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“Localization was a different matter: very few believed it at the time, and even
fewer saw its importance; among those who failed to fully understand it at first
was certainly its author. It has yet to receive adequate mathematical treatment,
and one has to resort to the indignity of numerical simulations to settle even the
simplest questions about it.”

P. W. Anderson, Nobel Lecture, 1977
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A B S T R A C T

The ability of classical thermodynamics to predict phenomena using only handful of
parameters is miraculous. Moreover, this framework contrasts with other theories
with its ability to describe our day to day experience, i. e. we know intuitively that
an ice cube melts in a cold beverage on a hot summer day. A similarly powerful yet
significantly less intuitive theory is quantum mechanics which describes the world
at its tiniest length scales. Given this foundational position, we would expect to be
able to derive all physical theories from quantum mechanics only. Unfortunately
this would require knowing the quantum state of all particles which is costly as
quantum mechanics requires resources growing exponentially in the system size
to describe even relatively innocent many-body systems. Given this uncontrollable
growth of parameters, it is highly desirable to apply the principles of thermodynam-
ics to quantum many-body systems as a means to describe them efficiently. Yet, the
two theories are not obviously compatible. Subtle differences such as the definition
of thermalisation already puzzled founding fathers like John von Neumann. While
these have been understood by now, the focus shifted to gaining a thorough un-
derstanding of the process of thermalisation in the quantum regime, meaning that
the state of the system can be described by a thermal ensemble locally after an ini-
tial out-of-equilibrium situation. In the recent past the field of quantum thermody-
namics and specifically out-of-equilibrium dynamics has witnessed many successes
notably the advent of highly controllable analogue quantum simulators which al-
low to probe out-of-equilibrium physics to an unprecedented precision. It has been
established that thermalisation takes place in quantum many-body systems, but the
underlying reasons and a comprehensive theory are still elusive.

Only very recently, a class of systems exhibiting many-body localisation has been
identified that defy this paradigm of thermalisation by localising their constituent
particles despite many-body interactions. This can be captured using an effective
description in terms of local constants of motion. Understanding the emergence of
these physically relevant operators that hinder thermalisation hopefully sheds light
also on the mechanism of thermalisation itself.

In this thesis, we investigate the relation between thermodynamics and quantum
mechanics in the context of out-of-equilibrium physics for many-body localisation.
We give numerical evidence for the stability of localisation in large, closed one-
dimensional chains. Furthermore, we connect the established phenomenology of
many-body localisation to experiments with ultra-cold atoms in optical lattices and
give a blue print of measurements that can be performed with existing technology
to show that the simulator indeed exhibits many-body localisation. We then set out
to obtain a deeper understanding of the underlying theory of many-body localisa-
tion by devising an algorithm that explicitly constructs exact constants of motion
allowing us to put the existing theoretical framework of many-body localisation
to the test. It is our firm belief that understanding local constants of motion is in-
dispensable to not only understand thermalisation in quantum many-body systems
but is also of great use in other fields. A connection of this type is displayed by
an extension of our algorithm to finding edge modes in spin chains with symmetry
protected order.
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Z U S A M M E N F A S S U N G

Klassische Thermodynamik erlaubt erstaunlich genaue Vorhersagen für physika-
lische Systeme basierend auf nur einer handvoll von Parametern. Darüber hinaus
beschreibt sie ebenfalls unsere Alltagserfahrungen, beispielsweise einen schmelzen-
den Eiswürfel in einem kalten Getränk an einem heißen Sommertag. Eine vergleich-
bar mächtige, aber deutlich weniger intuitive Theorie ist die Quantenmechanik,
die unsere Welt im Kleinen beschreibt und von vielen für die grundlegende Theo-
rie gehalten wird. Es kommt uns jedoch teuer zu stehen, alle Details zu kennen,
da die Zahl der Parameter die nötig sind, um ein Quantensystem zu beschreiben,
exponentiell in dessen Größe wächst. Dies stellt bereits für verhältnismäßig klei-
ne Quantensysteme ein großes Problem dar. Eine Lösung könnte darin liegen, die
Prinzipien der Thermodynamik zu nutzen, um auch Quantensysteme effizient be-
schreiben zu können. Leider sind die beiden Theorien nicht auf Anhieb kompatibel.
Kleinere Feinheiten, wie die Definition von Thermalisierung beschäftigten schon
Gründungsväter wie John von Neumann, sind heutzutage aber gut verstanden. Un-
klar ist allerdings, wie ein Quantensystem nach einer initialen Störung einen lokal
thermisch aussehenden Zustand erreicht. In der näheren Vergangenheit konnte das
Feld der Quantenthermodynamik und insbesondere das der Nichtgleichgewichtsdy-
namik viele Erfolge feiern, insbesondere die Etablierung von Quantensimulatoren,
die es erlauben Nichtgleichgewichtsphysik mit bisher unerreichter Präzision zu un-
tersuchen. Es gilt als gesichert, dass Thermalisierung in Quantensystemen stattfin-
det, aber die Gründe oder eine umfassende Theorie dafür sind noch unbekannt.

Vielteilchenlokalisierung beschreibt eine neue Klasse von Systemen, die dieser Be-
obachtung widersprechend nicht thermalisieren, indem Teilchen in einem solchen
System lokalisiert werden und dies obwohl das System wechselwirkend ist. Daher
können diese Systeme durch lokale Konstanten der Bewegung beschrieben werden.
Ein tiefergehendes Verständnis warum diese Operatoren in solchen Systemen auf-
tauchen wird hoffentlich auch einen Beitrag zur Frage leisten, wie Thermalisierung
in Quantensystemen eigentlich zustande kommt.

In dieser Doktorarbeit bringen wir Thermodynamik und Quantenmechanik einen
kleinen Schritt näher zusammen. Wir legen unseren Fokus auf Nichtgleichgewichts-
dynamik in Systemen mit Vielteilchenlokalisierung. Wir präsentieren numerische
Resultate, die nahelegen, dass Vielteilchenlokalisierung in großen, geschlossenen,
eindimensionalen Ketten stabil ist. Darüber hinaus bringen wir bekannte Effekte
der Vielteilchenlokalisierung mit ultrakalten Atomen in optischen Gittern in Ver-
bindung, indem wir skizzieren, wie man mit vorhandenen Techniken Vielteilchenlo-
kalisierung in diesem Quantensimulator nachweist. Daraufhin wollen wir ein tiefe-
res Verständnis für Vielteilchenlokalisierung erlangen, indem wir einen Algorith-
mus entwickeln, der exakte Konstanten der Bewegung konstruiert, anhand derer
wir die Vorhersagen für Vielteilchenlokaliserung testen können. Wir glauben fest
daran, dass es unausweichlich ist, lokale Konstanten der Bewegung zu verstehen,
um Thermalisierung zu erklären, aber darüber hinaus auch weitere physikalische
Effekte zugänglich zu machen. Wir schließen mit einer Anwendung einer Erweite-
rung unseres Algorithmus’ für Spinketten mit symmetriegeschützter Ordnung, in
der wir deren Randmoden konstruieren.
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2

I N T R O D U C T I O N T O O U T - O F - E Q U I L I B R I U M D Y N A M I C S

While standard thermodynamics is mostly concerned with static systems, we here
ask the question of how interacting, finite quantum systems can dynamically at-
tain an equilibrium state when initially in an out-of-equilibrium situation. We will
refer to a system as out of equilibrium, if the initial state has non-trivial dynamics
when evolved with the Hamiltonian. This can be probed using local observables.
If the expectation value of the local observable reaches a steady value with only
small fluctuations in time, we will call the system equilibrated. We can then ask,
whether the resulting equilibrium state can be described by its energy only, an ap-
proach referred to as thermalisation. We also investigate the rare occurrence of sys-
tems that do not thermalise and explain why this can happen. These questions are
particularly timely as analogue quantum simulators such as ion traps, NV-centers
and optical lattices are delivering experimental platforms which allow to probe out-
of-equilibrium many-body physics at an unprecedented level of precision. These
setups excel at creating initial states with low entanglement and evolving them un-
der many-body interacting Hamiltonians - a domain which is very hard to access
analytically or numerically as interacting systems generically require a treatment
in the full Hilbert space, which is exponentially large in the number of constituents.

In this chapter, we lay out the theoretical framework required to understand equi-
libration and thermalisation for finite, interacting many-body systems, which are
exactly those that can be simulated in analogue quantum simulators. Much of this
introduction applies to any dimension, but this thesis will exclusively work with
one dimensional systems. We will start by defining locality.

2.1 locality

Let us start by recalling what we mean by a quantum many-body system. We are
interested in the collective behaviour of quantum particles confined to lattices, usu-
ally defined as a graph with vertices and edges. For most condensed matter systems,
the vertices have associated Hilbert spaces and the edges describe the possible con-
nections between vertices. Since one-dimensional systems are the main focus of
our work, we restrict our attention to the special case of a finite chain of length
L, where the vertices are referred to as sites and the edges connect neighbouring
sites only. The natural definition of distance between sites applies. A chain is com-
posed of local Hilbert spaces at each site that can be finite or infinite dimensional
in general, though we will mostly use spin or fermionic degrees of freedom, which
have a local dimension of two. The full space is then given by the Fock space, or
in the spin case by a tensor product over all local spaces. This allows us to capture
states in terms of their local occupation numbers according to the rules of second
quantisation.

In order to speak about phenomena such as particle transport, it is necessary to
have a notion of locality. Let us discuss this explicitly for the case of one dimen-
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2.1 locality 7

jSj jSj

Figure 2.1: Sketch of a quasi-local operator (left) and a non-local operator(right).
For the left operator, the weight of the terms depicted by the blue colour decays
sufficiently quickly away from the center, rendering the operator quasi-local. For
the operator on the right, the weights depicted by the red colour do not decay at all,
rendering it non-local.

sional spin systems. Here, we have a natural local operator basis characterised by
the Pauli matrices

σx =


 0 1

1 0


 , σy =


 0 ı

−ı 0


 , σz =


 1 0

0 −1


 ,

and the identity σ1 = 12. To promote this to an operator basis acting on the
full chain, we take all possible tensor products of the basis elements for each site,
yielding 4L many operators. This can be formalised by introducing a vector µ ∈
{a}L, where a ∈ {x,y, z, 1} determines the corresponding Pauli-operator which
allows us to define

σ(µ) =

L⊗

i=1

σ
µ(i)
i ,

which we will refer to as a Pauli-string. The support of any operator O can now be
calculated by decomposing it into these Pauli-strings. We then consider all strings
that contribute to O and define the support as the set of all sites, on which the
contributing strings act non-trivially. The range of the support is then given by the
maximal distance between these sites. If O is supported on a connected set of sites,
the support is contiguous. With these definitions at hand, we are now in position
to define the concept of locality.

In this work, we will consider local Hamiltonians, by which we mean that their
terms only have finite and contiguous support. This distinguishes our definition
from the one used in quantum information theory where the requirement of con-
tiguous support is usually dropped. Many of the Hamiltonians considered are either
nearest-neighbour local or next-nearest neighbour local, meaning that their terms
only have a range of support of two or three sites, respectively. However, there
are also operators that in a strict sense are supported on the full lattice, but whose
weight distribution over the chain allows to call them quasi-local. Consider an op-
erator O whose decomposition has non-trivial terms on every lattice site. We will
call it quasi-local if its reduction to a contiguous region |S| fulfills

‖O− trSc(O)⊗
1Sc

|2S
c
|
‖ 6 c1e−c2|S| ,

in a suitable norm and with c1, c2 > 0. Here, we are comparing the reduced oper-
ator to the full operator. The reduction is obtained by performing the partial trace
over the complement region of S denoted by Sc, i. e. all sites that do not belong to S.
Since all non-trivial local basis operators are traceless, only those terms will remain
that act as the identity on Sc. We then divide by the dimension of Sc to account
for the factor of 2|Sc| that is obtained from the partial trace. After the partial trace,
the operator trSc(O) only acts on S and has the dimension 2|S|. We then extend
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it by a tensor product with an identity of dimension 2|Sc| such that trSc(O)⊗ 1Sc

again acts on the full chain. This allows us to compare it to the full operator O and
we will call O quasi-local, if its reduction to a region S approximates the full oper-
ator exponentially well in the size of S. This means that the cumulated weight on
terms that are outside of S needs to decay exponentially. One can also define quasi-
locality using other functions with different decay behaviour, but for the following
work, the definition with an exponential decay is most suited. As an illustration,
we show the weight distribution of a quasi-local operator and a non-local operator
as a sketch in Fig. 2.1.

These formal tools will allow us to study and quantify locality properties in dy-
namics and more precisely out-of-equilibrium physics.

2.2 equilibration on average

Having pushed our system out of equilibrium initially, we now want to understand
under which circumstances it dynamically evolves to a steady state again. We will
refer to this process as equilibration. In this section, we discuss the prerequisites for
equilibration such as the initial state, the resulting equilibrium state and how to dis-
tinguish the two. We end by giving a theorem for equilibration in finite interacting
many-body systems.

In quantum mechanics, the dynamics of closed systems are governed by the time
evolution operator with the Hamiltonian acting as its generator. Given a Hamilto-
nian H and an initial pure state |ψ〉, the state at time t is given by the solution of
Schrödinger’s equation

|ψ(t)〉 = e−ıtH |ψ〉 .

Since we are interested in non-trivial dynamics, this implies that the initial state
cannot be a single eigenstate of the Hamiltonian governing the time evolution, but
rather a superposition of eigenstates. Specifically, quantum simulators can pre-
pare product and lowly entangled states such as local particle configurations in
real space. Such lowly entangled states intuitively are supported on many eigen-
states as these typically have an extensive amount of entanglement. It will turn out
that the amount of overlap that the initial state has with the energy eigenbasis is
crucial for equilibration to take place. The initial state is then subjected to the time
evolution under an interacting Hamiltonian. In a physical system, measurable ob-
servables are mostly local, meaning that they only probe part of the system, which
is why we consider local reductions in the following. A reduction to a subsystem S

can be obtained by performing the partial trace

ρ(t) = trSc |ψ(t)〉〈ψ(t)| .

The resulting state ρ(t) has a dimension of 2|S| × 2|S| and contains all the inform-
ation that is local to |S| and dismisses everything else. While |ψ(t)〉 is a pure state,
ρ(t) may well be a mixed state due to the dynamical entanglement built-up.

Once a classical system attains equilibrium it stays close to it to a good approx-
imation, i. e. it has not yet been reported and reproduced that a melted ice cube
reassembles over time. However, there is a striking difference for finite quantum
systems where the dynamics occurs on finitely many orbits given by the overlaps
with the energy eigenbasis, which means that approximate and exact recurrences
can occur at some point in time [1] (actually, recurrences also occur in classical
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systems with discrete phase spaces, but we will not cover this here). For realistic
materials the exact recurrence time is unphysically large, but this issue makes a rig-
orous definition of equilibration more subtle. One possible solution is to consider
time intervals which exclude the recurrences [2]. Here, we could for example con-
sider only the equilibration dynamics up to the recurrence time. Another approach
that avoids the problem of recurrence is to consider time averages instead of points
in time. If the system equilibrates, we expect it to be close to its equilibrium state
for almost all times which makes averaging over the rarely occurring recurrences
acceptable. In this chapter, we consider equilibration on average. One particularly
useful concept is the infinite time average given by

ρ∞ = lim
T→∞ 1

T

∫T
0

dτ ρ(τ) .

This already allows for an intuitive formulation of equilibration. If ρ equilibrates, it
should be close to its infinite time averaged state ρ∞ for almost all times. We will
formalise this in the following. Let us start by calculating the infinite time averaged
state for a given initial state |ψ〉. Using the eigendecomposition of H, namely the
eigenvalues or energies ek and corresponding eigenvectors |k〉, we can rewrite the
time evolution of |ψ〉 as

|ψ(t)〉〈ψ(t)| =
∑
k,l

eıt(el−ek)〈ψ|l〉〈k|ψ〉 |k〉〈l| .

by acting on |ψ(t)〉〈ψ(t)| with the unitary which diagonalises H. The equilibrium
stateω is then given by the diagonal of the above operator

ω := ρ∞ = lim
T→∞ 1

T

∫T
0

dτ
∑
k,l

eıτ(el−ek)〈ψ|l〉〈k|ψ〉 |k〉〈l|

=
∑
k

|〈k|ψ〉|2 |k〉〈k| ,

where we used that the average over the phases eıt(el−ek) vanishes as long as el−
ek 6= 0. This non-degeneracy assumption is well justified for interacting systems,
where energy levels repel one another. Non-interacting systems on the other hand
come with large amounts of degeneracies and hence require a different theoretical
treatment [3, 4].

As an interlude, we need to define a distance between two states ρ and ω. Since
we are interested in the distinguishability with respect to observables O we employ
the 1-norm which is given by

‖ρ−ω‖1 := sup
O:O observable

tr(O(ρ−ω)) .

Without the supremum, this is only the expectation value of the observable O and
the difference of our states. Therefore, the 1-norm gives the maximal distinguishab-
ility of the two states using all possible observables. A natural relaxation of the
1-norm is to consider only a restricted set of allowed observables.

With this, we are now set to formulate a theorem for equilibration in interacting
and local systems. It can be shown that in the infinite time average, the time evolved
state |ψ(t)〉 is close to its equilibrium state ω when reduced to a local region S in
the following sense [5, 6]

‖trSc(|ψ(t)〉〈ψ(t)|−ω)‖1
∞

6
d|S|

deff
, (2.2.1)
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where d is the local dimension of the system and deff, the effective dimension,
counts how many eigenstates the initial state |ψ〉 has overlap with

d−1eff =
∑
k

〈k|ψ〉4 .

The effective dimension is deff = 1, if |ψ〉 is an eigenstate itself. On the other hand,
if |ψ〉 is the equal superposition over all eigenstates, its effective dimension is deff =

dL, which is the maximal value possible. This means that if a state has overlap with
many eigenstates, it equilibrates well in the infinite time average. We would like
to note in passing that single eigenstates are by definition equilibrated since they
have no dynamics but if the initial state has support on few eigenstates only, it will
likely not equilibrate. Thankfully, it can be shown that experimentally preparable
initial states in fact have a high effective dimension [7]. This result even holds
when the eigenstates are themselves characterised by low entanglement content
and can be approximated by matrix product states. We can therefore conclude that
finite, generic initial states equilibrate locally in interacting quantum systems after
being pushed out of equilibrium [8]. What is obscured by the infinite time average
though, are the associated time scales. How much use does the above discussion
have, when our system only reaches equilibrium for the first time on the advent of
the heat death of the universe? In practise, we observe that for interacting many-
body systems equilibration happens extremely rapidly. We set out to make this
plausible in the next section.

2.3 equilibration time scales

While the above framework constitutes an important milestone in understanding
out-of-equilibrium dynamics in quantum systems from first principles, it is neces-
sary to determine the time scales involved in the equilibration process, i. e. when
does the system first approach equilibrium. Generically, this happens quite fast al-
though there exist examples (aside from theoretically constructed systems [9, 10])
that take uncharacteristically long to equilibrate [11]. Essentially, not only do we
need to take into account the effective dimension, i. e. the support on the eigen-
states, but also the corresponding energies which inform us about the frequency of
the orbits. The key mechanism to understand how fast a system can equilibrate is
called dephasing [12, 13], describing how contributions from different eigenstates
with different frequencies can cancel each other which we will detail below.

So far, we have basically neglected the role of the observable which we use to
probe our system with. In our final bound on infinite time averaged equilibration
given in Eq. (2.2.1), the 1-norm shows up, which is a supremum over all possible
observables to distinguish the two states. To obtain reasonable time scale estimates
however, such a general approach ignoring the structure that local observables offer
cannot be pursued. It is known for example, that the off-diagonal elements of a
local observable in the energy eigenbasis decay strongly [14, 15]. In the following,
we will hence consider a fixed observable A. Let us take a closer look into how we
can calculate the distinguishability of |ψ〉〈ψ| and ω using an observable A in the
following denoted by ∆A(t)Ψ

∆A(t)Ψ : = tr(A(|ψ(t)〉〈ψ(t)|−ω))

=
∑
k,l
k6=l

〈k|A |l〉 〈l| |ψ〉〈ψ| |k〉 e−ı(ek−el)t =
∑
∆ 6=0

z∆e
−ı∆t ,
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Figure 2.2: An investigation of the equilibration behaviour for a transverse field
Ising model on the level local magnetisation A = σz

L/2
for a disordered un-

entangled initial state out of equilibrium [16]. Top: Distinguishability ∆A(t)ψ in
the transverse field Ising model on L = 15 sites (for details refer to Ref. [12]). The
dashed orange line is the equilibrium value and the blue line corresponds to the
actual value at time t. Rapid equilibration is observed. Bottom: Decomposition of
∆A(t)ψ in its components on the complex plane for fixed points in time. The distri-
bution quickly spreads over the complex plane, which is linked to the equilibration
behaviour. Figure taken from Ref. [12].

where we used the energy representation in the first step and that ω is the di-
agonal of |ψ〉〈ψ| to exclude k = l. In the final step, we changed the summa-
tion from indices to energy differences ∆ = ek − el and furthermore defined
z∆ :=

∑
k,l:∆=ek−el

〈k|A |l〉 〈l| |ψ〉〈ψ| |k〉. When the system is prepared out of
equilibrium at t = 0, the z∆ are all positive and hence sum to a large value. We call
the system equilibrated if this sum becomes very small. This happens when all the
elements of the z∆ distribution have phases e−ı∆t such that they are almost isotrop-
ically spread out in the complex plane. Furthermore, if we assume non-degenerate
energy gaps, which is also justified as soon as small random perturbations are ad-
ded to a local Hamiltonian [5], all the velocities are distinct and therefore spreading
has to occur at some point. This process is referred to as dephasing of the initial
distribution. It can be thought of as a clock with many hands that move at different
velocities. Equilibration takes place if the hands cover the full clock dial. Thus, we
can see that equilibration time scales are governed by the energy representation of
the observable and the state reflected in the distribution z∆.

We will now illustrate this point, by considering the evolution of the distinguishab-
ility ∆A(t)ψ for a transverse field Ising model of the form

HTIM = J
∑
i

σxi σ
x
i+1 + hx

∑
j

σxj + hz
∑
j

σzj ,

where the σai operators are the Pauli-matrices extended to the full chain by a tensor
product with identities acting on all other sites than i. This example is taken from
Ref. [12], where the mechanism of dephasing is laid out in detail. We consider two
distinct scenarios with different initial states and different Hamiltonian paramet-
ers. Both initial states have a high effective dimension with their corresponding
Hamiltonian and will therefore equilibrate in the infinite time average. When look-
ing at the short time dynamics however, we find that one equilibrates rapidly and
the other one does not equilibrate on the time scales considered. Fig. 2.2 shows
the scenario which yields fast equilibration. Here, the Hamiltonian parameters are
J = 4, hx = 1 and hz = −2.1 and the initial state is a random product state,
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Figure 2.3: An investigation of the equilibration behaviour for a transverse field
Ising model on the level local magnetisationA = σz

L/2
for an ordered unentangled

initial state out of equilibrium situation [11]. Top: Distinguishability∆A(t)ψ in the
transverse Ising model on L = 15 sites (for details refer to Ref. [12]). The dashed
orange line is the equilibrium value and the blue line corresponds to the actual value
at time t. There is no visible equilibration for the time interval considered. Bottom:
Decomposition of ∆A(t)ψ in its components on the complex plane for fixed points
in time. The distribution stays concentrated throughout the evolution. Figure taken
from Ref. [12].

meaning that for each site a random spin configuration is assigned. Originally, this
setting is discussed in Ref. [16]. As described above, the initial distribution at t = 0
is aligned on the real axis of the complex plane yielding a large distinguishability
∆A(0)ψ. As time goes on, the phases rapidly cover the plane, resulting in a small
∆A(t)ψ for t ∼ 4. A rather different behaviour is found for similar Hamiltonian
parameters J = 1, hx = 0.5 and hz = −1.05 but an initial state that consists only
of spin ups on every site. In Fig. 2.3 we again show the corresponding distinguishab-
ility∆A(t)ψ. When turning on time evolution, there are two distinct contributions
whose phases only slowly split yielding a non-uniform distribution on the complex
plane even for late times. This example shows that the underlying mechanism for
equilibration apparently is dephasing. However, up to now it is unclear how to
connect this to more physical assumptions, such as the precise form of the initial
state or the observable. It seems plausible however, that the amount of randomness
surrounding the observed region might play a role in the short time dynamics. For
now, we leave this as an open question.

Lastly, we also would like to mention a complementary approach to finding fast
equilibration time scales, namely typicality [17--19]. Here, an assumption on the
unitaries transforming the bases of observable, state and Hamiltonian into one an-
other is made, demanding those resemble Haar random matrices. While this ap-
proach beautifully reproduces the equilibration time scales found in experiments,
it delivers little insight into the theoretical structures and mechanisms which yield
this rapid equilibration.

With this, we would like to close our discussion on equilibration, again pointing
out that interacting many-body systems do reach equilibrium after an initial per-
turbation. The time scales of when this happens are observed to be short in generic
cases, but a rigorous proof or rather physical assumptions allowing to prove rapid
equilibration are still lacking. We move on to describing the resulting equilibrium
state - the question of thermalisation.
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2.4 thermalisation

Describing quantum systems in terms of statistical ensembles is a two-step pro-
cess. First, we need the system to actually equilibrate and only then can we attempt
characterising this equilibrium state. We will call a system thermalised if the equi-
librium ensemble depends on the energy of the initial state only. Thermalisation
is the panacea to understanding why quantum mechanics may be the foundational
theory of everything despite the classical appearance of our day to day world as it
wipes out quantum coherence and leaves us only with thermal ensembles.

A principal feature of classical thermodynamics is dynamical entropy production,
best exemplified by releasing a gas into an empty room. We say that the previously
concentrated gas equilibrates by expanding to fill the available space. Given the fi-
nal position of the gas particles, it is impossible to reconstruct the initial position of
the gas can. The final state is an ensemble whose only parameters are macroscopic
quantities such as the volume of the room and its temperature. Such a description
is only possible, because the microscopic details are erased over time. In the corres-
ponding quantum scenario, where a specific wavefunction as introduced above is
evolved in time, there is no corresponding loss of information due to the time evol-
ution being unitary and hence probability preserving. The final state will therefore
always be pure and not mixed. This failure, which was already pointed out by von
Neumann in his seminal work [20], hinges upon the knowledge of the full quantum
state, which in practise is almost never accessible.

As in the equilibration problem discussed in the previous chapter, if we only
assume knowledge of local expectation values, we can define thermalisation for
quantum systems as well. The question at hand is whether expectation values of
local observables in the equilibrium state can be predicted by using a thermal en-
semble which only depends on the energy of the initial state. We say that a state ρ
has thermalised if

‖trSc(ω−ωGibbs)‖1 6 ε , (2.4.1)

with
ωGibbs := e

−βH/Z ,

where Z is the partition function of the system, ε > 0 and β is the inverse tem-
perature which is chosen such that the energies of ω and the thermal state agree.
In the following and in agreement with the literature we will refer toωGibbs as the
Gibbs state of the system. From Eq. (2.4.1) we can deduce why thermalisation of
many-body systems is potentially the most important open question in the field. If
a system thermalises, the number of parameters necessary to faithfully represent
its equilibrium ensemble reduces from dL for generic quantum states to one - its
energy. Needless to say, this renders the treatment of large quantum system feas-
ible. As with equilibration time scales that generically are observed to be rapid, it is
observed that thermalisation generically takes place [21] but the precise details of
how it comes about are not fully settled. Nevertheless, a powerful conjecture used
to explain thermalisation is the eigenstate thermalisation hypothesis which links
thermalisation to a feature of the eigenstates [22--25]. It states that eigenstates in
a microcanonical, i. e. small, energy window in the bulk of the spectrum already
approximate a Gibbs state of this energy quite well. By this token, any initial state
with high effective dimension whose support on the energy eigenbasis is peaked,
will also equilibrate to this very Gibbs state. This hypothesis is powerful, but dif-
ficult to check. It also disregards prerequisites such as locality of the Hamiltonian
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and it is not clear where in the spectrum its validity should end, as the boundary of
the spectrum is - in some instances even provably so [26] - not thermal. Moreover,
if the initial state has overlap with several energy segments, it is far from clear
whether the superposition of several Gibbs states again yields a Gibbs state and if
so which temperature we should assign in that case.

Given its totalising statement, it is important to understand when the eigenstate
thermalisation hypothesis fails. This is often the case when the system has some
additional local structure which we will discuss in the following under the headline
of integrability.

2.5 integrability

In this section, we will consider requirements for a system to evade thermalisation.
If a system features local memory, i. e. information in local regions is not being
erased under the time evolution, this hinders thermalisation. The reason why we
do not encounter a single report of a stable ice cube in the summer sun is that many
of the systems with local memory are not robust. Let us now explore what local
memory means for quantum systems.

It is conceivable that a quantum system retains most of its local structure if there
are local operators which are preserved under the Hamiltonian evolution. In quantum
mechanics, an operator Z which commutes with the Hamiltonian does not evolve
in time and is hence called a constant of motion. In the classical case, each constant
of motion comes with a cyclic coordinate and hence reduces the time evolution of
that coordinate to a trivial motion. Moreover, the initial value of this constant of
motion with respect to the initial state does not change and the coordinate is said
to be integrable.

In the quantum world, there is again a problem with carrying over the classical
definition [27] as any operator that is diagonal in energy space commutes with
the Hamiltonian by definition. However, not all of these operators are physically
meaningful. Some of them are global symmetries like particle conservation, which
do restrict the dynamics but not on local scales. Others do not even have any local
interpretation, i. e. energy eigenprojectors or arbitrary combinations of these. Only
constants of motion with a local real space representation give rise to local memory,
which in turn inhibits thermalisation. To illustrate this in more detail, consider a
spin chain with fixed magnetisation and an initial state from the zero magnetisa-
tion sector. If the Hamiltonian flips adjacent spins, the equilibrium state will be a
homogeneous spin distribution over the full chain. This is the case for any initial
state from the zero magnetisation sector. Things change when we introduce local
memory though. Let us assume the spin of one site is a constant of motion. Then
the equilibrium state will necessarily have the same value as the initial state on
this specific site and thereby only half of the initial states equilibrate to the same
equilibrium state. But this means that the reduced equilibrium state to any region
containing this site depends on the local initial conditions now, which clashes with
the requirements for thermalisation, where only the energy is allowed as a para-
meter for the equilibrium state. To formalise this, let us assume that we have L
many constants of motion Zi that fulfil [H,Zi] = 0, are functionally independent
and have a local representation in real space. If we now want to find a description of
our equilibrium ensembleω for a given initial state |ψ〉, we must not only consider
its energy but also the expectation values of all constants of motion 〈ψ| Zi |ψ〉 as
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these also do not change over time. States with different expectation values for the
constants of motion can have the same energy, as the constants of motion blockdi-
agonalise the Hamiltonian and therefore the different blocks decouple. In practise,
this implies that there is no level repulsion between the blocks as their states are
decoupled, allowing for degenerate energies in an otherwise interacting system. To
conclude, an equilibrium ensemble in such a system takes a more complicated form
also referred to as generalised Gibbs ensembleωGGE

ωGGE := e−βH+
∑
i µiZi/Z ,

where the µi are the Lagrange multipliers that are optimised such that the expect-
ation values of the Zi inωGGE and the initial state agree [28]. Much less is known
about these ensembles, especially it is not clear whether higher orders of the con-
stants of motion are also required to faithfully represent the initial state.

Integrability does inhibit thermalisation, but many of the known models exhib-
iting it are fine-tuned and therefore will hardly be observed in nature. A slight
perturbation to their Hamiltonians usually restores thermalisation. At the start of
this millennium however, a class of systems has been identified that are robustly in-
tegrable. The underlying mechanism at work is particle localisation which persists
even in the presence of many-body interactions culminating in the name many-
body localisation. The following section will give a brief introduction into this class
of systems putting them into context with equilibration and thermalisation.

2.6 anderson localisation

The field of particle localisation dates back to the endeavours of P. W. Anderson in-
vestigating the impact of impurities onto a conducting material [29]. The model he
was considering was non-interacting, but it is still instructive to briefly sketch the
physics of the Anderson model before moving on to its interacting generalisation
to understand the concept of particle localisation in a tractable model.

A conductor consists of a rigid lattice of positive ions with electrons orbiting
them. Charge effects are mediated by the electrons tunneling from ion to ion. Fur-
thermore, electrons are fermions, which implies that they cannot be in the same
quantum state simultaneously. Assuming that interactions between electrons are
strongly screened, an analytically tractable starting point to model the electron
movement in a conductor is a model that only involves hopping terms and neg-
lects interactions. Since Anderson was interested in the effect of local impurities,
as they naturally occur in the production of any material for example by imperfect
lattice geometry or defect ions, we furthermore add a random onsite potential such
that the resulting Hamiltonian takes the form

HAnd = J
∑
i

(
f
†
ifi+1 + h.c.

)
+
∑
j

hjf
†
jfj ,

where f†i , fi are the canonical fermionic creation and annihilation operators, J is
the hopping strength (mostly we will set J = 1 and rescale all other Hamiltonian
parameters) and hj are random numbers drawn independently from an interval
[−∆,∆], where ∆ is referred to as the disorder strength.

The surprising discovery by Anderson was that while in the absence of disorder
∆ = 0 this model is a perfect conductor, conductance breaks down in the thermody-
namic limit as soon as any nonzero disorder is added to the model. What is more, it
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was later discovered that not only particle but also information propagation is sup-
pressed beyond a certain length scale, that depends on the disorder strength and
is called localisation length [30]. Phrased in the language of quantum information
theory this means, that if we give an Anderson localised chain to two parties Alex
and Brook, it is not possible for them to transfer information between the two by
encoding it at one end, say Alex’, with a local unitary and trying to read it out on
Brook’s end with a measurement. This is a consequence of the eigenstates of the
Anderson model being localised in real space in contrast to the extended eigenstates
in the absence of disorder. In essence, the Anderson insulator is a perfect insulator
in that it does neither transport particles nor information. Furthermore, the system
cannot equilibrate via dephasing because it is non-interacting but also due to the
absence of transport it does not equilibrate in any other way and without equilibra-
tion it does not make sense to talk about thermalisation. At the time of Anderson,
it was strongly expected that localisation would break down as soon as arbitrarily
small interactions are added to the Hamiltonian. Almost 50 years later however,
this question was finally followed up with a different result, namely that even in
the presence of many-body interactions, localisation can persist [31]. This effect
was therefore named many-body localisation and sparked a new field of research.
In the following, we will summarise those results that are particularly relevant for
out-of-equilibrium dynamics.

2.7 many-body localisation

In this section, we investigate how localisation responds to the addition of many-
body interactions. Anderson (and others at the time) conjectured, that localisation
would cease to exist as soon as many-body interactions are introduced to the model.
Intuitively, this was based on the idea that particles which are trapped in the system
now can exchange energy with other particles and thereby overcome the energy
barriers of the potential landscape. By now it is established that this is not the
full answer to this question. Rather, a complicated interplay of interactions and
disorder governs the physics of many-body localised systems resulting in both a
localised and an ergodic parameter regime.

The plethora of approaches and results related to many-body localisation can-
not comprehensively be presented in this thesis and hence we try to find a middle
ground of delivering a concise theoretical description, while still covering the corner-
stones of the field.

The essential ingredients to observe localisation physics are Hamiltonian terms
which facilitate particle transport, interactions between particles and a source of
randomness [32]. We would like to remind the reader, that we put emphasis on
one-dimensional systems. A prototypical Hamiltonian used as a model for a many-
body localised system is the spinless, disordered Fermi-Hubbard model

HFH = J
∑
i

(
f
†
ifi+1 + h.c.

)
+
∑
j

hjnj +U
∑
k

nknk+1 , (2.7.1)

where nj = f†jfj are particle number operators acting on site j. This is an interact-
ing generalisation of the Anderson model with interaction strengthU, where again
we draw the disorder fields from a bounded interval hj ∈ [−∆,∆], where ∆ is the
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t = 0 t� 1, ∆ < ∆c t� 1, ∆ > ∆c

Figure 2.4: Sketch of the experiment in Ref. [33]. The left panel shows the initial
state |ψCDW〉 at time t = 0. The panel in the center shows the equilibrium state if
the disorder strength ∆ is smaller than the critical disorder strength ∆c. Here, the
particles can spread through the system and hence the equilibrium state is homo-
geneous with no trace of the initial configuration. The right panel shows the equi-
librium state if the disorder strength ∆ is larger than the critical disorder strength
∆c. In this case, the disorder will keep the particles localised to their initial site.
Therefore, the initial charge density wave pattern is still visible in the equilibrium
state.

disorder strength. In one dimension, this model can be mapped to a random field
XXZ spin model using the Jordan-Wigner transform.

HXXZ = J̃
∑
i

σxi σ
x
i+1 + σ

y
i σ
y
i+1 +

∑
j

h̃jσ
z
j + Ũ

∑
k

σzkσ
z
k+1 , (2.7.2)

where the σa operators are the Pauli-matrices and the constants are shifted with
respect to the fermionic variant.

The seminal result giving birth to the field of many-body localisation shows van-
ishing conductivity when the disorder is sufficiently strong. [31]. Only later was
it possible to demonstrate this particle localisation experimentally [33]. Here, the
authors prepared an initial state with a charge density wave pattern, i. e.

|ψCDW〉 = |10101010 · · · 1010〉 ,

in the real space particle occupation basis. This state was then evolved in time
under a bosonic variant of the above Hamiltonian with a quasi-random potential.
In the absence of localisation, particles spread over the full system and eventually
the system equilibrates to a homogeneous state. This has actually been observed
before in a different context in Ref. [34]. If particles are localised, they remain close
to their initial position, which results in the preservation of the charge density wave
pattern in its equilibrium state [35]. To track how well this pattern is preserved over
time, one can measure an observable called the imbalance I, which takes the form

I =
Nodd −Neven
Nodd +Neven

,

where Nx is the summed particle number on odd and even sites, respectively. Its
expectation value with |ψCDW〉 is 1, which is actually also its maximum. When
calculating the imbalance of a homogeneous state, one finds that it vanishes.

In Ref. [33] it was reported that for zero disorder strength∆, the imbalance plum-
mets to zero very fast, a signal of particle transport. As soon as the disorder strength
exceeded a critical disorder strength∆ > ∆c, the imbalance saturated at a non-zero
value. A sketch of the initial states and the equilibrium states for low and high dis-
order is given in Fig. 2.4. This directly implies that the system does not thermalise,
as the system has local memory of the initial particle configuration, which is not
thermal. This was the first experimental realisation of a system that provably does
not thermalise.

Another particular feature of many-body localised systems is the formation of
dynamical correlations. The spread of information in generic ergodic local systems
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is linear in time [36--38]. When putting many-body localised systems to a test by
preparing a random product state and evolving it in time, they show a logarithmic
in time growth of the halfchain entanglement [39,40]. Recall that in Anderson local-
ised systems, information propagation is bounded. In essence, particle localisation
and logarithmic in time growth of correlations clearly delineate many-body local-
ised systems from thermalising systems, where particles move in unconstrained
fashion and Anderson localisation, where the correlation growth in time saturates.

We will now introduce an effective model incorporating the phenomenology dis-
cussed above. For this purpose, it is useful to define an operators basis of L many
operators Zi, which fulfil [H,Zi] = 0 and are functionally independent. Decom-
posing our Hamiltonian in terms of these yields

Heff =
∑
i

µiZi +
∑
i,j

µi,jZiZj +
∑
i,j,k

µi,j,kZiZjZk +O(Z4i ) ,

where the µ{a} = tr(H
∏
i∈{a} Zi) are the coefficients from the expansion in the

new basis. So far, everything we have done is still exact and applicable to any
Hamiltonian, but also not very useful. For generic Hamiltonians, these operators are
likely non-local and in accordance with our discussion of integrability in Chapter 2
not relevant for the local dynamics. However, to capture localisation physics, we
look for constants of motion that do constrain the local dynamics, i. e. that are re-
sponsible for particle localisation. Therefore, we will now assume that there is a
set of Zi operators that are furthermore quasi-local, meaning that their support in
real space decays strongly. These can now be thought of as the localisation regions
that particles in our lattice are confined to. Taking into account their commutation
with the Hamiltonian, these are L many quasi-local constants of motion. Further-
more, they are expected to be connected to the real space particle number operators
by a unitary transformation of decaying support, making them quasi-local [41, 42].
This constitutes a form of emergent integrability, which is one of the necessary
conditions to represent localised systems.

Let us consider the first order of Heff denoted by H1eff. It only consists of local-
isation regions and no coupling between those. This can be seen as an effective
model of an Anderson insulator, where the Zi describe the localisation regions. Oc-
cupations cannot be exchanged between these regions, which is why there are no
Xi-type terms. Moreover, there is no term coupling these regions so information
cannot be transferred between them. If we want to extend the model to also cover
the physics of many-body localised systems, we need to include terms that do couple
different localisation regions in order to have information propagation. However,
we want correlations to only spread logarithmically in time, which entails that the
effective interaction between distant sites needs to decay exponentially in that dis-
tance. Essentially, we want the sum over all interaction terms that connect the two
sites to decay exponentially in the distance between the sites [42]. To formalise this,
we can write down the more cumbersome expression ‖∑{a} Zi(

∏
k∈{a} Zk)Zj‖ 6

e−dist(i,j), where {a} is a (possibly empty) set of sites between site i and site j.
Hence, the simplest model that is capable of mimicking the physics of a many-body
localised system is H2eff. Such an effective model, which is fully commuting, has
been shown to exhibit the logarithmic in time spread of entanglement [43]. An
exact mapping, which would also allow to prove stability of localisation is still elu-
sive despite impressive efforts [44]. Having established the phenomenology and
presented a fruitful attempt of capturing it formally, we will now point out the
open questions that will be tackled in this thesis.
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2.8 open problems

To our understanding, many-body localisation is a physical effect that prevents
thermalisation in spite of interactions in a robust way. The following chapters will
address the natural questions of stability, experimental realisability and computab-
ility of this effect.

One pressing question when studying a physical effect is its stability to various
perturbations. In the end, we would like to understand how and where an effect
can be realised in nature. Investigating its stability gives insights into whether it
can exist and in which circumstances. We already pointed out that many-body loc-
alisation is stable to perturbations of the Hamiltonian parameters. As with many
effects in phases of matter, the dimension of the system has a strong impact on
the observed physics. There is experimental evidence for localisation in two di-
mensions [45], but also arguments that predict the breakdown of many-body local-
isation in dimensions higher than two at long times [46]. In fact, there is a recent
numerical study claiming that even in one dimension a many-body localised system
thermalises at late times [47]. In Chapter 3, we will ask a similar question by consid-
ering the stability of localisation with respect to unlikely disorder configurations.
We numerically study systems, that deliberately include a region of low disorder,
allowing for local thermalisation. If a locally thermalised region is able to destroy
the localisation of its surroundings, this would be indicative of an instability for
larger systems, where such disorder configurations are likely to occur.

Another important question is whether the effect can be realised in experiments.
A real material exhibiting many-body localisation is yet to be found, but analogue
quantum simulators such as trapped ions [48], superconducting qubits [49] or op-
tical lattices [33] allow to probe theoretical predictions to a high accuracy. While
it is possible to show particle localisation in these setups, it is still desirable to also
measure interaction induced effects such as the logarithmic in time growth of en-
tanglement. Since the entanglement entropy is not an experimentally accessible
quantity, one needs to find measurable quantities that serve the same purpose. In
Chapter 4, we set out to design measures, which witness the interaction induced
effects in many-body localised optical lattices based only on technology present in
these setups.

Lastly, we also put the theoretical framework to a test by devising an algorithm
which constructs quasi-local constants of motion in Chapter 5. We put emphasis
on the algebraic properties of the obtained operators, allowing us to furthermore
compute the weights of the effective model in a small system. We then extend
this algorithm to an application in a spin chain with symmetry protected order in
Chapter 6, where local constants of motion emerge naturally as edge modes of the
system.



3

S T A B I L I T Y O F M A N Y - B O D Y L O C A L I S A T I O N

Stability is a natural question to ask about phases in physical systems. Generically
one is interested in how certain phase properties change when the system size is
changed. In the context of many-body localisation one of the most pressing ques-
tions is whether localisation persists for large systems and long times. This is a very
difficult question to tackle since the dynamics in many-body localised systems are
extremely slow. It follows that a local perturbation will need a long time to explore
the full system and hence stability can only be assessed for very late times. In this
chapter, we focus on delocalising effects of regions which have an uncharacterist-
ically small disorder variance. While they are in general very unlikely, there is a
non-vanishing probability of finding those in large systems. In this sense, we probe
the long time and large system physics of many-body localisation.

3.1 griffiths effects

Since the local potentials of the disordered Hamiltonians we consider are drawn at
random, it is unlikely but possible to draw potentials of comparable size in a region
of neighbouring sites. In principle it is even possible that we obtain a completely
flat potential landscape and the system is thermalising. Although the probability
of this situation decays extremely quickly when increasing the system size, small
regions of locally flat disorder landscape are not unreasonable. If the local potential
difference is small enough, the particles in this region can thermalise in this small
region. Depending on the number and size of such thermalised regions, it is con-
ceivable that they also thermalise the remaining localised system. In the end, this
most likely is the mechanism which drives the transition between the thermalising
and the many-body localised phase when the disorder strength is changed.

The situation where a system is in a certain phase but small local regions are in
a different phase and the resulting dynamics are called Griffiths effect [50]. Essen-
tially, it is interesting to understand in which phase the resulting equilibrium state
will be in. Here, we are interested in a localised system with small local patches
which are thermal and whether these are able to thermalise the full system or not.
This is not very well understood theoretically and an active open question of the
field of many-body localisation. There exists an argument that a single thermal
region can delocalise the full system if it is two-dimensional or its interactions do
not decay fast enough in one dimension [46]. This however does not cover the set-
ting which is most commonly considered, namely a one-dimensional system with
strictly local interactions as described in Eq. (2.7.1).

Another way of testing the stability of many-body localisation with respect to
thermal inclusions is to directly engineer models that include a small thermal region.
In Ref. [51], the authors build a model based on the effective description of many-
body localisation. They consider the following Hamiltonian, which consists of a

20
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thermal region on the first three sites and an effective description of a localised
chain on the rest of the system

H = R⊗ 1L−3 +

L∑
i=4

µiσ
z
i +

L∑
j=4

g0α
j−4

4
σx3σ

x
j ,

where R is a random matrix of dimension 23×23 drawn from the generalised ortho-
gonal ensemble. Such random matrices have spectral features that resemble those
of thermalising Hamiltonians and hence are often used to model thermalised sys-
tems. The coupling to the localised chain is mediated via spin flip terms that decay
in distance, where α takes the role of the effective disorder strength by limiting the
range of the coupling. The authors find that there is a critical value of the coupling,
where the local region is able to thermalise the localised chain irrespective of its size.
This is a very interesting finding as it suggests that a finite thermal inclusion is able
to thermalise its localised surroundings. Some more remarks about this work are in
order. The model implemented is actually an Anderson insulator since higher order
σz terms are missing. The authors claim that adding higher order terms would only
increase the thermalising power of the bath and hence propose that their finding
is morally a lower bound for the thermalisation of a many-body localised system.
Also, the coupling implemented appears to be very powerful as it can flip constants
of motion even at long ranges and is not included in the typical description of the
effective model.

In this chapter, we put this finding to a test using the disordered XXZ model
defined in Eq. (2.7.2) instead of an effective description. We model the thermal re-
gion by drawing a number of potentials from an extremely small window independ-
ent of the disorder strength for all other sites finding that many-body localisation
is stable for a finite thermal region and unstable for extensive thermal regions.

climate footprint estimate

Total Kernel hours [h] 8260
Total Energy consumption [kWh] 82
Total CO2-emission [kg] 45

Table 3.1: Estimated climate footprint of the numerical calculations performed for
the paper “Exploration of the stability of many-body localized systems in the pres-
ence of a small bath”. Estimates are based on the data presented in the manuscript
and exclude prototyping. CO2-emission estimates are based on the German aver-
age emission of 0.56 kg/kWh. A similar emission is caused by manufacturing a
smartphone (≈ 30 kg) [52]. Calculations were performed on the leonard and
tron cluster equipped with Intel® Xeon® Processor X5570 and In-
tel® Xeon® Processor E5-2680 v2 nodes with a thermal design
power of 95 W and 115 W, respectively. Further details on the estimation can be
found in Appendix A.
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When pushed out of equilibrium, generic interacting quantum systems equilibrate locally and are expected
to evolve towards a locally thermal description despite their unitary time evolution. Systems in which disorder
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it is conceivable that if such regions appear sufficiently often, they might be powerful enough to restore
thermalization. We set out to shed light on this problem by constructing potential landscapes with low disorder
regions and numerically investigating their localization behavior in the Heisenberg model. Our findings suggest
that many-body localization may be more stable than anticipated in other recent theoretical works.
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I. INTRODUCTION

One of the long-standing puzzles of physics is how the pos-
tulates of quantum statistical mechanics and thermodynamics
can be made compatible with the unitary time evolution
of quantum systems. It is increasingly becoming clear that
generic interacting quantum systems—once pushed out of
equilibrium—are expected to dynamically evolve towards a
locally thermal description again [1–5]. This constitutes an
interesting state of affairs, since it reconciles the apparent
contradiction between the description of time-evolving states
and of equilibrium ensembles. Such an interpretive scheme
also provides a picture in which interacting systems can be
described by only a small number of parameters for almost
all time intervals, thus avoiding the curse of dimensionality.
A few exceptions are known to exist but these are fine-tuned
integrable systems featuring local constants of motion that
prohibit a general description in terms of thermal ensembles.

At the turn of the millennium, a new class of quasi-
integrable systems emerged which fail to thermalize over a
wide range of parameters. As this effect is caused by the
interplay of transport, interactions, and disorder, it has been
dubbed many-body localization (MBL) [6–8]. A many-body
localized system does not exhibit transport of particlelike
quantities and therefore can be effectively described by an
extensive set of quasilocally conserved constants of motion
(qLCOMs) [9,10]. This leads to local memory of particle
configurations [11]. Note that unlike the noninteracting An-
derson insulator, systems exhibiting MBL may well transport
informationlike quantities such as correlations between parti-
cles. This is reflected, e.g., in the logarithmic growth of the
entanglement entropy in time [12,13].

While many of the properties ascribed to MBL have
been observed either experimentally or numerically in finite

systems, the question of the stability of MBL in the thermo-
dynamic limit is as of yet unresolved. The expected leading
sources of instability are rare regions of low disorder that
might conceivably thermalize the rest of the system [14–17].
Questions regarding the effect of local regions that are lo-
calized in the otherwise ergodic phase or ergodic regions in
the otherwise localized phase have been investigated in the
field of Griffiths effects [18–23] (for a review, see Ref. [24]).
The question of whether a closed MBL system is stable
to uncharacteristic disorder potentials is hence part of this
subfield.

In this work, we deliberately construct potential landscapes
with regions of improbably low disorder and study their
influence on a localized chain surrounding them. A previous
study has reported that a constant size thermal region is able
to thermalize a localized chain coupled to it independent of
its size if the constants of motion do not decay sufficiently
strongly [16]. The study has been conducted within an effec-
tive description of MBL [9,10], one in which the localized part
has been modelled by constants of motion and the bath by a
suitable random matrix. The postulated coupling between the
bath and the localized part is characterized by a decay length
which is related to the localization length of the constants of
motion.

Here, instead we use its real-space equivalent: the dis-
ordered Heisenberg chain. Employing exact diagonalization,
we analyze the statistics of local expectation values of the
eigenstates which allows us to draw conclusions about the
locality of the constants of motion of the system. Our results
are not entirely compatible with those of Ref. [16], as we find
MBL is not compromised by the presence of low disorder
regions of constant size. When the size of the region is allowed
to scale with system size however, we find that localization
vanishes when extrapolating our results to large systems.
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II. SETTING

A. Hamiltonian model

We consider the “drosophila” of MBL, the disordered
spin-1/2 Heisenberg chain. In order to study the effect of
small subregions of low disorder, we investigate systems for
which the potential on the sites 1, . . . , s is close to zero.
Consequently, for a system of L sites, our Hamiltonian reads

H =
L∑

i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)

+
t∑

i=1

ε hiσ
z
i +

L∑

i=t+1

� hiσ
z
i , (1)

where the hi are drawn uniformly and independently from the
interval [−1, 1], ε and � denote the disorder strength in the
low and high disorder region and σ a

i is the Pauli-a operator
acting on the ith site. The fully disordered model (without
ergodic subregion) is expected to undergo a localization tran-
sition at a critical disorder strength �c ≈ 7 (note that since
we use Pauli instead of spin operators, the transition is shifted
with respect to other literature). Moreover, we use periodic
boundary conditions and work in the zero magnetization
sector. We set ε = 10−6 independent of the disorder strength
�. This creates the situation that the local flatness of the
potential may thermalize the subsystem, which is expected
to compete with localization effects in the remaining system.
In the following, we will hence refer to the first t sites as
the thermal sites and refer to the remaining L − t sites as
the disordered sites or part of the system. This model is very
close to state-of-the-art experimental realizations of MBL in,
e.g., optical lattice architectures [11]. However, it bears the
problem that for the zero on-site field, it becomes Bethe-
ansatz integrable which arguably inhibits the thermalizing
effect of the thermal sites. This is why we also investi-
gated a similar model which includes integrability breaking
terms

H =
L∑

i=1

(
σ x

i σ x
i+1 + σ

y
i σ

y
i+1 + σ z

i σ z
i+1

)

+
t∑

i=1

ε hiσ
z
i +

L∑

i=t+1

� hiσ
z
i

+
L−1∑

i=1

Jnnn
(
σ x

i σ z
i+1σ

x
i+2 + σ

y
i σ z

i+1σ
y
i+2

)
, (2)

where the last term upon Jordan-Wigner transformation yields
a next-nearest-neighbor hopping, which breaks integrability
[8]. For all simulations of this model, we use Jnnn = 0.2. We
consider two different scenarios: In the first, the number of
thermal sites is independent of the system size (t = 3). In the
second setting, we take a fixed fraction of the full size to be
thermal (t = L/2).

B. Distribution of disorder

Within this model, we investigate below the effect of a
local cluster with uncharacteristically small disorder on its

environment. The formation of such a cluster should be
understood as a rare instance of a generic MBL model and
is specifically relevant when considering the stability of an
interacting localized phase in the thermodynamic limit, where
the effect of these rare regions is not fully understood yet.
For large systems, the probability of having small thermal
regions increases and poses the question if these are able
to compromise localization of the full chain as well. As a
prerequisite, these must first thermalize their neighbors which
can also be checked in small systems and which is precisely
the context of this work. In a system so large that it cannot
be treated numerically, there will be small subsystems which
resemble the systems we consider in this work with high
probability, namely there will be regions of low disorder. It
is reasonable to assume that before such a small region could
delocalize the full chain, it would delocalize its surroundings.
However, we would like to point out that here we seek
for hints of this physics in the Heisenberg model without
assuming further structure such as the representation of the
bath. The minimal model for the delocalization scenario for
us is the local flatness of the potential and this is the only
prerequisite. Note that we only consider local observables as
global quantities such as energy levels commonly used to
detect MBL [8,25] will likely not be faithfully recovered in
our small system and are hence not considered here.

III. MEASURE OF LOCALIZATION

The proposed effective integrability of MBL comes about
due to the presence of extensively many quasilocal con-
served operators Zi [9,10]. This is seen most readily in
the infinite disorder limit (� → ∞) where these are given
by the local fields Zi = σ z

i and hence act on a single site
only. Moreover, they allow us to label the eigenstates by
the occupation of the Zi. When one moves away from the
infinite disorder case, energy space and real space no longer
coincide and the above identity becomes more intricate. The
Hamiltonian formulated in real space is then diagonalized
by a unitary UD which relates energy and real space. The
real-space representation of the Zi is given by a decompo-
sition in which all possible Pauli operator combinations can
appear,

UDZiU
†
D = αiσ

z
i +

∑

μ,ν∈C

βi(μ, ν)�z(μ)�x(ν), (3)

where �z, �x are Pauli words consisting of local Pauli-z
and Pauli-x operators respectively and μ, ν ∈ {0, 1}L indi-
cate the position of the Pauli operators in the chain, e.g.,
�a(μ) = ⊗i(σ a)μi . We deliberately singled out the weight on
σ z

i corresponding to the infinite disorder conserved operator.
All remaining weights are subsumed by the index set C
which contains all possible μ, ν configurations except the one
which would yield �z(μ)�x(ν) = σ z

i . In practice, αi, βi(μ, ν)
can be calculated using the Hilbert-Schmidt scalar product
βi(μ, ν) = Tr[UDZiU

†
Dσ z(μ)σ x(ν)]/2L. This representation

might seem cumbersome at first glance, but also allows one to
understand how a transition between strictly local constants
of motion in the infinite disorder case to nonlocal constants
of motion in the ergodic regime can be captured formally
in terms of the structure of the constants of motion. In fact
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this is nothing but a formalization of the “dressing” process
[9,10]. The above decomposition is completely general in the
sense that the constants of motion of any system of qubits
can be expanded as in Eq. (2) and can hence be applied
to the localized as well as to ergodic phase of an MBL
system.

The behavior of the conserved operators can be tracked by
analyzing the statistics of αi. In the localized regime the Zi are
expected to be quasilocal such that the corresponding weights
need to decay strongly for operators that have support outside
of the localization length, an intuition that has been confirmed
numerically [26–33]. The largest weight will hence still be
given by αi ∼ 1 and all other weights should be significantly
smaller. In the ergodic regime, however, Zi are not local at
all causing the weights to smear out over many different
operators and therefore αi will be essentially random and
small.

To access the statistics of αi, our main numerical tool
is constituted by local magnetizations of eigenstates, i.e.,
〈E |σ z

i |E〉 [16,34]. As the eigenstates can be expressed in
terms of the projectors (1± Zi )/2 onto the (un)occupied
sectors of the qLCOM, calculating the expectation value with
σ z

i yields ±αi depending on the occupation. Therefore, we
analyze the histograms over all eigenstates, expecting two
very distinct regimes. A localized phase is expected to exhibit
a bimodal distribution peaked at ±1. This holds whenever
the constants of motion are quasilocal and hence most of the
operator weight is still on the on-site magnetization implying
αi ∼ 1.

For ergodic systems however, the distribution of the αi

values should feature a close-to-Gaussian shape with zero
mean. Here, the constant of motion will be spread out over
many different operators and therefore the weight on σ z

i is
essentially random. Note that in principle, one could also
check the other weights βi(μ, ν) which certainly yield further
insights into the decomposition of the qLCOMs. There are
however 4L − 1 many of these and without prior knowledge
about which one should be sampled, this task is computation-
ally infeasible.

IV. RESULTS

In this section, we show and discuss the obtained results.
We worked with system sizes L ∈ {8, 10, 12, 14, 16} and var-
ious disorder strengths. Each point is an average over at least
2000 realizations. Errors have been calculated either using the
standard deviation or bootstrapping which amounts to resam-
pling from the obtained data to obtain a distribution of the
quantity of interest. In all plots, the error bars are smaller than
the symbols used. We either set t = 3 or t = L/2 sites to be
thermal to cover the system size independent and dependent
case. Moreover, we work with next-nearest-neighbor strengths
Jnnn ∈ {0, 0.2} to also understand the effect of closeness to
integrability. We first discuss the case of the constant size
thermal region.

A. Constant size thermal region

In the model considered in this section, we set t = 3, i.e.,
three sites are thermal independent of the system size. The

two plots on the left in Fig. 1 show the histogram of the local
expectation values of magnetization operators 〈E |σ z

i |E〉 for
different sites i encoded in color. We use a system of size
L = 16 and Jnnn = 0. As pointed out above, this amounts to
sampling the weight of the constants of motion on the σ z

i
operator and hence is an indirect measure for their locality.
For low disorder � = 3, the distributions show a distinct peak
at zero and feature strongly decaying tails consistent with
the predictions for the thermal region. When comparing the
thermal sites to the ones that experience the full disorder
strength, we find that the decay for sites inside the thermal
region is stronger—as one would intuitively expect. This
implies that the constants of motion are not very dominantly
supported on the respective σ z

i operator but presumably rather
spread over all remaining operators and hence nonlocal.

The picture changes drastically with increasing disorder.
For � = 9, the distributions originating from sites in the
disordered part of the chain show a distinct bimodality. This
shows that the σ z

i are very close to the exact constants of
motion as they inherit their occupation statistics which is a
sign of quasilocality. For sites in the thermal region, we find
that their distributions feature a peak around zero and small
peaks in their heavy tails as well. Since the disorder that
these sites experience directly is of order ε = 10−6, the peaks
and the heavy tails should be ascribed to the proximity to
the localized chain. When turning on next-nearest-neighbor
hopping Jnnn = 0.2 (data not shown), we recover the same
qualitative behavior but the overall localization is slightly
weaker, as one would expect from the increased capability of
the bath.

We will now turn to a system size scaling of the observed
locality behavior of the constants of motion again with Jnnn =
0. Since the standard deviation measures the width of a dis-
tribution, it is a genuine measure to compare the distributions
for different system sizes [16]. This is shown in the two plots
on the right in Fig. 1, where we plot the standard deviation
for all available system sizes encoded in color as a function of
disorder strength in the Heisenberg model with three thermal
sites. As a guide to the eye, the ergodic region is hatched
in red. For both weak and strong disorder, we find in Fig. 1
that the distributions of local expectation values of energy
eigenstates are narrower for sites in the thermal region than
in the disordered one. In the ergodic regime for � = 3, we
see that in both regions the standard deviation decreases on all
sites with increasing system size. This is an indicator that the
system tends towards thermalization as even in the disordered
part of the system the distributions become more narrow upon
increasing the system size, which is to be expected for � <

�c However, for � = 9, we find that the standard deviation
shows no systematic shift with increasing system size, instead
a saturation seems to be the most accurate description. This
suggests that localization is not compromised by a constant
size thermal region.

To detail this observation, we show the standard deviation
of a site in the middle of the disordered part of the system
at i = L − 
(L − 3)/2� as a function of disorder strength in
Fig. 3 (left panels). Here, we also include the data for the
next-nearest-neighbor hopping model. In the ergodic regime
� < �c, the standard deviation of the middle site decays
with increasing system size which is an indication that the
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constants of motion become less local when increasing the
system size. This decrease is enhanced by the next-nearest-
neighbor hopping. Upon increasing the disorder strength, we
observe a crossing behavior of the standard deviation for
disorder values higher than the critical disorder � > �c in
both models. This shows that in the localized phase there
is a (admittedly weak) tendency towards higher standard
deviation for increasing system sizes indicating that the model
is driven towards localization upon increasing system size in
the sense that the constants motion become more and more
localized. The effect of the next-nearest-neighbor hopping is
a slight decrease in the maximal value obtained for � = 15.
These results indicate that the presence of a fixed size region
of low disorder acting as ergodic grain does not alter the
qualitative behavior of the full system—depending on the
disorder present we find it to be in the ergodic or localized
phase without a shift of the transition point compared to the
standard disordered Heisenberg chain.

In the next section, we will increase the size of the thermal
region with the system size and carry out the same analysis.

B. Constant fraction thermal region

Let us now consider the case s = L/2 such that the thermal
region covers half of the system and is thus extensive. Again
data for the next-nearest-neighbor model is not shown, but
agrees qualitatively albeit with slightly weaker localization.
The two plots on the left in Fig. 2 show the histogram of the
local expectation values of magnetization operators 〈E |σ z

i |E〉
for different sites i in a system of size L = 16. For low disor-
der � = 3 the distribution essentially has the same shape as
for the three site thermal region with the only exception being
that now the eight thermal sites show the strong decay and the
eight disordered sites decay less strongly. Again, this implies
that the constants of motion are not very dominantly supported
on the respective σ z

i operator. For � = 9 the distributions
originating from sites in the disordered part of the chain show
the expected bimodality but furthermore also feature a peak
centered around zero indicating the proximity of the thermal

region. For the distribution of the thermal sites, we also notice
the difference to the fixed size setting discussed above that
they do not show a bimodality anymore but only heavier tails
than in the case of low disorder.

To investigate these effects in a system size scaling, we
again analyze the standard deviation of the distributions in
the two plots on the right of Fig. 2. Here, we find that the
two regimes show the same qualitative behavior, namely a
decaying standard deviation with increasing system size. As
this is also the case for both parts of the chain, it strongly
suggests that the system tends towards narrower distributions
and hence delocalization upon increasing the system size.

Let us emphasize this last observation by showing the stan-
dard deviation of a site in the middle of the disordered part of
the chain at i = L − 
L/4� as a function of disorder strength
in Fig. 3 (right panels). We find that the gap between standard
deviations for different system sizes is diminished at higher
disorder but there is no crossover as in the case of a constant
size thermal region for both models. For finite systems this
implies that significantly stronger disorder scaling with the
system size is needed in order to localize even the disordered
part of the system. Furthermore, the extrapolation from the
available system sizes leads to the conclusion that localization
vanishes in the large system limit for this model as constants
of motion become more nonlocal even in the regime of high
disorder.

Let us summarize the results. We find that constant thermal
regions which are independent of the system size seemingly
cannot hinder localization and their influence is suppressed by
increasing the system size. An ergodic region that scales with
the system size, however, changes the physics of the model
and apparently delocalizes the system. This observation holds
for both models with and without next-nearest-neighbor hop-
ping. It is important to note that an ergodic bubble of the order
of the system size is exponentially unlikely to appear. It is,
however, unclear, if already a weaker scaling of the size of
the thermal region with the system size would be sufficient to
delocalize the system which is not reasonable to test with the
system sizes available to exact diagonalization based schemes.
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FIG. 1. Local expectation values of the eigenstates of the model with three thermal sites for weak (� = 3) and strong disorder (� = 9).
Left: Histograms of 〈E |σ z

i |E〉 in the Heisenberg model on L = 16 sites for i ∈ {1, 3, . . . , 15} encoded by color. Each histogram is an average
over all eigenstates in the zero magnetization sector and 2000 realizations. Right: Standard deviation of the histograms of 〈E |σ z

i |E〉 in the
Heisenberg model for different system sizes. Red hatches show the thermal part of the system. Each data point is an average over at least
2000 realizations.
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FIG. 2. Local expectation values of the eigenstates of the model with L/2 thermal sites for weak (� = 3) and strong (� = 9) disorder.
Left: Histograms of 〈E |σ z

i |E〉 in the Heisenberg model on L = 16 sites for i ∈ {1, 3, . . . , 15} encoded by color. Each histogram is an average
over all eigenstates in the zero magnetization sector and 2000 realizations. Right: Standard deviation of the histograms of 〈E |σ z

i |E〉 in the
Heisenberg model for different system sizes. The red hatched part of each curve indicates the thermal region of the system. Each data point is
an average over at least 2000 realizations.

Let us relate our findings to results obtained in Ref. [16]
where the authors predict and numerically show a parameter
region in which a localized chain can be thermalized by a
constant thermal bath. There the authors work in the effective
description of MBL and present theoretical arguments for a
possible mechanism of instability of MBL phases. Note how-
ever, that the disorder strength in their model is only implicitly
defined. They use an effective model of the disordered part of
the system in terms of quasilocal constants of motions. The
disorder strength as used in our work controls the locality
of these constants of motion and by this changes the decay
length of the coupling of the bath to different qLCOMs.
Upon changing this decay length the authors of Ref. [16]
identify a critical value whereupon a small thermal grain
thermalizes the full system. Based on the fact that we only
find such an instability for thermal regions which scale with
the system size, we present two explanations for this apparent
contradiction.

The first one is that the two Hamiltonians do not exhibit
similar physical signatures. Both display features of MBL,
but the structure of the bath and coupling to the disordered
part of the system might be incompatible. On the level of
effective models and not the Hamiltonians as such, it may
be that the two effective models in terms of qLCOMs may
be incompatible. Since it is not clear how to transform the
Heisenberg model into the effective description, we cannot
directly connect and compare the two results. In Ref. [16] the
authors employ off-diagonal terms which couple the bath and
MBL chain; we instead suggest that the important ingredient
governing the localization effects is solely the support of
the qLCOMs and hence the diagonalizing unitary UD. In
the setting in which the bath is constant, the unitary UD

should still qualify to be quasilocal with an increased lo-
calization length inside the bath, whereas for the extensive
bath the unitary will not be local at all in sufficiently large
systems.
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FIG. 3. Standard deviation of the histograms of 〈E |σ z
i |E〉 of the center site in the disordered part positioned at i = L − 
(L − 3)/2� in the

Heisenberg model for different system sizes. Each data point is an average over at least 2000 realizations. The number of thermal sites t and
the strength of the next-nearest-neighbor hopping Jnnn are indicated in the plots.
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The second and more plausible explanation is that the crit-
ical coupling decay length at the transition found in Ref. [16]
might actually correspond to the critical disorder strength sep-
arating the ergodic and MBL phase, giving rise to the detected
instability. Since no comprehensive theory for this transition
exists as well, it might be fruitful to combine our findings
with the arguments of Ref. [16] in order to possibly establish
a better understanding for the ergodic to MBL transition.

V. CONCLUSIONS

In this work, we have investigated the fate of the qLCOMs
in the disordered Heisenberg model with and without next-
nearest-neighbor hopping in the presence of a small ther-
mal region modelled by improbably low disorder. We have
examined the influence of these regions on the localization
behavior. As such regions occur with high probability in large
systems this allows us insights into the stability of the MBL
phase in the large system limit. As a measure of the locality of
the qLCOMs we have employed the expectation value of local
magnetization operators obtained from exact diagonalization.
In the system sizes accessible to us, we find that the qLCOMs
and thereby the MBL phase is indeed expected to be stable
when coupled to a finite bath for both models considered. This
observation does not exclude the possibility that if the thermal
region is much larger it could actually suffice to thermalize its

surroundings. If the thermal region is allowed to scale with
the system size, however, our findings suggest that MBL will
vanish when approaching the thermodynamic limit.

These results suggest that an isolated MBL system is stable
upon increasing the system size. If, in contrast, coupled to
an external bath, the question of the stability of MBL may
depend on more subtle details as the precise size and shape of
the bath may have a strong influence. An interesting further
research direction would be to carry out a similar analysis
for two-dimensional systems and devise local probes for
delocalization which could then be used in state-of-the-art
experimental realizations of MBL.
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4

E X P E R I M E N T A L W I T N E S S E S O F M A N Y - B O D Y
L O C A L I S A T I O N

Any physical effect should ideally be described theoretically and measured experi-
mentally. Only the combined effort of verifying a theoretical framework by means
of experimental data gives evidence for the validity of the theory and the existence
of the physical effect at hand.

The seminal experiment on many-body localisation was carried out in an optical
lattice experiment showing particle localisation for an interacting Hamiltonian [33].
Nevertheless, it was not yet possible to measure interaction induced effects such as
the logarithmic in time growth of correlations. In this chapter, we present a road
map of how to measure interaction induced effects in a many-body localised system
employing only such tools which are available in optical lattice architectures.

4.1 disordered optical lattices

While a real world material exhibiting many-body localisation still has to be found,
there are experimental platforms which allow to probe the physics of the Hamiltoni-
ans of interest. In the spirit of Richard Feynman’s idea of simulating the behaviour
of a quantum system by using another quantum system which likens the system of
interest in its physics but is more accessible and easier to control, many-body local-
isation can be realised in several of these quantum simulators. We will here focus
specifically on realisations in ultra-cold atoms in optical lattices [53]. Let us start
by reviewing the basic principles and feasible measurements in an optical lattice.

First of all, ions are cooled in a dipole trap. These can be fermionic or bosonic.
Their hyperfine states can serve as the spin of the particles simulated. The lattice is
built up from counterpropagating laser fields. Interfering two of these laser fields
in an orthogonal orientation yields a two-dimensional lattice structure of light (see
Fig. 4.1). Illuminating the ions with this optical lattice forces them into the minima
of the laser field. Utilising additional high precision lasers to remove unwanted ions,
a desired initial state is created. The amplitude of the laser field now acts as the po-
tential barrier height between sites and hence governs the mobility of the particles
and their ability to interact. Additionally, it is possible to manipulate the interaction
strength directly using a magnetic field, which gives individual control of hopping
and interaction strength. The potential landscape can be manipulated by adding
another incommensurate laser field. This is referred to as a quasi-random potential
and is most easily implemented. The frequency used for the additional laser determ-
ines the structure of the disorder landscape. In the absence of interactions, this is
referred to as the Aubry-André model. In contrast to the Anderson model, where
the single particle eigenstates are localised for arbitrarily low disorder, the Aubry-
André model exhibits a transition at ∆/J = 2 from delocalised to localised single
particle eigenstates. This suggests that localisation is stronger when the potential
is truly random. Such a truly random potential is also available in optical lattices
via a programmable mirror setup. When projecting the lattice with such a potential,
the disorder landscape becomes slightly correlated but only locally. Combining all
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Figure 4.1: Sketch of an optical lattice. The gray surfaces represent the laser field,
into which the ultra cold atoms (red balls) are evaporated. Tuning the wavelength
then allows to tune Hamiltonian parameters.

these features, optical lattices simulate Hubbard-type Hamiltonians with on-site in-
teractions. In Table 4.1, we summarise how the different Hamiltonian terms can be
tuned.

The available measurements are time-of-flight and in-situ. In a time-of-flight
measurement, the lattice and the trap are turned off, releasing the ions into free
fall. They are then projected onto a screen, which essentially yields a Fourier trans-
formed particle-particle correlator. In the in-situ methods, the local parity can be
probed using an additional laser that addresses each site. Based on the reflected
light, it can be deduced whether an odd or even amount of particles was present at
the site.

Based on these measurements, we design probes that are capable of measuring
the interaction induced effects of many-body localisation such as the logarithmic
in time growth of correlations or the equilibration behaviour.

Hamiltonian property Implemented via

Particle species Ion species
Particle spin Ion hyperfine states
Hopping strength Laser field amplitude
Interaction strength Laser field amplitude & Magnetic field
Quasi-random potential landscape Frequency of additional laser field
Arbitrary potential landscape Programmable mirror setup

Table 4.1: Tunable Hamiltonian parameters in an optical lattice architecture and
their implementation.

climate footprint estimate

Unfortunately, the data to calculate the CO2-emission of this work could not be
recovered and hence is not taken into consideration for further calculations.
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Abstract: The phenomenon of many-body localized (MBL) systems has attracted significant interest in
recent years, for its intriguing implications from a perspective of both condensed-matter and statistical
physics: they are insulators even at non-zero temperature and fail to thermalize, violating expectations
from quantum statistical mechanics. What is more, recent seminal experimental developments with
ultra-cold atoms in optical lattices constituting analog quantum simulators have pushed many-body
localized systems into the realm of physical systems that can be measured with high accuracy.
In this work, we introduce experimentally accessible witnesses that directly probe distinct features
of MBL, distinguishing it from its Anderson counterpart. We insist on building our toolbox from
techniques available in the laboratory, including on-site addressing, super-lattices, and time-of-flight
measurements, identifying witnesses based on fluctuations, density–density correlators, densities,
and entanglement. We build upon the theory of out of equilibrium quantum systems, in conjunction
with tensor network and exact simulations, showing the effectiveness of the tools for realistic models.

Keywords: many-body localized (MBL); equilibrium quantum systems; simulations; realistic models

1. Introduction

Many-body localization provides a puzzling and exciting paradigm within quantum many-body
physics and is for good reasons attracting significant attention in recent years. Influential theoretical
work [1] building upon the seminal insights by Anderson on disordered models [2] suggests that
localization would survive the presence of interactions. Such many-body localized models, as they are
dubbed, would be insulators even at non-zero temperature and exhibit no particle transport. Maybe
more strikingly from the perspective of statistical physics, these many-body localized models would
fail to thermalize following out of equilibrium dynamics [3–5], challenging common expectations how
systems “form their own heat bath” and hence tend to be locally well described by the familiar canonical
Gibbs ensemble [6–8]. Following these fundamental observations, a “gold rush” of theoretical work
followed, identifying a plethora of phenomenology of such many-body localized models. They would
exhibit a distinct and peculiar logarithmic scaling of entanglement in time [9,10], the total correlations
of time averages have a distinct scaling [11], many Hamiltonian eigenstates fulfill area laws [12]
for the entanglement entropy [13,14] and hence violate what is called the eigenstate thermalization
hypothesis [15]. The precise connection and interrelation between these various aspects of many-body
localization is just beginning to be understood [14,16–20], giving rise to a vivid discussion in
theoretical physics.

Quantum Rep. 2019, 1, 50–62; doi:10.3390/quantum1010006 www.mdpi.com/journal/quantumrep
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These theoretical studies have recently been complemented by seminal experimental activity,
allowing to probe models that are expected to be many-body localized in the laboratory under
remarkably controlled conditions [21,22]. This work goes much beyond earlier demonstrations of
Anderson localization in a number of models [23], in that now actual interactions are expected to be
relevant. Such ultra-cold atomic systems indeed provide a pivotal arena to probe the physics that is
at stake here [24]. What is still missing, however, is a direct detection of the rich phenomenology of
many-body localization in the laboratory. Rather than seeing localization and taking the presence of
interactions for granted, it seems highly desirable to make use of these novel exciting possibilities
to directly see the above features, distinctly separating the observations from those expected from
non-interacting Anderson insulators. Such a mindset is that of “witnessing” a property, somewhat
inspired by how properties such as entanglement are witnessed [25–27] in quantum information.

In this work, we aim at capturing precisely those aspects of the rich phenomenology of many-body
localization that are directly accessible with present experimental tools. We would like to provide
a “dictionary” of possible tools, as a list or a classification of features that can be probed making use of
only in situ site resolved measurements, including the measurement of density–density correlations
and time of flight measurements, in conjunction with a variation of densities. In this way, we aim at
identifying a comprehensive list of features that “could be held responsible” for MBL, based on data
alone. While all we explicitly state is directly related to cold atoms in optical lattices, a similar approach
is expected to be feasible in continuous cold bosonic atoms on atom chips [28,29], where correlation
functions of all orders can readily be directly measured. We leave this as an exciting perspective.

2. Probing Disordered Optical Lattice Systems

The setting we focus on is that of interacting (spin-less) fermions placed into a one-dimensional
optical lattice, a setting that prominently allows to probe the physics under consideration [21,24].
Such systems are well described by

H = ∑
j

(
f †
j f j+1 + h.c.

)
+ ∑

j
wjnj + U ∑

j
njnj+1, (1)

where f j denotes a fermionic annihilation operator on site j and nj = f †
j f j is the local particle number

operator. The disorder in the model is carried by the local potential-strength wj, which is drawn
independently at each lattice site j according to a suitable probability distribution. Experimentally,
the disorder can either be realized by superposing the lattice with an incommensurate laser or by
speckle patterns [21]. From Equation (1), one obtains the disordered Heisenberg chain [30] by setting
U = 2 and scaling the disorder by a factor two. To keep the discussion conceptually clear, as in Ref. [30],
we make use of a uniform distribution on the interval [−I, I], where we refer to I as the disorder
strength. Thus, for U = 2 the ergodic to MBL phase transition is approximately at I ≈ 7 [30]. Most of
the known experiments of MBL have been carried out in a related model of on-site interacting bosons
for which we show data in Appendix B.

The phase diagram of these models is best known for U = 0 corresponding to the non-interacting
Anderson insulator and for U = 2, the MBL phase. To add a flavor of usual phase transitions order
parameters such as total correlations [11], fluctuations of local observables [31] or the structure of
the eigenstates [32] have been suggested. While these quantities impressively signal the transition,
it is not a priori clear whether they can be implemented in an actual experiment. Recent numerical
studies [33] show that pump–probe type setups and novel instances of spin noise spectroscopy [34]
as well as utilizing MBL systems as a bath [35] are indeed suited to distinguish the above phases,
albeit experimental realizations of this endeavor appear to need substantial changes and innovations
in realistic setups. Another possibility for the phase distinction, which has prominently been carried
out experimentally [22], is given by observing the behavior of quasi two-dimensional systems
in comparison to their one dimensional counterparts. While this impressively demonstrates the
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capabilities of optical lattices as platforms for quantum simulations, it does not test the properties of
MBL in one dimension as such. We set out to find comparably strong and direct signatures of one
dimensional MBL, which however rely on simple established measurement operations. Hence, we start
by summarizing the measurements, which we conceive to be feasible in an optical lattice experiment.

3. Measurements Considered Feasible

We now turn to specifying what measurements we consider feasible in optical lattices with
state-of-the-art techniques. For this, we focus on the following two types of measurements:

In-situ: An in-situ measurement detects the occupation of individual lattice sites. This technique
only allows resolving the parity of the particle number on each site, which for fermions constitutes no
limitation, however. Using the fact that single-shot measurements are performed, higher moments such
as density–density correlators can also be extracted from this kind of measurements. Both ramifications
are used. This measurement has been used to determine onsite parities in Ref. [36] to show particle
localization in two-dimensional disordered optical lattices. Here, we try to additionally witness the
interactions necessary to distinguish Anderson from MBL systems.

Time-of-flight: The time-of-flight (ToF) measurement extracts position-averaged momentum
information of the form

〈n(q, tToF)〉 = |ŵ0(q)|2 ∑
j,k

eiq(rj−rk)−i
c(r2

j +r2
k )

tToF 〈 f †
j fk〉 ,

where {rj} are the positions of the lattice sites, ŵ0 reflects the Wannier functions in momentum space,
and c > 0 is a constant derived from the mass of the particles and the lattice constant. This measurement
was used in Ref. [21] to determine the imbalance—a measure of localization.

The main goal of this work is to identify key quantities that indicate that the system indeed is
many-body localized based on measurement information extracted using these two techniques. Here,
we want to show both that the system is localized and that it is interacting. Thus, we also want to
convincingly detect the difference between an MBL system and a non-interacting Anderson insulator.
To approach this task, we look at the time evolution of an initial state that is particularly easy to prepare
experimentally relying on optical super-lattices [21,37], namely an alternating pattern of the form

|ψ(t = 0)〉 = |0, 1, 0, 1, · · · 0, 1〉 . (2)

This initial product state will, during time evolution, build up entanglement and become
correlated [9,10]. Naturally, this is far from being the only choice for an initial state and alterations
in this pattern and, correspondingly, locally changing particle and hole densities would surely be
insightful, specifically since a modulation of the density already points towards interactions in the
MBL phase being significant. In this work, we put emphasis on measurements, although preparation
procedures such as the above-mentioned density variations are an interesting problem in their own
right. However, as we demonstrate, the above-defined initial state already captures the colorful
phenomenology of MBL in all of its salient aspects.

4. Phenomenology of Many-Body Localization

A fundamental characteristic of MBL is the presence of local constants of motion [3]. They are
approximately local operators σ̃z

j whose support is centered on lattice site j, but which nevertheless
commute with the Hamiltonian, i.e., [H, σ̃j] = 0. These operators are mainly supported on a region
with diameter ξ, corresponding to the localization length scale of the system. In fact, in the MBL
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regime, the dynamics can be captured by a phenomenological model in terms of a set of mutually
commuting quasi-local constants of motion,

H(2)
l−Bit = ∑

i
µiσ̃

z
i + ∑

j<i
Ji,jσ̃

z
i σ̃z

j . (3)

Such a Hamiltonian constitutes a second order approximation of what is known as the l-bit
model [19,20,38] to exemplify the dynamics. Here, σ̃z

i again denotes a quasi-local integral of motion
centered on site i, µi is a random onsite potential and the coupling strength Ji,j between constants of
motion is assumed to decay suitably fast in their distance d(i, j). In particular, it is expected that the
dynamics generated by the Hamiltonian defined in Equation (1) in the MBL regime corresponding to
U = 2 and I > 7 can be well captured by the l-bit model.

This phenomenological model gives rise to a separation of time scales in the evolution into two
regimes. Initially, there is a fast regime, where the evolution takes place mainly inside the support of
each local constant of motion σ̃z

i . Hence, for this time scale, transport is unconstrained and particles
and energies can move freely inside the localization length. Correspondingly, information can spread
ballistically. Beyond the localization length, the dynamics is dominated by the coupling of the constants
of motion, given by the second term in Equation (3) [20]. The intuition is that this evolution does not
facilitate particle or energy propagation, leading to a complete break-down of thermal and electric
conductivity. Nevertheless, the couplings between distant constants of motion allow for the creation
of correlations over arbitrary length scales given sufficient time. This dephasing mechanism in turn
makes it possible to send information and yields an explanatory mechanism for the observed slow
growth of entanglement [9,10,16], measured as the von Neumann entropy of the half chain of an
infinite system S(t) = Θ(log(t)) (in Landau notation).

Mathematically, these two dynamical regimes are best distinguished by the effect of a local unitary
excitation on distant measurements. More precisely, given a local measurement OA supported in
a spatial region A and a unitary VB corresponding to a local excitation in a region B, we wish to bound
the change in expectation value of OA(t) induced by the unitary excitation. This can be cast into
a Lieb–Robinson bound [14,39] of the form

∣∣∣〈VBOA(t)V†
B 〉 − 〈OA(t)〉

∣∣∣ ≤ C(A)

{
e−µ(d(A,B)−v|t|) I,

te−µd(A,B) II,
(4)

where C(A) a constant depending on the support of OA. For the connection between different
zero velocity Lieb–Robinson bounds and the necessity of a linear t-dependence in II, see Ref. [14].
Here, I corresponds to the ballistic regime and II captures the slower dephasing. In the context of
optical lattices, local excitations seem difficult to implement. Hence, in the following, we focus on the
observation of indirect effects on the dynamical evolution in MBL systems.

5. Feasible Witnesses

In the following, we demonstrate that local memory of initial conditions, slow spreading of
correlations and equilibration of local densities provide clear measures to distinguish MBL systems
from both the non-interacting Anderson insulators and the ergodic systems, i.e., those where local
measurements, after a short relaxation time, can be captured by thermal ensembles. To carry out our
analysis, we complement the intuitive guideline provided by the phenomenological l-bit model by
a numerical tensor network TEBD simulation [40] (for details, see Appendix A). The chosen parameters
for the simulation are a disorder strength of I = 8 and interaction strengths of U = 2 or U = 0 for the
MBL and Anderson case, respectively. An overview of the measures and their capabilities is given in
Figure 1. We begin by considering the influence of the suppression of particle propagation.
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Figure 1. An overview over the dynamical behavior of MBL systems versus their ergodic and
thermalizing and Anderson localized counterparts. Measure 1 detects particle propagation and
phase correlations and can be implemented using time-of-flight imaging. Measure 2 and Measure 3
utilize in-situ imaging to observe density–density correlations and equilibration behavior.

5.1. Absence of Particle Transport

A defining feature of localized systems is that independent of the interaction strength, particles
and energies do not spread over the entire system, but remain confined to local regions. They merely
redistribute inside the localization length, which can be extracted from the constants of motion.
Therefore, even for long times, the particle density profile of an MBL system will not move to its
thermal form, but rather retain some memory of its initial configuration. This gives rise to the following
particle localization measure.

Measure 1 (Particle propagation and phase correlations). We define the following measure yPhase(t),
which probes particle propagation for a system of length L

fPhase(k, t) :=
∣∣∣〈 f †

L/2(t) fL/2+k(t)〉
∣∣∣ , (5)

yPhase(t) = ∑
k

fPhase(k, t)k2 . (6)

On an intuitive level, this measure directly probes the spread of particles, including weights based
on the distance to the initial position L/2 such that distant contributions are amplified.

Numerically, we find that yphase(t) initially shows a steep linear increase, indicative of the
ergodic dynamics governed by the onsite term of Equation (3) (Figure 2). In the second regime,
it fluctuates without visible growth, indicating a break-down of particle transport on length scales
beyond the localization length. Thus, the length scale of the phase correlations established in the
system can be bounded independent of time yPhase(t) = O(1). For ergodic systems, where particles
and energies spread ballistically, the measure would grow in an unconstrained fashion over time.
Based on this insight, we deduce that time-of-flight images, while clearly distinguishing between
localized and ergodic phase, are not useful for the distinction between interacting and non-interacting
localized systems.

Again, more formally, this measure can be understood by considering the time evolution of the
correlation matrix given by the matrix elements

γj,k(t) := 〈 f †
j (t) fk(t)〉, (7)

where 〈 f †
j fk〉 = Tr( f †

j (t) fk(t)ρ)). For the non-interacting case of an Anderson insulator, this evolution

is unitary γ(t) = U(t)γ(0)U†(t), where f †
j (t) = ∑l Uj,l(t) f †

l is the evolution of the fermionic mode
operators. For an Anderson insulator, dynamical localization precisely corresponds to locality of the
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unitary evolution [41], meaning that the matrix elements of U are expected to decay exponentially
|Uj,k(t)| ≤ Ce−d(j,k) for some constant C with high probability [42].
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Figure 2. Plotted are the results of a TEBD simulation [43] of the dynamical evolution of the initial
state ψ from Equation (2) under the Hamiltonian in Equation (1) for the case of an Anderson insulators
with U = 0 and MBL with U = 2. The disorder strength is I = 8. The three plots are averaged
over 100 disorder realizations. (Left) Shown is the time evolution of yPhase defined in Measure 1
demonstrating that the phase correlation behavior saturates both for MBL and Anderson localization.
(Middle) The plot shows the dynamical evolution of yCorr defined in Measure 2. Information
propagation is fully suppressed in an Anderson insulator, resulting in a saturation of this quantity.
In contrast, correlations continue to spread in the MBL system beyond all bounds, giving rise to
a remarkably strong signal feasible to be detected in experiments. (Right) Shown are the averaged
fluctuations gEq defined in Measure 3 as a function of the time T over which the average is performed.
The insets show the time evolution of the particle density at the position L/2, which enters the
calculation of gEq for one disorder realization, which is identical for the MBL and Anderson localized
model. As the insets also show, the local fluctuations continue indefinitely for the Anderson insulator,
corresponding to a saturation of gEq, while the MBL system equilibrates and gEq continues to decrease
accordingly.

In the case of interacting Hamiltonians that conserve the particle number, this time evolution can
be captured in form of a quantum channel

γ(t) =
L2

∑
l=1

Kl(ρ0, t)γ(0)K†
l (ρ0, t), (8)

where the Kraus operators Kl(ρ0, t) depend on the full initial state. As particle propagation in an MBL
system is expected to also be localized, it is assumed that the individual Kraus operators obey
|Kj,k(ρ0, t)| ≤ CKe−d(j,k). Starting from an initial product state of the form in Equation (2), we obtain

γz1,z2(t) = 〈 f †
z1
(t) fz2(t)〉

= ∑
j,l
〈z1|K(ρ0, t) |j〉 γ(0)j,l 〈l|K(ρ0, t) |z2〉

= ∑
j even

C2
Ke−d(j,0)−d(z1+j,z2). (9)

This again results in a suppression with the distance between z1 and z2, causing a saturation of
the phase correlation measure fPhase(k, t) independent of time.

5.2. Slow Spreading of Information

While particles and energies remain confined in interacting localized systems, correlations are
expected to show an unbounded increase over time [9,10], although slower than in the ergodic
counterpart. In stark contrast, Anderson localized many-body systems will not build up any
correlations that go beyond the localization length. To probe the spreading of correlations in the
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system, we focus on a quantity easily accessible in the context of optical lattices, using in-situ images
for different evolution times. As it turns out, this kind of simple density–density correlator is already
sufficient to separate Anderson localization from MBL systems.

Measure 2 (Logarithmic information propagation). To examine the spatial spreading of density–density
correlations, we define the quantity yCorr(t),

fCorr(k, t) := |〈nL/2nL/2+k〉 − 〈nL/2〉〈nL/2+k〉|, (10)

yCorr(t) := ∑
k

fCorr(k, t)k2. (11)

yCorr is a direct indicator for the length scale over which density–density correlations are
established without having to resort to assuming an explicit form, such as a decay in terms of
an exponential function.

Comparable to the dynamics of the phase correlations, we numerically find a steep initial increase
followed by a saturation for the non-interacting case (Figure 2). The MBL system, however, continues
to build up density–density correlations for the times simulated. There is a transition in propagation
speed, which we ascribe to the two dynamical regimes discussed before. Hence, we conclude that
density–density correlations can be used to discriminate MBL from its non-interacting counterpart.

An intuitive explanation for the spread of density–density correlations despite spatial localization
of particles is that, after exploring the localization length, the particles feel the presence of neighboring
particles. Mediated by this interaction, the local movement of particles, governed by the respective
constant of motion, becomes correlated, even over large distances. In contrast, in the Anderson
insulator where constants of motion are completely decoupled, this communication cannot take place.

We can connect this intuitive explanation to the more rigorous setting of Lieb–Robinson bounds.
In the Anderson insulator in one dimension, it is possible to prove that there exists a zero-velocity
Lieb–Robinson bound, where the correlator on the left hand side of Equation (4) is bounded by
a time independent factor e−µd(A,B) [44]. This means that the detectability of an excitation created
in region A decreases exponentially with the distance to B. On the contrary, in the MBL regime we
expect a logarithmic Lieb–Robinson cone of the form of Equation (4) II. Hence, an unbounded growth
of correlations between distant regions is in principle possible, given sufficient time. Furthermore,
we have shown that this built-up of correlations also happens on observable time scales, as can be seen
from the evolution of density–density correlations captured by Measure 2.

5.3. Dephasing and Equilibration

It is also instructive to study the differences between the Anderson and MBL-regime with respect
to their equilibration properties. Due to the interactions present, we expect equilibration of fluctuations
to take place in MBL systems, whereas in Anderson insulators the effective subspaces explored by
single particles remain small for all times and hence fluctuations remain large. This in turn implies that
fluctuations of local expectation values die out in the interacting model, but persist in an Anderson
insulator. This qualitative difference has already been identified as a signifier of interactions in
a disordered system [21]. Here, we build upon this idea and propose to consider the average change
rate of local expectation values in order to detect the decreasing fluctuations in the MBL phase.

Measure 3 (Density evolution: Equilibration of fluctuations). We consider the expectation value fEq(t) =
〈nL/2〉(t) of a local density operator in the middle of the system. As a measure of local equilibration, we introduce
the averaged rate of change of this density as a function of time T > 0

gEq(T) :=
1
T

T∫

0

dt | f ′Eq(t)|. (12)
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As laid out in Figure 2, again, this function over time indeed shows a remarkably smooth behavior
that allows for the clear distinction between an Anderson localized system and its MBL counterpart in
that, after a mutual increase, the Anderson system saturates at a constant value, whereas, in the MBL
phase, gEq shrinks successively.

If we again resort to the Lieb–Robinson bound picture, we find that in the Anderson case a local
excitation is confined to a distinct spatial region given by the zero-velocity Lieb–Robinson bound
introduced in the previous section. This implies that the effective subspace explored is constant and
specifically, the excitation cannot build up long distance correlations and fluctuations remain large.
This can also be seen from the results of Measure 2. If we now, however, turn to the interacting model,
a local excitation will slowly explore larger and larger parts of the Hilbert space, leading to a slow,
but persistent decrease of the fluctuations.

5.4. Present and Future Experimental Realizations

For an optical lattice architecture, the limitations of implementing the given measures are governed
by the achievable repetition rate of the experiment and the quality of the initial state preparation. First,
several repetitions are needed to get the expectation value of the measurements. Due to the disorder
present in the system, it is furthermore necessary to repeat the first step with changing disorder
to obtain a disorder averaged quantity. Lastly, since dynamics are in the focus of our measures,
the described procedure needs to be carried out at any point in time. For linear quantities, such as
Measure 1, Measure 3 or the imbalance, which is a measure of particle localization as well [21],
the quantum average does in principle commute with the disorder average allowing for simultaneous
averaging with fewer realizations. This is however not the case for non-linear quantities such as
Measure 2. Here, the full procedure described above needs to be carried out. The repetition rates of
optical lattices are on the order of seconds and leading experimentalists assured us that taking reliable
data for all our measures is indeed feasible [45].

Recently, there was an impressive progress in measuring quantities very much related to the
entanglement entropy in small one-dimensional optical lattices [46,47]. In both these works, quantities
similar to to our Measure 2 are used as well. In Ref. [47], the authors defined a quantity called
transport distance which basically coincides with our Measure 2. The difference being that their
scaling function is only linear instead of quadratic. However, they dis not employ this measure to show
the many-body correlations in these systems. Rather, they calculated the number and configurational
entanglement [46]. The system sizes used are very restricted, possibly due to the complicated procedure
of obtaining these entropies.

We think that an implementation of Measure 2 or Measure 3 might complement these results
nicely by overcoming these problems and hence being applicable also for larger systems and potentially
also higher dimensional systems, where the fate of MBL is still debated.

6. Conclusions and Outlook

In this work, we proposed an operational procedure for distinguishing MBL phases building upon
realistic measurements, which can be performed in the realm of optical lattices with present technology.
Utilizing a phenomenological model and the concept of Lieb–Robinson bounds, we explained the
effects numerically investigated employing tensor network methods. The equilibration of local
observables allows for the distinction of Anderson and MBL localized models. Density–density
correlations allow for the same information bit extraction, while also reproducing the expected
phenomenology. Further investigating this quantity might yield information about the localization
length via the duration of the first evolution regime.

Phase correlations, which are directly connected to ToF imaging, cannot detect interactions in
a localized system due to their correspondence to particle transport. There is yet other information the
ToF reveals: One can also lower bound the spatial entanglement of bosons in optical lattices [48],
building upon the ideas of constructing quantitative entanglement witnesses [25–27], a notion
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of multi-partite entanglement M(t) detecting a deviation from a best separable approximation,
as M(t) ≥ max(0, 〈n〉 − 〈n(q)〉/|ŵ0(q)|2) for all q. This quantity detects a reasonable notion of
multi-particle entanglement, which is yet different from the bi-partite entanglement discussed above.
Since this measure is only onsite local, we would expect that it cannot distinguish the long-range
correlations of an interacting disordered model from the dynamics inside the constant of motion.
This further motivates the quest to engineer appropriate entanglement witnesses both accessible in
optical lattice architectures as well as probing key features of MBL, a quest that is in turn expected to
contribute to our understanding of MBL as such.
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Appendix A. Numerical Details

In this appendix, we present the details of our numerical simulations. Our results mainly rely on
a matrix-product state simulation based on a TEBD code [43], thus an instance of a tensor network state
simulation. To corroborate the results, we further employ an exact diagonalization code [49] that uses
the particle number symmetry and keeps track of the time evolution with a Runge–Kutta integration
scheme. For the non-interacting case, further checks are performed by an explicit simulation of the
dynamical evolution of the covariance matrix, which takes a particularly easy form in this case.

For short times and the system sizes that can be achieved with exact diagonalization, the codes
agree up to a negligible error, thus also demonstrating that the chosen step size in the fifth-order Trotter
decomposition used in TEBD [43] of τstep does not produce significant errors. This leaves only two
potential error sources: the fact that numerics necessarily simulate a finite system and the possibility
of discarded weights accumulating over time.

Performing a finite size scaling, we find that comparably small systems are already
indistinguishable from the thermodynamic limit for the quantities considered here (see Figure A1).
This is in agreement with the very slow growth of Lieb–Robinson cones expected in these disordered
systems. To be on the safe side, we have nevertheless carried out our numerical analysis on systems
with L = 80 sites and open boundary conditions.

Having demonstrated that the considered system size is indistinguishable from the
thermodynamic limit only leaves the discarded weight as potential error source (see Figure A2).
The time evolution of this quantity, which is directly connected to spatial entanglement entropies,
depends strongly on the chosen disorder realization. To keep this discarded weight small enough,
we increase the bond dimension in the simulation in a three-step procedure up to dBond = 350, which
is sufficient to guarantee a discarded weight smaller than 2× 10−5 for all disorder realizations.
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Figure A1. Finite size scaling for the evolution of particle density in the middle of the chain for a typical
disorder realization. For L = 10, 20, an exact diagonalization code was used. The other system sizes are
simulated with a TEBD code [43].
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Figure A2. Evolution of the discarded weight. This plot varies strongly depending on the chosen
disorder realization. From the 100 realizations used for the averaged plots, the realization with the
largest discarded weights is shown here.

Appendix B. Bosonic Model with On-Site Interactions

In this appendix, we show additional simulation data for a measure similar to Measure 2 for a
related model that is used in some of the experimental realizations of MBL. This is the disordered
Bose–Hubbard model with on-site interactions given by

H = ∑
j

(
b†

j bj+1 + h.c.
)
+ ∑

j
wjnj + U ∑

j
njnj, (A1)

where bj denotes a bosonic operator on site j, nj = b†
j bj is the local particle number operator and,

again, we draw the wj from the uniform distribution on the interval [−I, I]. In contrast to the fermionic
variant in the main text, we here need to restrict the local Hilbert space to be able to perform numerics.

41



Quantum Rep. 2019, 1 60

We restrict the local particle number to k = 3 particles per site, but also make sure that enlarging the
local dimension would not change our results qualitatively. Moreover, our initial state is again an MIS
state as defined in Equation (2), featuring an average particle number of 0.5 per site. The measure
we employ for bosons is identical to Measure 2 with the exception that the number operators were
replaced by parity operators.

Measure 4 (Logarithmic information propagation). To examine the spatial spreading of parity–parity
correlations, we define the quantity PCorr(t),

fCorr(k, t) := |〈pL/2 pL/2+k〉 − 〈pL/2〉〈pL/2+k〉|, (A2)

PCorr(t) := ∑
k

fCorr(k, t)k2 , (A3)

where p is the local parity operator.

In Figure A3, we show Measure 4 for the Anderson (U = 0) and MBL (U = 2) case. Similar to the
main text, we find that, in the non-interacting case, the measure saturates after few tunneling times.
In contrast, for the interacting model, we found that the measure grew in comparable fashion to the
fermionic counterpart (grey stars). This suggests that the correlation measure can be employed in
similar models as well.
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Figure A3. Plotted are the results of a TEBD simulation of the dynamical evolution of the parity–parity
correlations Pcorr. The initial state ψ is again found in Equation (2) under the Hamiltonian in
Equation (A1) for the case of an Anderson insulator with U = 0 and MBL with U = 2. We compared
the results of the fermionic MBL setting and the bosonic MBL and Anderson setting with a local Hilbert
space dimension truncation k = 3. Every data point corresponds to an average of over 100 realizations.

References

1. Basko, D.M.; Aleiner, I.L.; Altshuler, B.L. Metal-insulator transition in a weakly interacting many-electron
system with localized single-particle states. Ann. Phys. 2006, 321, 1126. [CrossRef]

2. Anderson, P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958, 109, 1492. [CrossRef]
3. Nandkishore, R.; Huse, D.A. Many-Body Localization and Thermalization in Quantum Statistical Mechanics.

Ann. Rev. Cond. Mat. Phys. 2015, 6, 15–38. [CrossRef]
4. Pal, A.; Huse, D.A. The many-body localization transition. Phys. Rev. B 2010, 82, 174411. [CrossRef]
5. Oganesyan, V.; Huse, D.A. Localization of interacting fermions at high temperature. Phys. Rev. B 2007,

75, 155111. [CrossRef]
6. Polkovnikov, A.; Sengupta, K.; Silva, A.; Vengalattore, M. Non-equilibrium dynamics of closed interacting

quantum systems. Rev. Mod. Phys. 2011, 83, 863. [CrossRef]

42



Quantum Rep. 2019, 1 61

7. Eisert, J.; Friesdorf, M.; Gogolin, C. Quantum many-body systems out of equilibrium. Nat. Phys. 2015,
11, 124–130. [CrossRef]

8. Gogolin, C.; Eisert, J. Equilibration, thermalisation, and the emergence of statistical mechanics in closed
quantum systems. Rep. Prog. Phys. 2016, 79, 056001. [CrossRef]

9. Znidaric, M.; Prosen, T.; Prelovsek, P. Many-body localization in the Heisenberg XXZ magnet in a random
field. Phys. Rev. B 2008, 77, 064426. [CrossRef]

10. Bardarson, J.H.; Pollmann, F.; Moore, J.E. Unbounded Growth of Entanglement in Models of Many-Body
Localization. Phys. Rev. Lett. 2012, 109, 017202. [CrossRef]

11. Goold, J.; Clark, S.R.; Gogolin, C.; Eisert, J.; Scardicchio, A.; Silva, A. Total correlations of the diagonal
ensemble herald the many-body localisation transition. Phys. Rev. B 2015, 92, 180202(R). [CrossRef]

12. Eisert, J.; Cramer, M.; Plenio, M.B. Area laws for the entanglement entropy. Rev. Mod. Phys. 2010, 82, 277.
[CrossRef]

13. Bauer, B.; Nayak, C. Area laws in a many-body localised state and its implications for topological order.
J. Stat. Mech. 2013, 2013, P09005. [CrossRef]

14. Friesdorf, M.; Werner, A.H.; Brown, W.; Scholz, V.B.; Eisert, J. Many-body localisation implies that
eigenvectors are matrix-product states. Phys. Rev. Lett. 2015, 114, 170505. [CrossRef] [PubMed]

15. Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 1994, 50, 888–901. [CrossRef]
16. Kim, I.H.; Chandran, A.; Abanin, D.A. Local integrals of motion and the logarithmic light cone in many-body

localised systems. Phys. Rev. B 2015, 91, 085425.
17. Chandran, A.; Carrasquilla, J.; Kim, I.H.; Abanin, D.A.; Vidal, G. Spectral tensor networks for many-body

localisation. Phys. Rev. B 2015, 92, 024201. [CrossRef]
18. Friesdorf, M.; Werner, A.H.; Goihl, M.; Eisert, J.; Brown, W. Local constants of motion imply transport.

New J. Phys. 2015, 17, 113054. [CrossRef]
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C O N S T R U C T I N G C O N S T A N T S O F M O T I O N F O R M A N Y - B O D Y
L O C A L I S E D S Y S T E M S

Finding constants of motion for quantum systems is deceptively simple. Given the
diagonalising unitary, any operator that is diagonal in the same basis as the Hamilto-
nian commutes with it by construction. However, for many-body localised systems
we are interested in those constants of motion that actually have an impact onto
the local dynamics of the system. This allows to measure their presence with local
observables. In the following, we lay out a procedure that heuristically constructs
local constants of motion given the diagonalising unitary.

5.1 constructing local constants of motion

In the case of many-body localisation, we are looking for L many functionally in-
dependent constants of motion. Intuitively, these should be a quasi-local unitary
transformation of particle number operators to promote them to localisation re-
gions. This is why many approaches take local particle numbers as initial operators
and try to achieve commutation with the Hamiltonian perturbatively [54--56]. This
however makes it very difficult to ensure that the operators remain functionally in-
dependent. Moreover, the final operators usually do not commute exactly with the
Hamiltonian.

We instead propose an inverse approach in which we start with the energy space
representation of the operators, where we exactly know what they should look like
and then optimise the diagonalisation unitary to get their real space representation
while still preserving all wanted algebraic properties. The obtained operators are
therefore commuting exactly with the Hamiltonian and are still functionally inde-
pendent. The remaining task is to optimise their locality in real space.

Consider L many Pauli-Z operators Zi that are defined in energy space. These
naturally form a basis for this diagonal space and it is hence possible to decompose
the full Hamiltonian in terms of those, as shown in Chapter 2. Furthermore, they by
definition commute withH and are functionally independent. Assume furthermore,
we are given the unitary UD which diagonalises the Hamiltonian H = UDΛU

†
D,

whereΛ =
∑
i ei |i〉〈i|. The real space representation of theZi is accordingly given

by UDZiU
†
D. If we reorder eigenvalues of the Hamiltonian H and the correspond-

ing eigenvectors in the diagonalisation unitary UD, we leave the Hamiltonian in-
variant. However, we are allowed to change the mapping between eigenvalues of
Zi and the eigenvectors of UD. In fact, this is the only freedom we still have for
optimising the locality of the Zi. Essentially, this amounts to finding a new set of
constants of motion Z̃i that is related to the old set by Z̃i = PZP, where P is a
permutation matrix. But since there are 2L many entries in each Zi, a brute force
approach would require checking 2L! many permutations. While this is practically
infeasible, not all hope is lost as long as there is a useful heuristic that aids the
optimisation.

In a many-body localised system, we expect the real space representation of the
constants of motion to resemble the local particle number operator as their physical
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interpretation should be that of a localisation region. This can be employed to find
an heuristic ordering of the eigenvectors in UD. In the following, we will put this
approach to a test in a many-body localised system.

climate footprint estimate

Total Kernel hours [h] 576000
Total Energy consumption [kWh] 16560
Total CO2-emission [kg] 9274

Table 5.1: Estimated climate footprint of the numerical calculations performed for
the paper “Construction of exact constants of motion and effective models for many-
body localized systems”. Estimates are based only on the data for the interacting
system of size L = 13 presented in the manuscript and exclude prototyping. CO2-
emission estimates are based on the German average emission of 0.56 kg/kWh.
A comparable emission is the average annual German emission per capita (11.000
kg) [57]. Calculations were performed on the leonard cluster equipped with
Intel® Xeon® Processor X5570 and nodes with a thermal design power
of 95 W. Further details on the estimation can be found in Appendix A
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One of the defining features of many-body localization is the presence of many quasilocal conserved quantities.
These constants of motion constitute a cornerstone to an intuitive understanding of much of the phenomenology
of many-body localized systems arising from effective Hamiltonians. They may be seen as local magnetization
operators smeared out by a quasilocal unitary. However, accurately identifying such constants of motion remains a
challenging problem. Current numerical constructions often capture the conserved operators only approximately,
thus restricting a conclusive understanding of many-body localization. In this work, we use methods from the
theory of quantum many-body systems out of equilibrium to establish an alternative approach for finding a
complete set of exact constants of motion which are in addition guaranteed to represent Pauli-z operators. By this
we are able to construct and investigate the proposed effective Hamiltonian using exact diagonalization. Hence,
our work provides an important tool expected to further boost inquiries into the breakdown of transport due to
quenched disorder.
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I. INTRODUCTION

The question of the precise mechanism of thermalization
of closed quantum many-body systems lies at the heart of
the foundations of quantum statistical mechanics. For generic
systems, one generally expects that the unitary time evolution
evolves the system into states that can locally be captured by
a thermodynamic ensemble using only few parameters such
as the total energy or particle number [1–3]. This expectation
will be violated if additional structure is present in the system
that enforces a local memory of initial conditions by confining,
for instance, particles to local regions. Such a nonthermalizing
behavior caused by localization is most famously observed
due to quenched disorder in Anderson insulators [4] and
prevails under the addition of interactions in the form of
many-body localization (MBL) as predicted theoretically [5–7]
and observed experimentally [8,9].

These systems are expected to feature extensively many
quasilocal constants of motion (qLCOMs) which prevent a
thermodynamic description. In stark contrast to the Anderson
insulator, many-body localized systems feature a slow, un-
bounded growth of entanglement due to interactions [10,11].
Moreover, all MBL eigenstates are expected to fulfill an
entanglement area law [12–14], which delineates them from
the eigenstates of thermalizing systems while making them
amenable to tensor network approaches [14–19]. Due to their
special structure, MBL systems are candidates for understand-
ing fundamental aspects of quantum mechanics, microscopic
transport properties, and interacting systems as their efficient
description appears to be in reach.

One of the most successful explanations of the intriguing
behavior of MBL systems has been through a proposed
effective Hamiltonian valid in the strong disorder limit, stated
by employing a complete set of qLCOMs [20,21]. This
description explains the logarithmic entanglement growth
[10,22,23]. For the case of disordered spin chains the qLCOMs
are considered to be dressed local magnetization operators, i.e.,

local spin operators conjugated by a unitary transformation
smearing their support within an exponential envelope but
at the same time promoting them to constants of motion.
Under reasonable assumptions these operators can actually be
calculated analytically for a specific MBL model [24] that
is disordered in all parameters. For models which contain
disorder only in the form of local potentials, much in the spirit
of current experimental investigations, no analytical results are
known as of today. It is hence unclear if more physical models
of MBL, such as the disordered Heisenberg chain, can actually
be mapped to the effective Hamiltonian of Refs. [20,21]. We
report on progress in developing a machinery to numerically
construct exact quasilocal constants of motion.

Among the strategies established so far are several variants
of transformation schemes which focus on decoupling the
Hamiltonian [25–29] and by this implicitly define qLCOMs.
These approaches have the advantage of being able to treat
larger systems at the cost of making specific approximations,
whose exact effects need to be understood [30,31]. For
small systems exact diagonalization based methods can be
used [32–34]. While in general quite arbitrary operators
qualify as constants of motion, one aims to ensure specific
attributes when constructing them numerically. The qLCOMs
are supposed to be quasilocal, resemble Pauli-z operators
by being traceless with only two degenerate eigenvalues,
and mutually commute among each other and of course
with the Hamiltonian of the system. Different numerical
schemes trade these properties differently against each other.
Whenever exact diagonalization is feasible then qLCOMs can
be constructed directly, e.g., via optimizing the commutant
matrix [33,34] or performing the infinite-time average [32]
which also inspired our work. The latter methods perturb the
spectrum and the qLCOMs are not dressed spins anymore and
the former study shows that when a local region is embedded
into a larger one then the optimal qLCOMs conditioned on
the subsystem size could be a superposition of several dressed
spin operators because of tail cancellation. In neither of these
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exact diagonalization (ED) studies it was possible to construct
the effective Hamiltonian of Refs. [20,21] in order to support
the large-scale transformation schemes.

In this work we present a scheme for computing constants
of motion that allows us to study the effective Hamiltonian.
The idea behind our construction follows a clear physical
intuition: Quasilocal conservation of the local magnetization
implies that the corresponding local Pauli-z operators remain
approximately local under time evolution. We show numeri-
cally that infinite time-averaged magnetization operators can
be promoted to true Pauli-z operators, while keeping the
locality properties intact and gaining the desired spectrum by
construction. Our construction fails to be local if the time
evolution ergodically spreads local excitations and is hence
physically directly connected to the breakdown of MBL.
Equipped with a full set of exact qLCOMs we go a step
further and study the effective model of Refs. [20,21] for
the disordered Heisenberg chain, which is based on obtained
qLCOMs.

II. SETTING

We consider the prototypical model of MBL, the disordered
spin-1/2-Heisenberg chain on L sites

H =
L∑

i=1

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + σ z
i σ z

i+1 + �hiσ
z
i

)
, (1)

where the hi are drawn from the interval hi ∈ [−1,1] and
� denotes the disorder strength. This model is expected to
undergo a localization transition at � ≈ 7.5. Moreover, we
use periodic boundary conditions in order to have a meaningful
definition of support for all lattice sites and denote with dist(·,·)
the natural distance of two sites for a ring configuration.
The Pauli operators above in the Hamiltonian denote real
space spin operators acting on lattice sites i = 1, . . . ,L by
σα

i := 12i−1 ⊗ σα ⊗ 12L−i , where σα for α = x,y,z denotes
the spin-1/2 Pauli matrices and 1n the identity on Cn. These
operators are formulated within the standard real space basis
{|i1 . . . iL〉|ij = 0,1} which we abbreviate by |̃j 〉 with j =
1, . . . ,2L and |̃j 〉 = |(j − 1)2〉, where x2 denotes the binary
representation of x ∈ N and we add leading 0’s on the left
such that x2 has always L bits. For the following, it is useful
to note that the σ z

i operators for i = 1, . . . ,L can be written as

σ z
i =

2L∑

j=1

(−1)�(j−1)/2L−i�|̃j 〉〈̃j | (2)

with � · · · � denoting the floor function.
Similarly, we introduce Pauli operators defined in energy

space. Given an eigenbasis {|k〉} of H , we specify another set
of Pauli-z operators through the relation

Zi =
2L∑

k=1

(−1)�(k−1)/2L−i�|k〉〈k|. (3)

In the infinite disorder limit (� → ∞), the Hamiltonian
becomes diagonal in the real space basis and hence these
operators become equal to the {σ z

i } operators. For the general
case with finite �, however, the {Zi} and {σ z

i } are formulated in

different bases and differ from each other. Written in the given
eigenbasis of H it holds then that Zi = 12i−1 ⊗ σ z ⊗ 12L−i

which corresponds to a formal decomposition H = C2L �
⊗L

i=1C
2 that is implicitly fixed by an arbitrarily chosen order

of energy eigenvalues and eigenvectors. As this is crucial for
the following we emphasize that the Zi = 12i−1 ⊗ σ z ⊗ 12L−i

operators are formulated in energy space, meaning that the σ z

operators here are diagonal in energy space and in principle
unrelated to their real space versions. Hence, there are two
decompositions of the Hilbert space into ⊗L

i=1C
2, one in real

and the other in energy space. Identifying a decomposition of
H in energy space which preserves locality in real space lies
at the heart of the construction of the set of qLCOMs.

Throughout this work, the MBL constants of motion will
be denoted by τ z

i . Let us summarize their desired properties:
(i) Independent conserved quantities. The {τ z

i } operators
must commute with H and each other

[
H,τz

i

] = 0 and
[
τ z
i ,τ z

j

] = 0 ∀ i,j. (4)

(In fact, they should be functionally independent, i.e., no
constant of motion can be expressed as a function of the other.)

(ii) Dressed spins. The qLCOMs are expected to have
a spectrum resembling Pauli-z operators, i.e., there exists a
dressing unitary U

†
D transforming the energy to real space

τ z
i = UDZiU

†
D . (5)

(iii) Quasilocality. For each i let us denote by S a “buffer”
region of odd cardinality |S|, i.e., S := {j : dist(i,j ) � (|S| −
1)/2}. Then we demand that the conserved quantities must be
quasilocal, meaning each τ z

i is centered around site i, and its
local reductions fulfill

1 − 1

2|S|+2|SC |
∥∥TrSC

(
τ z
i

)∥∥2
2 � f (|S|), (6)

where TrSC (·) denotes the partial trace over the complement
of S, and f : N → R+ is a suitably—presumably
exponentially—decaying function. Acknowledging that
‖A‖2

2 = Tr(A†A), this is exactly the quantity-measuring
locality discussed in Ref. [32], and it implies the locality
discussed in Ref. [35]. Note that there are several possible
definitions for measuring the locality of the qLCOMs. It is
interesting to see that this notion of quasilocality based on the
Hilbert-Schmidt norm is the sense in which it is discussed for
integrable models [36–38].

Note that constructing a set of constants of motion fulfilling
only properties (i) and (ii) can be easily done for systems which
allow for exact diagonalization, as any set of {Zi} operators
constructed from any eigenbasis of H will automatically
satisfy (i) and (ii). Ensuring (iii), however, is nontrivial in this
case and can only be obtained by choosing a correct ordering
of eigenvectors of H in the eigenbasis.

III. EFFECTIVE DESCRIPTION OF LOCALIZATION

Assuming the precise knowledge of the set of qLCOMs,
it is possible to identify an effective Hamiltonian in terms
of the {τ z

i } operators because by properties (i) and (ii), the
collection of {τ z

i } and products thereof form a basis for all
matrices diagonal in the chosen eigenbasis {|k〉} of H . Given
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a set of qLCOMs the effective model [20,21] takes the form

H
(Neff)
eff =

∑

i

ω
(1)
i τ z

i +
∑

i,j

ω
(2)
i,j τ

z
i τ z

j + · · · , (7)

where · · · subsumes terms up to a truncation order Neff, and
H

(L)
eff = H if the order of the expansion reaches the system size

Neff = L. Let us introduce a subscript μ ∈ {0,1}L, a binary
word of length L, which determines the position of the {τ z

i }
operators in the chain and define τ (μ) = ∏L

i=1(τ z
i )μi . There are

2L many of these configurations covering all possible combi-
nations of the τ z

i operators acting on the chain. Then, for any

H =
2L∑

e=1

Ee|e〉〈e|, (8)

we may write the full expansion of Eq. (7) to order Neff = L as

H =
∑

μ

ωμτ (μ), (9)

with ωμ = 2−LTr[Hτ (μ)]. Note that according to Eq. (5)
the ωμ can be calculated in energy space via ωμ =
2−LTr[diag(E)Z(μ)] if the energies in diag(E) are ordered
according to the ordering of the eigenbasis constructing the
{Zi} operators. This construction can be interpreted as a
Boolean Fourier transform of the spectrum E [39,40]. For a
specific model the weights {ωμ} can only be calculated that way
if the different {Zi} are orthogonal with respect to the Hilbert-
Schmidt scalar product, which follows from property (ii). In the
localizing case putatively realized by MBL systems, two addi-
tional restrictions are expected to hold for the couplings {ωμ} :

(iv) Convergence. The couplings of different orders are
expected to fulfill ωη � ωξ , whenever

L∑

k=1

ηk >

L∑

l=1

ξl. (10)

This would imply that Eq. (7) is expected to be a good
approximation of the full Hamiltonian for low Neff � L.

(v) Locality. It is expected that the weights {ωμ} decay
with the maximal distance of two τ z

i , |ωμ| � g(d(μ)), where
again g : N → R+ is a suitably decaying function and d(μ) :=
max{dist(i,j ) : μi = μj = 1}.

In later parts of this work, we explicitly construct Heff and
investigate the validity these two properties using ED.

IV. MINDSET OF THE APPROACH

The physical intuition behind the algorithm for identifying
qLCOMs proposed below is simply that real space spin opera-
tors should merely change under the infinite time average if the
system is localized. Their time average will hence be diagonal
in the energy eigenbasis and at the same time quasilocal in real
space. We then set out to find a permutation of the eigenvectors
of H such that the time averages of the real space Pauli-z
operators best resemble Pauli-z operators in energy space from
which we can then construct the qLCOMs {τ z

i }.
The new method to construct the qLCOMs we propose

here starts from the energy eigenbasis {|e〉}, expressed in an

arbitrary but fixed ordering. For each ordering of the eigenbasis
|k〉 = |π (e)〉, where π ∈ S2L is a permutation of the spectrum,
we can define {Zi} as above and relate them to real space
{τ z

i } operators as in Eq. (5). As already pointed out above,
these operators by construction fulfill properties (i) and (ii).
Any energy ordering π ∈ S2L can be used to define a set of
{Zi}, but this in general does not yield quasilocal constants
of motion {τ z

i } in real space. Demanding property (iii) in
localized systems, the task is to identify permutations π ∈ S2L

that yield local constants of motion. However, there are 2L!
possible permutations, hence achieving global optimality over
all permutations is computationally not feasible. Having said
that, we can find a solution giving rise to sufficiently local
constants of motion heuristically, by exploiting the physical
insight above: We order the eigenbasis such that the spectra
of the dephased local magnetization operators simultaneously
resemble Pauli-z spectra of {Zi}. This turns out to be sufficient
for ensuring locality of the qLCOMs {τ z

i }.

V. CONSTRUCTING THE SET OF qLCOMS

We begin by mapping each real space spin operator {σ z
i }

to its infinite time average E(σ z
i ) = ∑

e 〈e|σ z
i |e〉|e〉〈e|, where

the sum goes over all eigenvectors {|e〉} of H . This operation
stems from equilibration theory [1,41] and for nondegener-
ate Hamiltonians one hasE(σ z

i ) = limT →∞(1/T )
∫ T

0 σ z
i (t) dt .

This yields L operators diagonal in energy space which
commute among each other and with H [property (i)] and are
found to be quasilocal [32] [property (iii)]. However, due to the
nonunitary dephasing, the spectrum of E(σ z

i ) does not satisfy
(ii) and hence is only approximately Pauli-z-like. We now
set out to reorder the eigenbasis {|e〉} of each {E(σ z

i )} with a
permutation π ∈ S2L such that {E(σ z

i )} written in the reordered
basis {|k = π (e)〉} best resemble {Zi} in the sense that the
entrywise difference between each E(σ z

i ) and Zi is small. We
construct the reordered basis {|k〉} using a heuristic scheme in
multiple steps by considering each E(σ z

i ) successively.
The structure of all {Zi} is by construction known (see

for instance the black dashed line in Fig. 1 which indicates
the diagonal of Z1, Z2, Z3, and Z4 in the different panels
from top to bottom). For each E(σ z

i ), we then identify a
permutation by which E(σ z

i ) best approximates Zi without
altering the result identified for previous E(σ z

j ) with j < i

by sorting the eigenvectors only in the degenerate subspaces
of Zi−1 according to the size of the eigenvalues of E(σ z

i )
and not allowing for a mixing between those subspaces. To
illustrate the concept, consider the operator Z1 = σ z ⊗ 12L−1

in the energy eigenbasis. It is diagonal in the desired basis
{|k〉} and takes the form Z1 = 12L−1 ⊕ −12L−1 . Hence, the
entrywise closest permutation of E(σ z

1 ) is simply sorting its
spectrum by size (cf. Fig. 1, first row). Note that this choice is
highly nonunique, as it allows for an arbitrary order inside
the two degenerate sectors. We will use this ambiguity to
optimize the remaining qLCOMs. Next, Z2 has the form Z2 =
12L−2 ⊕ −12L−2 ⊕ 12L−2 ⊕ −12L−2 . The infinite time average
E(σ z

2 ) gives us a new spectrum to optimize. We then exploit
the fact that in the degenerate sectors of Z1 our ordering is at the
moment arbitrary, i.e., not fixed by E(σ z

1 ). In the second step,
we therefore sort each of the two sectors by size of the spectrum
ofE(σ z

2 ) (cf. Fig. 1, second row). It is important to note that we
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FIG. 1. Energy eigenbasis obtained from ED calculations is
defined up to a permutation basis which may obscure the physical
content available in the infinite time average of local spin operators.
Here we show data for a specific disorder realization with � = 20
on L = 9 sites. The plots show the size of the eigenvalues of the
infinite time-averaged real space Pauli operators E(σ z

i ). We illustrate
our procedure of permuting the eigenvalues of the setE(σ z

i ) to obtain a
particular diagonalization unitary UD that ensures locality properties
of Pauli-z operators Zi when rotated into the real space basis τ z

i . The
difference of E(σ z

i ) to Zi comes from the discrepancy of the spectra
due to the dephasing.

must not swap entries from the different sectors with one an-
other as this would spoil the formerly established permutations.
This procedure is iterated for the remaining E(σ z

i ) as shown in
Fig. 1. Ultimately, for fixing the last permutation πL ∈ S2L , we
only have the freedom to sort in 2L/2 many blocks of size 2,
namely, to perform swaps for neighboring eigenvectors only.
As a result we find the final ordering π = πL ◦ · · · ◦ π1 and we
collect the resulting basis to the unitary UD of Eq. (5) that can
be used to represent the qLCOMs in real space. To be precise,
we now use the obtained UD to transform the {Zi} which by
construction fulfill properties (i) and (ii) into real space. The

following pseudocode describes a possible way to implement
this procedure numerically. We use a notation close to PYTHON

and denote, for instance, for a list l of numbers 1, . . . ,N in an
arbitrary order, a vector v ∈ CN and a matrix U ∈ CN×N by
v[l] and U [: ,l] the vector and matrix for which the elements of
the vector and columns of the matrix are reordered according to
l, i.e., v[l]i = vli and U [: ,l]i,j = Ui,lj . Similarly, we denote for
v ∈ CN and 1 � n < m � N byv[n : m] the vectorv[n : m] ∈
Cm−n with entries v[n : m]i = vn+i−1.

VI. NUMERICAL RESULTS

We now examine the properties of the qLCOMs constructed
according to the above scheme. First, we make sure that
the obtained operators are indeed quasilocal and hence fulfill
property (iii). We find that the qLCOMs constructed with our
algorithm are local to a few sites only at high enough disorder,
an observation which reproduces the theoretical predictions.
In Fig. 2 we plot the support of the first, last, and averaged
over all constructed {τ z

i } of the 13-site lattice as a function
of disorder strength � averaged over 300 realizations. The
quantifier for the support is the truncation error to a subsystem
S in 2-norm defined as 1 − ‖TrSC (τ z

i )‖2
2/(2|S|+2|SC |). If the

value is close to unity, the spectrum of the operator deviates
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FIG. 2. Support of the first (left panel) and the last (center) qLCOMs as well as the averaged support of all constructed qLCOMs (right panel)
of the disorder Heisenberg chain over the disorder strength �. As a measure of support, we use the truncation error 1 − TrSC (τ z

i )‖2
2/(2|S|+2|SC |)

for buffer regions S of increasing cardinality |S|. Error bars show statistical deviations over 300 realizations. We use the Heisenberg Hamiltonian
on L = 13 with periodic boundary conditions. The dashed lines at � = 7.5 are a guide to the eye indicating the region of the expected phase
transition.
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FIG. 3. Average truncation error with random disorder for L ∈
{7,9,11,13} with {1000,1000,1000,300} realizations. We use the
Heisenberg Hamiltonian with the disorder strength � ∈ {10,30}.
Moreover we employ periodic boundary conditions. The plot shows
the average truncation error 1 − ‖TrSC (τ z

i )‖2
2/(2|S|+2|SC |) of the qL-

COMs when truncated onto a “buffer” region of off cardinality |S|
averaged over all qLCOMs. The plot is on a log scale. Lines are guide
to the eye. Error bars show statistical deviations.

strongly from the Pauli-z spectrum. If the value is zero, the
operator is in this sense well characterized by its reduction to
the subsystem S. We find that increasing disorder localizes the
obtained operators. Additionally, one observes a crossover in
the region of the proposed phase transition. It can furthermore
be seen that despite the recursive nature of our approach,
which allows more variational freedom in the first initial
qLCOMs, there is only a small systematic error between the
first and last qLCOM, and all qLCOMs are well localized
for � large enough. A finite size scaling is discussed in
the following indicating that while our method works for
the system sizes considered, it suggests inconclusive results
for the locality of the operators for larger systems. Figure 4
displays the averaged decay of the qLCOMs and shows
that in the localized phase 1 − ‖TrSC (τ z

i )‖2
2/(2|S|+2|SC |) decays

exponentially showing that the {τ z
i } are local up to exponential

tails. Here we average both over realizations and qLCOMs
per realization. Additionally one observes a stronger decay for
larger disorder. This scaling with the disorder strength is very
much expected and consistent with theoretical predictions.
Next, we study the finite size dependence of the locality results.
Fig. 3 shows the system size dependence of the truncation
error 1 − ‖TrSC (τ z

i )‖2
2/(2|S|+2|SC |) of the qLCOMs for moder-

ate (� = 10) and strong (� = 30) disorder. The qualitative
behavior between the disorder strengths is consistent with
Fig. 4. When considering increasing system sizes, we observe
that the decay slows down. Nevertheless, we see that for all
system sizes we obtain a strong decay with the distance. For
the system sizes accessible, we find a still sufficient decay to
call the obtained qLCOMs quasilocal. However, it seems hard
to predict the trend for larger systems based on the given data.
Let us now turn to insights about the transition between the
MBL and the ergodic phase.
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FIG. 4. Decay of the average truncation error over all constants
of motion displayed in Fig. 3 on a log scale for different disorder
strengths. The error bars indicate the standard deviation of the average
and lines are a guide to the eye.

An interesting open question is how precisely the picture
of the qLCOMs breaks down once the transition toward the
ergodic phase is being approached. Intuitively, one expects
a broadening of the qLCOMs upon delocalizing, which ul-
timately leads to completely nonlocal constants of motion.
Here, we set out to observe this transition in the locality of
the calculated qLCOMs. The measure we employ is the the
cardinality of the minimal buffer region S (see above) needed
to support as much as a threshold α of the weight of the
operator. We again work with the squared two-norm of the
reduced operator as a quantifier of support. We show the results
in Fig. 5 for different thresholds α ∈ {0.5,0.6,0.7,0.8}. While
the resulting curve clearly depends on the chosen threshold,
a transition between a phase, where the operator is supported
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FIG. 5. Cardinality of the minimal buffer region for threshold
values α ∈ {0.5,0.6,0.7,0.8}. Values are obtained for the disordered
Heisenberg model on L = 13 with periodic boundary conditions.
Each data point comprises 300 realizations averaged over all qL-
COMs. Lines are guide to the eye. Error bars show statistical
deviations. The orange dotted line indicates the expected transition
at � = 7.5.
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FIG. 6. Relative norm difference between effective model and
actual Hamiltonian ‖H − H

(Neff)
eff ‖/‖H‖ on L = 13 with random

disorder on a log scale. Different colors indicate the order of
the approximation Neff. Error bars show statistical deviations. The
average is performed over 300 realizations. Lines are a guide to the
eye.

on the full system for low disorder and on a single site for
high disorder can clearly be observed. To precisely identify
the phase boundary is a challenge for all known methods, and
this one is no exception. While the measure we propose here
may not give a reliable quantitative estimate of the transition,
it nevertheless provides a clear qualitative one. Furthermore, it
strengthens the intuition of the nature of the phase transition,
giving rise to a broadening of qLCOMs.

Using the constructed qLCOMs, we now turn to the effec-
tive model and investigate its properties in detail. We would
like to point out that this is only possible since our set of
qLCOMs fulfills properties (i)–(iii) exactly and not only ap-
proximately and hence offers the algebraic structure necessary
to exactly construct the effective description. We compute the
weights ωμ in energy space as explained before using the
orthogonality of the {τ z

i } operators and show their decay in
Fig. 7. While the ωμ decay with increasing spatial extension
d(·), there is no apparent inter-order decay. Moreover, there
is an apparent saturation for higher orders. This allows two
explanations: Either the qLCOMs can be further optimized
to fit the expectations of the effective description better or
the Heisenberg model cannot be mapped to the effective
model with strongly decaying couplings. A possible measure
of where to set an effective cutoff Neff is the operator norm
distance of the Hamiltonian H and its effective description
H

(Neff)
eff . Figure 6 shows the scaling of ‖H − H

(Neff)
eff ‖/‖H‖ in

the dependence on the disorder strength � with Neff as a
parameter. Here, we observe that indeed all orders do decay
with an exponential trend for larger disorder. However, to get
the norm error small, a rather large Neff has to be chosen. This
seems to put the validity of the effective description as a full
solution in question. However, note that we cannot rule out that
qLCOMs can be found that allow a better effective model as
also stated previously. For a brute force approach, 2L! many
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FIG. 7. Average coupling strength ωμ on L = 13 with random
disorder of strength � = 20 on a log scale. Different colors indicate
the order of the approximation Neff. Error bars show statistical
deviations of the average over 300 realizations and per realization
over all operators with support of extension d(μ). Lines are a guide
to the eye.

configurations have to be checked, which quickly out scales
any computational resources. Hence it will be necessary to
work with a heuristic such as the one presented in this work.
Devising new heuristics which can better fit the effective model
will be part of future research.

However, imposing such strict global constraints as done
by the operator norm difference of the exact and effective
Hamiltonian may not be required to recover the essential
physical behavior of the system. Hence we will investigate
the predictions of the effective model on a local scale in the
following.

VII. OBTAINING LOCAL DYNAMICS FROM THE
EFFECTIVE DESCRIPTION

To provide more substance to this discussion, we investigate
the nonequilibrium quench dynamics of local observables akin
to recent experiments [8]. We compare the dynamical evolution
of the imbalance

I = 1

L

∑

i

(−1)iσ z
i , (11)

where the initial state is a real space Neel state vector
|1,0, . . . ,1,0,1〉 for the Heisenberg Hamiltonian and the effec-
tive description truncated to order Neff = 4. In Fig. 8 we pick
three realizations based on the norm difference ‖H − H

(4)
eff ‖,

namely, the worst, intermediately good, and best one. We find
quantitative agreement of the dynamical evolution when the
low-order effective description is close in operator norm to the
true Hamiltonian; however, there may exist realizations where
the phenomenological model would demand many higher-
order terms as seen for the bad realization (red in Fig. 8).
Notably, the effective description fails to reproduce quanti-
tatively fast oscillations of the imbalance, but the qualitative
behavior, e.g., the average imbalance value, is still captured.
For realizations that work intermediately well, the quantitative
agreement is lost over time.

134202-6

53



CONSTRUCTION OF EXACT CONSTANTS OF MOTION AND … PHYSICAL REVIEW B 97, 134202 (2018)

0 1 2 3 4 5 6 7 8 9 10
Time t

1.0

1.5

2.0

2.5

Im
ba

la
nc

e
I

‖H −H (4)
eff ‖

84.6 31.3 0.0004

FIG. 8. Dynamics of the imbalance in the Neel state of L = 13
spins with periodic boundary conditions with disorder strength � =
20. The plot shows a comparison of the exact dynamics (solid lines)
in three realizations (picked by norm difference ‖H − H

(4)
eff ‖ of 30

realizations) with the evolution generated by the truncated effective
Hamiltonian H

(4)
eff (symbols).

VIII. SUMMARY AND OUTLOOK

In this work, we have proposed an algorithm for numerically
constructing exact constants of motion in the localized phase
of models exhibiting MBL, with an emphasis on the random
field Heisenberg chain. In contrast to previous attempts of

numerically tackling MBL systems, we have put strong em-
phasis on exactly fulfilling all desired commutation relations
as well as obtaining a Pauli-z spectrum of the constructed op-
erators. Based on this paradigm, our algorithm finds operators
which furthermore act quasilocally in real space in the localized
regime. Equipped with a full set of exact qLCOMs, we are
able to explicitly calculate the effective description of localized
systems to all orders. It is the hope that this tool to construct
exact effective Hamiltonians can help to satisfactorily explore
the rich phenomenology of many-body localized systems. For
future work, it appears a natural question to investigate whether
the equilibrium state of MBL systems can as anticipated
be described by generalized Gibbs ensembles featuring the
qLCOM. As MBL systems can be tuned between “ergodicity”
and “integrability,” progress in this direction may also shed
light on thermalization in more general models. Moreover,
we aim at elevating the present method to a tensor network
consisting of many subsystems, iterating steps, to give rise to
a two-layer quantum cellular automaton, reminiscent of the
tensor network of Ref. [19]. It is the hope that equipped with
exact constants of motion and effective models, the present
work can contribute to resolving the remaining puzzles on
many-body localization in one spatial dimension.

Note added. Recently we became aware of the independent
similar work presented in Refs. [42–44].
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6

C O N S T R U C T I N G E D G E M O D E O P E R A T O R S F O R S Y S T E M S
E X H I B I T I N G S Y M M E T R Y P R O T E C T E D O R D E R

Let us take a step back from many-body localised systems and broaden our scope
to a class of systems which also feature local constants of motion. In particular we
would like to focus on spin chains with symmetry protected edge modes. These
are a subclass of topological systems, a field that combines intriguing physics with
high level mathematics, while still allowing for experimental realisations, i. e. in
Majorana nanowires [58]. We consider a spin chain with a global symmetry that
decouples bulk and boundary degrees of freedom which leads to the formation of
edge modes whose commutator with the Hamiltonian vanishes in the thermody-
namic limit. Products of edge modes supported on both ends of the chain do exactly
commute with the Hamiltonian even for finite chains. This allows us to use a vari-
ation of the algorithm presented in the previous chapter to numerically construct
these edge modes as well. Since much of the knowledge about symmetry protected
spin chains is based on analytical results for exactly solvable models and exten-
sions with weak perturbations, this is a fruitful application as our method works in
the interacting regime as well. Because our approach is not limited by interaction
strength, we will investigate the stability of edge modes in the presence of disorder
and interactions in this final chapter.

6.1 the xzx-cluster hamiltonian

The model we will consider in this chapter, is the XZX-cluster Hamiltonian, a proto-
typical, exactly solvable model for symmetry protected order which takes the form

HXZX = −

L−1∑
j=2

σxj−1σ
z
jσ
x
j+1 ,

where σa are again Pauli matrices. The accompanying symmetry is time reversal
which can be formalised as T =

∏L
j=1 σ

z
jK, where K is the complex conjugation

operation. By defining the model this way, it necessarily has open boundary con-
ditions and furthermore supports exactly local spin-1/2 degrees of freedom at the
edge spanned by the following edge mode operators

E0 =


XL = σx1, XR = σxL,

YL = σy1σ
x
2, YR = σxL−1σ

y
L ,

ZL = σz1σ
x
2, ZR = σxL−1σ

z
L

 .

We would like to point out that while these exactly commute withHXZX, only their
products commute with the time reversal symmetry T as well. This will be of im-
portance as our algorithm introduced in the previous chapter constructs exactly
commuting operators.

As defined above, the XZX-cluster Hamiltonian is well studied analytically. How-
ever, little is known about the stability of the edge modes when additional interac-
tions and disorder are present in the system. Such questions are particularly relev-
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ant for experimental realisations where stray interactions and disorder potentials
are ubiquitous. The model we use to include these is the following

Hint
XZX = −

L−1∑
j=2

(1+ hj)σ
x
j−1σ

z
jσ
x
j+1 − J

L−1∑
k=1

(
σxkσ

x
k+1 + σ

y
kσ
y
k+1 + ησ

z
kσ
z
k+1

)
,

where η is the anisotropy which we either set to zero to obtain a non-interacting
model or to one to investigate the effect of many-body interactions. The disorder
fields are drawn from hj ∈ [−∆/2,∆/2] in order to have a gapped model at all
times.

The edge modes liken the quasi-local constants of motion in that they are local
subspaces defined by local operators. It is expected that introducing interactions to
the system delocalises the edge mode operators, similarly to our discussion of the
Anderson model. Even though the model is not exactly in the class of many-body
localisation, it is expected, that additional disorder will localise the bulk degree of
freedoms in similar fashion [59]. To investigate the influence of these perturbations
on the edge mode locality, we will construct the edge mode operators numerically.
In the absence of interactions, the edge modes can be found via a singular value
decomposition directly. For the interacting system, we will use a variant of the al-
gorithm presented in chapter 5 with some adjustments to also deal with the degen-
eracies caused by the symmetry. We use products of the unperturbed edge modes
E0 as an ansatz for our heuristic.

In this last work, we use this specialised method to study the locality of the emer-
gent edge modes of the perturbed XZX-cluster Hamiltonian.

climate footprint estimate

Total Kernel hours [h] 230400
Total Energy consumption [kWh] 2648
Total CO2-emission [kg] 1484

Table 6.1: Estimated climate footprint of the numerical calculations performed for
the paper “Edge mode locality in perturbed symmetry protected topological order”.
Estimates are based only on the data for the interacting system presented in the
manuscript and exclude prototyping. CO2-emission estimates are based on the
German average emission of 0.56 kg/kWh. Calculations were performed on the
tron cluster equipped with Intel® Xeon® Processor E5-2680 v2
nodes with a thermal design power of 115 W. Further details on the estimation can
be found in Appendix A
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Abstract

Spin chains with a symmetry-protected edge zero modes can be seen as prototypical
systems for exploring topological signatures in quantum systems. However in an ex-
perimental realization of such a system, spurious interactions may cause the edge zero
modes to delocalize. To combat this influence beyond simply increasing the bulk gap, it
has been proposed to harness disorder which does not drive the system out of a topolog-
ical phase. Equipped with numerical tools for constructing locally conserved operators
that we introduce, we comprehensively explore the interplay of local interactions and
disorder on localized edge modes in such systems. Contrary to established heuristic rea-
soning, we find that disorder has no effect on the edge mode localization length in the
non-interacting regime. Moreover, disorder helps localize only a subset of edge modes
in the truly interacting regime. We identify one edge mode operator that behaves as if
subjected to a non-interacting perturbation, i.e., shows no disorder dependence. This
implies that in finite systems, edge mode operators effectively delocalize at distinct in-
teraction strengths despite the presence of disorder. In essence, our findings suggest
that the ability to identify and control the best localized edge mode trumps any gains
from introducing disorder.
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1 Introduction

Topological states of matter have been the focus of intense research over the past 30 years.
Within systems of condensed matter physics, topological effects are known to occur in quantum
Hall systems of the electron gas [1] and topological insulators [2]. Experiments on wires with
proximity induced superconductors gave compelling evidence for Majorana zero modes [3].
Cold atomic gases and photonic devices offer possibilities of creating synthetic topological
properties [4]. These new phases of matter by definition have no local order parameter
but can be detected via their entanglement properties [5] and are classified by topological
invariants [6]. When considering one-dimensional spin chains, these invariants give rise to
protected gapless edge modes [7–14], which survive only if perturbations do not break the
symmetries of the Hamiltonian.

Such edge modes are interesting from the perspective of quantum information science as
well: They are one of many proposed candidates to encode quantum information robustly
using topology [6,9,15]. However, the localization of the edge modes can be compromised by
the onset of interactions allowing them to delocalize by hybridizing with delocalized bulk
states. This will have deleterious effects on ones ability to encode and faithfully extract
quantum information well before the topologtical to trivial phase transition. As we can
only expect to operate on a finite number of edge qubits to operate the quantum memory,
the likelihood that a read-in/read-out procedure introduces errors increases with localization
length, as more and more of the protected quantum information leaks into the bulk of the
chain. To counteract this effect, it has been suggested that topological quantum information
can be stabilized by disorder [16–18], which is supposed to inhibit transport by localizing
the bulk. These works have given rise to the narrative that disorder is expected to always be
beneficial when it comes to enhancing the localisation of the edge states.

The interplay of topological features, interactions and disorder is far from being fully
understood. While there is evidence that disorder can drive a system into a topologically
insulating phase [19–21], these do not in and of themselves support that any logical qubit
is further localized by disorder. What is known rigorously is that, for topologically ordered
systems, sufficiently weak local perturbations do not lift the ground-state degeneracy [22–24]
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– but this kind of statement shows that small noise levels do not drive a phase transition, rather
than making explicit constructive use of them. While this implicitly defines a coherence length
for the edge modes, it is far from clear how the local structure of these operators is deformed in
the presence of interactions and disorder. These seemingly basic questions should be addressed
before more sophisticated scenarios can be meaningfully studied. This work sets out to do
exactly that by studying the deformation of edge modes under disorder in a comprehensive
fashion, laying the ground for a more general picture of the interplay of topological features
and disorder.

In this work, we study the XZX cluster Hamiltonian, a topological chain which hosts one
qubit at each edge and analyze if disorder can help localize them [17, 18] in the presence
of weak interactions. We devise algorithms capable of calculating the support of the edge
operators of the disordered XZX cluster Hamiltonian perturbed by either XX or XXZ type
interactions. Equipped with this tool, we are in a position to determine the sensitivity of the
edge mode localization length to each perturbation type. Contrary to previous expectations,
we find that disorder only aids localization slightly, and only in the presence of interaction
terms which are non-quadratic in the fermionic dual. Furthermore, and surprisingly, we also
find that some edge modes are completely insensitive to disorder. Building on these findings,
we elaborate on the lessons to be learned on the interplay of disorder and topological features.

2 SPT chains with spatial disorder

Our main focus is on the interplay of disorder, interactions and SPT order. Take for example a
spin chain hosting a XZX cluster Hamiltonian

H0(h) =−
N−1∑
j=2

(1+ h j)X j−1Z jX j+1, (1)

where the h j are drawn uniformly from
�−∆2 , ∆2

�
and X j , Yj , Z j are the Pauli operators acting at

site j. This system is known to be in a symmetry protected topological (SPT) phase, and thus
supports localized, spin 1/2, edge zero modes. The choice of disorder model here may seem
unphysical to readers familiar with many-body localization, where a disordered local magnetic
field is commonplace. Such a field competes with the SPT order, driving a transition to a
topologically trivial phase. By disordering the cluster terms directly, we are implementing an
ideal version of disorder, in that it breaks the degeneracies in the excited state spectrum while
preserving the ground state manifold. Thus, if we should fail to observe increased localization
in this circumstance we do not expect any improvement by moving to a more physical model
of disorder.

Without any extra interaction terms, the two edge zero modes enforce a four-fold degen-
eracy at every energy level in the spectrum, and are perfectly localized on the two sites nearest
to the boundary. By inspection, we can find local operators which exactly commute with the
Hamiltonian (1)

E0 =





XL = X1, XR = X L ,
YL = Y1X2, YR = XN−1YN ,
ZL = Z1X2, ZR = XN−1ZN



 , (2)

that are located at the left and right edge. Apart from these local conserved quantities, the
Hamiltonian in (1) also commutes with the time reversal operator

T =
N∏

j=1

Z jK , (3)

3
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where K is complex conjugation. Note that all local edge operators fail to commute with
time reversal and thus cannot be used to split the degeneracy without breaking the symmetry.
Each set of these operators describe a spin-1/2 Hilbert space. Although T 2 = 1 on the full
Hilbert space, T 2 = −1 when restricted to these spin-1/2 Hilbert spaces, i.e. these edge states
transform projectively under the global time reversal (see Appendix A).

To perturb H0, we will introduce a translationally invariant XXZ-coupling to our spin chain
of the form

Hint(J ,η) = −J
N−1∑
j=1

�
X jX j+1 + YjYj+1 +ηZ j Z j+1

�
, (4)

which, for J � 1, is representative of interactions typically found in real solid-state material
where Heisenberg-type interactions are ubiquitously present as a result of exchange interac-
tions. Since we will only be investigating the effects of either an XX or a Heisenberg perturba-
tion, we have included a parameter η which interpolates between the two, and leave J as the
overall interaction strength. Specifically, we consider the following Hamiltonian defined on N
lattice sites

H(h, J ,η) =H0(h) +Hint(J ,η) , (5)

where we choose η = 0 or η = 1. By choosing ∆ 6= 0 we can switch on the presence of local
disorder that can have the effect of diminishing the influence of the perturbation added to the
exact Hamiltonian.

Note that Hint(J ,η) commutes with the time reversal operator for any values of J and η, so
if it is sufficiently weak it will only lift the degeneracy by an amount exponentially suppressed
in system size [7–9,25]. This occurs because, as soon as J 6= 0, the edge modes will no longer
be perfectly localized at the edges and are in fact expected to be smeared within an exponential
envelope [7–14]. With the degeneracy lifted, the edge mode operators will no longer commute
exactly with the Hamiltonian, since the existence of operators which anticommute with T
(a feature of the edge modes in (2)) and commute with Hamiltonian would require exact
degeneracies due to Kramer’s theorem. The failure of the edge mode operators to commute
exactly with play an important role in informing our algorithm in Section 3.2.

From here, we set out to understand this interplay of topology, interactions and disorder by
explicitly constructing edge modes for this perturbed XZX cluster Hamiltonian. For Anderson
and many-body localized systems, the localization length of all local conserved quantities
depends on the disorder strength. Thus, one would expect that localizing the bulk of the SPT
chain should stabilize the edge modes as excitations cannot traverse the full system to allow the
hybridization of opposite edges [17, 18]. We devise methods capable of computing the edge
mode support in presence of both non-interacting and many-body interacting perturbations.
Contrary to the previously stated heuristic argument, we find numerous cases where the edge
modes are completely insensitive to disorder.

3 Edge mode construction

In this section, we describe two methods employed to construct the edge mode operators E
in the perturbed XZX cluster Hamiltonian. Computing the broadening of the edge modes is a
particularly daunting task, precisely because the operator encodes information about states
throughout the entire spectrum, and thus cannot be studied using low energy techniques
such as DMRG. The first method assumes that the perturbed Hamiltonian represents non-
interacting fermions and yields an efficient solution in terms of Majorana eigenmodes, which
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allows for a direct computation of the edge modes. The second approach tackles the generic
interacting case, where no Bogoliubov transformation will suffice and hence the construction
of the edge modes becomes more intricate. In this case we rely on a method developed to
construct conserved operators called "l-bits" for a many-body localized system [26, 27]. The
construction of these conserved quantities from first principles is difficult, but algorithms which
can construct them using various methods do exist [28–40].

3.1 Edge modes under free fermion perturbations

After a Jordan-Wigner transformation, the choice of η = 0 is equivalent to a non-interacting
fermionic problem whereas η 6= 0 maps to an interacting fermionic model with quartic
interactions. Introducing the Majorana operators γ̄ j ,γ j for j = 1, . . . , N as

γ j = Z1 . . . Z j−1X j and γ̄ j = Z1 . . . Z j−1Yj , (6)

with

{γ j ,γk}= {γ̄ j , γ̄k}= 2δ j,k, {γ̄ j ,γk}= 0 , (7)

the Hamiltonian (5) becomes

H(h, J ,η) = −i
N−1∑
j=2

(1+ h j)γ̄ j−1γ j+1 − J
N−1∑
j=1

�
iγ̄ jγ j+1 + iγ jγ̄ j+1 −ηγ jγ̄ jγ j+1γ̄ j+1

�
, (8)

which is non-interacting if and only if η = 0. Written in terms of the Majorana operators, the
edge modes for J = 0 take the form

XL = γ1, YL = iγ1γ2, ZL = γ2,

XR = −iPγ̄N , YR = −iγ̄N−1γ̄N , ZR = −iPγ̄N−1, (9)

with P = Z1 · · · ZN being the global parity operator which commutes with H. For this we note
that (8) can be written as

H(h, J ,η= 0) = i
N∑

j,k=1

γ jC j,kγ̄k, (10)

with the coupling matrix

Ci, j =





J if i = j + 1

−J if i = j − 1

−(1+ hi+1) if i = j − 2.

(11)

As C ∈ RN×N is real, the singular value decomposition of C takes the specialized form
C = QTΣQ̄ with two orthogonal Q, Q̄ ∈ O(N) and Σ ∈ RN×N a diagonal matrix with real non-
negative entries. Using the two orthogonal matrices Q, Q̄ ∈ O(N) we introduce new modes

m j =
n∑

k=1

Q j,kγk, m̄ j =
N∑

k=1

Q̄ j,kγ̄k, (12)

which again fulfill the Majorana anti-commutation relations (7) and the Hamiltonian (10)
becomes diagonal taking the form

H(h, J ,η= 0) = i
N∑

l=1

σ jm jm̄ j , (13)

5
62



SciPost Phys. 6, 072 (2019)

where we have defined the single particle energies σ j = Σ j, j and assume without loss of
generality that they are in increasing order.

For J = 0, we find that σ1 = σ2 = 0 with m1 = γ1, m2 = γ2, m̄1 = γ̄n, m̄2 = γ̄n−1 being
the corresponding localized edge mode operators. At finite J > 0, σ1 ∼ σ2 ∼ e−n/n0 are not
exactly zero anymore but decay exponentially with increasing system size [9] and hence much
smaller compared to the next largest value σ3. Thus an approximate four-fold degenerate
ground-state sector remains well defined. The operators m1, m2, m̄1, m̄2 hence correspond to
perturbed edge mode operators which can be individually studied in the free fermionic setting
via their single particle wavefunctions. Note however, that only their products m1m̄1 and
m2m̄2, which are supported at both ends of the chain, are exact constants of motions of the
Hamiltonian. This will also be a main difference to the interacting relaxation algorithm which
from the outset seeks operators that exactly commute with the Hamiltonian.

3.2 Edge modes under perturbative many-body interactions

The intuition behind our approach to constructing edge modes of a system with many-body
interactions is as follows: the edge modes E0 of the unperturbed model H0 should deform
smoothly to those of the full interacting Hamiltonian. Indeed, they turn out to be good starting
points to obtain the actual edge mode operator E which commutes with H exponentially well
in the system size whilst remaining local to some degree.

The method requires an ansatz which is expected to resemble the conserved operators.
Since we are perturbing away from a solvable point, we employ a natural choice, the exact
edge modes obtained in the unperturbed fixed-point model. One might be inclined to use
a single edge mode as an ansatz for finding the perturbed operators, but this approach will
fail in general as the operators produced with this method necessarily commute exactly with
the Hamiltonian by construction. This is not the case for single edge modes as they cannot
commute with Hamiltonian, as discussed in Section 2. We can circumvent this problem by
instead using products of edge modes supported on both the left and right ends of the chain
which we call B0 = E L

0 ⊗ER
0 . Such products respect the time reversal symmetry and thus are not

prevented from commuting exactly with the Hamiltonian. Due to the topological degeneracies
present in our model, we have to make sure that the basis in any subspace also diagonalizes
our edge mode guess E0 if we want to obtain the form in Eq. (15). This is reminiscent of
standard degenerate perturbation theory and in fact requires by far the most ressources of the
total algorithm as we need to rediagonalize 2N−2 many 4× 4 matrices.

We will now detail how to construct the quasi-local conserved operators. By definition,
these have a compact representation in the energy basis. This basis, which we label by {|k〉},
is obtained from full exact diagonalization. Consider a basis for diagonal operators in energy
space fulfilling the Pauli-algebra. The minimal elements of this basis may take the following
form

Ξi := 12i−1 ⊗ Z ⊗ 12N−i =
2N∑

k=1

(−1)b(k−1)/2N−ic |k〉〈k| , (14)

where Z is a Pauli-operator. This might look complicated at first glance, but it is really nothing
but Pauli-operators defined in energy space. The full basis can be obtained by calculating
all products of these N -many operators. These operators by construction exactly commute
with the Hamiltonian. Hence, any constant of motion can be brought into the form of the
Ξ operators. Their real space representation UDΞiU

†
D will however in general not be local.

Their locality is completely dependent on the ordering of the eigenstates in the unitary UD
as this is the only freedom left. Due to the immense number of possible permutations – the
order of the symmetric group S2N is 2N ! – a brute force approach is out of scope. We instead
rely on a heuristic algorithm which dynamically relaxes an ansatz operator to obtain a good
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permutation. Abstractly speaking, we bank on the time independent or equilibrium part of B0
to resemble the product of the perturbed edge modes B already quite well. In cases where this
is not given, the algorithm will fail to produce a local edge mode.

The unperturbed operator B0 and a diagonalization unitary UD serve as inputs to our
method. This unitary has an arbitrary ordering of eigenvectors at the start (for ED, usually
determined by the size of the energies of the Hamiltonian). Upon mappingB0 to its equilibrium
representation, we use it to obtain an ordering of the eigenstates that resembles the Pauli
structure well. This representation is obtained by calculating the infinite time average of B0,
which stems from equilibration theory

E(B0) := lim
T→∞

1
T

∫ T

0

d tB0(t) =
∑

k

〈k|B0|k〉 |k〉〈k| , (15)

the time average will hence be diagonal in the energy eigenbasis for non-degenerate spectra
and is thus a constant of motion. However, since the infinite time average is not trace
preserving, it in general causes B0 to lose its algebraic structure. We would like to point out
that while localizing systems are in general not expected to thermalize, they do equilibrate
which makes this ansatz meaningful [41].

Due to the topological degeneracies present in our model, we have to make sure that the
basis in any subspace also diagonalizes our edge mode guess E0 if we want to obtain the form
in Eq. (15). This is reminiscent of standard degenerate perturbation theory and in fact requires
by far the most resources of the total algorithm as we need to rediagonalize 2N−2 many 4× 4
matrices.

We then set out to find a permutation of the eigenvectors of H such that the time average
of the B0 best resembles Ξ1 which can be done by a sorting of the eigenvalues of E(B0). This
permutation P also gives rise to a new diagonalization unitary ÝUD = PUD. Upon conjugating
Ξ1 with ÝUD, we obtain an edge mode which fulfills all algebraic properties and commutes with
the Hamiltonian. Since our sorting method is heuristic, we cannot rule out the existence of
better localized edge modes. Nevertheless, the support that we find serves as a robust upper
bound. Because of this, we note that a breakdown of our method, i.e. finding a non-local
operator, does not necessarily imply that there are no localized edge modes.

The following pseudocode describes a possible way to implement this procedure numeri-
cally. We use a notation close to python.

1 input: diagonalizing unitary ÝUD (as obtained from ED and
2 rediagonalization in degenerate subspaces)
3 input: edge modes of the unperturbed system E L

0 ,ER
0

4 output: quasi -local diagonalization unitary UD
5

6 define infinite_time_average(V , O):
7 return diag(VOV †)
8

9 spec = infinite_time_average(ÝUD, E L
0 ⊗ ER

0)
10 perm = argsort(spec)
11

12 return ÝUD[:,perm]

This algorithm builds on a previously introduced method used in the context of many-
body localized systems [40]. In this problem, the authors designed operators which commute
exactly with the given Hamiltonian and are quasi-local. In a many-body localized system,
one searches for extensively many quasi-local constants of motion and the system features
a fully non-degenerate spectrum caused by the disordered potential landscape. In contrast,
the SPT model is characterized by only constantly many edge mode operators which enforce
degeneracies throughout the spectrum. These differences necessitated major modifications to
the method from Ref. [40].
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Figure 1: Left, Center: Logarithmic support log10supp(B, S) of the edge modes m1
and m2 for η= 0 on N = 32 sites, where S is a region starting from the left end of the
system where sites starting from the right end have been removed. Color encodes
the interaction (or hopping) strength J and markers indicate the disorder strength
∆. Each data point is an average over 100 realizations with error bars indicating the
standard deviation of the data (smaller than symbols). Dotted lines are guides to
the eye. Solid lines show linear fits of the data for ∆ = 0.1 , which allow to extract
the localization length ξ. Right: Interaction dependence of the inverse localization
length 1/ξ for the edge modes. Here, color encodes the two modes and disorder
strength ∆. Data for all interaction strengths and modes overlaps strongly. The lines
shown have been extrapolated by using 100 values of interaction strengths in the
shown interval. We also include data without disorder. Here, the errorbars show the
quality of the fit in form of the least-squares error.

3.3 Measure of locality

In the following analysis we set out to assess the locality of the constructed edge mode
operators. Therefore, we want to compare the action of the full operator to a itself truncated
to a local region only. As a first step, we will need to specify a reduction map, which reduces
our operators to such operators with local support in a region S

ΓS(A) :=
1

2SC tr SC (A)⊗ 1SC , (16)

where support is defined using site indices. This map truncates an operator down to its local
support on S and afterwards embeds it into the full real space again by tensoring identities on
SC . This operator can now be compared to the original operator supported on the full system.
The difference between the two will be a measure of the support

supp(A, S) = ‖A− ΓS(A)‖∞ . (17)

Due to the interacting procedure yielding products of edge modes, we expect their support to
be mainly on both edges of the system. To assess their locality, we hence use an S which is
centered in the middle of the chain and extends by increasing this block on its both ends by
one site. We note that the norm used here is most sensitiveand in many other applications
operators which are expected to be local are so only in weaker norms than in operator norm
[39,40,42,43].

In the non-interacting case η = 0 we have access to the individual edge mode operators
m1, m2, m̄1, m̄2 and we hence consider the sets SL,k = [k] and SR,k = [N − k]C oriented
at the left and right boundary of the system. The larger system size considered in this case,
prohibits to use the full Hilbert-space representation of the operators. However, as we show in
the appendix, one can exploit the algebraic properties of the non-interacting fermions in order

8
65



SciPost Phys. 6, 072 (2019)

1 2 3 4 5 6 7 8 9 101112
Sites

−8

−6

−4

−2

0

Lo
g.

S
up

po
rt

lo
g 1

0
su

pp
(Y

L
Y R

,S
)

J =10−2

J =10−5
∆ = 0.1
∆ = 0.5

1 2 3 4 5 6 7 8 9 101112
Sites

−8

−6

−4

−2

0

Lo
g.

S
up

po
rt

lo
g 1

0
su

pp
(Z

L
X R

,S
)

J =10−2

J =10−5
∆ = 0.1
∆ = 0.5

10−4 10−2 100

Interaction strength J

0.0

0.5

1.0

1.5

2.0

In
ve

rs
e

lo
ca

liz
at

io
n

le
ng

th
1/
ξ YLYR

ZLXR

XLZR

m1,∆ = 0

∆ = 0.1
∆ = 0.5

Figure 2: (Left, center) Logarithmic support log10supp(B, S) of the edge modes YLYR
and ZLXR for η = 1 on N = 12 sites, where S is the left and right part of the
system where blocks of even size centred around the middle of the chain have been
removed. Colour encodes the used interaction strength J and markers encode the
disorder strength ∆. Each data point is an average over 100 realizations with error
bars indicating the standard deviation of the data. Dotted lines are a guide to the
eye. Solid lines show linear fits of the data for ∆ = 0.1, which allow to extract the
localization length ξ. Right: Interaction dependence of the localization length ξ for
all three edge modes. Here, color encodes the three modes and markers again encode
disorder strength∆. The data for ZLXR and ZRXL overlaps completely which is why
it is hard to spot the orange markers indicated in the legend. Again, the errorbars
show the least-squares errors of the fit. The grey line is taken from the non-interacting
results as a comparison.

to directly compute the reduction and norm of it within the fermionic picture which yields for
p = 1,2

‖mp − ΓSL,k
(mp)‖=

√√√√ N∑
l=k+1

Q2
l,p , (18)

‖Pm̄p − ΓSR,k
(Pm̄p)‖=

√√√√N−k∑
l=1

Q
2
l,p . (19)

4 Numerical Results

In this section, we show and discuss the resulting operators for both models. We have
worked with at least four interaction strengths J ∈ {10−2, 10−3, 10−4, 10−5} and three disorder
strengths ∆ ∈ {0.1,0.3, 0.5}. For a clearer presentation, we only picked a subset of these
results but the calculations not shown behave analogously.

4.1 Free fermionic perturbation

For η = 0, as described above, we show the support of the single edge modes supported on
the left part of the chain. The system has a total size of N = 32 sites. While much larger
systems are treatable and have been investigated by us with this algorithm, we find that this
system size suffices to properly display the edge mode decay. For a system size scaling of this
method, we refer interested reader to the Appendix D. Results can be found in Fig. 1. Left

9
66



SciPost Phys. 6, 072 (2019)

and center plots show the logarithmic support log10supp(E , S) of the edge modes m1, m2. We
use the data of these plots to extract a localization length ξ, shown in the right plot. The
errorbars indicating the least-sqares error of the fit for small interactions stem from the fact
that in these systems, the support of the edge mode falls of very strongly yielding only few
non-zero points and therefore less accurate fits. We find that the inverse localization length ξ
depends logarithmically on the interaction strength J .

The different modes m1 and m2 show the same qualitative behaviour. The support falls
off in exponential fashion with the size of the support region. This aligns nicely with the
intuition that additional interaction terms should only dress the original modes. Furthermore,
the observed plateaus can be derived for the infinite system size limit as shown in Appendix C.
With increasing interaction strength J , the edge modes become less local, as expected from
perturbation theory.

A feature of particular note in these results is the insensitivity of the edge mode locality
to the disorder strength ∆. As a comparison, we also show data without any disorder. This
is surprising when contrasted with the intuition that disorder should help localize the edge
modes [17, 18]. This suggests that the edge modes of this SPT do not couple to the bulk
operators in circumstances of Anderson localization.

4.2 Many-body interacting perturbation

Now we resort to the calculations performed for η = 1, corresponding to the interacting
system. Due to the size of the Hilbert space and the effort of the re-diagonalization of the
topologically degenerate subspaces, we had to resort to system size N = 12. Fig. 2 again
shows the logarithmic support log10supp(E , S) for E ∈ {YLYR,XLZR} on the left and center
panel. The right panel shows the extracted localization length. A more detailed discussion
on the fitting procedure and cross validation of the code can be found in Appendix D. The
symmetry of the plot is due to the choice of the system S as laid out in section 3.3.

The support again shows an exponential decay of operator support into the bulk. Moreover,
this localization length ξ grows with increasing the interaction strength J as expected. The
localization length observed for all edge modes is of the same order as the one found in much
larger system sizes for the non-interacting perturbation (cp. gray dash-dotted line). However,
when increasing the interaction strength to J = 10−2 there is a sharp drop in the localization
length for some operators which might be ascribed to a transition towards a topologically trivial
phase. This transition point is far lower than the expected value of J ∼ 1. This is an expected
finite size effect as the edge modes are a priori closer together and thus able to hybridize more
easily. Furthermore, the fit errors shown in this plot stem can also be ascribed to the finite
size of the interacting system, since we are effectively fitting very few points. Nevertheless,
the fit errors allow for distinguishing the different behavior of the modes. Nevertheless, the
compatibility between non-interacting and many-body interacting localization lengths away
from this transition indicates that the signal of SPT behaviour can still be reliably observed in
system sizes tractable by exact diagonalization.

For the ZLXR mode we find that the heuristic picture is recovered as increasing disorder
strength aids localization. This contrasts strongly with our findings in the non-interacting
case, indicating that many-body interactions are necessary to couple the edge modes to the
bulk operators. Moreover, the localization length is generically longer than in the free fermion
case with disorder strength pushing the length down towards the free fermion value. This
suggests that the free fermion value represents the best localization of the edge modes for
fixed interaction strength. The same behaviour is found for XLZR (cp. see appendix).

An exception to the behaviour reported above is displayed in the localization length of
the YLYR edge mode. Despite the presence of many-body interactions, it shows a disorder
insensitivity akin to that of the non-interacting regime. This goes beyond mere analogy as
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the value of the localization length of the YLYR operator overlaps perfectly with the non-
interacting results. We computed the localization behaviour for all six possible edge mode
hybridization patterns and found that only theYLYR operator displays free fermion localization
behaviour. This suggests that this mode is subject to a selection rule which precludes the many-
body interaction effects which delocalize the ZLXR mode. The source of this selection rule is
at this point mysterious, but we note that the YLYR operator is unique among the choices of
edge mode products in being local to the edges in both spin and fermionic variables, i.e. it
does not feature a parity string across the whole chain. The absence of such a non-local feature
in the fermionic picture may explain the reduced sensitivity to bulk localization behaviour.

Put succinctly, our results suggest that in the presence of many-body interactions, there
may be a splitting of the modes into those which delocalize faster, i.e. ZLXR and XLZR and
are sensitive to disorder and one mode YLYR, which is insensitive to disorder and shows a
stronger localization comparable to the one of non-interacting edge modes. We would like to
point out, that since our method can only provide upper bounds to the localization behaviour,
it is still conceivable that all three modes behave the same. Also, it is possible that the disorder
sensitivity observed in all other products vanishes in larger systems than we are able to treat.
However even if a finite size effect, this splitting constitutes an interesting result as it would
be relevant for short synthetic chains or cold ion systems. In such circumstances where one
seeks to improve edge mode locality in presence of many-body interactions to encode quantum
information, the gains from disorder potentials are marginal compared to those from picking
“better” edge modes.

5 Conclusions

In this work, we investigated the localization behavior of topological edge mode operators
upon introducing both non-interacting and many-body interacting perturbations as well as
disorder. Specifically, we started out from the disordered XZX cluster Hamiltonian which as a
fixed-point model is exactly soluble and added XX and XXZ interactions which are expected
to drive the transition towards a topologically trivial model. We introduce different methods
of finding the topological edge mode operators, one based on the Majorana description which
yields the lowest lying eigenmodes for non-interacting systems and a second one, which uses
the relaxation of the fixed-point edge modes as an ansatz to heuristically find local edge modes
for many-body interacting chains. While the support of the obtained edge operators with the
interacting method is only an upper bound, the commutation with the Hamiltonian is exact.

Both perturbations considered delocalize as their strength is increased. However, the
non-interacting model displays no disorder dependence whereas the interacting system does.
Curiously, a single edge mode combination which in the fermionic language corresponds to the
two density operators at both ends, namely YLYR, shows no disorder dependence even when
adding many-body interactions. Our results suggest that for a finite size chain, one might find
different localization behavior for different edge mode operators. Specifically, we find one
edge mode that is most stable and completely insensitive to disorder, picking it out as the one
best-suited to encode a logical qubit.

Since we fully diagonalize the Hamiltonian we are limited to small system sizes even for
this one-dimensional problem. We hope to extend the method to larger systems by truncating
to the ground state sector, which would possibly allow a tensor network implementation as
well. The interacting method used in this work relies only on guessing a suitable ansatz
edge mode operator. Hence, we plan to apply it to more physical models and other types
of perturbations such as open dynamics. Here, one might hope to overcome the thermal
instability of topological systems [44] with the help of disorder [45].
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A Fractionalization

To see this, we must rewrite the time-reversal operator in a way that makes the edge action
explicit. We can do this by re-expressing our time reversal operator using the cluster operators
of our Hamiltonian,

N−1∏
j=2

X j−1Z jX j+1 = (−1)N X1X2

 
N−1∏
j=2

Z j

!
XN−1XN (20)

= (−1)N Y1X2

 
N∏

j=1

Z j

!
XN−1YN (21)

= YL

 
(−1)N

N∏
j=1

Z j

!
YR, (22)

which lets us recast T as

T = YL

 
N−1∏
j=2

X j−1Z jX j+1

!
YRK. (23)

If we decompose our Hilbert space into edge and bulk tensor factors, we can identify the
emergent edge action

T = YLKL ⊗
 

N−1∏
j=2

X j−1Z jX j+1Kbulk

!
⊗YRKR (24)

and so we can see that the localized operators of time reversal on the edge states are

TL/R = YL/RKL/R (25)

which, curiously, these operators do not square to 1. Instead,

T 2
L/R = YL/RKYL/RKL/R, (26)

= YL/R(−YL/R)K
2
L/R = −1, (27)

which demonstrates the symmetry fractionalization expected in an SPT phase.

B Operator norm decay of edge modes for η= 0

In the following we explicitly compute the norm of the edge mode operators mp and Pm̄p with
p = 1,2 obtained in the case η= 0. Here, it is important to keep in mind, that we want to study
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the effect of the reduction map on the level of the qubits in which the original Hamiltonian in
(1) is defined. All following norms and traces are hence evaluated by reversing the Jordan-
Wigner transformation and relating the fermionic operators to the Pauli operators. The results
are then mapped again to the fermionic level as the expressions take a more compact form
here.

Due to the non-interacting structure of the problem, the edge mode operators are linear
combinations of the initial Majorana operators γ j , γ̄ j . In this case the result of the reduction
map can be studied in detail. We find

tr SC
L,k
(mp) =

k∑
l=1

Qp,lγl ,

tr SC
R,k
(Pm̄p) =

N∑
l=N−k+1

Qp,l Pγ̄l , (28)

where, as explained above, the trace is evaluated on the level of the qubits. The differences
A− Γ (A) are then given by

mp − ΓSL,k
(mp) =

N∑
l=k+1

Qp,lγl ,

Pm̄p − ΓSR,k
(Pm̄p) =

N−k∑
l=1

Qp,l Pγ̄l , (29)

and again essentially only linear combinations of γ j and γ̄ j .
We can however compute easily the norm of any linear combination of Majorana operators.

Let S ⊂ [N] and define

A=
∑
j∈S

a jγ j (30)

to be any linear combination of the γ j operators with a j ∈ R for j ∈ S. One finds that the
square of A is given by

A2 =
∑
j,k∈S

a jakγ jγk

=
∑
j∈S

a ja j1+
∑

j,k∈S: j<k

a jakγ jγk +
∑

j,k∈S:k< j

a jakγ jγk

=
∑
j∈S

a2
j 1. (31)

From this we can directly conclude, that A has only two degenerate eigenvalues ±(∑ j∈S a2
j )

1/2

such that

‖A‖2 =
∑
j∈S

a2
j (32)

can be directly computed. The same argument holds for the operators Pγ j . Hence, we obtain

‖mp − ΓSL,k
(mp)‖2 =

N∑
l=k+1

Q2
p,l ,

‖Pm̄p − ΓSR,k
(Pm̄p)‖2 =

N−k∑
l=1

Q
2
p,l . (33)
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C Scaling behaviour of support results for η= 0

Some features of the edge mode support can be inferred from analytical results computed for
N →∞. Starting with

H = −i
N−1∑
j=2

∆ jγ̄ j−1γ j+1 − J
N−1∑
j=1

�
iγ̄ jγ j+1 + iγ jγ̄ j+1

�
, (34)

we can attempt to construct the edge modes iteratively. We can infer from the structure of the
Hamiltonian that the left edge modes will be of the form

mp =
N∑

j=1

αp, jγ j . (35)

In the thermodynamic limit, the edge zero modes are expected to be exact. This imposes a
condition on the coefficients of the zero modes via the commutator

1
2i

�
mp, H

�
= γ̄1

�
Jαp,2 +∆2αp,3

�
+
∞∑
j=2

γ̄ j

�
Jαp, j+1 +∆ j+1αp, j+2 − Jαp, j−1

�
= 0, (36)

from which we can construct a recurrence relation

αp, j+1 = −
J
∆ j

�
αp, j −αp, j−2

�
, (37)

that willl allow us to produce two linearly independant edge mode operators. Since we assume
that these should be smoothly related to the perfectly localised operators when J = 0, we
choose to begin the recurrance relation with either α1 = 1 and α2 = 0, which we identify with
m1, or vice versa, which we identify with m2. In the case of m1, a clear scaling behaviour
emerges from j = 4 onward

α1,3k+1 ∼ J−k, α1,3k+2 ∼ J−(k+1), α1,3k+3 ∼ J−(k+2), k ∈ N, (38)

while the coefficients of m2 exhibit a similar scaling behaviour from j = 3 onward

α2,3k ∼ J−k, α2,3k+1 ∼ J−(k+1), α2,3k+2 ∼ J−(k+2), k ∈ N, (39)

which predicts a significant amount of structure in our support measure plots. Since we can
compute our support measure exactly in the free fermion context, we see that

supp
�
m1, SL, j

�∼ J−
�

j−1
3

�
, (40)

supp
�
m2, SL, j

�∼ J−
�

j
3

�
, (41)

from which we infer that the support measure should have decending plateaus of width 3, all
of which fall within an exponential envelope, which is precisely what is observed in Figure 1.
The analysis for the right edge modes is identical, and we expect these to also show a plateau
structure, which is also seen.
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D Finite size scaling and cross validation

In this appendix, we discuss the finite size scaling of the non-interacting code and also explain
the cross validation between the two methods.

The data for the finite size scaling for the non-interacting (η = 0) code is shown in Fig. 3.
The color encodes support data of m0 for different different system sizes and the gray line is
machine precision. Each point is an average over 100 realizations for interaction and disorder
values similar to the main text. We find that the different system sizes agree quite well in the
parameter regime investigated here. Moreover, the data indicates that at a size of 24 sites the
support decays to the machine precision, which is why we settled for a system size of that
order for the main text material despite the availability of even larger systems.

For the interacting code things are quite different, as here 12 sites is the maximal system
size that can be reached due to the effort needed for the sorting procedure. Furthermore,
the emergent plateau structure which can be demonstrated in the infinite system limit for the
non-interacting case (see App.,C) still persists in the interacting model. Thus, we are forced
to effectively fit the exponential envelope to only three points, which unfortunately renders
a system size scaling towards smaller systems meaningless. Nevertheless, the interacting
procedure naturally also works if the Hamiltonian is actually non-interacting so we used this
to at least cross validate results between both algorithms for small systems where they agree.
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Figure 3: Finite size scaling for the non-interacting (η = 0) algorithm and the m0
mode. Color encodes system size, the gray line indicates machine precision. Each
point is an average over 100 realizations. The different panels show interaction
strength J = 10−2, 10−3, 10−5 from left to right. The three values of disorder
∆ = 0.1,0.3, 0.5 are indicated by markers and either lie on top of one another or
are below machine precision.

E Additional numerical data

In this appendix, we show additional numerical data obtained for the XLZR edge mode and a
bulk operator. Fig. 4a shows the support of XLZR edge mode on the same scale as in the main
text. It shows the same disorder dependence and has the same localization length as ZLXR.
Fig. 4b shows the localization behaviour of a bulk operator in a chain of length N = 11. Here
again, the disorder strength decreases the localization length.
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7

C O N C L U S I O N S

As any healthy relationship thrives on harmony but also dissonance, the relation-
ship between quantum mechanics and thermodynamics is no difference. The former,
much younger theory describes the universe with a breathtaking level of detail
while the latter predicts the collective behaviour of an innumerable number of
particles without even knowing their positions. Yet both of them agree that systems
- quantum or classical - dynamically find their way to equilibrium and furthermore
thermal ensembles in most circumstances. In the realm of quantum mechanics, the
underlying reasons for thermalisation are still subject of heated debates. A neces-
sary condition for thermalisation is prior equilibration, which provably happens for
generic systems but it is unclear what the associated time scales are. Since exact
solutions of many-body systems scale unfavourably in the system size, such ques-
tions are not easily accessible.

Many-body localisation is an effect that localises the constituent particles of a sys-
tem causing it to refrain from thermalisation altogether in a wide range of regimes
while still equilibrating. It can be explained by an emerging quasi-integrability in
terms of local constants of motion. In this thesis, we set out to elucidate questions in
many-body localisation in the more general context of out-of-equilibrium dynam-
ics addressing its stability, its experimental measurability and the computability of
its theory.

Firstly, we addressed whether many-body localisation is stable to small regions
which are thermal in one-dimensional spin chains. In spirit of the Griffiths effect,
we constructed a small many-body localised system with a thermal inclusion that
competes with localisation. This can be seen as a constituent part of a larger chain.
If the thermal inclusion is not able to thermalise its localised surroundings, it will
also not destabilise larger chains. We calculated localisation properties for two
scenarios: In the first, the thermal region is of constant size, whereas in the second it
scales extensively with system size. The results suggest that many-body localisation
is stable for finite inclusions, but extensive thermal regions do drive the system
towards thermalisation.

One of the most fascinating aspects of many-body localisation is that it can ac-
tually be realised in state-of-the-art analogue quantum simulators. Focusing spe-
cifically on ultra-cold atoms in optical lattices, we devised measurements that al-
low to probe the theoretically established phenomenology in an experiment using
only technology that is available in such a setup. We put emphasis on the question
of how to witness interactions which are crucial for many-body localisation and
showed that those can be detected measuring density-density correlators with the
in-situ measurement as well as with equilibration of local particle densities.

Another direction we investigated in this thesis are local constants of motion.
Basically the full phenomenology of many-body localisation can be explained using
such operators. As their occupation does not change in time, they are also the
reason for the non-thermalising behaviour. We introduced an algorithm which
constructs exact constants of motion for many-body localised systems. Since the
operators we found constitute an operator basis by construction, we can decompose
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the Hamiltonian to find a low order approximation of it in terms of these local
constants of motion. While global quantities such as the norm difference between
the approximation and the full Hamiltonian suggest that the approximation is not
reliable, we also show that it can faithfully reproduce local dynamics.

In the last part, we broadened the scope and devised an extension of our algorithm
to construct edge modes of spin chains with symmetry protected order. These are
also constants of motion due to the structure of the Hamiltonian and are expected to
be stabilised by a global symmetry. We investigated the influence of disorder and in-
teractions as perturbations to the original model and found that for non-interacting
perturbations, the disorder does not change the localisation properties of the edge
modes at all. This is intriguing, as the mechanism for delocalisation is hybridisation
via the bulk and the disorder should cause Anderson localisation in the bulk making
it far less likely to hybridise the ends of the chain. When subjected the system with
additional many-body interactions, the disorder did help stabilise two out of three
edge mode operators, while the remaining one is ignorant of the disorder and in
other words behaves like the non-interacting case.

To put in a nutshell what we have learned in the course of this thesis, we think
it is fair to say that local constants of motions are powerful objects that allow to
simplify and understand the complex dynamics of quantum many-body systems.
They are essential for the breakdown of thermalisation and can be put to use in
effective models with significantly simpler structures than real space Hamiltonians.
Nevertheless, we are only beginning to understand their origin and full impact. The
proposed algorithm in this work is capable of finding exact constants of motion, but
their locality is only heuristic. It can be generalised to other systems, if a suitable
heuristic or ansatz operators exists. What is lacking is a generalised, maybe even
analytical framework that allows to compute local constants of motion for arbit-
rary systems, given that there are any. Such a method could potentially consist
of an extended perturbation theory on the Hamiltonian level taking into account
the locality of the generated terms. We think it is crucial to obtain an in-depth
understanding of local constants of motion to make progress on the longstanding
question of the whereabouts of thermalisation.
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A D D E N D U M

I cannot tell which scientific breakthroughs will make it into history school books
in 200 years. Quantum computers or the quantum internet paraphrased as the
quantum revolution or the discovery of room temperature superconductivity are
potential candidates. I am however sure, that the history books in 200 years will
include a chapter on how we successfully prevented climate change. It is either that
or no history books at all.

It is my firm belief that any other problem will soon be outweighed in importance
and gravity by the global climate change. It is a serious problem not only because
it does threaten the very existence of mankind, but furthermore it has transpired
that only global solutions with the participation of virtually every living human on
this planet stand any chance of changing our fate.

In this light, I think it is a valid and useful question to investigate what changes
are necessary and realisable in the scientific community. Throughout this thesis, I
calculated the CO2-emission of the numerical simulations presented. In total, even
if they are divided by the number of authors, they make up roughly 10% of the an-
nual German CO2-emission per capita. It is very hard if not impossible to compare
this to the results achieved but what I would like to suggest is to raise awareness of
the climate resources which are needed for numerical projects. Maybe sometimes
it is not worth advancing the field incrementally if the climate costs are soaringly
high. My feeling is that scientists do not really know how much CO2 is actually
emitted when they submit a flood of jobs to a high performance cluster and that this
awareness could help to design numerics in a more climate friendly way. The far
more devastating impact however is the offset of CO2 for flights around the globe
to visit other groups or attend conferences. A single flight to another continent
easily makes up the largest share of a scientist’s annual CO2-emissions. Yet, the
technology for having virtual conferences is already available and an investment in
a meeting room equipped with cameras and screens would probably pay off in no
time given the costs of hotels and flights.

So why are we still not changing our ways? I think climate change is a very
uncomfortable topic for many people as its solution appears to be a massive trans-
formation of society and lifestyle as we know it. It appears as if little changes we
make have no meaning and even if we devote our lifes to living carbon neutral, our
neighbour can simply ruin our endeavours with their next business trip or holiday.
This incentivises people to take a fatalistic stance in this question which evidently
is also not helping.

I would like to stress that it very important to take the small steps first or at least
make steps instead of sitting and waiting, which is obviously not a winning strategy
here. Since the transformation we need extends to all facets of our lifes, we should
also change our ways as scientists - and this should happen rather sooner than later.

CO2-emission of this thesis [kg] 10803
Total number of citations 18
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C L I M A T E F O O T P R I N T C A L C U L A T I O N

When we estimate the CO2-emission of the performed numerical calculations, we
use the following approach. The total hours are estimated using the wall time re-
quest for the cluster jobs - naturally this number is slightly higher than the actual
runtime. To obtain the energy consumption, we use the thermal design power given
by the manufacturer of the CPUs. We do not add any other energy consumption for
cooling or other applications, which makes us confident that this should account for
the overestimation of the runtime. Most importantly, we only base the calculation
on the data that actually ended up in the paper or even a subset thereof. In practise,
most of the CPU time is actually spent on prototyping. Also in many cases, more
calculations were performed that did not end up in the final version of the paper.
We think that the estimates given are hence very conservative and probably even
an order of magnitude away from the actual CO2-emission of the whole doctoral
research.
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