevertheless benefit from centralization.

Proposition 3. Suppose f(θ) = F ′(θ) > 0 for all θ ∈ Θ. Delegation is suboptimal if

i) the value of the good is high, i.e., p∗(v) ∈ (m, θ) and

ii) S’s budget is sufficiently small, i.e., ` ∈ (0, ε) for some ε > 0.

In particular, there exists a combination of an information structure and a feasi-

ble grand contract under centralization (Ic, βc) for which P ’s expected payoff exceeds

maxxBd(x) and first-order approximates maxxBc(x) if i) and ii) are satisfied.

I now describe the information structure Ic and the grand contract βc which are

formally defined in the proof of the Proposition.

Figure 4 depicts the information structure Ic. Given the cutoff cost z ∈ Θ, the

signal space Σ consists of the interval [θ, z]. A type θ ≤ z generates the signal

realization σ = θ. The types [z, θ] are separated into two intervals by the type

ξ > z. A type in the interval [ξ, θ] generates signal realizations in the interval Σh =

[z− t0, z] according to the density wh(σ). A type in the interval [z, ξ) generates signal

realizations in Σl = [θ, z − t0] according to the density wl(σ) with t0 > 0. Note that

Ic is a weighted information structure for ξ ∈ {z, θ}.
A produces under the grand contract βc for θ ≤ z. For a signal realization

σ, the transfers are given by t1A(σ) = σ + t0, t0A(σ) = 0, t1S(σ) = z − ` − σ, and
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Figure 4: Information structure under centralization
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The information structure Ic.

t0S(σ) = t0. Thus, A is effectively offered the price σ + t0 and earns a margin of t0

with production. Nevertheless, only types below z accept the price as Ic pools high

producing types with high non-producing types and low producing types with low

non-producing types. S incurs a loss with production for high signals in [z − `, z]

but receives a positive transfer without production. In the proof of the lemma, I

specify the parameters z, t0, ξ, wh(σ), and wl(σ) such that Ic is well-defined and βc

is feasible under centralization for a small `. In particular, S does not benefit from a

collusive agreement under which A is induced to not produce. For any σ, this would

require S to pay t0 to A for any cost level θ ∈ Supp(θ̃|σ), not only for those types

that would produce under the null side-contract. The functions wh(σ) and wl(σ)

pool sufficiently many non-producing types into the signal realizations to make such

a collusive agreement unattractive for S.

For a small `, Ic and βc allow P to reduce the total rent of S and A by ap-

proximately x` with respect to the monopsony case. This implies that P achieves a

higher payoff than under delegation if x > 1
2
. As x > 1

2
is optimal if the monopsony

price p∗(v) exceeds the median, delegation is suboptimal in this case. Moreover, as

B3(x) ' x(v − θ(x)) + x` for a small `, (Ic, βc) is near-optimal for a small ` and a

high v.

There are two notable differences between (Ic, βc) and the optimum under delega-

tion (Ixd , βxd). First, there is a difference between the grand contracts, which is in line

with the previous discussion. Under βc, S incurs a loss with production for the types
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θ ∈ [z−`, z] and makes a gain without production. This is reminiscent of the optimal

grand contract under centralization in Celik (2009) where S also only incurs a loss

after a low-cost realization.In contrast, under the grand contract βxd , S only incurs

a loss without production. Second, whereas Ixd pools all non-producing types into

the same signal realizations, there are two separate intervals of non-producing types

under Ic. This is necessary as, under βc, A receives a price which exceeds the cost

θ by the fixed margin t0. In order to avoid A producing for some θ above the cutoff

z, Ic needs to ensure that for any signal realization, the distance between producing

and non-producing types exceeds the margin t0. Nevertheless, Ic is very similar to a

weighted information structure. In particular, there is exactly one producing type in

the support of each signal realization.

While I identify the near-optimal combination (Ic, βc) for a small `, I was unable

to generally characterize optimal combinations of information structure and grand

contract if delegation is suboptimal. If delegation is suboptimal, P prefers to pay a

positive rent to A. The key challenge toward a complete characterization of optimal

combinations of information structure and grand contract lies in finding the optimal

allocation of rents across A and S. This problem is considerably more complicated

than under delegation where all rents are extracted from A.

7 Extensions

7.1 Alternative bargaining protocols

Throughout the previous sections, the side-contract was set by S through a take-it-

or-leave-it offer to A. In the context of public procurement, this assumption captures

the situation in which a (corrupt) procurement officer has all the bargaining power

vis-à-vis the private supplier.

In this section, I show that the results of the previous sections are robust with

respect to the bargaining protocol. Following the approach of Laffont and Martimort

(1997), I suppose a third party T offers the side-contract to S and A. To accommodate

T , the timing of the game is adapted as follows:

t=0: P chooses an information structure I ∈ I.

t=1: T , S, and A observe I and σ. A furthermore observes θ.
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t=2: P chooses a grand contract β.

t=3: Under centralization, S and A each accept or reject P ’s offer β. If S or A

rejects, both agents receive their outside option. Otherwise the game continues.

t=4: T offers a side-contract γ to S and A.

t=5: S and A each accept or reject T ’s offer. If both parties accept, the side-contract

and the grand contract are played. If S or A rejects under centralization, the

grand contract is played non-cooperatively. If S rejects under delegation, both

parties receive the outside option. If A rejects under delegation, A receives the

outside option and S is required to send a message that induces no production.

The framework with the third party T encompasses and generalizes the setting studied

in the previous sections. If T has the same preferences as S, the situation is equivalent

to the setting in which S offers the side-contract herself. If T has the same preferences

as A, we are in the polar case in which A has all the bargaining power. I do not specify

the preferences of the third party. Instead, I assume that T offers a side-contract that

is Pareto efficient for the colluding coalition.31 For a given grand β, there is typically

a set of Pareto efficient side-contracts. I assume that P takes a cautious approach and

evaluates the grand contract β by the smallest payoff that may arise for any Pareto

efficient side-contract. Put differently, P assumes that T has adversarial preferences

in the sense that the offered side-contract minimizes P ’s payoff conditional on being

Pareto efficient.

Under centralization, I allow for equilibria in which the side-contract is rejected

with positive probability. As Celik and Peters (2011) point out, equilibrium rejections

of a mechanism can increase the set of implementable allocations in settings where

non-participation in the mechanism triggers a default game played by agents. In

such contexts, the rejection decision by an agent may convey information about his

type and thereby influence the expected payoffs in the default game. Through this

channel, rejections may expand the set of implementable allocations. As the grand

contract constitutes the default game for S and A, there may exist a side-contract that

can only achieve a Pareto improvement if it is rejected in equilibrium with positive

probability.32

31This approach follows Che and Kim (2006).
32As S has no private information vis-à-vis A, a rejection by S does not lead to an update of

beliefs. By contrast, rejections of A may alter S’s belief about A’s type.
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Following a rejection of the side-contract under centralization, S and A update

their beliefs and play the grand contract non-cooperatively. If there exist multiple

continuation equilibria following a rejection of the side-contract, I assume that P

can choose a continuation equilibrium. This assumption follows the usual approach

in mechanism design which allows the principal to pick an equilibrium in case of

equilibrium multiplicity. To account for rejections, I call a side-contract γ feasible

under centralization if it satisfies (ICγ
A) and (LBγ). I do not require that γ satisfies

participation constraints for A or S.

Under delegation, rejection of the side-contract does not lead to S and A playing

a default game. Thus, it is not necessary to consider equilibrium rejections of the

side-contract. Therefore, I call a side-contract feasible under delegation if it satisfies

(PCγ,d
A ), (ICγ

A), (LBγ), and

E[tS(ρ(θ̃;σ)) + τ(θ̃;σ)|σ] ≥ 0, ∀σ ∈ Σ. (PCγ,d
S )

A feasible side-contract γ is Pareto efficient under centralization (delegation) if

there is no side-contract γ′ which is feasible under centralization (delegation) and

leads to a weakly higher expected payoff for S for all σ ∈ Σ and to a weakly higher

expected payoff for A for all (σ, θ) ∈ Σ × Θ and either to a strictly higher expected

payoff for S for some σ ∈ Σ or to a strictly higher payoff for A for some (σ, θ) ∈ Σ×Θ.

Proposition 4. Suppose the third party T may offer any feasible and Pareto efficient

side-contract. Delegation is optimal if either ` ≥ ˆ̀(v) or v < m. Delegation is

suboptimal if f(·) = F ′(·) > 0, p∗(v) ∈ (m, θ) and ` ∈ (0, ε) with some ε > 0.

The combination of information structure Iwx and grand contract βx defined in

Proposition 1 leads to the same production decision and gives P an expected payoff of

Bd(x) for any side-contract that is feasible under delegation. As S has a positive payoff

under production and incurs a loss without production, S and A may potentially

benefit from a side-contract that induces more production. However, any such side-

contract requires A to produce for some type θ above the threshold θ(x). Thus, A

has to receive a total transfer above θ(x) whenever the good is produced under the

side-contract. As S and A only receive a total transfer of t1 = θ(x) under production,

S would incur a loss and the side-contract cannot be feasible. By a similar argument,

I show in the proof of the proposition that the combination of information structure

Ic and a variant of the grand contract βc give P the same expected payoff for any
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feasible side-contract under centralization. Thus, (Iwx , βx) and (Ic, βc) perform well

independently of the exact bargaining process between S and A.

7.2 Divisible output

In this section, I show that the combination of information control and delegated

contracting also performs well with divisible output. In particular, P can extract the

full surplus with divisible output under delegation if S has an unlimited budget and

the smallest implemented quantity is sufficiently far away from zero.

I extend the main model by allowing for divisible output. Suppose A can produce

any quantity q ∈ Q ⊂ R+ with 0 ∈ Q and maxQ < ∞ at a cost c(θ, q). The cost

function c(θ, q) is increasing in both arguments, supermodular, and satisfies c(θ, 0) = 0

for all θ ∈ Θ. P ’s gross utility is given by v(q) with v(0) = 0. If A produces the

quantity q ∈ Q for the type θ ∈ Θ, the social surplus is given by φ(θ, q) ≡ v(q)−c(θ, q).
An efficient production schedule is given by {q∗(θ)}θ∈Θ with

q∗(θ) ≡ min

{
arg max

q∈Q
φ(θ, q)

}
.

The efficient production schedule q∗(θ) is weakly decreasing due to supermodularity

of the cost function. Suppose that q∗(θ) = 0 for some θ ∈ Θ.33 Define the cutoff

θ0 ≡ inf{θ ∈ Θ : q∗(θ) = 0} and denote the set of positive and efficient quantities by

Q∗+ ≡ {q ∈ Q \ {0} : ∃θ ∈ Θ, q∗(θ) = q} and its smallest element by q∗ ≡ inf Q∗+. The

maximal social surplus for θ ∈ Θ is φ∗(θ) ≡ φ(θ, q∗(θ)) resulting in an expected full

surplus of Φ∗ ≡
∫

Θ
φ∗(θ)dF (θ).

Proposition 5. Suppose output is divisible and S has an unlimited budget. P can

extract the full surplus under delegation if

q∗ ≥ min{q ∈ Q : φ∗(θ) ≤ c(θ0, q)− c(θ, q)} (5)

where min{q ∈ Q : φ∗(θ) ≤ c(θ0, q)− c(θ, q)} ∈ (0, q∗(θ)).

I extend the idea behind the optimal combination of information structure and

grand contract under delegation in Corollary 3 to the case of divisible output. In

particular, P optimally sets a weighted information structure characterized by the

33The proof also describes how to deal with the case that q∗(θ) > 0 for all θ ∈ Θ.

34



signal space Σ = Θ\ [θ0, θ] and the weighting function w∗(σ) = f(σ)φ∗(σ)
Φ∗

together with

a grand contract under which P pays S a transfer of v(q) for the delivery of a positive

quantity q ∈ Q∗+, S pays P a transfer of Φ∗

Pr(θ≥θ0)
in case of no production, and S is

free to offer any sub-contract to A.

Under this delegation contract, S is the residual claimant in case of production.

However, all of S’s expected rent from production can be extracted in expectation

through the payment without production if condition (5) is satisfied. This condition

ensures that S cannot gain from inducing A to produce a positive quantity for θ ≥ θ0.

If the type θ ≥ θ0 produces a quantity q for some signal realization σ, the type

θ = σ receives a rent of at least c(θ0, q) − c(σ, q). If this rent exceeds the social

surplus φ∗(σ), S’s payoff is negative with and without production. Thus, inducing

a type θ ≥ θ0 to produce is unprofitable in this case. Condition (5) ensures that

φ∗(σ) ≤ c(θ0, q)− c(σ, q) for all q ∈ Q∗+ and all σ ∈ Σ as the inequality is the hardest

to satisfy for the lowest signal σ = θ and the quantity q∗.

Condition (5) requires that the smallest positive and efficient quantity q∗ is suffi-

ciently far away from zero. If q∗ is very close to zero, S can induce a type θ ≥ θ0 to

produce q∗ at very low costs in terms of rents to the types below θ. This is profitable

as it allows S to save the transfer of Φ∗

Pr(θ≥θ0)
to P . Loosely speaking, condition (5) im-

plies that the production decisions under which S is residual claimant are sufficiently

different from the production decisions under which P extracts the rent of S.

Condition (5) is likely to be satisfied if A’s cost function exhibits fixed costs or

P ’s gross utility v(q) is negative for small q. These instances might arise naturally

in many applications. For a specific example, suppose the construction company A

could construct an airport of size q for the municipality P . Then it is likely that

A incurs some planning costs independently of the size of the airport and that the

airport is only economically viable for P if it exceeds a certain minimal size.

7.3 Does information control make delegation optimal?

Consider a principal who gains information control over a supervisor. This change

corresponds to moving from a situation with exogenous information – as in Faure-

Grimaud et al. (2003) and Celik (2009) – to a setting with endogenous information

– as studied in this paper. The results of the previous sections provide conditions

under which delegation is optimal with information control. Under these conditions,
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gaining information control never induces the principal to change from delegation to

centralization. However, these results do not tell us when a principal changes from

centralization to delegation after obtaining information control.

In this section, I provide conditions on an exogenously given information structure

such that delegation is suboptimal. Together with the conditions for the optimality of

delegation with information control, these conditions ensure that delegation becomes

optimal only after gaining information control. To state the result cleanly, I define –

for a given information structure – the collection {pa, xa}a≥0 of functions pa : Σ→ R
and xa : Σ → [0, 1] with pa(σ) ∈ arg maxp(a − p)G(p|σ) and xa(σ) ≡ G(pa(σ)|σ) for

all σ ∈ Σ and all a ≥ 0.

Proposition 6. Suppose the information structure I ∈ I is exogenously given. Dele-

gation is suboptimal if for any collection of functions {pa, xa}a≥0 there exists a signal

realization σ ∈ Σ such that

i) pa(σ) ≤ pa(σ) and xa(σ) ≥ xa(σ) for all σ ∈ Σ, a ≥ 0,

ii) min{Supp(θ̃|σ)} 6= p∗, and

iii) there is no a∗ ≥ 0 such that pa∗(σ) = p∗ and xa∗(σ) = F (p∗) for all σ ∈ Σ.

Condition i) defines a worst signal realization for a given information structure.

Suppose P pays S t1 with production and t0 without production while authorizing

S to offer some price p to A. For some signal realization σ, S optimally offers A a

price of pt1−t0(σ) which is accepted by A with probability xt1−t0(σ). If condition i)

is satisfied, the signal realization for which S offers the highest price to A is also the

signal after which A accepts the offer with the lowest probability.

Delegation is suboptimal for some exogenously given information structure if there

exists a worst signal realization. After the worst signal realization σ, S’s payoff with

production t1 − p(σ) and the probability of production x(σ) are lower than for all

other signal realizations. Thus, S’s participation constraint is most restrictive after

the worst signal realization and severely limits P ’s ability to extract rents from S

for the other signal realizations. This effect is so strong that P prefers to contract

directly with A and to ignore the additional information S might provide.

Condition ii) ensures that P cannot replicate the monopsony outcome under del-

egation. Condition iii) excludes the case in which the probability of production is

identical for all signal realizations and the price after the worst signal equals the
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monopsony price. Note that this condition rules out the case where S is uninformed.

Conditions i), ii), and iii) jointly imply that P ’s payoff under delegation is strictly

below the monopsony payoff W .

To illustrate the conditions in Proposition 6, I consider two common forms of

information structures – information structures with additive noise and partitional

information structures. I study when these information structures satisfy the condi-

tions of Proposition 6. First, I consider an information structure with additive noise.

Under such an information structure, A’s cost is given by θ̃ = σ̃ + ε̃ with σ̃ and ε̃

being independently distributed according to the continuous distribution functions

H(σ) and Z(ε) with the supports [σ, σ] and [ε, ε]. Second, I consider a partitional

information structure. For such an information structure, the set Θ is partitioned and

each signal σ ∈ Σ is associated with exactly one element of the partition. I denote by

l(σ) and h(σ) the lower and upper bound of the element of the partition associated

with σ ∈ Σ. By convention, let l(σ) and h(σ) be increasing in σ.

Corollary 4. Delegation is suboptimal for an information structure with additive

noise if logZ(ε) is concave and σ− ε 6= p∗. Delegation is suboptimal for a partitional

information structure if logF (θ) is concave, F (h(σ)) − F (l(σ)) is increasing in σ,

and l(σ) 6= p∗ and h(σ) 6= p∗ for all σ ∈ Σ.

Corollary 4 shows that delegation is suboptimal under information structures with

additive noise and partitional information structures under relatively mild assump-

tions. Thus, one can easily find cases in which delegation is suboptimal without and

optimal with information control. This suggests that the introduction of information

control might often be followed by a change from a centralized to a decentralized

organizational structure.34

7.4 Ex-ante collusion

In this section, I consider the case of ex-ante collusion studied in Mookherjee et al.

(2019). With ex-ante collusion, the side-contract between A and S does not only spec-

ify side-transfers and coordinated behavior in the grand mechanism, it also stipulates

whether A and S participate in the grand mechanism in the first place. This con-

trasts with the assumption from the previous sections where I follow Faure-Grimaud

34In the model, centralization is always at least as good as delegation. However, if there is a cost
of communication for the principal, delegation is strictly optimal under the appropriate conditions.
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et al. (2003) and Celik (2009) in assuming that A and S cannot collude on their

participation decisions regarding the grand contract. In the spirit of Mookherjee et

al. (2019), I introduce ex-ante collusion by requiring that any grand contract includes

the message e which results in no production and no transfer payments between P

and A or S, i.e., X = tA = tS = 0.

A grand contract that is feasible under centralization or delegation is also ex-ante

collusion-proof if the addition of the message e to the grand contract does not reduce

P ’s payoff. If a grand contract is ex-ante collusion-proof, the option for A and S to

coordinate their participation decision through the side-contract does not harm P .

The following proposition provides a simple test of whether a feasible grand contract

is ex-ante collusion-proof.

Proposition 7. Consider a grand contract that is feasible under centralization or

delegation. The grand contract is ex-ante collusion-proof if and only if t0 ≥ 0.

The proposition is implied by the following argument. Without the exit message

e, the colluding coalition can either coordinate on a message that induces production

and a total payment of t1 from P or send a message that induces no production and

a total payment of t0 from P . If the grand contract includes the exit message e, the

coalition has the additional option of inducing no production and a total payment of

zero from P through sending the message e. As the payoffs of A and S are common

knowledge without production, the coalition benefits from the message e if t0 < 0,

i.e., if sending e allows the coalition to avoid making a payment to P . By contrast, if

t0 ≥ 0, the coalition never gains from sending e instead of a message that induces no

production and the total payment t0.

Under an ex-ante collusion-proof grand contract, P cannot impose losses on S in

case of no production. This result leads us to the following three observations.

Corollary 5. P ’s payoff from any grand contract that is feasible under delegation

and ex-ante collusion-proof lies weakly below the monopsony payoff.

Under ex-ante collusion, the double marginalization problem with delegation can-

not be resolved by information design. Under delegation, P cannot impose a loss on

S in case of production as S can always avoid production by offering A a side-contract

which sends a message that leads to no production for any report of A. With ex-ante

collusion, P cannot impose a loss on S without production as S can always avoid the
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loss by using the exit message e in the side-contract. Lemma 3 shows that P only

benefits from S if the latter bears some loss in some state of the world. Thus, P

does not benefit from the presence of S if the grand contract is both ex-ante collusion

proof and feasible under delegation.

Corollary 5 is closely connected to Proposition 2 in Mookherjee et al. (2019). They

show that delegation is strictly inferior to not hiring S at all under the assumption

that S is only partially informed about A. Moreover, Corollary 5 implies the following

connection between the optimality of delegation and ex-ante collusion-proofness.

Corollary 6. Consider a combination of an information structure and a grand con-

tract that is optimal in the model without ex-ante collusion and suppose S’s budget is

strictly positive. The optimal grand contract is ex-ante collusion-proof if and only if

delegation is suboptimal in the model without ex-ante collusion.

The corollary is implied by the following argument. If the optimal grand contract

is ex-ante collusion-proof, P cannot impose losses on S in case of no production. In

order to benefit from S – which is possible given ` > 0 – P has to impose a loss on

S in case of production. However, this is only possible with centralization and, thus,

delegation is suboptimal. Second, if delegation is suboptimal, P imposes a loss on

S in case of production for at least one signal realization. It follows that P cannot

impose a loss on S in case of no production to satisfy S’s participation constraint.

As S never makes a loss in case of no production, the exit message e is not helpful

for S which implies that the grand contract is ex-ante collusion-proof.

Finally, I can make a statement about almost optimal combinations of information

structures and grand contracts under ex-ante collusion if S’s budget is small.

Corollary 7. Suppose F ′(θ) = f(θ) > 0 for all θ ∈ Θ. If S’s budget is small, the

combination of information structure Ic and grand contract βc is near-optimal in the

model with ex-ante collusion.

The result is proved as follows. Lemma 3 implies that P ’s payoff is bounded by

B3(x) for any grand contract with production probability x that satisfies t0S(σ) ≥ 0

for some σ ∈ Σ. Any ex-ante collusion-proof grand contract satisfies t0S(σ) ≥ 0 for all

σ ∈ Σ. Thus, B3(x) is an upper bound on P ’s payoff under ex-ante collusion. The

proof of Proposition 3 shows that P ’s payoff from (Ic, βc) first-order approximates

maxxB3(x) for small `. As βc satisfies t0 > 0, (Ic, βc) is near-optimal with ex-ante

collusion for small `.
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Mookherjee et al. (2018) study a model of collusive supervision with exogenous

information, a binary production decision, and ex-ante collusion. As in the present

paper, their optimal grand contract features a positive payment to S without produc-

tion and a negative payment with production. As P is unable with ex-ante collusion

to extract rents from A or S without production, P can only benefit from S by

imposing a loss on S with production.

8 Conclusion

I consider a principal-supervisor-agent relationship in which the supervisor and agent

can collude and the principal designs the supervisor’s signal of the agent’s private

type. I study how the principal optimally uses information control to fight collusion

and whether the principal should delegate the design of the agent’s contract to the

supervisor. The principal optimally chooses a partially informative signal and can

extract the full surplus if the supervisor’s budget is large enough. Delegation is

an optimal response to collusion under information control if either the supervisor’s

budget is large or the principal’s value from production is small. However, delegation

is suboptimal if the agent’s production is of high value to the principal and the

supervisor’s budget is sufficiently small.

I see two directions for further research. First, this paper studies the joint design of

mechanisms and information under collusion with a focus on collusive supervision. It

seems worthwhile to explore whether the insights extend to more general mechanism

design environments. Second, this paper closely follows the literature on collusive

supervision with exogenous information in assuming that the supervisor’s signal is

also observed by the agent. If the supervisor’s budget is large, the principal does not

benefit from inducing additional asymmetric information in the colluding coalition

through the provision of private information to the supervisor. However, private

information on the supervisor’s side may be beneficial if the supervisor’s budget is

small. I leave these questions for future research.
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Appendix

A Omitted proofs

Proof of Lemma 1: Collusion-proofness principle

I prove that S has an optimal, direct, and truthful side-contract for any β, I, and

σ ∈ Σ. Given β, I, and σ ∈ Σ, S chooses a deterministic side-contract. The standard

revelation principle does not apply to this setting as it may be impossible to replicate

mixed reporting strategies to an indirect side-contract in a deterministic direct side-

contract (Strausz, 2003). However, as the side-contract governs the interaction of one

principal S and one agent A, a revelation principle in terms of payoffs due to Strausz

(2003) applies: For any indirect side-contract, there exists a direct and truthful side-

contract which gives both S and A at least the same payoffs than the indirect side-

contract. Thus, for any β, there is a direct and truthful side-contract γ which is a

best response for S. It follows that – given the definition of equilibrium in Section 3

– S offers a direct and truthful side-contract in any equilibrium, and that some direct

and truthful side-contract is optimal for S if and only if there does not exist another

truthful and direct side-contract which is strictly better for S.

I now prove the second part of the lemma. Consider a PBE with passive beliefs

under either centralization or delegation in which P offers a grand contract β and S

offers a side-contract γ. Let uA(σ, θ) denoteA’s payoff on the equilibrium path for each

realization of (σ, θ) ∈ Supp(θ̃, σ̃). I want to argue that there exists another equilibrium

in which P offers the grand contract β0 ≡ β ◦ γ – with MS = Σ and MA = Σ × Θ

under centralization, and MS = Σ2 × Θ under delegation – and S offers the null

side-contract γ0. Given β0, γ0 is truthful as A’s mapping from reports to payoffs

remains the same as with β and γ. Furthermore, the null side-contract is optimal for

S. Toward a contradiction, suppose that the null side-contract is suboptimal. Then

there exists a side-contract γ∗ such that for at least one σ ∈ Σ, γ∗ gives A a payoff of

at least uA(σ, θ) for any θ and gives S a strictly higher expected payoff than the null

side-contract. However, this implies that the side-contract γ∗∗ ≡ γ ◦ γ∗ is a profitable

deviation from γ if P offers the grand contract β. This leads to a contradiction.

Finally, note that both equilibria are payoff-equivalent by construction.
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Proof of Lemma 2

I prove the result through a sequence of Lemmas.

Lemma A.1. For any feasible grand contract, there exist the functions t0S, t
1
S, t

0
A, t

1
A :

Σ→ R such that ti(σ, σ, θ) = X(σ, σ, θ)t1i (σ) + (1−X(σ, σ, θ))t0i (σ) for i ∈ {A, S}.

Proof. I start by proving the result for i = A. Fix some signal realization σ ∈ Σ.

For any two types θ, θ′ ∈ Supp(θ̃|σ) with X(σ, σ, θ) = X(σ, σ, θ′), (ICγ0
A ) implies that

tA(σ, σ, θ) = tA(σ, σ, θ′). Thus, there exist two functions t0A : Σ→ R and t1A : Σ→ R
such that tA(σ, σ, θ) = tjA(σ) whenever θ ∈ Supp(θ̃|σ) satisfies X(σ, σ, θ) = j for

j ∈ {0, 1}.
I prove the result for i = S by contradiction. Suppose the statement does not hold.

Then there exists a feasible grand contract, a signal σ′ ∈ Σ, and two types θ′, θ′′ ∈
Supp(θ̃|σ′) such that X(σ′, σ′, θ′) = X(σ′, σ′, θ′′) and tS(σ′, σ′, θ′) > tS(σ′, σ′, θ′′).

Consider a side-contract γ′ with ρ(θ;σ) = (σ, σ, θ) for all (σ, θ) 6= (σ′, θ′′), ρ(θ′′;σ′) =

(σ′, σ′, θ′), and τ(θ;σ) = 0. Due to the argument for the case i = A, γ′ leads to the

same payoffs for A as γ0. Thus, A reports truthfully to γ′. However, S has a strictly

higher payoff under γ′ than under γ0. Thus, the grand contract is not feasible.

Lemma A.2. Any feasible grand contract satisfies without loss of optimality t0A(σ) ≥
0 and p(σ) ≡ t1A(σ)− t0A(σ) ≥ sup{θ ∈ Supp(θ̃|σ) : X(σ, σ, θ) = 1}.

Proof. I start by showing that a) t0A(σ) ≥ 0, ∀σ ∈ Σ with E[X(σ, σ, θ̃)|σ] < 1, b)

p(σ) ≥ sup{θ ∈ Supp(θ̃|σ) : X(σ, σ, θ) = 1}, ∀σ ∈ Σ with E[X(σ, σ, θ̃)|σ] ∈ (0, 1),

and c) t1A(σ) ≥ sup{θ ∈ Supp(θ̃|σ) : X(σ, σ, θ) = 1}, ∀σ ∈ Σ with E[X(σ, σ, θ̃)|σ] = 1.

E[X(σ, σ, θ̃)|σ] < 1 implies that there exists some θ ∈ Supp(θ̃|σ) with X(σ, σ, θ) =

0. (PCA) for centralization and (PCγ0
A ) for delegation imply that tA(σ, σ, θ) ≥ 0.

Result a) then follows from Lemma A.1. E[X(σ, σ, θ̃)|σ] ∈ (0, 1) implies that there

exist θ, θ′ ∈ Supp(θ̃|σ) with X(σ, σ, θ) = 0 and X(σ, σ, θ′) = 1. It follows from

(ICγ0
A ) that p(σ) ≥ θ′′ for all θ′′ such that X(σ, σ, θ′′) = 1, which proves b). For

E[X(σ, σ, θ̃)|σ] = 1, X(σ, σ, θ) = 1 for all θ ∈ Supp(θ̃|σ). (PCA) for centralization

and (PCγ0
A ) for delegation imply c). The lemma then follows from setting t0A(σ) = 0

for E[X(σ, σ, θ̃)|σ] = 1 and p(σ) = 0 for E[X(σ, σ, θ̃)|σ] = 0.

Lemma A.3. Any feasible grand contract satisfies without loss of optimality tjS(σ) ≥
−` for j ∈ {0, 1} and tjS(σ) < 0⇒ tj

′

S (σ) ≥ 0 for j, j′ ∈ {0, 1}, j 6= j′.
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Proof. tjS(σ) ≥ −`,∀j ∈ {0, 1} follows directly from (LB) for all σ ∈ Σ such that

X(σ, σ, θ) is not constant in θ. For any σ ∈ Σ with X(σ, σ, θ) constant in θ, (LB)

requires either t0S(σ) ≥ −` or t1S(σ) ≥ −`. However, the other condition can be

satisfied without affecting payoffs as they are never realized. Finally, note that (PCS)

and Lemma A.1 imply

E
[
tS(σ, σ, θ̃)|σ

]
= E

[
X(σ, σ, θ̃)|σ

]
t1S(σ) +

(
1− E

[
X(σ, σ, θ̃)|σ

])
t0S(σ) ≥ 0.

Thus, either t0S(σ) or t1S(σ) has to be weakly positive.

Lemma A.4. Any feasible grand contract satisfies without loss of optimality tjS(σ) +

tjA(σ) = tj for j ∈ {0, 1}.

Proof. I prove this result by contradiction. Suppose the statement does not hold.

Then there exists a feasible grand contract, two signal realizations σ′, σ′′ ∈ Σ with

tjS(σ′) + tjA(σ′) < tjS(σ′′) + tjA(σ′′), and two types θ′, θ′′ ∈ Θ with X(σ′, σ′, θ′) =

X(σ′′, σ′′, θ′′) = j. Define a side-contract γ such that

ρ(θ;σ) =

(σ′′, σ′′, θ′′) if σ = σ′, θ ∈ {θ ∈ Supp(θ̃|σ′) : X(σ′, σ′, θ) = j},

(σ, σ, θ) otherwise;

τ(θ;σ) =

t
j
A(σ′′)− tjA(σ′) if σ = σ′, θ ∈ {θ ∈ Supp(θ̃|σ′) : X(σ′, σ′, θ) = j},

0 otherwise.

For A, γ is equivalent to γ0. Thus, γ satisfies (PCγ
A) and (ICγ

A). For σ = σ′ and

θ ∈ {θ ∈ Supp(θ̃|σ′) : X(σ′, σ′, θ) = 1}, S’s payoff is strictly larger under γ than

under γ0: tjS(σ′′) + tjA(σ′′) − tjA(σ′) > tjS(σ′). For all other combinations of signal

realization and type (σ, θ), S’s total payoff is the same under γ and γ0. Thus, γ is

feasible as (LBγ) is satisfied and the original grand contract is not feasible as (CP z)

is violated for z ∈ {c, d}.

Lemma A.5. Any grand contract that is feasible under delegation satisfies without

loss of optimality t1S(σ) ≥ 0 for all σ ∈ Σ.

Proof. I prove the result by contradiction. Suppose there exists a feasible grand

contract β under delegation and a signal realization σ ∈ Σ such that t1S(σ) < 0. As
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(PCS) is equivalent to

E
[
tS(σ, σ, θ̃)|σ

]
= E

[
X(σ, σ, θ̃)|σ

]
t1S(σ) +

(
1− E

[
X(σ, σ, θ̃)|σ

])
t0S(σ) ≥ 0,

t1S(σ) < 0 implies E
[
X(σ, σ, θ̃)|σ

]
< 1 and t0S(σ) > 0. Thus, there exists a type

θ′ ∈ Supp(θ̃|σ) with X(σ, σ, θ′) = 0. S could therefore offer a feasible side-contract

with ρ(θ;σ) = (σ, σ, θ′) and τ(θ;σ) = 0 for all θ ∈ Supp(θ̃|σ) giving S a payoff of

t0S(σ) > E
[
tS(σ, σ, θ̃)|σ

]
. Thus, (CP d) is not satisfied and β is not feasible under

delegation.

Proof of Lemma 3

Fix a grand contract with production probability x. The participation constraints

(PCA) and (PCS) imply that P ’s payoff cannot exceed B1(x). Points ii) and v) of

Lemma 2 imply that under delegation t1 = t1S(σ)+p(σ)+t0A(σ) ≥ θ(x). Points ii) and

iii) of Lemma 2 imply t0 = t0A(σ) + t0S(σ) ≥ −`. Thus, P ’s payoff under delegation

satisfies x(v − t1) − (1 − x)t0 ≤ x(v − θ(x)) + (1 − x)`. It follows that P ’s payoff is

bounded by Bd(x) = min{B1(x), B2(x)} under delegation.

Under centralization, P may set a grand contract with t1S(σ) ≥ 0 for all σ ∈
Σ. Using the arguments from the last paragraph, P ’s payoff cannot exceed Bd(x).

Instead, consider a grand contract β with production probability x and t1S(σ′) < 0 for

some signal σ′ ∈ Σ. I show that t0 ≥ 0 and t1 ≥ θ(x)−`. Point iii) of Lemma 2 implies

t0S(σ′) ≥ 0. Point ii) of Lemma 2 implies t0A(σ′) ≥ 0. Thus, t0 = t0S(σ′) + t0A(σ′) ≥ 0.

From point ii) of Lemma 2 it follows that there exists a signal realization σ′′ ∈ Σ

such that t1A(σ′′) ≥ p(σ′′) ≥ θ(x). Point iii) of Lemma 2 implies t1S(σ′′) ≥ −`. Thus,

t1S(σ′′) + t1A(σ′′) = t1 ≥ θ(x)− `. (PCS) and point ii) of Lemma 2 imply

E[tS(σ, σ, θ̃) + tA(σ, σ, θ̃)|σ] ≥ E[tA(σ, σ, θ̃)|σ]

= E[X(σ, σ, θ̃)t1A(σ) + (1−X(σ, σ, θ̃))t0A(σ)|σ] ≥ E[X(σ, σ, θ̃)p(σ)|σ],

and t0 ≥ 0 implies

tA(σ, σ, θ) + tS(σ, σ, θ) = X(σ, σ, θ)t1 + (1−X(σ, σ, θ))t0 ≥ X(σ, σ, θ)t1.
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These inequalities imply

E[tS(σ, σ, θ̃) + tA(σ, σ, θ̃)|σ] ≥ E[X(σ, σ, θ̃) max{t1, p(σ)}].

Using the law of iterated expectations, I find

E[tS(σ̃, σ̃, θ̃) + tA(σ̃, σ̃, θ̃)] ≥ E[X(σ̃, σ̃, θ̃) max{t1, p(σ̃)}].

Due to t1 ≥ θ(x)− ` and X(σ, σ, θ)p(σ) ≥ X(σ, σ, θ)θ, P ’s payoff is bounded by

E[X(σ̃, σ̃, θ̃)(v −max{θ(x)− `, θ̃})]

≤
∫

Σ

∫ θ(x)−`

θ

(v − θ(x) + `)dµ(σ, θ) +

∫
Σ

∫ θ(x)

θ(x)−`
(v − θ)dµ(σ, θ)

=

∫ θ(x)−`

θ

(v − θ(x) + `)dF (θ) +

∫ θ(x)

θ(x)−`
(v − θ)dF (θ)

=x(v − θ(x)) +

∫ θ(x)

θ(x)−`
F (θ)dθ.

The second line follows from the fact that the first line is maximal under the constraint∫
Σ

∫
Θ
X(σ, σ, θ)dµ(σ, θ) = x for X(σ, σ, θ) = 1θ≤θ(x). The third line follows from a

change in the order of integration and
∫

Σ
dµ(σ, θ) = dF (θ). The last line follows from

integration by parts.

Proof of Proposition 1

To accommodate the possibility of mass points, let

∆F (θ) ≡ F (θ)− lim
θ′↗θ

F (θ′) and f(θ) =


F ′(θ) if F ′(θ) exists;

∆F (θ) if ∆F (θ) > 0;

0 otherwise.

Proof

I need to prove that i) Iwx is a well-defined information structure, ii) βx is feasible

under delegation, and iii) P achieves an expected payoff of Bd(x) using Iwx and βx.

Before doing so, I argue that θ̌(x) is uniquely defined. For x = 1, the right-hand
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side of the equation in brackets in (4) is zero and the left-hand side is zero for θ = θ

and strictly increasing for θ ∈ Θ. For x < 1, the left-hand side is weakly increasing

for θ ≥ θ and the right-hand side is strictly decreasing in θ. For θ = θ, the left-hand

side is zero whereas the right-hand side is weakly positive as θ ≤ θ(x) and ` ≥ 0. For

θ > θ, the left-hand side is strictly positive and the right-hand side becomes strictly

negative as θ grows large. Thus, θ̌(x) is unique for each x ∈ [0, 1] according to the

intermediate value theorem.

Next, I prove i) to iii). Let θ(x) ≡ min{θ(x), θ̌(x)}. If wx(·) is a well-defined

weighting function, then i) is satisfied. Note that

∫
Σ

wx(σ)dσ =

∫ θ(x)

θ(x)
0dσ∫ θ(x)

θ
F (σ)dσ

+

∫ θ(x)

θ
f(σ)(θ(x)− σ)dσ∫ θ(x)

θ
F (σ)dσ

= 1.

Together with wx(·) ≥ 0, this implies that Iwx is well-defined.

Condition ii) holds if βx satisfies the constraints (LB), (PCS), (ICS), and (CP d).

(LB) is satisfied as t1 − σ = θ(x)− σ ≥ 0 ≥ −` and t0 ≥ −`. S’s expected payoff for

σ > θ(x) is θ(x)− σ > 0. For σ ≤ θ(x), it is

f(σ)(θ(x)− σ) + (1− x)wx(σ)t0

f(σ) + (1− x)wx(σ)

=
f(σ)(θ(x)− θ(x)) + f(σ)(θ(x)− σ) + (1− x)wx(σ)t0

f(σ) + (1− x)wx(σ)

=
f(σ)(θ(x)− θ(x)) + wx(σ)

∫ θ(x)

θ
F (σ)dσ + (1− x)wx(σ)t0

f(σ) + (1− x)wx(σ)
= θ(x)− θ(x) ≥ 0,

where the second equality follows from the definition of wx(σ) and the last equality

follows from

−t0 = min


∫ θ(x)

θ
F (σ)dσ

1− x
, `

 = min


∫ θ(x)

θ
F (σ)dσ

1− x
,

∫ θ̌(x)

θ
F (σ)dσ

1− x
− θ(x) + θ̌(x)


=

∫ θ(x)

θ
F (σ)dσ

1− x
− θ(x) + θ(x).

Thus, (PCS) is satisfied. (ICS) is satisfied as any report with σ̂S 6= σ leads with

certainty to the worst possible payoff for S. It remains to check whether (CP d)
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is satisfied. Note that under β and γ0, A receives a take-it-or-leave-it price offer

of σ. Thus, (PCγ0
A ) and (ICγ0

A ) are satisfied. Furthermore, (LB) implies (LBγ0).

Given that the total transfers to S and A are fixed to t0 and t1 conditional on the

production decision, any side-contract γ that is strictly better than γ0 for S needs to

change the probability of production. For a given signal σ ∈ Σ, S may either lower

the probability of production to zero or increase it to q > G(σ|σ). In the first case,

S’s payoff is t0 ≤ 0. In the latter case, S needs to pay A a side-transfer of τ such

that σ + τ > θ(x) whenever production takes place. Thus, S’s expected payoff is

q(t1 − σ − τ) + (1− q)t0 ≤ 0. Thus, (CP d) is satisfied.

Finally, iii) holds as P ’s expected payoff from βx and Iwx is

x(v − t1)− (1− x)t0 = x(v − θ(x)) + min

{
(1− x)`,

∫ θ(x)

θ

F (σ)dσ

}
= Bd(x).

Proof of Proposition 2 and Lemma 4

First, I show that delegation is optimal if ` ≥ ˆ̀(v) for some ˆ̀ : [0,∞) → [0, `). Let

Vc and Vd denote P ’s optimal payoffs under centralization and delegation. Denote by

xc and xd the optimal production probabilities under centralization and delegation.

The following three lemmas prove Lemma 4.

Lemma A.6. If Vc > Vd, then

Pr
(

(σ̃, θ̃) ∈
{

Σ×Θ : t1S(σ) < 0, X(σ, σ, θ) = 1
})

> 0. (6)

Proof. I prove the result by contradiction. Suppose Vc > Vd and Pr
(
(σ̃, θ̃) ∈

{
Σ×Θ :

t1S(σ) < 0, X(σ, σ, θ) = 1
})

= 0. Recall that Vc ≤ B1(xc). Due to Lemma 2, it holds

that

t1 = t1S(σ) + p(σ) + t0A(σ) ≥ sup
σ∈Σ:t1S(σ)≥0

{
sup{θ ∈ Supp(θ̃|σ) : X(σ, σ, θ) = 1}

}
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For Pr
(

(σ̃, θ̃) ∈
{

Σ×Θ : t1S(σ) < 0, X(σ, σ, θ) = 1
})

= 0, it holds that

sup
σ∈Σ:t1S(σ)≥0

{
sup{θ ∈ Supp(θ̃|σ) : X(σ, σ, θ) = 1}

}
≥ θ(xc).

Together with t0 ≥ −`, this implies xc(v− t1)− (1− xc)t0 ≤ B2(xc). As Vc ≤ B1(xc),

xc(v − t1)− (1− xc)t0 ≤ min{B1(xc), B2(xc)} = Bd(xc) ≤ max
x∈[0,1]

Bd(x) = Vd,

which gives a contradiction.

Lemma A.7. If W − Vc < ε for all ε > 0, then for any δ > 0

Pr
(

(σ̃, θ̃) ∈
{

Σ×Θ : X(σ, σ, θ) = 1, p(σ)− θ > δ
})

= 0. (7)

Proof. I prove the result by contradiction. Suppose W − Vc < ε for all ε > 0 and

Pr
(

(σ̃, θ̃) ∈
{

Σ × Θ : X(σ, σ, θ) = 1, p(σ) − θ > δ
})

= α > 0 for some δ > 0. Let

Xc(σ, σ, θ) be the optimal production rule. Define ∆ ≡
{
Supp(σ̃, θ̃) : Xc(σ, σ, θ) =

1, p(σ)− θ > δ
}

and ∆c ≡ Supp(σ̃, θ̃) \∆. Note that

Vc =

∫∫ (
Xc(σ, σ, θ)(v − t1A(σ)− t1S(σ))− (1−Xc(σ, σ, θ))(t

0
A(σ) + t0S(σ))

)
dµ(σ, θ)

≤
∫∫

Xc(σ, σ, θ)(v − p(σ))dµ(σ, θ)

≤
∫∫

∆c

Xc(σ, σ, θ)(v − θ)dµ(σ, θ) +

∫∫
∆

(v − θ − δ)dµ(σ, θ)

≤
∫ v

θ

(v − θ)dF (θ)−
∫∫

∆

δdµ(σ, θ) = W − αδ < W

where the first inequality in the second line follows from (PCS) and ii) of Lemma 2

and the second inequality follows from point ii) of Lemma 2 and p(σ) > θ + δ for all

(σ, θ) ∈ ∆. Thus, W − Vc > αδ which leads to a contradiction.

Lemma A.8. Suppose the information structure I and the grand contract β satisfy

conditions (6) and (7). Then β is not feasible under centralization.

Proof. I prove the lemma by contradiction. Suppose (I, β) satisfy (6) and (7) and β

is feasible under centralization. From (6) it follows that there exists a set of signals

Σ with positive mass such that σ ∈ Σ implies t1S(σ) < 0 and Pr(X(σ, σ, θ̃) = 1|σ̃ =
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σ) > 0. If X(σ, σ, θ) = 1 for all θ ∈ Supp(θ̃|σ), then S’s expected payoff after σ would

be negative. Thus, (PCS) implies that for all σ ∈ Σ, there exists θ0
σ ∈ Supp(θ̃|σ)

such that X(σ, σ, θ0
σ) = 0 and t0S(σ) > 0. Furthermore, (7) implies that for all

θ ∈ Supp(θ̃|σ) with X(σ, σ, θ) = 1 and all δ > 0, it holds that p(σ)− θ < δ.

Consider now the side-contract γ given by

ρ(θ;σ) =

(σ, σ, θ0
σ) if σ ∈ Σ,

(σ, σ, θ) otherwise;
and τ(θ;σ) =

−ε if σ ∈ Σ,

0 otherwise.

where ε > 0. This side-contract is identical to the null side-contract for σ 6∈ Σ. Thus,

the side-contract is feasible for σ 6∈ Σ. For σ ∈ Σ, the side-contract leads to a constant

production decision X = 0 and a constant payment to A of t0A(σ)+ε. Thus, it satisfies

(ICγ
A). Any type θ ∈ Supp(θ̃|σ) with X(σ, σ, θ) = 0 wants to accept γ as it increases

A’s payoff from t0A(σ) to t0A(σ)+ε. Any type θ ∈ Supp(θ̃|σ) with X(σ, σ, θ) = 1 wants

to accept this side-contract as it leads to a payoff of t0A(σ) + ε ≥ t0A(σ) + p(σ)− θ, as

p(σ)− θ < δ for any δ > 0. Finally, note that γ leads to the same expected payoff for

S as the null side-contract for σ 6∈ Σ and leads to an expected payoff of t0S(σ)− ε for

σ ∈ Σ with

t0S(σ)− ε > E[X(σ, σ, θ̃)|σ]t1S(σ) + (1− E[X(σ, σ, θ̃)|σ])t0S(σ)

for ε sufficiently close to zero. Thus, γ is feasible and strictly profitable for S. It

follows that (CP c) is not satisfied and therefore β is not feasible. This gives a con-

tradiction.

Point i) of Proposition 2 results from Lemma 4 and the following two observations.

First, maxx∈[0,1]Bd(x) is continuous and increasing in ` as B2(x) is continuous and

increasing in `. Second, due to Corollary 3, maxx∈[0,1]Bd(x) = W for v < θ and

` ≥ ` and lim`→∞maxx∈[0,1]Bd(x) = W for v ≥ θ. Thus, that there exists a function
ˆ̀ : [0,∞) → [0, `(v)) which gives for each v a bound ˆ̀(v) such that delegation is

optimal if ` ≥ ˆ̀(v).

Second, I prove that delegation is optimal if v < m. Let x3 ∈ arg maxx∈[0,1]B3(x).

Note that x3 ≤ F (v) as B3(x) = B1(x) −
∫ θ(x)−`
θ

F (θ)dθ is strictly decreasing for

x > F (v) due to B1(x) being strictly decreasing for x > F (v) and
∫ θ(x)−`
θ

F (θ)dθ
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being weakly increasing. Due to v < m, we have F (θ(x3)) ≤ 1
2

and

B3(x3) = x3(v − θ(x3)) +

∫ θ(x3)

θ(x3)−`
F (θ)dθ ≤ x3(v − θ(x3)) +

∫ θ(x3)

θ(x3)−`
F (θ(x3))dθ

≤ x3(v − θ(x3)) + `(1− F (θ(x3))) = B2(x3).

Now, I can prove maxx∈[0,1]Bc(x) = maxx∈[0,1]Bd(x) for v < m by contradiction.

Suppose maxx∈[0,1]Bc(x) > maxx∈[0,1]Bd(x) and let xz ∈ arg maxx∈[0,1]Bz(x) with

z ∈ {c, d}. Bd(xd) < Bc(xc) implies B2(xc) < B3(xc) as B2(xc) ≥ B3(xc) would

imply Bc(xc) = min{B1(xc), B2(xc)} = Bd(xc) ≤ Bd(xd) which contradicts Bd(xd) <

Bc(xc). B2(xc) < B3(xc) implies Bc(xc) = B3(xc) as B3(x) ≤ B1(x) for all x ∈ [0, 1].

It follows that Bd(xd) < Bc(xc) = B3(xc) ≤ B3(x3) ≤ B2(x3) ≤ Bd(xd) which is a

contradiction. Thus, Vc = Vd for v < m.

Proof of Proposition 3

I construct the combination of information structure and grand contract (Ic, βc) de-

scribed in the main text. Define βc by

X(σ̂S, σ̂A, θ̂) = 1σ̂S=σ̂A=θ̂≤z(σ̂S, σ̂A, θ̂), tA(σ̂S, σ̂A, θ̂) = p(θ̂)X(σ̂S, σ̂A, θ̂), (8)

tS(σ̂S, σ̂A, θ̂) =

X(σ̂S, σ̂A, θ̂)(t
1 − p(θ̂)) + (1−X(σ̂S, σ̂A, θ̂))t

0 if σ̂S = σ̂A

−` if σ̂S 6= σ̂A

with t0 =

∫ z
z−`(F (z)− F (θ))dθ

1− F (z)
, t1 = t0 + z − `, p(σ) = σ + t0, z ∈ Θ.

In order to specify the information structure, I define the weighting function

w(σ) =
f(σ)[σ − z + `]+∫ z
z−`(F (z)− F (θ))dθ

which satisfies w(·) ≥ 0 and∫ z

θ

w(σ)dσ =

∫ z

z−`

f(σ)(σ − z + `)∫ z
z−`(F (z)− F (θ))dθ

dσ = 1,
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and the type ξ ∈ Θ which satisfies∫ z

z−t0
w(σ)(1− F (z))dσ = 1− F (ξ).

Note that ξ = z if t0 ≥ ` or z − t0 ≤ θ. Otherwise, ξ ∈ (z, θ). The information

structure Ic is now constructed as follows. For any θ ≤ z, the signal realization σ = θ

is generated. Any θ ∈ [ξ, θ] generates some σ ∈ Σh = [z − t0, z] according to the

density wh(σ) = 1−F (z)
1−F (ξ)

w(σ). Any θ ∈ [z, ξ) generates some σ ∈ Σl = [θ, z − t0]

according to the density wl(σ) = 1−F (z)
F (ξ)−F (z)

w(σ).35 Thus, Ic is well-defined for a small

` as wl(σ), wh(σ) ≥ 0,∫ z

z−t0
wh(σ)dσ =

∫ z

z−t0

1− F (z)

1− F (ξ)
w(σ)dσ = 1, and

∫ z−t0

θ

wl(σ)dσ =

∫ z−t0

θ

1− F (z)

F (ξ)− F (z)
w(σ)dσ =

1− F (z)

F (ξ)− F (z)

(
1−

∫ z

z−t0
w(σ)dσ

)
=

1− F (z)

F (ξ)− F (z)

(
1− 1− F (ξ)

1− F (z)

)
= 1.

Next, I prove that βc is feasible under centralization given Ic. (PCA) and (ICA)

are satisfied due to βc being equivalent to a price offer p(σ) to A whenever Supp(θ̃|σ)∩
(σ, σ + t0) = ∅ under Ic. Supp(θ̃|σ) ∩ (σ, σ + t0) = ∅ holds if ξ ≥ z + t0. For ` = 0,

t0 = 0 < ξ = θ. As ξ is continuously decreasing in t0, it follows that ξ ≥ z + t0 for `

small.

Next, I show that (PCS) is satisfied. As cost levels below z − ` are perfectly

revealed, the expected payoff of S for σ < z − ` is z − `− σ ≥ 0. For σ ≥ z − `, the

expected payoff is

Pr(θ̃ = σ|σ̃ = σ)(t1 − p(σ)) + (1− Pr(θ̃ = σ|σ̃ = σ))t0

=
f(σ)(z − `− σ)

f(σ) + w(σ)(1− F (z))
+

w(σ)(1− F (z))

f(σ) + w(σ)(1− F (z))

∫ z
z−`(F (z)− F (θ))dθ

1− F (z)

=
f(σ)(z − `− σ) + f(σ)(σ − z + `)

f(σ) + w(σ)(1− F (z))
= 0.

35If ξ = z, costs in [θ, z − t0] are perfectly revealed and wl(σ) can be ignored.
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Furthermore, (ICS) is satisfied, as S never has an incentive to unilaterally misreport

the signal realization. This would lead to σ̂A 6= σ̂S and a certain payoff of −` to S.

In order to prove that βc is feasible, it remains to show that (CP c) is satisfied.

Note first that any side-contract γ with σ̂A 6= σ̂S can never be better than the null

side-contract γ0 as it leads to the minimal total payoff of −` to S and A. Some γ

with σ̂A = σ̂S can only be better for S than γ0 if it induces a different production

decision than γ0. This follows from the fact that the sum of transfers to S and A

is fixed conditional on the production decision (t1 if good is produced, t0 otherwise).

Given γ0 and some signal realization σ, only the type θ = σ produces and receives

a transfer of p(σ) = σ + t0. A side-contract γ that induces the type θ = σ to not

produce requires S to make a side-transfer of at least −τ = t0 to A. S’s expected

payoff from γ is therefore given by t0 + τ = 0 which is not better than the payoff

from γ0. For any signal realization σ ≥ z − `, a side-contract may also change the

production decision by inducing some type θ′ ∈ Supp(θ̃|σ) with θ′ > σ to produce the

good. This requires that S pays A a side-transfer −τ ≥ θ′ − p(σ̂). Thus, S’s payoff

under production satisfies t1− p(σ̂) + τ ≤ t1− θ′ = t0 + z− `− θ′ < t0 + z− `−σ ≤ t0

which is worse than under γ0. It follows that βc satisfies (CP c).

Finally, I show that P ’s maximal expected payoff from (Ic, βc) exceeds the optimal

payoff under delegation and approximates the upper bound under centralization if `

is close to zero and p∗(v) ∈ (m, θ). P ’s maximal expected payoff from (Ic, βc) is

max
z
F (z)(v − t1)− (1− F (z))t0 = max

z
F (z)(v − z + `)−

∫ z
z−`(F (z)− F (θ))dθ

1− F (z)
.

I denote the solution to this problem by zc(`) and the value by Vc(`). Equivalently, I

denote P ’s maximal payoff under delegation by Vd(`) = maxz B̃d(z) where

B̃d(z) ≡ Bd(F (z)) = F (z)(v − z) + min

{∫ z

θ

F (θ)dθ, (1− F (z))`

}
and I denote by zd(`) the optimal cutoff under delegation. First, I prove Vc(`) >

Vd(`) for p∗ ∈ (m, θ) and small `. Note that B̃d(z) = F (z)(v − z) + (1 − F (z))`

for ` sufficiently small. Note furthermore that Vc(`) and Vd(`) are continuous in `,

zc(0) = zd(0) = p∗, and Vc(0) = Vd(0) = W . From the envelope theorem, it follows

that V ′c (0) = F (zc(0)) = F (p∗) and V ′d(0) = 1− F (zd(0)) = 1− F (p∗). From p∗ > m,

it follows that Vc(`) > Vd(`) for ` ∈ (0, ε) if ε is sufficiently small.
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Second, I prove that (Ic, βc) is approximately optimal for p∗ > m and ` ∈ (0, ε) for

ε sufficiently small. As Vc(`) > Vd(`), it is enough to prove that Vc(`) approximates

the upper bound V3(`) ≡ maxz B3(F (z)). As V3(0) = W and V ′3(0) = F (p∗), Vc(`) is

a first-order approximation of V3(`) around ` = 0. Thus, (Ic, βc) is near-optimal for

p∗ > m and ` close to zero.

Proof of Proposition 4

I show that Propositions 1 to 3 extend to the setting with T . First, I argue that

P ’s expected payoff in the model with T remains bounded by maxxBd(x) under

delegation and by maxxBc(x) under centralization. The following argument applies

to centralization and delegation. Fix some feasible grand contract β. The collusion-

proofness constraint (CP z) with z ∈ {c, d} implies that γ0 is the optimal feasible

side-contract for S. Thus, γ0 is feasible and Pareto efficient. As P assumes that

T chooses the worst Pareto efficient side-contract from P ’s perspective, P ’s payoff

cannot exceed the payoff from β and γ0. Hence, T ’s payoff is bounded by maxxBd(x)

under delegation and by maxxBc(x) under centralization.

Proposition A.1. For any x ∈ [0, 1], the combination of information structure Iwx

and grand contract βx gives P an expected payoff of Bd(x) for any side-contract that

is feasible under delegation.

Proof. I start with three preliminary observations: First, Iwx is well-defined as shown

in the proof of Proposition 1. Second, as βx satisfies (CP d), γ0 is feasible under

delegation and Pareto efficient in the model with T . Third, for a given γ, define

q(θ;σ) ≡ X(ρ(θ;σ)) and κ(θ;σ) ≡ tA(ρ(θ;σ)) + τ(θ;σ). A’s payoff for the true type

(σ, θ) and the report θ̂ to the side-contract is given by κ(θ̂;σ)− θq(θ̂;σ). By standard

arguments, (ICγ
A) implies that q(θ;σ) has to be of the form q(θ;σ) = 1θ≤y(σ) for some

y(σ) ∈ Supp(θ̃|σ) ∪ {θ − ε} with ε > 0.

I now prove that all side-contracts that are feasible under delegation lead to identi-

cal production decisions under βx, i.e., q(θ;σ) = X(σ, σ, θ)⇔ y(σ) = σ for all σ ∈ Σ.

Toward a contradiction, suppose there exists a side-contract that is feasible under

delegation such that either i) y(σ) > σ or ii) y(σ) < σ.

In case i), any type θ ≤ y(σ) needs to receive a rent of at least y(σ)−θ for reporting

truthfully. For a type θ ≤ y(σ), S’s payoff is therefore bounded by t1−θ−(y(σ)−θ) =

t1− y(σ) = θ(x)− y(σ) < 0. For all θ > y(σ), S’s payoff is bounded by t0 < 0. Thus,
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S’s expected payoff over all θ ∈ Supp(θ̃|σ) is also strictly negative which implies that

(PCγ,d
S ) is not satisfied. This is a contradiction.

In case ii), S’s expected payoff is at most t0 for any θ ∈ Supp(θ̃|σ). As t0 < 0,

(PCγ,d
S ) is not satisfied leading to a contradiction.

All feasible side-contracts under delegation implement the production decision

X(σ, σ, θ) which leads to an expected payoff for P of x(v−t1)−(1−x)t0 = Bd(x).

Proposition A.2. Delegation is optimal in the model with T if either ` ≥ ˆ̀(v) or

v < m.

Proof. As the model with T allows for more general forms of collusion, P ’s payoff is

weakly lower than in the main model. Proposition A.1 implies that P can achieve

the payoff maxxBd(x) also in the model with T . Together with Proposition 2, this

implies the result.

Proposition A.3. Suppose f(·) = F ′(·) > 0 for all θ ∈ Θ. Delegation is suboptimal

in the model with T if p∗(v) ∈ (m, θ) and ` ∈ (0, ε) for some ε > 0.

Proof. Given the feasible information structure Ic, I construct a variation of the grand

contract βc such that P ’s payoff in the model with T is arbitrarily close to the payoff

from (Ic, βc) in the main model. Together with Proposition 3, this proves the result.

In particular, consider the sequence of grand contracts {βcη} indexed by η > 0 and

defined as βc in (8) with the sole difference that t1 = t1η = t0 + z − ` + η. Thus,

limη→0 β
c
η = βc.

In a first step, I show that any grand contract βcη is feasible under centralization

in the main model given Ic whenever βc is feasible under centralization and η is close

to zero. First, note that (PCA) and (ICA) are identical under βcη and βc. Second,

observe that (PCS) and (ICS) are less stringent under βcη than under βc. Third,

one can show that βcη satisfies (CP c) by taking exactly the same steps that prove

that βc satisfies (CP c) in the proof of Proposition 3. The only difference is that

S’s payoff from a deviation in which the good is produced for θ > z is given by

t1η − p(σ̂) + τ ≤ t1η − θ = t0 + z − `− θ + η < t0, where the last inequality holds for η

close to zero. Finally, note that S’s expected payoff given the signal realization σ is

Pr(θ̃ = σ|σ)(t1η − p(σ)) + Pr(θ̃ > σ|σ)t0 = [z − `− σ]+ + Pr(θ̃ = σ|σ)η (9)
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and that P ’s expected payoff from (Ic, βcη) given by Pr(θ̃ = σ|σ)(v−t1η)−Pr(θ̃ > σ|σ)t0

converges to the profit from (Ic, βc) as η goes to zero.

In a second step, I show that following a rejection of γ, truthful reporting strategies

to any grand contract βcη remain mutual best responses for arbitrary beliefs. Suppose

A reports truthfully. If S reports σ̂S 6= σ = σ̂A, then S’s payoff is −`. As this is the

lowest possible payoff, a truthful report by S is a best response to truthful reporting

by A. Next, suppose S reports truthfully. In this case, (ICA) implies that truthful

reporting is a best response for A.

In a third step, I demonstrate that P ’s expected payoff from Ic and βcη for η

close to zero is the same for any side-contract that is feasible under centralization.

As in the proof of Proposition A.1, I show this by proving that all equilibria with

feasible side-contracts lead to the same production decision X(σ, σ, θ) defined in (8).

Consider an equilibrium in which P sets Ic and βcη, S and A accept βcη, T offers γ,

and S and A accept γ with probabilities αS(σ) and αA(θ;σ). Following a rejection

of γ, the production decision is X(σ, σ, θ) as truthful reporting strategies are mutual

best responses for S and A. Thus, I turn to the case in which the side-contract

γ is accepted with positive probability, i.e., αS(σ) > 0 and αA(σ, θ) > 0 for some

(σ, θ) ∈ Σ × Θ. Define q(θ;σ) ≡ X(ρ(θ;σ)) and κ(θ;σ) ≡ tA(ρ(θ;σ)) + τ(θ;σ). By

standard arguments, (ICγ
A) implies that q(θ;σ) has to be of the form q(θ;σ) = 1θ≤y(σ)

for some y(σ) ∈ Supp(θ̃|σ, acceptance) ∪ {θ − ε} with ε > 0. If q(θ;σ) = X(σ, σ, θ)

⇔ y(σ) = σ, S and A are both indifferent between accepting and rejecting the side-

contract. Note that y(σ) > σ with Pr(θ̃ ∈ (σ, y(σ)]|σ, acceptance) = 0 and y(σ) < σ

with Pr(θ̃ = σ|σ, acceptance) = 0 are both equivalent to y(σ) = σ. Thus, there remain

the cases i) y(σ) > σ with Pr(θ̃ ∈ (σ, y(σ)]|σ, acceptance) > 0 and ii) y(σ) < σ with

Pr(θ̃ = σ|σ, acceptance) > 0.

In case i), any type θ ≤ y(σ) needs to receive a rent of at least y(σ) − θ for

reporting truthfully. Note that y(σ)− σ > t0 by construction of Ic and y(σ)− θ > 0

for all θ < y(σ). Thus, all θ ∈ Supp(θ̃|σ) with θ < y(σ) accept the side-contract in

equilibrium. It follows that S’s expected payoff is

Pr(θ̃ ≤ y(σ)|σ)(t1η − y(σ)) + Pr(θ̃ > y(σ)|σ)t0

where the second summand follows from the fact that S’s payoff is t0 for any θ > y(σ)

independently of whether this type accepts or rejects the side-contract. This term is
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strictly smaller than S’s expected payoff from rejecting the side-contract given in (9)

as p(σ) = σ + t0 < y(σ) and t1η − y(σ) = t0 + z − `+ η − y(σ) < t0 for η close to zero

due to y(σ) > z. Thus, αS(σ) > 0 is suboptimal which gives a contradiction.

In case ii), the type σ receives a rent of at least t0 as A would otherwise reject γ.

As this rent is earned without production, all types θ ∈ Supp(θ̃|σ) with θ > σ have

to receive the same rent and strictly prefer to accept γ. Thus, S’s expected payoff

from accepting γ is at most

Pr(θ̃ = σ|σ)(αA(σ;σ)(t0 − t0) + (1− αA(σ;σ))(t1η − p(σ)) + Pr(θ̃ > σ|σ)(t0 − t0)

= Pr(θ̃ = σ|σ)(1− αA(σ;σ))(z − `− σ + η).

As αA(σ, σ) > 0, this is strictly smaller than S’s expected payoff from rejecting the

side-contract given in (9). Thus, αS(σ) > 0 is suboptimal which gives a contradiction.

It follows that the production decision is X(σ, σ, θ) in any equilibrium. As βcη is

feasible under centralization given Ic in the main model, there exists an equilibrium

in which T offers the null side-contract γ0 and P ’s expected payoff converges to the

payoff from (Ic, βc) in the main model as η goes to zero.

Proof of Proposition 5

I assume {θ ∈ Θ : q∗(θ) = 0} 6= ∅. At the end of the proof, I sketch how the result

can be extended to the case with {θ ∈ Θ : q∗(θ) = 0} = ∅.
Suppose P sets a weighted information structure with the signal space Σ = Q \

[θ0, θ] and the weighting function w∗(σ) = φ∗(σ)f(σ)
Φ∗

. Furthermore, suppose P offers S

a delegation contract that specifies a payment schedule of

t(q) = v(q) · 1q∈Q∗+ −
Φ∗

Pr(θ ≥ θ0)
· 1q∈Q\Q∗+

for the delivery of a quantity q ∈ Q. Upon acceptance of the delegation contract, S

offers A a sub-contract that specifies a quantity q(θ̂;σ) and a transfer τ(θ̂;σ) from S

to A as functions of the commonly observed signal realization σ and a report of A

about the type. Thus, A’s payoff is τ(θ̂;σ) − c(θ, q(θ̂;σ)). Due to supermodularity

of the cost function, incentive compatibility implies that q(θ;σ) has to be weakly

decreasing in θ. At first, suppose S offers a sub-contract with q(θ;σ) = q · 1θ=σ. S

optimally implements this production rule with τ(θ;σ) = c(σ, q) ·1θ=σ which gives an
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expected payoff of

Pr(θ̃ = σ|σ)(v(q)− c(σ, q))− Pr(θ̃ > σ|σ)
Φ∗

Pr(θ ≥ θ0)
.

This expression is maximized for q = q∗(σ) which results in an expected payoff of

f(σ)φ∗(σ)− Pr(θ ≥ θ0)w∗(σ) Φ∗

Pr(θ≥θ0)

f(σ) + Pr(θ ≥ θ0)w∗(σ)
= 0.

Next, suppose S chooses a production rule with q(θ;σ) > 0 for some θ ≥ θ0. Let

y denote the highest type that produces a positive quantity. Individual rationality

implies that τ(y;σ) ≥ c(y, q(y;σ)). Thus, all types θ < y can at least earn a rent of

c(y, q(y;σ))− c(θ, q(y;σ)) by reporting θ̂ = y. Thus, S’s expected payoff is bounded

from above by∫ y

θ

(v(q(θ;σ))− c(θ, q(θ;σ))− c(y, q(y;σ)) + c(θ, q(y;σ)))dG(θ|σ) (10)

− Pr(θ̃ > y|σ)
Φ∗

Pr(θ ≥ θ0)
.

Next, note that

v(q(θ;σ))− c(θ, q(θ;σ))− c(y, q(y;σ)) + c(θ, q(y;σ)) (11)

≤ v(q(θ;σ))− c(θ, q(θ;σ))− c(y, q∗) + c(θ, q∗)

≤ v(q(θ;σ))− c(θ, q(θ;σ))− c(y, q∗) + c(θ, q∗)

≤ φ∗(θ)− c(θ0, q
∗) + c(θ, q∗)

where the first inequality follows from supermodularity and q(y;σ) ≥ q∗, the second

inequality follows from supermodularity and θ ≥ θ, and the third inequality follows

from the definition of φ∗(θ), c(θ, q) being increasing in θ, and y ≥ θ0. As c(θ0, q) −
c(θ, q) is decreasing in q due to supermodularity, condition (5) implies that the last

line in equation (11) is weakly negative. Thus, the integrand in the first line of

equation (10) is weakly negative which implies that the total expression is strictly

negative. It follows that S optimally offers a sub-contract with the production rule
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q(θ;σ) = q∗(θ) and P ’s expected payoff is given by

E
[
1θ<θ0(v(q∗(θ))− v(q∗(θ))) + 1θ≥θ0

Φ∗

Pr(θ ≥ θ0)

]
= Φ∗.

Moreover, note that min{q ≥ 0 : φ∗(θ) ≤ c(θ0, q)− c(θ, q)} ∈ (0, q∗(θ)) due to

c(θ0, 0)− c(θ, 0) = 0 < φ∗(θ) = v(q∗(θ))− c(θ0, q
∗(θ)) + c(θ0, q

∗(θ))− c(θ, q∗(θ))

< φ∗(θ0) + c(θ0, q
∗(θ))− c(θ, q∗(θ)) = c(θ0, q

∗(θ))− c(θ, q∗(θ)).

Finally, consider the case {θ ∈ Θ : q∗(θ) = 0} = ∅. I sketch how to prove that P

can virtually extract the full surplus. If Pr(θ̃ = θ) > 0, change the transfer in case of

production to ṽ(q) ≡ v(q) − φ∗(θ) and pool a probability mass ε < Pr(θ̃ = θ) of the

type θ into the signal space Σ = Θ according to the weighted information structure

with cutoff θ and weighting function w∗(σ) = f(σ)(φ∗(σ)−φ∗(θ))
Φ∗−φ∗(θ) . All arguments from

above can now be applied to find that P achieves an expected profit of Φ∗ − εφ∗(θ)
which converges to Φ∗ as ε→ 0.

If F (·) is continuous at θ, set a cutoff θ0 close to θ, change the transfer in case of

production to ṽ(q) ≡ v(q) − φ∗(θ0) and use the weighted information structure with

cutoff θ0 and weighting function w∗(σ) = f(σ)(φ∗(σ)−φ∗(θ0))
Φ∗−φ∗(θ0)

. All arguments from above

can now be applied to find that P achieves an expected profit of Φ∗−(1−F (θ0))φ∗(θ0)

which converges to Φ∗ as θ0 → θ.

Proof of Proposition 6

Consider the game defined in Section 3 with the sole difference that some information

structure I ∈ I is exogenously fixed at t = 0. Suppose I satisfies conditions i) and ii).

I prove that P ’s expected payoff from any feasible grand contract under delegation lies

strictly below the monopsony payoff W . As P can achieve W under centralization,

this proves that delegation is suboptimal.

Consider an equilibrium with delegation. First, I show that p(σ) ∈ arg maxp(t
1 −

t0 − p)G(p|σ),∀σ ∈ Σ in any such equilibrium. Suppose not. Then there exists

some σ ∈ Σ with p(σ) 6∈ arg maxp(t
1 − t0 − p)G(p|σ). For this signal realization, S’s
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expected payoff satisfies

x(σ)(t1 − t1A(σ)) + (1− x(σ))(t0 − t0A(σ))

= G(p(σ)|σ)(t1 − t0 − p(σ)) + t0 − t0A(σ)

< G(po(σ)|σ)(t1 − t0 − po(σ)) + t0 − t0A(σ)

where x(σ) = G(p(σ)|σ) and po(σ) ∈ arg maxp(t
1−t0−p)G(p|σ). The expected payoff

in the third line is achievable for S by offering A a side-contract with X(ρ(θ;σ)) =

1θ≤po(σ) and τ(θ;σ) = (p(σ)−po(σ))1θ≤po(σ). Thus, p(σ) 6∈ arg maxp(t
1−t0−p)G(p|σ)

cannot hold in equilibrium.

Second, note that p(σ) ∈ arg maxp(t
1 − t0 − p)G(p|σ) implies t1 − t0 ≥ p(σ) with

t1 − t0 = p(σ) only if p(σ) = min{Supp(θ̃|σ)}. Thus, p(σ) 6= min{Supp(θ̃|σ)} implies

t1 − t0 > p(σ).

In a third step, I show that P ’s expected payoff in any equilibrium with delegation

is strictly smaller than the monopsony payoff W . P ’s expected payoff satisfies∫
Σ

(
x(σ)(v − t1 + t0)− t0

)
dH(σ) (12)

≤
∫

Σ

(
x(σ)(v − t1 + t0) + x(σ)(t1 − t0 − p(σ))

)
dH(σ)

=

∫
Σ

(
x(σ)(v − p(σ))− (x(σ)− x(σ))(t1 − t0 − p(σ))

)
dH(σ)

≤
∫

Σ

x(σ)(v − p(σ))dH(σ) =

∫
Σ

G(p(σ)|σ)(v − p(σ))dH(σ)

≤
∫

Σ

G(p(σ)|σ)(v − p(σ))dH(σ) = F (p(σ))(v − p(σ))

≤ W

where the first inequality follows from S’s participation constraint for σ given by

t0 ≥ −x(σ)(t1 − t0 − p(σ)), the second inequality follows from t1 − t0 ≥ p(σ) and

x(σ) ≤ x(σ) for all σ ∈ Σ, and the third inequality follows from p(σ) ≥ p(σ) for

all σ ∈ Σ. Next, note that min{Supp(θ̃|σ)} 6= p∗ implies that we are in one of the

following cases. Either p∗ 6= p(σ) or p∗ = p(σ) 6= min{Supp(θ̃|σ)} and t1 − t0 > p(σ).

In the first case, the fourth inequality of (12) is strict. In the second case, the second

inequality of (12) is strict if x(σ) > x(σ) for a positive mass of signal realizations. It

remains to show that there is a strict inequality in (12) for the case where p(σ) = p∗
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and x(σ) = x(σ) for almost all signal realizations. If x(σ) < F (p∗), the fourth

inequality is strict. Finally, the case p(σ) = p∗ and x(σ) = x(σ) = F (p∗) is ruled out

by condition iii).

Proof of Corollary 4

Consider an information structure with additive noise. Note that

G(p|σ) = Pr(θ̃ ≤ p|σ) = Pr(ε̃ ≤ p− σ|σ) = Z(p− σ).

The problem maxp(a− p)Z(p− σ) has the first-order condition

a− p− Z(p− σ)

z(p− σ)
≥ 0.

By logconcavity of Z(ε), the left-hand side is decreasing in p and increasing in σ. Thus,

pa(σ) is increasing in σ. Next, consider the equivalent problem maxx(a−σ−Z−1(x))x

with the first-order condition

a− σ − Z−1(x)− xZ−1′(x) ≥ 0.

The left-hand side is decreasing in σ. As

d

dx

(
Z−1(x) + xZ−1′(x)

)
=

1

z(Z−1(x))

(
2− z′(Z−1(x))x

z(Z−1(x))2

)
≥ 0⇔ 2 ≥ z′(ε)Z(ε)

z(ε)2
,

logconcavity of Z(ε) implies that xa(σ) is decreasing. Thus, condition i) of Proposi-

tion 6 is satisfied. Next, minSupp{G(p|σ)} 6= p∗ ⇔ σ− ε 6= p∗ implies that condition

ii) is satisfied. Finally, note that p∗ ∈ (θ, θ) implies that some of the first-order condi-

tions above are satisfied with equality. Logconcavity of Z(ε) then implies that xa(σ)

is strictly decreasing whenever xa(σ) ∈ (0, 1). Thus, condition iii) of Proposition 6 is

satisfied.

Consider a partitional information structure. Note that

G(p|σ) =
F (p)− F (l(σ))

F (h(σ))− F (l(σ))
.
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The problem maxp(a− p)(F (p)− F (l(σ))) has the first-order condition

a− p− F (p)− F (l(σ))

f(p)
≥ 0.

By logconcavity of F (θ), the left-hand side is decreasing in p and increasing in σ.

Thus, pa(σ) is increasing in σ. The problem above can be rewritten as

max
x

(
a− F−1(F (l(σ)) + (F (h(σ))− F (l(σ)))x)

)
x.

For y = F (l(σ)) + (F (h(σ))− F (l(σ))x, the first-order condition is given by

a− F−1(y)− F−1′(y)(F (h(σ))− F (l(σ)))x ≥ 0. (13)

First, I show that the left-hand side is increasing in σ. If F (h(σ)) − F (l(σ)) is

increasing in σ, this holds if F−1(y) +F−1′(y)(F (h(σ))−F (l(σ)))x is increasing in y

as y = F (l(σ)) + (F (h(σ))− F (l(σ))x is increasing in σ. Note that

d

dy

(
F−1(y) + F−1′(y)(F (h(σ))− F (l(σ)))x

)
≥ 0

⇔ 1

f(F−1(y))
− f ′(F−1(y))(F (h(σ))− F (l(σ)))x

f(F−1(y))3
≥ 0.

Using θ = F−1(y), this is equivalent to 1 − f ′(θ)(F (θ)−F (l(σ))
f(θ)2

≥ 0 which follows from

logconcavity of F (θ). Second, I show that the left-hand side of (13) is increasing in

x. Differentiating the left-hand side with respect to x gives

2F−1′(y) + F−1′′(y)m(σ)x ≥ 0

for y = F (l(σ)) + (F (h(σ)) − F (l(σ))x. This condition can be rewritten as 2 −
f ′(θ)(F (θ)−F (l(σ))

f(θ)2
≥ 0 which follows from logconcavity of F (θ). Thus, condition i) is

satisfied. Next, l(σ) 6= p∗ and h(σ) 6= p∗,∀σ ∈ Σ implies condition ii) of Proposition

6. Finally, p∗ ∈ (θ, θ) implies that the first-order conditions above are satisfied with

equality for some signal realizations. Log-concavity of F (θ) implies that xa(σ) < 1

for some signal realizations and that xa(σ) is strictly decreasing whenever xa(σ) ∈
(0, 1).

61



Proof of Corollary 5

Consider a grand contract that is feasible under delegation and ex-ante collusion-

proof. Let x be the ex-ante production probability. Point ii) of Lemma 2 implies

that there exists a signal σ ∈ Σ with t1A(σ) ≥ θ(x). Together with point v) of Lemma

2, this implies t1 ≥ θ(x). Ex-ante collusion-proofness implies t0 ≥ 0. Thus, P ’s payoff

satisfies x(v − t1)− (1− x)t0 ≤ x(v − θ(x)) ≤ maxx x(v − θ(x)) = W .
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