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Abstract: We herein describe the design and synthesis of a catalytically active peptide–gold
nanoparticle conjugate (Pep-Au-NP) that binds Zn(II) within its peptide monolayer and develops
carbonic anhydrase activity. Specifically, a modified variant of the β-sheet forming IHIHIQI-peptide
(IHQ), which forms an interstrand 3-His Zn(II)-binding site, was used as a ligand for spherical
gold nanoparticles (Au-NPs). The resulting immobilized peptide maintains its ability to form
β-sheets, as determined by circular dichroism (CD)-spectroscopy and, thus, maintains its ability to
form Zn(II)-binding sites. The addition of Zn(II)-ions to the peptide–gold nanoparticle conjugates
(Au@IHQ-NP) resulted in significant improvements in rates of ester hydrolysis of 4-nitrophenyl
acetate (4-NPA) and the hydration of CO2 compared to the unconjugated peptide variants. Recycling
of the catalyst revealed that Au@IHQ-NP remains intact with at least 94% of its initial activity after
five rounds of CO2 hydration. The herein reported results reveal that Pep-Au-NPs are able to perform
reactions catalyzed by natural metalloenzymes and open up new possibilities for the implementation
of these conjugates.

Keywords: catalytically active peptides; gold nanoparticle; carbonic anhydrase mimic; artificial
enzymes; catalysis

1. Introduction

The development of nanostructures that mimic the remarkable functions and catalytic properties of
natural enzymes, i.e., to create nanozymes [1,2], has been an exciting topic in the field of nanotechnology
for the last two decades [3]. Among several approaches used to create nanozymes [4,5], the self-assembly
of thiolated ligands onto the surface of gold nanoparticles (Au-NPs) to obtain monolayer-protected gold
clusters (Au-MPCs) has emerged as a powerful strategy [6]. In particular, the conjugation of peptides
on to the surface of gold nanoparticles to yield peptide–gold nanoparticle conjugates (Pep-Au-NPs)
expanded the possibilities for the design of artificial enzymes [7–10]. Peptides are available at low cost
by solid-phase peptide synthesis, and their modular design paired with the available repertoire of
natural and non-natural amino acids allows for facile diversification of functional groups, and thus
the resulting catalytic activities and substrate specificities of the peptide shell. The conjunction of
peptides and Au-NPs leads to dense peptide monolayers in which new hydrogen bond and/or charge
interactions between individual peptides are established. This enables known enzyme-like effects, such
as the perturbation of pKa values of functional groups and cooperativity in substrate binding [9,11],
and can even lead to new catalytic mechanisms [7,8]. Altogether, these effects can greatly improve the
catalytic performance of a conjugated versus an unconjugated peptide.

To date, the design and application of Pep-Au-NPs have been limited to organic esterase
chemistry, in which catalysis is mediated by a His-imidazole [7–11]. Considering the fact that zinc
metalloenzymes perform numerous other types of reactions in nature, including phosphodiester
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and amide hydrolysis as well as the (de)hydrogenation of alcohols [12,13], it is of great interest
to reconstitute such transformations in vitro by developing appropriate robust synthetic systems.
For example, carbonic anhydrase (CA) is a naturally occurring zinc metalloenzyme that efficiently
and reversibly catalyzes the hydration of CO2 into hydrogen carbonate (HCO3

−). Its high activity
originates from its zinc (Zn(II)) containing active site, in which three histidine imidazole moieties
coordinate a Zn(II)-ion leaving a vacant space for the association of a water molecule. Zn(II) lowers the
pKa of the bound water and forms a highly nucleophilic hydroxide species which reacts with CO2,
bound in close proximity, to yield HCO3

− [14]. CA isoforms have been extensively studied due to their
clinical importance as drug targets and artificial lungs [15], and their great potential as catalysts in
carbon capture systems [16–18]. Especially the latter application drove our interest, as the emission of
CO2 and the associated anthropogenic climate change steadily proceeds and new approaches for the
absorption of CO2 become increasingly urgent. In order to further increase our understanding of the
design of Pep-Au-NPs, and to present a new approach for the absorption CO2, we herein describe the
design and synthesis of the first Pep-Au-NP metalloenzyme mimicking carbonic anhydrase activity.

2. Results and Discussion

2.1. Peptide Design

The chosen peptide was designed according to the minimalistic β-sheet-forming heptapeptide
IHIHIQI (IHQ) consisting of alternating hydrophobic residues and His ligands in positions i and i + 2
as reported by Rufo et al. [19]. The peptide assembles into extended parallel amyloid β-structures in
which three His ligands form an interstrand 3-His Zn(II)-binding site (Figure 1, green) that functions as
a hydrophobic primary coordination sphere, analogous to the active site of CA [20].

Grafting of IHQ or its cysteine-containing variant onto Au-NPs leads to irreversible aggregation
and precipitation of the resulting Pep-Au-NPs. Thus, IHQ was modified as follows to obtain colloidal
stable Pep-Au-NPs. The N-terminus was elongated by a spacer sequence of 9 amino acids comprised of
Cys, Gly, Ala, and chromogenic Tyr (NH2-CAGYGAGAG-) to prevent aggregation of the Pep-Au-NPs
by steric hindrance between the extended peptide chains and to enable conjugation to the gold-surface
by stable S-Au-bonds. The C-terminus was elongated by a peptide sequence comprising the polar
amino acids Thr, Gln, and Lys (-GTQK), which are residues found in the secondary coordination sphere
of CA, for two reasons: first, positively charged Lys residues increase the electrostatic stabilization of
the peptide monolayer by Coulomb repulsion between individual peptide chains; second, this sequence
introduces a polar region that potentially assists in the catalytic process by engaging in stabilizing
interactions with the transition state, or by providing a region which facilitates the release of product
and/or solvent exchange [20,21]. The C-terminus was amidated to prevent possible aggregation of
Pep-Au-NP after the addition of Zn(II).

The fully modified peptide sequence, referred to as IHQ-NP (Figure 1), was directly applied as a
stabilizing agent in the reduction reaction of HAuCl4 by NaBH4. The obtained bench stable Pep-Au-NPs
are referred to as Au@IHQ-NP. The synthesized spherical Au@IHQ-NP possess a mean diameter of
10.8 ± 2.8 nm, which was determined by transmission electron microscopy (TEM, Supplementary
Materials). Successful conjugation of IHQ-NP to the Au-NPs was verified by FT-IR-spectroscopy
(Supplementary Materials). FT-IR stretching frequencies of characteristic bands of the peptide, including
the Amide A, Amide I, and Amide II band, are present within the IR-spectrum of Au@IHQ-NP,
confirming the presence of bound IHQ-NP. Characterization by UV/vis-spectroscopy (Supplementary
Materials) shows a single surface plasmon resonance maximum at 525 nm, which is characteristic for
spherical Au-NP. By applying supernatant analysis, the mean peptide loading per nanoparticle was
determined to be 859 peptides/Au-NP. This corresponds to an average peptide density of 2.26 pep/nm2,
which is consistent with literature reported peptide densities in the range of 1.41–2.55 pep/nm2,
depending on the peptide length [9,11,22,23].
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Figure 1. (Top) Peptide sequence of designed and studied IHQ-NP and (bottom) structures of the 

polar region (blue) and hydrophobic segment (green) of IHQ-NP and the corresponding 3 His Zn(II)-

center formed by interstrand interactions between two individual β-sheet forming IHQ-NP peptides 

(green arrow). 

As the formation of β-sheets is a prerequisite for the generation of the 3-His Zn(II)-binding site, 

and thus the successful coordination of Zn(II) [19], circular dichroism (CD) spectroscopy was 

performed in order to assess the secondary structure of (un)conjugated IHQ-NP and its Zn(II)-

dependency. 

The CD-spectra of IHQ-NP and Au@IHQ-NP show zinc-independent single ellipticity minima 

around 215 nm, respectively, which is characteristic for β-sheet structures (Figure 2). Hence, IHQ-NP 

and conjugated IHQ-NP maintain the ability to form β-sheet structures even when immobilized at 

the surface of Au-NPs, indicating the presence of functional Zn(II)-binding domains and potential 

catalytic sites. 

 

Figure 2. Circular dichroism (CD)-spectra of IHQ-NP and peptide–gold nanoparticle conjugates 

(Au@IHQ-NP) in absence or presence of Zn(II). CD-spectra were recorded in Tris/HCl buffer pH 8 

with 5% acetonitrile at 25 °C in presence of 10 µM (immobilized) IHQ-NP and 100 µM ZnCl2, when 

in presence of Zn(II). 

Figure 1. (Top) Peptide sequence of designed and studied IHQ-NP and (bottom) structures of the
polar region (blue) and hydrophobic segment (green) of IHQ-NP and the corresponding 3 His Zn(II)-
center formed by interstrand interactions between two individual β-sheet forming IHQ-NP peptides
(green arrow).

As the formation of β-sheets is a prerequisite for the generation of the 3-His Zn(II)-binding site,
and thus the successful coordination of Zn(II) [19], circular dichroism (CD) spectroscopy was performed
in order to assess the secondary structure of (un)conjugated IHQ-NP and its Zn(II)-dependency.

The CD-spectra of IHQ-NP and Au@IHQ-NP show zinc-independent single ellipticity minima
around 215 nm, respectively, which is characteristic for β-sheet structures (Figure 2). Hence, IHQ-NP
and conjugated IHQ-NP maintain the ability to form β-sheet structures even when immobilized at
the surface of Au-NPs, indicating the presence of functional Zn(II)-binding domains and potential
catalytic sites.
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Figure 2. Circular dichroism (CD)-spectra of IHQ-NP and peptide–gold nanoparticle conjugates
(Au@IHQ-NP) in absence or presence of Zn(II). CD-spectra were recorded in Tris/HCl buffer pH 8
with 5% acetonitrile at 25 ◦C in presence of 10 µM (immobilized) IHQ-NP and 100 µM ZnCl2, when in
presence of Zn(II).



Catalysts 2019, 9, 903 4 of 11

2.2. Esterase Activity

Although the natural reaction catalyzed by CA is the reversible hydration of CO2 to HCO3
−,

a frequently used benchmark reaction to study the successful coordination of Zn(II) and function of
the active sites is the hydrolysis of model substrate 4-nitrophenyl acetate (4-NPA) [24]. Both reactions
are initiated by a similar mechanism, that is, the nucleophilic attack of the Zn(II)-bound hydroxide
to the substrate (Scheme 1) [25,26]. The hydrolysis of 4-NPA can readily be traced by measuring the
UV/vis-absorbance of the 4-nitrophenolate (4-NP) product at 405 nm.
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Scheme 1. Proposed reaction mechanisms of (a) CO2-hydration and (b) 4-nitrophenyl acetate (4-NPA)
hydrolysis initiated by the nucleophilic Zn(II)-bound hydroxide [26].

To verify the Zn(II)-binding and function of the catalytic Zn(II)-center, IHQ-NP and Au@IHQ-NP
were studied in the context of their ability to cleave 4-NPA in absence or presence of Zn(II). In the
absence of Zn(II) nucleophilic and/or general acid/base catalysis performed by the His imidazole is
expected, while in presence of Zn(II), hydrolysis is executed by the more rapid Zn(II)-bound hydroxide
mechanism [19].

To ensure proper metal coordination [19], 10 equivalents of Zn(II) were added to the catalyst
mixture and the resulting Zn(II)-containing peptide(-gold nanoparticle conjugate) are referred to as
Zn(II)-IHQ-NP and Zn(II)-Au@IHQ-NP.

Figure 3a,b show the blank-corrected saturation curves of IHQ-NP and Au@IHQ-NP in the
presence or absence of Zn(II). While the dependence of unconjugated Zn(II)-/IHQ-NP-catalyzed 4-NPA
hydrolysis on 4-NPA concentration displays hyperbolic behavior (Figure 3a), which is in accordance with
the Michaelis–Menten theory, sigmoidal behavior was observed for Zn(II)-/Au@IHQ-NP (Figure 3b).
A sigmoidal profile indicates a positive cooperative effect for the binding of substrate molecules among
individual active sites and has been previously observed to be an effect evoked by the conjugation
and the resulting high peptide density within the peptide monolayer [9,11]. Positive cooperativity in
substrate binding is classified as a regulatory mechanism also found in nature. Instead of a linearly
increasing behavior of the catalytic response curve at low substrate concentrations (0–0.1 mM), the
ascent of the catalytic response curve starts shallow, as above a certain concentration, small changes
in the substrate concentration lead to greater catalytic responses. The Hill-coefficient n is frequently
used to express the magnitude of cooperativity or slope of the sigmoidal curve. We found positive
cooperativity in Zn(II)-Au@IHQ-NP-catalyzed 4-NPA hydrolysis (n = 2.5) to be 0.6 units higher
compared to Au@IHQ-NP (n = 1.9), indicating that Zn(II)-binding alters substrate interactions and the
associated catalytic process.
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Figure 3. Saturation curves of background-corrected 4-NPA hydrolysis catalyzed by (a) IHQ-NP and
(b) Au@IHQ-NP in absence and presence of Zn(II), respectively. Hydrolysis reactions were carried out
in 50 mM Tris/HCl buffer pH 8 with 5% acetonitrile at 25 ◦C. (Immobilized) IHQ-NP concentration of
10 µM was used, while 100 µM ZnCl2 was added for reactions in presence of Zn(II).

Table 1 summarizes the catalytic parameters kcat, KM, and kcat/KM of IHQ-NP, Au@IHQ-NP
in the absence or presence of Zn(II). The immobilization of IHQ-NP onto the surface of Au-NPs
(Au@IHQ-NP) led to an overall increase in catalytic efficiency (kcat/KM) by almost 2-fold. Interestingly,
the increase in kcat/KM originates exclusively from a decrease in KM, indicating a higher affinity
for the peptide monolayer. We assume that the high peptide density leads to the formation of a
secondary coordination sphere with sophisticated substrate interactions and possibly the formation of
transient binding pockets within the peptide monolayer that lead to improved binding. Riccardi et al.
previously verified the formation of such pockets for the binding of small molecules using even less
complex Au-MPCs consisting of oligo(ethylene glycol)-based thiols [27]. Thus, it may be expected that
Pep-Au-NPs composed of peptides with a more diverse set of functionalities are able to form similar
binding cavities.

Table 1. Determined kinetic parameters kcat, KM, and kcat/KM of IHQ-NP-catalyzed 4-NPA hydrolysis
in absence and presence of Zn(II). Reactions were performed in Tris/HCl buffer pH 8 with 5% acetonitrile
at 25 ◦C 10 µM (Immobilized) IHQ-NP was used and 100 µM ZnCl2 was added for reactions performed
in presence of Zn(II).

Catalyst kcat
(10−3 s−1)

KM
(mM)

kcat/KM
(M−1 s−1)

IHQ-NP 1 4.49 ± 0.68 1.61 ± 0.27 2.79 ± 0.98
Zn(II)-IHQ-NP 1 10.53 ± 0.72 1.21 ± 0.20 8.69 ± 1.47
Au@IHQ-NP 2 2.41 ± 0.02 0.49 ± 0.06 4.95 ± 0.61

Zn(II)-Au@IHQ-NP 2 7.97 ± 0.41 0.50 ± 0.03 16.06 ± 1.78
1 Parameter determined by fit to the Michaelis–Menten equation. 2 Parameter determined by fit to the Hill equation.

The addition of Zn(II) to the peptide catalysts further improved the catalytic efficiency for the
Zn(II)-IHQ-NP- and Zn(II)-Au@IHQ-NP-catalyzed ester hydrolysis by more than 3-fold, compared
to the respective peptides in the absence of Zn(II). This time, the improvement in catalytic efficiency
of Zn(II)-IHQ-NP and Zn(II)-Au@IHQ-NP results from both a decrease in KM and an increase in
turnover number kcat by 2- and 3-fold, respectively. The increase in catalytic activity upon addition of
Zn(II) is in accordance with the rate enhancements reported for the IHQ peptide when the catalytic
Zn(II)-center is developed [19]. Hence, IHQ-NP and Au@IHQ-NP are able to bind Zn(II) and execute
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4-NPA hydrolysis by the Zn(II)-bound hydroxide mechanism rather than nucleophilic and/or general
acid/base catalysis performed by the His imidazole.

Compared to other literature on known Pep-Au-NPs by Koksch and co-workers [9–11] or Pengo
et al. [7,8], (Zn(II)-)Au@IHQ-NP shows only moderate catalytic efficiency. However, both particle
size and peptide loading deviate from the reported conjugates and most probably influence the
catalytic properties. Thus, comparisons of catalytic efficiency should be done carefully. Interestingly,
independent of the conjugate, all show a similar KM of approximately 0.5 mM [9–11], indicating a
similar affinity of 4-NPA for the respective peptide monolayers.

2.3. Carbonic Anhydrase Activity

We were particularly interested in establishing Au@IHQ-NP as a catalyst for the hydration of
CO2 to HCO3

−. Since H+ is generated during the catalytic process, the chemical absorption of CO2 can
readily be monitored by following the change in pH over time, which is the basis for the frequently
used delta-pH method [28–30]. Here, the delta-pH method serves as a qualitative tool to investigate
the kinetics of CO2-hydration and proof-of-concept for Au@IHQ-NP functioning as a CA mimic.

Kinetic experiments were conducted in Tris/HCl buffer pH 8.9 in order to sufficiently cover the
drop in pH over 2 units of pH, in the absence or presence of Zn(II). Figure 4a shows the time-dependent
change in pH during the hydration of CO2 in presence of IHQ-NP and Au@IHQ-NP, compared to the
buffer control.
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Figure 4. CO2-hydration activity via delta-pH of IHQ-NP and Au@IHQ-NP in (a) the absence or (b)
the presence of Zn(II). CO2-hydration was performed in 50 mM Tris/HCl buffer pH 8.9 either in the
absence of ZnCl2 (a) or containing 100 µM ZnCl2 (b). 10 µM (immobilized) IHQ-NP was used, while
CO2 flow rate was kept constant at 0.1 L/min.

Both, IHQ-NP and Au@IHQ-NP show a marginal drop in pH over the buffer control, thus marginal
increases in CO2 hydration in the absence of Zn(II) by ~3% and 6%, respectively. The small rate increase
of IHQ-NP and Au@IHQ-NP can be attributed to the His imidazole which is reported to promote CO2

hydration [31–33].
More strikingly, the pH drops significantly faster for Zn(II)-IHQ-NP and Zn(II)-Au@IHQ-NP,

compared to the buffer control (Figure 4b). CO2-hydration increases by 21% and 55%, respectively.
The significantly higher activity in the presence of Zn(II) indicates that the catalytic process proceeds
via the catalytic Zn(II)-center. Interestingly, Zn(II)-Au@IHQ-NP shows a significantly greater rate
acceleration compared to the unconjugated Zn(II)-IHQ-NP. We assume that the peptide monolayer again
acts as a more elaborate secondary coordination sphere in which CO2 interactions and/or transition
state stabilization take place. To date, increased rates of reaction, evoked solely by conjugation of a
peptide to the surface of Au-NPs, has only been observed in ester hydrolysis reactions performed by a
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His imidazole [7–11]. The herein described CO2 hydration indicates that the cooperative or synergistic
effects that lead to the rate improvements are also applicable to other reactions executed by catalytic
(metal) centers. Moreover, we hypothesize that the introduced polar region at the solvent exposed end
of the peptide monolayer facilitates water/H+-shuttling as is the case in native CA. However, detailed
mechanistic studies are necessary in order to elucidate the complex process that leads to the observed
rate enhancements of Zn(II)-Au@IHQ-NP.

Since conjugation of peptides onto Au-NPs represents a transition from homogenous to
heterogeneous catalysis, recycling of Zn(II)-Au@IHQ-NP is feasible. Subsequent to CO2 hydration,
we released the absorbed CO2 by elevating the temperature of the reaction mixture to 60 ◦C and
bubbling a stream of N2-gas through the solution, until the initial pH of 8.9 was reached. We observed
a slight change in the color of the Pep-Au-NP dispersion from red to violet, indicating some degree
of instability of the Au-NPs. However, to our surprise, the treatment of the reaction mixture and
subsequent color change did not affect the catalytic activity as Zn(II)-Au@IHQ-NP maintained almost
94% of its activity over five cycles of CO2 hydration (Figure 5a,b).
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3. Materials and Methods

3.1. Peptide Synthesis

Peptide IHQ-NP were synthesized using microwave-assisted solid-phase peptide synthesis
(Liberty Blue synthesizer, CEM Corporation, Matthews, NC, USA). The coupling of each
Fmoc-protected amino acid (5 equivalents; ORPEGEN Peptide Chemicals GmbH, Heidelberg,
Germany) was performed using reagents N,N′-diisoproplycarbodiimide (DIC; 4.9 equivalents) and
ethyl 2-cyano-2-(hydroxyimino)acetate (Oxyma; 5 equivalents) obtained from Sigma-Aldrich® (Merck
KGaA, Darmstadt, Germany) in N,N-Dimethylformamide (DMF, synthesis grade; Fisher Scientific,
Schwerte, Germany). Cleavage of peptide from the resin (Fmoc-Lys preloaded TentaGel® S RAM
Resin; Rapp Polymere GmbH, Tuebingen, Germany) as well as side-chain deprotection was performed
by using a cleavage mixture of thioanisole, phenol, 1,2-ethanedithiol (EDT) obtained from Acros
Organics (Thermo Fisher Scientific, Geel, Belgium), H2O, and trifluoroacetic acid (TFA; Merck KGaA,
Darmstadt, Germany) (5:5:2.5:2.5:85, v/v). Ice-cold diethyl ether was used to precipitate the crude
peptides before purification by reverse-phase (RP) HPLC LaPrep

∑
low-pressure HPLC system (VWR,

Darmstadt, Germany) using a Kinetex RP-C18 end-capped HPLC-column (5 µM, 100 Å, 250 × 21.2 mm,
Phenomenex®, Torrance, CA, USA). A SecurityGuardTM PREP Cartridge Holder Kit (21.20 mm, ID,
Phenomenex®, Torrance, CA, USA) was used as pre-column. Deionized water (Milli-Q Advantage®
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A10 Ultrapure Water Purification System, Millipore®, Billerica, MA, USA) and acetonitrile (can,
analytical grade; Fisher Scientific, Schwerte, Germany), both containing 0.1% (v/v) TFA, were used
as eluents. HPLC runs were performed with a linear gradient of 5–70% ACN over 25 min, flow rate:
15.0 mL/min.

3.2. Peptide Stock Solution

Amyloidogenic IHQ-NP was handled according to Rufo et al. [19]. Briefly, IHQ-NP stock
solution was prepared by dissolving lyophilized IHQ-NP in 10 mM HCl. Concentration of stock
solution was determined by using a Varian Cary 50 UV-Vis Spectrophotometer (Agilent Technologies,
Santa Clara, CA, USA) and by applying an experimentally determined extinction coefficient (ε280) of
1263 L mol−1 cm−1. Working solutions at elevated pH >8 were freshly prepared and the pH verified
before each individual measurement.

3.3. Synthesis of Au@IHQ-NP

Pep-Au-NP synthesis was performed according to our previously established procedure [10].
Briefly, an aqueous solution of HAuCl4 (0.8 mL, 2.49 × 10−2 M; Sigma-Aldrich®, Merck KGaA,
Darmstadt, Germany) was added to enzyme-free water (EF-H2O; Water for Molecular Biology, Merck
KGaA, Darmstadt, Germany) containing IHQ-NP (1.5 mL of 0.6 mM Solution) while carefully adjusting
the pH to a value of 6 (total reaction volume 10 mL). Slightly acidic reaction conditions prevented
premature aggregation of the peptide. An aqueous solution of freshly prepared NaBH4 (0.3 mL, 0.01 M)
was added after 5 min of stirring. Following an additional 1 h of vigorous stirring, the formed red
dispersion was centrifuged using centrifugal filters (Amicon Ultra-0.5 NMWL 30 kDa; Sigma-Aldrich®,
Merck KGaA, Darmstadt, Germany) to recover Au@IHQ-NP as a dark red pellet. The pellet was
redispersed in EF-H2O and again centrifuged to remove excess NaBH4. The resulting pellet was
redispersed in EF-H2O and stored at room temperature. Nanoparticle concentration was calculated
according to equations provided by Liu et al. [34]. The average peptide loading was determined by
supernatants as previously described [9,10]. Briefly, after centrifugation, the supernatant was analyzed
and the amount of unbound peptide determined by UV/vis-spectroscopy (see Section 3.2). The amount
of unbound peptide was subtracted from the amount of peptide added during the reaction, giving the
amount of bound peptide on the Au-NPs.

3.4. Esterase Activity

The rates of hydrolysis of 4-NPA were monitored in 50 mM Tris/HCl pH 8 at a constant temperature
of 25 ◦C by measuring the UV/vis-absorbance at 405 nm of the formed product 4-nitrophenolate
(4-NP). Using a literature-reported extinction coefficient of 16,600 L mol−1 cm−1 [19], initial rates of
reaction (v0) of uncatalyzed (blank) and catalyzed reactions were determined over a range of substrate
concentrations until saturation conditions were observed. Initial rates of reaction of the catalysts were
obtained by subtracting v0 of the blank reactions from v0 of the corresponding catalyzed reaction.
Kinetic experiments were performed at least three times to determine standard deviations. The Kinetic
parameters vmax, KM, and the Hill-coefficient n were obtained by fitting the measured data points to the
Hill or Michaelis–Menten equation by performing a nonlinear regression using OriginLab (OriginPro,
Version 2019 Academic; OriginLab Corporation, Northampton, MA, USA.) Calculation of errors and
error propagation was carried out according to Gaussian equations for normally distributed errors and
the derived error propagation.

Ester hydrolysis was performed in quartz cuvettes (QS, 1 cm path length 3.5 mL, Hellma Analytics)
using Varian Cary 50 UV-Vis Spectrophotometer (Agilent Technologies, Santa Clara, CA, USA)
thermostatted at 25 ◦C (Lauda RKS). Ester hydrolysis was initiated by addition of a defined volume of
4-NPA stock solution in acetonitrile. In total, 5% acetonitrile was present in each reaction mixture.
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Kinetic studies were conducted using a calculated (immobilized) peptide concentration of 10 µM,
while 100 µM ZnCl2 was added when the reaction mixture contained Zn(II). Initial 4-NPA concentration
was gradually increased so 0.2, 0.4, 0.6, and 0.8 mM were applied in 4-NPA hydrolysis.

3.5. Carbonic Anhydrase Activity

The delta-pH method was used to determine the feasibility of peptide/Pep-Au-NP-catalyzed CO2

hydration. A setup reported by Kellsey et al. was modified and used for all hydration reactions [29].
Briefly, a pH probe and glass tubing were immersed into the two necks of a 2-necked 100 mL
round-bottom flask containing 10 µM of the respective (immobilized) IHQ-NP in the absence and
presence of 100 µM ZnCl2 in Tris/HCl-buffer pH 8.9 (total volume 40 mL) at 22 ◦C. CO2 gas (Carbon
dioxide N35, Air Liquide) was streamed through the gas tubing into the reaction mixture at a constant
flow of 0.1 L/min. The changes in pH were recorded automatically using a pHenomenal® pH 1100L
pH-meter (VWR International GmbH, Darmstadt, Germany). Rates of hydration were determined by
the slope of the plot of time-dependent pH changes.

4. Conclusions

In summary, the catalytically active Zn(II)-binding peptide IHQ-NP was conjugated onto Au-NPs
leading to the formation of a peptide monolayer that is able to bind Zn(II) and develop a catalytic
Zn(II)-center. Peptide variants IHQ-NP and Au@IHQ-NP were tested for their ability to serve as esterase
and carbonic anhydrase mimics. While IHQ-NP and Au@IHQ-NP both noticeably catalyze ester
hydrolysis and marginally catalyze CO2 hydration in the absence of Zn(II), significant improvements
in catalytic efficiency and rate acceleration were observed in the presence of Zn(II) for both reactions.
The Zn(II)-Au@IHQ-NP showed even greater rate improvements for ester hydrolysis and CO2 hydration
compared to the unconjugated Zn(II)-IHQ-NP variant. This is in accordance with previously reported
results showing that Pep-Au-NPs can generate secondary coordination spheres in which synergistic
effects and cooperativity in substrate binding and the associated improvements in catalysis over
the unconjugated peptide are observed. Recycle experiments further revealed Zn(II)-Au@IHQ-NP
to maintain at least 94% of its catalytic activity over 5 cycles of CO2 hydration. Altogether, the
herein reported results validate the proof-of-concept that Pep-Au-NPs can be designed to bind metal
ions within their peptide monolayer and develop metalloenzymatic activities. The presented results
provide a design principle based on a well-defined peptide secondary structure and demonstrate
the exponentially increasing possibilities, due to the combination of Au-NPs and catalytically active
peptide sequences, as their catalytic toolbox can be further expanded based on nature’s examples.
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