6 Kristallographischer Anhang

Inhaltsverzeichnis

6	Kris	tallographischer Anhang	1
	6.1	$[\operatorname{ReOCl}_3(\operatorname{H}_2\operatorname{L}^1)] \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	5
	6.2	$[{\rm ReOCl}_3({\rm H}_2{\rm L}^1)({\rm OMe})] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	9
	6.3	$[(\mathrm{ReOCl}_2\{\mathrm{H}_2\mathrm{L}^1\})_2\mathrm{O}] \cdot 1.5\mathrm{CH}_3\mathrm{CN} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	13
	6.4	$[(\operatorname{ReOCl}{H_2L^1})_3O_3] \cdot 2\operatorname{CH}_2\operatorname{Cl}_2 \cdot 2\operatorname{H}_2O \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	19
	6.5	$[\mathrm{ReO}_2(\mathrm{H}_2\mathrm{L}^1)_2]\mathrm{Cl}\cdot 0.75~\mathrm{MeOH}~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots~\ldots$	25
	6.6	$[\operatorname{ReO}_2(\operatorname{H}_2\operatorname{L}^1)_2]\operatorname{Cl}, [\operatorname{ReO}_2(\operatorname{H}_2\operatorname{L}^1)(\operatorname{H}_2\operatorname{L}^{1b})]\operatorname{Cl} \cdot 2.5 \operatorname{CH}_2\operatorname{Cl}_2 \ldots \ldots \ldots \ldots \ldots \ldots$	33
	6.7	$[\operatorname{ReNCl}_2(\operatorname{PPh}_3)(\operatorname{H}_2\operatorname{L}^1)] \cdot 0.5 \operatorname{CH}_2\operatorname{Cl}_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	41
	6.8	$[\operatorname{ReNCl}(H_2L^1)_2]Cl \ldots \ldots$	45
	6.9	$[\mathrm{Pd}(\mathrm{HL}^1)_2]\mathrm{Cl}_2 \cdot 0.25\mathrm{MeOH} \cdot 0.5\mathrm{CH}_2\mathrm{Cl}_2 \cdot 0.75\mathrm{H}_2\mathrm{O} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	49
	6.10	$[\operatorname{RuCl}_2(\operatorname{CH}_3\operatorname{CN})(\operatorname{H}_2\operatorname{L}^1)(\operatorname{PPh}_3)]\cdot\operatorname{CHCl}_3\ldots$	57
	6.11	$[RuCl_2(PPh_3)(H_2L^1)]_2 \cdot 0.5 CH_2Cl_2 \ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots$	61
	6.12	$[\operatorname{RuCl}_2(\operatorname{H}_2\operatorname{L}^1)_2] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	67
	6.13	$[\mathrm{RuCl}_2(\mathrm{DMSO})_2(\mathrm{H}_2\mathrm{L}^1)] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	71
	6.14	$[{\rm ReCl}_3({\rm H}_2{\rm L}^2)]\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	75
	6.15	$[\operatorname{ReOCl}_2(\operatorname{L}^{13,Diethyl})] \dots \dots$	81
	6.16	$[\operatorname{ReOCl}_2(\mathcal{L}^{13,Morph})] \cdot 2\operatorname{Aceton} \dots \dots$	85
	6.17	$[\operatorname{ReN}(\mathrm{L}^{13,Diethyl})(\mathrm{PPh}_3)(\mathrm{ReO}_4)] \cdot 0.5 \operatorname{CH}_2\mathrm{Cl}_2 \ldots \ldots$	89
	6.18	$[PdCl(L^{15})] \dots \dots \dots \dots \dots \dots \dots \dots \dots $	95
	6.19	$[PdCl(L^{17})]$	99
	6.20	$[\operatorname{RuCl}_2(\operatorname{PPh}_3)(\operatorname{HL}^{15})] \cdot \operatorname{CH}_2\operatorname{Cl}_2 \dots \dots$	103

6.21	$[\operatorname{ReOCl}_2(\operatorname{HL}^{12})] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	109
6.22	$[\operatorname{ReO}(L^{12})(\operatorname{malt})] \dots \dots \dots \dots \dots \dots \dots \dots \dots $	113
6.23	$[\text{ReO}(\text{HL}^{22})] \cdot 0.5 \text{ Toluol} \dots \dots$	117
6.24	$[\operatorname{ReOCl}{\mu_2-(\operatorname{OL}^3)}\operatorname{ReOCl}_3] \cdot 0.25 \operatorname{CH}_2\operatorname{Cl}_2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	121
6.25	$[\operatorname{ReCl}\{\mu_2\text{-}(O_2L^3)\}(\mu_2\text{-}Cl)(\mu_2\text{-}O)\operatorname{ReCl}_3] \cdot 0.25 \operatorname{CH}_2Cl_2 \ldots \ldots \ldots \ldots \ldots \ldots$	127
6.26	$[\operatorname{ReO}\{\operatorname{OL}_3(\operatorname{OP}, N, N, N, P)\}][\operatorname{ReO}_4] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	133
6.27	$[\operatorname{ReO}\{O_2L_3(\operatorname{OP},\!N,\!N,\!N)\}Cl]\ldots$	139
6.28	$[\operatorname{ReNCl}_2\{\operatorname{H}_2\operatorname{L}^3(\operatorname{P},\operatorname{P})\}] \cdot \operatorname{CH}_2\operatorname{Cl}_2 \ldots \ldots$	145
6.29	$[\mathrm{TcNCl}_2\{\mathrm{H}_2\mathrm{L}^3(\mathrm{P}\!,\!\mathrm{P})\}]\cdot\mathrm{CH}_2\mathrm{Cl}_2\ \ldots\ \ldots\$	151
6.30	$[\mathrm{Ni}\{\mathrm{L}_3(P,\!N,\!N,\!N)\}] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	157
6.31	$[Pd\{H_2L^3(P,P)\}] \cdot MeOH \cdot CH_2Cl_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	161
6.32	$[Pd\{L^3(P,N,N,N)\}] \cdot 0.5 MeOH \cdot CH_2Cl_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	167
6.33	$[CoCl{L3(P,N,N,P)}] \dots \dots$	173
6.34	$[CuCl{H_2L^3(P,P)}] \cdot CH_2Cl_2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	177
6.35	$[Cu{OL3(P,N,N,N,P-O)}] \cdot 0.5 MeOH $	183
6.36	$[Cu{O_2L^3(P-O,N,N,N,P-O)}] \cdot 3 MeOH$	189

6.1 $[\operatorname{ReOCl}_3(\operatorname{H}_2\operatorname{L}^1)]$

Tabelle 6.1: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReOCl}_3({\rm H}_2{\rm L}^1)]$

· / /		
Summenformel	C ₁₉ H ₁₈ NCl ₃ PORe	
M (g/mol)	599.86	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=9.448(1)~{ m \AA}$	$\alpha = 101.64(1)^o$
	${ m b}=9.913(1)~{ m \AA}$	$eta=103.78(1)^o$
	${ m c}=13.075(1)~{ m \AA}$	$\gamma = 114.20(1)^o$
Volumen	$1021.0(2) \text{ Å}^3$	
Ζ	2	
Berechnete Dichte	$1.951~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	6.430 mm^{-1}	
F(000)	576	
Kristallgröße	$0.08 \ge 0.06 \ge 0.06 \ \mathrm{mm^3}$	
Theta-Bereich	$1.70 - 29.24^{o}$	
Indizes	-10 \leq h \leq 12, -13 \leq k \leq 13, -	$17 \le l \le 17$
Zahl der gemessenen Reflexe	11171	
Zahl der unabhängigen Reflexe	5438 [R(int) = 0.0683]	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	236	
Goof	1.129	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0524,wR_2=0.1491$	
R_1 / wR_2 (alle Reflexe)	$R_1=0.0674,wR_2=0.1583$	
Restelektronendichte	1.748 und -1.512 e \cdot $\mathrm{\AA}^{-3}$	
Programm zur Strukturlösung	SHELXS 97 [119]	

	х	У	Z	E(eq)
$\operatorname{Re}(1)$	5297(1)	5687(1)	7334(1)	33(1)
O(10)	6225(10)	7569(9)	8156(7)	46(2)
$\operatorname{Cl}(1)$	3430(3)	3147(3)	5837(2)	37(1)
$\operatorname{Cl}(2)$	5928(4)	4428(4)	8542(2)	50(1)
$\operatorname{Cl}(3)$	7475(3)	5655(3)	6714(2)	43(1)
P(1)	2637(3)	5102(3)	7557(2)	32(1)
C(1)	1425(12)	5359(12)	6352(8)	36(2)
C(11)	2361(13)	6996(12)	6350(8)	36(2)
C(12)	1807(15)	8087(14)	6574(9)	44(2)
C(13)	2674(15)	9605(14)	6579(11)	49(3)
C(14)	4141(17)	10084(14)	6391(11)	50(3)
C(15)	4751(15)	9043(14)	6174(10)	45(2)
C(16)	3863(13)	7519(12)	6137(8)	37(2)
N(1)	4529(11)	6445(10)	5955(7)	38(2)
C(21)	1435(12)	3149(11)	7582(9)	37(2)
C(22)	141(14)	1953(13)	6633(11)	49(3)
C(23)	-727(16)	414(15)	6709(16)	73(5)
C(24)	-220(20)	186(16)	7692(15)	64(4)
C(25)	1027(19)	1357(15)	8589(14)	60(3)
C(26)	1873(15)	2829(13)	8556(10)	44(2)
C(31)	2634(13)	6373(12)	8778(8)	36(2)
C(32)	4041(16)	7603(13)	9599(9)	47(2)
C(33)	3926(19)	8539(15)	10508(10)	56(3)
C(34)	2390(20)	8211(16)	10542(11)	58(3)
C(35)	970(20)	6980(20)	9728(14)	69(4)

Tabelle 6.2: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von [ReOCl₃(H₂L¹)]

C(36) 1	.073(15)	6048(15)	8853(10)	51(3)
---------	----------	----------	----------	-------

Abbildung 6.1: Ellipsoiddarstellung von $[ReOCl_3(H_2L^1)]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

$6.2 \quad [\mathrm{ReOCl}_3(\mathrm{H}_2\mathrm{L}^1)(\mathrm{OMe})]$

Tabelle 6.3: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReOCl}_3({\rm H}_2{\rm L}^1)({\rm OMe})]$

Summenformel	$C_{20}H_{21}NCl_2PO_2Re$	
M (g/mol)	595.45	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/c$	
Elementarzelle	${ m a}=12.769(2)~{ m \AA}$	$lpha=90^o$
	${ m b}=9.936(1)~{ m \AA}$	$eta=92.77(1)^o$
	c = 16.646(2) Å	$\gamma=90^o$
Volumen	2024.5(5) Å ³	
Ζ	4	
Berechnete Dichte	$1.954~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	6.361 mm^{-1}	
F(000)	1152	
Kristallgröße	$0.10 \ge 0.10 \ge 0.02 \ \mathrm{mm^3}$	
Theta-Bereich	2.45 - 26.67°	
Indizes	$-16 \le h \le 13, -11 \le k \le 12, -2$	$21 \le l \le 21$
Zahl der gemessenen Reflexe	10775	
Zahl der unabhängigen Reflexe	4389 [R(int) = 0.1075]	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	245	
Goof	0.857	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0517,wR_2=0.1141$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1311,wR_2=0.1764$	
Restelektronendichte	1.539 und -2.597 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	х	У	Z	E(eq)
$\operatorname{Re}(1)$	1883(1)	903(1)	904(1)	36(1)
O(10)	1056(10)	-273(11)	447(6)	43(3)
$\operatorname{Cl}(1)$	1218(4)	403(5)	2243(2)	54(1)
$\operatorname{Cl}(2)$	3317(4)	-634(4)	1137(2)	53(1)
P(1)	2392(4)	1609(4)	-412(2)	36(1)
$\mathrm{C}(1)$	1322(18)	2756(16)	-819(8)	57(6)
C(11)	1328(15)	3992(19)	-246(9)	49(4)
C(12)	1662(16)	5296(17)	-482(10)	48(5)
C(13)	1791(18)	6442(19)	78(11)	62(6)
C(14)	1458(17)	6262(19)	856(10)	56(5)
C(15)	1015(17)	4970(18)	1055(9)	55(5)
C(16)	966(12)	3857(14)	528(8)	34(3)
N(1)	637(12)	2506(14)	790(7)	46(4)
C(21)	2467(13)	175(17)	-1131(9)	39(4)
C(22)	1629(14)	-433(17)	-1452(8)	43(4)
C(23)	1722(17)	-1612(19)	-1975(9)	51(5)
C(24)	2630(20)	-2090(20)	-2162(10)	66(6)
C(25)	3550(20)	-1480(20)	-1824(11)	68(6)
C(26)	3530(17)	-340(19)	-1294(10)	56(5)
C(31)	3564(12)	2572(16)	-507(9)	35(3)
C(32)	4399(13)	2384(17)	39(9)	40(4)
C(33)	5377(16)	3060(20)	-59(11)	58(5)
C(34)	5511(17)	3870(20)	-725(11)	58(5)
C(35)	4690(14)	4090(20)	-1262(10)	56(4)
C(36)	3733(15)	3462(18)	-1156(9)	47(4)

Tabelle 6.4: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von [ReOCl₃(H₂L¹)(OMe)]

O(2)	2636(9)	2354(11)	1376(5)	42(3)
C(2)	3195(19)	3310(20)	1895(11)	67(6)

Abbildung 6.2: Ellipsoiddarstellung von [ReOCl₃(H_2L^1)(OMe)]. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.3 $[(ReOCl_2{H_2L^1})_2O] \cdot 1.5 CH_3CN$

Tabelle 6.5: Kristallographische Daten und Parameter der Strukturrechnung von $[({\rm ReOCl}_2\{{\rm H}_2{\rm L}^1\})_2{\rm O}]\cdot 1.5\,{\rm CH}_3{\rm CN}$

Summenformel	$C_{41}H_{40.5}N_{3.5}Cl_4P_2O_3Re_2$	
M (g/mol)	1206.41	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=11.685(1)~{ m \AA}$	$lpha=98.07(1)^o$
	${ m b}=13.807(1)~{ m \AA}$	$\beta = 108.25(1)^o$
	$ m c = 14.876(1)~{ m \AA}$	$\gamma=91.41(1)^o$
Volumen	2250.7(3) Å ³	
Ζ	2	
Berechnete Dichte	$1.780~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	5.722 mm^{-1}	
F(000)	1166	
Kristallgröße	$0.500 \ge 0.367 \ge 0.300 \text{ mm}^3$	
Theta-Bereich	1.84 - 29.23°	
Indizes	$-16 \le h \le 15, -18 \le k \le 18, -2$	$20 \le l \le 20$
Zahl der gemessenen Reflexe	25302	
Zahl der unabhängigen Reflexe	12017 [R(int) = 0.0640]	
Absorptionskorrektur	Empirisch, DELABS	
Zahl der verfeinerten Parameter	516	
Goof	1.050	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0320,wR_2=0.0811$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.0424,wR_2=0.0929$	
Restelektronendichte	1.479 und -2.235 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	X	У	Z	E(eq)
$\operatorname{Re}(1)$	7389(1)	1691(1)	3086(1)	24(1)
O(10)	8840(3)	1434(2)	3540(2)	32(1)
$\operatorname{Cl}(1)$	7356(1)	1232(1)	1412(1)	35(1)
$\operatorname{Cl}(2)$	6462(1)	143(1)	3025(1)	36(1)
P(1)	7439(1)	2308(1)	4707(1)	25(1)
C(1)	8049(4)	3585(3)	4973(3)	30(1)
C(11)	9236(4)	3661(3)	4767(3)	30(1)
C(12)	10317(4)	3906(3)	5516(4)	35(1)
C(13)	11407(5)	3957(4)	5336(4)	46(1)
C(14)	11434(5)	3760(4)	4408(5)	49(1)
C(15)	10382(4)	3524(4)	3660(4)	40(1)
C(16)	9279(4)	3469(3)	3834(3)	30(1)
N(1)	8177(3)	3153(3)	3052(3)	30(1)
C(21)	8456(4)	1674(3)	5586(3)	30(1)
C(22)	8637(5)	685(4)	5337(4)	38(1)
C(23)	9400(6)	189(5)	6002(4)	50(1)
C(24)	9991(6)	653(5)	6912(5)	55(2)
C(25)	9809(6)	1634(5)	7174(4)	53(1)
C(26)	9048(5)	2137(4)	6521(4)	44(1)
C(31)	6052(4)	2318(3)	5012(3)	29(1)
C(32)	5347(4)	1448(4)	4833(4)	37(1)
C(33)	4330(5)	1415(4)	5122(4)	48(1)
C(34)	4017(5)	2247(5)	5590(4)	48(1)
C(35)	4712(5)	3120(4)	5766(4)	46(1)
C(36)	5729(5)	3155(4)	5475(4)	39(1)

Tabelle 6.6: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[(ReOCl_2{H_2L^1})_2O] \cdot 1.5 CH_3CN$

O(12)	5874(2)	2282(2)	2609(2)	25(1)
$\operatorname{Re}(2)$	4592(1)	3043(1)	2002(1)	24(1)
O(20)	3607(3)	3679(2)	1242(2)	34(1)
$\operatorname{Cl}(3)$	5926(1)	4511(1)	2866(1)	37(1)
$\operatorname{Cl}(4)$	3719(1)	3169(1)	3228(1)	39(1)
P(2)	3431(1)	1537(1)	1117(1)	25(1)
C(2)	4018(4)	1161(3)	124(3)	29(1)
C(41)	4019(4)	1968(3)	-454(3)	30(1)
C(42)	3269(5)	1864(4)	-1393(3)	40(1)
C(43)	3261(6)	2604(5)	-1936(4)	49(1)
C(44)	4006(6)	3460(4)	-1543(4)	50(1)
C(45)	4758(5)	3557(4)	-609(4)	39(1)
C(46)	4778(4)	2820(3)	-64(3)	30(1)
N(2)	5545(3)	2948(3)	923(3)	28(1)
C(51)	1832(4)	1680(3)	591(3)	30(1)
C(52)	1133(5)	1018(4)	-184(4)	43(1)
C(53)	-110(6)	1086(5)	-552(5)	57(2)
C(54)	-646(5)	1823(6)	-129(5)	60(2)
C(55)	37(5)	2489(6)	644(5)	59(2)
C(56)	1289(5)	2422(4)	1010(4)	45(1)
C(61)	3471(4)	464(3)	1696(3)	28(1)
C(62)	3805(5)	-434(3)	1336(4)	36(1)
C(63)	3791(5)	-1248(3)	1774(4)	37(1)
C(64)	3430(5)	-1182(4)	2576(4)	41(1)
C(65)	3074(6)	-299(4)	2934(4)	47(1)
C(66)	3098(5)	519(4)	2506(4)	39(1)
C(87)	1270(12)	5357(10)	2272(9)	55(3)
C(88)	2008(8)	5556(6)	2089(7)	31(2)

	N(89)	3055(8)	5895(6)	1856(7)	44(2)
	C(97)	8601(7)	5916(6)	744(6)	69(2)
	C(98)	8176(6)	5011(5)	961(5)	57(2)
	N(99)	7836(6)	4312(5)	1134(6)	76(2)
-					

Abbildung 6.3: Ellipsoiddarstellung von $[(\text{ReOCl}_2\{\text{H}_2\text{L}^1\})_2\text{O}] \cdot 1.5 \text{ CH}_3\text{CN}$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

$6.4 \quad [(\operatorname{ReOCl}{H_2L^1})_3O_3] \cdot 2\operatorname{CH}_2\operatorname{Cl}_2 \cdot 2\operatorname{H}_2O$

Tabelle 6.7: Kristallographische Daten und Parameter der Strukturrechnung von $[({\rm ReOCl}\{{\rm H}_2{\rm L}^1\})_3{\rm O}_3]\cdot 2\,{\rm CH}_2{\rm Cl}_2\cdot 2\,{\rm H}_2{\rm O}$

$\begin{bmatrix} 1 & -1 & -1 \\ 2 & -1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & -2 & -2 \\ -2 & -2 & -2 \end{bmatrix}$		
Summenformel	$\mathrm{C}_{59}\mathrm{H}_{58}\mathrm{N}_{3}\mathrm{Cl}_{7}\mathrm{P}_{3}\mathrm{O}_{8}\mathrm{Re}_{3}$	
M (g/mol)	1836.74	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=13.532(2)~{ m \AA}$	$\alpha=75.36(1)^o$
	${ m b}=16.606(2)~{ m \AA}$	$eta=76.15(1)^o$
	$ m c = 17.555(2)~{ m \AA}$	$\gamma=79.55(1)^{o}$
Volumen	$3675.0(8) \text{ Å}^3$	
Ζ	2	
Berechnete Dichte	$1.638~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	5.293 mm^{-1}	
F(000)	1748	
Kristallgröße	$0.300 \ge 0.167 \ge 0.100 \ \mathrm{mm}^3$	
Theta-Bereich	2.68 - 29.16°	
Indizes	$-17 \le h \le 17, -20 \le k \le 21, -2$	$21 \le l \le 22$
Zahl der gemessenen Reflexe	31362	
Zahl der unabhängigen Reflexe	15925 [R(int) = 0.1099]	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	791	
Goof	0.850	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0666,wR_2=0.1554$	
R_1 / wR_2 (alle Reflexe)	$R_1=0.1352,wR_2=0.1795$	
Restelektronendichte	2.184 und -4.464 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	х	У	Z	E(eq)
$\operatorname{Re}(1)$	644(1)	3470(1)	2961(1)	30(1)
P(1)	5228(2)	3126(2)	1218(2)	37(1)
$\mathrm{C}(1)$	4987(10)	3800(8)	253(8)	45(3)
C(11)	4382(10)	3391(8)	-106(7)	44(3)
C(12)	3367(10)	3257(8)	273(7)	40(3)
C(13)	2814(11)	2833(9)	-42(8)	48(3)
C(14)	3272(13)	2522(10)	-707(10)	60(4)
C(15)	4248(13)	2624(11)	-1087(9)	68(5)
C(16)	4827(10)	3083(10)	-801(8)	53(4)
N(1)	2923(7)	3531(6)	1019(6)	34(2)
C(41)	6078(10)	2200(9)	964(9)	48(3)
C(42)	6831(11)	2295(10)	297(10)	57(4)
C(43)	7524(14)	1591(13)	108(13)	78(5)
C(44)	7425(18)	820(14)	587(17)	103(8)
C(45)	6628(16)	725(12)	1327(16)	92(7)
C(46)	5987(12)	1441(10)	1493(12)	69(5)
C(51)	6008(9)	3678(7)	1550(8)	38(3)
C(52)	6892(10)	3270(10)	1833(8)	49(3)
C(53)	7451(11)	3682(10)	2116(9)	57(4)
C(54)	7145(13)	4491(10)	2184(11)	65(4)
C(55)	6251(13)	4923(10)	1905(12)	69(5)
C(56)	5734(13)	4539(10)	1608(10)	62(4)
$\operatorname{Cl}(1)$	899(2)	3135(2)	4382(2)	42(1)
$\operatorname{Re}(2)$	3593(1)	2878(1)	2058(1)	33(1)
P(2)	1220(2)	5958(2)	3101(2)	31(1)

Tabelle 6.8 : Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[(ReOCl{H_2L^1})_3O_3] \cdot 2 CH_2Cl_2 \cdot 2 H_2O$

C(2)	943(9)	5513(8)	4180(7)	38(3)
C(21)	1873(8)	5396(7)	4552(6)	33(2)
C(22)	1887(11)	5845(9)	5111(7)	47(3)
C(23)	2729(11)	5726(10)	5460(9)	55(4)
C(24)	3545(11)	5183(11)	5254(10)	62(4)
C(25)	3574(10)	4724(9)	4697(8)	46(3)
C(26)	2727(9)	4835(7)	4337(7)	34(2)
N(2)	2759(8)	4351(6)	3751(6)	38(2)
C(61)	1479(10)	7019(9)	2968(8)	44(3)
C(62)	1007(12)	7537(9)	3495(10)	59(4)
C(63)	1137(14)	8359(11)	3369(11)	70(5)
C(64)	1818(16)	8695(9)	2650(12)	76(5)
C(65)	2310(13)	8201(9)	2095(10)	62(4)
C(66)	2118(10)	7379(8)	2258(8)	46(3)
C(71)	2(9)	6070(7)	2803(8)	36(3)
C(72)	-30(11)	6176(11)	2015(9)	63(5)
C(73)	-959(12)	6324(11)	1748(10)	69(5)
C(74)	-1849(12)	6361(10)	2310(12)	69(5)
C(75)	-1846(13)	6227(16)	3113(11)	96(8)
C(76)	-886(11)	6082(13)	3353(9)	72(5)
$\operatorname{Cl}(2)$	4183(3)	2165(3)	3262(2)	61(1)
$\operatorname{Re}(3)$	2585(1)	4981(1)	2544(1)	31(1)
P(3)	341(3)	2075(2)	2976(2)	38(1)
C(3)	811(12)	1973(8)	1938(8)	49(3)
C(31)	242(10)	2634(8)	1361(8)	40(3)
C(32)	-265(12)	2391(11)	867(9)	58(4)
C(33)	-724(12)	2962(11)	329(9)	60(4)
C(34)	-728(11)	3802(11)	267(9)	56(4)

C(35)	-249(11)	4057(9)	759(8)	49(3)
C(36)	236(10)	3478(8)	1316(7)	39(3)
N(3)	715(7)	3774(6)	1789(6)	35(2)
C(81)	-954(10)	1833(8)	3251(9)	46(3)
C(82)	-1680(11)	2206(9)	3809(11)	59(4)
C(83)	-2688(13)	2055(12)	3985(14)	84(6)
C(84)	-3001(14)	1504(13)	3645(14)	78(6)
C(85)	-2296(19)	1110(15)	3113(13)	99(8)
C(86)	-1281(13)	1290(11)	2909(10)	65(4)
C(91)	1042(11)	1198(8)	3584(9)	48(3)
C(92)	1929(14)	792(10)	3273(12)	72(5)
C(93)	2485(18)	164(13)	3725(18)	104(8)
C(94)	2090(20)	-53(11)	4560(16)	97(8)
C(95)	1204(17)	382(13)	4876(13)	91(7)
C(96)	677(13)	1006(11)	4397(10)	68(5)
$\operatorname{Cl}(3)$	2560(2)	5540(2)	1121(2)	42(1)
O(1)	3471(6)	3922(5)	2247(5)	38(2)
O(2)	1448(6)	4400(5)	2725(4)	30(2)
O(3)	2116(6)	2772(5)	2822(4)	31(2)
O(4)	-589(6)	3792(5)	3272(4)	35(2)
O(5)	3517(6)	5556(6)	2522(5)	44(2)
O(6)	3565(6)	1971(6)	1742(6)	45(2)
Cl(6)	5289(5)	6510(5)	3366(5)	60(2)
Cl(9)	6620(12)	7534(7)	4640(8)	109(4)
$\operatorname{Cl}(7)$	3729(13)	7797(8)	3844(11)	147(7)
$\operatorname{Cl}(8)$	8098(13)	8559(12)	3771(10)	148(6)
C(98)	4031(18)	6897(15)	3461(16)	40(6)
C(97)	7250(30)	8220(30)	4560(20)	86(13)

Ο	5085(14)	3602(13)	3594(12)	56(5)
$\operatorname{Cl}(10)$	9278(11)	8582(7)	886(8)	104(4)
$\operatorname{Cl}(11)$	9844(16)	9748(10)	1475(16)	198(11)
C(89)	9480(30)	8700(40)	1670(30)	150(30)
$\operatorname{Cl}(5)$	2524(6)	530(5)	798(5)	61(2)
$\operatorname{Cl}(4)$	4392(8)	-338(7)	1268(7)	87(3)
C(99)	3780(20)	570(20)	780(20)	66(9)
O(11)	5560(20)	9743(19)	3426(18)	99(9)
O(12)	4950(20)	9880(20)	4460(20)	111(10)
O(10)	6720(20)	8586(19)	2308(18)	99(9)

Abbildung 6.4: Ellipsoiddarstellung von $[(\text{ReOCl}\{H_2L^1\})_3O_3] \cdot 4 \operatorname{CH}_2\operatorname{Cl}_2 \cdot 2 \operatorname{H}_2O$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.5 $[\text{ReO}_2(\text{H}_2\text{L}^1)_2]\text{Cl} \cdot 0.75 \text{ MeOH}$

Tabelle 6.9: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReO}_2({\rm HL}^1)_2]{\rm Cl}\cdot 0.75~{\rm MeOH}$

Summenformel	$C_{38.75}H_{39}N_2ClP_2O_{2.75}Re$	
M (g/mol)	860.31	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	$a = 11.836(1) \text{ \AA}$	$\alpha = 93.56(1)^o$
	${ m b}=12.563(1)~{ m \AA}$	$eta=95.41(1)^o$
	${ m c}=27.119(2)~{ m \AA}$	$\gamma = 109.07(1)^o$
Volumen	$3775.7(5) \text{ Å}^3$	
Ζ	4	
Berechnete Dichte	$1.513~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	3.411 mm^{-1}	
F(000)	1718	
Kristallgröße	$0.52 \ge 0.36 \ge 0.29 \text{ mm}^3$	
Theta-Bereich	$1.72 - 29.29^{o}$	
Indizes	-14 \leq h \leq 16, -17 \leq k \leq 17, -	$37 \le l \le 37$
Zahl der gemessenen Reflexe	40424	
Zahl der unabhängigen Reflexe	$20155 \; [{\rm R(int)} = 0.0723]$	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	854	
Goof	0.935	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0594,wR_2=0.1464$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.0904,wR_2=0.1660$	
Restelektronendichte	2.108 und -1.940 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

Х	У	Z	E(eq)
4381(1)	6719(1)	1545(1)	42(1)
4067(5)	5569(4)	1099(2)	52(1)
4667(5)	7809(4)	2037(2)	50(1)
3246(2)	7599(2)	1019(1)	48(1)
1627(8)	6934(7)	1082(3)	59(2)
1189(7)	5663(7)	1080(3)	51(2)
280(7)	4973(8)	718(3)	62(2)
-100(7)	3828(7)	704(3)	64(2)
427(8)	3321(8)	1049(3)	69(2)
1307(8)	3965(7)	1413(3)	57(2)
1693(7)	5149(6)	1434(2)	50(2)
2617(5)	5816(5)	1824(2)	47(1)
3416(7)	7412(7)	361(2)	53(2)
4205(10)	8280(8)	148(3)	74(3)
4448(12)	8104(9)	-334(3)	90(3)
3933(10)	7090(9)	-598(3)	75(3)
3180(10)	6183(9)	-390(3)	77(3)
2888(7)	6369(7)	88(3)	59(2)
3399(8)	9093(6)	1137(3)	55(2)
4104(9)	9758(7)	1548(3)	67(2)
4157(11)	10878(7)	1643(4)	79(3)
3492(11)	11326(9)	1323(5)	89(3)
2812(12)	10678(9)	919(5)	91(3)
2744(10)	9554(8)	829(4)	77(3)
6396(2)	7616(1)	1347(1)	45(1)
	$\begin{array}{c} \mathbf{x} \\ 4381(1) \\ 4067(5) \\ 4667(5) \\ 3246(2) \\ 1627(8) \\ 1189(7) \\ 280(7) \\ -100(7) \\ 427(8) \\ 1307(8) \\ 1693(7) \\ 2617(5) \\ 3416(7) \\ 4205(10) \\ 4448(12) \\ 3933(10) \\ 3180(10) \\ 2888(7) \\ 3399(8) \\ 4104(9) \\ 4157(11) \\ 3492(11) \\ 2812(12) \\ 2744(10) \\ 6396(2) \end{array}$	xy $4381(1)$ $6719(1)$ $4067(5)$ $5569(4)$ $4667(5)$ $7809(4)$ $3246(2)$ $7599(2)$ $1627(8)$ $6934(7)$ $1189(7)$ $5663(7)$ $280(7)$ $4973(8)$ $-100(7)$ $3828(7)$ $427(8)$ $3321(8)$ $1307(8)$ $3965(7)$ $1693(7)$ $5149(6)$ $2617(5)$ $5816(5)$ $3416(7)$ $7412(7)$ $4205(10)$ $8280(8)$ $4448(12)$ $8104(9)$ $3933(10)$ $7090(9)$ $3180(10)$ $6183(9)$ $2888(7)$ $6369(7)$ $3399(8)$ $9093(6)$ $4104(9)$ $9758(7)$ $4157(11)$ $10878(7)$ $3492(11)$ $11326(9)$ $2812(12)$ $10678(9)$ $2744(10)$ $9554(8)$ $6396(2)$ $7616(1)$	xyz $4381(1)$ $6719(1)$ $1545(1)$ $4067(5)$ $5569(4)$ $1099(2)$ $4667(5)$ $7809(4)$ $2037(2)$ $3246(2)$ $7599(2)$ $1019(1)$ $1627(8)$ $6934(7)$ $1082(3)$ $1189(7)$ $5663(7)$ $1080(3)$ $280(7)$ $4973(8)$ $718(3)$ $-100(7)$ $3828(7)$ $704(3)$ $427(8)$ $3321(8)$ $1049(3)$ $1307(8)$ $3965(7)$ $1413(3)$ $1693(7)$ $5149(6)$ $1434(2)$ $2617(5)$ $5816(5)$ $1824(2)$ $3416(7)$ $7412(7)$ $361(2)$ $4205(10)$ $8280(8)$ $148(3)$ $4448(12)$ $8104(9)$ $-334(3)$ $3933(10)$ $7090(9)$ $-598(3)$ $3180(10)$ $6183(9)$ $-390(3)$ $2888(7)$ $6369(7)$ $88(3)$ $3399(8)$ $9093(6)$ $1137(3)$ $4104(9)$ $9758(7)$ $1548(3)$ $4157(11)$ $10878(7)$ $1643(4)$ $3492(11)$ $11326(9)$ $1323(5)$ $2812(12)$ $10678(9)$ $919(5)$ $2744(10)$ $9554(8)$ $829(4)$ $6396(2)$ $7616(1)$ $1347(1)$

Tabelle 6.10: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[ReO_2(H_2L^1)_2]Cl \cdot 0.75$ MeOH

C(2)	7403(7)	7410(6)	1862(3)	51(2)
C(41)	7233(7)	6166(6)	1883(2)	50(2)
C(42)	8145(8)	5747(8)	1783(3)	63(2)
C(43)	7991(9)	4612(8)	1800(3)	71(2)
C(44)	6913(9)	3876(7)	1917(3)	67(2)
C(45)	5993(8)	4267(6)	2012(3)	53(2)
C(46)	6152(7)	5416(6)	1992(2)	47(1)
N(2)	5179(5)	5826(5)	2097(2)	42(1)
C(51)	6868(7)	7130(6)	782(2)	48(2)
C(52)	8086(7)	7426(7)	730(3)	60(2)
C(53)	8441(8)	7145(8)	276(3)	67(2)
C(54)	7585(9)	6563(8)	-109(3)	68(2)
C(55)	6379(9)	6258(7)	-60(3)	64(2)
C(56)	6023(7)	6538(7)	386(3)	56(2)
C(61)	6924(7)	9150(6)	1340(3)	50(2)
C(62)	7168(10)	9826(7)	1780(3)	73(2)
C(63)	7554(10)	10992(8)	1787(4)	81(3)
C(64)	7716(9)	11463(7)	1349(4)	76(3)
C(65)	7525(11)	10815(8)	920(4)	84(3)
C(66)	7111(10)	9646(7)	905(3)	70(2)
Cl'1	1482(2)	7338(2)	2489(1)	66(1)
$\operatorname{Re}(2)$	4921(1)	7706(1)	3507(1)	42(1)
O'10	5523(5)	7205(4)	2999(2)	49(1)
O'20	4227(5)	8191(4)	3969(2)	52(1)
P'1	5410(2)	6390(2)	4028(1)	47(1)
C'1	4073(7)	5109(6)	4003(3)	56(2)
C'11	2899(8)	5330(7)	4040(3)	55(2)
C'12	2234(9)	4960(8)	4428(3)	69(2)

C'13	1189(9)	5192(9)	4478(3)	80(3)
C'14	783(8)	5794(8)	4139(4)	73(2)
C'15	1412(8)	6136(7)	3744(3)	62(2)
C'16	2456(7)	5921(6)	3690(3)	54(2)
N'1	3138(5)	6316(5)	3279(2)	48(1)
C'21	5864(8)	6955(6)	4684(2)	55(2)
C'22	7053(9)	7321(7)	4867(3)	67(2)
C'23	7404(11)	7874(9)	5351(3)	89(3)
C'24	6578(12)	8052(9)	5632(3)	85(3)
C'25	5401(11)	7713(10)	5445(3)	86(3)
C'26	5011(9)	7127(7)	4972(3)	66(2)
C'31	6500(7)	5729(6)	3876(3)	51(2)
C'32	6703(8)	4938(7)	4175(3)	64(2)
C'33	7443(9)	4363(7)	4053(4)	75(3)
C'34	8000(9)	4534(7)	3619(4)	72(2)
C'35	7798(8)	5300(8)	3319(4)	71(2)
C'36	7064(8)	5917(8)	3445(3)	65(2)
P'2	6769(2)	9284(2)	3664(1)	45(1)
C'2	6797(7)	10107(7)	3125(3)	54(2)
C'41	5799(7)	10597(6)	3093(2)	51(2)
C'42	6056(9)	11762(7)	3129(3)	67(2)
C'43	5136(10)	12237(7)	3109(3)	74(3)
C'44	3985(10)	11566(7)	3044(3)	67(2)
C'45	3683(8)	10395(6)	3006(3)	55(2)
C'46	4585(7)	9922(6)	3020(2)	49(2)
N'2	4258(6)	8700(4)	2957(2)	44(1)
C'51	7015(7)	10285(6)	4209(2)	46(1)
C'52	7902(8)	11347(7)	4242(3)	58(2)

C'53	8148(8)	12042(7)	4678(3)	63(2)
C'54	7538(9)	11734(7)	5080(3)	63(2)
C'55	6673(8)	10690(7)	5049(3)	58(2)
C'56	6400(7)	9969(7)	4618(3)	54(2)
C'61	8206(7)	9026(6)	3693(3)	52(2)
C'62	8952(9)	9192(8)	4137(3)	70(2)
C'63	10048(10)	9012(10)	4146(5)	89(3)
C'64	10368(11)	8631(9)	3709(5)	95(4)
C'65	9692(11)	8490(10)	3281(5)	87(3)
C'66	8596(9)	8682(8)	3266(3)	70(2)
$\operatorname{Cl}(1)$	3118(2)	4053(2)	2631(1)	60(1)
C(97)	-450(20)	2044(19)	3259(8)	84(5)
O(97)	570(20)	1781(17)	3391(7)	123(6)
C(98)	241(19)	3138(18)	2498(7)	74(5)
O(98)	132(16)	4061(15)	2643(6)	103(5)
C(99)	605(19)	9820(18)	1954(7)	78(5)
O(99)	340(10)	8758(9)	1788(4)	56(2)

Abbildung 6.5: Ellipsoiddarstellung von 2 [$\text{ReO}_2(\text{H}_2\text{L}^1)_2$]Cl·1.5 MeOH. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

Abbildung 6.6: Ellipsoiddarstellung von $[ReO_2(H_2L^1)_2]Cl$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.6 [ReO₂(H₂L¹)₂]Cl, [ReO₂(H₂L¹)(H₂L^{1b})]Cl \cdot 2.5 CH₂Cl₂

Tabelle 6.11: Kristallographische Daten und Parameter der Strukturrechnung von $[ReO_2(H_2L^1)_2]Cl$, $[ReO_2(H_2L^1)(H_2L^{1b})]Cl \cdot 2.5 CH_2Cl_2$

Summenformel	$\mathrm{C}_{77.5}\mathrm{H}_{75}\mathrm{N}_{4}\mathrm{Cl}_{7}\mathrm{P}_{4}\mathrm{O}_{4}\mathrm{Re}_{2}$	
M (g/mol)	1870.85	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=15.047(2)~{ m \AA}$	$\alpha = 84.05(1)^o$
	${ m b}=15.087(2)~{ m \AA}$	$\beta = 77.87(1)^o$
	$ m c = 20.609(2)~{ m \AA}$	$\gamma = 61.74(1)^o$
Volumen	4028.8(9) Å ³	
Ζ	2	
Berechnete Dichte	$1.543 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	3.362 mm^{-1}	
F(000)	1858	
Kristallgröße	$0.40 \ge 0.30 \ge 0.29 \ \mathrm{mm^3}$	
Theta-Bereich	$2.05 - 29.59^{o}$	
Indizes	$-19 \le h \le 18, -18 \le k \le 19, -2$	$26 \le l \le 26$
Zahl der gemessenen Reflexe	34966	
Zahl der unabhängigen Reflexe	17415 [R(int) = 0.0724]	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	899	
Goof	0.961	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0594,wR_2=0.1672$	
R_1 / wR_2 (alle Reflexe)	$R_1=0.0835,wR_2=0.1841$	

Restelektronendichte	5.195 und -2.047 e \cdot Å^{-3}
Programm zur Strukturlösung	SHELXS 97 [119]

	X	У	Z	E(eq)
$\operatorname{Re}(1)$	8642(1)	8265(1)	3108(1)	32(1)
O(101)	7689(5)	9380(4)	2838(3)	39(1)
O(201)	9613(4)	7082(4)	3318(3)	36(1)
P(11)	9782(2)	8939(2)	3194(1)	37(1)
C(11)	10766(8)	8563(8)	2434(4)	47(2)
C(111)	10265(7)	9051(7)	1841(4)	41(2)
C(121)	10347(9)	9863(9)	1502(5)	56(3)
C(131)	9812(11)	10327(9)	1006(6)	65(3)
C(141)	9148(10)	10046(8)	852(5)	60(3)
C(151)	9042(8)	9242(8)	1187(5)	47(2)
C(161)	9578(7)	8759(6)	1680(4)	35(2)
N(11)	9441(5)	7951(5)	2048(3)	34(1)
C(311)	9305(7)	10279(7)	3225(4)	41(2)
C(321)	9994(9)	10657(8)	3269(5)	50(2)
C(331)	9650(10)	11683(9)	3270(5)	57(3)
C(341)	8656(10)	12336(8)	3235(5)	61(3)
C(351)	7993(10)	11998(8)	3167(6)	65(3)
C(361)	8292(8)	10962(8)	3190(5)	50(2)
C(411)	10494(7)	8434(7)	3868(4)	41(2)
C(421)	10182(9)	8916(8)	4442(4)	53(2)
C(431)	10733(11)	8483(10)	4973(5)	66(3)
C(441)	11553(11)	7560(10)	4916(6)	66(3)
C(451)	11865(9)	7054(9)	4335(6)	62(3)
C(461)	11326(9)	7479(8)	3814(5)	55(2)
P(21)	7613(2)	8581(2)	4214(1)	36(1)

Tabelle 6.12: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[ReO_2(H_2L^1)_2]Cl$, $[ReO_2(H_2L^1)(H_2L^{1b})]Cl \cdot 2.5 CH_2Cl_2$

C(21)	6699(7)	8066(8)	4270(4)	45(2)
C(211)	6132(7)	8347(7)	3697(4)	41(2)
C(221)	5080(7)	8932(8)	3803(5)	50(2)
C(231)	4573(8)	9224(9)	3279(6)	61(3)
C(241)	5094(9)	8935(10)	2642(6)	61(3)
C(251)	6145(7)	8362(8)	2527(5)	47(2)
C(261)	6666(6)	8058(7)	3044(4)	38(2)
N(21)	7767(5)	7486(5)	2919(3)	35(1)
C(511)	8132(7)	8042(7)	4968(4)	40(2)
C(521)	9153(7)	7349(8)	4941(5)	45(2)
C(531)	9510(9)	6946(9)	5524(5)	55(3)
C(541)	8877(9)	7208(9)	6115(5)	56(3)
C(551)	7830(10)	7896(9)	6146(5)	58(3)
C(561)	7477(9)	8295(8)	5572(4)	52(2)
C(611)	6867(7)	9924(6)	4389(4)	40(2)
C(621)	7151(7)	10393(8)	4780(5)	50(2)
C(631)	6660(10)	11412(9)	4862(6)	62(3)
C(641)	5867(9)	11999(8)	4536(6)	66(3)
C(651)	5551(9)	11564(8)	4129(5)	56(3)
C(661)	6074(8)	10532(8)	4044(5)	54(2)
$\operatorname{Cl}(1)$	8530(2)	6908(2)	1290(1)	43(1)
$\operatorname{Re}(2)$	1711(1)	4788(1)	2082(1)	31(1)
O(102)	1221(4)	6111(5)	1986(3)	37(1)
O(202)	2137(5)	3490(5)	2224(3)	41(1)
P(12)	3197(2)	4614(2)	2469(1)	42(1)
C(112)	2801(7)	4533(7)	3364(5)	44(2)
C(122)	3459(8)	4221(8)	3816(5)	50(2)
C(132)	3085(9)	4196(9)	4488(5)	59(3)
C(142)	2083(10)	4490(9)	4728(5)	62(3)
--------	----------	----------	---------	-------
C(152)	1406(8)	4780(8)	4287(4)	49(2)
C(162)	1762(6)	4805(6)	3614(4)	35(2)
N(12)	1063(5)	5086(5)	3146(3)	33(1)
C(312)	3447(8)	5666(9)	2332(5)	54(2)
C(322)	3696(10)	6076(10)	2799(7)	68(3)
C(332)	3847(12)	6915(14)	2645(8)	88(4)
C(342)	3755(12)	7393(12)	2061(9)	88(4)
C(352)	3523(14)	7004(14)	1592(9)	99(5)
C(362)	3359(13)	6168(12)	1724(7)	82(4)
C(412)	4436(7)	3474(7)	2302(4)	45(2)
C(422)	5340(8)	3507(10)	2046(6)	64(3)
C(432)	6242(10)	2611(13)	1950(8)	90(5)
C(442)	6241(10)	1695(12)	2097(7)	85(4)
C(452)	5365(11)	1658(10)	2342(7)	72(3)
C(462)	4437(9)	2552(9)	2438(6)	64(3)
P(22)	2130(2)	4685(2)	866(1)	35(1)
C(22)	995(7)	4856(7)	579(4)	40(2)
C(212)	633(6)	4101(7)	900(4)	37(2)
C(222)	666(7)	3360(8)	526(5)	49(2)
C(232)	354(9)	2675(8)	836(5)	54(2)
C(242)	11(9)	2715(9)	1536(5)	55(2)
C(252)	-11(8)	3419(7)	1893(5)	45(2)
C(262)	268(6)	4133(7)	1587(4)	37(2)
N(22)	205(5)	4914(5)	1965(3)	33(1)
C(512)	2347(7)	5702(7)	453(4)	43(2)
C(522)	1558(8)	6693(7)	519(4)	48(2)
C(532)	1736(10)	7472(9)	242(6)	65(3)

C(542)	2693(12)	7300(10)	-129(7)	82(4)
C(552)	3466(10)	6354(10)	-179(6)	71(3)
C(562)	3331(8)	5527(9)	101(5)	55(2)
C(612)	3179(7)	3555(7)	455(4)	43(2)
C(622)	4060(7)	3026(7)	739(5)	47(2)
C(632)	4912(8)	2212(8)	402(6)	57(3)
C(642)	4898(9)	1956(9)	-209(6)	62(3)
C(652)	4035(10)	2469(9)	-485(6)	68(3)
C(662)	3173(8)	3245(9)	-160(5)	57(3)
$\operatorname{Cl}(2)$	8771(2)	5085(2)	3426(1)	49(1)
Cl(67)	7641(7)	4370(7)	1260(4)	46(2)
C(68)	7558(15)	5144(15)	1858(9)	6(4)
Cl(69)	6304(8)	6023(8)	2132(5)	51(2)
$\operatorname{Cl}(77)$	6050(10)	4326(10)	4304(6)	70(3)
C(78)	6310(20)	5160(20)	3831(13)	27(6)
$\operatorname{Cl}(79)$	5474(5)	6405(5)	4023(3)	22(1)
$\operatorname{Cl}(87)$	3828(3)	774(4)	1322(2)	98(1)
C(88)	2595(11)	1345(10)	1725(8)	83(4)
Cl(89)	2292(3)	571(4)	2296(2)	111(2)
Cl(97)	3585(3)	327(3)	-962(2)	97(1)
C(98)	2854(13)	890(12)	-216(7)	85(4)
Cl(99)	2373(3)	159(3)	278(2)	80(1)

Abbildung 6.7: Ellipsoiddarstellung von $[\text{ReO}_2(\text{H}_2\text{L}^1)_2]\text{Cl}$, $[\text{ReO}_2(\text{H}_2\text{L}^1)(\text{H}_2\text{L}^{1b})]\text{Cl} \cdot 2.5 \text{ CH}_2\text{Cl}_2$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

Abbildung 6.8: Ellipsoiddarstellung von $[\text{ReO}_2(\text{H}_2\text{L}^1)(\text{H}_2\text{L}^{1b})]$ Cl. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.7 $[\operatorname{ReNCl}_2(\operatorname{PPh}_3)(\operatorname{H}_2\operatorname{L}^1)] \cdot 0.5 \operatorname{CH}_2\operatorname{Cl}_2$

Tabelle 6.13: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReNCl}_2({\rm PPh}_3)({\rm H}_2{\rm L}^1)]\cdot 0.5\,{\rm CH}_2{\rm Cl}_2$

Summenformel	$\mathrm{C}_{37.5}\mathrm{H}_{34}\mathrm{N}_{2}\mathrm{Cl}_{3}\mathrm{P}_{2}\mathrm{Re}$	
M (g/mol)	867.16	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, C $2/{\rm c}$	
Elementarzelle	${ m a}=26.838(1)~{ m \AA}$	$lpha=90^o$
	${ m b}=15.317(2)~{ m \AA}$	$eta=95.13(1)^o$
	$ m c = 17.745(2)~{ m \AA}$	$\gamma=90^o$
Volumen	7265.4(2) Å ³	
Ζ	8	
Berechnete Dichte	$1.586~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	3.683 mm^{-1}	
F(000)	3432	
Kristallgröße	$0.26 \ge 0.12 \ge 0.11 \ \mathrm{mm^3}$	
Theta-Bereich	1.88 - 27.00°	
Indizes	$-34 \le h \le 36, -19 \le k \le 19, -2$	$22 \le l \le 22$
Zahl der gemessenen Reflexe	23019	
Zahl der unabhängigen Reflexe	7913 [R(int) = 0.1626]	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	424	
Goof	0.808	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0560,wR_2=0.0986$	
R_1 / wR_2 (alle Reflexe)	$R_1=0.1480,wR_2=0.1392$	
Restelektronendichte	1.089 und -2.187 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	Х	У	Z	E(eq)
$\operatorname{Re}(1)$	2865(1)	3547(1)	1373(1)	30(1)
N(10)	2648(4)	4498(7)	1639(5)	37(3)
$\operatorname{Cl}(1)$	3167(1)	1955(2)	1073(1)	39(1)
$\operatorname{Cl}(2)$	3012(1)	3839(2)	77(1)	43(1)
P(1)	2675(1)	2762(2)	2494(1)	31(1)
C(1)	2161(5)	2012(8)	2205(6)	40(3)
C(11)	1709(5)	2500(8)	1893(6)	37(3)
C(12)	1280(6)	2486(12)	2254(8)	61(4)
C(13)	864(6)	2946(12)	1986(8)	63(5)
C(14)	869(5)	3452(12)	1321(8)	64(4)
C(15)	1295(4)	3453(11)	950(6)	47(3)
C(16)	1715(5)	3000(8)	1223(6)	33(3)
N(1)	2169(3)	3013(7)	830(4)	37(2)
C(21)	2431(5)	3366(8)	3274(5)	33(3)
C(22)	2384(5)	4222(9)	3294(6)	44(3)
C(23)	2231(7)	4668(10)	3926(7)	67(5)
C(24)	2112(6)	4183(11)	4531(7)	60(4)
C(25)	2128(7)	3321(10)	4513(7)	64(5)
C(26)	2295(6)	2890(9)	3894(6)	52(4)
C(31)	3144(4)	2082(8)	3011(5)	31(3)
C(32)	3482(5)	2455(9)	3557(6)	37(3)
C(33)	3843(5)	1943(10)	3940(7)	44(3)
C(34)	3865(6)	1081(12)	3811(8)	61(4)
C(35)	3536(6)	691(9)	3278(8)	58(4)
C(36)	3167(6)	1185(9)	2876(7)	52(4)

Tabelle 6.14: Atomkoordinaten $(\cdot 10^4)$ und isotrope Temperaturparameter $(\text{Å}^2 \cdot 10^3)$ von $[\text{ReNCl}_2(\text{PPh}_3)(\text{H}_2\text{L}^1)] \cdot 0.5 \text{ CH}_2\text{Cl}_2$

P(2)	3723(1)	3983(2)	1718(1)	30(1)
C(41)	3919(4)	4243(8)	2711(5)	32(3)
C(42)	3616(5)	4805(9)	3046(6)	45(3)
C(43)	3735(7)	5088(12)	3780(7)	65(5)
C(44)	4171(6)	4767(10)	4190(7)	54(4)
C(45)	4473(5)	4215(10)	3860(6)	51(4)
C(46)	4351(5)	3930(9)	3101(6)	47(3)
C(51)	3907(5)	5029(8)	1318(6)	36(3)
C(52)	4404(6)	5312(10)	1464(6)	50(4)
C(53)	4552(7)	6122(10)	1210(8)	60(4)
C(54)	4212(7)	6668(10)	838(8)	67(5)
C(55)	3729(6)	6407(11)	686(7)	57(4)
C(56)	3575(5)	5587(8)	927(6)	43(3)
C(61)	4159(5)	3211(9)	1374(7)	42(3)
C(62)	4327(5)	2473(10)	1807(8)	54(4)
C(63)	4631(6)	1870(11)	1501(11)	75(5)
C(64)	4757(6)	1955(13)	758(11)	76(6)
C(65)	4581(6)	2665(12)	332(9)	64(5)
C(66)	4292(5)	3267(9)	642(6)	44(4)
Cl(97)	4416(7)	9364(12)	786(8)	168(6)
C(98)	4074(12)	9710(20)	1588(14)	59(8)
Cl(99)	4713(6)	9709(11)	2245(9)	160(6)

Abbildung 6.9: Ellipsoiddarstellung von $[\text{ReNCl}_2(\text{PPh}_3)(\text{H}_2\text{L}^1)] \cdot 0.5 \text{ CH}_2\text{Cl}_2$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

$6.8 \quad [\mathrm{ReNCl}(\mathrm{H_2L^1})_2]\mathrm{Cl}$

Tabelle 6.15: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReNCl}({\rm H}_2{\rm L}^1)_2]{\rm Cl}$

(, , , , , , , , , , , , , , , , , , ,		
Summenformel	$\mathrm{C}_{38}\mathrm{H}_{36}\mathrm{N}_{3}\mathrm{Cl}_{2}\mathrm{P}_{2}\mathrm{Re}$	
M (g/mol)	853.74	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, P $2_1/{\rm n}$	
Elementarzelle	${ m a}=11.006(2)~{ m \AA}$	$lpha=90^o$
	${ m b}=27.586(2)~{ m \AA}$	$eta=96.10(1)^o$
	$ m c = 12.199(2)~{ m \AA}$	$\gamma=90^o$
Volumen	$3676.9(9) \text{ Å}^3$	
Ζ	4	
Berechnete Dichte	$1.542 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	3.568 mm^{-1}	
F(000)	1696	
Kristallgröße	$0.24 \ \mathrm{x} \ 0.16 \ \mathrm{x} \ 0.08 \ \mathrm{mm}^3$	
Theta-Bereich	1.84 - 29.29°	
Indizes	$-15 \le h \le 14, -37 \le k \le 37, -2$	$15 \le l \le 16$
Zahl der gemessenen Reflexe	28541	
Zahl der unabhängigen Reflexe	9904 [R(int) = 0.1458]	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	423	
Goof	0.823	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0545,wR_2=0.1077$	
R_1 / wR_2 (alle Reflexe)	$R_1=0.1589,wR_2=0.1455$	
Restelektronendichte	1.122 und -1.363 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	х	У	Z	E(eq)
$\operatorname{Re}(1)$	2016(1)	9063(1)	1591(1)	50(1)
N(10)	1911(7)	9513(3)	2586(6)	67(2)
P(1)	4085(2)	8833(1)	2303(2)	49(1)
$\mathrm{C}(1)$	5081(8)	9099(3)	1353(7)	55(2)
C(11)	4948(8)	9640(3)	1355(7)	53(2)
C(12)	5870(9)	9943(4)	1814(7)	65(3)
C(13)	5746(12)	10441(4)	1825(8)	73(3)
C(14)	4647(13)	10644(4)	1420(8)	82(4)
C(15)	3677(10)	10358(3)	978(8)	61(3)
C(16)	3853(9)	9853(3)	934(7)	53(2)
N(1)	2857(7)	9553(2)	451(6)	53(2)
C(21)	4505(8)	8196(3)	2391(7)	52(2)
C(22)	4675(11)	7965(4)	3411(9)	77(3)
C(23)	4958(13)	7476(4)	3465(11)	96(4)
C(24)	5139(13)	7218(4)	2523(11)	93(4)
C(25)	4966(11)	7444(4)	1540(10)	81(3)
C(26)	4664(9)	7930(4)	1434(8)	65(3)
C(31)	4765(8)	9057(3)	3642(7)	54(2)
C(32)	4075(9)	9262(4)	4410(8)	62(3)
C(33)	4599(12)	9417(4)	5398(8)	83(4)
C(34)	5844(13)	9388(5)	5664(9)	87(4)
C(35)	6551(11)	9170(5)	4937(10)	94(4)
C(36)	6020(10)	9005(5)	3918(8)	81(3)
P(2)	844(2)	8545(1)	2665(2)	65(1)
C(2)	-750(9)	8771(4)	2366(10)	78(3)

Tabelle 6.16: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von [ReNCl(H₂L¹)₂]Cl

C(41)	-1205(9)	8669(4)	1182(11)	76(3)
C(42)	-2136(9)	8322(4)	926(13)	93(4)
C(43)	-2509(13)	8221(5)	-177(16)	111(6)
C(44)	-1981(12)	8436(5)	-1017(15)	106(5)
C(45)	-1057(10)	8779(4)	-763(11)	85(4)
C(46)	-657(9)	8895(4)	353(10)	66(3)
N(2)	280(6)	9244(3)	586(7)	58(2)
C(51)	688(9)	7900(4)	2457(9)	65(3)
C(52)	1310(11)	7647(4)	1728(10)	81(4)
C(53)	1137(13)	7151(4)	1525(11)	94(4)
C(54)	331(16)	6909(5)	2087(13)	106(5)
C(55)	-301(13)	7144(5)	2858(13)	103(5)
C(56)	-122(10)	7639(5)	3031(10)	87(4)
$\operatorname{Cl}(1)$	2280(2)	8508(1)	-77(2)	67(1)
$\operatorname{Cl}(2)$	914(3)	9857(1)	8403(2)	74(1)
C(61)	1370(20)	8510(9)	4170(20)	59(5)
C(62)	2113(19)	8171(8)	4646(18)	72(4)
C(63)	2510(20)	8188(9)	5744(17)	85(4)
C(64)	2120(20)	8549(9)	6401(19)	84(5)
C(65)	1370(20)	8924(11)	5955(19)	85(4)
C(66)	986(19)	8904(8)	4808(17)	72(4)
C(61')	1020(40)	8706(14)	4140(40)	59(5)
C(62')	1740(30)	8393(13)	4840(30)	72(4)
C(63')	1970(40)	8469(18)	5950(30)	85(4)
C(64')	860(30)	9230(13)	5710(20)	84(5)
C(65')	580(30)	9144(13)	4490(20)	85(4)
C(66')	1560(30)	8859(14)	6360(30)	72(4)

Abbildung 6.10: Ellipsoiddarstellung von $[ReNCl(H_2L^1)_2]Cl$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.9 $[Pd(HL^1)_2]Cl_2 \cdot 0.25 MeOH \cdot 0.5 CH_2Cl_2 \cdot 0.75 H_2O$

Tabelle 6.17: Kristallographische Daten und Parameter der Strukturrechnung von $[Pd(HL^1)_2]Cl_2 \cdot 0.25\,MeOH \cdot 0.5\,CH_2Cl_2 \cdot 0.75\,H_2O$

	12 0110 1120	
Summenformel	$\mathrm{C}_{38.75}\mathrm{H}_{38}\mathrm{N}_{2}\mathrm{Cl}_{3}\mathrm{OP}_{2}\mathrm{Pd}$	
M (g/mol)	822.40	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=14.262(1)~{ m \AA}$	$lpha=91.47(1)^o$
	${ m b}=15.460(1)~{ m \AA}$	$eta=93.31(1)^o$
	$ m c = 18.343(2)~{ m \AA}$	$\gamma=102.29(1)^o$
Volumen	3942.2(7) Å ³	
Ζ	4	
Berechnete Dichte	$1.386~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	0.787 mm^{-1}	
F(000)	1678	
Kristallgröße	$0.35 \ge 0.16 \ge 0.05 \ \mathrm{mm}^3$	
Theta-Bereich	2.39 - 27.00°	
Indizes	$-18 \le h \le 18, -16 \le k \le 19, -18$	$23 \le l \le 22$
Zahl der gemessenen Reflexe	33805	
Zahl der unabhängigen Reflexe	17001 [R(int) = 0.0774]	
Zahl der verfeinerten Parameter	890	
Goof	0.897	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0624,wR_2=0.1494$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1129,wR_2=0.1689$	
Restelektronendichte	2.217 und -2.044 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	х	У	Z	E(eq)
Pd(1)	347(1)	1042(1)	6658(1)	33(1)
P(11)	-490(1)	192(1)	7495(1)	34(1)
C(11)	-776(4)	-960(4)	7138(3)	39(1)
C(111)	126(4)	-1260(4)	7009(3)	39(1)
C(121)	434(5)	-1897(4)	7429(3)	46(2)
C(131)	1290(5)	-2141(5)	7320(4)	55(2)
C(141)	1882(5)	-1727(5)	6812(4)	59(2)
C(151)	1609(5)	-1076(5)	6405(4)	52(2)
C(161)	748(4)	-846(4)	6507(3)	36(1)
N(11)	467(4)	-148(3)	6091(3)	39(1)
C(211)	-1640(4)	394(4)	7752(3)	38(1)
C(221)	-2372(4)	318(4)	7204(3)	45(2)
C(231)	-3258(5)	456(5)	7375(4)	53(2)
C(241)	-3430(5)	686(4)	8067(4)	51(2)
C(251)	-2702(5)	764(4)	8613(4)	51(2)
C(261)	-1807(4)	608(4)	8469(3)	44(1)
C(311)	257(4)	141(4)	8313(3)	39(1)
C(321)	-42(5)	-468(4)	8836(3)	44(1)
C(331)	562(5)	-537(5)	9442(4)	54(2)
C(341)	1465(5)	-5(5)	9532(4)	55(2)
C(351)	1768(5)	588(5)	9005(4)	56(2)
C(361)	1182(4)	667(4)	8394(4)	46(2)
P(21)	128(1)	2350(1)	7128(1)	37(1)
C(21)	1042(5)	3236(4)	6766(3)	45(1)
C(411)	874(5)	3223(4)	5958(3)	44(1)

Tabelle 6.18: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[Pd(HL^1)_2]Cl_2 \cdot 0.25 MeOH \cdot 0.5 CH_2Cl_2 \cdot 0.75 H_2O$

C(421)	545(6)	3901(4)	5605(4)	55(2)
C(431)	325(6)	3835(5)	4867(4)	60(2)
C(441)	414(5)	3096(5)	4459(4)	57(2)
C(451)	742(5)	2438(4)	4792(3)	48(2)
C(461)	968(4)	2480(4)	5539(3)	41(1)
N(21)	1270(4)	1772(3)	5895(3)	41(1)
C(511)	222(5)	2590(4)	8101(3)	43(1)
C(521)	1119(5)	2776(5)	8465(4)	57(2)
C(531)	1206(6)	2899(6)	9218(4)	72(2)
C(541)	398(6)	2851(6)	9606(4)	65(2)
C(551)	-482(6)	2695(6)	9246(4)	65(2)
C(561)	-599(5)	2550(5)	8491(4)	49(2)
C(611)	-984(5)	2592(4)	6746(3)	43(1)
C(621)	-1495(5)	2076(4)	6170(4)	51(2)
C(631)	-2264(6)	2323(6)	5811(4)	66(2)
C(641)	-2565(6)	3077(6)	6040(4)	71(2)
C(651)	-2035(6)	3593(6)	6608(4)	67(2)
C(661)	-1267(5)	3360(5)	6962(4)	55(2)
$\operatorname{Cl}(1)$	6642(1)	5261(1)	630(1)	45(1)
$\operatorname{Cl}(2)$	1807(1)	2642(1)	1487(1)	54(1)
Pd(2)	4428(1)	3801(1)	1425(1)	33(1)
P(12)	5114(1)	4535(1)	2472(1)	38(1)
C(12)	5500(4)	5715(4)	2305(3)	44(1)
C(112)	4676(4)	6095(4)	2033(3)	42(1)
C(122)	4384(5)	6760(4)	2419(4)	49(2)
C(132)	3623(6)	7114(5)	2154(5)	66(2)
C(142)	3158(6)	6812(5)	1493(5)	69(2)
C(152)	3400(5)	6122(5)	1105(4)	59(2)

C(162)	4160(4)	5764(4)	1368(3)	41(1)
N(12)	4425(4)	5064(3)	969(3)	39(1)
C(212)	6187(5)	4280(4)	2910(3)	44(1)
C(222)	7025(5)	4446(5)	2528(4)	58(2)
C(232)	7872(6)	4271(6)	2827(5)	70(2)
C(242)	7895(7)	3938(7)	3519(6)	84(3)
C(252)	7075(9)	3764(7)	3908(5)	89(3)
C(262)	6211(6)	3940(6)	3601(4)	65(2)
C(312)	4242(5)	4507(4)	3162(3)	44(1)
C(322)	3305(5)	4042(5)	3022(4)	55(2)
C(332)	2642(6)	4025(6)	3542(4)	68(2)
C(342)	2926(6)	4481(6)	4219(4)	70(2)
C(352)	3827(6)	4958(6)	4340(4)	69(2)
C(362)	4501(6)	4984(5)	3822(4)	57(2)
P(22)	4636(1)	2454(1)	1763(1)	37(1)
C(22)	3744(5)	1609(4)	1234(3)	43(1)
C(412)	3921(4)	1666(4)	442(3)	41(1)
C(422)	4220(4)	997(4)	58(4)	46(2)
C(432)	4425(5)	1090(5)	-673(4)	52(2)
C(442)	4334(5)	1856(5)	-1022(4)	53(2)
C(452)	4051(4)	2524(4)	-645(3)	44(1)
C(462)	3842(4)	2440(4)	82(3)	37(1)
N(22)	3571(3)	3151(3)	486(2)	37(1)
C(512)	4518(5)	2116(4)	2689(3)	46(2)
C(522)	5289(6)	1949(5)	3124(4)	62(2)
C(532)	5130(9)	1663(7)	3830(5)	83(3)
C(542)	4256(8)	1581(6)	4099(5)	83(3)
C(552)	3507(7)	1745(6)	3684(4)	77(2)

C(562)	3637(6)	2017(5)	2972(4)	58(2)
C(612)	5766(4)	2270(4)	1458(3)	42(1)
C(622)	6325(5)	2885(5)	1049(4)	51(2)
C(632)	7143(5)	2711(6)	750(5)	66(2)
C(642)	7396(5)	1916(6)	855(4)	65(2)
C(652)	6846(5)	1278(5)	1267(4)	59(2)
C(662)	6026(5)	1456(4)	1557(4)	53(2)
$\operatorname{Cl}(3)$	1674(1)	312(1)	4672(1)	46(1)
$\operatorname{Cl}(4)$	7088(1)	7932(2)	2829(1)	69(1)
O(1)	6388(4)	449(4)	4960(4)	27(2)
O(2)	5016(5)	9175(6)	4116(4)	42(2)
O(3)	5849(6)	9590(6)	2659(5)	52(2)
C(98)	483(14)	4169(12)	1536(9)	94(1)
Cl(97)	1502(3)	5042(3)	1491(3)	94(1)
Cl(99)	459(3)	4336(3)	2561(3)	94(1)
C(99)	604(17)	4274(18)	1712(14)	126(2)
Cl(94)	772(5)	5210(6)	1096(4)	126(2)
Cl(96)	-629(5)	3754(6)	1202(4)	126(2)
O(88)	5726(8)	7577(9)	4063(6)	72(3)
C(89)	6237(11)	7107(10)	4535(8)	59(4)

Abbildung 6.11: Ellipsoiddarstellung von $[Pd(HL^1)_2]Cl_2 \cdot 0.25 MeOH \cdot 0.5 CH_2Cl_2 \cdot 0.75 H_2O.$ Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

Abbildung 6.12: Ellipsoiddarstellung von $[Pd(HL^1)_2]^{2+}$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.10 $[\operatorname{RuCl}_2(\operatorname{CH}_3\operatorname{CN})(\operatorname{H}_2\operatorname{L}^1)(\operatorname{PPh}_3)] \cdot \operatorname{CHCl}_3$

Tabelle 6.19: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm RuCl_2(CH_3CN)(H_2L^1)(PPh_3)}]\cdot {\rm CHCl_3}$

2(0)(2)(0)]	5	
Summenformel	$\mathrm{C}_{40}\mathrm{H}_{37}\mathrm{N}_{2}\mathrm{Cl}_{5}\mathrm{P}_{1}\mathrm{Ru}$	
M (g/mol)	885.98	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/n$	
Elementarzelle	${ m a}=10.393(1)~{ m \AA}$	$lpha=90^o$
	${ m b}=22.807(1)~{ m \AA}$	$eta=93.72(1)^o$
	$ m c = 17.106(1)~{ m \AA}$	$\gamma=90^o$
Volumen	$4046.1(6) Å^3$	
Ζ	4	
Berechnete Dichte	$1.454~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	0.828 mm^{-1}	
F(000)	1800	
Kristallgröße	$0.13 \ge 0.09 \ge 0.02 \text{ mm}^3$	
Theta-Bereich	2.65 - 27.73°	
Indizes	$-12 \le h \le 12, -27 \le k \le 26, -10$	$20 \le l \le 14$
Zahl der gemessenen Reflexe	19078	
Zahl der unabhängigen Reflexe	$7017 \; [{ m R(int)} = 0.1409]$	
Zahl der verfeinerten Parameter	453	
Goof	0.864	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0683,wR_2=0.0908$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1584,wR_2=0.1116$	
Restelektronendichte	0.585 und -0.600 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	X	У	Z	E(eq)
$\operatorname{Ru}(1)$	9745(1)	4703(1)	8362(1)	24(1)
$\operatorname{Cl}(1)$	9852(2)	3955(1)	9414(1)	35(1)
$\operatorname{Cl}(2)$	8068(1)	5245(1)	8953(1)	31(1)
N(10)	11325(5)	4309(3)	8007(4)	31(2)
C(9)	12279(7)	4113(4)	7867(5)	37(2)
C(8)	13498(7)	3852(5)	7662(7)	70(3)
P(1)	9944(2)	5489(1)	7551(1)	28(1)
$\mathrm{C}(1)$	10865(6)	6057(3)	8113(5)	33(2)
C(11)	12159(6)	5830(4)	8404(5)	35(2)
C(12)	13339(7)	6034(4)	8128(5)	44(2)
C(13)	14489(6)	5783(5)	8398(7)	55(3)
C(14)	14530(6)	5330(6)	8906(5)	54(3)
C(15)	13402(6)	5122(4)	9195(5)	42(2)
C(16)	12241(6)	5378(4)	8938(4)	30(2)
N(1)	11044(4)	5149(3)	9199(4)	30(2)
C(21)	10845(6)	5409(3)	6683(4)	30(2)
C(22)	10900(6)	4866(3)	6327(5)	30(2)
C(23)	11443(6)	4789(4)	5613(5)	41(2)
C(24)	11955(6)	5255(5)	5246(5)	41(2)
C(25)	11957(7)	5806(5)	5593(5)	48(3)
C(26)	11402(7)	5879(4)	6312(5)	49(2)
C(31)	8594(6)	5926(3)	7137(5)	30(2)
C(32)	8246(6)	5920(4)	6343(6)	45(2)
C(33)	7226(8)	6248(5)	6010(6)	58(3)
C(34)	6560(8)	6610(5)	6485(7)	59(3)

Tabelle 6.20: Atomkoordinaten $(\cdot 10^4)$ und isotrope Temperaturparameter $(\text{Å}^2 \cdot 10^3)$ von $[\text{RuCl}_2(\text{CH}_3\text{CN})(\text{H}_2\text{L}^1)(\text{PPh}_3)] \cdot \text{CHCl}_3$

C(35)	6876(7)	6630(4)	7274(6)	49(2)
C(36)	7879(6)	6296(4)	7611(6)	39(2)
P(2)	8354(2)	4063(1)	7662(1)	28(1)
C(41)	9273(6)	3510(3)	7159(5)	32(2)
C(42)	9499(7)	3553(4)	6357(5)	40(2)
C(43)	10329(8)	3161(5)	6016(6)	58(3)
C(44)	10961(9)	2745(5)	6462(8)	64(3)
C(45)	10762(8)	2694(4)	7248(7)	57(3)
C(46)	9935(6)	3089(4)	7587(6)	42(2)
C(51)	7083(6)	4287(4)	6938(5)	32(2)
C(52)	6495(6)	4839(4)	7034(5)	40(2)
C(53)	5441(7)	5002(4)	6549(6)	52(3)
C(54)	4964(7)	4639(5)	5959(6)	57(3)
C(55)	5522(7)	4097(5)	5860(6)	56(3)
C(56)	6564(7)	3926(4)	6351(5)	39(2)
C(61)	7317(6)	3600(3)	8247(5)	31(2)
C(62)	6908(6)	3058(4)	7977(6)	45(2)
C(63)	6066(8)	2720(4)	8413(6)	52(3)
C(64)	5626(8)	2944(5)	9095(7)	60(3)
C(65)	5994(8)	3490(4)	9355(6)	53(3)
C(66)	6835(7)	3821(4)	8931(6)	45(2)
C(6)	3308(10)	7881(5)	4915(8)	91(4)
$\operatorname{Cl}(3)$	3048(4)	7377(2)	5659(3)	153(2)
$\operatorname{Cl}(4)$	1880(4)	8051(3)	4410(3)	200(3)
Cl(5)	4371(5)	7603(2)	4254(4)	174(2)

Abbildung 6.13: Ellipsoiddarstellung von $[RuCl_2(CH_3CN)(H_2L^1)(PPh_3)] \cdot CHCl_3$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.11 $[RuCl_2(PPh_3)(H_2L^1)]_2 \cdot 0.5 CH_2Cl_2$

Tabelle 6.21: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm RuCl_2(PPh_3)(H_2L^1)}]_2 \cdot 0.5 \, {\rm CH_2Cl_2}$

Summenformel	$\mathrm{C}_{74.5}\mathrm{H}_{67}\mathrm{N}_{2}\mathrm{Cl}_{5}\mathrm{P}_{4}\mathrm{Ru}_{2}$	
M (g/mol)	1493.57	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=13.285(2)~{ m \AA}$	$lpha=103.83(1)^o$
	${ m b}=14.175(2)~{ m \AA}$	$eta=91.23(1)^o$
	$ m c = 18.120(2)~{ m \AA}$	$\gamma=95.86(1)^o$
Volumen	$3292.3(8) \text{ Å}^3$	
Ζ	2	
Berechnete Dichte	$1.507~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	0.805 mm^{-1}	
F(000)	1522	
Kristallgröße	$0.20 \ge 0.09 \ge 0.02 \text{ mm}^3$	
Theta-Bereich	2.84 - 29.17°	
Indizes	$-16 \le h \le 16, -15 \le k \le 17, -10$	$22 \le l \le 21$
Zahl der gemessenen Reflexe	25383	
Zahl der unabhängigen Reflexe	$12767 \; [{ m R(int)} = 0.1750]$	
Zahl der verfeinerten Parameter	802	
Goof	0.863	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0790,wR_2=0.0915$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.2105,wR_2=0.1254$	
Restelektronendichte	0.515 und -0.477 e \cdot $\mathrm{\AA}^{-3}$	
Programm zur Strukturlösung	SHELXS 97 [119]	

	Х	У	Z	E(eq)
Ru(1)	9646(1)	3805(1)	325(1)	26(1)
P(1)	10378(2)	3322(2)	1287(2)	31(1)
C(1)	11743(7)	3358(7)	1109(5)	36(3)
C(11)	11954(8)	2610(8)	419(6)	37(3)
C(12)	12485(8)	1858(8)	479(6)	41(3)
C(13)	12693(9)	1160(9)	-156(7)	56(3)
C(14)	12333(9)	1210(9)	-867(7)	56(3)
C(15)	11770(8)	1989(8)	-935(6)	44(3)
C(16)	11580(9)	2676(8)	-270(6)	44(3)
N(1)	10998(6)	3464(6)	-319(4)	34(2)
C(21)	10210(8)	2112(7)	1482(5)	33(2)
C(22)	9822(8)	1292(7)	897(6)	35(3)
C(23)	9822(9)	358(8)	1006(6)	49(3)
C(24)	10170(9)	208(8)	1684(7)	45(3)
C(25)	10565(9)	997(9)	2261(7)	48(3)
C(26)	10578(9)	1928(8)	2154(6)	48(3)
C(31)	10382(8)	4128(8)	2235(6)	38(3)
C(32)	9681(8)	3966(8)	2773(6)	40(3)
C(33)	9720(11)	4575(10)	3480(7)	59(4)
C(34)	10510(13)	5336(11)	3699(7)	71(5)
C(35)	11163(11)	5514(9)	3193(7)	56(4)
C(36)	11120(10)	4913(9)	2472(6)	55(3)
P(2)	8079(2)	4046(2)	821(2)	31(1)
C(41)	7934(7)	4852(7)	1769(6)	31(2)
C(42)	7078(8)	4753(7)	2175(6)	43(3)

Tabelle 6.22: Atomkoordinaten ($\cdot 10^4$) und isotrope Temperaturparameter (Å² $\cdot 10^3$) von [RuCl₂(PPh₃)(H₂L¹)]₂ $\cdot 0.5$ CH₂Cl₂

C(43)	6934(9)	5406(9)	2851(6)	50(3)
C(44)	7657(10)	6176(9)	3143(6)	53(3)
C(45)	8531(8)	6300(7)	2750(6)	40(3)
C(46)	8668(8)	5640(7)	2075(6)	39(3)
C(51)	7222(8)	2944(8)	877(6)	39(3)
C(52)	7619(10)	2296(8)	1250(7)	52(3)
C(53)	7007(10)	1471(9)	1329(8)	55(3)
C(54)	6033(10)	1283(9)	1039(7)	62(4)
C(55)	5650(10)	1941(10)	650(7)	63(4)
C(56)	6255(8)	2751(8)	591(6)	44(3)
C(61)	7242(8)	4568(9)	219(7)	44(3)
C(62)	7076(9)	4040(10)	-545(6)	54(3)
C(63)	6400(11)	4423(17)	-972(9)	99(7)
C(64)	5953(12)	5240(17)	-724(13)	107(8)
C(65)	6143(11)	5746(12)	27(11)	82(5)
C(66)	6797(8)	5413(9)	507(8)	51(3)
$\operatorname{Cl}(1)$	8911(2)	2296(2)	-490(1)	40(1)
$\operatorname{Cl}(2)$	10596(2)	5415(2)	797(1)	33(1)
$\operatorname{Ru}(2)$	5543(1)	8938(1)	5329(1)	27(1)
P(1B)	5362(2)	8568(2)	6471(2)	32(1)
C(1B)	3982(8)	8455(8)	6601(6)	47(3)
C(11B)	3476(8)	7559(8)	6042(6)	40(3)
C(12B)	3080(9)	6726(10)	6256(8)	58(4)
C(13B)	2724(10)	5877(10)	5721(9)	66(4)
C(14B)	2751(9)	5881(9)	4967(8)	59(4)
C(15B)	3138(8)	6699(8)	4745(7)	52(3)
C(16B)	3501(7)	7514(7)	5260(6)	34(2)
N(1B)	3959(6)	8360(6)	5034(5)	37(2)

C(21B)	5625(9)	7415(9)	6719(6)	46(3)
C(22B)	5694(9)	7374(10)	7471(6)	55(3)
C(23B)	5759(12)	6494(12)	7648(9)	79(5)
C(24B)	5796(11)	5662(12)	7084(11)	84(5)
C(25B)	5691(11)	5696(8)	6339(8)	67(4)
C(26B)	5612(9)	6576(9)	6165(7)	52(3)
C(31B)	5816(8)	9495(8)	7326(6)	42(3)
C(32B)	5241(9)	10219(8)	7696(6)	43(3)
C(33B)	5603(9)	10899(9)	8364(7)	55(3)
C(34B)	6526(10)	10864(9)	8689(7)	59(4)
C(35B)	7154(10)	10155(9)	8320(6)	55(3)
C(36B)	6792(8)	9486(8)	7653(6)	45(3)
P(2B)	7271(2)	9402(2)	5392(2)	31(1)
C(41B)	7926(8)	10378(7)	6146(5)	29(2)
C(42B)	7404(8)	11067(8)	6618(6)	44(3)
C(43B)	7907(9)	11828(9)	7198(7)	52(3)
C(44B)	8927(10)	11891(9)	7303(7)	55(4)
C(45B)	9456(9)	11217(9)	6852(7)	51(3)
C(46B)	8965(8)	10488(7)	6294(6)	40(3)
C(51B)	7687(8)	9812(8)	4546(6)	39(3)
C(52B)	7458(8)	9171(8)	3842(6)	39(3)
C(53B)	7750(9)	9403(10)	3166(7)	58(3)
C(54B)	8285(9)	10286(11)	3200(8)	62(4)
C(55B)	8501(9)	10950(11)	3895(7)	57(4)
C(56B)	8237(8)	10688(9)	4559(7)	46(3)
C(61B)	8085(8)	8411(7)	5349(6)	35(3)
C(62B)	7900(8)	7788(9)	5824(6)	45(3)
C(63B)	8492(9)	7016(8)	5822(6)	41(3)

C(64B)	9233(10)	6883(9)	5338(7)	54(3)
0(01D)	5266(10)	0000(0)	0000(1)	01(0)
C(65B)	9475(8)	7515(8)	4873(7)	52(3)
C(66B)	8885(8)	8269(8)	4881(6)	45(3)
$\operatorname{Cl}(3)$	5865(2)	7403(2)	4536(2)	41(1)
$\operatorname{Cl}(4)$	5146(2)	9525(2)	4127(1)	32(1)
C(98)	5477(18)	7360(20)	2676(14)	64(8)
Cl(99)	4230(5)	7084(5)	2816(4)	64(2)
Cl(97)	5961(5)	7286(5)	1878(3)	63(2)

Abbildung 6.14: Ellipsoiddarstellung von der asymmetrischen Einheit von $[\operatorname{RuCl}_2(\operatorname{PPh}_3)(\operatorname{H}_2\operatorname{L}^1)]_2 \cdot 0.5 \operatorname{CH}_2\operatorname{Cl}_2$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.12 $[RuCl_2(H_2L^1)_2]$

Tabelle 6.23: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm RuCl}_2({\rm H}_2{\rm L}^1)_2]$

Summenformel	$\mathrm{C}_{38}\mathrm{H}_{36}\mathrm{N}_{2}\mathrm{Cl}_{2}\mathrm{P}_{2}\mathrm{Ru}$	
M (g/mol)	754.60	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/c$	
Elementarzelle	${ m a}=20.698(2)~{ m \AA}$	$lpha=90^o$
	$b = 16.289(1) \text{ \AA}$	$eta=103.57(1)^o$
	$ m c = 10.213(1)~{ m \AA}$	$\gamma=90^o$
Volumen	$3347.2(5) Å^3$	
Ζ	4	
Berechnete Dichte	$1.497~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	0.755 mm^{-1}	
F(000)	1544	
Kristallgröße	$0.18 \ge 0.10 \ge 0.02 \ \mathrm{mm}^3$	
Theta-Bereich	2.38 - 28.71°	
Indizes	-26 \leq h \leq 26, -20 \leq k \leq 20, -	$13 \le l \le 8$
Zahl der gemessenen Reflexe	18439	
Zahl der unabhängigen Reflexe	7221 [R(int) = 0.1113]	
Zahl der verfeinerten Parameter	407	
Goof	0.892	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0536,wR_2=0.1023$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1270,wR_2=0.1416$	
Restelektronendichte	0.578 und -0.760 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	х	У	Z	E(eq)
$\operatorname{Ru}(1)$	2516(1)	-1017(1)	7143(1)	26(1)
$\operatorname{Cl}(1)$	2571(1)	-1893(1)	9084(2)	36(1)
$\operatorname{Cl}(2)$	2422(1)	-542(1)	4885(2)	39(1)
P(1)	1654(1)	-196(1)	7300(2)	29(1)
$\mathrm{C}(1)$	885(3)	-668(4)	6249(8)	40(2)
C(11)	789(3)	-1509(4)	6749(7)	38(2)
C(12)	291(3)	-1698(5)	7394(9)	52(2)
C(13)	220(4)	-2465(6)	7886(9)	61(2)
C(14)	653(4)	-3079(6)	7717(9)	58(2)
C(15)	1165(3)	-2914(5)	7111(8)	45(2)
C(16)	1233(3)	-2129(4)	6625(7)	35(2)
N(1)	1779(2)	-1932(3)	6039(6)	34(1)
C(31)	1384(3)	24(4)	8852(7)	32(1)
C(32)	814(3)	501(4)	8801(8)	40(2)
C(33)	616(3)	691(5)	9953(8)	47(2)
C(34)	999(3)	420(5)	11203(8)	44(2)
C(35)	1553(3)	-43(5)	11261(7)	41(2)
C(36)	1746(3)	-253(4)	10097(7)	35(2)
C(41)	1624(3)	848(4)	6603(7)	35(2)
C(42)	1386(4)	1015(5)	5253(7)	52(2)
C(43)	1382(4)	1816(6)	4787(10)	72(3)
C(44)	1635(4)	2443(5)	5646(10)	60(2)
C(45)	1882(4)	2280(5)	6980(10)	59(2)
C(46)	1874(4)	1489(5)	7453(8)	44(2)
P(2)	3362(1)	-230(1)	8327(2)	29(1)

Tabelle 6.24: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[RuCl_2(H_2L^1)_2]$

C(2)	4124(3)	-877(4)	8668(7)	37(2)
C(21)	4303(3)	-1101(4)	7383(7)	34(1)
C(22)	4883(3)	-808(4)	7059(8)	43(2)
C(23)	5016(3)	-978(5)	5843(8)	51(2)
C(24)	4585(3)	-1440(5)	4890(8)	48(2)
C(25)	4014(3)	-1744(4)	5208(7)	39(2)
C(26)	3876(3)	-1588(4)	6429(7)	32(1)
N(2)	3275(2)	-1890(3)	6729(6)	34(1)
C(51)	3667(3)	712(4)	7685(7)	34(1)
C(52)	4236(3)	1104(5)	8432(8)	46(2)
C(53)	4470(4)	1812(5)	7961(10)	55(2)
C(54)	4151(4)	2127(5)	6740(10)	55(2)
C(55)	3594(4)	1756(5)	5971(8)	48(2)
C(56)	3351(3)	1045(5)	6453(7)	39(1)
C(61)	3358(3)	91(4)	10041(7)	34(1)
C(62)	3205(3)	888(5)	10330(7)	41(2)
C(63)	3147(4)	1119(6)	11607(8)	52(2)
C(64)	3238(4)	551(6)	12607(8)	55(2)
C(65)	3406(3)	-239(6)	12362(7)	50(2)
C(66)	3471(3)	-472(5)	11096(7)	42(2)

Abbildung 6.15: Ellipsoiddarstellung von $[RuCl_2(H_2L^1)_2]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.13 $[RuCl_2(DMSO)_2(H_2L^1)]$

Tabelle 6.25: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm RuCl_2(DMSO)_2(H_2L^1)}]$

Summenformel	$\mathrm{C}_{23}\mathrm{H}_{30}\mathrm{NCl_2PO_2S_2Ru}$		
M (g/mol)	619.58		
Messtemperatur	200(2) K		
Wellenlänge	0.71073 Å		
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$		
Elementarzelle	$\mathrm{a}=9.205(2)~\mathrm{\AA}$	$lpha=61.31(2)^o$	
	${ m b}=13.615(3)~{ m \AA}$	$eta=84.53(2)^o$	
	c = 14.031(3) Å	$\gamma=87.41(2)^{o}$	
Volumen	$1535.5(6) Å^3$		
Ζ	2		
Berechnete Dichte	$1.340 { m g/cm^3}$		
Linearer Absorptionskoeffizient	0.891 mm^{-1}		
F(000)	632		
Kristallgröße	$0.50 \ge 0.10 \ge 0.04 \text{ mm}^3$		
Theta-Bereich	2.22 - 29.48°		
Indizes	$-12 \le h \le 12, -18 \le k \le 18, -19 \le l \le 19$		
Zahl der gemessenen Reflexe	13064		
Zahl der unabhängigen Reflexe	8179 [R(int) = 0.0871]		
Zahl der verfeinerten Parameter	290		
Goof	0.845		
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0544,wR_2=0.1306$		
R_1 / wR_2 (alle Reflexe)	$R_1=0.0900,wR_2=0.1426$		
Restelektronendichte	0.856 und -1.228 e \cdot Å^{-3}		
Programm zur Strukturlösung	SHELXS 97 [119]		

	х	У	Z	E(eq)
$\operatorname{Ru}(1)$	771(1)	2376(1)	3694(1)	26(1)
P(1)	3251(1)	2683(1)	3365(1)	29(1)
O(4)	964(4)	4765(3)	1371(3)	39(1)
S(4)	122(1)	3714(1)	2000(1)	32(1)
C(41)	-1724(6)	4156(5)	2003(5)	49(1)
C(42)	30(7)	3110(5)	1127(4)	49(1)
O(5)	-274(5)	4674(3)	3702(3)	45(1)
S(5)	207(1)	3519(1)	4436(1)	33(1)
C(51)	-1208(7)	2928(5)	5514(5)	47(1)
C(52)	1521(6)	3672(4)	5228(4)	40(1)
$\operatorname{Cl}(1)$	-1758(1)	1673(1)	4137(1)	37(1)
$\operatorname{Cl}(2)$	1361(1)	1002(1)	3071(1)	34(1)
C(1)	4109(5)	1474(4)	4476(4)	34(1)
C(11)	3563(5)	1259(4)	5595(4)	33(1)
C(12)	4473(7)	1343(5)	6290(5)	48(1)
C(13)	3946(8)	1148(5)	7330(5)	57(2)
C(14)	2521(8)	841(5)	7690(5)	51(2)
C(15)	1587(7)	733(4)	7028(4)	40(1)
C(16)	2095(6)	969(4)	5977(4)	32(1)
N(1)	1140(4)	934(3)	5247(3)	29(1)
C(21)	4026(5)	3933(4)	3313(4)	33(1)
C(22)	5262(6)	3883(4)	3836(5)	41(1)
C(23)	5757(6)	4824(5)	3819(5)	48(1)
C(24)	5057(7)	5836(5)	3289(5)	49(1)
C(25)	3868(7)	5907(4)	2747(5)	45(1)

Tabelle 6.26: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[RuCl_2(DMSO)_2(H_2L^1)]$
C(21) (2.49(5) 2710(4) 2150(4) 25(1)	
C(31) 4243(5) 2710(4) 2152(4) 35(1)	
C(32) $5321(7)$ $1929(5)$ $2230(5)$ $53(2)$	
C(33) $6120(8)$ $2019(5)$ $1312(5)$ $63(2)$	
C(34) 5806(9) 2875(6) 283(5) 67(2)	
C(35) $4773(7)$ $3654(5)$ $193(5)$ $53(2)$	
C(36) $3984(7)$ $3577(5)$ $1123(4)$ $45(1)$	

Abbildung 6.16: Ellipsoiddarstellung von $[RuCl_2(DMSO)_2(H_2L^1)]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.14 $[ReCl_3(H_2L^2)]$

Tabelle 6.27: Kristallographische Daten und Parameter der Strukturrechnung von $\label{eq:ReCl_3(H_2L^2)]}$

Summenformel	$\mathrm{C}_{20}\mathrm{H}_{19}\mathrm{N}_{2}\mathrm{PCl}_{3}\mathrm{Re}$	
M (g/mol)	610.89	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=14.941(1)~{ m \AA}$	$\alpha = 103.90(1)^o$
	${ m b}=15.669(1))~{ m \AA}$	$\beta = 103.94(1)^o$
	$ m c = 19.179(1)~{ m \AA}$	$\gamma = 90.69(1)^o$
Volumen	$4218.5(4) \text{ Å}^3$	
Z	8	
Berechnete Dichte	$1.924 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	6.225 mm^{-1}	
F(000)	2352	
Kristallgröße	$0.18 \ge 0.14 \ge 0.08 \ \mathrm{mm^3}$	
Theta-Bereich	2.18 - 29.61°	
Indizes	$-19 \le h \le 20, -21 \le k \le 21, -2$	$26 \le l \le 26$
Zahl der gemessenen Reflexe	44497	
Zahl der unabhängigen Reflexe	$22508 \; [{\rm R(int)} = 0.0716]$	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	974	
Goof	0.926	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0476,wR_2=0.1067$	
R_1 / wR_2 (alle Reflexe)	$R_1=0.0848,wR_2=0.1296$	
Restelektronendichte	1.550 und -2.304 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	X	У	Z	E(eq)
$\operatorname{Re}(1)$	798(1)	3501(1)	483(1)	34(1)
P(11)	1916(2)	2965(1)	-175(1)	37(1)
C(11)	2423(7)	3878(6)	-423(5)	48(2)
C(111)	2783(7)	4630(6)	254(5)	46(2)
C(121)	3717(7)	4871(7)	506(6)	56(2)
C(131)	4055(8)	5545(7)	1158(7)	62(3)
C(141)	3479(7)	5952(7)	1544(6)	58(3)
C(151)	2551(7)	5727(6)	1308(6)	51(2)
C(161)	2194(6)	5079(6)	663(5)	43(2)
N(11)	1207(5)	4817(4)	434(4)	42(2)
C(21)	2884(7)	2585(6)	425(5)	46(2)
C(211)	3241(6)	3170(6)	1196(4)	39(2)
C(221)	4187(7)	3327(6)	1536(5)	50(2)
C(231)	4509(7)	3860(7)	2231(5)	51(2)
C(241)	3898(6)	4266(7)	2627(5)	48(2)
C(251)	2958(6)	4132(6)	2310(5)	45(2)
C(261)	2637(6)	3595(5)	1597(4)	37(2)
N(21)	1704(5)	3545(5)	1239(4)	41(2)
C(311)	1569(6)	2068(6)	-1006(5)	45(2)
C(321)	1399(10)	2246(9)	-1704(6)	75(4)
C(331)	1029(14)	1539(11)	-2323(7)	109(6)
C(341)	860(13)	733(10)	-2247(8)	98(5)
C(351)	1008(11)	566(8)	-1566(8)	82(4)
C(361)	1343(9)	1244(7)	-941(6)	67(3)
$\operatorname{Cl}(11)$	-482(2)	4161(2)	913(1)	51(1)

Tabelle 6.28: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[ReCl_3(H_2L^2)]$

$\operatorname{Cl}(21)$	64(2)	2101(1)	373(1)	46(1)
$\operatorname{Cl}(31)$	-56(2)	3444(1)	-781(1)	44(1)
$\operatorname{Re}(2)$	6607(1)	4228(1)	4504(1)	32(1)
P(12)	7204(2)	3263(1)	5262(1)	35(1)
C(12)	6241(6)	2867(6)	5578(5)	46(2)
C(112)	5488(6)	2432(6)	4924(5)	39(2)
C(122)	5275(7)	1517(6)	4741(6)	49(2)
C(132)	4631(8)	1089(6)	4099(7)	59(3)
C(142)	4176(8)	1578(7)	3637(6)	59(3)
C(152)	4345(6)	2478(6)	3790(5)	46(2)
C(162)	5001(6)	2897(5)	4428(5)	40(2)
N(12)	5232(4)	3828(4)	4587(4)	36(1)
C(22)	7562(6)	2262(5)	4724(4)	39(2)
C(212)	7008(5)	1885(5)	3939(4)	35(2)
C(222)	6940(7)	984(5)	3637(5)	42(2)
C(232)	6524(7)	623(6)	2891(5)	51(2)
C(242)	6171(8)	1160(6)	2441(5)	57(3)
C(252)	6178(7)	2056(6)	2728(5)	50(2)
C(262)	6595(6)	2414(5)	3483(4)	35(2)
N(22)	6583(5)	3302(4)	3797(4)	35(1)
C(312)	8175(6)	3587(6)	6085(4)	42(2)
C(322)	8334(9)	3103(8)	6616(6)	67(3)
C(332)	9079(12)	3333(11)	7220(7)	93(5)
C(342)	9675(10)	4035(9)	7296(7)	86(4)
C(352)	9551(10)	4493(9)	6757(9)	90(5)
C(362)	8796(8)	4259(8)	6146(7)	75(4)
$\operatorname{Cl}(12)$	5848(2)	5385(1)	4024(1)	43(1)
Cl(22)	8019(2)	4953(1)	4489(1)	46(1)

Cl(32)	6676(1)	5143(1)	5732(1)	42(1)
$\operatorname{Re}(3)$	8418(1)	-624(1)	5383(1)	32(1)
P(13)	7979(1)	-2125(1)	4745(1)	34(1)
C(13)	8995(6)	-2643(5)	4513(5)	40(2)
C(113)	9754(6)	-2553(5)	5213(5)	38(2)
C(123)	10055(7)	-3291(6)	5458(6)	48(2)
C(133)	10705(7)	-3203(6)	6125(6)	53(2)
C(143)	11057(6)	-2368(6)	6563(5)	46(2)
C(153)	10783(6)	-1632(6)	6321(4)	39(2)
C(163)	10137(5)	-1719(5)	5651(4)	34(2)
N(13)	9839(4)	-940(4)	5417(4)	32(1)
C(23)	7645(7)	-2735(6)	5359(5)	46(2)
C(213)	8209(6)	-2520(5)	6152(5)	41(2)
C(223)	8419(7)	-3183(6)	6532(5)	50(2)
C(233)	8913(8)	-2978(7)	7257(6)	54(2)
C(243)	9220(7)	-2116(6)	7641(5)	48(2)
C(253)	9036(6)	-1451(6)	7293(4)	41(2)
C(263)	8539(6)	-1665(5)	6541(4)	37(2)
N(23)	8443(5)	-1016(4)	6150(4)	38(2)
C(313)	7058(6)	-2387(6)	3899(5)	41(2)
C(323)	7218(8)	-2713(8)	3217(6)	62(3)
C(333)	6527(9)	-2808(10)	2580(6)	84(4)
C(343)	5658(9)	-2554(9)	2627(6)	70(3)
C(353)	5476(7)	-2270(9)	3308(7)	70(3)
C(363)	6178(7)	-2157(8)	3941(6)	60(3)
$\operatorname{Cl}(13)$	9025(2)	900(1)	5843(1)	42(1)
$\operatorname{Cl}(23)$	6923(2)	-91(2)	5182(1)	48(1)
Cl(33)	8440(1)	-587(1)	4129(1)	37(1)

$\operatorname{Re}(4)$	5443(1)	1496(1)	-552(1)	33(1)
P(14)	6966(1)	2099(1)	108(1)	34(1)
C(14)	7611(6)	1217(5)	442(5)	42(2)
C(114)	7589(6)	449(5)	-211(5)	40(2)
C(124)	8410(7)	213(6)	-408(6)	49(2)
C(134)	8401(7)	-470(6)	-1021(6)	53(2)
C(144)	7584(7)	-921(6)	-1431(6)	53(2)
C(154)	6746(7)	-701(5)	-1243(5)	44(2)
C(164)	6773(6)	-17(5)	-630(5)	40(2)
N(14)	5915(5)	221(4)	-439(4)	37(1)
C(24)	7600(6)	2413(5)	-509(5)	41(2)
C(214)	7443(6)	1829(5)	-1286(4)	38(2)
C(224)	8164(7)	1722(7)	-1647(5)	49(2)
C(234)	8001(8)	1261(7)	-2373(6)	64(3)
C(244)	7134(8)	842(7)	-2778(6)	60(3)
C(254)	6420(7)	923(6)	-2415(5)	50(2)
C(264)	6584(6)	1404(5)	-1680(4)	38(2)
N(24)	5886(5)	1423(4)	-1317(4)	38(2)
C(314)	7132(6)	3036(5)	899(5)	41(2)
C(324)	7579(15)	3019(10)	1593(7)	124(8)
C(334)	7649(17)	3755(9)	2185(7)	143(10)
C(344)	7227(11)	4466(7)	2086(7)	78(4)
C(354)	6773(11)	4523(8)	1387(8)	88(4)
C(364)	6724(10)	3787(7)	799(8)	81(4)
$\operatorname{Cl}(14)$	3913(2)	766(1)	-942(1)	44(1)
$\operatorname{Cl}(24)$	4725(2)	2847(1)	-546(1)	45(1)
Cl(34)	5362(2)	1624(1)	718(1)	40(1)

Abbildung 6.17: Ellipsoiddarstellung von $[\text{ReCl}_3(\text{H}_2\text{L}^2)]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.15 $[\operatorname{ReOCl}_2(\operatorname{L}^{13,Diethyl})]$

Tabelle 6.29: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReOCl}_2({\rm L}^{13,Diethyl})]$

· · · · · · · · · · · · · · · · · · ·		
Summenformel	$\mathrm{C}_{31}\mathrm{H}_{31}\mathrm{N}_{3}\mathrm{POCl}_{2}\mathrm{SRe}$	
M (g/mol)	781.49	
Messtemperatur	$200(2) \ {\rm K}$	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	orthorombisch, Fdd2	
Elementarzelle	${ m a}=33.318(2)~{ m \AA}$	$lpha=90^o$
	${ m b}=30.267(2)~{ m \AA}$	$eta=90^o$
	${ m c}=12.376(1)~{ m \AA}$	$\gamma=90^o$
Volumen	$12480(2) \text{ Å}^3$	
Ζ	16	
Berechnete Dichte	$1.664~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	4.213 mm^{-1}	
F(000)	6175	
Kristallgröße	$0.3 \ge 0.3 \ge 0.2 \text{ mm}^3$	
Theta-Bereich	$2.45 - 29.58^{o}$	
Indizes	$-45 \le h \le 45, -41 \le k \le 41,$	$-16 \le l \le 16$
Zahl der gemessenen Reflexe	33869	
Zahl der unabhängigen Reflexe	8393 [R(int) = 0.0920]	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	361	
Goof	1.108	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0347,wR_2=0.0766$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.0408,wR_2=0.0906$	
Restelektronendichte	0.831 und -2.217 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	X	У	Z	E(eq)
$\operatorname{Re}(1)$	728(1)	6928(1)	2500(1)	22(1)
O(10)	312(1)	7203(2)	2886(3)	30(1)
$\operatorname{Cl}(1)$	687(1)	6343(1)	3805(1)	36(1)
$\operatorname{Cl}(2)$	1423(1)	6693(1)	2132(1)	28(1)
$\mathrm{S}(1)$	499(1)	6372(1)	1335(1)	29(1)
P(1)	1136(1)	7378(1)	3740(1)	22(1)
N(3)	747(2)	6912(2)	-297(4)	31(1)
N(5)	852(1)	7371(2)	1252(4)	23(1)
N(51)	192(2)	6500(2)	-631(4)	34(1)
$\mathrm{C}(1)$	1389(2)	7794(2)	2903(4)	25(1)
C(2)	476(2)	6625(2)	59(6)	30(1)
C(4)	922(2)	7239(2)	222(4)	26(1)
C(11)	1085(2)	8045(2)	2231(4)	27(1)
C(12)	1044(2)	8500(2)	2363(5)	34(1)
C(13)	784(2)	8749(2)	1748(6)	41(2)
C(14)	554(2)	8541(2)	968(6)	39(1)
C(15)	589(2)	8094(2)	805(5)	31(1)
C(16)	852(2)	7835(2)	1436(4)	25(1)
C(21)	1525(2)	7107(2)	4522(4)	27(1)
C(22)	1931(2)	7163(3)	4303(6)	41(2)
C(23)	2219(2)	6946(3)	4917(8)	54(2)
C(24)	2106(2)	6669(4)	5741(7)	56(2)
C(25)	1703(3)	6604(4)	5957(7)	55(2)
C(26)	1416(2)	6827(3)	5367(6)	42(2)
C(31)	854(2)	7669(2)	4779(4)	25(1)

Tabelle 6.30: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von [ReOCl₂(L^{13,Diethyl})]

C(32)	1002(2)	8056(2)	5220(5)	31(1)
C(33)	807(2)	8249(2)	6094(5)	35(1)
C(34)	468(2)	8051(2)	6534(5)	34(1)
C(35)	325(2)	7661(2)	6090(5)	35(1)
C(36)	511(2)	7469(2)	5204(5)	31(1)
C(41)	1237(2)	7458(2)	-440(5)	31(1)
C(42)	1180(3)	7534(4)	-1541(6)	61(3)
C(43)	1489(3)	7698(5)	-2172(7)	83(4)
C(44)	1858(3)	7782(4)	-1747(7)	62(3)
C(45)	1921(2)	7701(3)	-659(7)	52(2)
C(46)	1613(2)	7543(2)	-11(6)	38(1)
C(52)	-97(2)	6148(2)	-394(6)	38(1)
C(53)	32(3)	5694(3)	-747(10)	69(3)
C(54)	167(2)	6708(3)	-1707(6)	46(2)
C(55)	454(4)	6509(3)	-2523(8)	69(3)

._____

Abbildung 6.18: Ellipsoiddarstellung von $[\text{ReOCl}_2(L^{13,Diethyl})]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.16 $[\operatorname{ReOCl}_2(\operatorname{L}^{13,Morph})] \cdot 2 \operatorname{Aceton}$

Tabelle 6.31: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReOCl}_2({\rm L}^{13,Morph})]\cdot 2\,{\rm Aceton}$

- (/)		
Summenformel	$\mathrm{C}_{37}\mathrm{H}_{41}\mathrm{N}_{2}\mathrm{PO}_{4}\mathrm{Cl}_{2}\mathrm{Re}$	
M (g/mol)	911.86	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/c$	
Elementarzelle	$a = 15.281(2) \text{ \AA}$	$lpha=90^o$
	${ m b}=15.252(1)~{ m \AA}$	$eta=107.46(1)^o$
	$ m c = 16.642(2) ~ { m \AA}$	$\gamma=90^o$
Volumen	$3700.0(2) \text{ Å}^3$	
Ζ	4	
Berechnete Dichte	$1.637~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	3.572 mm^{-1}	
F(000)	1824	
Kristallgröße	$0.26 \ x \ 0.07 \ x \ 0.04 \ mm^3$	
Theta-Bereich	$2.52 - 27.15^{o}$	
Indizes	$-19 \le h \le 19, -17 \le k \le 19, -17$	$21 \le l \le 20$
Zahl der gemessenen Reflexe	18348	
Zahl der unabhängigen Reflexe	$7792 \; [{\rm R(int)} = 0.0843]$	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	447	
Goof	1.088	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0534,wR_2=0.1230$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1005,wR_2=0.1459$	
Restelektronendichte	1.220 und -1.295 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	X	У	Z	E(eq)
$\operatorname{Re}(1)$	4733(1)	537(1)	7948(1)	35(1)
O(10)	4560(4)	-171(4)	7149(4)	40(1)
$\operatorname{Cl}(1)$	6228(2)	23(2)	8734(2)	51(1)
$\operatorname{Cl}(2)$	5022(2)	1838(2)	8888(2)	45(1)
P(1)	5431(2)	1579(2)	7201(1)	35(1)
$\mathrm{C}(1)$	4574(7)	2433(6)	6788(6)	40(2)
C(11)	3697(6)	2046(6)	6255(6)	40(2)
C(12)	3357(7)	2289(7)	5419(7)	47(2)
C(13)	2527(7)	1954(7)	4885(7)	51(3)
C(14)	2043(8)	1359(6)	5194(6)	48(2)
C(15)	2375(6)	1115(6)	6051(6)	41(2)
C(16)	3188(6)	1446(6)	6578(6)	38(2)
C(21)	6499(6)	2154(6)	7746(6)	38(2)
C(22)	7322(7)	1698(7)	7923(6)	45(2)
C(23)	8141(8)	2127(8)	8275(7)	54(3)
C(24)	8151(7)	3018(7)	8447(7)	52(3)
C(25)	7319(8)	3459(7)	8291(7)	54(3)
C(26)	6521(7)	3032(6)	7944(6)	43(2)
C(31)	5697(6)	1062(6)	6316(6)	35(2)
C(32)	5569(6)	1512(6)	5543(6)	41(2)
C(33)	5814(7)	1102(7)	4903(6)	45(2)
C(34)	6188(7)	267(7)	5014(6)	46(2)
C(35)	6326(7)	-162(6)	5762(7)	48(2)
C(36)	6071(7)	242(6)	6404(6)	39(2)
N(5)	3462(5)	1141(5)	7433(5)	34(2)

Tabelle 6.32: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[\text{ReOCl}_2(\mathcal{L}^{13,Morph})] \cdot 2 \text{ Aceton}$

C(4)	2823(6)	1209(6)	7845(6)	39(2)
C(41)	2222(6)	1994(6)	7721(6)	38(2)
C(42)	1328(6)	1918(7)	7762(7)	47(2)
C(43)	788(7)	2632(8)	7690(8)	57(3)
C(44)	1108(7)	3456(7)	7591(7)	56(3)
C(45)	1987(7)	3548(7)	7554(7)	49(2)
C(46)	2548(7)	2817(6)	7619(7)	46(2)
N(3)	2673(5)	626(5)	8376(5)	41(2)
N(51)	2615(5)	-790(5)	8815(5)	42(2)
C(52)	2994(7)	-1634(6)	9149(7)	49(2)
C(53)	2490(7)	-2010(7)	9696(7)	50(2)
O(54)	1535(5)	-2079(5)	9282(6)	61(2)
C(55)	1189(8)	-1222(7)	9068(8)	59(3)
C(56)	1583(7)	-777(8)	8457(8)	57(3)
C(2)	3102(6)	-118(6)	8667(6)	36(2)
S(1)	4295(2)	-236(2)	8975(2)	43(1)
C(86)	1608(12)	4099(12)	5232(12)	119(7)
C(87)	703(9)	3804(10)	4744(9)	71(3)
C(88)	367(11)	2951(9)	4990(10)	84(4)
O(89)	247(8)	4203(9)	4129(8)	112(4)
C(96)	-1043(10)	4171(9)	1822(9)	72(4)
C(97)	-538(9)	4495(7)	1257(8)	62(3)
C(98)	-869(14)	4149(9)	372(10)	101(6)
O(99)	81(8)	5023(7)	1473(7)	92(3)

Abbildung 6.19: Ellipsoiddarstellung von $[\text{ReOCl}_2(L^{13,Morph})] \cdot 2$ Aceton. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.17 $[\operatorname{ReN}(\operatorname{L}^{13,Diethyl})(\operatorname{PPh}_3)(\operatorname{ReO}_4)] \cdot 0.5 \operatorname{CH}_2\operatorname{Cl}_2$

Tabelle 6.33: Kristallographische Daten und Parameter der Strukturrechnung von $[\text{ReN}(L^{13,Diethyl})(\text{PPh}_3)(\text{ReO}_4)] \cdot 0.5 \text{ CH}_2\text{Cl}_2$

Summenformel	$\mathrm{C}_{49.5}\mathrm{H}_{47}\mathrm{N}_{4}\mathrm{P}_{2}\mathrm{O}_{4}\mathrm{ClRe}_{2}$	
M (g/mol)	1263.76	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=12.049(1)~{ m \AA}$	$lpha=98.2(1)^o$
	${ m b}=12.274(1)~{ m \AA}$	$\beta = 101.54(1)^o$
	$ m c = 19.040(2)~{ m \AA}$	$\gamma=112.39(1)^o$
Volumen	2475.4(4) Å ³	
Ζ	2	
Berechnete Dichte	$1.696~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	5.093 mm^{-1}	
F(000)	1234	
Kristallgröße	$0.23 \ge 0.15 \ge 0.10 \ \mathrm{mm^3}$	
Theta-Bereich	1.85 - 29.28°	
Indizes	$-16 \le h \le 15, -16 \le k \le 16, -2$	$26 \le l \le 25$
Zahl der gemessenen Reflexe	25981	
Zahl der unabhängigen Reflexe	13220 [R(int) = 0.0789]	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	594	
Goof	0.999	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0500,wR_2=0.1243$	
R_1 / wR_2 (alle Reflexe)	$R_1=0.0764,wR_2=0.1462$	
Restelektronendichte	2.020 und -1.901 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	х	У	Z	E(eq)
$\operatorname{Re}(1)$	8247(1)	4001(1)	2896(1)	31(1)
N(10)	9520(6)	3837(5)	3268(3)	42(1)
$\mathrm{P}(1)$	9184(2)	5542(2)	2244(1)	34(1)
$\mathrm{C}(1)$	9144(7)	6924(6)	2735(4)	40(1)
C(11)	9994(7)	7225(6)	3496(4)	41(1)
C(12)	11164(8)	8197(7)	3714(5)	50(2)
C(13)	12012(9)	8437(8)	4389(6)	60(2)
C(14)	11694(8)	7655(8)	4842(5)	57(2)
C(15)	10538(7)	6677(7)	4637(4)	46(2)
C(16)	9678(6)	6466(6)	3966(4)	36(1)
C(21)	10858(7)	6105(6)	2297(4)	39(1)
C(22)	11336(8)	6938(7)	1901(5)	52(2)
C(23)	12588(9)	7417(9)	1940(6)	68(3)
C(24)	13390(9)	7058(10)	2383(6)	73(3)
C(25)	12912(8)	6220(10)	2781(6)	62(2)
C(26)	11649(7)	5749(7)	2741(5)	48(2)
C(31)	8454(7)	5317(6)	1266(4)	40(1)
C(32)	8879(7)	4802(7)	734(4)	43(2)
C(33)	8323(9)	4598(8)	-19(4)	55(2)
C(34)	7349(10)	4906(9)	-238(5)	61(2)
C(35)	6925(8)	5437(8)	284(5)	56(2)
C(36)	7484(8)	5638(7)	1031(4)	46(2)
N(5)	8465(5)	5454(5)	3765(3)	33(1)
C(4)	7758(7)	5464(6)	4213(4)	37(1)
C(41)	8110(7)	6623(6)	4776(4)	39(1)

Tabelle 6.34: Atomkoordinaten $(\cdot 10^4)$ und isotrope Temperaturparameter $(\text{Å}^2 \cdot 10^3)$ von $[\text{ReN}(\text{L}^{13,Diethyl})(\text{PPh}_3)(\text{ReO}_4)] \cdot 0.5 \text{ CH}_2\text{Cl}_2$

C(42)	8184(8)	7676(6)	4559(4)	45(2)
C(43)	8552(9)	8749(7)	5095(5)	56(2)
C(44)	8820(8)	8740(8)	5824(5)	58(2)
C(45)	8739(9)	7714(8)	6043(5)	55(2)
C(46)	8356(8)	6626(7)	5514(4)	45(2)
N(3)	6725(6)	4592(5)	4260(3)	40(1)
C(2)	6202(7)	3414(6)	3932(4)	39(1)
N(51)	5203(7)	2728(6)	4120(5)	59(2)
C(52)	4709(9)	3267(9)	4650(6)	70(3)
C(53)	5278(16)	3349(19)	5403(8)	124(6)
C(54)	4330(40)	1380(30)	3690(20)	70(7)
C(55)	4820(20)	600(20)	3998(15)	104(7)
C(56)	4580(50)	1560(40)	3900(20)	70(7)
C(57)	3590(30)	990(30)	3234(19)	104(7)
S(1)	6682(2)	2627(2)	3317(1)	47(1)
P(2)	7563(2)	2240(2)	1877(1)	37(1)
C(71)	6042(7)	1909(7)	1264(4)	45(2)
C(72)	4972(8)	1230(8)	1449(5)	58(2)
C(73)	3798(10)	1082(11)	1055(7)	80(3)
C(74)	3713(10)	1608(11)	457(7)	83(4)
C(75)	4751(11)	2275(9)	271(6)	74(3)
C(76)	5936(8)	2448(7)	671(5)	53(2)
C(81)	8619(7)	2260(6)	1301(4)	41(2)
C(82)	8212(10)	1667(8)	554(5)	59(2)
C(83)	9087(11)	1714(10)	172(6)	73(3)
C(84)	10349(12)	2330(10)	514(7)	80(3)
C(85)	10764(9)	2894(8)	1259(6)	65(3)
C(86)	9893(8)	2849(7)	1656(5)	48(2)

C(91)	7350(7)	832(6)	2171(4)	41(2)
C(92)	6599(9)	-300(7)	1672(5)	57(2)
C(93)	6450(10)	-1368(7)	1898(6)	67(3)
C(94)	7015(10)	-1325(8)	2598(6)	65(3)
C(95)	7806(10)	-214(8)	3093(7)	68(3)
C(96)	7964(8)	865(7)	2877(5)	49(2)
$\operatorname{Re}(2)$	5282(1)	4679(1)	2305(1)	48(1)
O(1)	6580(5)	4387(4)	2300(3)	43(1)
O(2)	4146(7)	3514(7)	2500(6)	100(3)
O(3)	4750(10)	4925(12)	1480(5)	125(4)
O(4)	5728(7)	5966(6)	2976(5)	71(2)
C(99')	9820(20)	9991(14)	1709(14)	72(6)
Cl(1')	9017(5)	8532(4)	1173(2)	53(1)
Cl(2')	11338(6)	10414(6)	2145(4)	88(2)

_

Abbildung 6.20: Ellipsoiddarstellung von $[\text{ReN}(L^{13,Diethyl})(\text{PPh}_3)(\text{ReO}_4)] \cdot 0.5 \text{ CH}_2\text{Cl}_2$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.18 $[PdCl(L^{15})]$

Tabelle 6.35: Kristallographische Daten und Parameter der Strukturrechnung von $\label{eq:pdCl} [\mathrm{PdCl}(\mathrm{L^{15}})]$

()]		
Summenformel	$\mathrm{C}_{38}\mathrm{H}_{32}\mathrm{NClP_2Pd}$	
M (g/mol)	706.44	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=9.412(1)~{ m \AA}$	$lpha=86.00(1)^o$
	${ m b}=9.747(1)~{ m \AA}$	$eta=80.07(1)^o$
	${ m c}=18.48(2)~{ m \AA}$	$\gamma=67.93(1)^o$
Volumen	1547.3(3) Å ³	
Ζ	2	
Berechnete Dichte	$1.516~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	0.819 mm^{-1}	
F(000)	720	
Kristallgröße	$0.17 \ge 0.17 \ge 0.05 \text{ mm}^3$	
Theta-Bereich	$2.77 - 27.00^{o}$	
Indizes	$-12 \le h \le 11, -12 \le k \le 11, -12$	$23 \le l \le 23$
Zahl der gemessenen Reflexe	12574	
Zahl der unabhängigen Reflexe	$6609 \; [{\rm R(int)} = 0.0742]$	
Zahl der verfeinerten Parameter	388	
Goof	0.857	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0562,wR_2=0.1253$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1092,wR_2=0.1541$	
Restelektronendichte	0.564 und -0.698 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	х	у	Z	E(eq)
Pd(1)	9365(1)	2811(1)	7362(1)	20(1)
$\operatorname{Cl}(1)$	6660(2)	3765(2)	7678(1)	36(1)
P(1)	9198(2)	2093(2)	6223(1)	24(1)
$\mathrm{C}(1)$	11142(8)	844(7)	5828(3)	28(1)
C(11)	11969(7)	-216(7)	6385(3)	28(1)
C(12)	12459(8)	-1735(7)	6308(4)	33(1)
C(13)	13307(9)	-2707(8)	6793(4)	37(2)
C(14)	13650(8)	-2136(7)	7382(4)	35(2)
C(15)	13143(8)	-628(7)	7481(3)	28(1)
C(16)	12257(7)	387(7)	6994(3)	24(1)
C(21)	11549(7)	2810(6)	8712(3)	22(1)
C(22)	11776(8)	2641(7)	9443(3)	25(1)
C(23)	13253(8)	2096(7)	9620(4)	33(2)
C(24)	14538(9)	1729(8)	9070(4)	38(2)
C(25)	14323(8)	1872(7)	8341(4)	31(1)
C(26)	12829(7)	2403(6)	8148(3)	21(1)
C(31)	8589(8)	3554(7)	5554(3)	26(1)
C(32)	7239(8)	4786(8)	5745(4)	34(2)
C(33)	6699(9)	5875(8)	5219(4)	40(2)
C(34)	7495(10)	5741(8)	4514(4)	40(2)
C(35)	8856(10)	4543(9)	4326(4)	41(2)
C(36)	9416(9)	3439(8)	4834(3)	35(2)
N(1)	11702(6)	1942(6)	7044(3)	23(1)
C(2)	12665(7)	2577(7)	7335(3)	26(1)
C(41)	7947(7)	1058(7)	6184(3)	26(1)

Tabelle 6.36: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[PdCl(L^{15})]$

C(42)	8255(9)	-293(8)	6547(4)	36(2)
C(43)	7407(9)	-1160(8)	6502(4)	39(2)
C(44)	6166(9)	-644(8)	6110(4)	38(2)
C(45)	5830(9)	700(8)	5757(4)	38(2)
C(46)	6694(8)	1558(8)	5796(4)	35(2)
C(51)	8430(7)	3168(7)	9271(3)	24(1)
C(52)	8645(9)	1683(7)	9388(4)	33(1)
C(53)	7852(10)	1253(9)	10001(4)	43(2)
C(54)	6843(9)	2270(10)	10505(4)	47(2)
C(55)	6618(9)	3757(9)	10397(4)	41(2)
C(56)	7404(9)	4206(8)	9785(3)	33(2)
C(61)	9122(7)	5585(6)	8465(3)	24(1)
C(62)	7643(8)	6526(7)	8350(3)	31(1)
C(63)	7273(9)	8043(7)	8310(4)	38(2)
C(64)	8357(9)	8646(7)	8372(4)	35(2)
C(65)	9837(9)	7726(8)	8477(4)	39(2)
C(66)	10216(8)	6205(7)	8526(3)	30(1)
P(2)	9611(2)	3596(2)	8469(1)	21(1)

Abbildung 6.21: Ellipsoiddarstellung von $[PdCl(L^{15})]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.19 $[PdCl(L^{17})]$

Tabelle 6.37: Kristallographische Daten und Parameter der Strukturrechnung von $\label{eq:pdCl} [\mathrm{PdCl}(\mathrm{L}^{17})]$

(/]		
Summenformel	$\mathrm{C}_{37}\mathrm{H}_{30}\mathrm{NClP_2Pd}$	
M (g/mol)	692.41	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=9.765(1)~{ m \AA}$	$\alpha = 99.74(1)^o$
	${ m b}=12.050(1)~{ m \AA}$	$eta=96.48(1)^o$
	$ m c = 15.078(2)~{ m \AA}$	$\gamma = 103.33)^o$
Volumen	1680.0(3) Å ³	
Ζ	2	
Berechnete Dichte	$1.369~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	0.753 mm^{-1}	
F(000)	704	
Kristallgröße	$0.25 \ge 0.19 \ge 0.12 \text{ mm}^3$	
Theta-Bereich	2.17 - 29.66°	
Indizes	$-13 \le h \le 13, -16 \le k \le 16, -16$	$19 \le l \le 20$
Zahl der gemessenen Reflexe	18435	
Zahl der unabhängigen Reflexe	$8977 \; [{\rm R(int)} = 0.0614]$	
Zahl der verfeinerten Parameter	380	
Goof	0.945	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0582,wR_2=0.1558$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.0717,wR_2=0.1638$	
Restelektronendichte	0.801 und -0.899 e \cdot $\mathrm{\AA^{-3}}$	
Programm zur Strukturlösung	SHELXS 97 [119]	

	х	У	Z	E(eq)
Pd(1)	9326(1)	8243(1)	7521(1)	38(1)
$\operatorname{Cl}(1)$	6979(1)	8284(1)	7591(1)	59(1)
P(1)	8866(1)	6272(1)	7296(1)	40(1)
C(11)	10621(4)	6102(3)	7620(3)	43(1)
C(12)	10929(5)	5097(3)	7820(3)	51(1)
C(13)	12332(5)	5061(4)	8051(3)	57(1)
C(14)	13409(5)	6052(4)	8107(3)	53(1)
C(15)	13130(4)	7067(3)	7906(3)	48(1)
C(16)	11726(4)	7127(3)	7658(2)	41(1)
N(1)	11331(3)	8079(3)	7429(2)	45(1)
C(2)	12422(4)	9045(3)	7278(3)	48(1)
C(21)	12930(4)	10008(3)	8102(3)	46(1)
C(22)	14320(4)	10265(4)	8588(3)	58(1)
C(23)	14721(5)	11104(4)	9398(4)	70(1)
C(24)	13782(5)	11683(4)	9727(3)	65(1)
C(25)	12429(4)	11474(3)	9250(3)	51(1)
C(26)	11990(4)	10644(3)	8442(3)	43(1)
P(2)	10168(1)	10256(1)	7845(1)	39(1)
C(31)	7699(4)	5513(3)	7981(3)	42(1)
C(32)	6654(5)	4501(4)	7633(3)	58(1)
C(33)	5831(5)	3945(4)	8212(4)	67(1)
C(34)	6050(5)	4414(4)	9121(4)	61(1)
C(35)	7079(5)	5435(4)	9476(3)	60(1)
C(36)	7899(5)	5985(4)	8909(3)	54(1)
C(41)	8196(4)	5495(3)	6122(3)	49(1)

Tabelle 6.38: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Ų·10³) von $[\rm PdCl(L^{17})]$

C(42)	8622(7)	4548(5)	5727(4)	81(2)
C(43)	8025(8)	3983(6)	4849(4)	99(2)
C(44)	7042(8)	4376(6)	4364(4)	88(2)
C(45)	6629(7)	5304(5)	4745(4)	81(2)
C(46)	7196(6)	5888(4)	5628(3)	66(1)
C(51)	9311(4)	11131(3)	8585(3)	42(1)
C(52)	8856(4)	10735(3)	9346(3)	45(1)
C(53)	8445(4)	11478(4)	10017(3)	51(1)
C(54)	8447(4)	12599(4)	9915(3)	54(1)
C(55)	8843(5)	12974(4)	9151(3)	59(1)
C(56)	9282(5)	12239(3)	8473(3)	54(1)
C(61)	10230(4)	10881(3)	6828(3)	46(1)
C(62)	9000(5)	10554(4)	6188(3)	62(1)
C(63)	8964(6)	11038(6)	5405(4)	80(2)
C(64)	10149(7)	11798(6)	5264(4)	81(2)
C(65)	11378(7)	12119(6)	5896(5)	89(2)
C(66)	11422(5)	11655(5)	6681(4)	69(1)

Abbildung 6.22: Ellipsoiddarstellung von $[PdCl(L^{17})]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

$6.20 \quad [RuCl_2(PPh_3)(HL^{15})] \cdot CH_2Cl_2$

Tabelle 6.39: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm RuCl_2(PPh_3)(HL^{15})}]\cdot {\rm CH_2Cl_2}$

Summenformel	$\mathrm{C}_{57}\mathrm{H}_{50}\mathrm{NCl}_4\mathrm{P}_3\mathrm{Ru}$	
M (g/mol)	1084.76	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/n$	
Elementarzelle	${ m a}=12.484(1)~{ m \AA}$	$lpha=90^o$
	${ m b}=10.582(1)~{ m \AA}$	$eta=96.81(1)^o$
	${ m c}=39.596(3)~{ m \AA}$	$\gamma=90^o$
Volumen	5194.0(8) Å ³	
Ζ	4	
Berechnete Dichte	$1.387~{ m g/cm^3}$	
Linearer Absorptionskoeffizient	0.638 mm^{-1}	
F(000)	2224	
Kristallgröße	$0.25 \ge 0.2 \ge 0.14 \text{ mm}^3$	
Theta-Bereich	2.18 - 27.00°	
Indizes	$-15 \le h \le 15, -13 \le k \le 13, -13$	$50 \le l \le 42$
Zahl der gemessenen Reflexe	29905	
Zahl der unabhängigen Reflexe	$10892 \; [{ m R(int)} = 0.0844]$	
Zahl der verfeinerten Parameter	611	
Goof	0.926	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0648,wR_2=0.1656$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1050,wR_2=0.1823$	
Restelektronendichte	1.508 und -0.990 e \cdot $\mathrm{\AA^{-3}}$	
Programm zur Strukturlösung	SHELXS 97 [119]	

	Х	У	Z	E(eq)
$\operatorname{Ru}(1)$	4888(1)	649(1)	1196(1)	40(1)
$\operatorname{Cl}(1)$	5638(1)	2511(1)	962(1)	47(1)
$\operatorname{Cl}(2)$	3938(1)	-1325(1)	1271(1)	48(1)
P(1)	3275(1)	1539(1)	1375(1)	42(1)
$\mathrm{C}(1)$	2155(5)	1080(5)	1045(1)	49(1)
C(11)	2322(5)	1803(5)	730(1)	47(1)
C(12)	1637(5)	2784(6)	616(2)	61(2)
C(13)	1861(6)	3576(6)	353(2)	63(2)
C(14)	2814(6)	3418(6)	216(2)	65(2)
C(15)	3517(5)	2434(5)	320(1)	52(1)
C(16)	3254(4)	1599(5)	572(1)	44(1)
C(31)	2940(4)	3228(5)	1404(1)	47(1)
C(32)	2191(5)	3670(5)	1608(2)	50(1)
C(33)	1948(6)	4949(6)	1622(2)	65(2)
C(34)	2441(6)	5796(6)	1427(2)	67(2)
C(35)	3155(6)	5368(6)	1215(2)	63(2)
C(36)	3417(5)	4083(5)	1201(2)	52(1)
C(41)	2830(4)	885(5)	1760(2)	47(1)
C(42)	2230(5)	-234(5)	1758(2)	51(1)
C(43)	1971(5)	-778(6)	2054(2)	63(2)
C(44)	2318(5)	-220(7)	2364(2)	69(2)
C(45)	2889(5)	918(7)	2375(2)	64(2)
C(46)	3150(5)	1449(6)	2076(2)	53(1)
N(1)	3914(4)	523(4)	674(1)	44(1)
C(2)	4527(5)	50(5)	393(1)	48(1)

Tabelle 6.40: Atomkoordinaten $(\cdot 10^4)$ und isotrope Temperaturparameter $(\text{Å}^2 \cdot 10^3)$ von $[\text{RuCl}_2(\text{PPh}_3)(\text{HL}^{15})] \cdot \text{CH}_2\text{Cl}_2$

C(21)	4695(5)	-1342(5)	425(1)	48(1)
C(22)	4112(5)	-2138(6)	191(2)	59(2)
C(23)	4235(6)	-3443(6)	215(2)	67(2)
C(24)	4937(6)	-3960(6)	479(2)	66(2)
C(25)	5528(5)	-3177(5)	713(2)	56(2)
C(26)	5424(5)	-1861(5)	688(1)	48(1)
C(51)	7195(5)	-193(5)	712(1)	49(1)
C(52)	7446(5)	-893(6)	432(2)	54(1)
C(53)	8268(5)	-520(6)	252(2)	63(2)
C(54)	8871(6)	523(6)	348(2)	67(2)
C(55)	8624(6)	1226(7)	622(2)	70(2)
C(56)	7783(5)	871(6)	801(2)	60(2)
C(61)	7006(5)	-1833(5)	1267(2)	50(1)
C(62)	6546(5)	-2457(5)	1522(2)	56(2)
C(63)	7161(6)	-3253(6)	1752(2)	63(2)
C(64)	8232(6)	-3456(6)	1714(2)	68(2)
C(65)	8699(6)	-2856(6)	1463(2)	65(2)
C(66)	8094(5)	-2058(6)	1239(2)	55(1)
P(2)	6180(1)	-754(1)	981(1)	45(1)
P(3)	5922(1)	981(1)	1714(1)	43(1)
C(71)	5603(4)	2385(5)	1963(1)	43(1)
C(72)	5323(4)	3517(5)	1798(2)	50(1)
C(73)	5095(5)	4594(6)	1978(2)	58(2)
C(74)	5151(5)	4553(6)	2325(2)	60(2)
C(75)	5431(5)	3443(6)	2494(2)	57(2)
C(76)	5650(5)	2380(6)	2316(1)	51(1)
C(81)	5975(4)	-220(5)	2047(1)	47(1)
C(82)	5069(5)	-953(5)	2069(2)	49(1)

C(83)	5032(6)	-1823(6)	2333(2)	61(2)
C(84)	5910(6)	-1929(6)	2579(2)	64(2)
C(85)	6788(5)	-1200(6)	2571(2)	59(2)
C(86)	6829(5)	-329(6)	2309(2)	52(1)
C(91)	7361(5)	1317(5)	1679(1)	47(1)
C(92)	8140(5)	380(6)	1718(1)	51(1)
C(93)	9203(5)	643(7)	1665(2)	52(2)
C(94)	9499(5)	1837(7)	1571(2)	68(2)
C(95)	8726(5)	2778(7)	1532(2)	63(2)
C(96)	7667(5)	2537(6)	1588(1)	52(1)
C(98)	-1400(12)	5386(12)	636(3)	64(4)
$\operatorname{Cl}(3)$	-228(3)	4976(3)	890(1)	64(1)
$\operatorname{Cl}(4)$	-2462(3)	4431(3)	680(1)	82(1)
C(99)	1503(18)	7255(16)	542(6)	114(1)
Cl(5)	833(5)	6824(4)	170(2)	114(1)
Cl(6)	766(5)	8168(4)	808(2)	114(1)

Abbildung 6.23: Ellipsoiddarstellung von $[RuCl_2(PPh_3)(HL^{15})] \cdot CH_2Cl_2$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]
6.21 $[ReOCl_2(HL^{12})]$

Tabelle 6.41: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReOCl_2HL^{12}}]$

Summenformel	$\mathrm{C}_{26}\mathrm{H}_{23}\mathrm{NCl}_{2}\mathrm{PO}_{2}\mathrm{Re}$	
M (g/mol)	669.56	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=10.052(5)~{ m \AA}$	$lpha=81.99(1)^o$
	b = 11.136(1) Å	$eta=83.70(1)^o$
	c = 12.050) Å	$\gamma=63.25(1)^o$
Volumen	1191.1(6) Å ³	
Ζ	2	
Berechnete Dichte	$1.867~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	5.418 mm^{-1}	
F(000)	652	
Kristallgröße	$0.300 \ge 0.200 \ge 0.050 \text{ mm}^3$	
Theta-Bereich	2.77 - 29.16°	
Indizes	$-13 \le h \le 13, -15 \le k \le 15, -2$	$16 \le l \le 16$
Zahl der gemessenen Reflexe	11911	
Zahl der unabhängigen Reflexe	$6293 \; [{ m R(int)} = 0.0549]$	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	298	
Goof	1.073	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0370,wR_2=0.0923$	
R_1 / wR_2 (alle Reflexe)	$R_1=0.0425,wR_2=0.0958$	
Restelektronendichte	2.218 und -3.453 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	x	У	Z	E(eq)
$\operatorname{Re}(1)$	2081(1)	3484(1)	3143(1)	21(1)
O(10)	2980(4)	2966(4)	4349(3)	31(1)
$\operatorname{Cl}(1)$	2048(1)	1456(1)	2830(1)	31(1)
$\operatorname{Cl}(2)$	-479(1)	4203(2)	3887(1)	37(1)
P(1)	4398(1)	2959(1)	2066(1)	22(1)
C(1)	4537(5)	4546(4)	1669(3)	23(1)
C(11)	4394(5)	5316(4)	2649(4)	25(1)
C(12)	5572(6)	5632(5)	2765(4)	30(1)
C(13)	5550(6)	6364(6)	3605(5)	35(1)
C(14)	4335(6)	6809(6)	4369(5)	36(1)
C(15)	3156(6)	6511(5)	4273(4)	33(1)
C(16)	3185(5)	5754(5)	3426(4)	25(1)
C(21)	6011(5)	1801(5)	2851(4)	25(1)
C(22)	7254(5)	2028(5)	2882(4)	32(1)
C(23)	8456(6)	1107(6)	3516(5)	38(1)
C(24)	8406(6)	-1(6)	4097(5)	40(1)
C(25)	7175(7)	-256(6)	4075(5)	42(1)
C(26)	5976(6)	651(5)	3445(5)	34(1)
C(31)	4661(5)	2273(5)	734(4)	25(1)
C(32)	6042(6)	1888(6)	146(4)	36(1)
C(33)	6267(7)	1398(7)	-890(5)	44(1)
C(34)	5168(7)	1272(6)	-1344(4)	38(1)
C(35)	3769(6)	1656(5)	-773(4)	34(1)
C(36)	3514(6)	2161(5)	268(4)	30(1)
N(1)	1870(4)	5487(4)	3444(3)	27(1)

Tabelle 6.42: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von [ReOCl₂(HL¹²)]

C(2)	554(6)	6695(5)	2917(5)	35(1)
C(41)	643(5)	6799(5)	1662(5)	32(1)
C(42)	239(7)	8045(6)	1026(6)	48(2)
C(43)	226(8)	8146(7)	-130(6)	54(2)
C(44)	629(7)	7011(7)	-670(5)	49(2)
C(45)	1033(6)	5754(6)	-59(5)	37(1)
C(46)	998(5)	5660(5)	1107(4)	31(1)
O(1)	1282(4)	4476(3)	1705(3)	28(1)

Abbildung 6.24: Ellipsoiddarstellung von $[ReOCl_2(HL^{12})]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.22 [ReO(L¹²)(malt)]

Tabelle 6.43: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReO}({\rm L}^{12})({\rm malt})]$

Summenformel	$C_{32}H_{27}NPO_5Re$	
M (g/mol)	722.75	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/n$	
Elementarzelle	${ m a}=11.594(6)~{ m \AA}$	$lpha=90^o$
	${ m b}=16.624(6)~{ m \AA}$	$eta=101.70(4)^o$
	$ m c = 14.760(6)~{ m \AA}$	$\gamma=90^o$
Volumen	2786(2) Å ³	
Ζ	4	
Berechnete Dichte	$1.723 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	4.462 mm^{-1}	
F(000)	1424	
Kristallgröße	$0.400 \ge 0.300 \ge 0.200 \text{ mm}^3$	
Theta-Bereich	2.78 - 29.24°	
Indizes	$-15 \le h \le 15, -22 \le k \le 22, -2$	$19 \le l \le 20$
Zahl der gemessenen Reflexe	20686	
Zahl der unabhängigen Reflexe	7461 [R(int) = 0.0520]	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	361	
Goof	1.088	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0329,wR_2=0.0794$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.0380,wR_2=0.0817$	
Restelektronendichte	2.218 und -3.453 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	х	У	Z	E(eq)
$\operatorname{Re}(1)$	1545(1)	2417(1)	3091(1)	23(1)
O(10)	2773(2)	2746(2)	2749(2)	34(1)
P(1)	364(1)	2162(1)	1577(1)	23(1)
$\mathrm{C}(1)$	-943(3)	2771(2)	1560(2)	28(1)
C(11)	-566(2)	3638(2)	1634(2)	26(1)
C(12)	-1000(3)	4152(2)	893(2)	29(1)
C(13)	-684(3)	4955(2)	913(3)	35(1)
C(14)	100(3)	5245(2)	1672(3)	35(1)
C(15)	545(3)	4749(2)	2415(2)	32(1)
C(16)	222(3)	3930(2)	2417(2)	26(1)
C(21)	-142(3)	1135(2)	1354(2)	28(1)
C(22)	-1331(3)	935(2)	1252(3)	38(1)
C(23)	-1680(4)	130(3)	1121(3)	51(1)
C(24)	-858(5)	-460(3)	1084(3)	56(1)
C(25)	318(4)	-267(2)	1179(3)	50(1)
C(26)	675(3)	531(2)	1300(3)	38(1)
C(31)	894(3)	2424(2)	539(2)	27(1)
C(32)	2093(3)	2445(2)	552(3)	37(1)
C(33)	2492(4)	2576(2)	-277(3)	39(1)
C(34)	1690(3)	2692(2)	-1092(2)	36(1)
C(35)	493(3)	2665(2)	-1110(2)	34(1)
C(36)	89(3)	2531(2)	-295(3)	32(1)
N(1)	703(2)	3431(2)	3178(2)	26(1)
C(2)	987(3)	3879(2)	4071(2)	34(1)
C(41)	784(3)	3396(2)	4879(2)	31(1)

Tabelle 6.44: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[ReO(L^{12})(malt)]$

C(42)	151(3)	3704(2)	5506(3)	40(1)
C(43)	6(4)	3260(3)	6278(3)	44(1)
C(44)	464(4)	2499(2)	6407(3)	40(1)
C(45)	1097(3)	2173(2)	5785(2)	32(1)
C(46)	1284(3)	2634(2)	5034(2)	29(1)
O(1)	1974(2)	2331(1)	4476(2)	30(1)
C(51)	1150(4)	-648(2)	3813(3)	45(1)
C(52)	1964(3)	-132(2)	3644(3)	37(1)
C(53)	1639(3)	685(2)	3455(2)	28(1)
C(54)	454(3)	916(2)	3492(2)	27(1)
C(55)	-320(3)	342(2)	3661(3)	36(1)
C(56)	-1584(3)	469(3)	3667(4)	52(1)
O(2)	2310(2)	1221(1)	3230(2)	29(1)
O(3)	167(2)	1677(1)	3310(2)	26(1)
O(4)	32(2)	-435(2)	3827(2)	47(1)

Abbildung 6.25: Ellipsoiddarstellung von $[ReO(L^{12})(malt)]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.23 $[\operatorname{ReO}(\operatorname{HL}^{22})] \cdot 0.5$ Toluol

Tabelle 6.45: Kristallographische	Daten und Pa	arameter der S	Strukturrechnung von
$[\text{ReO}(\text{HL}^{22})\text{Cl}] \cdot 0.5 \text{ Toluol}$			

Summenformel	$\mathrm{C}_{37.5}\mathrm{H}_{34}\mathrm{N}_{2}\mathrm{PO}_{3}\mathrm{Re}$	
M (g/mol)	777.84	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=12.088(1)~{ m \AA}$	$\alpha = 107.10(1)^o$
	${ m b}=12.739(1))~{ m \AA}$	$eta=100.37(1)^o$
	$ m c = 14.180(1)~{ m \AA}$	$\gamma = 116.84(1)^o$
Volumen	1732.4(2) Å ³	
Ζ	2	
Berechnete Dichte	$1.491~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	3.590 mm^{-1}	
F(000)	774	
Kristallgröße	$0.20 \ge 0.15 \ge 0.05 \ \mathrm{mm}^3$	
Theta-Bereich	2.98 - 29.58°	
Indizes	-16 \leq h \leq 16, -15 \leq k \leq 17, -	$19 \le l \le 19$
Zahl der gemessenen Reflexe	18024	
Zahl der unabhängigen Reflexe	9243 [R(int) = 0.0511]	
Absorptionskorrektur	Integration	
Zahl der verfeinerten Parameter	386	
Goof	1.008	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0431,wR_2=0.1177$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.0551,wR_2=0.1219$	
Restelektronendichte	2.116 und -2.700 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	X	у	Z	E(eq)
$\operatorname{Re}(1)$	7022(1)	6240(1)	6880(1)	27(1)
O(10)	5808(4)	4828(4)	6805(3)	38(1)
P(1)	7724(1)	7423(1)	8726(1)	30(1)
C(1)	7274(5)	8637(5)	8963(4)	33(1)
C(11)	5777(5)	7991(5)	8498(4)	33(1)
C(12)	5192(6)	8287(7)	9217(5)	45(1)
C(13)	3807(7)	7736(8)	8886(6)	54(2)
C(14)	3019(7)	6925(7)	7848(7)	53(2)
C(15)	3591(6)	6615(6)	7118(6)	44(1)
C(16)	4960(5)	7136(5)	7432(5)	34(1)
N(1)	5438(4)	6730(4)	6605(4)	33(1)
C(3)	5582(6)	7477(6)	5950(5)	38(1)
C(31)	6785(6)	8849(6)	6512(5)	37(1)
C(32)	6711(8)	9900(7)	6528(6)	49(2)
C(33)	7845(9)	11152(7)	6994(7)	59(2)
C(34)	9073(8)	11351(7)	7441(6)	54(2)
C(35)	9174(7)	10301(6)	7448(5)	45(1)
C(36)	8029(6)	9029(6)	6981(4)	37(1)
O(1)	8154(4)	8067(4)	7032(3)	33(1)
$\mathrm{C}(2)$	9535(5)	8265(5)	9195(4)	35(1)
C(21)	9879(5)	7239(6)	9015(4)	33(1)
C(22)	10699(6)	7306(7)	9887(5)	42(1)
C(23)	11030(7)	6403(8)	9837(5)	47(2)
C(24)	10489(7)	5343(7)	8861(5)	46(1)
C(25)	9671(6)	5240(6)	7987(5)	40(1)
C(31) C(32) C(33) C(34) C(35) C(36) O(1) C(2) C(21) C(22) C(23) C(24) C(25)	6785(6) 6711(8) 7845(9) 9073(8) 9174(7) 8029(6) 8154(4) 9535(5) 9879(5) 10699(6) 11030(7) 10489(7) 9671(6)	$\begin{array}{c} 8849(6)\\ 9900(7)\\ 11152(7)\\ 111351(7)\\ 10301(6)\\ 9029(6)\\ 8067(4)\\ 8265(5)\\ 7239(6)\\ 7306(7)\\ 6403(8)\\ 5343(7)\\ 5240(6)\\ \end{array}$	6512(5) 6528(6) 6994(7) 7441(6) 7448(5) 6981(4) 7032(3) 9195(4) 9015(4) 9887(5) 9837(5) 8861(5) 7987(5)	$\begin{array}{c} 37(1) \\ 49(2) \\ 59(2) \\ 54(2) \\ 45(1) \\ 37(1) \\ 33(1) \\ 33(1) \\ 35(1) \\ 33(1) \\ 42(1) \\ 47(2) \\ 46(1) \\ 40(1) \end{array}$

Tabelle 6.46: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[ReO(HL^{22})] \cdot 0.5$ Toluol

C(26)	9366(5)	6188(5)	8016(4)	32(1)
N(2)	8569(4)	6054(4)	7065(4)	32(1)
C(4)	8758(6)	5430(6)	6104(4)	36(1)
C(41)	8816(6)	6068(5)	5368(4)	35(1)
C(42)	9881(6)	6510(7)	5030(5)	45(1)
C(43)	9892(8)	7046(8)	4310(6)	53(2)
C(44)	8793(8)	7121(8)	3905(6)	56(2)
C(45)	7742(7)	6708(7)	4253(5)	47(1)
C(46)	7746(5)	6185(5)	4980(4)	34(1)
O(2)	6694(4)	5733(4)	5284(3)	35(1)
C(51)	7214(5)	6599(6)	9564(4)	34(1)
C(52)	6859(6)	5319(6)	9252(5)	43(1)
C(53)	6543(7)	4726(7)	9926(6)	51(2)
C(54)	6563(7)	5387(8)	10893(6)	49(2)
C(55)	6877(8)	6629(7)	11194(5)	50(2)
C(56)	7229(7)	7265(7)	10548(5)	44(1)
C(61)	7350(9)	10136(9)	2684(8)	53(3)
C(62)	5969(9)	9492(10)	2275(7)	42(3)
C(63)	5210(8)	8676(12)	2680(10)	104(8)
C(64)	5833(12)	8503(13)	3494(11)	95(7)
C(65)	7214(12)	9147(12)	3902(8)	71(4)
C(66)	7973(8)	9963(11)	3497(8)	64(4)
C(67)	8100(20)	10850(20)	2358(18)	81(5)

Abbildung 6.26: Ellipsoiddarstellung von $[\text{ReO}(\text{HL}^{22})] \cdot 0.5$ Toluol. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.24 [ReOCl{ μ_2 -(OL³)}ReOCl₃] \cdot 0.25 CH₂Cl₂

Tabelle 6.47: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReOCl}\{\mu_2\text{-}({\rm OL}^3)\}{\rm ReOCl}_3]\cdot 0.25\,{\rm CH}_2{\rm Cl}_2$

Summenformel	$C_{43.25}H_{31.5}N_3O_5Cl_{4.5}P_2Re_2$	
M (g/mol)	1267.08	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=12.615(2)~{ m \AA}$	$lpha=100.59(1)^o$
	b = 14.186(2) Å	$eta=105.15(1)^o$
	$ m c = 16.108(2) ~ { m \AA}$	$\gamma=93.21(1)^o$
Volumen	2718.6(7) Å ³	
Ζ	2	
Berechnete Dichte	$1.548~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	4.768 mm^{-1}	
F(000)	1217	
Kristallgröße	$0.140 \ge 0.073 \ge 0.030 \text{ mm}^3$	
Theta-Bereich	2.29 - 27.75°	
Indizes	$-13 \le h \le 16, -18 \le k \le 18, -18$	$20 \le l \le 20$
Zahl der gemessenen Reflexe	23.821	
Zahl der unabhängigen Reflexe	11704 [R(int) = 0.1127]	
Zahl der verfeinerten Parameter	542	
Goof	1.119	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0579,wR_2=0.0988$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1438,wR_2=0.1186$	
Restelektronendichte	1.349 und -0.964 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	Х	У	Z	E(eq)
$\operatorname{Re}(1)$	6917(1)	1763(1)	2329(1)	33(1)
O(10)	5565(6)	2049(6)	2253(4)	41(2)
$\operatorname{Cl}(1)$	6513(2)	72(2)	2142(2)	41(1)
O(11)	8578(6)	1357(5)	2417(4)	33(2)
P(1)	8999(2)	945(2)	1645(2)	32(1)
C(11)	7916(9)	440(8)	668(6)	36(3)
C(12)	7949(10)	-439(8)	121(6)	39(3)
C(13)	7065(12)	-759(9)	-661(8)	51(3)
C(14)	6220(10)	-231(9)	-850(7)	45(3)
C(15)	6156(10)	633(10)	-319(7)	51(3)
C(16)	7005(9)	954(8)	454(6)	33(3)
N(1)	6995(7)	1806(6)	1090(5)	35(2)
C(41)	9803(8)	1861(7)	1402(6)	29(2)
C(42)	9891(10)	1814(8)	564(7)	42(3)
C(43)	10559(12)	2532(9)	395(8)	57(3)
C(44)	11123(12)	3276(10)	1047(9)	61(4)
C(45)	11023(11)	3336(10)	1883(8)	60(4)
C(46)	10362(10)	2615(8)	2058(7)	43(3)
C(51)	9837(10)	9(7)	1897(6)	34(3)
C(52)	9404(12)	-725(9)	2257(8)	52(3)
C(53)	9993(12)	-1478(9)	2414(8)	52(3)
C(54)	10983(12)	-1542(9)	2191(8)	53(3)
C(55)	11389(10)	-872(9)	1844(7)	45(3)
C(56)	10800(10)	-93(8)	1685(6)	38(3)
C(17)	7279(10)	2689(8)	942(7)	40(3)

Tabelle 6.48: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[ReOCl{\mu_2-(OL^3)}ReOCl_3] \cdot 0.25 CH_2Cl_2$

O(17)	7306(8)	2884(6)	231(5)	55(2)
C(21)	7643(10)	3457(9)	1766(7)	42(3)
C(22)	8077(11)	4429(9)	1876(8)	48(3)
C(23)	8497(11)	4930(10)	2710(8)	54(3)
C(24)	8481(10)	4570(8)	3437(8)	40(3)
C(25)	8030(9)	3644(8)	3305(7)	34(2)
N(26)	7645(7)	3118(6)	2493(5)	33(2)
$\operatorname{Re}(2)$	7494(1)	4210(1)	5683(1)	40(1)
O(20)	6691(8)	4595(6)	6312(6)	58(2)
$\operatorname{Cl}(2)$	8895(3)	3649(2)	6715(2)	55(1)
$\operatorname{Cl}(3)$	8782(3)	5557(2)	5861(2)	58(1)
Cl(4)	6436(3)	4705(2)	4427(2)	52(1)
P(2)	6432(2)	2584(2)	5288(2)	32(1)
C(31)	7282(9)	1625(7)	5042(6)	36(3)
C(32)	7472(9)	965(7)	5592(7)	36(3)
C(33)	8091(11)	195(9)	5422(8)	50(3)
C(34)	8510(10)	99(8)	4708(7)	43(3)
C(35)	8312(9)	752(8)	4155(7)	38(3)
C(36)	7727(8)	1506(7)	4317(6)	28(2)
N(3)	7596(7)	2154(6)	3718(5)	31(2)
C(37)	7980(9)	3071(7)	4006(7)	30(2)
O(37)	8318(7)	3475(5)	4797(5)	42(2)
C(61)	5938(10)	2297(8)	6186(7)	38(3)
C(62)	6469(11)	2726(9)	7055(7)	48(3)
C(63)	6093(12)	2433(9)	7720(8)	54(3)
C(64)	5229(11)	1762(9)	7555(8)	51(3)
C(65)	4686(12)	1357(9)	6691(8)	56(3)
C(66)	5046(11)	1619(9)	6019(7)	49(3)

C(71)	5178(9)	2301(8)	4382(6)	34(3)
C(72)	4906(9)	1422(8)	3831(7)	39(3)
C(73)	3860(11)	1209(10)	3238(8)	55(4)
C(74)	3106(11)	1841(11)	3173(9)	60(4)
C(75)	3409(11)	2767(10)	3744(9)	62(4)
C(76)	4428(10)	3006(9)	4338(7)	42(3)
Cl(97)	1980(11)	2574(7)	6346(8)	50(2)
C(98)	980(30)	2610(30)	5465(13)	50(2)
Cl(99)	741(11)	2094(8)	4449(8)	50(2)

Abbildung 6.27: Ellipsoiddarstellung von $[\text{ReOCl}_4\mu_2-(\text{OL}^3)]$ ReOCl₃] · 0.25 CH₂Cl₂. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.25 $[ReCl{\mu_2-(O_2L^3)}(\mu_2-Cl)(\mu_2-O)ReCl_3] \cdot 0.25 CH_2Cl_2$

Tabelle 6.49: Kristallographische Daten und Parameter der Strukturrechnung von $[\operatorname{ReCl}{\mu_2-(O_2L^3)}(\mu_2-\operatorname{Cl})(\mu_2-\operatorname{O})\operatorname{ReCl}_3] \cdot 0.25 \operatorname{CH}_2\operatorname{Cl}_2$

Summenformel	$C_{43.25}H_{31.5}N_3O_5Cl_{4.5}P_2Re_2$	
${ m M}~{ m (g/mol)}$	1267.08	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/c$	
Elementarzelle	${ m a}=11.7090(1)~{ m \AA}$	$lpha=90.00^o$
	${ m b}=16.240(1)~{ m \AA}$	$eta=97.27(1)^o$
	${ m c}=24.725(2)~{ m \AA}$	$\gamma=90.00^o$
Volumen	$4663.8(6) \text{ Å}^3$	
Z	4	
Berechnete Dichte	$1.805~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	$5.559 \ {\rm mm^{-1}}$	
F(000)	2434	
Kristallgröße	$0.20 \ge 0.13 \ge 0.06 \text{ mm}^3$	
Theta-Bereich	$2.25 - 28.68^{o}$	
Indizes	$-14 \leq h \leq 14, -19 \leq k \leq 20,$	$-31 \le l \le 31$
Zahl der gemessenen Reflexe	27097	
Zahl der unabhängigen Reflexe	$10069 \; [{ m R(int)} = 0.1152]$	
Zahl der verfeinerten Parameter	555	
Goof	0.924	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1 = 0.0582, wR_2 = 0.1170$	
R_1 / wR_2 (alle Reflexe)	$R_1=0.1068,wR_2=0.1327$	
Restelektronendichte	1.790 und -1.515 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	Х	У	Z	E(eq)
$\operatorname{Re}(1)$	4083(1)	5154(1)	1467(1)	35(1)
$\operatorname{Cl}(1)$	4740(3)	5264(2)	631(1)	49(1)
$\operatorname{Cl}(2)$	6046(2)	5159(2)	1886(1)	45(1)
$\operatorname{Cl}(3)$	4333(3)	3702(2)	1399(1)	53(1)
Cl(4)	2154(2)	4957(2)	1042(1)	47(1)
O(30)	4242(6)	6260(5)	1649(3)	36(2)
O(10)	3663(6)	4837(5)	2223(3)	42(2)
P(1)	2925(2)	4885(2)	2674(1)	39(1)
C(41)	3453(10)	5660(8)	3143(5)	44(3)
C(42)	2825(11)	5933(9)	3556(6)	56(3)
C(43)	3280(12)	6526(9)	3932(5)	62(4)
C(44)	4327(13)	6860(10)	3895(6)	71(4)
C(45)	4952(11)	6623(9)	3466(6)	58(4)
C(46)	4516(10)	6012(8)	3107(6)	53(3)
C(51)	3023(10)	3892(8)	3003(5)	46(3)
C(52)	3391(11)	3235(8)	2731(5)	55(3)
C(53)	3516(14)	2482(9)	2975(7)	69(4)
C(54)	3320(13)	2374(10)	3503(7)	70(4)
C(55)	2998(16)	3004(10)	3778(7)	83(5)
C(56)	2846(15)	3789(10)	3547(7)	77(5)
C(11)	1429(8)	5085(7)	2449(4)	35(2)
C(12)	560(10)	4524(9)	2540(5)	55(3)
C(13)	-564(11)	4713(12)	2377(6)	68(5)
C(14)	-882(11)	5475(11)	2142(6)	63(4)
C(15)	-44(9)	6036(9)	2050(5)	51(3)

Tabelle 6.50: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[ReCl{\mu_2-(O_2L^3)}(\mu_2-Cl)(\mu_2-O)ReCl_3] \cdot 0.25 CH_2Cl_2$

C(16)	1113(9)	5838(8)	2196(4)	42(3)
N(1)	1997(7)	6391(6)	2058(3)	36(2)
C(17)	2111(9)	7129(8)	2322(5)	42(3)
O(17)	1649(7)	7329(6)	2717(3)	55(2)
C(21)	2839(9)	7737(7)	2057(4)	38(2)
C(22)	3255(10)	8485(7)	2270(5)	45(3)
C(23)	3854(11)	8982(9)	1942(6)	58(4)
C(24)	4014(11)	8728(8)	1419(6)	56(3)
C(25)	3619(9)	7970(7)	1242(5)	40(3)
N(26)	3040(7)	7515(6)	1565(3)	36(2)
C(27)	3618(9)	7618(8)	671(5)	43(3)
O(27)	4026(8)	7998(6)	317(3)	56(2)
N(3)	3056(7)	6886(6)	611(3)	39(2)
C(31)	1377(10)	6663(8)	-44(5)	47(3)
C(32)	846(10)	6383(10)	-554(5)	58(4)
C(33)	1512(12)	6158(10)	-943(5)	62(4)
C(34)	2678(10)	6175(9)	-838(5)	54(3)
C(35)	3229(10)	6387(8)	-325(5)	49(3)
C(36)	2580(9)	6627(7)	79(4)	37(2)
$\operatorname{Re}(2)$	2693(1)	6320(1)	1326(1)	32(1)
P(2)	604(2)	7052(2)	481(1)	43(1)
O(20)	986(6)	6651(6)	1037(3)	43(2)
C(61)	831(9)	8151(8)	518(5)	48(3)
C(62)	1207(13)	8573(11)	98(7)	72(4)
C(63)	1398(17)	9405(13)	158(10)	99(6)
C(64)	1230(20)	9822(12)	628(10)	107(7)
C(65)	817(18)	9395(12)	1047(8)	94(6)
C(66)	614(13)	8542(9)	1001(6)	60(4)

C(71)	-904(9)	6863(10)	301(5)	53(3)
C(72)	-1377(10)	6154(10)	506(6)	60(4)
C(73)	-2524(12)	5996(11)	345(7)	72(4)
C(74)	-3171(11)	6536(11)	-12(6)	70(5)
C(75)	-2713(12)	7220(12)	-205(6)	74(4)
C(76)	-1563(10)	7419(11)	-38(5)	64(4)
Cl(97)	1540(8)	2943(7)	1548(4)	39(2)
C(98)	710(30)	2209(16)	1768(11)	29(8)
Cl(99)	224(12)	1454(7)	1339(6)	59(3)

Abbildung 6.28: Ellipsoiddarstellung von $[\text{ReCl}\{\mu_2-(O_2L^3)\}(\mu_2-\text{Cl})(\mu_2-O)\text{ReCl}_3] \cdot 0.25 \text{ CH}_2\text{Cl}_2$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

$6.26 \quad [ReO{OL₃(OP,N,N,P)}][ReO₄]$

Tabelle 6.51: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReO}\{{\rm OL}_3({\rm OP},\!{\rm N},\!{\rm N},\!{\rm N},\!{\rm P})\}][{\rm ReO}_4]$

Summenformel	$\mathrm{C}_{43}\mathrm{H}_{31}\mathrm{N}_3\mathrm{O}_8\mathrm{P}_2\mathrm{Re}_2$	
M (g/mol)	1152.05	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/c$	
Elementarzelle	${ m a}=15.573(2)~{ m \AA}$	$lpha=90.00^o$
	${ m b}=14.403(1)~{ m \AA}$	$eta=93.10(1)^o$
	$ m c = 17.410(2)~{ m \AA}$	$\gamma=90.00^o$
Volumen	$3899.3(7) Å^3$	
Ζ	4	
Berechnete Dichte	$1.962~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	6.345 mm^{-1}	
F(000)	2216	
Kristallgröße	$0.45 \ge 0.05 \ge 0.05 \ \mathrm{mm^3}$	
Theta-Bereich	2.22 - 28.11°	
Indizes	-21 \leq h \leq 21, -19 \leq k \leq 19, -	$16 \le l \le 23$
Zahl der gemessenen Reflexe	27775	
Zahl der unabhängigen Reflexe	$10468 \; [{\rm R(int)} = 0.0973]$	
Zahl der verfeinerten Parameter	524	
Goof	0.845	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0441,wR_2=0.840$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.0961,wR_2=0.0983$	
Restelektronendichte	1.154 und -1.481 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 86 [118]	

	X	У	Z	E(eq)
$\operatorname{Re}(1)$	-1(1)	3089(1)	1557(1)	39(1)
O(10)	489(3)	2613(3)	841(3)	53(1)
P(1)	-1364(1)	2601(1)	912(1)	44(1)
C(11)	-1663(4)	3693(5)	470(4)	46(2)
C(12)	-2360(5)	3779(6)	-64(4)	53(2)
C(13)	-2587(6)	4614(6)	-378(5)	66(2)
C(14)	-2135(6)	5396(6)	-162(5)	64(2)
C(15)	-1425(6)	5344(5)	329(4)	56(2)
C(16)	-1157(5)	4491(5)	650(4)	46(2)
N(1)	-382(4)	4354(4)	1119(3)	44(1)
C(17)	184(5)	5074(5)	1295(4)	48(2)
O(17)	125(4)	5878(4)	1062(4)	73(2)
C(21)	910(5)	4818(5)	1845(4)	45(2)
C(22)	1561(5)	5397(6)	2138(5)	56(2)
C(23)	2154(5)	5033(6)	2674(5)	59(2)
C(24)	2105(5)	4117(6)	2926(5)	55(2)
C(25)	1449(4)	3574(5)	2618(4)	46(2)
N(26)	884(4)	3944(4)	2093(3)	43(1)
C(27)	1233(5)	2606(5)	2847(4)	45(2)
O(27)	1660(4)	2172(4)	3319(3)	62(1)
N(3)	448(4)	2321(4)	2498(3)	40(1)
C(31)	-714(5)	1947(5)	3283(4)	45(2)
C(32)	-1186(6)	1322(5)	3710(5)	61(2)
C(33)	-941(7)	392(6)	3756(6)	79(3)
C(34)	-218(6)	102(5)	3389(6)	72(3)

Tabelle 6.52: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[ReO{OL_3(OP,N,N,N,P)}][ReO_4]$

C(35)	237(6)	714(5)	2956(5)	59(2)
C(36)	-11(5)	1629(5)	2902(4)	45(2)
P(2)	-936(1)	3166(1)	3221(1)	39(1)
O(20)	-928(3)	3513(3)	2398(2)	40(1)
C(41)	-1237(5)	1815(5)	109(4)	45(2)
C(42)	-1384(6)	862(5)	154(5)	64(2)
C(43)	-1174(7)	310(6)	-452(5)	77(3)
C(44)	-882(6)	662(6)	-1106(5)	64(2)
C(45)	-762(5)	1598(6)	-1169(4)	54(2)
C(46)	-924(5)	2165(5)	-558(4)	49(2)
C(51)	-2277(5)	2198(5)	1438(4)	50(2)
C(52)	-3067(5)	2656(6)	1402(5)	59(2)
C(53)	-3742(6)	2333(8)	1770(6)	80(3)
C(54)	-3638(7)	1558(7)	2261(6)	80(3)
C(55)	-2859(7)	1109(7)	2318(6)	79(3)
C(56)	-2171(6)	1426(6)	1908(5)	62(2)
C(61)	-1959(4)	3363(4)	3604(4)	39(1)
C(62)	-2645(5)	3647(5)	3127(4)	50(2)
C(63)	-3458(5)	3716(6)	3426(5)	67(2)
C(64)	-3577(5)	3476(6)	4181(5)	61(2)
C(65)	-2893(5)	3220(5)	4656(4)	53(2)
C(66)	-2085(5)	3168(5)	4365(4)	48(2)
C(71)	-137(4)	3757(4)	3820(4)	40(2)
C(72)	-11(5)	4696(5)	3683(4)	45(2)
C(73)	611(5)	5173(5)	4118(5)	54(2)
C(74)	1111(5)	4727(6)	4665(5)	58(2)
C(75)	976(6)	3804(6)	4814(5)	63(2)
C(76)	361(5)	3309(5)	4388(4)	48(2)

$\operatorname{Re}(2)$	3586(1)	2829(1)	1594(1)	50(1)
O(30)	4013(5)	2894(5)	724(4)	84(2)
O(40)	2551(4)	2413(5)	1523(4)	88(2)
O(50)	3601(4)	3889(4)	2002(4)	76(2)
O(60)	4222(5)	2107(4)	2156(4)	84(2)

Abbildung 6.29: Ellipsoiddarstellung von $[ReO{OL_3(OP,N,N,N,P)}][ReO_4]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.27 [ReO{ $O_2L_3(OP,N,N,N)$ }Cl]

Tabelle 6.53: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReO}\{{\rm O}_2{\rm L}_3({\rm OP},\!{\rm N},\!{\rm N},\!{\rm N})\}{\rm Cl}]$

Summenformel	$\mathrm{C}_{43}\mathrm{H}_{31}\mathrm{N}_{3}\mathrm{O}_{5}\mathrm{ClP}_{2}\mathrm{Re}$	
M (g/mol)	953.30	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=11.987(1)~{ m \AA}$	$lpha=68.17(1)^o$
	${ m b}=14.832(2)~{ m \AA}$	$eta=89.40(1)^o$
	$ m c = 15.059(2)~{ m \AA}$	$\gamma = 74.86(1)^o$
Volumen	2387.9(5) Å ³	
Ζ	2	
Berechnete Dichte	$1.326 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	2.708 mm^{-1}	
F(000)	944	
Kristallgröße	$0.400 \ge 0.207 \ge 0.020 \text{ mm}^3$	
Theta-Bereich	2.21 - 29.34°	
Indizes	$-15 \le h \le 13, -18 \le k \le 18, -18$	$18 \le l \le 19$
Zahl der gemessenen Reflexe	20099	
Zahl der unabhängigen Reflexe	$10220 \; [{ m R(int)} = 0.1185]$	
Zahl der verfeinerten Parameter	579	
Goof	0.865	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0579,wR_2=0.1278$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.0967,wR_2=0.1393$	
Restelektronendichte	1.480 und -2.073 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	х	у	Z	E(eq)
$\operatorname{Re}(1)$	8045(1)	7639(1)	6800(1)	38(1)
O(30)	7780(5)	8482(4)	7320(4)	51(1)
$\operatorname{Cl}(1)$	8252(2)	8830(1)	5266(2)	50(1)
P(1)	7486(2)	6578(1)	5299(2)	42(1)
O(10)	8334(5)	6647(3)	5981(4)	42(1)
C(41)	7081(7)	5419(5)	5866(6)	48(2)
C(42)	7908(9)	4601(7)	6470(9)	81(4)
C(43)	7611(12)	3709(7)	6999(11)	106(5)
C(44)	6524(11)	3644(7)	6876(9)	77(3)
C(45)	5709(11)	4469(9)	6313(10)	92(4)
C(46)	5971(9)	5358(7)	5807(9)	74(3)
C(51)	8147(8)	6582(6)	4212(6)	50(2)
C(52)	8798(9)	7272(7)	3819(7)	65(3)
C(53)	9218(11)	7378(9)	2953(9)	87(3)
C(54)	9080(10)	6775(9)	2508(8)	77(3)
C(55)	8438(10)	6072(8)	2904(7)	71(3)
C(56)	7986(8)	5985(6)	3753(7)	60(2)
C(11)	6158(7)	7605(5)	4928(6)	43(2)
C(12)	5584(8)	7961(6)	4042(6)	51(2)
C(13)	4557(7)	8743(6)	3802(7)	52(2)
C(14)	4148(8)	9151(6)	4458(7)	54(2)
C(15)	4732(7)	8810(5)	5364(7)	50(2)
C(16)	5739(6)	8015(5)	5602(6)	41(2)
N(1)	6397(5)	7589(4)	6538(4)	38(1)
C(17)	5986(8)	6904(6)	7255(6)	50(2)

Tabelle 6.54: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von [ReO{O₂L₃(OP,N,N,N)}Cl]

O(17)	5028(5)	6760(4)	7240(5)	63(2)
C(21)	6899(8)	6228(6)	8072(6)	50(2)
C(22)	6772(9)	5455(7)	8881(7)	66(3)
C(23)	7775(9)	4807(7)	9495(7)	71(3)
C(24)	8869(8)	4937(6)	9261(7)	58(2)
C(25)	8927(7)	5738(6)	8459(6)	49(2)
N(26)	7953(6)	6384(5)	7894(5)	47(2)
C(27)	10009(7)	6015(5)	8056(6)	44(2)
O(28)	10960(5)	5427(4)	8413(4)	51(1)
N(3)	9768(6)	6889(4)	7255(5)	42(2)
C(31)	11524(7)	7528(5)	6939(6)	46(2)
C(32)	12505(7)	7579(6)	6435(6)	48(2)
C(33)	12753(8)	7170(6)	5765(6)	50(2)
C(34)	11981(8)	6683(6)	5554(6)	50(2)
C(35)	11015(7)	6634(5)	6016(6)	46(2)
C(36)	10767(7)	7029(5)	6739(6)	41(2)
P(2)	11264(2)	8049(1)	7865(2)	45(1)
O(20)	11006(5)	7356(4)	8796(4)	53(1)
C(61)	10125(8)	9211(5)	7372(6)	46(2)
C(62)	9976(8)	9804(6)	6387(7)	52(2)
C(63)	9139(9)	10729(6)	6040(7)	60(2)
C(64)	8489(9)	11075(6)	6660(8)	62(2)
C(65)	8632(10)	10495(7)	7626(8)	76(3)
C(66)	9452(9)	9564(7)	7976(7)	64(3)
C(71)	12548(8)	8413(6)	8004(6)	50(2)
C(72)	12739(10)	9302(8)	7416(8)	74(3)
C(73)	13800(13)	9502(12)	7575(11)	96(4)
C(74)	14617(12)	8862(13)	8262(13)	100(4)

C(75)	14467(12)	8003(12)	8804(12)	104(5)
C(76)	13438(10)	7733(9)	8713(10)	84(4)

Abbildung 6.30: Ellipsoiddarstellung von [ReO $\{O_2L_3(OP,N,N,N)\}$ Cl]. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]
6.28 $[\operatorname{ReNCl}_2{H_2L^3(P,P)}] \cdot \operatorname{CH}_2\operatorname{Cl}_2$

Tabelle 6.55: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm ReNCl}_2 \{ {\rm H}_2 {\rm L}^3 ({\rm P}, {\rm P}) \}] \cdot {\rm CH}_2 {\rm Cl}_2$

C ())]		
Summenformel	$\mathrm{C}_{44}\mathrm{H}_{35}\mathrm{N}_{4}\mathrm{O}_{2}\mathrm{Cl}_{4}\mathrm{P}_{2}\mathrm{Re}$	
M (g/mol)	1041.70	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	$a = 13.484(2) \text{ \AA}$	$\alpha = 82.66(1)^o$
	b = 13.558(2) Å	$eta=64.01(1)^o$
	c = 14.114(2) Å	$\gamma=77.88(1)^{o}$
Volumen	2265.8(6) Å ³	
Ζ	2	
Berechnete Dichte	$1.527~{ m g/cm^3}$	
Linearer Absorptionskoeffizient	3.028 mm^{-1}	
F(000)	1032	
Kristallgröße	$0.500 \ \mathrm{x} \ 0.253 \ \mathrm{x} \ 0.090 \ \mathrm{mm}^3$	
Theta-Bereich	$2.09 - 29.65^{o}$	
Indizes	$-18 \le h \le 18, -15 \le k \le 18, -18$	$19 \le l \le 19$
Zahl der gemessenen Reflexe	31074	
Zahl der unabhängigen Reflexe	$12098 \; [{ m R(int)} = 0.0808]$	
Zahl der verfeinerten Parameter	542	
Goof	1.119	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0560,wR_2=0.1600$	
$ m R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.0610,wR_2=0.1669$	
Restelektronendichte	3.050 und -2.377 e \cdot $\mathrm{\AA}^{-3}$	
Programm zur Strukturlösung	SHELXS 97 [119]	

	Х	У	Ζ	E(eq)
N(10)	6718(4)	1651(4)	1343(4)	36(1)
$\operatorname{Re}(1)$	6448(1)	2875(1)	1137(1)	28(1)
$\operatorname{Cl}(1)$	7355(1)	3658(1)	1872(1)	43(1)
$\operatorname{Cl}(2)$	5284(1)	3276(1)	223(1)	35(1)
P(1)	8079(1)	2963(1)	-568(1)	29(1)
C(41)	9340(4)	2079(4)	-665(4)	33(1)
C(42)	9548(5)	1825(5)	227(5)	45(1)
C(43)	10518(6)	1155(5)	149(6)	51(1)
C(44)	11230(5)	710(5)	-785(7)	54(2)
C(45)	11037(5)	952(6)	-1665(6)	55(2)
C(46)	10093(5)	1644(5)	-1621(5)	48(1)
C(51)	8395(4)	4235(4)	-741(4)	32(1)
C(52)	9424(5)	4418(4)	-895(5)	42(1)
C(53)	9606(6)	5409(5)	-1001(6)	51(2)
C(54)	8765(6)	6200(5)	-930(6)	50(1)
C(55)	7711(5)	6017(4)	-769(5)	44(1)
C(56)	7535(4)	5042(4)	-673(5)	37(1)
C(11)	8018(4)	2782(4)	-1804(4)	33(1)
C(12)	8517(5)	3425(4)	-2704(5)	40(1)
C(13)	8679(5)	3208(5)	-3681(5)	47(1)
C(14)	8365(5)	2362(5)	-3830(5)	46(1)
C(15)	7851(5)	1727(5)	-2967(4)	39(1)
C(16)	7684(4)	1946(4)	-1967(4)	33(1)
N(1)	7124(4)	1308(3)	-1083(3)	33(1)
C(17)	7346(4)	284(4)	-1080(4)	32(1)

Tabelle 6.56: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[ReNCl_2{H_2L^3(P,P)}] \cdot CH_2Cl_2$

O(17)	8124(4)	-202(3)	-1781(3)	43(1)
C(21)	6562(4)	-226(4)	-121(4)	32(1)
C(22)	6771(5)	-1273(4)	-22(5)	40(1)
C(23)	6075(6)	-1740(4)	869(5)	46(1)
C(24)	5204(5)	-1149(4)	1653(5)	42(1)
C(25)	5047(4)	-113(4)	1484(4)	35(1)
N(26)	5701(3)	354(3)	607(3)	30(1)
C(27)	4085(4)	524(4)	2319(4)	34(1)
O(27)	3435(4)	145(3)	3106(4)	45(1)
N(3)	4041(4)	1527(3)	2081(4)	35(1)
C(31)	3364(4)	3154(4)	2904(4)	31(1)
C(32)	2457(4)	3931(4)	3382(5)	38(1)
C(33)	1356(5)	3809(5)	3635(5)	44(1)
C(34)	1158(5)	2933(5)	3416(5)	44(1)
C(35)	2042(4)	2166(4)	2920(5)	38(1)
C(36)	3142(4)	2283(4)	2641(4)	32(1)
P(2)	4749(1)	3215(1)	2798(1)	29(1)
C(61)	4571(4)	4513(4)	3131(4)	33(1)
C(62)	4330(6)	4782(5)	4126(5)	45(1)
C(63)	4151(7)	5783(5)	4356(6)	55(2)
C(64)	4237(6)	6534(5)	3555(6)	50(1)
C(65)	4464(5)	6266(5)	2563(6)	47(1)
C(66)	4650(5)	5260(4)	2336(5)	40(1)
C(71)	4799(4)	2397(4)	3911(4)	35(1)
C(72)	5803(5)	2025(5)	3967(5)	47(1)
C(73)	5857(7)	1387(6)	4801(6)	57(2)
C(74)	4902(7)	1117(6)	5580(6)	62(2)
C(75)	3893(8)	1500(9)	5536(8)	81(3)

Cl(89)	7644(4)	6708(6)	2050(5)	113(2)
C(88)	7504(17)	5789(14)	2995(14)	129(13)
Cl(87)	8381(5)	5782(7)	3631(4)	115(3)
Cl(99)	9008(2)	11535(3)	3208(2)	46(1)
C(98)	9640(8)	10414(12)	3640(10)	49(3)
Cl(97)	8680(2)	9820(3)	4698(3)	54(1)
C(76)	3838(6)	2134(7)	4717(6)	59(2)

Abbildung 6.31: Ellipsoiddarstellung von $[ReNCl_2{H_2L^3(P,P)}] \cdot CH_2Cl_2$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.29 $[TcNCl_2{H_2L^3(P,P)}] \cdot CH_2Cl_2$

Tabelle 6.57: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm TcNCl}_2\{{\rm H}_2{\rm L}^3({\rm P},{\rm P})\}]\cdot {\rm CH}_2{\rm Cl}_2$

Summenformel	$\mathrm{C}_{44}\mathrm{H}_{35}\mathrm{N}_4\mathrm{O}_2\mathrm{Cl}_4\mathrm{P}_2\mathrm{Tc}$	
M (g/mol)	953.50	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=13.447(2)~{ m \AA}$	$lpha=82.87(2)^o$
	${ m b}=13.548(2)~{ m \AA}$	$eta=64.04(1)^o$
	c = 14.156(2) Å	$\gamma = 77.30(1)^o$
Volumen	2268.7(6) Å ³	
Ζ	2	
Berechnete Dichte	$1.396~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	0.663 mm^{-1}	
F(000)	968	
Kristallgröße	$0.27 \ge 0.07 \ge 0.06 \ \mathrm{mm}^3$	
Theta-Bereich	2.12 - 29.07°	
Indizes	$-16 \le h \le 16, -16 \le k \le 12, -16$	$17 \le l \le 17$
Zahl der gemessenen Reflexe	11276	
Zahl der unabhängigen Reflexe	8734 [R(int) = 0.1284]	
Zahl der verfeinerten Parameter	541	
Goof	0.898	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0671,wR_2=0.1452$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1274,wR_2=0.1680$	
Restelektronendichte	0.989 und -0.965 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	Х	У	Z	E(eq)
Tc(1)	6450(1)	7864(1)	6133(1)	32(1)
N(10)	6698(4)	6687(4)	6334(4)	37(1)
$\operatorname{Cl}(1)$	7360(1)	8663(1)	6861(1)	47(1)
$\operatorname{Cl}(2)$	5276(1)	8254(1)	5221(1)	37(1)
P(1)	8089(1)	7974(1)	4414(1)	33(1)
C(41)	9354(6)	7091(5)	4305(5)	41(2)
C(42)	9563(6)	6843(6)	5199(6)	48(2)
C(43)	10503(6)	6163(6)	5138(7)	58(2)
C(44)	11224(6)	5709(6)	4205(7)	57(2)
C(45)	11023(6)	5949(6)	3330(7)	59(2)
C(46)	10084(6)	6647(6)	3385(6)	51(2)
C(51)	8401(5)	9239(5)	4241(5)	37(2)
C(52)	7558(6)	10048(5)	4325(5)	40(2)
C(53)	7735(6)	11023(5)	4221(6)	47(2)
C(54)	8772(7)	11220(6)	4064(6)	51(2)
C(55)	9617(7)	10430(6)	3991(6)	53(2)
C(56)	9438(6)	9432(6)	4082(6)	48(2)
C(11)	8021(5)	7811(5)	3184(5)	37(2)
C(12)	8503(6)	8440(5)	2306(5)	45(2)
C(13)	8656(7)	8214(6)	1315(6)	54(2)
C(14)	8353(6)	7365(6)	1175(5)	50(2)
C(15)	7837(6)	6750(5)	2017(5)	43(2)
C(16)	7669(5)	6966(5)	3028(5)	35(1)
N(1)	7125(4)	6321(4)	3892(4)	36(1)
C(17)	7339(5)	5309(5)	3918(5)	34(1)

Tabelle 6.58: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[TcNCl_2{H_2L^3(P,P)}] \cdot CH_2Cl_2$

O(17)	8137(4)	4813(4)	3222(4)	47(1)
C(21)	6574(5)	4779(5)	4868(5)	35(1)
C(22)	6761(6)	3745(5)	4979(5)	42(2)
C(23)	6073(6)	3273(5)	5874(6)	49(2)
C(24)	5202(6)	3858(5)	6643(6)	43(2)
C(25)	5042(5)	4894(5)	6471(5)	35(1)
N(26)	5703(4)	5359(4)	5605(4)	32(1)
C(27)	4100(5)	5532(5)	7307(5)	34(1)
O(27)	3439(4)	5147(4)	8108(4)	49(1)
N(3)	4025(5)	6532(4)	7084(4)	39(1)
C(31)	3355(5)	8154(5)	7902(5)	33(1)
C(32)	2433(6)	8900(5)	8391(5)	44(2)
C(33)	1358(6)	8797(6)	8640(5)	46(2)
C(34)	1152(6)	7907(6)	8415(5)	45(2)
C(35)	2041(6)	7165(5)	7897(5)	44(2)
C(36)	3123(5)	7276(5)	7643(5)	33(1)
P(2)	4737(1)	8217(1)	7796(1)	33(1)
C(61)	4785(6)	7405(5)	8911(5)	39(2)
C(62)	3840(7)	7131(7)	9708(6)	60(2)
C(63)	3911(9)	6488(8)	10542(7)	81(3)
C(64)	4910(8)	6122(6)	10558(7)	59(2)
C(65)	5851(8)	6405(7)	9798(6)	61(2)
C(66)	5809(6)	7052(6)	8955(6)	50(2)
C(71)	4571(5)	9511(5)	8119(5)	36(1)
C(72)	4303(6)	9788(5)	9132(5)	46(2)
C(73)	4172(8)	10789(6)	9331(6)	60(2)
C(74)	4255(7)	11518(6)	8541(6)	53(2)
C(75)	4476(6)	11258(6)	7561(6)	49(2)

C(76)	4641(6)	10269(5)	7352(5)	43(2)
Cl(87)	1640(4)	9242(6)	1359(4)	108(2)
C(88)	2567(17)	9157(13)	1998(12)	102(9)
Cl(89)	2381(4)	8250(5)	2926(4)	97(2)
Cl(97)	1333(3)	5191(3)	303(3)	55(1)
C(98)	341(10)	4615(11)	1346(10)	45(4)
Cl(99)	988(3)	3489(3)	1805(3)	44(1)

Abbildung 6.32: Ellipsoiddarstellung von $[TcNCl_2{H_2L^3(P,P)}] \cdot CH_2Cl_2$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.30 $[Ni{L_3(P,N,N,N)}]$

Tabelle 6.59: Kristallographische Daten und Parameter der Strukturrechnung von $\label{eq:lag} [\mathrm{Ni}\{\mathrm{L}_3(\mathrm{P},\mathrm{N},\mathrm{N},\mathrm{N})\}]$

Summenformel	$\mathrm{C}_{43}\mathrm{H}_{31}\mathrm{N}_{3}\mathrm{O}_{2}\mathrm{P}_{2}\mathrm{Ni}$	
M (g/mol)	742.36	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/c$	
Elementarzelle	${ m a}=19.272(2)~{ m \AA}$	$lpha=90^o$
	${ m b}=16.533(2)~{ m \AA}$	$eta=100.27(1)^o$
	c = 11.601(1) Å	$\gamma=90^o$
Volumen	3637.1(7) Å ³	
Ζ	4	
Berechnete Dichte	$1.356~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	0.663 mm^{-1}	
F(000)	1536	
Kristallgröße	$0.25 \ge 0.10 \ge 0.05 \text{ mm}^3$	
Theta-Bereich	2.17 - 28.69°	
Indizes	$-22 \le h \le 22, -19 \le k \le 19, -10$	$13 \le l \le 13$
Zahl der gemessenen Reflexe	18439	
Zahl der unabhängigen Reflexe	$6330 \; [{ m R(int)} = 0.1270]$	
Zahl der verfeinerten Parameter	460	
Goof	0.939	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0661,wR_2=0.1182$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1309,wR_2=0.1401$	
Restelektronendichte	0.957 und -0.404 e \cdot $\mathrm{\AA}^{-3}$	
Programm zur Strukturlösung	SHELXS 97 [119]	

	Х	У	Z	E(eq)
Ni(1)	3378(1)	5190(1)	-72(1)	27(1)
P(1)	3115(1)	5082(1)	1668(1)	26(1)
C(41)	2269(3)	5292(3)	2075(4)	27(1)
C(42)	1802(3)	4663(4)	2187(6)	47(2)
C(43)	1149(3)	4835(4)	2440(6)	60(2)
C(44)	941(3)	5611(4)	2592(6)	50(2)
C(45)	1389(3)	6238(4)	2477(5)	43(2)
C(46)	2051(3)	6077(3)	2209(5)	34(1)
C(51)	3349(3)	4107(3)	2324(5)	35(1)
C(52)	3332(4)	3436(3)	1642(5)	50(2)
C(53)	3462(5)	2678(4)	2140(7)	68(2)
C(54)	3622(4)	2582(4)	3301(7)	55(2)
C(55)	3670(6)	3243(4)	3989(7)	105(4)
C(56)	3542(7)	3999(4)	3505(7)	109(4)
C(11)	3726(3)	5814(3)	2434(5)	31(1)
C(12)	3740(3)	6073(3)	3581(5)	36(1)
C(13)	4228(3)	6645(4)	4081(6)	50(2)
C(14)	4679(3)	6981(4)	3423(6)	47(2)
C(15)	4682(3)	6738(3)	2286(5)	36(1)
C(16)	4201(3)	6145(3)	1772(5)	30(1)
C(17)	4631(3)	6021(3)	-78(5)	34(1)
O(17)	5184(2)	6401(2)	174(4)	45(1)
N(1)	4138(2)	5863(2)	607(4)	29(1)
C(21)	4426(3)	5633(3)	-1249(5)	31(1)
C(22)	4780(3)	5662(4)	-2188(6)	47(2)

Tabelle 6.60: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von [Ni{L₃(P,N,N,N)}]

C(23)	4507(3)	5225(4)	-3192(5)	50(2)
C(24)	3895(3)	4787(4)	-3248(5)	45(1)
C(25)	3549(3)	4796(3)	-2293(4)	35(1)
N(26)	3829(2)	5216(3)	-1345(3)	30(1)
C(27)	2875(3)	4400(3)	-2169(5)	34(1)
O(27)	2527(2)	4009(2)	-2969(3)	47(1)
N(3)	2710(2)	4569(2)	-1092(4)	30(1)
P(2)	1874(1)	6040(1)	-871(1)	33(1)
C(31)	1538(3)	5003(3)	-891(4)	33(1)
C(32)	863(3)	4813(4)	-694(5)	42(1)
C(33)	672(3)	4019(4)	-541(6)	47(2)
C(34)	1146(3)	3406(4)	-587(6)	50(2)
C(35)	1811(3)	3571(3)	-793(6)	46(2)
C(36)	2014(3)	4372(3)	-932(5)	33(1)
C(61)	2141(3)	6182(3)	-2298(5)	35(1)
C(62)	2663(3)	6760(3)	-2334(6)	46(2)
C(63)	2866(4)	6944(4)	-3387(7)	61(2)
C(64)	2580(4)	6557(4)	-4398(7)	62(2)
C(65)	2077(4)	5966(4)	-4370(6)	59(2)
C(66)	1860(3)	5772(4)	-3324(5)	45(2)
C(71)	1064(3)	6654(3)	-1072(5)	37(1)
C(72)	993(3)	7243(3)	-267(5)	41(1)
C(73)	421(4)	7754(4)	-415(6)	52(2)
C(74)	-108(4)	7682(4)	-1389(7)	57(2)
C(75)	-53(3)	7096(4)	-2213(6)	51(2)
C(76)	521(3)	6591(3)	-2066(5)	43(1)

Abbildung 6.33: Ellipsoiddarstellung von [Ni{ $L_3(P,N,N,N)$ }]. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.31 $[Pd{H_2L^3(P,P)}] \cdot MeOH \cdot CH_2Cl_2$

Tabelle 6.61: Kristallographische Daten und Parameter der Strukturrechnung von $[\mathrm{Pd}\{\mathrm{H}_{2}\mathrm{L}^{3}(\mathrm{P},\!\mathrm{P})\}]\cdot\mathrm{MeOH}\cdot\mathrm{CH}_{2}\mathrm{Cl}_{2}$

C = (/ / / / /]		
Summenformel	$\mathrm{C}_{45}\mathrm{H}_{39}\mathrm{N}_{3}\mathrm{O}_{3}\mathrm{P}_{2}\mathrm{Cl}_{4}\mathrm{Pd}$	
M (g/mol)	979.93	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	triklin, $P\overline{1}$	
Elementarzelle	${ m a}=11.360(1)~{ m \AA}$	$lpha=114.08(1)^o$
	b = 13.778(1)) Å	$eta=95.77(1)^o$
	$ m c = 15.451(1)~{ m \AA}$	$\gamma=101.13(1)^o$
Volumen	$3794.9(7) \text{ Å}^3$	
Ζ	2	
Berechnete Dichte	$1.533~{ m g/cm^3}$	
Linearer Absorptionskoeffizient	0.809 mm^{-1}	
F(000)	996	
Kristallgröße	$0.250 \ge 0.100 \ge 0.015 \ \mathrm{mm^3}$	
Theta-Bereich	2.16 - 29.57°	
Indizes	$-15 \le h \le 15, -18 \le k \le 16, -18$	$21 \le l \le 21$
Zahl der gemessenen Reflexe	23825	
Zahl der unabhängigen Reflexe	11351 [R(int) = 0.1042]	
Zahl der verfeinerten Parameter	525	
Goof	0.963	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0513,wR_2=0.1179$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.0810,wR_2=0.1339$	
Restelektronendichte	1.963 und -1.994 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 86 [118]	

	х	У	Z	E(eq)
Pd(1)	7587(1)	7461(1)	5463(1)	24(1)
$\operatorname{Cl}(1)$	5479(1)	6885(1)	5181(1)	33(1)
$\operatorname{Cl}(2)$	9660(1)	8028(1)	5661(1)	43(1)
C(41)	9015(4)	9102(3)	7990(2)	31(1)
C(42)	10213(4)	8991(4)	7970(3)	44(1)
C(43)	11181(5)	9825(5)	8639(3)	57(1)
C(44)	10995(5)	10756(4)	9336(3)	56(1)
C(45)	9823(5)	10878(4)	9363(3)	52(1)
C(46)	8835(4)	10061(3)	8701(3)	39(1)
C(51)	7884(3)	6789(3)	7298(2)	27(1)
C(52)	8668(4)	6862(3)	8093(3)	39(1)
C(53)	8743(4)	5923(4)	8194(3)	46(1)
C(54)	8036(4)	4915(4)	7516(4)	46(1)
C(55)	7240(4)	4833(4)	6739(3)	45(1)
C(56)	7177(4)	5763(3)	6623(3)	38(1)
P(1)	7735(1)	7994(1)	7131(1)	25(1)
C(11)	6433(3)	8356(3)	7679(2)	28(1)
C(12)	6073(4)	7980(3)	8351(3)	35(1)
C(13)	5209(4)	8373(4)	8877(3)	45(1)
C(14)	4682(4)	9134(4)	8727(3)	46(1)
C(15)	4998(4)	9487(4)	8041(3)	39(1)
C(16)	5875(4)	9106(3)	7523(2)	30(1)
N(26)	6429(3)	9768(2)	5240(2)	27(1)
C(17)	6531(3)	10518(3)	6970(2)	30(1)
O(17)	6705(3)	11314(2)	7759(2)	40(1)

Tabelle 6.62: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[Pd{H_2L^3(P,P)}] \cdot MeOH \cdot CH_2Cl_2$

C(21)	6712(3)	10671(3)	6075(3)	30(1)
C(22)	7158(4)	11710(3)	6147(3)	39(1)
C(23)	7336(5)	11822(4)	5315(3)	46(1)
C(24)	7030(4)	10897(3)	4445(3)	40(1)
C(25)	6585(3)	9889(3)	4437(3)	29(1)
N(1)	6187(3)	9463(3)	6815(2)	31(1)
C(27)	6243(3)	8857(3)	3503(3)	30(1)
O(27)	6280(3)	8903(2)	2726(2)	42(1)
P(2)	7581(1)	6543(1)	3828(1)	25(1)
C(31)	6213(3)	6083(3)	2883(2)	27(1)
C(32)	5876(4)	5030(3)	2129(3)	35(1)
C(33)	4964(4)	4749(3)	1341(3)	38(1)
C(34)	4361(4)	5516(3)	1303(3)	39(1)
C(35)	4668(4)	6560(3)	2047(3)	34(1)
C(36)	5592(3)	6850(3)	2837(2)	27(1)
N(2)	5926(3)	7926(2)	3601(2)	30(1)
C(61)	7903(3)	5284(3)	3765(2)	28(1)
C(62)	6960(4)	4497(3)	3798(3)	35(1)
C(63)	7165(4)	3537(4)	3785(3)	41(1)
C(64)	8329(4)	3374(4)	3768(3)	45(1)
C(65)	9275(4)	4157(4)	3768(3)	43(1)
C(66)	9075(4)	5126(3)	3767(3)	34(1)
C(71)	8690(3)	7170(3)	3318(3)	31(1)
C(72)	9078(4)	6514(4)	2498(3)	44(1)
C(73)	9859(5)	7006(6)	2080(4)	67(2)
C(74)	10224(5)	8118(7)	2440(5)	74(2)
C(75)	9828(5)	8791(5)	3246(5)	68(2)
C(76)	9057(4)	8299(4)	3682(4)	44(1)

Cl(97)	8376(2)	4099(2)	9946(1)	85(1)
C(98)	7348(6)	3000(6)	9988(4)	77(2)
Cl(99)	7848(2)	2817(2)	11001(1)	90(1)
O(88)	3854(4)	2364(3)	9275(2)	56(1)
C(89)	2932(5)	2892(5)	9143(4)	56(1)

Abbildung 6.34: Ellipsoiddarstellung von $[Pd{H_2L^3(P,P)}] \cdot MeOH \cdot CH_2Cl_2$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

$\textbf{6.32} \quad \textbf{[Pd{L³(P,N,N,N)}]} \cdot \textbf{0.5} \, \textbf{MeOH} \cdot \textbf{CH}_2\textbf{Cl}_2$

Tabelle 6.63: Kristallographische Daten und Parameter der Strukturrechnung von $[\mathrm{Pd}\{\mathrm{L}^3(\mathrm{P},\mathrm{N},\mathrm{N},\mathrm{N})\}]\cdot 0.5\,\mathrm{MeOH}\cdot\mathrm{CH}_2\mathrm{Cl}_2$

	2	
Summenformel	$C_{44.5}H_{35}N_{3}O_{2.5}P_{2}Pd$	
M (g/mol)	891.00	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/n$	
Elementarzelle	${ m a}=12.883(1)~{ m \AA}$	$lpha=90^o$
	${ m b}=20.403(2)~{ m \AA}$	$eta=90.62(1)^o$
	$ m c = 15.089(1)~{ m \AA}$	$\gamma=90^o$
Volumen	$3965.9(6) \text{ Å}^3$	
Ζ	4	
Berechnete Dichte	$1.492 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	0.727 mm^{-1}	
F(000)	1812	
Kristallgröße	$0.59 \ge 0.32 \ge 0.27 \text{ mm}^3$	
Theta-Bereich	2.70 - 29.56°	
Indizes	$-12 \le h \le 15, -24 \le k \le 22, -10$	$17 \le l \le 17$
Zahl der gemessenen Reflexe	17297	
Zahl der unabhängigen Reflexe	$6799 \; [{\rm R(int)} = 0.0372]$	
Zahl der verfeinerten Parameter	505	
Goof	1.057	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0684,wR_2=0.1991$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.0781,wR_2=0.2066$	
Restelektronendichte	1.188 und -1.601 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 86 [118]	

	х	У	Z	E(eq)
Pd(1)	1547(1)	743(1)	4640(1)	32(1)
P(1)	1309(1)	1501(1)	3548(1)	23(1)
C(41)	461(4)	2183(2)	3802(3)	24(1)
C(42)	761(5)	2583(3)	4511(4)	36(1)
C(43)	188(5)	3133(3)	4717(4)	40(1)
C(44)	-706(5)	3286(3)	4236(4)	38(1)
C(45)	-1020(4)	2886(3)	3541(4)	35(1)
C(46)	-440(4)	2335(3)	3323(4)	29(1)
C(51)	2334(4)	1876(3)	2906(3)	26(1)
C(52)	3177(5)	1501(3)	2677(5)	41(1)
C(53)	3929(5)	1762(3)	2117(5)	46(2)
C(54)	3841(5)	2403(3)	1803(4)	42(1)
C(55)	3028(5)	2776(3)	2051(4)	36(1)
C(56)	2258(4)	2529(3)	2602(4)	31(1)
C(11)	666(4)	985(2)	2724(3)	24(1)
C(12)	403(5)	1212(3)	1879(4)	35(1)
C(13)	-107(5)	803(3)	1285(4)	40(1)
C(14)	-367(5)	175(3)	1533(4)	40(1)
C(15)	-110(5)	-73(3)	2364(4)	36(1)
C(16)	443(4)	332(2)	2962(3)	24(1)
N(1)	812(3)	114(2)	3794(3)	25(1)
C(17)	819(4)	-527(2)	4063(3)	25(1)
O(17)	466(4)	-1003(2)	3667(3)	41(1)
C(21)	1374(4)	-618(3)	4934(4)	27(1)
C(22)	1609(5)	-1218(3)	5320(4)	37(1)

Tabelle 6.64: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[Pd{L^{3}(P,N,N,N)}] \cdot 0.5 MeOH \cdot CH_{2}Cl_{2}$

C(23)	2170(5)	-1221(3)	6107(4)	41(1)
C(24)	2439(5)	-640(3)	6527(4)	39(1)
C(25)	2179(4)	-52(3)	6109(3)	29(1)
N(26)	1667(3)	-63(2)	5336(3)	25(1)
C(27)	2424(4)	627(3)	6432(3)	29(1)
O(27)	2746(4)	724(2)	7194(3)	44(1)
N(3)	2288(3)	1087(2)	5806(3)	26(1)
C(31)	3281(4)	2104(2)	5706(3)	22(1)
C(32)	3349(4)	2775(3)	5920(3)	27(1)
C(33)	2625(5)	3079(3)	6459(4)	33(1)
C(34)	1825(5)	2715(3)	6814(4)	36(1)
C(35)	1734(4)	2057(3)	6604(4)	32(1)
C(36)	2434(4)	1759(2)	6053(3)	23(1)
P(2)	4176(1)	1672(1)	4980(1)	23(1)
C(61)	4968(4)	1199(3)	5766(3)	24(1)
C(62)	5538(5)	683(3)	5436(4)	36(1)
C(63)	6200(5)	315(3)	5967(5)	46(2)
C(64)	6295(5)	466(3)	6856(5)	43(2)
C(65)	5713(5)	969(3)	7204(4)	40(1)
C(66)	5044(4)	1336(3)	6662(4)	32(1)
C(71)	5072(4)	2332(3)	4698(3)	25(1)
C(72)	6010(4)	2457(3)	5134(4)	35(1)
C(73)	6635(5)	2980(3)	4870(5)	47(2)
C(74)	6334(5)	3374(3)	4167(5)	46(2)
C(75)	5412(6)	3257(3)	3745(4)	45(2)
C(76)	4783(5)	2745(3)	3998(4)	37(1)
C(89)	5793(11)	173(5)	1353(8)	39(3)
O(88)	6863(6)	77(5)	1408(5)	40(2)

Cl(95)	2166(7)	-970(3)	1022(5)	88(1)
C(94)	2180(30)	-152(10)	450(17)	88(1)
Cl(96)	2993(8)	408(4)	903(6)	88(1)
Cl(97)	2527(11)	-961(6)	759(8)	88(1)
C(98)	2090(40)	-299(17)	500(30)	88(1)
Cl(99)	2694(12)	359(8)	1021(9)	88(1)

Abbildung 6.35: Ellipsoiddarstellung von $[Pd\{L^3(P,N,N,N)\}] \cdot 0.5 \text{ MeOH} \cdot CH_2Cl_2$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.33 $[CoCl{L^3(P,N,N,N,P)}]$

Tabelle 6.65: Kristallographische Daten und Parameter der Strukturrechnung von $[\text{CoCl}\{\text{L}^3(\text{P},\text{N},\text{N},\text{N},\text{P})\}]$

Summenformel	$C_{43}H_{31}N_3O_2ClP_2Co$	
M (g/mol)	779.04	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/c$	
Elementarzelle	${ m a}=21.053(3)~{ m \AA}$	$lpha=90^o$
	${ m b}=9.865(1)~{ m \AA}$	$eta=111.88(1)^o$
	$ m c = 18.258(2)~{ m \AA}$	$\gamma=90^o$
Volumen	36518.9(7) Å ³	
Ζ	4	
Berechnete Dichte	$1.471~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	0.699 mm^{-1}	
F(000)	1604	
Kristallgröße	$0.150 \ge 0.105 \ge 0.010 \ \mathrm{mm^3}$	
Theta-Bereich	2.24 - 29.57°	
Indizes	-26 \leq h \leq 24, -11 \leq k \leq 12, -	$21 \le l \le 23$
Zahl der gemessenen Reflexe	18188	
Zahl der unabhängigen Reflexe	7579 [R(int) = 0.1128]	
Zahl der verfeinerten Parameter	470	
Goof	0.915	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0528,wR_2=0.0906$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1141,wR_2=0.1072$	
Restelektronendichte	0.356 und -0.532 e \cdot $\mathrm{\AA}^{-3}$	
Programm zur Strukturlösung	SHELXS 97 [119]	

	x	У	Z	E(eq)
$\operatorname{Co}(1)$	2653(1)	7677(1)	2237(1)	24(1)
$\operatorname{Cl}(1)$	2157(1)	6896(1)	3074(1)	34(1)
P(1)	1626(1)	8524(1)	1518(1)	27(1)
C(41)	896(2)	7689(4)	1628(2)	32(1)
C(42)	774(2)	6322(4)	1420(2)	43(1)
C(43)	199(2)	5701(5)	1455(3)	51(1)
C(44)	-237(2)	6381(6)	1730(3)	54(1)
C(45)	-111(2)	7697(5)	1958(2)	47(1)
C(46)	443(2)	8354(5)	1899(2)	38(1)
C(51)	1323(2)	8846(4)	459(2)	32(1)
C(52)	1524(2)	10013(4)	170(2)	35(1)
C(53)	1351(2)	10194(4)	-634(2)	41(1)
C(54)	971(2)	9239(5)	-1164(2)	44(1)
C(55)	753(2)	8101(5)	-884(2)	46(1)
C(56)	926(2)	7897(4)	-86(2)	42(1)
C(11)	1731(2)	10184(4)	1964(2)	31(1)
C(12)	1233(2)	11192(4)	1699(2)	38(1)
C(13)	1352(2)	12462(4)	2044(2)	44(1)
C(14)	1972(2)	12733(4)	2657(2)	47(1)
C(15)	2468(2)	11758(4)	2918(2)	39(1)
C(16)	2362(2)	10457(4)	2581(2)	30(1)
N(1)	2848(2)	9403(3)	2791(2)	30(1)
C(17)	3420(2)	9411(4)	3469(2)	36(1)
O(17)	3628(2)	10332(3)	3965(2)	49(1)
C(21)	3794(2)	8111(4)	3586(2)	31(1)

Tabelle 6.66: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von [CoCl{L³(P,N,N,N,P)}]

C(22)	4390(2)	7741(4)	4209(2)	39(1)
C(23)	4642(2)	6455(5)	4229(2)	47(1)
C(24)	4293(2)	5512(4)	3660(2)	41(1)
C(25)	3697(2)	5911(4)	3061(2)	29(1)
N(26)	3485(2)	7189(3)	3026(1)	28(1)
C(27)	3242(2)	5079(4)	2374(2)	28(1)
O(27)	3378(2)	3900(3)	2277(2)	41(1)
N(3)	2715(2)	5840(3)	1891(2)	27(1)
C(31)	2438(2)	5542(4)	1067(2)	25(1)
C(32)	2100(2)	4366(4)	728(2)	33(1)
C(33)	1864(2)	4261(4)	-95(2)	42(1)
C(34)	1963(2)	5276(5)	-550(2)	43(1)
C(35)	2301(2)	6458(4)	-213(2)	35(1)
C(36)	2537(2)	6593(4)	605(2)	26(1)
P(2)	3054(1)	7894(1)	1267(1)	25(1)
C(61)	3929(2)	7297(4)	1546(2)	28(1)
C(62)	4445(2)	8059(4)	2095(2)	37(1)
C(63)	5124(2)	7733(5)	2296(2)	48(1)
C(64)	5300(2)	6663(5)	1934(3)	55(1)
C(65)	4790(2)	5876(5)	1385(3)	56(1)
C(66)	4108(2)	6193(4)	1198(2)	41(1)
C(71)	3112(2)	9463(4)	781(2)	28(1)
C(72)	3161(2)	9471(4)	38(2)	34(1)
C(73)	3252(2)	10692(4)	-289(2)	41(1)
C(74)	3319(2)	11882(4)	113(2)	41(1)
C(75)	3292(2)	11887(4)	858(2)	36(1)
C(76)	3184(2)	10689(4)	1184(2)	32(1)

Abbildung 6.36: Ellipsoiddarstellung von $[CoCl{L^3(P,N,N,N,P)}]$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

$\textbf{6.34} \quad \textbf{[CuCl} \textbf{\{H}_2 \textbf{L}^3 \textbf{(P,P)} \textbf{\}]} \cdot \textbf{CH}_2 \textbf{Cl}_2$

Tabelle 6.67: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm CuClH_2L^3(P,P)}]\cdot {\rm CH_2Cl_2}$

· · · · · ·		
Summenformel	$\mathrm{C}_{44}\mathrm{H}_{35}\mathrm{N}_{3}\mathrm{O}_{2}\mathrm{P}_{2}\mathrm{Cl}_{3}\mathrm{Cu}$	
M (g/mol)	869.58	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/c$	
Elementarzelle	${ m a}=13.523(1)~{ m \AA}$	$lpha=90^o$
	${ m b}=13.004(1)~{ m \AA}$	$eta=99.23(1)^o$
	${ m c}=24.949(2)~{ m \AA}$	$\gamma=90^o$
Volumen	4330.6(6)Å ³	
Ζ	4	
Berechnete Dichte	$1.334 \mathrm{~g/cm^3}$	
Linearer Absorptionskoeffizient	0.802 mm^{-1}	
F(000)	10506	
Kristallgröße	$0.30 \ge 0.21 \ge 0.21 \text{ mm}^3$	
Theta-Bereich	2.06-28.82°	
Indizes	$-15 \le h \le 16, -14 \le k \le 15, -14$	$29 \le l \le 29$
Zahl der gemessenen Reflexe	17228	
Zahl der unabhängigen Reflexe	$7462 \; [{ m R(int)} = 0.0666]$	
Zahl der verfeinerten Parameter	508	
Goof	0.985	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0801,wR_2=0.2090$	
R_1 / wR_2 (alle Reflexe)	$R_1=0.1216,wR_2=0.2339$	
Restelektronendichte	2.334 und -0.485 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 86 [118]	

	х	У	Z	E(eq)
Cu(1)	1931(1)	1054(1)	1801(1)	31(1)
$\operatorname{Cl}(1)$	615(1)	-12(1)	1764(1)	39(1)
P(1)	1381(1)	2689(1)	1719(1)	28(1)
C(41)	1579(5)	3432(5)	1124(3)	35(2)
C(42)	2382(6)	3182(8)	860(3)	58(2)
C(43)	2582(8)	3789(11)	429(4)	80(4)
C(44)	1971(9)	4621(9)	251(4)	75(3)
C(45)	1167(8)	4861(7)	504(3)	67(3)
C(46)	978(6)	4252(6)	926(3)	44(2)
C(51)	1905(5)	3500(5)	2281(2)	30(1)
C(52)	1670(6)	4540(6)	2301(3)	44(2)
C(53)	2075(6)	5152(7)	2751(3)	54(2)
C(54)	2715(6)	4730(8)	3162(3)	55(2)
C(55)	2972(6)	3719(8)	3149(3)	59(2)
C(56)	2578(5)	3092(6)	2708(3)	43(2)
C(11)	21(4)	2782(5)	1697(2)	28(1)
C(12)	-418(5)	3254(5)	2104(3)	36(2)
C(13)	-1445(6)	3327(6)	2057(3)	48(2)
C(14)	-2034(6)	2948(6)	1597(4)	53(2)
C(15)	-1627(5)	2463(6)	1197(3)	41(2)
C(16)	-593(5)	2367(5)	1253(2)	30(1)
N(1)	-148(4)	1818(4)	857(2)	31(1)
C(17)	-208(5)	2102(5)	330(3)	32(1)
O(17)	-726(4)	2808(4)	120(2)	45(1)
C(21)	1633(5)	215(5)	31(2)	32(1)

Tabelle 6.68: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[CuCl{H_2L^3(P,P)}] \cdot CH_2Cl_2$

C(22)	1706(5)	400(6)	-516(3)	42(2)
C(23)	1108(6)	1163(6)	-785(3)	47(2)
C(24)	480(6)	1708(6)	-518(3)	43(2)
C(25)	457(5)	1489(5)	22(2)	30(1)
N(26)	1011(4)	743(4)	293(2)	31(1)
C(27)	2248(5)	-613(5)	338(3)	32(1)
O(27)	2834(4)	-1129(4)	125(2)	45(1)
N(3)	2091(4)	-725(4)	852(2)	31(1)
C(31)	3124(5)	-1253(4)	1706(2)	28(1)
C(32)	3490(5)	-2033(5)	2052(3)	38(2)
C(33)	3293(6)	-3064(5)	1918(3)	46(2)
C(34)	2759(6)	-3307(6)	1429(3)	47(2)
C(35)	2366(5)	-2539(5)	1064(3)	37(2)
C(36)	2533(5)	-1516(5)	1208(2)	30(1)
P(2)	3342(1)	112(1)	1876(1)	27(1)
C(61)	4249(5)	538(5)	1462(3)	32(1)
C(62)	4610(5)	-76(6)	1073(3)	39(2)
C(63)	5261(6)	316(7)	757(3)	49(2)
C(64)	5570(6)	1329(7)	818(3)	56(2)
C(65)	5229(6)	1950(7)	1190(4)	60(2)
C(66)	4565(6)	1557(5)	1523(3)	45(2)
C(71)	4071(5)	32(5)	2560(3)	31(1)
C(72)	5068(5)	-294(5)	2636(3)	38(2)
C(73)	5569(5)	-427(6)	3164(3)	43(2)
C(74)	5105(6)	-242(6)	3603(3)	50(2)
C(75)	4118(6)	85(6)	3516(3)	49(2)
C(76)	3607(6)	224(6)	3003(3)	41(2)
Cl(87)	4177(3)	8828(3)	4923(2)	60(1)

C(88)	4489(9)	7902(10)	5454(5)	30(2)
Cl(89)	5724(3)	7548(3)	5501(2)	61(1)
Cl(97)	387(2)	6774(2)	1720(1)	28(1)
C(98)	-724(9)	6231(10)	1847(5)	33(3)
Cl(99)	-1552(4)	6002(5)	1259(2)	82(2)

Abbildung 6.37: Ellipsoiddarstellung von $[CuCl{H_2L^3(P,P)}] \cdot CH_2Cl_2$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

6.35 $[Cu{OL^{3}(P,N,N,P-O)}] \cdot 0.5 MeOH$

Tabelle 6.69: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm Cu}\{{\rm OL}^3({\rm P,N,N,N,P-O})\}] \cdot 0.5\,{\rm MeOH}$

((, , , , , , , , , , , , , , , , , ,		
Summenformel	$C_{43.5}H_{33}N_{3}O_{3.5}P_{2}Cu$	
M (g/mol)	779.21	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/c$	
Elementarzelle	${ m a}=19.181(2)~{ m \AA}$	$lpha=90^o$
	${ m b}=16.765(2)~{ m \AA}$	$eta=98.43(1)^o$
	$ m c = 11.930(1)~{ m \AA}$	$\gamma=90^o$
Volumen	$3794.9(7) \text{ Å}^3$	
Ζ	4	
Berechnete Dichte	$1.364~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	0.706 mm^{-1}	
F(000)	6279	
Kristallgröße	$0.40 \ge 0.10 \ge 0.05 \ \mathrm{mm^3}$	
Theta-Bereich	2.11 - 25.56°	
Indizes	-21 \leq h \leq 23, -19 \leq k \leq 20, -	$14 \le l \le 14$
Zahl der gemessenen Reflexe	17046	
Zahl der unabhängigen Reflexe	7351 [R(int) = 0.1134]	
Zahl der verfeinerten Parameter	480	
Goof	0.805	
$R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0607,wR_2=0.1163$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1523,wR_2=0.1406$	
Restelektronendichte	1.712 und -0.505 e \cdot $\mathrm{\AA}^{-3}$	
Programm zur Strukturlösung	SHELXS 97 [119]	

	х	У	Z	E(eq)
Cu(1)	3364(1)	4724(1)	4970(1)	35(1)
P(1)	3123(1)	4914(1)	6790(1)	35(1)
C(41)	2267(3)	4664(3)	7157(4)	36(1)
C(42)	2079(3)	3878(3)	7356(4)	42(1)
C(43)	1417(3)	3695(4)	7563(5)	50(2)
C(44)	912(3)	4281(4)	7545(5)	54(2)
C(45)	1077(3)	5048(4)	7334(6)	58(2)
C(46)	1748(3)	5251(4)	7136(5)	48(2)
C(51)	3329(3)	5878(3)	7430(4)	38(1)
C(52)	3237(3)	6537(4)	6746(6)	56(2)
C(53)	3362(4)	7301(4)	7165(7)	70(2)
C(54)	3587(3)	7403(4)	8280(7)	64(2)
C(55)	3684(4)	6756(5)	8980(7)	83(3)
C(56)	3546(4)	5989(4)	8566(5)	64(2)
C(11)	3736(3)	4189(3)	7486(4)	36(1)
C(12)	3754(3)	3964(3)	8608(5)	44(2)
C(13)	4229(3)	3397(4)	9090(5)	53(2)
C(14)	4682(3)	3047(4)	8462(5)	53(2)
C(15)	4689(3)	3256(4)	7348(5)	48(2)
C(16)	4218(3)	3837(3)	6824(4)	37(1)
N(1)	4172(2)	4078(3)	5692(4)	37(1)
C(17)	4683(3)	3913(3)	5044(5)	39(1)
O(17)	5235(2)	3548(3)	5277(3)	54(1)
C(21)	4507(3)	4275(3)	3877(5)	36(1)
C(22)	4892(3)	4218(4)	3005(5)	49(2)

Tabelle 6.70: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[Cu{OL^{3}(P,N,N,N,P-O)}] \cdot 0.5 MeOH$

C(23)	4667(3)	4621(4)	2014(5)	56(2)
C(24)	4059(3)	5079(4)	1897(5)	48(2)
C(25)	3685(3)	5100(3)	2798(5)	40(1)
N(26)	3909(2)	4700(3)	3745(3)	36(1)
C(27)	2993(3)	5518(3)	2854(5)	41(2)
O(27)	2719(2)	5899(2)	2009(3)	53(1)
N(3)	2749(2)	5380(3)	3830(4)	38(1)
C(31)	1567(3)	5002(3)	4003(4)	35(1)
C(32)	890(3)	5199(4)	4213(5)	45(1)
C(33)	699(3)	5990(4)	4351(5)	50(2)
C(34)	1187(3)	6586(4)	4253(5)	53(2)
C(35)	1863(3)	6403(4)	4051(5)	49(2)
C(36)	2055(3)	5619(3)	3945(4)	38(1)
P(2)	1874(1)	3990(1)	3919(1)	32(1)
O(2)	2452(2)	3769(2)	4842(3)	36(1)
C(61)	1107(3)	3372(3)	3923(4)	33(1)
C(62)	1076(3)	2845(3)	4809(5)	43(1)
C(63)	508(3)	2342(4)	4786(5)	52(2)
C(64)	-35(3)	2364(4)	3920(6)	56(2)
C(65)	-30(3)	2897(4)	3035(6)	52(2)
C(66)	551(3)	3397(3)	3020(5)	43(2)
C(71)	2154(3)	3828(3)	2573(4)	35(1)
C(72)	2666(3)	3262(3)	2505(5)	45(2)
C(73)	2874(4)	3055(4)	1488(6)	57(2)
C(74)	2559(4)	3410(4)	511(6)	62(2)
C(75)	2077(4)	3985(4)	552(5)	59(2)
C(76)	1850(3)	4208(4)	1575(5)	47(2)
C(99)	1748(6)	8697(7)	4818(9)	40(3)

O(99)	1489(4)	8712(5)	5719(7)	52(2)

Abbildung 6.38: Ellipsoiddarstellung von $[Cu{OL^3(P,N,N,N,P-O)}] \cdot 0.5$ MeOH. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

$6.36 \quad [Cu{O_2L^3(P-O,N,N,N,P-O)}] \cdot 3 \, MeOH$

Tabelle 6.71: Kristallographische Daten und Parameter der Strukturrechnung von $[{\rm Cu}\{{\rm O}_2{\rm L}^3({\rm O},{\rm N},{\rm N},{\rm N},{\rm O})\}]\cdot 3\,{\rm MeOH}$

Summenformel	$\mathrm{C}_{46}\mathrm{H}_{43}\mathrm{N}_{3}\mathrm{O}_{7}\mathrm{P}_{2}\mathrm{Cu}$	
M (g/mol)	875.31	
Messtemperatur	200(2) K	
Wellenlänge	0.71073 Å	
Kristallsystem, Raumgruppe	monoklin, $P2_1/c$	
Elementarzelle	${ m a}=22.069(2)~{ m \AA}$	$lpha=90^o$
	${ m b}=9.380(1)~{ m \AA}$	$eta=93.15(1)^o$
	$ m c = 20.228(2)~{ m \AA}$	$\gamma=90^o$
Volumen	4181.0(7)Å ³	
Ζ	4	
Berechnete Dichte	$1.391~{\rm g/cm^3}$	
Linearer Absorptionskoeffizient	0.655 mm^{-1}	
F(000)	1820	
Kristallgröße	$0.17 \ge 0.13 \ge 0.10 \ \mathrm{mm}^3$	
Theta-Bereich	2.17 - 29.12°	
Indizes	$-26 \le h \le 26, -9 \le k \le 11, -24$	$4 \le l \le 24$
Zahl der gemessenen Reflexe	28191	
Zahl der unabhängigen Reflexe	$7264 \; [{ m R(int)} = 0.1485]$	
Zahl der verfeinerten Parameter	480	
Goof	0.975	
$\rm R_1 \ / \ wR_2 \ [I{>}2sigma(I)]$	$R_1=0.0724,wR_2=0.1496$	
$R_1 \ / \ wR_2$ (alle Reflexe)	$R_1=0.1285,wR_2=0.1720$	
Restelektronendichte	0.507 und -0.795 e \cdot Å^{-3}	
Programm zur Strukturlösung	SHELXS 97 [119]	

	Х	У	Z	E(eq)
Cu(1)	2403(1)	5908(1)	1457(1)	35(1)
P(1)	1414(1)	4600(2)	470(1)	21(1)
O(10)	2076(2)	4471(4)	691(2)	24(1)
C(41)	1266(2)	3604(6)	-284(2)	25(1)
C(42)	1732(3)	3434(7)	-700(3)	35(1)
C(43)	1624(3)	2672(9)	-1291(3)	52(2)
C(44)	1065(3)	2126(7)	-1458(3)	45(2)
C(45)	594(3)	2291(7)	-1042(3)	38(2)
C(46)	695(3)	3034(7)	-451(3)	32(1)
C(51)	918(2)	3903(6)	1073(2)	23(1)
C(52)	1026(3)	2511(6)	1289(3)	32(1)
C(53)	653(3)	1908(7)	1751(3)	39(2)
C(54)	188(3)	2664(7)	1996(3)	34(1)
C(55)	85(2)	4043(7)	1775(3)	36(1)
C(56)	449(2)	4665(6)	1322(3)	28(1)
C(11)	1191(2)	6410(6)	312(3)	24(1)
C(12)	893(2)	6825(6)	-293(3)	29(1)
C(13)	710(3)	8210(7)	-387(3)	37(2)
C(14)	834(3)	9220(7)	107(3)	39(2)
C(15)	1130(3)	8827(6)	694(3)	33(1)
C(16)	1303(2)	7437(6)	807(3)	24(1)
N(1)	1613(2)	6990(5)	1402(2)	25(1)
C(17)	1390(2)	7332(6)	1983(3)	25(1)
O(17)	928(2)	8026(5)	2083(2)	38(1)
C(21)	1760(2)	6672(6)	2553(2)	25(1)

Tabelle 6.72: Atomkoordinaten (·10⁴) und isotrope Temperaturparameter (Å²·10³) von $[Cu{O_2L^3(P-O,N,N,N,P-O)}] \cdot 3 MeOH$

C(22)	1652(3)	6791(8)	3218(3)	40(2)
C(23)	2045(3)	6136(9)	3669(3)	47(2)
C(24)	2538(3)	5360(7)	3473(3)	37(1)
C(25)	2621(2)	5294(6)	2801(3)	26(1)
N(26)	2235(2)	5934(5)	2367(2)	24(1)
C(27)	3141(2)	4594(6)	2483(3)	28(1)
O(27)	3526(2)	3908(5)	2829(2)	39(1)
N(3)	3145(2)	4845(5)	1828(2)	27(1)
C(31)	3831(2)	5181(6)	943(2)	25(1)
C(32)	4292(2)	4661(7)	573(3)	32(1)
C(33)	4537(3)	3328(7)	681(3)	37(2)
C(34)	4308(3)	2485(7)	1158(3)	36(1)
C(35)	3856(3)	2955(6)	1538(3)	32(1)
C(36)	3609(2)	4326(6)	1447(3)	26(1)
P(2)	3571(1)	6993(2)	849(1)	24(1)
O(20)	2899(2)	7183(4)	892(2)	32(1)
C(61)	4006(3)	7967(6)	1476(3)	31(1)
C(62)	3724(3)	8902(7)	1884(3)	41(2)
C(63)	4055(4)	9606(8)	2387(3)	59(2)
C(64)	4673(4)	9391(9)	2462(4)	63(2)
C(65)	4960(3)	8499(9)	2063(4)	53(2)
C(66)	4633(3)	7764(7)	1563(3)	39(2)
C(71)	3790(2)	7618(6)	59(3)	28(1)
C(72)	3566(3)	6869(8)	-506(3)	44(2)
C(73)	3715(4)	7351(10)	-1126(3)	60(2)
C(74)	4062(3)	8547(10)	-1190(4)	58(2)
C(75)	4267(3)	9271(8)	-662(4)	50(2)
C(76)	4135(3)	8819(7)	-21(3)	36(1)

O(79)	2460(3)	1713(6)	992(3)	67(2)
C(79)	2681(4)	907(11)	471(4)	73(2)
O(89)	2583(3)	1376(7)	2365(3)	77(2)
$\mathrm{C}(89)$	2243(4)	151(10)	2462(5)	73(2)
O(99)	3183(3)	1404(9)	3700(3)	98(2)
C(99)	3632(5)	1905(11)	4094(5)	92(3)

Abbildung 6.39: Ellipsoiddarstellung von $[Cu{O_2L^3(P-O,N,N,N,P-O)}] \cdot 3 \text{ MeOH}$. Die Schwingungsellipsoide repräsentieren 50% der Aufenthaltswahrscheinlichkeit. [121]

Literaturverzeichnis

- [118] SHELXS86, ein Programm zur Lösung von Kristallstrukturen., G.M. Sheldrick, Universität Göttingen 1986, G. M. Sheldrick, Acta. Cryst., 1990, A46, 467.
- [119] SHELXS97, ein Programm zur Lösung von Kristallstrukturen., G.M. Sheldrick, Universität Göttingen 1997, G. M. Sheldrick, Acta. Cryst., 1990, A46, 462.
- [120] SHELXL97, ein Programm zur Verfeinerung von Kristallstrukturen., G.M. Sheldrick, Universität Göttingen 1997.
- [121] WinGX-Version 1.64.05, ein integriertes System von Windows-Programmen zur Lösung, Verfeinerung und Analyse von Einkristallröntgenstrukturdaten., L. J.
 Farrugia, J. Appl. Cryst. 1999, 32, 837.