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ABSTRACT  

 

Tip-enhanced Raman spectroscopy is a powerful tool to investigate chemical composition, for 

obtaining molecular information, and for recording images with a spatial resolution on the 

nanometer scale. However, it typically has been limited to a fixed excitation wavelength. We 

demonstrate excitation-dependent hyperspectral imaging by implementing a wavelength tunable 

laser to our TERS setup. Varying the excitation wavelength during TERS experiments is a key to 

perform spatially resolved resonant Raman scattering (RRS) with nanometer resolution, which 

enables mapping of transition centers and to study for example the quantum properties of electrons 

and phonons. To present the application potential and to verify the setup, we recorded excitation-

dependent hyperspectral nanoimages of a densely packed film of carbon nanotubes (CNTs) on an 

Au surface and use the spectral position and intensity of the radial breathing modes for a unique 

assignment of the CNTs. We succeeded in identifying and imaging at least nine different tube 

species. The nanoimages revealed the exact position and the distribution of certain CNTs inside 

the film. e-TERS will have manifold application in nanoimaging, for chemical analysis and 

electronic studies on the nanometer scale, making it highly interesting in fields ranging from 

biomedicine and chemistry to material science. 
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INTRODUCTION 

Imaging far below the diffraction limit of light is of critical importance in many scientific 

disciplines, as it enables the visualization of assemblies of nanoobjects such as individual 

nanotubes, nanowires, viruses, bacteria, DNA, and even single molecules1-8. A powerful technique 

for optical nanoimaging is tip-enhanced Raman spectroscopy (TERS) that is moreover fingerprint 

type and label free9-13. TERS routinely provides information on the topography and chemical 

composition, together with optical images, with a spatial resolution of a few nanometers14-17. 

Prominent examples for nanoimaging and chemical analysis by TERS include the visualization of 

single carbon nanotubes (CNT’s), defects in graphene, and single strands of RNA making TERS 

an invaluable tool in chemistry, biology and physics among others10, 18-23.  

 

TERS is based on the illumination of a sharp metallic atomic force microscopy (AFM) or scanning 

tunnel microscope (STM) tip with light and recording Raman spectra24-26. The incoming light 

excites localized surface plasmons (LSPs) in the tip and often also in the substrate27-30. The LSPs 

generate a strongly localized electromagnetic (EM) field (near-field)10, 18, 21, 31, which has two 

functions in TERS. First, it locally enhances the incoming and the Raman scattered light by several 

orders of magnitude. Second, depending on the tip properties, it is spatially restricted to a few 

nanometers, and leads to a localized excitation of the sample. By recording tip-enhanced Raman 

spectra, and plotting their intensity as a function of tip position, TERS enables nanoimaging with 

a spatial resolution below 10 nm6, 17, 25. The absolute enhancement in TERS and its sensitivity 

strongly depends on the morphology and material composition of the exciting tip27, 32. By changing 

the material or the geometry of the tip, it is possible to tailor the EM near-field and maximize the 

sensitivity of TERS27, 33. Optimized TERS setups may exhibit an enhancement of 1011 in the 

intensity of the Raman signal, enabling the investigation and visualization of single molecules15, 

25, 29, 34. 

 

Despite the great success of TERS for nanoimaging, common TERS experiments were performed 

at, and optimized for, one particular excitation wavelength14, 25, 35. This guarantees extremely high 

enhancement of the Raman intensity and a huge sensitivity32-33. The major drawback is that fixed 

single line excitation prevents performing excitation-dependent TERS. Tuning the excitation 

wavelength during TERS will enable spatially resolved resonant Raman scattering (RRS), and a 



 3 

mapping of the electronic and optical transitions of samples with a lateral resolution down to few 

nanometers36-40. This will allow the nanoimaging of optical transition energies and will give in 

addition to the chemical and vibrational information obtained by TERS also insight into the optical 

properties of a variety of samples.  

  

Here we introduce excitation tunable TERS (e-TERS), an advanced technique that extends TERS 

with tunable excitation by applying a continuously tunable laser source. In e-TERS, hyperspectral 

TERS maps are recorded for the same area on the sample with various excitation wavelength. To 

enable the tunable excitation, we equipped our TERS setup with a fully tunable optic parametric 

oscillation (OPO) laser (spectral coverage of 450 – 650 nm in the visible). As a first application 

and for validating e-TERS, we obtain excitation energy-dependent nanoimages of a large film of 

carbon nanotubes (CNTs) on a gold surface. By recording spatial maps of the tip-enhanced radial 

breathing modes (RBMs) at different excitation wavelengths, we demonstrate nanoimaging and 

the unique assignment of different CNT species inside the film, in which the tubes are randomly 

distributed. We obtain hyperspectral nanoimages of nine different CNT species in a 100 nm × 100 

nm area. Additionally, we record a large high resolution hyperspectral nanoimage of a (7,5) tube 

that is located inside a 2 µm  x 2 µm sample area and has a length of approximately 1 µm. We 

used PtIr-coated tips for the e-TERS experiments in gap mode TERS configuration and 

demonstrate experimentally that they guarantee tip-enhancement for a broad spectral excitation 

region ranging from 532 nm to 650 nm. We support this observation by numerical simulations of 

the field enhancement generated by the metallic tip.  
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METHODS 

 

 

Figure 1 Scheme of the hyperspectral TERS setup. As a source of excitation energy, a fully tunable OPO 

laser is connected to a Horiba LabRam Raman spectrometer. The laser beam is guided through a beam 

splitter and focused by a 20x objective onto the tip apex of an AFM probe. The backscattered light is again 

collected by the objective. Raman spectra are recorded by guiding the tip-enhanced Raman scattered light 

of the sample via an edge filter into a grating spectrometer.  

 

Similar to conventional TERS setups, our e-TERS setup consists of three parts (Fig. 1): an atomic 

force microscope, a Raman spectrometer and a laser excitation source. As a basis for the e-TERS 

we used a Park scientific AFM and a Horiba Jobin Yvon LabRam HR500 spectrometer, operating 

in side illumination mode and equipped with a 633 nm HeNe laser and a 600 gr/mm grating. In 

the setup, the laser light is guided to a beam splitter and is reflected to the Horiba TERS extension, 

which is coupled to the Park AFM. A 20x objective focuses the beam onto the AFM tip and collects 

the backscattered light. The backscattered light is guided through the beam splitter. To suppress 

Rayleigh scattering and to be able to vary the excitation wavelength, we replaced the 633 nm single 

line notch filter of the LabRam by an exchangeable edge filter. A lens focuses the light into the 

spectrometer and finally on an Andor iDUS 416 Si charged coupled device (CCD).  

 

To realize the e-TERS setup we replaced the HeNe with a C-WAVE laser (Hübner Photonics), i.e. 

a continuous-wave, wavelength-tunable OPO laser as shown in Fig. 1. The excitation wavelength 
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provided by the C-Wave laser can be tuned quasi continuously from 450 nm to 650 nm in the 

visible, and from 900 to 1300 nm in the IR excitation region. The main advantage of the C-Wave 

compared to many other wavelength-tunable systems is the pointing stability of the laser beam; 

after changing the excitation wavelength the position of the laser spot remained constant on the 

tip. No realignment of the beam path was required. The laser had only to be refocused slightly by 

the 20x objective allowing for fast measurements at multiple wavelengths.  

 

We chose to work in non-contact (i.e. tapping) mode, where the tip oscillates at its mechanical 

resonance frequency. Non-contact mode leads to lower tip-enhancement compared to contact 

mode26, resulting in lower Raman intensity during the TERS experiments, but avoids distortion of 

the samples. Conventional TERS setups work in contact mode leading to very high enhancement 

(up to 1010)15, 41, but at the great risk of distorting, manipulating, or even destroying the sample by 

the AFM tip42-44. For example, we found that we moved CNTs and picked them up when working 

in contact mode. We also decided to use gap mode TERS, where the metallic tip is located above 

a gold substrate, yielding to higher enhancement factors34.  

 

During all TERS experiments we kept the laser power at 300 µW. In order to record nanoimages 

we first record a 2 × 2 μm2 topography image of the sample by the Park AFM. We chose an 

100 × 100 nm2 area inside the topography that is close to distinctive points (scratches or holes) 

and thus could be easily recognized. Inside the probing area, we measured at each position of the 

tip a TER spectrum. For each TER spectrum the acquisition time was 3s. The distance between 

two tip positions, where we recorded a TER spectrum, was 10 nm in x and y direction. After 

changing the excitation energy, we again recorded a 2 × 2 μm2 topography image and identified 

the probing area. This allowed us to minimize effects of sample drift and to ensure that the 

nanoimages belongs to the same probing area. Furthermore, we recorded a large nanoimage with 

a size of 0.55 × 0.14 μm2. The distance between two tip positions was 5 nm. The acquisition time 

was kept at 3 s. The nanoimages presented in Fig. 4, 5 and 6, show the TER intensity as a function 

of tip position in color fill contour plots. The intensity pixel images (where each pixel correspond 

to one particular tip position and one TER intensity) can be found in the supporting information 

(Fig. S5 and S6).  
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For the experiments, we used commercially available single-wall CNTs from SouthWest 

Nanotechnologies (batch no. 76), which were produced by a CoMoCat catalytic CVD process. The 

CNTs are dispersed in an aqueous solution with an initial nanotube concentration of 0.1 g/L. For 

unbundling the tubes 1 wt% SDS was added and the solution was tip-sonicated at 50 W for 1 h, 

followed by a 1h centrifugation at 31000 g and 25°C. The supernatant was dropped onto a 

commercial available gold substrate from Georg Albert PVD – Beschichtungen. The solution 

comprises a wide variety of different tube species, with varying diameter. After water evaporation 

the CNTs form a large volume film of CoMoCats randomly distributed over the Au substrate (Fig 

3b). 

 

Before the tubes were brought onto the Au surface, we characterized the CNT solution by 

photoluminescence excitation spectroscopy. The PLE experiments were done with a Horiba Jobin 

Yvon Fluorolog(c)-3 spectrofluorometer, equipped with an InGaAs detector (Symphony, Horiba).  

Using PLE, we identified which CNTs are in the solution by plotting the second optical transition 

of the CNTs (excitation energy) versus the first transition energy (emission energy)45. The 

resulting PLE map is shown in Fig. 3a. From the map we determined several emission maxima at 

particular excitation wavelengths. By comparing the appearing maxima with literature45-46, we 

identified at least 13 different semiconducting tubes, which are marked in Fig. 3a. We can also 

estimate the optical transition wavelength of certain tube species from the excitation wavelength 

in the PLE map. 

 

Scanning electron microscopy (SEM) was performed using a Zeiss Merlin KMAT microscope 

equipped with a Gemini II column that allows for high-performance imaging at low acceleration 

voltages. In our case, an acceleration voltage of only 600 V was required to resolve the nanometer 

sized topography of the CNT and to avoid distortions in the images. A small imaging current of 

70 pA was used to minimize the electron beam spot size. To achieve a sufficient signal-to-noise 

ratio under these beam conditions the working distance was set to 1.8 mm using the InLens detector 

for image acquisition. The diameters of the single-walled CNT are at the detection limit of 

scanning electron microscopy. While CNTs with diameters above 5 nm could be well resolved, 

CNTs of smaller diameters cannot be safely identified as they merge with the background signal. 
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Hence, in contrast to the e-TERS technique that works independently from the CNT topography, 

a significant amount of CNTs remains invisible in SEM imaging. 

 

The finite-difference time-domain simulations were conducted with the commercial software 

package, Lumerical FDTD Solutions. The simulation set up is similar to that in our previous 

work26. The tip was modeled as a Si cone with a 5 nm apex radius and 32° cone angle, coated with 

a 25 nm thick layer of Pt or Au. We neglected the Ir in the simulations, as the coating of the PtIr 

tip consisted of 95% Pt and only 5% Ir. The materials were modelled by fitting experimental data 

of the dielectric functions from Ref. 50 for Au and from Ref. 51 for Pt and Si47-48. Adaptive 

meshing was used to discretize the space close to the tip and substrate with a 0.5 nm cell diameter 

in the gap. The distance between tip and gold surface was 4 nm. The tip was illuminated by a p-

polarized plane wave at an incidence angle of 30° relative to the gold surface. The field 

enhancement was calculated as the absolute value of the local electric field amplitude normalized 

to the incident electric field amplitude at a position in the center of the gap between tip and 

substrate. 

 

RESULTS AND DISCUSSIONS 

 

 

 

Figure 2a Principle of e-TERS. The incoming laser light illuminates the metallic tip and excites a near-field 

between tip and substrate. The strongly localized near-field drives the Raman process, i.e. it stimulates the 

sample and enhances the incoming and Raman scattered light.  b Finite-difference time-domain simulation 

of the wavelength dependent field enhancement (Eloc/E0)4 between a PtIr-coated tip (red) and an Au tip 

(blue) above an Au substrate with 4 nm distance. 
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A main challenge for e-TERS was to find a tip that allows exciting a near-field between the tip 

and the substrate for a broad spectral excitation range in the visible10, 18, 30, 49. Realizing e-TERS is 

impossible if the tip has to be replaced after a change of the excitation wavelength.  We suggest 

that PtIr-coated AFM tips are excellent candidates for e-TERS. As demonstrated in our previous 

work26, in gap mode configuration with an Au substrate (Fig. 2a), PtIr-coated AFM tips provide 

excellent TERS enhancement. We calculated the excitation wavelength dependent field 

enhancement defined as ratio between the maximum near-field amplitude and the illuminating 

field amplitude Emax/Ein using FDTD simulations. The intensity of the tip-enhanced Raman 

scattered light scales with the fourth power of the field enhancement34. The calculated profile in 

Fig. 2b (red curve) demonstrates that the PtIr-coated AFM tip provides field enhancement over a 

broad wavelength range from 510 nm to 650 nm. We also calculated the field enhancement profile 

of a Au tip above a Au substrate. Indeed, the Au tip yields higher peak enhancement, its wavelength 

dependent range shown in Fig. 2b (blue curve) is narrower. For wavelengths below 550 nm the Pt 

tip yields larger field enhancement than the Au tip. We support this finding by experimental 

observations:  during the experiments, we were never able to realize TERS by using Au tips and 

an excitation wavelength below 550 nm (see: Supporting Information Fig. S4). Au tips are to be 

used for highest field enhancement, e.g., for single molecule detection. In contrast, PtIr-coated tips 

are the optimum choice for e-TERS experiments, where the excitation wavelength is varied over 

a broad spectral range.  

 

To demonstrate the performance of e-TERS we used the setup in Fig. 1 to characterize and 

nanoimage the transition energies of an ensemble of CNTs placed on an Au substrate. We selected 

CNT films as an ideal test bed to map optical transitions and local vibrations via resonant e-TERS. 

The film is formed by CNTs of different species (chiralities) with varying electronic, optical and 

vibrational properties50. The chirality of a CNT is characterized by the tuple (n,m) that quantifies 

the  graphene lattice vector 𝑐 = 𝑛 ⋅ 𝑎1 + 𝑚 ⋅ 𝑎2 around the CNT circumference CNT50-51,  𝑎1 and 

𝑎2 form the unit cell of graphene. Some CNTs are metallic, others have a band gap in the infrared 

and visible. In photoluminescence excitation (PLE) experiments (see Methods), we identify at least 

13 different semiconducting tube species with different optical transitions which are marked by 

their chiral indices in the PLE map in Fig 3a. Suspended CNTs were dropped on an Au substrate 

where they formed a closed film. It consisted of randomly aligned and distributed CNTs and CNT 
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bundles. An exemplary scanning electron microscopy (SEM) image of the sample is shown in Fig. 

3b. In contrast to spectroscopy techniques, SEM can only visualize objects of sufficiently large 

sizes. In our case, only bundles of CNTs and separated CNTs with diameters larger than 5 nm may 

be identified. 

 

Figure 3a Photoluminescence excitation map of CNTs dispersed in an aqueous solution. The CNT species 

are indicated by the chiral indices. b Exemplary SEM image of the CNTs placed on an Au surface, c Scheme 

of the CNT ensemble that is stimulated by the near –field generated between tip and substrate (red dot) and 

the excitation laser (large red circle). d Composed near- (blue) and far-field Raman spectrum (black) of the 

characteristic G band of the CNTs. 

 

In resonant e-TERS we want to combine the nanometer spatial resolution of TERS and the 

possibility to determine optical transition of RRS. RRS is a well-established tool to identify 

particular CNT species that are present in a CNT ensemble.  For a unique assignment of the CNTs 

in RRS the fingerprint-type RBMs of particular CNTs are recorded at different excitation 

wavelengths46, 52-53. The RBMs are only excited when the incoming light matches the optical 

transition of the CNTs, i.e., if the excitation wavelength is in resonance with an optical transition 

of a particular chirality. The RBM modes appear in the Raman spectrum in the low frequency 

range between 150 cm-1 and 350 cm-1 53-54. Different tube species have different optical transition 

energies. By knowing the excitation wavelength and the frequency of the RBM, we are able to 
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assign a CNT species that is present inside an ensemble or a film40, 46, 51, 53-54. Conventional RRS 

is restricted to the diffraction limit of light. Resonant e-TERS overcomes this limit and will enable 

nanoimaging of CNTs, mapping of their optical transitions, and allow a unique assignment of 

chiralities on the level of an individual CNT.  

 

For the alignment of the e-TERS setup, we approached the PtIr-coated tip to the CNT film and 

recorded a Raman spectrum of the G band, see Fig. 3d blue line. The spectrum is composed of the 

tip-enhanced Raman (TER) spectrum belonging to the volume stimulated by the EM near-field 

(red dot in Fig. 3c) and the conventional Raman scattering from all illuminated CNTs (Fig. 3c 

large orange disk). The TER spectrum originates typically from an area of a few nanometers, 

depending only on the size of the EM near-field hot spot generated between tip and substrate18. As 

can be seen in the sketch in Fig 3c the scattering volume of the conventional Raman signal is orders 

of magnitude larger than the scattering volume excited by the EM near-field generated at the tip 

apex and will dominate the total Raman signal. To verify that tip-enhanced Raman scattering is 

realized, we retracted the tip and, again, recorded a spectrum with decreased intensity (Fig. 3d 

black spectrum).  

 

Figure 4a Topography image of a 2 x 2 µm CNT film. The position of the (7,5) in panel c is indicated by 

the white box. b Composed (blue), far-field (black) and TER spectra (red) of radial breathing modes of the 

(10,3), (7,6) and (7,5) species. c Nanoimage of the (7,5) CNT, obtained by plotting the tip enhanced RBM 

intensity as a function of tip position. 
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After optimizing the TER intensity, we used the AFM to take the topography image in Fig. 4a. 

The topography image provides no information on the distribution of CNTs in the film, because 

the film is densely packed and the tip apex is too large to visualize single CNTs inside the film. 

We will now demonstrate how to visualize CNTs in the film via e-TERS. We start with 633 nm 

excitation. It is in resonance with (7,5), (7,6) and (10,3) CNTs.  

 

To image particular CNT species by applying resonant e-TERS first a composed Raman spectrum 

of the RBM is recorded by placing the PtIr-coated tip at a particular position above the CNT film. 

The resulting spectrum in Fig. 4b (blue) consists of the RBM peaks of the (10,3), (7,6) and (7,5) 

CNTs51, 53-54. We retracted the tip and recorded a Raman spectrum (Fig. 4b, black) without the 

TER contribution to the signal (far-field spectrum). The (7,5) RBM mode decreased in intensity 

with the retraction of the tip, whereas the (7,6) and (10,3) RBMs remained unchanged. Subtracting 

the far-field spectrum from the composed spectrum, we obtained the pure TER spectrum, see Fig. 

4b (red). From the TER spectrum we identify the tube species that is located below the tip as the 

(7,5) CNT.  To map the (7,5) CNT with the e-TERS, we repeat the procedure as a function of (x,y) 

tip position and determined the TER (7,5) intensity. In Fig. 4c we show the exact position of the 

(7,5) CNT in a 2 x 2 µm2 area consisting of randomly distributed CNTs. The (7,5) CNT is around 

800 nm long and is bent in a step-like shape in the (x,y) plane.  

 

In the far-field Raman spectrum shown in Fig. 4b we observed besides the (7,5) RBM two more 

RBMs belonging to the (7,6) and (10,3) CNTs  (Fig. 5a). In a second run we scan another area of 

the CNT film with a size of a 100 nm × 100 nm with the e-TERS with a step size of 10 nm  in x 

and y. We obtained, in the same way as described above, the TER RBM spectra of the (7,5), (7,6) 

and (10,3) CNTs in order to image them (Fig. 5b). In Fig. 5c we show an image of the (7,6) CNT 

by plotting its TER RBM intensity as a function of the tip position. We repeated this for the other 

two RBMs and nanoimaged the (7,5) and (10,3) CNTs.  By overlapping the (7,5), (7,6) and (10,3) 

nanoimages we identify their combined positions in the scanning area. As can be seen in Fig. 7d 

the (7,5) tube lies in the middle of the area. The (7,6) tube is strongly bent and meets the (7,5) CNT 

at the bottom part of Fig. 7d. The (10,3) CNT is located on the left. Right below the (10,3) CNT, 

another (7,5) tube is located. Using the 633 nm excitation, we nicely visualize three CNT species.  
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Figure 5a Composed spectra recorded at three different positions of the AFM tip. b pure TER spectra of 

three different RBMs, obtained by subtracting the far-field spectrum from the composed spectra. The tube 

species were assigned by the Raman shift of the appearing RBM. c Nanoimage of the (7,6) CNT. 

 

From the PLE experiment (Fig. 3a) we know that more CNT species are present in the solution 

and the CNT film. These tubes have different optical transition energies.  

 

Figure 6 Kataura plot showing the excitation energy as a function of CNT diameter enabling to identify the 

accessible CNTs in e-TERS with the four chosen excitation wavelengths (grey markings).  

 

In a conventional TERS setup, it would be impossible to image and identify other CNT species, 

as these setups use a single excitation wavelength14, 25, 35. Our e-TERS has the huge advantage that 

the excitation wavelength can be varied quasi-continuously.  
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Figure 7 Nanoimages of the CNTs recorded with excitation wavelengths of (a) 532 nm, (b) 568 nm, (c) 600 

nm and (d) 633 nm. The TER intensity of the RBMs is plotted as a function of tip position. The tube species 

were identified by their RBMs and labeled by the chiral indices in the nanoimages. 

 

TABLE 1 Summary of all observed RBM frequencies and their assignment to CNT species. The diameter 

and optical transition energies of the CNTs energies are provided. They were obtained from Ref. [45]. The 

CNTs are grouped in metallic and semiconducting tubes.   

Excitation  

(nm) 

tube 

species 

d(Å) ωRBM 

(cm-1) 

Eii 

(eV) 

properties 

600 (9,9) 12.1 195.3 2.020 metallic 

600 (13,1) 10.60 220.3 2.057 metallic 

600 (12,0) 9.40 244.9 2.180 metallic 

600 (11,1) 9.03 256.0 2.031 semiconducting 

532 (9,2) 7.95 288.0 2.280 semiconducting 

568 (6,5) 7.47 308.6 2.180 semiconducting 

633 (10,3) 9.24 252.1 1.945 semiconducting 

633 (7,6) 8.83 264.2 1.909 semiconducting 

633 (7,5) 8.18 283.3 1.915 semiconducting 

 

We now change the excitation to bring other species in resonance and nanoimage them. To 

continue the examination of the CNT film we chose along with 633 nm as excitation wavelengths, 

532, 568, and 600 nm, which gives us access to further tube species, see Fig. 6, grey markings. 
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For hyperspectral nanoimaging by e-TERS we recorded again, at each position of the tip, a 

composed Raman spectra of the RBM and subtracted the far-field Raman spectrum. Afterwards 

we fitted the TER spectrum to identify the RBM intensities, which yield the hyperspectral 

nanoimages. We observed a total of nine CNT species and recorded their positions in the scanning 

area, see Table 1 and Fig. 7. At 633 nm, we imaged three CNT species (Fig. 7d). At 568 nm the 

(6,5) CNT was observed (Fig. 7b). Using 600 nm wavelength we imaged the metallic (13,1), (9,9) 

and (12,0) CNTs (Fig. 7c), which were invisible in the PLE map, and the semiconducting (11,1) 

CNT. The option to detect metallic and semiconducting CNTs simultaneously is unique to RRS, 

since metallic tubes emit no luminescence. Impressively, we were also able to use the 532 nm 

excitation wavelength for TERS without changing the AFM tip. We obtained the hyperspectral 

image of the (9,2) CNT in Fig. 7a). The nanoimages in Fig. 7 demonstrate the ability of e-TERS 

to visualize the shape and orientation of different CNT species even for overlapping CNT 

positions.  

 

Not every CNT species that was resonant with the exciting lasers appeared in our scanning area. 

From the PLE map in Fig 3a we know that (8,4) CNTs are also present in the solution with an 

optical resonance energy at 590 nm. We indeed observed the RBM of the (8,4) tube in the far-field 

Raman spectrum at an excitation wavelength of 600 nm, but it was never present in the TER spectra 

(see: Supplementary Information, Fig. S3). This means that (8,4) CNTs are in the CNT film, but 

not inside the 100 nm x 100 nm probe area. This shows that we are able to find out, whether a 

CNT is present inside the probe area and, furthermore, to estimate the CNT distribution from the 

TER RBM spectra as a function of excitation wavelength and tip position.  

 

We envision manifold applications of e-TERS in various fields of science, ranging from material 

science, chemistry, physics and biology. e-TERS offers the possibility to identify and image 

optical transitions as demonstrated on the CNT film. This opens a new possibility to study 

electronic and vibronic properties with nanometer spatial resolution, making e-TERS a powerful 

analysis tool for many materials, ranging from molecules and macromolecules to different 1D and 

2D samples. By applying e-TERS for example on a macromolecule it will be possible to map its 

optical transition centers and localized electronic states.  Furthermore, e-TERS will enable 

nanoimaging, nanoscale-resolved chemical and compositional analysis and quality control. It 
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detects and images localized chemical interactions and chemical bonds as well as defects and 

strain, which will be interesting for examining 2D materials. 

 

CONCLUSION 

In conclusion, we introduce a new nanoimaging tool for recording spatially resolved excitation 

dependent hyperspectral images by applying a fully tunable visible laser to a TERS setup, namely 

the e-TERS. By plotting the TER intensity as a function of tip position and excitation wavelength, 

our setup enables us to perform spatially resolved RRS with a resolution on the nanometer scale. 

We demonstrate the capability of e-TERS by studying an ensemble of CNTs placed on an Au 

surface. Using four different excitation wavelengths we identified nine metallic and 

semiconducting CNTs in a 100 nm x 100 nm sample area and determine their distribution and 

orientation by recording hyperspectral nanoimages. We also recorded a high resolution image of 

the (7,5) CNT in a 2 x 2 µm sample area following its length almost over a micron. All e-TERS 

experiments were conducted with PtIr-coated tips above a Au surface, which shows that this tip 

materials are an interesting alternative to gold and silver as commonly used in TERS. We 

demonstrated experimentally and by FDTD simulations that the PtIr-coated tips can be used for 

TERS at different excitation wavelengths in a broad spectral region of at least from 530 nm to 650 

nm. 
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SUPPORTING INFORMATION 

Tip-enhanced Raman spectra of RBMs at different excitation wavelengths; Tip-enhanced Raman 

spectra of the G band at 532 nm excitation wavelength and with Au and Pt AFM tips; e-TERS 

nanoimage of the (7,5) nanotube; e-TERS nanoimages recorded at different excitation 

wavelengths; SEM images of the PtIr-coated AFM tips 
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