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Abstract: With increasing population growth, the Harare Metropolitan Province has experienced
accelerated land use and land cover (LULC) changes, influencing the city’s growth. This study aims
to assess spatiotemporal urban LULC changes, the axis, and patterns of growth as well as drivers
influencing urban growth over the past three decades in the Harare Metropolitan Province. The
analysis was based on remotely sensed Landsat Thematic Mapper and Operational Land Imager data
from 1984–2018, GIS application, and binary logistic regression. Supervised image classification using
support vector machines was performed on Landsat 5 TM and Landsat 8 OLI data combined with the
soil adjusted vegetation index, enhanced built-up and bareness index and modified difference water
index. Statistical modelling was performed using binary logistic regression to identify the influence
of the slope and the distance proximity characters as independent variables on urban growth. The
overall mapping accuracy for all time periods was over 85%. Built-up areas extended from 279.5 km2

(1984) to 445 km2 (2018) with high-density residential areas growing dramatically from 51.2 km2

(1984) to 218.4 km2 (2018). The results suggest that urban growth was influenced mainly by the
presence and density of road networks.

Keywords: urban growth; built-up area; Harare Metropolitan Province; binary logistic regression;
support vector machines

1. Introduction

Temporally and spatially, urbanization is an uneven process supporting residential expansion,
including growth in population size of individuals living in urban areas and expansion of physical
structures in an urban setup in addition to the previously existing structures [1,2]. Urbanization is
directly changing and affecting the environment, as it is made distinct by the increasing built-up
and impervious areas at the expense of wetland areas and agricultural landscapes. Such actions
result in the transformation of natural landscapes into agricultural landscapes [3]. Consequently, this
leads to environmental degradation through deterioration of vegetation and sealing, often resulting
in increasing surface runoff, soil erosion, surface water contamination, and exploitation of natural
habitats [4–6]. Muller et al. [7] highlights that urbanization is one of the greatest factors contributing to
biodiversity loss due to the expansion of industrial, residential and commercial business areas.

The world’s population is projected to increase from 7.0 to 9.3 billion by 2050 [8]. Therefore,
during that stipulated period urban areas worldwide are anticipated to absorb large numbers of the
growing population. Urbanization is a continuous process, and megacities such as Delhi, India had
a total increase in population of 47.02% within a decade between 1991 and 2001 [9]. For China, the
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urbanization growth rate tripled from 17.9% to 57.4% between 1978 and 2016, and it is projected to
reach 70% by 2035 [10]. Although countries like Ethiopia are among the least urbanized countries in the
world, high rates of in-migration to urban cities have been investigated and projected to reach 42.1% of
the total population by 2050 [11]. Up-to-date data and information regarding the trends and status
of urban ecosystems are required to enable the development of sustainable strategies on improving
livelihoods in urban settings. In particular, in sub-Saharan Africa, up-to-date data and information
on population are fundamental for developing ways to curb urban demographic transitions [12].
It is estimated that sub-Saharan Africa’s urban population will rise by 60–70% by 2050, with most
people occupying small cities due to the fact of cultural, socio-economic and political influences [12,13].
Although previous studies have indicated urban growth in terms of population size, studies on land
use and land cover (LULC) changes and the key drivers of such changes remain scarce yet important.

To further understand the relationship between urbanization and environmental alteration, LULC
changes need to be assessed and evaluated to determine the extent and the rate at which human
activities are contributing to shifts in the environment. The integration of remote sensing data to
monitor the state and dynamics of the Earth’s surface provides reasonable results in a short space of
time [6], compared to on-site surveying techniques [14,15]. Moderate resolution Landsat Thematic
Mapper images (TM) are a standard tool used for urban mapping and change detection analysis and
were used, for example in Minnesota, USA between 1986 and 2002 for LULC changes [16]. Landsat
images in combination with socio-economic data have been used to determine the effects associated
with development and land use shifts. For example, spatial dynamics of LULC changes were analysed
for the Nairobi urban area and showed that the built-up area quadrupled from 1.9% in 1976 to 8.6%
of the total area in 2000 [17]. For Zimbabwe, Hove and Tirimboi [18] indicated that on a national
scale, vast numbers of people migrated to Harare from rural homes soon after independence in
1980. Wania et al. [19] reported on the expansion of built-up areas of Harare using high-resolution
SPOT images.

Investigation of LULC change dynamics and classification in heterogeneous landscapes using
moderate-resolution satellite imagery potentially has challenges due to the fact of spectral confusion
resulting in misleading information [20,21]. Accurate observation of LULC changes by remote sensing
is a vital component of promoting sustainability. Enhancement of land cover class delineation
using remote sensing indices and machine learning algorithms such as random forest (RF) and
support vector machines (SVMs) have the relatively desirable characteristic of improving multispectral
classification [20–24]. The effectiveness of mapping land-cover types using spectral indices is primarily
the result of their ability to characterize relative features of interest over a wide range of the spectrum [25].
The Harare Metropolitan Province was chosen as a case study because of its vastly reported pressures
due to the presence of high population and urbanization rates for this metropolitan area in the
northern High Veldt of Southern Africa [19,26]. Harare Metropolitan Province, being the capital city
of Zimbabwe, faces increasing population growth as do other metropolitan cities largely because
they are associated with better livelihoods and as centres for economic activities, public services,
and amenities [24,27]. Among others, Chirisa and Muhomba [28] revealed that Epworth, a Harare
Metropolitan Province district, has approximately 70% of its inhabitants living on unauthorized,
non-serviced land and thereby compounding the increased settlement and spread of the metropolitan
area. Thus far, monitoring urban growth trends is an important tool for understanding previous trends
and present growth patterns and potentially unravelling possible coming developments and their likely
impacts [29]. Identifying empirical drivers of urban structure change is based on past and current state
of LULC changes for the Harare Metropolitan Province. The current study aimed to investigate the
axis of change and expansion of the Harare Metropolitan Province. In view of the resource constraints
in a developing country, freely available remote sensing data were applied to assess the direction of the
urban expansion. Furthermore, the study sought to determine the explanatory drivers of the changes
in LULC for the Harare Metropolitan Province.
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2. Materials and Methods

2.1. Study Area

The study area lies between 17◦49’39.79” south latitude and 31◦03’12.13” east longitude and
covers three districts of the Harare Metropolitan Province (Figure 1) [26,30]. Harare is the capital city of
Zimbabwe and experiences high urbanization rates from rural–urban shifts, driven by those in search of
better livelihoods and employment [31,32]. The bedrock in Harare Metropolitan Province are granites
in the east and southwest and gabbro and dolerite in the north, while phyllite and metagreywacke
dominate the core centre of the Harare Metropolitan Province [26,33,34]. The relief is slightly rolling
with locally U-shaped incised valleys. Bedrock is widely covered by several decimetre-thick saprolite
which is characterized by cyclic surface erosion that exposes bedrock [35].
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Figure 1. Location of the Harare Metropolitan Province composed of the Harare urban, Harare rural,
and Epworth districts. (a) Zimbabwe district boundaries highlighting the study area; (b) Harare
Metropolitan Province study boundaries; (c) major roads marked in the Harare Metropolitan Province
map indicating the major urbanisation axis.

The climate is sub-tropical with four seasons: a cool–dry season from mid-May to August;
a hot–dry season from September to mid-November; a rain–wet season from mid-November to
mid-March; and a post rainy season stretching from mid-March to mid-May [26,30]. During the
cold–dry season, temperatures range from 7 ◦C to 20 ◦C, while during the hot–dry, season temperatures
range from 13 ◦C to 28 ◦C. On average, the Harare Metropolitan Province receives annually 470 mm
to 1350 mm of rainfall, most of it during rainy season [26]. In the Harare Metropolitan Province, the
Harare urban district was estimated to have a population of 1,435,784 in 2002 and 1,485,231 in 2012;
for the Harare rural district, a population of 23,023 in 2002 and 113,599 in 2012; and for the Epworth
district, a total population of 114,047 in 2002 and 167,462 in 2012 [36,37]. The total area of the Harare
Province, in which the study area was embedded, extends over 940 km2 [19].

2.2. Data Acquisition and Pre-Processing

Cloud-free Landsat satellite images of 30 m× 30 m resolution were acquired from the United States
Global Survey (USGS; www.earthexplorer.usgs.gov). These Landsat satellite images were selected

www.earthexplorer.usgs.gov
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because of their adequacy and availability for LULC classification, as indicated by multiple studies
(among others, [16,38]). Landsat 5 Thematic Mapper images were selected for the years 1984, 1990,
2000, 2008 and Landsat 8-OLI image for the year 2018 (Table 1).

Table 1. The Data used for land use and land cover (LULC) classification and their date of acquisition.

Sensor Number of Bands Path/Row Date of Acquisition

Landsat 5 TM 7 172/072 22 June 1984
Landsat 5 TM 7 172/072 23 June 1990
Landsat 5 TM 7 172/072 30 August 2000
Landsat 5 TM 7 172/072 11 August 2008
Landsat 8 OLI 11 172/072 11 August 2018

All satellite images were acquired for the cool–dry season with completely clear (0%) cloud-free
coverage. All satellite images were geometrically corrected using topographic sheets at 1:50,000 and
applying 20 ground control points collected using a handheld GPS (Garmin 60Cx) at major road
intersections. First-order polynomial transformation was used for the retrieved satellite image scenes
and the obtained root mean square errors (RMSEs) were less than half the pixel dimensions. A projected
vector map for Harare Province was used to clip the study area from the pre-processed images for
classification and modelling. Images provided by the USGS were already corrected for radiometric
distortions. Resampling was done using the nearest-neighbourhood technique in order to retain the
original pixel values. The QGIS 3.4 software was applied to further correct atmospheric distortions
and conversion of digital numbers (DNs) to spectral reflectance through dark object subtraction [39].
Prior conversion of DNs to reflectance urban indices were computed using RStoolbox, a package in R,
and then further computation of vegetation indices.

2.3. Field Data Collection and Processing

During field observations in December 2018, the LULC class structure (Table 2) was determined.
Field data were collected, recording randomly 600 land cover sample points using a handheld GPS
(Garmin 60Cx). The points were randomly split into two sets: 80% of the data for training and 20%
of the data for accuracy assessment and validation [30]. Polygons (regions of interest (ROIs)) were
digitized and used for both LULC classification and accuracy assessment to improve classification and
validation range [23].

Table 2. Description of the study LULC classes.

ID LULC Class Description

1 CBD/industries
Industries and central business district defined with a high

fraction of impervious surfaces, mainly buildings and a small
proportion of vegetation

2 LMD residential Leafy and well-established low- and medium-density suburbs
surrounded with high vegetation

3 HD residential
High-density residential areas with low vegetation cover or

clustered settlements with areas undergoing developments and
bare exposed land

4 Irrigated cropland Cultivated land under irrigation schemes
5 Rain-fed cropland Cultivated land or land with crop residues after harvesting

6 Vegetation All wooded areas, shrubs and bushes, riverine vegetation and
grass covered areas

7 Water Areas occupied by water, rivers, wetlands, reservoirs and dams

CBD: central business district; LMD: low to medium density; HD: high density.
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Statistical testing of spectral separability of the desired classes was verified using the transformed
divergence separability index (TD) to ensure classification [40]. Figure 2 documents the approach and
flow path used in the study. Topographic maps, expert knowledge and auxiliary data were used to
create ground truth areas of interest for Landsat images from 1984, 1990, 2000 and 2008 for classification
and accuracy assessment. Field observations and ground control points (GCPs) were obtained for 2018
time slices.
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2.4. Land Cover Classification

The LULC maps were created for the years 1984, 1990, 2000, 2008 and 2018 using supervised support
vector machine (SVM) algorithms on 30 m band stacks for each image scene and an additional three
layers applying different indices: enhanced built-up and bareness index (EBBI), modified normalized
difference water index (MNDWI) and soil adjusted vegetation index (SAVI) for all stacks. These
additional band stacks enhanced the mapping of the major urban LULC cover classes, namely, built-up,
open water body and vegetation [24,41]. Support vector machines correspond to machine learning
classification methods which have a high ability to minimise misclassification errors by reducing the
probability of misclassifying field data collected having an unknown probability distribution [42]. Each
image was classified into seven classes that were determined by spectral characterization and field
data substantiated training and accuracy assessment.

An accuracy assessment was computed for the Kappa coefficient (Kc), overall accuracy (OA),
producer’s accuracy (PA) and user’s accuracy (UA), applying “ground truth regions of interests” [23,43].
Accuracy assessment is a probabilistic approach that computes the association between remotely sensed
and referenced data. Post classification change detection matrices were cross-tabulated in ENVI using
five interval steps: 1984–1990, 1990–2000, 2000–2008, 2008–2018 and 1984–2018. The post classification
change detection method involved pixel-by-pixel change analysis highlighting spatio-temporal LULC
changes and distribution.
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2.5. Computation of Spectral Indices

Enhancing spectral signals of overbuilt areas, vegetation and water in remotely sensed data was
done through computation of multiple spectral bands [24]. The enhanced built-up and bareness index
(EBBI), modified normalized difference water index (MNDWI) [44] and soil adjusted vegetation index
(SAVI) were selected to improve the extraction of major land-use classes in a heterogeneous urban
built-up area. The EBBI allows mapping of built-up and bare areas using a combination of near infrared
(NIR), short wave infrared (SWIR) and thermal infrared (TIR) on which these bands were selected
according to the contrast reflection and absorption in bare and built-up areas [21].

EBBI =
SWIR1 − NIR

10
√

SWIR1 + TIRS1
(1)

The SAVI requires soil-brightness correction factor L, which varies from 0 for very high vegetation
cover to 1 for very low vegetation cover; a 0.5 soil-brightness correction factor L was used because of
its moderate [45].

SAVI =
(NIR − R)

(NIR + R + L)
x (1 + L), 0 < 1 < 1 (2)

The MNDWI uses SWIR in enhancing open water extraction in a complex heterogeneous setup
because of the high reflectance obtained in built-up areas to the spectral band. Henceforth, negative
values for built-up areas and positive values for water features makes the MNDWI suitable for
discriminating built-up areas from water features [24,44].

MNDWI =
GREEN − SWIR
GREEN + SWIR

(3)

2.6. Binomial Logistic Regression

A binomial logistic regression was applied to analyse the explanatory drivers of LULC changes.
The form variable slope (◦) was used as a topographic factor, while the proximity characters factored
in included distance to the main roads, distance to secondary roads, distance to open water bodies,
distance to streams and distance from the city centre [41–43]. For the binomial regression, the growth
variables (dichotomous dependant) applied were raster layers with transformed cells from any LULC
to built-up area between 1984 and 2018 (Figure A1). Proximity and topographic characters formed the
basis of the independent variables (distance to the main roads, distance to secondary roads, distance to
open water bodies, distance to streams and distance from the city centre). Distances were calculated
using the Euclidean distance tool in ArcGIS 10.2 to determine the impact of urban expansion relating
to the proximity of the selected features encompassing the road network for transportation and water
courses as environmental amenities.

The cell values of the dependant variable (dichotomous raster layer) which had been changed
from any other LULC class to an urban built-up area for all time steps (i.e., 1984–1990, 1990–2000,
2000–2008, 2008–2018, 1984–2018) were set to be urban growth (=1), while all cells which did not
change to an urban built-up area or had been an urban built-up area previously were set as non-urban
growth (=0) using the raster calculator in ArcGIS 10.2. A total of 7000 stratified random sample points
were created to extract cell values from the LULC maps of all time slices for regression analysis and
available sets of data. A collection of 6139 random sample points was assembled, and the remaining
outliers were removed because they were scattered outside of the rasters. Extracted distance proximity
parameter values were log-transformed and, during computation, a 30 m value equivalent to cell
length was added to all cells in order to counter undefined 0 logarithm for predictors applied in the
regression analysis [46]. The statistical significance of p < 0.05 indicated that the relation between
predictor and LULC change occurrences were not random, highlighting a statistical relation between
the independent proximity variable and an urban built-up area. The evaluation of model performance
was calculated using statistical measures of the discriminatory effect of the model, the area under
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the receiver–operating–characteristic (ROC) curve (AUC) and the percentage of correct predictions
(PCPs) [47–49].

Data for location characterization was retrieved from various sources. Open water and streams
data were digitized from topographic maps [47]; trunk and secondary roads were extracted from
OpenStreetMap data (OSM-Geofabric [48]); and the digital elevation model (DEM) of the Shuttle
Radar Topography Mission (SRTM) with a 30 m resolution was accessed from United States Geological
Survey website (https://earthexplorer.usgs.gov/). Each data set was normalized into ranges from 0–1
using the min–max linear transformation by applying the raster calculator (Map Algebra) in ArcGIS so
that all input data used the same range [49].

3. Results

3.1. Area Extent and Change of Land Use and Land Cover

The data revealed an increase in the high-density residential areas and, consequently, a decrease
in the area covered by vegetation all over the Harare Metropolitan Province (Figure 3, Figure 4,
Table 3). In the year 1984, high-density residential areas covered 51.79 km2 (5.81%) of the total Harare
Metropolitan Province, while, by the year 2018, it had more than quadrupled reaching 218.35 km2

covering almost a quarter of the Harare Metropolitan Province area. The data also showed a steady
increase in central business department (CBD) or industrial areas from 3.7% in 1984 to 7.17% in 2018.
In addition, coverage by low- to medium-density suburb areas steadily increased, covering 21.85% of
the Harare Metropolitan Province in 1984 to 29.48% in 2018. Apparently, in 1984, vegetation covered
almost half of the area (448.67 km2) of the total Harare Metropolitan Province but decreased by nearly
50% to 223.45 km2 (25.08%) by the year 2018 (Figure 3, Figure 4, Table 3).
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The spread of croplands (combined irrigated and rain-fed croplands) decreased from a coverage
of 17.89% of the Harare Metropolitan Province in 1984 to 13.40% in 2018. The areas covered by water
slightly increased from about 0.40% in 1984 to 0.53% in 2000; however, this coverage declined sharply
to 0.31% in 2018. Between 1984 and 1990, high-density residential areas were spreading towards the
west and northwest of the city (Figure 4). Yet, between 1990 and 2018, a spread of urbanized areas can
be seen towards the south, southwest, and southeast of the Harare Metropolitan Province (Figure 4). In
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addition, low- to medium-density suburbs expanded towards the northeast of the Harare Metropolitan
Province, increasing from 21.85% in 1984 to almost 30% of the area in 2018 (Figure 4; Table 3).

Table 3. Net change of the LULC by class area extent (km2) and percentage (%) of the Harare
Metropolitan Province.

LULC Class
1984 1990 2000 2008 2018

km2 % km2 % km2 % km2 % km2 %

CBD/industries 32.95 3.70 36.27 4.07 52.98 5.95 54.27 6.09 63.88 7.17
LMD residential 194.72 21.85 233.02 26.15 241.53 27.11 252.48 28.33 262.74 29.48
HD residential 51.79 5.81 61.13 6.86 84.61 9.49 121.96 13.69 218.35 24.50

Irrigated cropland 18.13 2.04 39.30 4.41 67.77 7.61 28.55 3.20 26.68 2.99
Rainfed cropland 141.26 15.85 115.74 12.99 79.34 8.90 85.42 9.59 93.26 10.47

Vegetation 448.67 50.35 401.88 45.10 360.13 40.41 344.48 38.66 223.45 25.08
Water 3.60 0.40 3.78 0.42 4.76 0.53 3.96 0.44 2.76 0.31

CBD: central business district; LMD: low to medium density; HD: high density.

3.2. Land Use and Land Cover Classification Accuracy

For each time slice 1984, 1990, 2000, 2008 and 2018, each LULC class was compared to the reference
data for classification accuracy assessment. The overall accuracy (OA) of the LULC classification varied
for the different time slices between 85%–90% (1984: 90.1%, 1990: 85.1%, 2000: 88.9%, 2008: 87.6%, 2018:
89.7%; Table 4). The high separability indices produced were due to the enhancing effects from the
vegetation and enhanced built-up and bareness indices incorporated and displayed improved mapping
accuracy (Table S1). The transformed divergence separability index (TD) indicates that if values are
greater than 1.9, separability among classes will be very high showing that classes are separable, while
values smaller than 1.0 are deemed not statistically separable for good classification [33]. The highest
misclassifications were recorded for the LULC classes, such as high-density residential areas (all
time slices), irrigated cropland, and rain-fed cropland (1990), as indicated by the producer´s accuracy
(Table 4, Table A1, Table A2).

Table 4. Land use and land cover classification accuracies in percentages for the study period 1984–2018.
The accuracies include Kappa coefficient (Kc), overall accuracy (OA), producer’s accuracy (PA) and
user’s accuracy (UA).

LULC Class
1984 1990 2000 2008 2018

PA UA PA UA PA UA PA UA PA UA

CBD/industries 94.7 93.7 99.2 93.7 96.7 90.3 96.4 96.4 96.6 95.3
LMD residential 89.4 90.2 81.9 87.3 87.4 92.4 84.5 75.5 84.1 84.6
HD residential 82.2 85.0 77.7 93.3 83.4 89.9 79.8 83.5 92.9 92.5

Irrigated cropland 87.6 95.1 78.4 91.9 76.2 82.3 93.0 87.4 84.4 83.3
Rain-fed cropland 84.1 87.2 67.4 80.5 85.6 79.0 90.9 79.6 86.8 88.7

Vegetation 93.4 90.1 92.9 71.1 90.2 82.4 79.1 91.8 88.9 88.9
Water 89.3 96.9 98.4 100 97.3 99.5 98.9 99.8 99.2 100

OA 90.1 85.1 88.9 87.6 89.7
KC 0.87 0.82 0.86 0.85 0.87

CBD: central business district; LMD: low to medium density; HD: high density.

3.3. Binomial Logistic Regression

The value of the area under the receiver–operating–characteristic (ROC) curve (AUC) shows
the discriminatory effect of the model and statistically validates the predictive urban growth drivers’
behaviour [45]. The predictive effect of the AUC ranges from 0.5 to 1, where 0.5 shows a completely
random relationship and 1 shows that the model has a perfect discriminatory effect. The true positive
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rate (TPR) is the proportion of cells which are correctly classified and the false positive rate (FPR) is the
proportion of incorrectly classified cells by the real urban growth occurrences [44,45]. The percentage
of correct predictions (PCPs) shows the percentage of correctly predicted points from the total number
of available points [47,50]. The PCPs range from 0 to 1, where values greater than 0.5 (50%) indicate
that the model predicts the outcome better than PCP closer to 0 [47].

Between 1984 and 1990, the AUC amounted to 0.679 (Figure 5) and, according to the regression
coefficients, a significant influence from the nearest distance to major and secondary roads was only
revealed among all other test predictors. The p-values for the predictors distance to the city centre,
distance to the stream, distance to open water, and for variable slope were not significant (p > 0.05),
suggesting that they had no influence on the growth and spread of the urban built-up area. Between
1990 and 2000, the model reveals that the distance to major and secondary roads and the city centre
were significant variables (p < 0.05) influencing the urban built-up area expansion with a discriminatory
AUC value of 0.669 (Figure 5). Between 2000 and 2008, the predictors nearest distance to major and
secondary roads, distance to the city centre and distance to open water and slope were significant
(p < 0.05) in the binomial logistic regression model showing that they had influence on urban built-up
area expansion with an overall AUC value of 0.683 (Figure 5).
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Figure 5. Receiver–operating–characteristic (ROC) curves conveying binomial logistic regression
analyses results for urban growth from 1984 to 2018 within the Harare Metropolitan Province (TPRs:
true positive rates; TNRs: true negative rates; AUC: area under the curve; PCPs: percentage of
correct predictions).

Distance to the nearest roads, distance to the nearest streams, open water and slope were
statistically significant as predictors of the urban built-up area expansion and spread (p < 0.05) between
2008 and 2018, with an AUC value of 0.696 (Figure 5). The nearest distance to the city centre predictor
was not significant (p > 0.05). From 1984 to 2018, distance to the nearest major and secondary roads,
streams, open water and slope were significant predictors to explain the urban built-up area expansion
with an AUC value of 0.79 (Figure 5). The influence of the distance to the city centre as a predictor for
urban built-up area expansion decreased due to the increasing outward expansion and spread of the
Harare Metropolitan Province towards its peripheries.
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4. Discussion

Urbanization has modified the Harare Metropolitan Province through the expansion of built-up
areas at the expense of vegetation, cropland and water bodies (Figures 3 and 4). Similarly, urbanization
processes investigated in Daqahlia, a city in Egypt, depicted that the built-up area expanded from
4.2% of the area under investigation in 1985 to 36.3% in 2010, while areas used as cropland shrank by
30.7% and areas covered by water decreased by 0.45% [27]. An increase of 219.5% in LULC change,
mainly attributed to land development at the expense of cropland, fallow land, water, shrub and bare
land, was revealed in the Shanghai metropolis between 1997 and 2008 showing the impact of land use
change and population growth in urban areas [51]. Akure city in the southwest of Nigeria experienced
a similar loss of areas covered by vegetation and water bodies as the Harare Metropolitan Province
due to the fact of built-up area expansion, from 5.1% in 1986 to 53.41% in 2014 for the total area under
investigation [6].

In the current study, a SVM classification method was applied because it potentially produces
better accuracy in a confusion matrix compared to other neural networks, maximum likelihood and
decision trees when mapping LULC [50,51]. However, possible sources of error in the calculations may
have emerged from geometric rectification, accuracy in digitizing topographic maps and combining
different data sources. The spectral differences and characteristics between Landsat 5 TM and Landsat
8 OLI sensors may have affected the accuracy of the thematic maps [23]. Despite these potential
discrepancies, the classification and results obtained in the current study have relatively high accuracy
considering urban area spectral heterogeneity characteristics and spectral confusion from land cover
classes, and the results agree with other published scientific studies carried out at the national and
regional level (Supplementary Materials Table S1) [6,24,26,27]. The use of hyper-spectral data and
aggregation of urban built-up areas have been observed to improve and enhance the analysis of
remote sensing data in urban areas [50,52]. The utilization of additional built-up, water and vegetation
remote sensing indices bands on the Landsat imagery scenes provide a substantial improvement in the
mapping of an urban area using moderate-resolution imagery [21,44,45]. However, misclassifications
and reduction of areas covered by water bodies (water class) might have resulted from the increasing
density of water hyacinths along the streams due to the fact of contaminated sewage effluents deposited
in the water ecosystem [52,53]. This is directly linked to the inflow of effluents from industries, sewage
disposal (punctual sources) and urban agriculture (diffuse sources). Consequently, alteration of water
bodies as aquatic weeds scattering on the surfaces potentially influences classification (Table 4).

The current study looked at the axis of urban development and the drivers posing LULC changes.
This study revealed that the distance to the nearest major and secondary roads have a large impact
on urban expansion and development. The binary logistic regressions highlight that built-up area
development occurred predominantly along the major roads and in dense road network areas (i.e.,
secondary roads), due to the high connectivity and easy access to transport facilities. Hegazy and
Kaloop [27] reiterate that urban growth follows development along highways or already established
cities as a result of population growth and socioeconomic factors. Nevertheless, high-density residential
areas are expanding towards the periphery of the south, southeast, southwest and northwest of Harare
Metropolitan Province. For comparison, the results of modelling the distance characters in Bucharest
were in line with the findings of the current study—major and secondary roads impact positively on
urban growth and expansion of built-up areas [53]. For Bucharest, however, independent variables
such as distance to lakes and rivers were not significant, while for the Harare Metropolitan Province,
these variables have significant influence, as revealed by the binomial regression analysis between 2008
and 2018. Henceforth, the exclusion of the core city of Bucharest from the Bucharest Metropolitan area
could have reduced the ability of the model to detect some independent characters. Still the geographic
location of the study areas, socioeconomic structure and population sizes are highly different.

The current study reveals that zones of urban area or built-up area expansion were associated
with relatively gentle undulating slopes (Figure S1) which can be attributed to low housing costs,
cheap land acquired through housing schemes and informal urban settlements [19]. The southwest
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part of the Harare Metropolitan Province was the main direction of urban spread between 1984 and
1990 (Figure A1). This was associated with the expansion from first old Harare high-density suburbs
that were designated during the colonial period such as Highfields, Mufakose and Rugare, among
others [54]. These areas are associated with high-density road networks, low costs and economic
residential units compared to the low and mediumdensity residential areas. Between 1990 and 2000,
expansion of the Harare Metropolitan Province dominated much in the southwest, west and southeast
(Figure 4, Figure A1). This expansion can be attributed to urban sprawling and rampant informal
settling due to the presence of socio-economic factors in the eastern direction—that is, the Epworth
suburbs and Dzivarasekwa extension introduced in 1991 [55,56]. Between 2000 and 2008, significant
expansion of built-up areas was directed towards the south and northwest direction (Figure 4, Figure A1)
regardless of “Operation Murambatsvina” (Restore Order), a clean-up campaign that was carried out
in June 2005 and left Harare with dismal identifiable illegal, urban built-up structures [31].

The expansion of Harare Metropolitan Province between 2008 and 2018 was dominant in the
southern direction, and the city was expanding towards its peripheries (Figure 4, Figure A1). The far
continued expansion towards the southeast resulted from unplanned urban development because of
population pressure [28]. Bureaucracy and rigid and stringent procedures relating to construction plans
approval by local authorities posed a hindrance towards sustainable urban growth [57–59]. Fast urban
built-up area growth was observed on the southeast parts of Harare [19] resulting in marginalized
urban residents. These marginalized urban residents are residing in poorly serviced areas which are of
relatively low cost due to the shunning absence of proper water and sewer reticulation systems. This
unplanned development accompanied with poor sanitary conditions resulted in increased chances of
severe health issues [60,61].

The northeast of Harare Metropolitan Province is composed of low-density residential suburbs
and is characterized by medium gradient hills covered by high-vegetation density compared to
high-density residential suburbs (Figure 4) [34,54]. Due to the stratification of Harare, high income
earners were pronounced to occupy these vegetation-enriched suburbs [55]. Construction on these
landscapes is costly resulting in the variable “slope” as a significant driver for urban-built up area
growth since the larger proportion of Harare residents occupied flat to gentle undulating landscapes
in the south and other parts of Harare (Figure 4, Figure S1). Urban built-up area expansion towards
the high-density residential area in the northwest direction follows the establishment of housing
schemes such as the University of Zimbabwe’s Association of University project and Hatcliffe
Consortium development [31,59]. The Hatcliffe Consortium development was a government initiative
on Operation “Garikai/Hlalani kuhle” projects meant to provide housing units towards the “Operation
Murambatsvina” victims [31]. On the other hand, high population density on the northwest suburbs
of Harare coincides with increasing urban built-up area expansion [19,30].

The geometry of road network reveals an influence on the spatial distribution and spread of
urban built-up area as characterized by the regression models capturing the changes between 1984 and
2018 (Figure 5). This indicates a linear pattern on the built-up areas and the road network systems,
contributing to the rapid spreading of informal settlements within the road spheres. Easy access to
transportation network systems paves the way for a linear and grid distribution pattern of built-up
areas in urban cities such as the Harare Metropolitan Province. The urban population increased faster
than anticipated, resulting in accelerated rates of informal settlements and the erratic provision of
decent housing by the Zimbabwean Government [28,58,62]. Increased unrestrained built-up area
expansion and spread in the south and east of the Harare Metropolitan Province reveals largely urban
sprawl [26,28]. Thus, these increasing rates of informal settlements within the metropolitan area
have negatively impacted water resources. Thereby, driving the “distance to the nearest streams
and open water” variables as influential characters of the urban built-up area expansion. This has
also been attributed to the invasion of the Harare Metropolitan Province’s ecosystem with urban
construction activities [26,37,59]. The outward spreading of built-up areas was not evenly distributed.
It concentrated largely in the south and southeast parts of the Harare Metropolitan Province, where
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fairly flat landscapes occur. This contributes to cheap residential construction costs [19] compared to
the strongly rolling, sloppy landscape in the northeastern suburbs of the Harare Metropolitan Province
(Figure 4, Figure A1) [34].

Without negating population growth rate as a driving force for urban growth, there is a correlation
between urban expansion and population growth rate as substantiated by previous Harare Metropolitan
Province population statistics [29]. The Harare Metropolitan Province population is estimated to have
increased from approximately 830,000 in 1982 [28] to 2,098,199 in 2012 [29]. This huge growth of
urban population posed large threats to water bodies (open water and streams) thereby making water
resources vulnerable. Consequently, urban sprawl and unplanned rampant settling in the Harare
Metropolitan Province concurred with the deterioration of water bodies since 2000. Overall, this study
indicates that the popularity of water resources as amenities for land estates declined due to urban
growth which has led to the degradation of water resources through various human activities.

5. Conclusions

This study investigated the influence of independent variables as urban growth explanatory
characters using binary logistic regression. The LULC classification accuracy of the Harare Metropolitan
Province was improved through the use of remote sensing indices for spectral separability considering
the heterogeneity of an urban area. There are fundamental changes observed in the urban built-up
area expansion and spread over the past three decades as evidenced by the shrinking of vegetation,
cropland and water classes. This burdens the environment due to the increased demand for land by
processes such as unplanned urban sprawl and informal settlements. However, there is need for a
multi-disciplinary approach including land suitability analysis in order to curb the deterioration of
these scarce and fragile resources. Models indicate that growth has been driven by the distance to
nearest major roads, secondary roads, streams, open water courses and slope. For the phase between
1984 and 2000, binary logistic regressions show that distance to the city centre and distance to the
nearest secondary roads and major roads were significant variables for urban built-up area expansion
and spread. We observed a decreasing influence of the distance to the city centre as a predictor for
urban built-up area expansion with increasing outward urban spread towards its peripheries. The
findings revealed that fast urban growth and built-up area expansion were concentrated largely in
the low-lying southern parts of the Harare Metropolitan Region and were occupied by high-density
suburbs compared to the slow development in the strongly rolling, sloppy landscapes in the northeast
of Harare Metropolitan Province with low-density suburbs. Overall, the model indicates that a road
network has greater impact on the development of urban built-up area due to the accessibility of a
transport network for connectivity and showing potential areas for future development.

Moreover, the research findings provide a guiding approach for town planners and policy
makers to respond and pay attention to Harare Metropolitan Province landscapes which are
profoundly deteriorating and, furthermore, the need to conserve the remaining amenities to maintain
ecosystem balance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-445X/8/10/155/s1,
Figure S1: Overview of slope across the Harare Metropolitan Province derived from a 30 m digital elevation
model, SRTM-1ARC (USGS, 2014)); Table S1: Transformed divergences indices showing interclass separability of
land use and land cover classes used for training and accuracy assessment (CBD: central business district, LMD:
low to medium density, HD: high density).
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Table A1. Confusion matrix and associated classification accuracies produced from Landsat 5 TM (1984, 1990, 2000 and 2008). These include kappa coefficient (Kc),
overall accuracy (OA), producer’s accuracy (PA) and user’s accuracy (UA).

1984 Landsat 5 TM Reference Class

Classified

Class CBD/Industries LMD HD Irrigated
cropland

Rainfed
cropland Vegetation Water Total PA

CBD/Industries 4012 182 81 0 3 2 2 4282 94.7
LMD 92 9353 164 213 8 495 47 10,372 89.4
HD 98 105 2005 0 135 17 0 2360 82.2
Irrigated cropland 0 108 2 2602 1 22 0 2735 87.6
Rainfed cropland 19 37 165 7 5996 655 0 6879 84.1
Vegetation 10 665 23 148 987 16,765 11 18,609 93.4
Water 7 9 0 0 0 0 500 516 89.3
Total 4238 10,459 2440 2970 7130 17,956 560 45,753
UA 93.7 90.2 85.0 95.1 87.2 90.1 96.9
OA 90.1 Kc 0.87

1990 Landsat 5 TM Reference Class

Classified

Class CBD/Industries LMD HD Irrigated
cropland

Rainfed
cropland Vegetation Water Total PA

CBD/Industries 1827 62 61 0 0 0 0 1950 99.2
LMD 1 2335 127 137 0 64 10 2674 81.9
HD 10 55 979 4 1 0 0 1049 77.7
Irrigated cropland 0 45 40 1030 6 0 0 1121 78.4
Rainfed cropland 2 56 45 29 964 102 0 1198 67.4
Vegetation 2 299 8 114 459 2172 0 3054 92.6
Water 0 0 0 0 0 0 601 601 98.4
Total 1842 2852 1260 1314 1430 2338 611 11,647
UA 93.7 87.3 93.3 91.9 80.5 71.1 100
OA 85.1 Kc 0.82
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Table A1. Cont.

2000 Landsat 5 TM Reference Class

Classified

Class CBD/Industries LMD HD Irrigated
cropland

Rainfed
cropland Vegetation Water Total PA

CBD/Industries 1946 113 85 1 8 3 0 2156 96.7
LMD 10 3225 30 47 8 157 14 3491 87.4
HD 50 34 1053 35 0 0 0 1172 83.4
Irrigated cropland 0 70 53 596 0 5 0 724 76.2
Rainfed cropland 5 24 38 93 602 0 0 762 85.6
Vegetation 1 220 3 10 85 1520 6 1845 90.2
Water 0 3 0 0 1 1 728 732 97.3
Total 2012 3689 1262 782 703 1686 748
UA 90.3 92.4 89.9 82.3 79.0 82.4 99.5
OA 88.9 Kc 0.86

2008 Landsat 5 TM Reference Class

Classified

Class CBD/Industries LMD HD Irrigated
cropland

Rainfed
cropland Vegetation Water Total PA

CBD/Industries 2217 21 61 0 0 0 0 2299 96.4
LMD 15 1629 116 37 0 355 6 2158 84.5
HD 37 76 746 12 15 8 0 894 79.8
Irrigated cropland 0 87 2 647 0 4 0 740 93.0
Rainfed cropland 6 11 3 0 666 151 0 837 90.9
Vegetation 11 105 7 0 52 1961 1 2137 79.1
Water 1 0 0 0 0 0 606 607 98.9
Total 2287 1929 935 695 733 2479 613 9672
UA 96.4 75.5 83.5 87.4 79.6 91.8 99.8
OA 87.6 Kc 0.85

CBD: central business district; LMD: low to medium density; HD: high density.
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Table A2. Confusion matrix and associated classification accuracies produced from Landsat 8 OLI (2018). The accuracies include kappa (Kc), overall accuracy (OA),
producer’s accuracy (PA) and user’s accuracy (UA).

2018 Landsat 8 OLI Reference Class

Classified

Class CBD/Industries LMD HD Irrigated
cropland

Rainfed
cropland Vegetation Water Total PA

CBD/Industries 2492 63 60 0 1 0 0 2616 96.6
LMD 23 2721 59 124 64 219 5 3215 84.1
HD 43 86 1778 10 3 3 0 1923 92.9
Irrigated cropland 1 134 3 806 0 24 0 968 84.4
Rainfed cropland 18 7 11 15 1352 122 0 1525 86.8
Vegetation 4 223 3 0 137 2942 0 3309 88.9
Water 0 0 0 0 0 0 601 601 99.2
Total 2581 3234 1914 955 1557 3310 606 14,157
UA 95.3 84.6 92.5 83.3 88.7 88.9 100
OA 89.7 Kc 0.87

CBD: central business district; LMD: low to medium density; HD: high density.
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