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Abstract
Protein-RNA interactions play an important role in all post-transcriptional regulatory
processes. High throughput detection of protein-RNA interactions has been facilitated
by the emerging CLIP-seq (crosslinking and immunoprecipitation combined with high-
throughput sequencing) techniques. Enrichments in mapped reads as well as base
transitions or deletions at crosslink sites can be used to infer binding regions. Single-
nucleotide resolution techniques (iCLIP and eCLIP) have been achieved by capturing
high fractions of cDNAs which are truncated at protein-RNA crosslink sites. Increasing
numbers of datasets and derivatives of these protocols have been published in recent
years, requiring tailored computational analyses. Existing methods unfortunately do
not explicitly model the specifics of truncation patterns and possible biases caused by
background binding or crosslinking sequence preferences.
We present PureCLIP, a hidden Markov model based approach, which simultane-

ously performs peak calling and individual crosslink site detection. It is capable of
incorporating external data to correct for non-specific background signals and, for
the first time, for the crosslinking biases. We devised a comprehensive evaluation
based on three strategies. Firstly, we developed a workflow to simulate iCLIP data,
which starts from real RNA-seq data and known binding regions and then mimics
the experimental steps of the iCLIP protocol, including the generation of background
signals. Secondly, we used experimental iCLIP and eCLIP datasets, using the proteins’
known predominant binding regions. And thirdly, we assessed the agreement of called
sites between replicates, assuming target-specific signals are reproducible between
replicates.
On both simulated and real data, PureCLIP is consistently more precise in calling

crosslink sites than other state-of-the-art methods. In particular when incorporating
input control data and crosslink associated motifs (CL-motifs) PureCLIP is up to 13%
more precise than other methods andwe show that it has an up to 20% higher agreement
across replicates. Moreover, our method can optionally merge called crosslink sites to
binding regions based on their distance and we show that the resulting regions reflect
the known binding regions with high-resolution.
Additionally, we demonstrate that our method achieves a high precision robustly

over a range of different settings and performs well for proteins with different binding
characteristics. Lastly, we extended the method to include individual CLIP replicates
and show that this can boost the precision even further. PureCLIP and its documenta-
tion are publicly available at https://github.com/skrakau/PureCLIP.
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1. Introduction

In molecular biology, the primary goal is to decipher the roles and interactions of
molecules that drive cellular functions, the key players being DNAs, RNAs and proteins.
This includes regulatory mechanisms used by cells to implement their specific gene
expression levels, defining their metabolic states and functions, and that allow them to
differentiate into tissue specific lineages or developmental stages.
Among the molecular interactions, the interactions between proteins and RNAs

play an important role as they regulate a large number of metabolic processes within
the cell. To be able to investigate such processes, we need to be able to analyse the
exact landscape of interactions, i.e. identify the exact binding regions, optimally in
a quantitative fashion. Since 2003, CLIP-seq technologies [140] allow the in vivo,
transcriptome-wide detection of binding regions for a protein of interest with high
resolution. Many advances optimizing different experimental steps were made over
the last years, improving the sensitivity and resolution.
The various protein-RNA binding mechanisms are still largely unexplored. The

primary scope of this thesis is the development of novel computational methods that
allow for an accurate analysis of CLIP-seq data at a high resolution. With this, we aim to
gain insights into the underlying bindingmechanisms as well as the experiment-specific
signal characteristics and biases. Moreover, with our work we want to empower other
researchers to draw more reliable conclusions from CLIP experiments, to understand
the mechanisms of the different regulatory processes and finally, to explore disease-
causing disruptions or alterations of protein-RNA interactions.

1.1. Thesis outline
In this thesis we describe our work ranging from a statistical model to capture interac-
tion footprints, to a truncation-based CLIP data simulation workflow and a compre-
hensive evaluation strategy including experimental data. The thesis is divided into
three parts.
The first part comprises four chapters, where we will first give an introduction

into the general biological background and protein-RNA interactions (Chapter 2). In
Chapter 3 we will then explain the available experimental technologies used to capture
protein-RNA interactions in detail, describe the computational challenges concerning
the analysis and give an overview of existing methods. Furthermore, in Chapter 4 we
will describe the fundamental statistical concepts that are relevant in the context of
the methods presented in the subsequent chapters.

In the second part will focus on developed methods, evaluation strategies and results.
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1. Introduction

In Chapter 5 we will present our method to capture protein-RNA interactions. For that
we will first describe in detail how we model interaction footprints, detecting both
regions enriched in pulled-down RNA fragments and individual crosslink sites, using
a hidden Markov model (HMM). Additionally, we will present a non-homogeneous
version of this HMM that can include covariates to correct for various biases. Lastly, we
will present an extended version to include replicates. In Chapter 6 wewill then describe
the experimental and simulated data used for evaluating the method’s performance in
comparison to other state-of-the-art methods. For the latter, we developed a simulation
framework mimicking the experimental steps of the iCLIP protocol. In Chapter 7
we will present some intermediate results from the model training for an example
eCLIP dataset. In Chapter 8 we will then proceed to present the main evaluation,
where we compare the precision of our method to that of other methods, both at the
crosslink site and at the binding region level. For this purpose, we use 1) simulated
data, 2) experimental iCLIP and eCLIP data for proteins with known binding regions
and 3) we assess the agreement of called sites between replicates. In Chapter 9 we
will complement these evaluations with additional assessments, i.e. we will show the
memory and runtime requirements, the performance for different settings and when
including RNA-seq data instead of input control data. We will further show results for
a protein with binding characteristics different from those of the proteins used before.
Lastly, we present the performance gain of our method when including replicates.
In the third and last part we will then discuss the advantages and disadvantages

of our model in comparison to other strategies and review a few general insights
concerning CLIP data. We conclude the thesis with an outlook, where we will describe
potential future improvements and applications of our method.
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2. Biological background

In this chapter we will give an introduction into the field of molecular genetics, discuss
in more detail the role of protein-RNA interactions and provide a brief overview of the
experimental techniques that are most important in this context.

2.1. Introduction to genetics
For living organisms the instructions for their development, reproduction and all biolog-
ical functions are stored in deoxyribonucleic acid (DNA) molecules. This information,
which makes each species and each individual unique, is passed from one generation to
the next. DNA is a long biopolymer consisting of nucleotides, each containing one of
the four bases adenine (A), cytosine (C), guanine (G) and thymine (T). The nucleotides
are covalently bound via their phosphate and deoxyribose groups, which build the
DNA backbone. Since the phosphate group is always bound to the third carbon atom
of one deoxyribose and the fifth of the next, each strand has a direction and its ends
are denoted as the 3’ and 5’ end accordingly. The sequence of the nucleotides encodes
the genetic information. Typically, two strands form a double stranded DNA helix,
where As always pair with Ts and Cs with Gs via hydrogen bonds, as discovered by
Watson & Crick in 1953 [148]. As a result, one strand is the exact reverse complement
of the other. This enables DNA replication prior cell division, where the strands are
separated and serve as templates for the synthesis of new reverse complement strands.

In eukaryotes, the genetic information is located in the cell’s nucleus and organized
in multiple molecules called chromosomes. The human genome contains 23 pairs of
chromosomes, each set comprising about 3 billion base pairs and about 40,000 genes
[111, 151], i.e. regions encoding proteins or other regulatory nucleic acids. Generally,
within one individual each cell contains the same genetic informationwith the relatively
rare exception of somatic variation, i.e. substitutions, deletions or insertions which
can originate, for example, from errors during the DNA replication process. Another
exception are certain immune cells, T- and B-cells, which acquire somatic variation
through a targeted recombination process as well as gametes which contain only a
single copy of each chromosome.
To apply the genetic instructions, the cells read out the information and use it to

regulate the synthesis of proteins. A key molecule in this process is the ribonucleic
acid (RNA). Information is transferred from DNA to RNA and from RNA to protein
molecules. This flow of information is part of what became known as the central dogma
of molecular biology, shown schematically in Figure 2.1, which most importantly states
that information cannot be transferred back from protein molecules to nucleic acids.

5



2. Biological background

DNA

RNA

Protein

Transcription

Translation

Replication

Figure 2.1.: The central dogma of molecular biology as (re-)stated by Francis
Crick in 1970 [34]. Solid arrows indicate the general transfer of sequence information.
Dashed arrows indicate special cases of transfer, for example reverse transcription
(RNA→ DNA) or RNA replication (RNA→ RNA). A transfer from DNA directly to
protein is theoretically possible, but has not been observed in living cells [142].

The shown version of the dogma, in contrast to the version stated by James Watson in
1965 [74], also allows the transfer from RNA to DNA as a special case and is valid until
today.

2.1.1. Transcription and regulation

The process which transfers the genetic sequence information from DNA to RNA is
called transcription and carried out by a protein complex called RNA polymerase. The
RNA polymerase moves along the DNA and uses one strand as a template to synthesize
single-stranded RNA in 5’ → 3’ direction (see Figure 2.2). Thus the resulting RNA
encodes the exact same information as the corresponding DNA region.
Although the genetic information is identical in each cell of one organism, the

cellular functions differ significantly between different points in time, different tissues
and under different external conditions, for example stress. This is enabled by complex
regulatory processes, both at a transcriptional and at a post-transcriptional layer.

At the transcriptional level, for example, specific proteins called transcription factors
(TFs) can bind to specific regions in the DNA and thereby promote or repress the
activity of the RNA polymerase. Additionally, distal genomic elements called enhancers
can interact with the promoter of genes via genomic loops and increase transcription.
Another layer of regulation is added by so called epigenetic modifications, which
influence gene expression without altering the underlying DNA sequence [5, 15]. The
most important epigenetic mechanisms are DNA methylations and modifications at
histones, proteins important for organizing the DNA inside the nucleus. Epigenetic
modifications can be inherited during cell divisions and to the next generation, but are

6



2.2. RNA

Figure 2.2.: Transcription The RNA polymerase (RNAP) synthesizes RNA in 5’→ 3’
direction based on a DNA template. From Wikimedia Commons (Public Domain).

far less stable than the genetic information [5].

2.2. RNA
RNA molecules are the key player in the transfer of genetic information and its reg-
ulation. Like DNA, RNA is a biopolymer consisting of nucleotides, but instead of
deoxyribose RNA contains ribose and instead of the nucleotide base thymine (T) it
contains uridine (U). Moreover, in contrast to DNA, RNA is a single-stranded molecule,
often exhibiting intramolecular base pairs. RNAs that are translated into proteins
are called messenger RNAs (mRNAs). Besides mRNA, there exist non-coding RNAs
(ncRNAs) that do not encode proteins and fulfill diverse functions. We will give an
introduction into the diverse world of RNAs in the following sections.

2.2.1. Post-transcriptional modifications
Before being translated, nascent mRNAs called pre-mRNAs undergo several processing
and modification steps, of which some already take place co-transcriptionally. First,
pre-mRNAs are processed into mature mRNAs through splicing, 5’ capping and 3’end
polyadenylation. RNA splicing is the process where certain regions, called introns, are
cleaved out and the remaining regions, called exons, are ligated. Alternative splicing
events, i.e. the use of different splice sites or different exon combinations, generate
different mRNA isoforms from one single gene. From an evolutionary viewpoint
this mechanism is an efficient way to increase the number of resulting proteins with-
out equivalently increasing the size of the genome. The entire collection of present
transcripts in a cell or given cell population is called the transcriptome.
In addition to the classical post-processing events such as splicing, the individual

RNA nucleotides can be further chemically modified by specific enzymes. Altogether,
more than 100 different modification types were already identified [20], although
many of them are rare. The most frequent modifications are different types of RNA
methylations, A-to-I RNA editing, where adenines are deaminated to inosines (Is), and
pseudouridylations, where uridines are isomerized to pseudouridines (Ψs) . Such post-
transcriptional modifications can either directly alter the resulting protein sequence
or impact regulation, for example, by altering RNA structure or protein binding sites.
Together these modifications build the epitranscriptome, which increases not only the

7



2. Biological background

complexity of the transcriptome, but also allow for dynamic changes between different
developmental stages or under different environmental conditions.

ncRNAs are processed and modified as well, however, exhibiting their own specific
biogenesis pathways. Polyadenylated mRNAs are finally exported to the cytoplasm,
where the sequence information is translated into proteins.

2.2.2. Non-coding RNAs

In humans, less than 2% of the genome encodes for proteins [31], while the remaining
98% contains other regulatory elements or genes that are transcribed into ncRNAs.
However, a large fraction is thought to be functionless, often referred to as junk
DNA. Such junk DNA can also be transcribed into junk RNAs, which is thought of as
transcriptional noise [77]. In 2012 it has been estimated by the ENCODE Consortium
that more than 80% of the human genome has some sort of biochemical function [31].
This statement has caused an ongoing controversial debate, mainly about the definition
of “function” and “junk” [51], where some counter that the functional fraction has an
upper limit of 25% [56, 57]. Similarly, the distinction between junk RNA and functional
ncRNAs remains challenging [110]. Although the number of known ncRNAs has
increased constantly over the past years, the exact number of those that are also
functional is difficult to estimate and remains to be determined [110, 113].

A large number of different functional ncRNA classes is known, ranging from ribo-
somal RNAs (rRNAs) and transfer RNAs (tRNAs) that are involved in the translation
of mRNAs into proteins, to micro RNAs (miRNAs), small nuclear RNAs (snRNA), long
ncRNAs (lncRNAs) and circular RNAs (circRNAs), each coming with their own func-
tional roles and predominant cellular localizations. Similar to mRNAs, ncRNAs are
processed and modified, however, undergoing distinct regulatory principles. ncRNAs
are involved in many different cellular processes, play important roles in gene regula-
tion and, consequently, are associated with many different diseases, including cancer
as well as developmental and neurological disorders [45, 137]. For a detailed review
about different classes of ncRNAs and their pathways see, for instance, [23, 45].

2.2.3. RNA structure

During transcription, RNA is synthesized as a single-stranded molecule which allows
for intramolecular base pairing between complementary parts of the sequence forming
secondary structures. Even though this secondary structure is more or less predictable
based on complementary subsequences [46, 87, 118, 160], for many RNAs the structure
is dynamically changing [27]. Importantly, it not only depends on the sequence itself,
but also on potential chemical modifications as well as interactions with proteins,
DNAs and other RNAs [46].
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2.2.4. Post-transcriptional regulation
Post-transcriptional regulation is carried out at a multitude of different levels. Broadly
speaking via different regulatory processes such as RNA splicing, modification, trans-
port, export, translation and degradation, each modulated by protein-RNA and po-
tentially RNA-RNA interactions. The former will be discussed in detail in the next
section.

The latter includes interactions with a wide range of ncRNAs, which in turn undergo
regulatory processes. A well studied example are miRNAs, which are ∼ 22 nt long,
bind to mRNAs and thereby regulate their translation [45, 97, 137]. miRNAs can be
located within intragenic or intronic regions of other genes and often have their own
promoters and thus transcriptional regulation. They undergo complex biogenesis
pathways, starting from long primary transcripts (pri-miRNAs) that contain hairpin
structures and are cleaved by Drosha and Dicer, finally resulting in short miRNAs. This
biogenesis in turn is regulated by other ncRNAs and RNA binding proteins. Mature
miRNAs are then loaded into the RNA-induced silencing complex (RISC) and bind
to complementary regions within the 3’-UTR of their target mRNAs, where they
inhibit translation and cause mRNA decay [137]. Although many different regulatory
processes were revealed in recent years, the vast majority of such processes is still
poorly understood and remains to be explored.

2.3. Protein-RNA interactions
Interactions between RNAs and RNA binding proteins (RBPs) play an essential role in
both transcriptional and post-transcriptional gene regulation. RBPs bind on several sites
of coding and non-coding RNAs and regulate RNA functions via metabolic processes as
described in the previous section. They usually fulfill many diverse functions and many
of them bind to DNA as well. Together, RNAs and RBPs form ribonucleoprotein (RNP)
complexes. Beside RBPs acting on RNAs, RNAs can also act on proteins and influence
their function. For example, lncRNAs can serve as guides to recruit transcription
factors, as scaffolds to create large RNPs, as decoys for RBPs or as signals, e.g. by
inducing conformational changes of signaling molecules [50, 108]. RNPs are involved
in many different important cellular processes. Well known examples of larger RNP
complexes are the spliceosome, which is responsible for splicing the pre-mRNA, and
the ribosome, responsible for the translation of mRNAs into proteins. Consequently,
disruptions of protein-RNA interactions, by mutations either of the RBP or the bound
RNA, can cause severe diseases ranging from cancer and auto-immune defects to
neurological disorders [22, 93].

Conventional RBPs contain one or more well-defined RNA binding domains (RBDs),
such as RNA recognition motifs (RRMs), heterogeneous nuclear RNP K-homology
domains (KHs) and zinc fingers (ZFs) [94]. Most of these RBDs bind short, 3 to 5 nt
long regions of the RNA [8, 40]. In humans, more than 1,500 different proteins were
predicted to be RNA binding based on canonical RBDs and existing literature [52].
However, recent years revealed that proteins can bind RNAs also without featuring
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such classical domains, for example through intrinsically disordered regions (IDRs) [21],
shape complementary regions or RNA deposition through protein-protein interactions
(for a detailed review see Hentze et. al [66]). In particular large RNP complexes, such as
the ribosome or spliceosome, often lack canonical RBDs [12, 112]. Moreover, large-scale
in vivo RNA interactome capture (RIC) approaches, making use of quantitative mass
spectrometry to identify proteins bound to RNAs, detected more than 1000 different
human RBPs [11, 21]. Interestingly, only half of these proteins contain classical RBDs
and a large fraction was not known to be RNA related before [66]. This illustrates
that a large number of RBPs is still likely to be discovered and their functions to be
explored.

When shifting the focus from the involved proteins or protein domains to the RNAs,
one can ask for the exact binding targets for a protein of interest. This can provide
valuable information about the protein’s role in regulatory processes and the underlying
binding mechanisms. It is known that the binding affinities of RBPs depend on both the
RNA sequence and structure, while some RBPs have a stronger preference for either
of the two [40, 65]. In vitro and in vivo experimental strategies have been developed
to identify and characterize the target RNAs of RBPs. In vitro techniques enable the
study of binding affinities while eliminating other regulatory factors. In protocols
such as SELEX [138], RNAcompete [116] and Bind-N-Seq [82], the target RNAs are
identified by exposing an RBP to a large pool of short, random RNAs and subsequently
measuring the bound RNAs. Bind-N-Seq, the most recent one, uses high throughput
sequencing. Based on this method, a recent study [40] examined the RNA binding
affinities for 78 human RBPs. The results showed that a large number of proteins bind
to a relatively small set of short, low-complex sequence motifs, while obtaining RNA
specificity through preferences for different structures or flanking sequences. Many
RBPs were shown to bind to specific bipartite motifs, reflecting the binding of multiple
RBDs [2, 40]. Furthermore, the authors speculate that long stretches of mono- or
dinucleotides within transcripts might facilitate sliding of certain RBPs along the RNA
[40]. As this study mainly focused on proteins containing classical RBDs, the binding
affinities of newly detected RBPs with novel types of RBDs remain to be examined.
In living cells, protein-RNA interactions do not solely depend on the sequence-

structure binding preferences, but also on numerous other factors. For example, other
RBPs can regulate the interactions via cooperative or competitive binding [134]. More-
over, the RNA’s structure highly depends on the condition within the cell, e.g. on
chemical modifications and on interactions with other biomolecules (see Section 2.2.3).
In vivo methods, such as crosslinking and immunoprecipitation (CLIP) technologies,
enable the detection of protein-RNA interactions as they occur in living cells and will
be described in detail in Section 3.2.

Both in vitro and in vivo methods are important to gain new insights into complex
and still poorly understood regulatory layers. Many open challenges remain: detecting
new RBPs and their RBDs, understanding unknown binding mechanisms and finally
deriving information about the RBP’s function. Fortunately, more and more high-
throughput methods are being developed allowing us to accurately investigate these
questions. Deepening our understanding of the detailed regulatory processes will also
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enable the development of new therapeutics, for example by blocking or enhancing
specific protein-RNA binding sites.

2.4. Experimental techniques in molecular biology
In the following we will briefly discuss the main biotechnological methods laying the
foundation for research in the field of molecular genetics, as well as for the experimental
and computational methods described in this thesis.

Next generation sequencing

A common task in molecular biology is to detect the exact sequence of nucleic acid
molecules of interest, for example of thewhole genome or of transcribed RNAmolecules.
The first sequencing technology was introduced by Sanger [122] based on the synthe-
sis of complementary strands by DNA polymerases and the incorporation of chain-
terminating nucleotides for one specific base. This results in molecules of different
lengths all ending with the corresponding base. The lengths can be detected and then
used to recover the sequence. For this purpose, DNA molecules are first fragmented,
amplified and then sequenced from one end, generating short stretches of known
nucleotides called reads. For more than one decade now, several new technologies
were developed where fragments are sequenced in a massively parallel manner, allow-
ing a faster analysis with decreasing costs compared to the previously used Sanger
technology. These technologies are known as Next-generation sequencing (NGS) or
high-throughput sequencing (HTS). One of the most widely used technologies is Illu-
mina sequencing [13], which features relatively low error rates and is relevant in the
context of this thesis. Standard Illumina platforms support read lengths between 50
and 300 nt, as well as the sequencing of fragments from both ends, called paired-end
sequencing. More details and an overview of the current field can be found, for instance,
in the review by Heather & Chain [64].

Reverse transcription (RT)

Since sequencing technologies are designed for DNA molecules, when investigating
RNA molecules these are first artificially transcribed into complementary DNA (cDNA)
molecules by using RNA-dependent DNA polymerases, called reverse transcriptases,
from retroviruses.

PCR amplification

Polymerase chain reaction (PCR) is a technique to amplify DNA fragments in order to
prepare libraries large enough for sequencing. The DNA molecules are exponentially
amplified using DNA polymerases and cycles of repeated heating and cooling. First,
during the denaturation step heat causes a melting of the double-stranded DNA into
single-stranded DNA. Next, lower temperatures allow the annealing of primers to
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the templates molecules. Such primers are short, synthetic stretches of DNA that are
complementary to a target region at the 3’ end of the template DNA. Finally, DNA
polymerases are used to extend the complementary strand in 5’ to 3’ direction and the
resulting double-strand DNAs serve as templates for the next cycle.

Immunoprecipitation

Immunoprecipitation (IP) is a technique to isolate or pull-down a specific protein out
of a solution by using an antibody binding specifically to this protein. During this
process, the antibody itself is immobilized to a solid support, e.g. agarose or magnetic
beads, to allow a subsequent washing and finally the elution of the purified protein.

NGS applications

NGS technologies are applied to an increasingly diverse range of biological questions.
In order to study particular cellular processes, technologies capturing only certain
molecules of interest were developed. For example, with DNase-seq [132] only open
chromatin regions are sequenced. With ChIP-seq [72] only genomic regions that are
bound by a certain protein are sequenced. Another example are protocols based on
chemical probing such as SHAPE-seq [91], which causes cDNA truncations within
unpaired regions of RNAs and can be used to infer structural information. Furthermore,
CHART protocols can be used to capture proteins and DNA bound to an RNA of
interest [127]. In the context of protein-RNA interactions, RIP-seq [159] and CLIP-
seq [140] protocols can be used to detect RNAs bound to a protein of interest. This
class of protocols will be described in-depth in the following chapter. Generally, an
increasing number of such NGS protocols is being developed, addressing specific
biological questions and requiring tailored computational analyses.
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interactions

In the previous chapter we have discussed the important role of interactions between
proteins and RNAs for regulatory processes. These interactions can be investigated
from different perspectives, either by pulling down RNAs with the goal to detect bound
proteins or, and this will be the focus in this chapter, by pulling down one protein of
interest with the goal to detect the bound RNAs. In order to fully understand regulatory
processes mediated by RBPs, it is crucial to accurately determine the exact binding
regions for a protein of interest.
In the following we will give an overview of available experimental technologies,

with a particular focus on the iCLIP and eCLIP protocols and discuss the characteristics
of the resulting data. We will discuss the challenges in interpreting this data, discuss
existing analysis methods and motivate a revised model.

3.1. RIP-seq
The first experimental method developed to capture protein-RNA interactions is known
as RNA immunoprecipitation (RIP), with an early version already published 1979 [84]
and a more systematical approach established in the early 2000s [106, 135, 136]. Native
protein-RNA complexes are pulled down by immunoprecipitation (IP) with antibodies
specific for the protein of interest. RIP is then combined with RT-PCR, microarray
experiments (RIP-chip) [136] or high-throughput sequencing (RIP-seq) [159] to detect
the bound RNA transcripts. The protein-RNA interactions are preserved using either
optimized washing conditions or by inducing covalent crosslinks at the interaction sites
with formaldehyde [106]. Note, that the latter causes crosslinks not only at sites with
protein-RNA interactions, but also at protein-protein and protein-DNA interaction
sites. As a consequence, both strategies capture also indirectly bound RNAs, e.g. from
large ribonucleoprotein complexes [150].

3.2. CLIP-seq
In 2003, a technology using crosslinking and immunoprecipitation combined with
high-throughput sequencing (CLIP-seq) [140] was invented, allowing a genome-wide
binding site detection. In contrast to RIP, RNAs are fragmented prior to the IP, resulting
in a far higher resolution. Further, CLIP methods use UV light, which causes the
formation of covalent crosslinks only at sites with direct protein-RNA interactions,
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but not at protein-protein interaction sites. The crosslinks are relatively strong and
allow a stringent washing to remove indirectly bound or sticky RNAs. Note that
CLIP protocols are always combined with sequencing, therefore the terms CLIP and
CLIP-seq are used synonymously. The most commonly used protocols in this field are
HITS-CLIP (CLIP coupled with high throughput sequencing) [85], photoactivatable
ribonucleoside-enhanced CLIP (PAR-CLIP) [62], individual-nucleotide CLIP (iCLIP) [78]
and enhanced CLIP (eCLIP) [143]. In all protocols the covalent crosslinks subsequently
increase the probability for base transitions, deletions and truncations during the
reverse transcription, which can serve as diagnostic events to localize interaction sites
(see Figure 3.1, step (9)).

An important limitation of HITS-CLIP and PAR-CLIP is that due to the ligation of
an adapter at the 5’ end of the RNA fragments, they only capture cDNAs which are
entirely read by the reverse transcriptase, i.e. which are not truncated (see Figure 3.1,
left column). For HITS-CLIP it has been shown that deletions, affecting 8-20% of the
captured cDNAs, can be used as diagnostic events to infer crosslink sites. In contrast,
transitions are more dispersed within the reads and can not be reliably distinguished
from SNPs, RNA editing sites or sequencing errors [157]. For PAR-CLIP, cells are
additionally treated with UV-reactive nucleoside analogs such as 4-thioridine (4SU) or
6-thioguanosine (6sG), which are incorporated into the RNA and crosslink with higher
efficiency. This additionally leads to T-to-C transitions during reverse transcription,
which are used as diagnostic events. Although the nucleoside analogs increase the
resolution, the results of the experiment depend on a successful incorporation of
these analogs and studies showed that these can additionally cause unwanted cellular
responses [19].
The fraction of truncated and thus in HITS-CLIP and PAR-CLIP lost fragments

is typically over 80% [133]. Second generation CLIP protocols, such as iCLIP [78]
and eCLIP [143], were developed to capture both read-through and truncated cDNAs,
allowing the detection of crosslink sites with a much higher resolution. In this thesis
we aim for single-nucleotide resolution and are thus mainly interested in CLIP-seq
protocols that are capturing truncated cDNAs, which will therefore be described in
more detail in the following section.

3.2.1. Truncation-based CLIP protocols

Although a wide range of derivatives exist to date, such as 4SU-iCLIP [68], FAST-
iCLIP [47], irCLIP [156], Fr-iCLIP [17], seCLIP [145] and FLASH [4], in the context of
this thesis we focus on the currently most widely used variants iCLIP and eCLIP.
iCLIP was developed in 2010 and uses a cleavable adapter in combination with an

additional circularization step, which allows all cDNA fragments to be amplified and
sequenced (see Figure 3.1, middle column). In 2016 eCLIP was published [143], which
also captures truncated cDNAs, but introduced several modifications to the protocol
(see Figure 3.1, right column). Since the vast majority of captured cDNAs in these
protocols are truncated, a feature exploited for the computational analysis, we refer to
them as truncation-based CLIP protocols.
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Experimental protocol

The common main steps of iCLIP and eCLIP protocols, and to some extend also of the
derived variants, are the following [83, 150]:

1. UV crosslinking: in vivo UV-C treatment (254 nm wavelength) causes the forma-
tion of covalent crosslinks at sites with direct protein-RNA interactions.

2. Cell lysis: stringent buffer is used to break down cell membranes as well as most
protein-protein and protein-RNA interactions, which prepares the RNA for the
following fragmentation.

3. RNA fragmentation: RNase conditions are chosen such that an optimal RNA
fragment length distribution is achieved. Too long fragments should be avoided
to increase the resolution and to minimize the number of cDNA truncations at
off-target crosslinks. Too short fragments should be avoided as well, to allow
a unique mapping against the genome. Further, in case of target binding sites
upstream of RNA cleavage sites [61] (see Section 3.3) a narrow range of short
RNAs is more likely to cause biases. Thus, optimally, this step yields a large range
of fragment sizes [61], typically between 30 and 200 bp [83] or 300 bp [126].

4. Immunoprecipitation (IP): protein-RNA complexes are pulled down using an-
tibodies specific for the protein of interest. Note, that for many RBPs suitable
antibodies are lacking. In such cases, peptide tags can be inserted into the RBP
loci with CRISPR/Cas9 [115], enabling a pull-down of the protein-RNA complexes
using tag specific antibodies [144].

5. RNA adapter ligation: 3’ end adapters required for reverse transcription are
ligated. Importantly, 5’ end adapters are not yet ligated to account for subsequent
cDNA truncations.

6. Quality control (optional): controlling specificity of pulled-down protein-RNA
complexes using SDS-PAGE with high RNAse conditions. The desired band is
slightly above the expected band of the target protein, additional bands indicate
contamination with background proteins.

7. Further purification: SDS-PAGE and transfer to nitrocellulose membrane are
used to purify the target protein-RNA complex and remove remaining free RNA
fragments or adapters. A region is excised that corresponds to the molecular
weight of the protein-RNA complexes of interest (≤220 nt of RNA [143]).

8. Protein removal: Proteinase K is used to digest proteins, leaving a small peptide
at the crosslink site.

9. Reverse transcription (RT): cDNA is synthesized from the 3’ end of the RNA
towards the 5’ end. The reverse transcriptase is likely to be interrupted by the
remaining peptide at the crosslink site, which causes the truncation of cDNAs.
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10. DNA adapter and random barcode ligation: 3’ adapters required for PCR are
added using different strategies. In iCLIP, a cleavable adapter is introduced via
the RT primer. In combination with an extra circularization and linearization
step, the adapter is brought to the 3’ end (see [78]). In contrast, in eCLIP the
adapters are directly ligated to the 3’ cDNA ends. In both protocols, additionally
random barcodes are introduced allowing for downstream PCR duplicate removal
(see Section 3.3.1).

11. cDNA purification: removal of remaining free adapters and cDNA size selection
(using gel purification or/and silane beads).

12. PCR amplification of cDNAs.

13. High-throughput sequencing: iCLIP libraries are single-end sequenced. The
read starts originate from the 3’ cDNA ends and thus contain information about
potential crosslink sites. eCLIP libraries are paired-end sequenced and the read
start of the second read contains the information about potential crosslink sites.
For both protocols Illumina technologies are used to sequence reads of typically
50 nt length, including barcodes [68, 143].

Variations in all of these steps can have a major impact on the resulting data, and
should be appreciated for downstream data analysis. For a more detailed description
of recent advances in CLIP technologies see Lee & Ule [83].
Importantly, in the eCLIP protocol additionally a size-matched (SM) input control

experiment is generated, which is produced using 2% of the input lysate prior IP, run
on the SDS-PAGE, transferred to the membrane and excised in a size-matched manner.
All other steps of the protocol are done in the same way as for the target experiment.

More and more iCLIP datasets are getting published and recently, various improve-
ments to the protocol were proposed to alleviate previous limitations [61, 126]. Besides,
to date, 223 eCLIP datasets for 150 different proteins have been published by the
ENCODE consortium [31, 109, 129].

Diagnostic events

For truncation based CLIP protocols read starts can be used as diagnostic events to
infer crosslink sites. It has been shown for iCLIP data that the vast majority of cDNAs
is truncated [61], which illustrates the importance of this signal for inferring the
exact protein-RNA interaction sites. Importantly, such truncations can occur a target-
specific crosslink sites as well as at off-target crosslink sites. The exact frequency
of such diagnostic events is difficult to estimate, since it varies between different
experimental conditions and highly depends on the individual binding characteristics
of the proteins. Deletions and mutations also occur in iCLIP and eCLIP protocols, but
with far lower probabilities and importantly are not that well distinguishable from
other causes [61], e.g. SNPs and sequencing or PCR errors.
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3.2.2. CLIP experiments for subcellular compartments
In standard CLIP protocols, whole cells are lysed and used for the experiment. However,
most proteins carry out specific regulatory functions in certain subcellular compart-
ments. While already described in the past for non-truncation based CLIP meth-
ods [121], in 2017 a new protocol called Fr-iCLIP was published [17], performing
iCLIP experiments for individual fractions, i.e. the cytoplasm, nucleoplasm and chro-
matin fraction. Such methods allow to capture the binding regions and characteristics
specifically for different subcellular compartments.

3.3. Biasing factors
In order to infer target-specific RBP binding regions from truncation-based CLIP data, it
is crucial to account for different sources of biases. When comparing CLIP experiments
of different target RBPs, the overall signal can be of different strength and quality,
depending on the protein abundance and the general RNA binding affinity of the RBP.
Besides, when comparing binding sites of one RBP over the whole transcriptome, the
strengths of the CLIP signals highly depend on the RNA abundance, both for target
but also for background noise signals. PCR and mapping artefacts, for example within
repetitive regions [158], additionally contribute biases.
Furthermore, background noise such as signal coming from sticky RNA fragments

that were not washed away or from the binding of background binding proteins [48] as
well as crosslinking biases [61, 128, 133] constitute a major challenge for the analysis
of CLIP data. The most important biasing factors will be discussed in more detail in
the following sections.

Another type of bias is caused by predominant RNAse cleavage sites located down-
stream of protein binding sites [61], leading to depleted or shifted signals due to the
inefficient mapping of short reads. However, such types of biases are rather specific
for each protein and protocol and should be addressed experimentally.

3.3.1. PCR artefacts
During the cycles of PCR amplification (see Section2.4) not all fragments are amplified
equally, which causes a quantitative PCR bias. Additionally, sequence errors occur,
which propagate during subsequent PCR cycles.

In comparison to RNA-seq, CLIP libraries are typically rather sparse and require
more amplification cycles prior to sequencing. As a consequence, PCR artefacts are
likely more intense with more adverse effects, in particular for truncation-based CLIP
data where read starts are used as diagnostic events.
To overcome this problem, recent CLIP technologies [78] make use of random

barcodes, also called unique molecular identifiers (UMIs). UMIs are ligated prior to
PCR, and thus can be used to distinguish PCR duplicates from real biological cDNA
duplicates, preserving the quantitative information. Furthermore, they can be used to
detect and correct potential PCR sequence errors [130].
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3.3.2. Non-specific background binding signal
One of the main problems for the analysis of CLIP data is signal from non-specific
background binding, which can have different causes:

1. Co-purification of other proteins binding the same RNA fragments as the target
protein. This can lead to off-target cDNA truncations causing false positives
when assigning binding sites based on read starts.

2. Insufficient removal of non-specific proteins or sticky RNAs during washing
often leads to strong background noise, in particular when highly abundant
RNAs are bound by highly abundant proteins.

Certain transcripts, for example MALAT1, are bound by many proteins and are highly
abundant in different tissues or conditions inducing a signal in most CLIP datasets. A
previous study analysing published PAR-CLIP datasets showed that if no control dataset
is used for correction, up to 45% of the called binding sites overlap with background
binding sites, defined using control CLIP experiments [48]. Predominant background
binding regions that are common to several CLIP datasets have been systematically
identified [119] and can be used to validate the specificity of called binding sites.
However, discarding such regions might prevent the detection of real binding sites.
Instead, control experiments should be used for normalization to reduce the number
of false positives within such regions.
Figure 3.2b shows an example for PUM2 eCLIP signals within a MALAT1 region,

which strongly resemble the signals within the input control dataset and thus are most
likely caused by non-specific background binding. For comparison, Figure 3.2a shows
an eCLIP signal which is specific for the target dataset.

3.3.3. Transcript abundances
Besides having an effect on non-specific signals, different transcript abundances also
affect target-specific CLIP read counts, making a transcriptome-wide comparison
difficult. Importantly, depending on where the protein preferentially binds, also varying
abundances between nascent (currently transcribed), immature (not fully spliced yet)
and mature transcripts can have an effect. Thus, varying abundances between introns
and exons will likely be reflected in the CLIP signals, independently of the RBPs affinity
to the respective binding regions. Moreover, for nascent transcripts also varying
abundances within introns and exons occur [6, 24].

3.3.4. Crosslinking biases
Another major bias is caused by different crosslinking efficiencies of different RNA
sequence and structure contexts as well as of different amino acids [125]. Several
studies showed a strong (UV) crosslinking bias (CL-bias) towards uridine-rich se-
quences [61, 128, 133]. Such crosslink associatedmotifs are referred to asCL-motifs [61].
Furthermore, it is known that proteins binding to double-stranded RNAs have a rather
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Figure 3.2.: UCSC Genome Browser [70] view showing position-wise read coverages
for PUM2 eCLIP data and corresponding size-matched input data [143] (the browser
tracks were directly created from the already preprocessed data ENCSR661ICQ and
ENCSR439GXW provided by the ENCODE project). The numbers on the y-axes denote
the read counts normalized by the total number of reads in the dataset. For conciseness,
only tracks for reads mapped against the forward strand are displayed. Shown are a)
eCLIP signals within a region at the 3’ end of PDCD6 and b) within a MALAT1 region.
Note that PUM2 is known to bind within 3’-UTRs.
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poor crosslinking efficiency, because they mainly interact with the phosphate-sugar
backbone of the RNAs and not with individual nucleotide bases [128]. As a consequence,
single-stranded uridine-rich motifs show the highest crosslinking efficiency.

For proteins binding preferentially to motifs with high crosslinking efficiencies, CLIP
data is likely already of higher quality and CL-biases are less of an issue. In contrast,
if the target protein binds to motifs with low crosslinking efficiencies, background
binding - in particular of co-purified proteins bound to the same RNA fragments at
sites with higher crosslinking efficiencies [83] - can cause serious biases.

3.3.5. Reverse transcription offsets

Up until recently it was assumed that in case of cDNA truncations the reverse tran-
scriptase terminates in such a way that the last cDNA base is located one nucleotide
upstream of the actual crosslink site [78]. A recent study revealed for two examined
proteins that besides the truncation rate also the truncation position depends on the
used reverse transcription enzyme and buffer conditions [146]. More precisely, in
case of the AffinityScript reverse transcriptase, commonly used in eCLIP, cDNAs were
truncated upstream of the crosslink sites, while in case of the SuperScript transcriptase,
commonly used in iCLIP, the last cDNA bases were at the crosslink sites. Such differ-
ences should be investigated further and considered for the individual computational
analysis.

3.4. Control experiments
Additional SDS-PAGE quality visualization steps, investigating the purity of the pulled-
down protein-RNA complexes, can be performed during the experiment in combination
with high RNAse conditions (see Section 3.2.1, protocol step 6), non-specific IPs, knock-
out cells without the protein or non-crosslinked cells [83].

Beside controlling the overall quality of the experiment, control experiments can be
also coupled with high-throughput sequencing to generate control data for downstream
computational normalization. Different strategies exist that aim to represent the non-
specific background signal within the target experiment. In the past, often paired
control CLIP experiments were generated using non-specific antibodies to control for
potential contaminations with background proteins. Ideally, such control data does not
contain any or at least much lower signals compared to the target data. This sparsity
additionally causes high amplification rates [143], which makes it unsuitable to use for
normalization. The same holds consequently for control CLIP experiments on cells
where the target protein is knocked out or where the crosslinking step is omitted.

The eCLIP protocol is designed to generate a size-matched (SM) input control where
only the IP step is omitted (see Section 3.2.1). Since the input sample is run through the
SDS-PAGE as well, it represents RNA fragments crosslinked to a mixture of background
proteins with a similar molecular weight as the target protein. Thus, it reflects a
combination of different biases: background binding, crosslinking preferences, different
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transcript abundances and mappabilities. However, it is worth noting that in the target
data non-specific background signal might arise due to co-purified proteins bound to
the same RNA fragments as the target protein [83] causing off-target cDNA truncations
(see Section 3.3.2), which might not be represented by input control data. Nevertheless,
concerning such off-target truncations, SM input control is probably more suitable
for normalization than applying non-specific IPs which add an additional, potentially
biased, subsampling layer. Furthermore, since a large fraction of background noise is
simply caused by highly abundant, sticky RNAs bound by highly abundant or many
different proteins [150], input data is a highly valuable method for normalization (see
Figure 3.2b).

Another possibility is to use corresponding RNA-seq data for normalization in order
to account for different transcript abundances. However, how exactly its signal is best
used for normalization, e.g. at which resolution, remains to be explored, as RNA-seq and
CLIP-seq signals are quite different. Further, predominant subcellular compartments
of the RBP should be taken into account [24]. For example, if the protein mainly binds
transcripts which are still chromatin associated, standard whole cell poly(A) RNA-seq
data or whole cell input control data is not the best choice for normalization.

3.5. Comparison of iCLIP and eCLIP

In comparison to other NGS protocols, CLIP libraries tend to have a rather low complex-
ity due to the sparse nature of protein-RNA binding landscapes. Because of this and a
generally low amount of pulled-down RNAs, a relatively high PCR amplification rate
is needed prior to sequencing, in particular in combination together with inefficient
adapter ligations. In eCLIP several steps were optimized, including the adapter ligation,
improving the efficiency of the protocol. In comparison to iCLIP, eCLIP was shown to
produce cDNA libraries with an increased complexity, which decreases the required
PCR amplification up to 1,000-fold [143]. One possible explanation is that the eCLIP
protocol is more efficient in capturing RNA fragments bound by the target protein,
e.g. also at low affinity binding sites. However, the increased complexity could also be
caused by non-specific background noise and should be handled with care, in particular
since eCLIP omits the quality control visualization step [83].

This quality visualization step (see Section 3.2.1, step 6) is an advantage of the iCLIP
protocol when it comes to specificity, because it allows quality control already during
the experiment and provides further important information when published together
with the data. In contrast, the eCLIP protocol omits this step in order to increase
the efficiency. On the other hand, eCLIP generates size-matched input control data,
allowing for a downstream computational normalization for non-specific background
noise. Furthermore, in the eCLIP protocol the experimental barcodes are introduced
already during the 3’ RNA adapter ligation, which allows for a high efficiency by
multiplexing experiments. Taken together, one can conclude that the strength of iCLIP
lies more in specificity, while eCLIP is optimized for efficiency.
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3.6. Computational methods to detect protein-RNA
interactions from CLIP data

In order to understand regulatory processes and how they are mediated by RBPs, it is
crucial to accurately measure the interactions between proteins and RNAs. To derive
this information from CLIP data, adequate computational methods are required. Ideally,
we would like to obtain the exact binding affinities of the target protein for different
binding regions, such that they are comparable across the whole transcriptome or
even across experiments. In the following sections we will briefly describe the key
challenges when interpreting CLIP data, give an overview of existing methods and
motivate the development of a novel approach.

3.6.1. Key challenges
The signals in the data are influenced by different biasing factors and in order to detect
target-specific interactions we need to address three main challenges:

• Definition of protein-RNA interaction footprints

To detect protein-RNA interactions from CLIP data, we first need to specify the
generated footprints that we expect to observe in the data and that we want
to capture. For example, most conventional methods simply aim to capture
high peaks of bin-wise read counts. Alternatively, one could aim for individual
positions with high read start counts. In any way, defining, encoding and possibly
combining the signals of interest from the raw data is a crucial step in the method
design, as it strongly impacts the results.

• Detection of target-specific signals

Weneed to distinguish target-specific CLIP signals from background noise. There-
fore we need to accurately model the signal distribution over the whole transcrip-
tome or at least broader regions. Often this is done by modeling the signal, e.g.
read counts, using a mixture model, assuming one background and one target
component.

• Bias correction

Additionally, we need to be aware of the various sources of biases which have
been shown to heavily affect both iCLIP [61] and eCLIP data [143] and that can
lead to differences in signal strengths as well as cause non-specific background
signals (see Figure 3.2b). Thus, to avoid calling false positives, it is crucial
to explicitly account for non-specific background binding, different transcript
abundances and crosslinking preferences (see Section 3.3).

Only accurate computational methods tailored to the specifics of the used CLIP protocol
enable us to draw reliable conclusions from the biological experiments.
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3.6.2. Existing methods
Several tools have been developed for the computational analysis of HITS-CLIP and
PAR-CLIP data [33, 124, 141], but only few tools have been developed for the specific
analysis of truncation-based CLIP data, such as iCLIP and eCLIP data. In the following
we first describe protocol-independent peak-calling methods, then discuss tools that
are designed for HITS-CLIP or PAR-CLIP data and, finally, describe the most important
tools that can be applied to truncation-based CLIP data. Note that some tools comprise
a set of functions to pre- and post-process CLIP data, however, we focus on the
functionalities for the core analysis here.

CLIP type independent methods

Piranha performs strand-specific peak-calling [141]. It models the underlying bin-
wise read counts using a zero-truncated negative binomial distribution, assuming the
majority of reads originates from background signal, and computes a genome-wide
significance threshold above which peaks are reported. Thus, it does not explicitly
model background and target signals, but it supports the additional incorporation of
bin-wise covariates to correct for non-specific background signals.

CLIPper is also a strand-specific peak-calling method [88] and was used by the
ENCODE consortium for the analysis of the published eCLIP datasets [143]. It in-
corporates gene annotations from the reference genome and uses a three-pass filter
to reduce the number of false positives. 1) It applies a permutation test, where the
observed reads are randomly placed within the gene. Given the distributions, for each
position and its observed read coverage a false-discovery rate (FDR) is computed. Only
positions with an FDR below a given threshold are kept. 2) The position-wise read
coverage is interpolated across the transcript using a cubic spline fitting. From this
the peaks, centers and widths are defined. 3) A Poisson distribution is used to model
the peak-wise read count distribution across the whole transcriptome and to assess
whether a peak is significant given a p value threshold.

Methods designed specifically for HITS-CLIP or PAR-CLIP data

PARalyzer (PAR-CLIP data analyzer) [33] is a tool that exploits PAR-CLIP specific
T-to-C conversions. It uses a kernel density estimation with a Gaussian kernel function
to estimate the local crosslinking signal of T-to-C conversions and compares it to the
background signal of T-to-A/G/T conversions. Sites with a minimum read coverage
and crosslinking signal above the background signal are considered interaction sites.
In this way, obtained regions can then be further extended by a user-defined length.

CIMS is a method from the CLIP Tool Kit (CTK) designed to detect crosslink-induced
mutation sites (CIMS) [102, 124]. For a selected type of mutation, i.e. substitution,
deletion or insertion, a permutation test is used to assess the significance of the observed
mutations at one position given the overlapping reads. For this purpose, each observed
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mutation is placed randomly in one of the overlapping reads, while keeping the distance
to the 5’ end of the read to account for position-specific sequencing error rates. Then,
for each candidate crosslink site an empirical FDR is computed.

Methods able to detect crosslink sites based on truncation signals

PIPE-CLIP is an online pipeline for the analysis of HITS-CLIP, PAR-CLIP and iCLIP
data [25]. It separately calls enriched read clusters and individual crosslink sites, which
are subsequently merged. It models cluster-wise read counts using a zero-truncated
negative binomial distribution. To detect crosslink sites, for each position it uses a
binomial distribution to model the probability of the observed read start counts given
the position-wise read coverage. Interestingly, the success probability of the binomial
distribution is set to the average genome coverage. Although based on a powerful idea,
one drawback of this method is that it is designed as an online tool and cannot be
easily integrated into other types of workflows.

CITS is another method from the CTK [124, 149], which calls individual crosslink
sites from iCLIP data, similarly to CIMS for HITS-CLIP data. It clusters reads based on
their starts and uses a permutation test to detect positions within such clusters with
a significantly elevated fraction of read starts. Called crosslink sites within a defined
distance (by default: 25 nt) are then further clustered to binding regions.

iCount was developed particularly for and along with the iCLIP protocol [24, 36].
Similarly to CITS, it uses a permutation test to detect sites that are significantly en-
riched in read starts within a defined region. The difference is that iCount uses genomic
annotations to group read start sites for this purpose, either gene-wise (by default),
transcript-wise or transcript-wise while additionally separating between different ge-
nomic features (CDS, introns, 3’-UTR, 5’-UTR, ncRNA or for intergenic regions). When
scoring individual sites, iCount does not only consider the read starts at the corre-
sponding position, but also considers the read start counts a few nucleotides upstream
and downstream by using a moving sum (by default: ±3 nt). This strategy boosts the
detection of crosslink sites with additional crosslinks in their direct neighbourhood.
Crosslink sites are then called based on a defined FDR threshold. In a second step, the
sites are then clustered based on their distance (by default: 20 nt).

3.6.3. Motivation for a revised computational model
The described existing peak-calling and individual crosslink site detection methods
each have their strengths and weaknesses. However, prior to this work no method
for the analysis of truncation-based CLIP data existed that performs peak-calling and
individual crosslink site detection simultaneously while correcting for experimentally
introduced biases.

General peak-calling strategies such as Piranha and CLIPper have the limitation that
they potentially miss low affinity binding sites or sites within in lowly abundant RNAs
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but with a clear pattern of diagnostic events. At the same time, they are more sensitive
to peaks caused by the binding of background proteins within highly abundant RNAs.
Piranha can also be used to detect enrichments in read start counts at single-

nucleotide resolution by adjusting the bin-size. A major drawback in this context
is that the counts are not modeled in relation to the counts in their neighbourhood.
This issue is partly addressed by PIPE-CLIP, which models the read start counts in
relation to the position-wise read coverage. However, as already mentioned, for iCLIP
data the position-wise coverage is influenced by truncations, which likely biases the
results.

In contrast, methods such as CITS and iCount detect sites with a significant fraction
of read starts using region-wise permutation tests to compute FDRs for each position
based on its observed read start count. With this they indirectly normalize for the
number of reads within such regions, i.e. within a gene, transcript or read cluster.
Their assumption under the null hypothesis is that the reads within a region start with
the same probability at each position within this region. However, the distribution of
read starts is highly biased by the sequence, structure and local transcript abundances,
which is not taken into account in these models. As a result, these methods are sensitive
to such artefacts, especially within highly abundant RNAs. Furthermore, while CITS
normalizes read start counts for clusters of read starts, iCount normalizes read start
counts for the whole gene or transcript. This has the disadvantage that local changes
in transcript abundance are not accounted for (see Section 3.3.3). iCount’s feature-
wise normalization addresses differences between exons and introns, but since often
multiple overlapping annotations exist, CLIP signals assigned to wrong annotations
are likely cause artefacts.
Methods that are designed to capture diagnostic events in PAR-CLIP and HITS-

CLIP data, such as PARalyzer and CIMS, cannot be easily extended for the analysis of
truncation-based CLIP data. The reason for this is that in order to assess the significance
of observed mutations, both methods make use of the reads covering the corresponding
position. However, in truncation-based CLIP data the position-wise read coverage is
highly influenced by neighbouring crosslinking events, which would impair the results
if one would simply add read starts as diagnostic events.

To address the limitations inherent in existing approaches, we have developed Pure-
CLIP, a method to accurately model and capture protein-RNA interaction footprints
from truncation-based CLIP data. PureCLIP calls individual crosslink sites considering
both regions enriched in protein-bound fragments and the iCLIP/eCLIP specific trun-
cation patterns. As we have seen how strong signals within eCLIP data can originate
from non-specific background noise (see Figure 3.2b), we have designed our method
to specifically correct for such biases. For this purpose, PureCLIP is based on a non-
homogeneous hidden Markov model which allows for the incorporation of additional
factors into the model, such as non-specific background signal from input control
experiments and, for the first time, CL-motifs. With this we aim to reduce the number
of false positives within bias prone regions, while increasing PureCLIP’s sensitivity
outside such regions. Lastly, PureCLIP can also incorporate individual replicates, which
further helps to reduce the number of false positives caused by artefacts present only in
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one replicate. We comprehensively evaluated the performance of PureCLIP in detecting
individual crosslink sites as well as binding regions and will demonstrate its superiority
over existing methods, on both simulated and experimental iCLIP and eCLIP data.
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4. Preliminaries
In this chapter we define the notations that we use throughout this thesis and introduce
the basic statistical concepts providing the basis for the developed methods.

4.1. Notations
Random variables are usually denoted in upper case letters, while their realizations
are denoted in lower case. Symbols in boldface denote vectors, matrices or sequences,
while scalars and parameter sets are set in regular typeface. If not stated differently, ob-
servations are denoted with y. A sequence of observations is written as y = y1, . . . , yT ,
where T denotes the number of observations. The subsequence from position i to j is
written as yi:j = yi, . . . , yj .

Also note that the variables α and β are used in different contexts, i.e. in the context
of the forward-backward algorithm (see Sections 4.2.5 and 5.6.2) and as regression
coefficients for GLMs (see Sections 4.2.7 and 5.4) to avoid complicated notations. The
current meanings will become apparent in the respective contexts.
Lastly, in the context of updating a parameter θ, we denote with θ′ the previously

learned and with θ′′ the updated value.

4.2. Fundamental statistical concepts

4.2.1. The binomial probability distribution
The binomial distribution is a discrete probability distribution used tomodel the number
of successes in n independent experiments (trials) with binary outcome, e.g. failure or
success. The probability to observe exactly k successes in n trials is:

P (k;n, p) = P (Y = k) =

(︃
n

k

)︃
pn(1− p)n−k, (4.1)

where p is the probability to get a success for each trial. The term
(︁
n
k

)︁
is the binomial

coefficient and denotes the number of ways to distribute k successes over n trials. The
expected value of a binomially distributed random variable Y ∼ B(n, p) is E[Y ] = np.

4.2.2. The gamma probability distribution
The gamma distribution is a continuous probability distribution defined by two param-
eters to model non-negative, right-skewed values. Given a shape parameter λ and a
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mean parameter µ, the probability density function is:

P (y;µ, λ) = P (Y = y) =
yλ−1e−

λy
µ(︁

µ
λ

)︁λ
Γ(λ)

, for y ≥ 0 and λ, µ > 0, (4.2)

where Γ(λ) is the ordinary gamma function. Alternatively, the gamma distribution
is often described with the shape parameter λ and a scale parameter υ = µ

λ
. In the

special case that the shape parameter is λ = 1, the gamma distribution is equal to the
exponential distribution. In contrast, for large λ the gamma distribution converges to
a normal distribution.

4.2.3. Maximum likelihood estimation
Given a statistical model, for example a certain type of probability distribution, and
the observations y = y1, . . . , yT , a common task is to infer the model parameters θ.
The maximum likelihood estimator θMLE of θ is the set of values that maximize the
probability for the observed data P (Y = y; θ), or more formally:

θMLE = argmax
θ

P (Y = y; θ). (4.3)

If the observations are independent, this can be written as:

θMLE = argmax
θ

T∏︂
t=1

P (Yt = yt; θ). (4.4)

In this context P (Y = y; θ) is a function of θ and called the likelihood function of the
parameters θ, also written as L(θ | y). This method of parameter estimation is called
maximum likelihood estimation (MLE).
In practice, often the logarithm of the likelihood is used, which can be written as:

θMLE = argmax
θ

T∑︂
t=1

log P (Yt = yt; θ). (4.5)

The log likelihood has the same maxima as the likelihood function, but increases
numerical stability and often simplifies derivation as well as obtaining closed form
solutions. Assuming Y are independent, identically distributed random variables, then
θMLE is asymptotically normally distributed.

4.2.4. Truncated probability distributions
In certain scenarios, the distribution of the observed data is truncated at one or both
ends, because values above or below a certain threshold can not be measured. A
typical example is the distribution of raindrop sizes, which are measured with a specific
instrument, not capturing raindrops below a certain size [76]. If we now assume that
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Figure 4.1.: Truncated data and the effect on parameter estimation. The data
(bars) is sampled from a normal distribution which is left-truncated at a value of 2. The
blue line represents a non-truncated normal distribution that was fitted to the data
using MLE, while the green line represents a fitted left-truncated normal distribution
with the truncation point 2.

the data follows a certain distribution, the parameter estimation, e.g. MLE, can be
severely biased due to the missing values. Figure 4.1 illustrates the possible impact on
the parameter estimation.
To address this problem, such data can be modeled using truncated probability

distributions. For example, given the non-truncated continuous probability distribution
f(y), the left-truncated probability distribution with the truncation point τ can be
derived as:

ftrunc(y) = P (Y = y; τ) =

{︄
0 if y ≤ τ
f(y)

1−F (τ)
if y > τ,

(4.6)

where

F (τ) = P (Y ≤ τ) =

∫︂ τ

−∞
f(x) dx (4.7)

is the cumulative distribution function up to the truncation point and the normalization
term 1− F (τ) ensures that

∫︁∞
τ

ftrunc(y) dy = 1. In a similar way, right-truncated as
well as truncated discrete distributions can be defined.

In other scenarios certain values, typically zeros, are inflated due to an additional
component. Such data can be modeled with corresponding zero-inflated distributions,
however, if the zero fraction is of no further interest this is often modeled using
truncated distributions as well.
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4.2.5. Hidden Markov models
Hidden Markov models (HMMs) assume a spatial dependency between neighboring
positions and are commonly used to segment sequences of observations. After their
invention in the late 1960s, they were initially mainly used for signal processing
problems such as speech recognition [114]. From the 1980s on they were also applied
for the analysis of biological sequences, for example, for gene finding [92] and CpG
island detection [42], and became a well established tool in the field of bioinformatics
[42]. Another well known example in this context is the application to ChIP-seq data,
more precisely to profiles of different histone modifications, with the goal to segment
the genome into different functional genomic elements [44, 96]. HMMs can be used as
unsupervised learning methods, where the data is unlabeled and the model parameters
are learned solely based on the data.

HMMs assume amixture model, where the given observations are caused (or emitted)
by discrete hidden states z = z1, . . . , zℓ. Importantly, in contrast to other mixture
models, HMMs include positional information. More precisely, the sequence of hidden
states s = s1, . . . , sT causing the observations y = y1, . . . , yT is assumed to follow a
Markov chain, where the probability to be in state St = zi at position t depends on the
predecessor states s1:t−1. In the following we only consider HMMs with a first-order
Markov chain, where the probability to be in state St = zi at position t only depends
on the state at position t− 1:

P (St = zi | S1:t−1 = s1:t−1) = P (St = zi | St−1 = st−1), ∀i ∈ {1, . . . , ℓ}. (4.8)

This memoryless property is called the Markov property.
In order to characterize an HMM, first the number of hidden states ℓ needs to be

fixed. Next, a transition matrix A = (aij) ∈ Rℓ×ℓ is required, defining the pairwise
transition probabilities between the states:

aij = P (St = zj | St−1 = zi), 1 ≤ i, j ≤ ℓ, (4.9)

where
ℓ∑︂

j=1

aij = 1, ∀i ∈ {1, . . . , ℓ}. (4.10)

Additionally, an initial state distribution π defines:

πi = P (S1 = zi), 1 ≤ i ≤ ℓ. (4.11)

And finally, each state zi comes with a certain emission probability distribution, here
dependent on the parameter set ϑi:

ei(yt) = P (Yt = yt | St = zi, ϑi), ∀i ∈ {1, . . . , ℓ}. (4.12)

Figure 4.2 represents a commonly used example for HMMs, namely the dishonest
casino, which occasionally switches between a fair and a biased dice. The goal is to
infer from the sequence of observed dice scores the most likely sequence of hidden

32



4.2. Fundamental statistical concepts

Fair

a) b)

Start

Biased

Figure 4.2.: Hidden Markov model example representing a dishonest casino.
Most of the time the casino uses a fair dice, but occasionally it switches to a biased dice
that generates a six with a probability of 1

2
. a) Hidden states (fair, biased) with their

initial probabilities, transition probabilities and emission probabilities for different dice
outcomes. b) Graphical representation of the model where one column corresponds to
one position in the sequence, comprising a hidden state St and a given observation yt.

states (fair or biased). Note that in general the emitted observations can be discrete or
continuous.
While the number of states ℓ is specified in advance, the model parameters θ =

{π,A,ϑ} usually need to be learned. Taken together, the joint probability of the
observed data y and a sequence of hidden states s is:

P (Y = y,S = s) = πs1es1(y1)
T∏︂
t=2

ast−1stest(yt). (4.13)

Another important concept are the state posterior probabilities, i.e. the probability to
be in state zi at position t given the observed data and the model parameters, which
satisfy the constraint

ℓ∑︂
i=1

P (St = zi | Y = y, θ) = 1. (4.14)

The computation of these probabilities will be described in the following paragraphs,
where we address the three basic problems of HMMs [114]: 1) how to compute the
probability of the observed data under a given model, 2) how to learn the model
parameters and 3) how to infer the most likely (sequence of) hidden states.
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Probability for a given sequence of observations under the model

Assume the model parameters θ are known, then the probability for a given sequence
of observations can be written as:

P (Y = y | θ) =
∑︂

s∈{1,...,ℓ}T
P (Y = y,S = s | θ), (4.15)

where {1, . . . , ℓ}T denotes all ℓT possible state sequences. However, this naive enu-
meration of all possible state sequences is computationally unfeasible. Fortunately, due
to the Markov property of the HMM it can be reformulated as a dynamic programming
approach referred to as the forward-backward algorithm [114]. Here, we denote as the
forward probability the probability to observe the subsequence y1:t and being in state
zi at position t:

αi(t) = P (Y1:t = y1:t, St = zi | θ). (4.16)
It can be computed as follows:

αi(1) = πiei(y1), (4.17)

αi(t) = ei(yt)
ℓ∑︂

j=1

αj(t− 1)aji. (4.18)

Thus, the probability of a given sequence of observations under the model is:

P (Y = y | θ) =
ℓ∑︂

i=1

αi(T ). (4.19)

In theory, this could be used as a likelihood function for MLE as described in Sec-
tion 4.2.3, however, since there exists no analytical solution to determine the parameters,
an iterative approach is described in the next paragraph.
Although only required for learning the parameters in the next step, similarly to

the forward probability a backward probability, i.e. the probability of the subsequence
yt+1:T :

βi(t) = P (Yt+1:T = yt+1:T | St = zi, θ) (4.20)
can be computed as follows:

βi(T ) = 1, (4.21)

βi(t) =
ℓ∑︂

j=1

aijej(yt+1)βj(t+ 1). (4.22)

Learning the HMM parameters

The goal is to learn the initial, transition and emission probability parameters θ =
{π,A,ϑ} that maximize the likelihood of the HMM given the observed data. However,
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since the observed data is emitted by a mixture model and the corresponding hidden
states are unknown, the optimal parameter estimates could be determined using numer-
ical optimization techniques based on Equation 4.19, but no closed-form solution exists.
Expectation-maximization (EM) algorithms provide an elegant alternative solution for
such problems by using an iterative procedure. Within each iteration, initially fixed
model parameters are used to compute new posterior probabilities of the hidden states
given the observations, which are then in turn used as weights to find the parameters
that maximize the conditional expectation of the observed data. It can be shown that
maximizing the expected log-likelihood for the given observations also maximizes the
likelihood [86]. In the following we will describe the Baum-Welch algorithm, which is
a special form of the EM algorithm designed for HMMs with discrete state space.
In the context of this algorithm, we need to compute the position-wise posterior

probabilities, which can be computed efficiently using the forward and backward
probabilities:

γti = P (St = zi | Y = y, θ) =
αi(t)βi(t)∑︁ℓ
j=1 αj(t)βj(t)

. (4.23)

Furthermore, we can compute the probability to be in state zi and zj at position t− 1
and t, respectively, given the observed data and the model parameters:

ξtij =P (St−1 = zi, St = zj | Y = y, θ) (4.24)

=
αi(t− 1)aijβj(t)ej(yt)∑︁ℓ

m=1

∑︁ℓ
n=1 αm(t− 1)amnβn(t)en(yt)

, 1 ≤ i, j ≤ ℓ.

The actual algorithm then iterates over the two steps described in the following.

1) Expectation step: Given a fixed set of model parameters θ′, the posterior prob-
abilities are updated, which in turn are used as weights to compute the expected
log-likelihood Q(θ | θ′) given the observed data:

Q(θ | θ′) =
∑︂

s∈{1,...,ℓ}T
P (S = s | Y = y; θ′) · logP (Y = y,S = s; θ). (4.25)

Using Equation 4.13, for HMMs the function becomes:

Q(θ | θ′) =
∑︂

s∈{1,...,ℓ}T
P (S = s | Y = y; θ′)

· log

(︄
πs1es1(y1)

T∏︂
t=2

ast−1stest(yt)

)︄
=

∑︂
s∈{1,...,ℓ}T

P (S = s | Y = y; θ′)

·

(︄
log πs1 +

T∑︂
t=2

log ast−1st +
T∑︂
t=1

log est(yt)

)︄
. (4.26)
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After some rearrangements (see Appendix A.1) we obtain:

Q(θ | θ′) =
ℓ∑︂

j=1

γ′
1j log πj (4.27)

+
T∑︂
t=2

ℓ∑︂
i=1

ℓ∑︂
j=1

ξ′tij log aij

+
T∑︂
t=1

ℓ∑︂
j=1

γ′
tj log ej(yt).

Recall that γ′
tj and ξ′tij can be computed efficiently using the previously described

forward-backward algorithm (see Equations 4.23 and 4.24). However, Q(θ | θ′) is not
yet computed, but instead serves as a function for the next step.

2) Maximization step: The parameters that maximize the expected log-likelihood
of the data are estimated:

θ′′ = argmax
θ

Q(θ | θ′). (4.28)

Note that the individual parameters can be estimated independently from each other.
The initial probabilities π as

π′′
j = γ′

1j, ∀j ∈ {1, . . . , ℓ}, (4.29)

the transition probabilitiesA as

a′′ij =

∑︁T
t=1 ξ

′
tij∑︁T

t=1

∑︁ℓ
m=1 ξ

′
tim

, 1 ≤ i, j ≤ ℓ, (4.30)

and the state-wise emission probability parameters as:

ϑ′′
i =argmax

ϑ

T∑︂
t=1

γ′
tj log ezi(yt) (4.31)

=argmax
ϑ

T∑︂
t=1

γ′
tj logP (Yt = yt | St = zi, ϑ), ∀i ∈ {1, . . . , ℓ}.

Note that the latter term corresponds to a weighted maximum likelihood estimation
(MLE).

It is important to note that the Baum-Welch algorithm only finds local optima and
does not guarantee a globally optimal solution. For this reason, good initial parameter
estimates are crucial. The iterative procedure is terminated when the convergence
criterion is met, i.e. usually when the difference between the current and the previous
likelihood of the model or the estimated parameters falls below a predefined threshold.
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Inference of hidden states

Finally, given the observed data and the learned model parameters, we can address
the question which hidden states did most likely cause the observed data. When the
goal is to detect the sequence s∗ of hidden states, a dynamic programming approach
referred to as the Viterbi algorithm [114] can be applied to compute

s∗ = argmax
s∈{1,...,ℓ}T

P (S = s | Y = y, θ). (4.32)

In some applications, however, one is not interested in the most likely sequence of
hidden states, but rather in the most likely hidden state for each position considering
all possible paths. For such cases posterior decoding is used, which simply assigns the
state with the highest posterior probability to each position:

z∗i = argmax
i∈{1,...,ℓ}

P (St = zi | Y = y, θ). (4.33)

General remarks on HMMs

Since traditional HMMs assume that the observations are emitted by hidden states
and do not require any label information, they belong to the unsupervised learning
methods. The number of states ℓ is fixed in advance, while all other parameters, i.e.
the initial, transition and emission probabilities are learned. For initialization, equally
distributed probabilities can be used and/or carefully selected values to prevent the
algorithm from converging to local, but non-global optima.

However, a large number of extensions and generalizations of classical HMMs exist,
for example, supervised HMMs using labeled data for parameter learning [95], factorial
HMMs containing multiple independent state variables [71], tree structured HMMs
with coupled state variables [73] and Bayesian HMMs making use of informative
priors for learning the model structure, parameters and hidden states [58, 71]. For a
detailed description of possible generalizations of HMMs and the corresponding chal-
lenges regarding inference, parameter learning and model selection see, for instance,
Ghahramani 2001 [53].
Another generalization are non-homogeneous HMMs, where the model parameters

can differ across positions.

4.2.6. Non-homogeneous hidden Markov models
The basic concept of HMMs assumes that the individual observations are dependent
on their hidden states – which follow a Markov chain – and independent otherwise.
This motivates homogeneous transition and emission probabilities. However, in some
applications the observations are additionally biased by confounding factors. In our toy
example of the casino (see Figure 4.2), this could be for instance the casino’s current
bank balance, e.g. the lower the balance the higher the probability that the casino
uses the ’biased’ dice. Such external information can be included in the model as
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a) b)

Figure 4.3.: Non-homogeneous hidden Markov models. a) A confounding factor
Xt is biasing the actual state probabilities. Consequently, covariates would be modeled
to influence the state transition probabilities. b) A confounding factorXt is biasing the
actual observations. Accordingly, covariates would be modeled to influence emission
probabilities.

covariatesX . Different structures exist for such non-homogeneous HMMs, modeling
an influence either on the state transition probabilities (see Fig. 4.3a)

aij(xt) = P (St = zj | St−1 = zi, xt), 1 ≤ i, j ≤ ℓ (4.34)

or on the emission probabilities (see Fig. 4.3b)

ezi(yt, xt) = P (Yt = yt | St = zi, ϑi(xt)), ∀i ∈ {1, . . . , ℓ}, (4.35)

where xt is a covariate at position t.
The correlation between the model parameters aij or ϑi and the covariates xt can

be learned, for example, using (generalized) linear models. Note that if the emission
probability ezi(yt, xt) depends on multiple parameters ϑi, usually some of the ϑi are
modelled dependent on xt, while others are assumed to be constant.

4.2.7. Generalized linear models
Let us leave the context of HMMs for a moment and let y = (y1, . . . , yT ) be a vector
of observed data andX be a matrix containing explanatory (or predictor) variables,
where one row represents xt = (xt1, . . . , xtp). A (ordinary) linear regression model
can be used to describe the relationship between the observation yt and the given
explanatory variables xt as follows:

yt = β0 + β1xt1 + · · ·+ βpxtp + ϵt, ∀t ∈ {1, . . . , T}, (4.36)

where ϵt denotes the error term and is assumed to follow a normal distribution N (0, σ2).
β is a vector of regression coefficients that have to be learned. In other words, the
expected values of Y can be predicted with Xβ. However, if ϵt is not normally
distributed, ordinary linear models are not applicable.
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Generalized linear models (GLMs) can be used to extend linear models for such
data [105]. This requires:

1. A link function Xβ = g(µ) describing the relationship between the expected
value E(Yt) = µt and the linear predictor.

2. An exponential family probability distribution fϑ(yt) = P (Yt = yt;µt, ϑ) de-
scribing the distribution of the error term ϵt.

Consequently, the ordinary linear regression model is a special case of GLMs with
normally distributed error terms and the link function g(µ) = µ.
The regression coefficients β of a GLM are typically estimated using MLE (see

Section 4.2.3), such that:

β∗ = argmax
β,ϑ

T∑︂
t=1

logP (Yt = yt;β, ϑ). (4.37)

In case of ordinary linear regression, the regression coefficients β can be estimated
using ordinary least squares, which minimizes the sum of squares of the differences
between the observed data and the predicted values. This simultaneously maximizes
the likelihood function. However, the MLEs of most GLMs do not have such a closed
form and the parameters need to be estimated using numerical optimization strategies.

4.2.8. Numerical optimization strategies
To find the maximum (or minimum) of an objective function that can not be found
analytically, different strategies exist that are based on function evaluations for different
parameters. Often, this parameter space is multi-dimensional. The naive way would be
to perform a grid search. While this in theory allows to find the global optimum, it also
requires a large number of function evaluations. Numerical optimization strategies are
designed to decrease the computational complexity, while aiming to find the global
optimum. However, these methods do not guarantee to find the global optimum.
A widely used strategy is based on gradients, such as the well known gradient

descent algorithm [107], which evaluates the gradient at a certain point using the
first-order derivative and then moves down the gradient until a local minimum is
reached. Another commonly used algorithm is the Newton-Raphson algorithm [7].
It additionally requires the second-order derivative to optimize the applied step size
and thus usually reaches the optimum faster. Importantly, these algorithms are only
applicable if the corresponding function derivatives can be computed.

In cases where the function is either not differentiable or the derivatives are not easily
computable, gradient-free algorithms can be used. One example is the Nelder-Mead
algorithm [104], also called Simplex algorithm, a relatively simple heuristic approach
that can deal with multi-dimensional optimization problems. For n dimensions it
uses a n-simplex, i.e. the n-dimensional generalization of a triangle, with the n + 1
vertices as evaluation points. Iteratively, geometric transformations, such as reflections,
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expansions and contractions are used to move the simplex towards the optimum. A
drawback of the Nelder-Mead algorithm is that is can converge to non-stationary
points [100], however, in practice it works well for most low-dimensional problems
and is relatively fast compared to other methods [81].

Many modifications of the aforementioned methods exist as well as other strategies
with different scopes of application and different disadvantages, but we will not go into
detail here. More information about numerical optimization can be found, for example,
in Nocedal & Wright 2006 [107].

40



Part II.

Method and Evaluation

41





5. Capturing target-specific
protein-RNA interactions from
truncation-based CLIP-seq data

We discussed in Section 3.6 the main challenges in detecting protein-RNA interactions
from CLIP data and how existing methods address these. In this chapter we will present
PureCLIP, a new method to detect protein-RNA interactions from truncation-based
CLIP data, such as iCLIP or eCLIP. We will first discuss the required preprocessing
steps of the data to allow an accurate and quantitative analysis. Then we will present a
new computational method to detect target-specific interaction footprints at single-
nucleotide resolution, while correcting for various sources of biases.

5.1. Preprocessing
We will briefly discuss the data processing steps required prior to the analysis for
iCLIP and eCLIP experiments. As all other NGS data, CLIP data requires adapter
removal, filtering based on read lengths and quality control. In the following we will
describe the CLIP specific issues that we address in the preprocessing. Although most
of the steps are necessary for other NGS data as well, it is important to note that for
truncation-based CLIP data artefacts are particular harmful, since individual read start
counts are used for the analysis. The used tools and the applied settings are described
in Appendix A.3.

A crucial step is the mapping of the reads. We use the read aligner STAR [39], which
is designed for RNA-seq data and allows mapping against the genome while taking into
account information about possible splice junctions. For most proteins, in particular
those that bind within introns, this is the appropriate choice. However, for proteins
binding near or across exon-exon junctions on the mRNA, mapping against the genome
causes a splitting of the CLIP signal. This in turn likely leads to a decreased sensitivity
or to artefacts within the downstream analysis, at least if not explicitly addressed.
For this reason, reads from such proteins should be mapped directly against mRNA
transcripts (as for instance done in Haberman et al. [61]).

Furthermore, many read mappers clip off terminal regions of the reads to optimize
the alignments. Since read start positions are used as diagnostic events, we disable
this feature in STAR (-alignEndsType EndToEnd) to ensure that the start positions of
the alignments correspond to the start positions of the original cDNAs. Moreover, in
comparison to RNA-seq, CLIP data contains a higher number of deletions induced by
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crosslinks [133]. We consider this in the alignment setting by using a lower deletion
open penalty (-scoreDelOpen -1), though the exact deletion rate is protein and protocol
dependent and the best mapping strategy remains to be explored.
Another mapping related question is how to deal with reads mapping to multiple

locations. Such multi-mapping reads often originate from repetitive regions, for ex-
ample Alu elements, which are dispersed over the genome, important for regulatory
functions and also bound by RBPs [155]. For CLIP data analysis such reads constitute
a major challenge, because they cause huge peaks and pile-ups of read starts, both for
target and non-specific background signals. The easiest and most stringent way is to
discard all such multi-mapping reads and only run the analysis on uniquely mapping
reads. Unfortunately, this also causes the loss of true signals in case the target protein
binds to repetitive elements. To include such regions in the analysis, input control data
should be included to normalize for this effect, since such mapping artifacts are likely
to occur in both datasets. Alternatively, approaches such as CLAM [158] can be used
that assign multi-mapping reads to individual locations based on the read coverage in
the vicinity. However, in this case the question remains if read starts can still be used
as diagnostic events, i.e. assuming crosslinks would occur in general at the same sites
within repetitive elements, or if the analysis should rather be limited to peak-level
resolution. For the context of this thesis we discard multi-mapping reads.
To allow for an accurate quantification of potential truncation events, we remove

PCR duplicates based on the mapping locations and UMIs (see Section 3.3.1). This
is important as PCR amplification rates are high, in particular for iCLIP datasets.
Moreover, with increased amplification the number of PCR errors within the UMIs
rises and leads to groups of different but similar UMIs originating from the same cDNA
molecule. To address this, we use UMI-tools [130], a network based method to remove
PCR duplicates which is able to handle errors within UMI sequences.

Finally, it should be noted that only reads originating from the 3’-end of the cDNA
are used for the analysis (see Section 3.2.1, Step 13). For eCLIP data, which is paired-end,
this is the second read of the pair.

5.2. Overview of the PureCLIP approach

PureCLIP aims to capture footprints caused by target-specific protein-RNA interactions
from truncation-based CLIP data. For this purpose we model both broader binding
footprints and, at high resolution, the signals caused by direct interactions between
the protein and individual nucleotides. In order to accomplish this, we address two
objectives: (1) detect regions enriched in mapped reads caused by pulled-down RNA
fragments and (2) detect crosslink sites where a significant fraction of read starts
accumulates at the same position, originating from truncated cDNAs (see Figure 5.1a).

The output of PureCLIP consists of individual crosslink sites associated with a score.
Since multiple crosslink sites can occur within one binding region, the crosslink sites
are optionally merged. In Section 5.3 we will first describe the basic model of PureCLIP,
i.e. without correction for biases. In Section 5.4 we will then describe how this basic
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Figure 5.1.: Overview of the PureCLIP approach. a) PureCLIP starts with mapped
reads from a target truncation-based CLIP experiment and derives two signals: the
pulled-down fragment densities and individual read start counts. Based on these two
observed signals it infers the most likely hidden state for each position. The goal is
to identify all sites with an enriched + crosslink state. Individual crosslink sites can
then be merged to binding regions. b) Additionally, information from input control
experiments can be incorporated. Its fragment densities are used to correct for non-
specific background signals, which reduces the number of false calls. c) PureCLIP can
incorporate information about CL-motifs to reduce false calls caused by non-specific
crosslinks.

model can be extended to incorporate additional factors into the model, such as a non-
specific background signal from input experiments (see Figure 5.1b) and CL-motifs (see
Figure 5.1c), to correct for biases. And finally, in Section 5.5 we present an extension
to include multiple individual replicates.

5.3. PureCLIP hidden Markov model
CLIP data features a spatial dependency between neighbouring positions. In order to
infer crosslink sites from the observed data we look at it as a segmentation problem and
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5. Capturing target-specific protein-RNA interactions

model this using a hidden Markov model (HMM) (see Section 4.2.5) at single-nucleotide
resolution. In this section we will first briefly present the design of the HMM and the
used signals, before we will describe PureCLIP’s statistical concepts in detail in the
following sections.

Hidden states

Each position t can be categorized either as non-enriched or enriched, indicating
whether the position is enriched in protein bound fragments or not. In addition,
each position can also be categorized as non-crosslink or crosslink, indicating whether
it represents a crosslink site or not. This combination results in four hidden states (see
Figure 5.1):

(1) non-enriched + non-crosslink,

(2) non-enriched + crosslink,

(3) enriched + non-crosslink,

(4) enriched + crosslink.

Non-enriched sites correspond to regions with no or low signal, which is assumed to
be background noise. State (2) corresponds to non-specific crosslink sites and it is
included in the model for mathematical completeness. We are interested in all sites
with a hidden state (4), i.e. sites that are enriched in pulled down RNA fragments
and show the truncation pattern (see Figure 5.1a). For the sake of clarity, we separate
the hidden states into two state variables (see Figure 5.2): S(1)

t = z
(1)
i represents the

enrichment state at position t with

z
(1)
i =

{︄
non-enriched, i = 0

enriched, i = 1
(5.1)

and S
(2)
t = z

(2)
j represents the crosslink state with

z
(2)
j =

{︄
non-crosslink, j = 0

crosslink, j = 1.
(5.2)

Observations

In order to detect enriched + crosslinked sites, PureCLIP uses two signals derived
from the mapped reads: (1) the pulled-down fragment density Ct, which is a smoothed
signal derived from the read start counts and holds information about the enrichment
within the current region, and (2) the read start counts Kt themselves, which hold
information about potential truncation events. Consequently, the HMM has two layers
of observations: c and k (see Figure 5.2).
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Figure 5.2.: Summary of the basic HMM framework. Left: Starting from the
mapped reads (bottom), two signals that serve as observations in the HMM are derived
for all nucleotide positions: individual read start counts and pulled-down fragment
densities, obtained from smoothed read start counts. The model aims to reconstruct
the most likely sequence of hidden states (top) from these signals. Right: A graphical
representation of the corresponding HMM.

To estimate the pulled-down fragment density we do not use position-wise read
counts, since for truncation based CLIP data these are strongly influenced by crosslink-
ing events in the neighbourhood. On the other hand, using counts within larger bins
would not be accurate in estimating the position-wise signal of the pulled-down frag-
ments. To address this problem, we apply a smoothing on the read start counts k to
estimate the density of pulled-down fragments at each position. This is done using
a kernel density estimation (KDE) [43] with a Gaussian kernel function K. For each
position, the latter assigns a higher weight to nearby read starts, while still considering
read starts which are further away, thereby providing a better estimate for the under-
lying pulled-down fragment density. We compute the smoothed signal at position t
using

ct =
1

h

t+4h∑︂
i=t−4h

ki · K
(︃
t− i

h

)︃
, (5.3)

where h is the kernel bandwidth (default: 50) and only positions within 4h before and
after position t are considered to limit the computational complexity.

We constrain the HMM to covered regions. A covered region comprises one or more
read start sites which are at most 4h nt apart as well as the 2h positions flanking the
outer read start sites. Individual reads with no other read starting within 4h nt, referred
to as singleton reads, are discarded.
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Emission probabilities

We assume that the observed pulled-down fragment densities can be described with a
mixture model, where one component is generated by non-enriched sites and one by
enriched sites. Two gamma distributions are then used to model the fragment density
values, with one set of parameters for the non-enriched state and one for the enriched
state, assuming that the enriched state is more likely to cause high fragment density
values than the non-enriched state.

Similarly, read start counts are modelled using two binomial distributions under the
assumption that the crosslink state is more likely to generate a higher fraction of reads
starting at one position than the non-crosslink state. In order to account for differently
covered regions we exploit the hierarchical structure of the two observed signals to
specify the model (see Figure 5.2), i.e. the size parameter of the binomial distributions
depends on the pulled-down fragment density ct.
The fragment density distributions and the read start count distributions are com-

bined to obtain the emission probabilities for each of the four hidden states.

Goal and general remarks

For each position we can then address the question: which of the four hidden states
did most likely cause the observed data? Our goal is to identify positions that are
enriched + crosslinked (see state (4) in Figure 5.2), which are interpreted as target-specific
interactions. Transitions between all four states are allowed and their probabilities
are assumed to be homogeneous over the transcriptome 1. The model parameters of
the HMM are estimated using the Baum-Welch algorithm, as described in detail in
Section 4.2.5, but with numerous model specific modifications. The latter mainly affect
the learning of the emission probability parameters for the different states, while initial
and transition probability parameters are computed as described in Equation 4.29 and
4.30, respectively. In the following sections we will describe in detail how we model the
emission probability distributions for each state and how the corresponding parameters
are learned.

5.3.1. Emission probabilities for non-enriched and enriched
states

First, in order to distinguish between non-enriched (z(1)0 ) and enriched sites (z(1)1 ) we
model the corresponding distributions of the fragment densities Ct.

Left-truncated gamma distributed emission probabilities

The fragment densities are non-negative continuous values with a right skewed dis-
tribution, which can be approximately described by a gamma distribution (see Ap-
1In practice the hidden states are not equally likely across the transcriptome, for example due to
different sequence preferences of the target protein, however, we focus here on the correction of
biases and not on the modelling of binding preferences.
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pendix A.2). Furthermore, we do not want to fit the model to the large portion of sites
which have a very low density or no read start to improve both the efficiency and
the robustness of the model. Accordingly, for each state z(1)i we model the emission
probability distribution using a left-truncated gamma (LTG) distribution

P (Ct = ct | S(1)
t = z

(1)
i ) =

⎧⎪⎨⎪⎩
fLTG(ct;µi, λi, τ) if ct > τ

1 if ct ≤ τ ∧ i = 0

0 if ct ≤ τ ∧ i = 1

(5.4)

where µi and λi denote the mean and the shape parameter of the distribution and τ
the truncation point. Fragment densities ct ≤ τ can only be emitted by non-enriched
states. We set the truncation point τ to the fragment density value of a singleton read
start (see Equation 5.3):

τ =
1

h
· K
(︃
0

h

)︃
, (5.5)

since we only want to account for positions with at least one read start and additionally
account for the fact that singleton read starts are discarded (see Section 5.3).

The probability density function of the LTG distribution is defined as

fLTG(ct;µi, λi, τ) =

⎧⎪⎨⎪⎩
0 if ct ≤ τ

1
1−FG(τ ;µi,λi)

· c
λi−1
t e

−λict
µi(︂

µi
λi

)︂λi
Γ(λi)

if ct > τ
(5.6)

with µi, λi > 0. For ct > τ , the first term normalizes the distribution for the truncation
(see Section 4.2.4), while the second term denotes the general gamma probability density
function (see Section 4.2.2). FG(τ ;µi, λi) denotes the cumulative gamma distribution
function, which can be shown to be equivalent to the normalized lower incomplete
gamma function for the integral from 0 to

(︂
λiτ
µi

)︂
:

FG(τ ;µi, λi) =

∫︂ τ

0

fG(x;µi, λi) dx =
1

Γ(λi)

∫︂ τ

0

(︃
λi

µi

)︃λi

xλi−1e
−λix

µi dx

=
1

Γ(λi)

∫︂ (︂
λiτ

µi

)︂
0

xλi−1e−xdx

=
γ
(︂
λi,

λiτ
µi

)︂
Γ(λi)

. (5.7)

While τ is fixed, the parameters µi and λi need to be learned.

Parameter estimation

We will now describe how the gamma parameters that maximize the expected log-
likelihood of the data are estimated within each iteration of the Baum-Welch algorithm
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(see Section 4.2.5, maximization step) for the non-enriched and the enriched state. While
the mean parameter for conventional gamma distributions can be estimated using
a closed formula, this does not hold for the computation of the mean µ or shape λ
parameter of the truncated gamma distribution. We therefore estimate the parameters
thatmaximize the log-likelihood functionweighted by the corresponding state posterior
probabilities numerically.

In general, for given observations y = y1, . . . , yT the log-likelihood function for the
LTG distribution (see Equation 5.6) can be written as:

lnLLTG(µ, λ | Y = y, τ) =
T∑︂
t=1

[︄
(λ− 1) ln(yt)−

λyt
µ
− λ ln

(︂µ
λ

)︂
− ln(Γ(λ))

− ln

⎛⎝1−
γ
(︂
λ, λτ

µ

)︂
Γ(λ)

⎞⎠]︄. (5.8)

We compute the position-wise state posterior probabilities

γ
t,z

(1)
i

= P (S
(1)
t = z

(1)
i | C = c, θ′), i ∈ {0, 1}, (5.9)

using the previous model parameters θ′ (see Equation 4.23). For each state z(1)i we then
estimate the updated parameters µ′′

i and λ′′
i as (see Equation 4.31):

(µ′′
i , λ

′′
i ) = argmax

µ,λ

T∑︂
t=1

γ
t,z

(1)
i
·

[︄
(λ− 1) ln(ct)−

λct
µ
− λ ln

(︂µ
λ

)︂
− ln(Γ(λ))

− ln

⎛⎝1−
γ
(︂
λ, λτ

µ

)︂
Γ(λ)

⎞⎠]︄ · I(1)t , (5.10)

where I(1)t is an indicator variable defined as

I
(1)
t =

{︄
1 if kt ≥ 1

0 else.

The latter ensures that the gamma distributions are only fitted to sites with at least
one read start, which reduces the computational costs and additionally improves
PureCLIP’s robustness. The effect of this model choice on the performance will be
shown in Chapter 9.

To numerically estimate the parameters that maximize a MLE, many different meth-
ods exist (see Section 4.2.8). However, gradient-based methods cannot be applied
here, because the derivatives of the truncated gamma distribution with respect to λi

become very complex. We therefore resorted to the Nelder-Mead optimization method,
which requires only the values of the likelihood function itself (see Section 4.2.8), and
is implemented in the GNU Scientific Library (GSL) [49]. The parameters µ′

i and λ′
i
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learned in the previous Baum-Welch iteration are used as starting values, i.e. as one of
the three starting vertices of a 2-simplex. They are likely to be already relatively close
to the current optimum and thus lead to a relatively fast convergence. Moreover, for
our optimization problem the parameter spaces are constrained. To ensure positive µ
parameters, the corresponding optimizations are performed in log-space. Additionally,
to enable arbitrary constraints for the shape parameter λ, the Nelder-Mead algorithm
was extended by penalty-based soft constraints (see Appendix A.4).

Estimating the mean and shape parameters of a truncated gamma distribution tends
to be relatively unstable. To regularize the estimates, by default, the shape parameter
of the non-enriched state is set to λ0 = 1, which constrains the emission probability
distribution to an exponential shape. Additionally, the shape parameter of the enriched
state is constrained with λ1 ≥ 1.

5.3.2. Emission probabilities for non-crosslink and crosslink
states

To distinguish between non-crosslink (z(2)0 ) and crosslink sites (z(2)1 ) we model the
corresponding read start counts Kt at position t, where we expect an increased count
at crosslink sites due to the underlying truncation events.

Zero-truncated binomially distributed emission probabilities

The probability to observe kt read starts can be modeled with a binomial distribution
given a number of trials nt and a probability p for each read to start at position t. Here,
nt denotes the number of fragments (or trials) from which a certain fraction results
in reads starting at position t. nt is unknown, however, we can use a surrogate value
n̂t directly deduced from the pulled-down fragment density ct by a simple rescaling
as described in the next paragraph. Furthermore, we again do not want to fit the
distributions to the large number of sites with no read starting. Accordingly, for
each state z(2)j we model the emission probability distribution using a zero-truncated
binomial (ZTB) distribution

P (Kt = kt | Ct = ct, S
(2)
t = z

(2)
j ) =

⎧⎪⎨⎪⎩
fZTB(kt; n̂t, pj) if kt ≥ 1

1 if kt = 0 ∧ j = 0

0 if kt = 0 ∧ j = 1.

(5.11)

Read start counts kt = 0 can only be emitted from non-crosslink states. The probability
density function is defined as

fZTB(kt; n̂t, pj) =

{︄
0 if kt = 0

1
1−FB(0;n̂t,pj)

(︁
n̂t

kt

)︁
pktj (1− pj)

n̂t−kt if kt ≥ 1,
(5.12)

where for kt ≥ 1 the first term normalizes the distribution for the zero-truncation with

FB(0; n̂t, pj) = (1− pj)
n̂t . (5.13)
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Figure 5.3.: Estimation of nt, i.e. the number of trials or fragments from which a
certain fraction results in read starts at position t, for the zero-truncated binomial
(ZTB) distribution: Instead of using the read start count within a spanning window we
estimate nt based on the fragment density ct given the learned regression coefficients
(ϕ0, ϕ1).

The probability parameters p0 and p1 need to be learned, where p1 reflects a protein
specific truncation rate at crosslink sites. More precisely, for crosslink states p1 reflects
the read start rate arising from truncated and non-truncated cDNAs, while for non-
crosslink states p0 reflects the read start rate arising from non-truncated (or off-target
truncated) cDNAs.

Estimation of the binomial nt parameter

To model the read start counts using a binomial distribution we need the number of
trials or pulled-down fragments nt for each position t that can potentially generate a
read start at this position, originating either from a truncated or non-truncated cDNA.
A reasonable estimate n̂t is crucial to ensure accurate estimates of pj . We therefore take
advantage of the already estimated pulled-down fragment density ct. More precisely,
we expect a linear relationship between the observed read start counts n′

t within a
spanning window and ct, which we can model using a linear regression:

n′
t = ϕ0 + ϕ1ct + εt. (5.14)

We use windows of size 2h to compute n′
t, estimate the regression coefficients ϕ0 and

ϕ1 and then use them to predict n̂t for each position (see Figure 5.3). This estimate of nt

has the same advantages over bin-wise read start counts as the estimated pulled-down
fragment density due to the Gaussian kernel function, which weights read starts within
close proximity higher than read starts further away (see Section 5.3), and thus provides
a more accurate estimate of the position-wise fragment coverage.

Parameter estimation

Since there exists no closed formula to compute the probability parameter p for the ZTB
distribution (see Equation 5.12), we again use numerical optimization to estimate the
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5.3. PureCLIP hidden Markov model

parameters that maximize the log-likelihood function weighted by the corresponding
state posterior probabilities 2. Let y = y1, . . . , yT be observed numbers of successes
obtained from T zero-truncated binomial experiments with a common probability
parameter p and with individual numbers of trials n = n1, . . . , nT , then the log-
likelihood function can be written as:

lnLZTB(p | Y = y,n) =

T∑︂
t=1

[︄
− ln (1− (1− p)nt) + ln

(︃
nt

yt

)︃
+ yt ln(p) + (nt − yt) ln(1− p)

]︄
. (5.15)

Note that for the likelihood maximization the term ln
(︁
nt

yt

)︁
can be omitted, since it does

not depend on the probability parameter.
To weight the non-crosslink and crosslink log-likelihood functions, instead of using

the posterior probabilities γ
t,z

(2)
j
, we use the state posterior probabilities

γ
t,z

(1)
1 z

(2)
j

= P (S
(1)
t = z

(1)
1 , S

(2)
t = z

(2)
j |K = k,n, θ′), ∀t ∈ {1, . . . , T}, (5.16)

i.e. the probability for a position t to be enriched and in state z(2)j . With this we aim to
reduce the impact of regions containing background noise on the binomial parameter
estimation. Then, for each state z(2)j the new parameter p′′j is estimated as:

p′′j = argmax
p

T∑︂
t=1

γ
t,z

(1)
1 z

(2)
j
·

[︄
− ln

(︁
1− (1− p)n̂t

)︁
+ kt ln(p) + (n̂t − kt) ln(1− p)

]︄
· I(2)t , j ∈ {0, 1}, (5.17)

where I(2)t is an indicator variable defined as

I
(2)
t =

{︄
1 if (kt ≥ 1) ∧ (n̂t ≥ nc)

0 else.

With I(2)t we limit the parameter estimation to sites with at least one read start and with
n̂t ≥ nc, a given threshold (default: nc = 10). The latter is important because the largest
fraction of read start counts occurs at positions with low n̂t, where the distributions
for the non-crosslink and for the crosslink state are not well distinguishable.
In contrast to estimating the parameters for the non-enriched and enriched gamma

distributions, we now need to learn only one parameter for each state. For this the
implementation of Brent’s method [16] in the Boost library [123] is used. Brent’s
method is a fast and robust, one-dimensional, derivative-free optimization algorithm
that combines quadratic interpolation with a bisection method.
2Note that multiple explicit estimators for p exist [30], however, we opt for accuracy rather than
computational efficiency.
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5.3.3. Joint emission probabilities
In the previous sections we have seen how the fragment density (Ct) emission prob-
abilities can be computed for the non-enriched and enriched states. Additionally, we
have seen how the read start count (Kt) emission probabilities can be computed for
the non-crosslink and crosslink states. We now combine them to compute the probabil-
ities of joint observations, i.e. the emission probabilities of the four hidden states, as
described in Section 5.3. Note that Ct andKt are not conditionally independent, but
since n̂t is directly deduced from ct the emission probability for the joint observation
can be factorized accordingly (see Figure 5.2 for a graphical summary):

P (Ct = ct, Kt = kt | S(1)
t = z

(1)
i , S

(2)
t = z

(2)
j )

= P (Ct = ct | S(1)
t = z

(1)
i ) · P (Kt = kt | Ct = ct, S

(2)
t = z

(2)
j )

= fLTG(ct;µi, λi, τ) · fZTB(kt; n̂t, pj). (5.18)

5.3.4. Initialization
Because the Baum-Welch algorithm might converge to local optima when using poor
initializations, we choose initial parameters using a preprocessing step.
For the two LTG distributions, we start with a user defined discrete enrichment

threshold e (default: 7), to compute a fragment density threshold ce:

ce =
e

h
·K
(︃
0

h

)︃
. (5.19)

All sites with a fragment density ct ≥ ce will be defined as most likely enriched. More
precisely, we set the enriched state posterior probability of those sites to 0.999 and the
non-enriched state posterior probability to 0.001 (and vice versa for all other sites). Next,
we estimate the gamma parameters using a weighted MLE as described in Section 5.3.1.
Since the Nelder-Mead algorithm does not guarantee to find the global optimum (see
Section 4.2.8), we restart the algorithm from different starting values and chose the
parameters generating the highest log-likelihood value. However, in practice the found
optima usually do not differ.

For the ZTB distributions, since only one parameter has to be estimated, their final
estimation is less dependent on the initialization and we thus use predefined values
(non-crosslink state: p0 = 0.01; crosslink state: p1 = 0.15).

5.3.5. Modified Baum-Welch algorithm
Transition, initial and emission probability parameters of the HMM are estimated
using the Baum-Welch algorithm (see Section 4.2.5). We proceed in sequential Baum-
Welch blocks to learn the emission probability distribution parameters of the two
types of observations, namely the parameters of the LTG distributions modelling the
observed fragment density Ct for each enrichment state z(1)i (see Section 5.3.1), and
the parameters of the ZTB distributions modelling the number of read starts Kt for
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5.3. PureCLIP hidden Markov model

each crosslinking state z(2)j (see Section 5.3.2). First, the LTG parameters are learned
with fixed initial ZTB parameters. Then, the ZTB parameters are learned using the
preliminary LTG parameters before another Baum-Welch block is applied for a final
update of the LTG parameters. Within each Baum-Welch iteration it is ensured that
the corresponding emission probability distributions assigned to the states are not
swapped, i.e. for the LTG parameters µ0 ≤ µ1 and for the ZTB parameters p0 ≤ p1.
Transition and initial probabilities are updated in each Baum-Welch iteration.

As a convergence criterion the change of the overall likelihood of the model as
provided by the forward algorithm

∑︁ℓ
i=1 αi(T ) (see Equation 4.19) cannot be used

here. The reason for this is that not all positions, which are considered for the forward
algorithmwith parameter-dependent emission probabilities, are used for the estimation
of the emission probability parameters 3. Therefore, within each block, the iterations
are terminated when for all parameters the change is below a certain threshold or a
maximum number of iterations is reached.

5.3.6. Inference and scoring of crosslink sites and binding
regions

Finally, we use posterior decoding as described in Section 4.2.5 to determine the most
likely hidden state for each position, and with that all enriched + crosslink sites. These
are the sites of interest as they are interpreted as target-specific protein-RNA interaction
sites. In a second step, the called crosslink sites are further combined to binding regions
based on their distance. By default, called crosslink sites that are not more than 8 nt
far away are merged.

To rank the called crosslink sites, we compute a score for each site. For this purpose,
we implemented four alternative scoring schemes. First, without any prior emphasis
we define the unconditional posterior-ratio score as

scoreUC(t) = ln

(︃
P (St = enriched + crosslink | C = c,K = k)

P (St = 2nd most likely state | C = c,K = k)

)︃
, (5.20)

i.e. the log posterior probability ratio of the first and second most likely state, given the
observed fragment densities c and read start counts k. The idea behind this approach
is to score less ambiguous state assignments higher than more ambiguous ones. The
second likely hidden state varies for each called crosslink site and the question remains
if there exist more optimal scoring strategies.

Since PureCLIP computes the state posterior probabilities given two observed signals,
it could be that one is more important than the other. We therefore additionally define
the enrichment focused posterior-ratio score as

scoreE(t) = ln

(︃
P (St = enriched + crosslink | C = c,K = k)

P (St = non-enriched + crosslink | C = c,K = k)

)︃
(5.21)

3For example, positions that are located within a covered region and have a fragment density ct > τ ,
but contain no read start, are not used for the learning of the emission probability parameters. Nev-
ertheless, such positions have assigned non-enriched and enriched emission probabilities depending
on the learned parameters and remain in the model.
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and the crosslink focused posterior-ratio score as

scoreCL(t) = ln

(︃
P (St = enriched + crosslink | C = c,K = k)

P (St = enriched + non-crosslink | C = c,K = k)

)︃
, (5.22)

in order to alternatively score the confidence that a site is enriched or crosslinked,
respectively. Lastly, we define

scoreB(t) = ln

(︄
P (S

(1)
t = enriched | C = c,K = k)

P (S
(1)
t = non-enriched | C = c,K = k)

)︄

+ ln

(︄
P (S

(2)
t = crosslink | C = c,K = k)

P (S
(2)
t = non-crosslink | C = c,K = k)

)︄
, (5.23)

as the balanced posterior-ratio score. By default PureCLIP ranks crosslink sites based
on the unconditional score as defined in Equation 5.20.

When merging crosslink sites to binding regions, the sum of the individual scores is
used as a region-wise score.

5.4. PureCLIP non-homogeneous hidden Markov
model

In the previous section we have described the basic model of PureCLIP to infer target-
specific protein-RNA interaction sites from iCLIP or eCLIP data. However, the observed
signals are often biased by numerous factors such as transcript abundances, binding of
background proteins or sequence biases during the crosslink formation. Fortunately,
often additional knowledge in the form of auxiliary data or known characteristics of
a particular bias is available and can be used to improve the inference process. In
this section, we will describe an extension of PureCLIP that allows for the incorpo-
ration of such information. For this purpose, the underlying HMM is extended to a
non-homogeneous HMM, which allows for non-homogeneous emission probabilities
across different positions. To model the influence of the covariates on the emission
probabilities, we use generalized linear models (GLMs). According to the two types
of observed signals used in our model, biases can be modelled in two different ways,
either as an influence on the fragment density emissions or on the read start count
emissions. While this extension of the model allows for the incorporation of various
types of covariates, here we will focus on the following two: data from input control
experiments to factor in non-specific background signal and sequence motifs that are
know to preferentially cause the formation of crosslinks. Note that in contrast to the
emission probabilities, transition probabilities remain to be position independent.

5.4.1. Incorporation of input control data
We expect positions within highly abundant RNAs to show a higher pulled-down
fragment density than others, both in target binding regions and in regions containing
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Figure 5.4.: Summary of the non-homogeneousHMMframework. Left: Starting
from mapped reads (bottom), observations are deduced and modeled using additional
covariates (top) to reconstruct the most likely sequence of hidden states (middle). Right:
Graphical representation of the corresponding non-homogeneous HMM.

only non-specific background noise. Moreover, regions bound by highly abundant
background proteins tend to contain also higher signals of non-specific background
binding. To normalize for this and potentially other signal components that are not
target specific, information from input control experiments can be included to model
the emission probability distributions of the non-enriched and enriched states. With
this, we aim to reduce the number of false positives caused by non-specific background
signal (see Figure 5.1b) while increasing the sensitivity for regions with low input
signal.
As described in Section 5.3.1, we assume that the fragment density Ct follows a

left-truncated gamma distribution

Ct | S(1)
t = z

(1)
i ∼ LTG(µi, λi, τ), i ∈ {0, 1}, (5.24)

for each enrichment state z(1)i , where τ denotes the truncation point. If a non-specific
background signal is available, e.g. from an input control experiment, we can incorpo-
rate this as position-wise covariates into the model. Figure 5.4 illustrates the extended
PureCLIP HMM framework.
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A gamma generalized linear model for emission probabilities

This is done using a (left-truncated) gamma generalized linear model (GLM). The
objective is to learn the correlation between the covariate b and the mean parameter
µi of each enrichment state z(1)i . For this purpose, the underlying multiplicative effect
of the background signal bt at position t on the expected mean µi,t is modeled using a
log link function:

ln(µi,t) = αi,0 + αi,1bt. (5.25)

Note that for each enrichment state z(1)i we assume to have a constant shape λi across
the entire range of covariate values.
By default, PureCLIP uses the log fragment densities of the input experiment as

covariates bt, computed using a KDEwith the same bandwidth as for the target fragment
densities.

Parameter estimation

Similar to the basicmodel (see Section 5.3.1), the parameters thatmaximize theweighted
MLE are estimated for each state z(1)i using the Nelder-Mead algorithm, but instead of
µ′′
i here α′′

i,0 and α′′
i,1 are estimated as follows:

(α′′
i,0, α

′′
i,1, λ

′′
i ) = arg max

α0,α1,λ

T∑︂
t=1

γti

·

[︄
(λ− 1) ln(ct)−

λct
exp(α0 + α1bt)

+ λ ln

(︃
exp(α0 + α1bt)

λ

)︃

− ln(Γ(λ))− ln

⎛⎝1−
γ
(︂
λ, λτ

exp(α0+α1bt)

)︂
Γ(λ)

⎞⎠]︄ · I(1)t ,

where I(1)t is defined as

I
(1)
t =

{︄
1 if (kt ≥ 1) ∧ (bt > τ)

0 else.

Note that the indicator variable I(1)t limits the parameter learning, not only to sites
with at least one read start, but also to sites with bt > τ . This prevents the learned
regression coefficients α from being impaired by a large number of sites that have a
very low fragment density as well as a lower correlation between the target and the
input signal. In contrast to the basic model, the shape parameter of the non-enriched
state is no longer constrained to λ0 = 1. However, both shape parameters λ0 and λ1

are constrained with λ0, λ1 ≥ 1.
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Initialization

To ensure a good initialization and to prevent the Baum-Welch algorithm from converg-
ing to local optima, instead of using one enrichment threshold to assign initial state
posterior probabilities as described in Section 5.3.4, we now use a threshold dependent
on the background signal bt. For that, we first learn the parameters α0, α1 and λ of the
compound fragment density distribution, i.e. the mixture of the non-enriched and the
enriched distributions. The Nelder-Mead algorithm is restarted from different starting
values and the parameters maximizing the corresponding log-likelihood function are
chosen. Then all sites with a fragment density ct ≥ exp(α0+α1bt) are initially defined
as most likely enriched. More precisely, we set the posterior probability of those sites
to 0.9 for the enriched state and to 0.1 for the non-enriched state (and vice versa for
all other sites). Next, the initial parameters for the non-enriched and enriched gamma
GLMs are estimated using a weighted MLE as described in Section 5.4.1, once again
using different starting values.

5.4.2. Incorporation of CL-motifs
Concerning the emission of read start counts, we expect a higher signal at positions
within CL-motifs (see Section 3.3.4). Thus, to correct for this sequence bias, information
about CL-motifs can be incorporated (see Figure 5.1c) to model the non-crosslink and
crosslink emission distributions.
As described in Section 5.3.2, the read start counts Kt are modeled using a zero-

truncated binomial distribution

Kt | S(2)
t = z

(2)
j ∼ ZTB(n̂t, pj), j ∈ {0, 1}. (5.26)

If position-wise information about the crosslinking bias is available, we can again
incorporate this into the model. Assuming that we have given q CL-motifs, we can
compute a corresponding motif match score xm,t ≥ 0 for each position t and motif
m ∈ {1, . . . , q}, representing the crosslinking affinity at each position. These scores
are then used as covariates to model the influence on the emission probabilities (see
Figure 5.4).

A binomial logistic regression model for emission probabilities

We use a (zero-truncated) binomial logistic regression for each crosslinking state z(2)j

to model the expected binomial probability parameter pj,t based on the position-wise
CL-motif score xm∗

t ,t
as follows:

ln
pj,t

1− pj,t
= βj,0 + βj,m∗

t
xm∗

t ,t
, m∗

t = arg max
m∈1,...,q

xm,t, xm,t ≥ 0. (5.27)

For simplicity, we assume that each position matches at most one CL-motif, i.e. for
each position t we chose the motifm∗

t with the highest motif match score xm∗
t ,t

and
use a motif specific regression coefficient βj,m∗

t
that has to be learned.
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Computation of CL-motif scores

To obtain position-wise CL-motif scores xm∗
t ,t

we first need to learn the CL-motifs. To
our advantage these can be learned from input control data, which represents RNA
fragments crosslinked to a mixture of background proteins (see Section 3.4) and thus
reflects common crosslinking preferences. The motifs and theirs scores are computed
in a preprocessing step as follows:

1. We call crosslink sites on the input data using the basic version of PureCLIP, i.e.
without incorporating covariates.

2. To learn CL-motifs we run DREME [10] on 10 bp windows spanning the called
input crosslink sites, while using 10 bp windows located 20 bp upstream and
downstream as a background control.

3. We use FIMO [55] to compute occurrences of those CL-motifs within the refer-
ence genome and their corresponding scores.

A more detailed description is provided in Appendix A.5.

Parameter estimation

Instead of estimating the probability parameter pj that maximizes the weighted MLE
for each crosslinking state z(2)j as described in Section 5.3.2, we now need to estimate
the regression coefficients βj = βj,0, . . . , βj,q. For this purpose we first estimate βj,0

using the majority of positions which has no CL-motif match, i.e. a CL-motif score
xm∗

t ,t
= 0, as follows:

β′′
j,0 =argmax

β0

T∑︂
t=1

γt,1j

·

[︄
− ln

(︁
1− (1− p)n̂t

)︁
+ kt ln(p) + (n̂t − kt) ln(1− p)

]︄
· I(2)0,t , (5.28)

where
p =

1

1 + exp(−β0)

and I
(2)
0,t is an indicator variable defined as

I
(2)
0,t =

{︄
1 if (kt ≥ 1) ∧ (xm,t = 0 ∀m ∈ {1, . . . , q})
0 else.

(5.29)

Since we assume that each position matches at most one CL-motif, the regression
coefficients βj,1:q for the q CL-motifs can be learned independently of each other. Given
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βj,0, we estimate the regression coefficient βj,m for each CL-motifm ∈ {1, . . . , q} as:

β′′
j,m =argmax

βm

T∑︂
t=1

γt,1j

·

[︄
− ln

(︁
1− (1− pt)

n̂t
)︁
+ kt ln(pt) + (n̂t − kt) ln(1− pt)

]︄
· I(2)m,t, (5.30)

where
pt =

1

1 + exp(−(βj,0 + βmxm,t))

and

I
(2)
m,t =

{︄
1 if (kt ≥ 1) ∧ (xm,t > 0) ∧ (m = m∗

t )

0 else.
(5.31)

The indicator variable I
(2)
m,t limits the parameter learning for each CL-motif m to

positions that have at least one read start, are located within an occurrence of CL-motif
m and for which no other CL-motif has a higher match score.

Importantly, since all parameters can be estimated separately, we again make use of
Brent’s method for one-dimensional optimization problems.

Initialization

For initialization, the regression coefficients βj,1:q corresponding to the q CL-motifs
are set to 0. The intercept parameters β0,0 and β1,0 of the non-crosslink and crosslink
state, respectively, are set to values according to the initial values of the corresponding
probability parameters in the basic model (see Section 5.3.4): β0,0 = ln 0.01

1−0.01
and

β1,0 = ln 0.15
1−0.15

.

5.5. Extension to incorporate replicate information
into PureCLIP

In the previous sections we described a model to detect protein-RNA interactions from
one target CLIP dataset. This data can be either from one individual sample or from
merged biological replicates.
When analysing CLIP experiments where biological replicates are produced there

are several ways to handle those. One can apply an analysis method on the individual
replicates and then use either the intersection or the union of the called sites, depending
on whether one aims for high precision or high sensitivity. Alternatively, as already
mentioned, one can merge the replicates prior to the analysis, which usually provides
a compromise regarding precision and sensitivity. However, the exact effect depends
on the applied method.
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Figure 5.5.: Summary of the non-homogeneous HMM framework including
multiple replicates. The emission probability parameters are learned separately for
the individual replicates. The final transition and state posterior probabilities are then
computed using the joint emission probabilities.

A more advanced way is to explicitly account for information from replicate experi-
ments in the statistical model, as a few tools already do for CLIP peak-calling, such as
PEAKachu [67] and OmniCLIP [41]. Different strategies are possible to account for
replicate information, from computing joint probabilities using simple multiplications
to explicitly modelling the variance between replicates [67, 89]. The aim is to reduce
the number of false positive calls caused by signals only present in one replicate, while
increasing the sensitivity for regions with signals present in multiple replicates.

In any case, care needs to be taken, since beside true protein-RNA binding signals also
artefacts (see Section 3.3), for example within CL-motifs, are often highly reproducible.
Given that our model is able to correct for such artefacts, we extended the PureCLIP
framework to incorporate individual replicates as follows: since CLIP replicates often
have no more than two replicates, we do not model the position-wise variance across
replicates, but instead combine the emission probabilities learned for each replicate
individually, assuming the observed signals are conditionally independent given the
hidden states. Figure 5.5 depicts the extension of the method to include replicates
schematically.

Assume we are givenR individual CLIP replicates, each with a sequence of observed
fragment densities cr and read start countskr, r ∈ {1, . . . , R}. To include the replicates,
the model is modified in the following way:

1. An HMM is build and trained as previously described for the covered regions
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(see Section 5.3) of each individual replicate r separately. The parameters θr are
learned.

2. The intersection of covered regions across all replicates is computed.

3. Based on these intersected regions, a new HMM with the same structure is build,
i.e. with four hidden states. The following initializations and modified emission
probabilities are used:
a) Initial probabilities

π(t)j =
1

R

R∑︂
r=1

γr
tj, ∀j ∈ {1, . . . , 4} (5.32)

b) Transition probabilities

aij =
1

R

R∑︂
r=1

arij, ∀i, j ∈ {1, . . . , 4} (5.33)

c) Emission probabilities

P (Y 1
t = y1t , . . . , Y

R
t = yRt | S

(1)
t = z

(1)
i , S

(2)
t = z

(2)
j , θ1:R)

=
R∏︂

r=1

P (Y r
t = yrt | S

(1)
t = z

(1)
i , S

(2)
t = z

(2)
j , θr), ∀t ∈ {1, . . . , T}

(5.34)

where yrt = (crt , k
r
t ).

4. Initial, transition and state posterior probabilities are then updated using fixed
emission probabilities.

Finally, as in the PureCLIP model for one target dataset, all sites that are most likely
enriched + crosslink are reported.

Recall that due to the truncated distributions used tomodel the emission probabilities,
sites that have a fragment density ct < τ have an emission probability of 0 for the
enriched state z(1)1 and an emission probability of 1 for the non-enriched state z(1)0 (see
Section 5.3.1). Similarly, sites with no read start count (kt = 0) have an emission
probability of 0 for the crosslink state z

(2)
1 and an emission probability of 1 for the

non-crosslink state z(2)0 (see Section 5.3.2). Consequently, only sites with crt ≥ τ and
kr
t ≥ 1 in all R replicates can be classified as enriched + crosslink.

5.6. Implementation
PureCLIP is a command-line tool implemented in C++ using SeqAn [117], the GSL [49]
and Boost [123]. OpenMP [37] is used for parallelization. In the following, we will
briefly discuss some of the relevant implementation aspects. An overview of the main
important user options is provided in Appendix A.12.
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5.6.1. Training set
The HMM parameters are learned for each dataset individually to account for the
specific target and background signal characteristics. More precisely, PureCLIP learns
the parameters on a subset of the data based on a user defined list of chromosomes
or contigs (default: all). Often, learning on a small subset of chromosomes does not
significantly impair PureCLIP’s performance, while reducing the memory and runtime
consumption (for details see Section 9.2.2). Note that this also depends on the size of
the dataset. For example, when analysing very sparse CLIP data or data from organisms
with a relatively small genome or transcriptome size, it is probably best to use the
whole dataset for parameter learning. After the parameters are learned, the HMM
is applied to the whole dataset, i.e. state posterior probabilities are computed and
posterior decoding is applied to infer the hidden states.

5.6.2. Numerical stability and arithmetic precision
Recall that the forward probability defined in Equation 4.18 denotes the probability to
observe a certain subsequence y1:t and being in state zi at position t under the model.
Similarly, the backward probability defined in Equation 4.22 denotes the probability to
observe the subsequence yt+1:T . Both probabilities decrease drastically with increasing
sequence lengths and take values close to zero.

To avoid arithmetic underflows, the forward-backward algorithm [114] is computed
in log-space. Thus, for the forward algorithm, instead of αi(t) we compute

logαi(t) = log
4∑︂

j=1

αj(t− 1)ajiei(yt)

= log
4∑︂

j=1

exp (log (αj(t− 1)) + log (aji) + log (ei(yt))) , (5.35)

where ei(yt) = P (Ct = ct, Kt = kt | S(1)
t = z

(1)
i , S

(2)
t = z

(2)
j ). However, since exp(x)

approaches zero for large negative x, the problem remains that the typically large
values of log (αj(t− 1))+ log (aji)+ log (ei(yt)) quickly cause underflows. To address
this, we make use of the so called log-sum-exp trick [103], which allows us to optimize
the range on which the exponential operations are applied:

log
4∑︂

j=1

exp(xj) = log
4∑︂

j=1

exp(xj − b) exp(b)

= log

(︄
exp(b)

4∑︂
j=1

exp(xj − b)

)︄

= b+ log
4∑︂

j=1

exp(xj − b), (5.36)
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where b = maxj xj . This forces the largest value of (xj − b) to be zero. As a
consequence, when values of similar size are summed up, this method effectively
prevents underflows. When values of a larger range are summed up and exp(xj − b) is
below the available arithmetic precision, this term will be lost, but the introduced error
is negligible in practice. Equivalently to the log-forward probabilities the log-backward
probabilities are computed. Both are then used to compute the posterior, initial and
transition probabilities.
A general drawback of the log-sum-exp trick is an increased computational cost

due to additional, more expensive log and exp operations replacing simple additions.
To avoid increased running times, log-sum-exp values are precomputed for a certain
range of (xj − b) values, while ensuring a reasonably high accuracy.
In addition to the forward and backward probabilities, the emission probabilities

themselves can become fairly small, potentially causing arithmetic underflows and thus
taking values of zero. They depend on the learned parameters and extremely low values
are usually caused by outliers, i.e. high fragment densities or read start counts, often
originating from mapping artefacts, not properly removed PCR duplicates or pile-ups
of multi mapping reads. To address this issue, the individual non-enriched and enriched
emission probabilities as well as the non-crosslink and crosslink emission probabilities
are first computed using the precision of the C extended-precision floating-point
type (long double). On the de facto standard x86 CPU architecture this type usually
corresponds to an 80-bit floating-point format, allowing values in the range from
approximately 3.36 · 10−4932 to 1.19 · 104932.

The joint emission probabilities are again computed in log-space to avoid underflows
caused by the multiplication of small values. This ensures a high numerical stability,
as long as the emission probabilities obtained from the individual gamma or binomial
distributions are greater than zero. By default, the log emission probabilities are stored
using the C double-precision floating-point type (double). Usually this type occupies 64
bit and can represent values in the range from approximately 2.22 ·10−308 to 1.8 ·10308.
If for one position all emission probabilities would become zero during the parameter
learning procedure, PureCLIP would return an error. In contrast, if this would happen
during the application step, i.e. for a sequence not used for parameter learning, the
corresponding covered interval would be discarded and PureCLIP would return a
warning. This implementation enables accurate computations for datasets with a wide
range of different signal characteristics.

5.6.3. Choice of numerical optimization techniques

The choice of numerical optimization techniques for parameter estimation was be-
side efficiency reasons also influenced by practical implications. First, only a limited
number of C++ libraries exists providing a limited number of well documented and
tested numerical optimization algorithms. Second, we aimed to keep the number of
used external libraries as low as possible in order to simplify the installation process
of PureCLIP for users. For this reason, for example, we made use of the GSL [49]
implementation of the Nelder-Mead algorithm and extended it to allow for parameter
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constraints using penalty-based soft constraints (see Appendix A.4).

5.6.4. Computational complexity
The runtime and memory consumption grow linearly with respect to the total length of
covered regions T (see Section 5.3). For each position t the used observations, i.e. read
start count kt, fragment density ct and estimated number of fragments nt, need to be
stored as well as the covariates, i.e. background fragment density bt and CL-motif score
xt, if applicable. Additionally, for each position and state the emission probabilities
and state posterior probabilities need to be stored.

The running time is dominated by the Baum-Welch algorithm to estimate the model
parameters. Given that we have a constant number of states, within each Baum-Welch
iteration we need to compute the emission probabilities and the forward-backward
variables, each with a time complexity of O(T ). Additionally, we need to estimate the
emission probability parameters for each state using numerical optimization strategies.
This requiresO(Tl) function evaluations within each iteration, where Tl is the number
of positions used for learning, i.e. with fragment densities and read start counts
above a certain threshold. The number of required iterations differs between states
and typically decreases with Baum-Welch iterations. It also strongly depends on
the dimensionality of the optimization problem, i.e. for the simplex algorithm this
increases from two to three dimensions when including covariates (see Section 5.4.1).
Recall that we apply the Baum-Welch algorithm in sequential blocks (see Section5.3.5),
where either the non-enriched and enriched or the non-crosslink and crosslink emission
probability parameters are learned. For these blocks, the number of Baum-Welch
iterations typically varies between between 6 and 25. PureCLIP’s memory and running
time consumption in practice will be shown for an example dataset in comparison to
other methods in Section 9.1.

5.6.5. Availability
PureCLIP is licensed under the GPLv3 and freely available at https://github.com/
skrakau/PureCLIP. The documentation is provided at https://pureclip.readthedocs.
io. Additionally, it can be easily installed using Bioconda [59] (https://bioconda.
github.io). Moreover, it was integrated by the Freiburg Galaxy Team into the Eu-
ropean Galaxy server https://usegalaxy.eu/, an online platform for reproducible
computational biological research [1].
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6. Data

In this chapter we will describe the publicly available experimental CLIP datasets used
for the evaluations presented in the following chapters. Moreover, we will present a
new method to simulate truncation-based CLIP data and how it was applied to simulate
several datasets with different characteristics.

6.1. Experimental eCLIP and iCLIP datasets

We analysed three eCLIP datasets targeting the proteins PUM2, RBFOX2 and
U2AF2 [143] and two iCLIP datasets targeting U2AF2 [155] and PTBP1 [29], all
generated on human cell lines. The data was preprocessed as described in Section 5.1,
more precisely the reads were mapped to the human genome (hg19) while accounting
for splice junctions (using Ensembl Release 75 annotations) and keeping only uniquely
mapping reads. Further details are described in Appendix A.3. Table 6.1 provides a
summary of the used datasets and shows the known binding characteristics of the
target proteins, which will be, among other criteria, used for the method evaluation.

Table 6.1.: Datasets used in the evaluation. The PTBP1 iCLIP dataset comprises four
replicates, all others two.

Protein Binding Cell Accession no. Total reads Filtered Input
and characteristics line (pooled) reads control
protocol (pooled)

PUM2 sequence motif K562 GSE91965 28,648,140 2,211,125 yes
eCLIP

RBFOX2 sequence motif K562 GSE92030 38,506,096 11,178,409 yes
eCLIP

U2AF2 upstream of K562 GSE92143 25,644,172 8,679,323 yes
eCLIP 3’ splice site

U2AF2 upstream of HeLa E-MTAB-1371 22,905,120 12,060,930 no
iCLIP 3’ splice site

PTBP1 upstream of HeLa E-MTAB-3108 12,127,611 6,425,133 no
iCLIP 3’ splice site

of silenced exons
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6.2. Simulated truncation-based CLIP data
In order to evaluate our method’s performance, we aimed at realistic truncation-based
CLIP data with known RBP binding sites. Since the only available CLIP simulator is
limited to PAR-CLIP and HITS-CLIP data [75], we implemented our own simulation
workflow to mimic the experimental steps of the iCLIP protocol as described in Sec-
tion 3.2.1. Starting from real RNA-seq data and known binding regions of a certain
protein, our simulation aims to reproduce the characteristics of truncation-based CLIP
data as accurately as possible. Real RNA-seq data has the advantage that it has already
realistic transcript abundances, sequencing errors and mapping characteristics. Using
known binding regions further ensures a realistic distribution of the simulated signals
across the transcriptome.

6.2.1. Simulation framework
To simulate target signal, our workflow uses aligned RNA-seq data. It pulls down a
certain fraction of the fragments that cover a known binding region and then applies
truncations according to a given rate. Furthermore, non-specific binding of background
proteins is simulated using previously published common background regions [119]
and by adding random noise from RNA-seq data.

Figure 6.1 illustrates the simulation workflow, which comprises the following steps:

1. Fragmentation: To obtain RNA fragment lengths comparable to those of iCLIP
experiments (30-300 bp, as described in [126]), we first simulate new fragment
lengths using a normal distribution (mean: 165 bp, standard deviation: 50 bp).

2. Binding regions: Given the known sequence motif of an RBP, we compute
genome-wide motif occurrences using FIMO [55] (-thresh 0.01) and keep those
located within transcripts and with a minimal distance of 100 bp to the nearest
annotated splice site.

3. Crosslink sites: For each binding region i, the number of crosslink sites is
drawn from a uniform distribution ci ∈ {1, . . . , cTmax} (default: cTmax = 4). The
ci crosslink sites are then randomly assigned to positions within the binding
region.

4. Pull-down: RNA fragments overlapping binding regions are pulled-down with
a certain rate (default: 1.0). With this, different RNA binding affinities of the
target protein can be simulated.

5. Reverse transcription: We use the 5’-end read for each fragment and simulate
one of the following events:

a. On-target truncation
The read start is shifted to one of the simulated crosslink sites within the
current binding region according to a given truncation probability (default:
0.7).
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4) Pull-down overlapping 
     fragments according 
     to probability

5) Apply iCLIP specific 
     modifications:
     shift read starts
 

2) Simulation of binding regions 
     using given list, 
     e.g.motif occurences
 

6) Size selection

1) RNA-seq data:
Simulation of iCLIP
RNA fragment lengths 

UGUAAAUA UGUAAAUA

3) Simulation of crosslink sites 
     within binding regions

Figure 6.1.: Core of the iCLIP data simulation workflow.

b. Off-target truncation
The read start is shifted to any other position within the fragment according
to a given off-target truncation probability (default: 0.2).

c. Read-through
The read start is not changed (default: 0.1).

6. Size selection: To obtain a broad range of cDNA lengths, we keep reads with
underlying fragment lengths between 30-140 nt (as recently recommended
in [61]).

Note that we start the simulation with the 5’-ends of the given RNA-seq fragments and
adjust the 3’-ends according to the simulated length (see Figure 6.1, Step 1). For the
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final read generation, the length is set to 50 bp and shortened accordingly for shorter
cDNA fragments remaining after step (6).

In addition to the RBP binding signal, we also simulated background noise that can
be for example caused by sticky RNAs or by the binding of non-specific background
proteins (see Section 3.3.2). We did this by applying the aforementioned steps on the list
of known common background binding regions published in [119], with the following
modifications to the core workflow:

• We pull down RNA fragments overlapping the background regions with a rate
proportionally to the original region-wise background binding scores as re-
ported [119]. The pull-down rate is obtained using a scaling factor (default:
0.005), while ensuring values between 0 and 1.

• The on-target truncation probability is slightly decreased (default: 0.5), assuming
less specific crosslink sites within background binding regions.

• As background binding regions are typically longer than the used motif occur-
rences for the target signal, we increased the number of simulated crosslink sites
within such a region: ci ∈ {cTmax, . . . , c

B
max} (default: cBmax = 15).

We supplement this non-specific background binding signal with reads randomly
sampled from the RNA-seq data with a certain rate (default: 0.01) in order to simulate
random noise.

6.2.2. Implementation and availability
The main part of the simulation workflow is implemented in C++ using SeqAn [117]
and OpenMP [37] and is provided as a command-line tool. It is freely available under the
GPLv3 license and can be downloaded from https://github.com/skrakau/sim_iCLIP.
It requires mapped RNA-seq data, a list of target binding regions and, if applicable,
background binding regions.

The aligned reads are then written to a BAM file, the simulated binding regions and
crosslink sites to BED files. Note that while the read lengths are adjusted according to
simulated fragment ends and possible truncations, only dummy sequences are written
to the BAM file, i.e. a realigning is not possible.

6.2.3. Generation of simulated data
The simulated data used in this thesis is based on the total RNA-seq dataset
ENCSR885DVH from ENCODE (Homo sapiens, cell line K562, whole cell frac-
tion). We used the provided reads already aligned with STAR against the genome
(hg19) and merged the datasets of the available replicates. Soft-clipped reads were
discarded. In order to obtain a realistic distribution of target binding regions we used
the PUM2 sequence motif retrieved from the ATtRACT database [54] (see Figure 8.4a)
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and computed its occurrences within the genome using FIMO. iCLIP data was simulated
using the default parameters as described in Section 6.2.1, if not stated otherwise.

To evaluate PureCLIP’s performance under different conditions, we then generated
datasets with different target binding and background noise characteristics. For this
purpose we varied the rate of random noise (0.0, 0.01, 0.05), the pull-down factor of
the background binding signal (0.001, 0.005, 0.01), the truncation rates (0.8, 0.7, 0.5) as
well as the pull-down rates for the target signal (1.0, 0.5, 0.25).
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7. Results from PureCLIP’s model
training

Before we will compare PureCLIP’s performance to that of competing methods, we
will briefly give some insights into the behavior of the underlying model. Based on an
example, the previously described PUM2 eCLIP dataset, we will show the empirical
distributions of the two observed signals, the learned emission probability distributions
and the resulting classifications. For the non-homogeneous HMM we additionally
show the predicted gamma mean parameters µi,t, dependent on the input control signal
at position t, and the predicted binomial probability parameters pj,t, dependent on the
CL-motif score.

7.1. Non-enriched and enriched emission
probabilities

Since we do not know the empirical fragment density distributions corresponding to
the assumed non-enriched and enriched components of our model, we compare the
(compound) empirical distribution to the compound emission probability distribution
learned by PureCLIP in basic mode, i.e. without incorporating control data. The results
are shown in Figure 7.1. Note that for PureCLIP in basic mode the shape of the non-
enriched gamma distribution is always exponential, because its value is constrained
with λ0 = 1 for stability reasons (see Section 5.3.1). In contrast, the shape parameter
of the enriched gamma distribution is often greater than 1, i.e. it has no exponential
form and instead a mode at some positive fragment density value. The results in
Figure 7.1 show that the learned non-enriched and enriched fragment density emission
probability distributions together approximate the empirical distribution. Moreover, it
is noteworthy that the majority of sites has very low fragment densities and is classified
as non-enriched.
Next, we addressed the incorporation of input control eCLIP data. The results

presented in Figure 7.2a show the notable correlation between the target eCLIP and
input fragment densities with a Pearson correlation coefficient of 0.59 and a p value
< 2.2e− 16. PureCLIP learns for both gamma distributions the expected mean param-
eter µi,t dependent on the input signal bt, which enables a bias-corrected classification
into non-enriched or enriched sites (see Figure 7.2b).
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Figure 7.1.: Distribution of empirical fragment densities at sites with at least one read
start (histogram) and the resulting classification by PureCLIP for the PUM2 eCLIP data.
The black line depicts the compound emission probability distribution of the fragment
densities: w0fLTG(ct;µ0, λ0, τ) + w1fLTG(ct;µ1, λ1, τ), where the weights w0 and w1

are derived from the corresponding posterior probabilities. Note that the compound
probability distribution is shown here solely for comparison and is not used within the
model itself.

7.2. Non-crosslink and crosslink emission
probabilities

Similarly to the non-enriched and enriched case, we compared the learned non-crosslink
and crosslink binomial emission probability distributions to the empirical read start
count distributions. Since the binomial distributions depend on the position specific
size parameter nt, we plotted the empirical and the learned emission probability distri-
butions for different n values (see Figure 7.3). Furthermore, instead of the compound
distribution we now plotted the non-crosslink and crosslink binomial distributions sep-
arately to illustrate their increasing separation with increasing n values (see Figure 7.3,
column 2). For sites with nt ≤ 10 the non-crosslink and crosslink emission probabil-
ity distributions largely overlap, which causes a higher ambiguity in classification.
However, since also transition probabilities play an important role for state inference
and only enriched + crosslink sites are considered, this effect on the results is limited.
Moreover, such ambiguities would be reflected by low scores. Figure 7.3 (column 3
and 4) shows the resulting distributions of sites classified as non-crosslink or crosslink
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Figure 7.2.:Correlation between PUM2 eCLIP and input fragment densities at positions
with at least one read starting (not including singleton reads): a) for all positions and
b) limited to the set of positions classified as non-enriched (left) and enriched (right)
by PureCLIP based on the input signal. The expected pulled-down fragment densities
modelled based on the input fragment densities bt are shown as orange and green lines
for the non-enriched and enriched states, respectively.
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Figure 7.3.: Read start count distributions for different values of n̂t and fitted emission
probability distributions for PUM2 eCLIP data. The shown empirical distributions
comprise only those sites that are used for the parameter fitting, i.e. with at least one
read start. The fitted distributions for the non-crosslink and crosslink states are shown
in orange and green, respectively. The learned binomial probability parameters are:
p0 = 0.01 and p1 = 0.13. Additionally, the empirical distributions restricted to sites
classified as non-crosslink or crosslink are shown. The vertical gray lines depict the
zero-truncation of the binomial distributions.
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Figure 7.4.: CL-bias correction for PUM2 eCLIP data. a) CL-motif analysis. Logo
representation of the four top scoring motifs among the top 5000 crosslink sites called
on the input dataset. b) Predicted binomial probability parameter dependent on the
CL-motif score xt for the non-crosslink and crosslink state and for each of the shown
CL-motifs.

for different n values.
To correct for the crosslinking sequence bias, the CL-motifs shown in Figure 7.4a

were obtained from the input control data, as described in Section 5.4.2. As previously
reported [61], U/T-rich motifs are overrepresented. The CL-motifs were then used to
compute CL-motif match scores for the given reference sequence. For both the non-
crosslink and crosslink state, the predicted binomial probability parameters for each
CL-motif based on the position-wise CL-motif match score xt are shown in Figure 7.4b.
The analysis of the size-matched input control data from the RBFOX2 and U2AF2
eCLIP experiments revealed similar CL-motifs, which are shown in Figure A.2.
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8.1. Overview
The available methods to analyse CLIP data can be divided into two main categories:
those, that detect individual crosslink sites and those that detect binding regions, where
some of the former provide a strategy to merge crosslink sites to binding regions. This
also applies to PureCLIP (see Figure 5.1) and we therefore perform the evaluation both
on the crosslink site and on the binding region level.

8.1.1. Binding regions versus individual crosslink sites
Before we describe the evaluation in more detail, we first briefly discuss and define
the term binding region. While it is clear that crosslink sites correspond to single
nucleotides that were in direct contact with the protein (see Section 3.2), binding
regions are less well defined. In general, we use this term to refer to a region of
direct interactions between the target RBP and the RNA. For proteins binding via
classical RNA-binding domains (RBDs), as described in Section 2.3, it is known that
the individual domains often bind to regions that are only a few nucleotides long [8].
However, many proteins harbour multiple RBDs, often causing multiple, spaced regions
of direct interactions. In such cases it is less obvious how to define a binding region.

In the following chapter we focus on the three proteins PUM2, RBFOX2 and U2AF2.
PUM2 contains one RBD which binds to an 8 nt sequence motif, while allowing direct
interactions at all 8 bases [90]. RBFOX2 also contains only one RBD, which is known
to recognize a 6 nt sequence motif [40, 149], causing crosslinks predominantly at two
specific nucleotides. In contrast, U2AF2 contains two RBDs, however, it is known that
these RBDs recognize a 9 nt polypyrimidine track in a side-by-side conformation [3].
Of course, we can not exclude interactions outside of these regions and also aim detect
those.

8.1.2. Evaluation strategies
Evaluating a method’s performance in analysing CLIP-seq data is not trivial, since
no gold-standard of binding regions or crosslink sites exists. We addressed this by
comparing the methods based on three different strategies:

1. Simulated data

We compared their performance on simulated data (see Section 8.2.1 and 8.2.2).
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2. Proteins with known binding characteristics

We used used real iCLIP and eCLIP datasets of proteins with known binding
characteristics, such as known sequence motifs or known predominant binding
regions. This evaluation was performed on the proteins PUM2, RBFOX2 and
U2AF2 (see Section 8.3.2 and 8.7).

3. Replicate agreement

Knowledge about protein-binding characteristics is often limited and it is unclear
how far the protein of interest can also bind to alternative regions. We therefore
additionally assessed the agreement of called crosslink sites between PUM2,
RBFOX2 and U2AF2 eCLIP replicates, assuming that true protein-specific binding
signals are reproducible (see Section 8.3.4). Note that this evaluation was not
performed on the level of binding regions.

It is noteworthy that within previous studies [26, 41, 124] binding regions were often
simply interpreted as true positives if they overlap with known binding regions, e.g.
motifs. This evaluation strategy indirectly favours methods calling broader binding
regions, independently of whether the called regions reflect the true binding regions.
Since we aim to capture interactions with high resolution, we designed our evaluation
strategies such that they measure the precision of the individual called binding regions.

8.1.3. Performance measurements
For all main evaluation strategies, we investigated the performance of the different tools
by assessing their precision for different score thresholds, where the computation of the
precision depends on the evaluation strategy and will be described in the corresponding
contexts. By using different thresholds we aim to additionally evaluate the rankings of
the called crosslink sites or binding regions provided by each method. As scores we use
the method’s reported p values, FDRs or custom scores. Importantly, in the following
we refer to low p values or FDRs as high scores and vice versa. We cannot compute
precision-recall curves, since for experimental CLIP data the number of false negatives
is unknown. For these reasons we plot the precision (or a corresponding estimate)
versus the number of called sites or regions for each score threshold. In the following
we refer to this as the predicted positives (PP). This allows comparable and consistent
plots throughout the evaluation. An explanatory example is shown in Figure 8.1.

To generate such precision-PP curves, the applied score thresholds were chosen so
that the whole range of reported scores is represented. Consequently, for each method
the lowest number of predicted positives (#PP) corresponds to all sites reported with the
highest score, while the highest #PP corresponds to all reported sites. In this context
it is noteworthy that for some methods the range of reported scores is limited by an
upper value, for example, by a p value of 0 (referred to as highly scoring). Applying
the different thresholds thus gives us for each method a range of obtained #PPs, which
is supported by different scores. Since the compared methods were designed with
different goals concerning the trade-off between precision and sensitivity, the supported
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8.1. Overview
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Figure 8.1.: Schematic precision-PP curve used for evaluation throughout this thesis.

#PP ranges of the different methods do not always overlap. For this reason the area
under the curve (AUC) – as commonly computed for precision-recall curves – would
not provide comparable performance measurements in this context.

8.1.4. Evaluated methods
In the following we briefly describe the applied settings for the different tools used
for comparison. For a detailed description of the methods see Section 3.6.2. Note that
although some tools provide functionalities to preprocess CLIP data, e.g. to remove PCR
duplicates, we used only the core analysis methods to detect protein-RNA interactions
and used the same preprocessed alignments for all tools to allow for an unbiased
comparison.

Individual crosslink site detection

On the crosslink site level we compared PureCLIP’s performance against CITS [149],
iCount [36] and against applying a simple threshold.

CITS The scripts were run with default parameters as described in the documenta-
tion 1 , except that we set -gap 0 in order to disable the merging of called crosslink
sites. We used CITS v1.1.2 and the reported p values to rank the sites.

iCount The command-line interface was used to call crosslink sites. This comprised
running the modules iCount xlsites to detect candidate crosslink sites and quantify
corresponding cDNA starts, iCount segment to parse a given genome annotation file
(Ensembl Release 75 annotations) and obtain corresponding genome segmentations
and, finally, running iCount peaks to detect sites significantly increased in cDNA
starts. As described in Section 3.6.2, iCount can normalize read start counts in a
1https://zhanglab.c2b2.columbia.edu/index.php/CTK_Documentation
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gene-wise, transcript-wise or transcript feature-wise manner. We choose the tran-
script feature-wise normalization (-group_by transcript_id -features CDS intron

UTR3 UTR5 ncRNA), to account for local differences as far as possible. To ensure a fair
assessment, we also compared the performance of iCount when using the default
gene-wise normalization strategy (see Figure A.3). Apart from that, all modules were
run using iCount’s default parameters. This comprises the half-window parameter
used for the moving sum set to 3. Moreover, it is noteworthy that for the evaluation of
called crosslink sites we used the provided FDR values. In case one site is reported as
significantly crosslinked for multiple transcripts, we choose the highest FDR value to
reduce the impact of artefacts caused by incorrectly assigned genomic features (see
Section 3.6.2). We used iCount v2.0.0.

Simple threshold Additionally, we applied the simplest possible approach, namely
calling all sites with a read start count above a certain threshold. This gives us an
understanding of how different methods perform in different scenarios compared to
this naive approach. We called sites with a minimum read start count of 5 and used
the read start counts as scores.

PureCLIP The software was run using the parameter -iv to train the HMM only
a subset of the chromosomes, reducing the computational costs. For pooled data we
used chromosomes 1 to 3. When using individual replicates we used chromosomes
1 to 6. Beside this, the default settings as described in Section A.12 were used if not
stated otherwise. As already done for the results presented in the previous chapter we
used PureCLIP v1.2.0.

Detection of binding regions

We compared our performance against the peak-calling methods Piranha [141] and
CLIPper [88] as well as against CITS and iCount using settings to merge crosslink sites.

Piranha The tool was run with a p value threshold (-p) of 0.001 and a bin size (-b)
of 20bp (as done in [153]). A drawback of Piranha is that when using BAM files as
input, it calls peaks based on the left-most read positions, i.e. for reverse mapped
reads peaks are called based on read end sites instead of read start sites (see also [139]).
Since for iCLIP and eCLIP data the read starts contain the information about potential
truncation events, we preprocessed the data and used BED files with position-wise
read start counts as input for Piranha.

Moreover, we incorporated input control data as covariates, to allow a fair compari-
son against PureCLIP when incorporating the input signal. For that we additionally
used the parameter -l to convert covariates to log scale. We used Piranha v1.2.1 and
ranked the reported regions based on the associated p values.
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CLIPper We used the most recent master version of the tool at the time of preparing
this document and archived it 2. We specified the reference genome with -s hg19. Since
CLIPper calls peaks while using transcript-wise normalization, in case of overlapping
transcripts it might report overlapping peaks, from which we choose the one with
the lowest p value. It is worth noting that the eCLIP data published by the ENCODE
consortium [129] was analysed using CLIPper followed by a post processing step, in
which input control experiments were included to compute input normalized p values
[143]. Since the latter is not part of the CLIPper software, we do not include this post
processing step in the comparison. The regions’ reported p values are used for ranking.

CITS We run CITS scripts with the same parameters as for calling individual crosslink
sites (see above), except that we enabled the merging of called crosslink sites within a
distance of 8 nt by setting -gap 8.

iCount Crosslink sites (obtained as described above) were merged using the iCount
clusters module. To obtain crosslink clusters comparable in length to CITS and Pure-
CLIP, we used the parameter -dist 8. Each cluster has an associated score, independent
of the FDR values of the individual crosslink sites, which contains information about
the cDNA start counts of the crosslink sites.

PureCLIP We applied the same settings as for the crosslink site detection. This
comprises the default parameter -d 8, causing called crosslink sites within a distance
of 8 nt being merged to binding regions. This distance was chosen corresponding to
the motif length of PUM2, assuming rather short binding regions for the evaluated
proteins.

In the following sections we will present the evaluations based on using simulated
data, experimental data for proteins with known binding regions and the agreement of
called sites between replicates.

8.2. Evaluation based on simulated truncation-based
CLIP data

As described in detail in Section 6.2, we simulated iCLIP data, for which we have
given the individual simulated crosslink sites, as well as the simulated binding regions
harbouring those. In the following, we will present the precision of the different
methods in capturing these simulated sites or regions for different background and
target signal characteristics. Note that Piranha and PureCLIP are only run in their
basic modes, i.e. without the incorporation of external data as covariates.

2tagged as ‘evaluation’ at https://github.com/skrakau/clipper/
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8.2.1. Detection of simulated crosslink sites

To evaluate the performance of the compared tools as described in Section 8.1.3, we
calculated the precision for each method and each score threshold as the fraction of true
positives among the called crosslink sites. The results in Figure 8.2 demonstrate that
PureCLIP achieves a higher precision in detecting individual crosslink sites than other
tools for all used simulation settings, except one. In particular for the top ranking sites,
it has a far better precision compared to the other methods. The only simulation setting
where this is not the case, is the one using the highest random noise subsampling rate
(rs = 0.05) and no background binding, in which case iCount reaches a higher precision.

Without random noise or background binding, all methods except iCount reach
a precision close to 100% (see Figure 8.2a, left). As expected, with increasing ran-
dom noise (see Figure 8.2a) and background binding (see Figure 8.2b) we observed
a decreased precision for all tools. Interestingly, random noise can have a relatively
strong effect on the precision for all methods. This is likely because the randomly
subsampled reads also reflect different transcript abundances and artefacts from the
RNA-seq data. For example, not properly removed PCR duplicates, mapping artefacts
as well as intron-exon junctions within highly abundant transcripts can cause pile-ups
of read starts which are then erroneously interpreted as crosslink sites. We expect a
similar effect when analysing real iCLIP or eCLIP data in the presence of sticky RNAs or
other non-specific background signal. Notably, iCount outperforms all other methods
on the simulation setting with the highest amount of random noise, while CITS and
PureCLIP reach consistently higher precisions for the dataset with more background
binding (rb = 0.01). This demonstrates that iCount performs well in distinguishing
target signal from random noise, but less good in distinguishing it from background
binding signals containing crosslinking patterns.
When decreasing the truncation rate at target binding regions from 0.8 to 0.5, we

observed a moderate decrease in precision comparable for all methods (see Figure 8.2c).
Moreover, as expected, we observed a decreasing precision with decreasing pull-down
rates for target binding regions – representing lower binding affinities (see Figure 8.2d).
When decreasing the target pull-down rate to 25%, the precision of CITS and iCount
drops below 50% across all #PPs. In contrast, PureCLIP reaches a precision of up to
∼ 75% and even for the highest #PP still maintains a precision of ∼ 50%.
We conclude that PureCLIP outperforms the other compared tools in detecting

individual simulated crosslink sites over a range of different background noise charac-
teristics and still performs well for datasets with lower binding affinities of the target
protein.

8.2.2. Detection of simulated binding regions

Next, we compared PureCLIP’s performance in detecting simulated binding regions to
that of other peak-calling or crosslink cluster detection methods. For that we compute
the precision for each called binding region as the fraction of positions overlapping
with a simulated binding region. We then investigated the mean region-wise precision
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(a) Effect of random noise for varying subsampling rates rs (without background binding)

(b) Effect of background binding for varying pull-down scaling factors rb

(c) Effect of truncation rate rt at target binding regions

(d) Effect of binding affinity (simulated pull-down rate ra) of target RBP

rs = 0.00 rs = 0.01 rs = 0.05

rb = 0.001 rb = 0.005 rb = 0.01

rt = 0.8 rt = 0.7 rt = 0.5

ra = 1.0 ra = 0.5 ra = 0.25

PureCLIP: basic CITS iCount Simple threshold

Figure 8.2.: Evaluation of crosslink sites called by different methods on simulated data
with different background and target signal characteristics. The default parameters
are underlined and used to generate the data for the remaining results, if not stated
otherwise.
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(a) Effect of random noise for varying subsampling rates rs (without background binding)

(b) Effect of background binding for varying pull-down scaling factors rb

(c) Effect of truncation rate rt at target binding regions

(d) Effect of binding affinity (simulated pull-down rate ra) of target RBP

rs = 0.00 rs = 0.01 rs = 0.05

rb = 0.001 rb = 0.005 rb = 0.01

rt = 0.8 rt = 0.7 rt = 0.5

ra = 1.0 ra = 0.5 ra = 0.25

PureCLIP: basic CITS

iCount

Piranha

CLIPper

Figure 8.3.: Evaluation of binding regions called by different methods on simulated
data with different background and target signal characteristics. The default parameters
are underlined and used to generate the data for the remaining results, if not stated
otherwise.
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for each method and each score threshold.
In general the results shown in Figure 8.3 demonstrate that PureCLIP recovers

simulated binding regions with a higher precision compared to other tools over a
large range of simulation settings. Only for the highest rate of random noise (see
Figure 8.3a, right) and the highest pull-down rate for background binding regions (see
Figure 8.3b, right), CITS reaches a higher precision compared to PureCLIP and only
for higher numbers of PPs. That this is observed only when evaluating called binding
regions and not for individual crosslink sites indicates a difference between CITS
and PureCLIP regarding the merging of crosslink sites to binding regions. Since both
methods merge sites within a distance of 8 nt, we can infer that the distribution across
the transcriptome somehow differs. Furthermore, we observed that for all simulated
datasets the crosslink site or cluster detection methods achieve a far higher region-wise
precision compared to the peak-calling methods Piranha and CLIPper. Since Piranha
uses bin-wise read start counts and CLIPper uses whole reads to define binding regions,
these are expected to be longer and less precise compared to regions obtained from
crosslink detection methods. We will investigate the lengths of the called binding
regions in more detail based on experimental eCLIP data in Section 8.3.3.
For iCount it can be seen that, in contrast to the crosslink site evaluating (see

Figure 8.2), the precision increases with the number of called binding regions. The
reason for this is that individual iCount crosslink sites are ranked based on their FDR,
while binding regions obtained through clustering of such sites are ranked simply
based on their read start counts. The results demonstrate that the latter strategy scores
non-specific background signals higher than target-specific signals.
Recall that this evaluation based on the described simulation framework assumes

relatively short target-specific binding regions corresponding to the PUM2 sequence
motif, and read starts outside of these regions to be caused either by non-truncated
cDNAs or cDNAs truncated at non-specific sites. Thus the presented results cannot
necessarily be transferred to proteins which do not follow these characteristics, but
are known to rather slide along the RNA or bind in clusters within a longer region.
Nevertheless, for the simulated data, PureCLIP outperforms the existing methods
in precisely detecting the simulated binding regions for a large range of simulation
settings.

8.3. Evaluation on experimental iCLIP and eCLIP
data

We used the PUM2, RBFOX2 and U2AF2 eCLIP and iCLIP datasets (see Section 6.1)
to assess the performance of the different tools in calling crosslink sites or binding
regions that correspond to the proteins’ known binding regions, whose characteristics
we described in Section 8.1.1.

In the following chapter we will first define the bona fide binding regions and then
comprehensively evaluate the performance of the different tools in detecting those
for the different datasets, first on the crosslink site and then on the binding region

87



8. Evaluation

a) PUM2 b) RBFOX2

Figure 8.4.: Sequence motifs used for PUM2 and RBFOX2 to define bona fide binding
regions, retrieved from the ATtRACT database [54].

level. Additionally, we will present the evaluation based on the agreement of reported
crosslink sites between replicates.

8.3.1. Definition of bona fide binding regions
For the following evaluations we define the bona fide binding regions for PUM2 and
RBFOX2 using their known sequence motifs (see Figure 8.4) 3. For U2AF2, a sequence
motif based definition of the binding region is not applicable, since U2AF2 binds to
poly(U) tracts which coincide with non-specific CL-motifs. In this case, we make use of
its known predominant binding region ∼ 11 nt upstream of 3’ splice sites [155], based
on Ensembl Release 75 annotations.

8.3.2. Detection of individual crosslink sites within known
binding regions

To gain insight into the precision of the different tools, we plot the distribution of
the called crosslink sites around the bona fide binding regions, while using the same
number of x top-ranking calls for comparison, where equally scoring sites were shuffled
randomly. For each crosslink site the distance to the closest motif start site or 3’ splice
site was used. We refer to these plots as crosslink site maps (see Figure 8.5, left).

Furthermore, for a broad range of different score thresholds we assessed the methods’
precisions in relation to the number of predicted positives as described Section 8.1.3.
Called crosslink sites within bona fide regions are defined as true positives. More
precisely, for PUM2 and RBFOX2 the precision was defined as the fraction of called
crosslink sites that are located within 2 bp of a motif occurrence. For U2AF2 the
precision was defined as the fraction of called sites that are located 11± 4 nt upstream
of a 3’ splice site. Note that the numbers of called crosslink sites obtained with the
compared methods differ by an order of magnitude (see Table A.1). iCount is by far the
most sensitive among all tools and for PUM2 eCLIP data, for example, the achieved
#PP range, i.e. defined by the highest and lowest score, does not overlap with the #PP
ranges obtained with PureCLIP or CITS. Within this thesis we opt for high precision
3Genome-wide motif occurrences were computed using FIMO [55] (--thresh 0.001 --norc).
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over sensitivity and thus focus in the following on the lower #PP range obtained with
CITS, PureCLIP and the simple threshold method. For comparison the results for the
full range are shown in Figure A.3.

General remarks

For the PUM2 data, the crosslink site maps depicted in Figure 8.5a (left) reveal for all
methods except iCount an accumulation of called sites at the 5’ end of PUM2 motif
occurrences and another slightly weaker accumulation towards the 3’ end. For RBFOX2
eCLIP data we observe an accumulation of called crosslinks at the two guanines within
the motif (see Figure 8.5b, left). These crosslinking patterns are in agreement with
previous findings [143, 149] and, since crosslinks preferentially occur at uridines and
not at guanines, are most likely caused by target-specific protein-RNA interactions.
For U2AF2 all tools show an enrichment of called crosslink sites at the known

binding site ∼ 11 nt upstream of 3’ splice sites (see Figure 8.5c and d, left). It should be
noted that U2AF2 preferentially binds to poly(U) motifs, which largely coincide with
the top CL-motifs. Therefore, we expect an increased crosslinking efficiency for U2AF2
at target-specific binding regions compared to other proteins. Indeed we can observe
a higher precision for U2AF2 eCLIP and iCLIP data compared to PUM2 and RBFOX2
eCLIP data for all tools (see Figure 8.5, right).

PureCLIP’s performance without incorporating external data as covariates
in comparison to other methods

We first investigated PureCLIP’s performance in basic mode, i.e. without the incorpora-
tion of any covariates, in comparison to the other tools. When looking at the crosslink
site maps, we observe that PureCLIP calls a higher fraction of sites within the bona
fide binding regions in PUM2 eCLIP and U2AF2 eCLIP and iCLIP data compared to all
other methods (see Figure 8.5, left). Furthermore, for these datasets PureCLIP reaches
a higher precision than any other method consistently across its entire #PP range, as
shown in Figure 8.5 (right). For RBFOX2 eCLIP data, CITS reaches a higher precision.

Among the existing methods, CITS performs best in detecting individual sites within
the bona fide regions and generates a similar crosslink site distribution as PureCLIP. In
contrast, for the evaluated #PP range, the precision of iCount is for the most part only
slightly above the precision of the simple threshold method. Moreover, the crosslink site
maps show that for iCount the distribution of called sites differs notably from all other
methods. Especially for RBFOX2 it does not recover the predominantly crosslinked
sites within the sequence motif (see Figure 8.5b, left). The main reason for this is likely
that in its default setting iCount not only considers the read starts for each position,
but also those that occur 3 nt up- and downstream (see Section 3.6.2). However, the
predominant crosslink sites reported for RBFOX2 are 4 nt apart and, consequently,
cannot enhance each other. On the other hand, non-specific crosslink sites, for example
within CL-motifs, might enhance each other and may thus be more likely to be called
by iCount. Furthermore, for the RBFOX2 eCLIP data, iCount does not provide different
ranks for the top ∼ 15,000 sites, which all have an associated FDR of 0.0. Therefore,

89



8. Evaluation

0

25

50

75

−10 0 10

Distance to motif start

C
ou

nt

0

10

20

30

40

50

0 4000 8000 12000

Called crosslink sites (#PP)

P
re

ci
si

on
 %

0

200

400

600

−10 0 10

Distance to motif start

C
ou

nt

0

5

10

15

20

0 20000 40000 60000

Called crosslink sites (#PP)

P
re

ci
si

on
 %

0

100

200

300

400

500

−40 −30 −20 −10 0

Distance to 3' splice site

C
ou

nt

20

30

40

50

60

0 25000 50000 75000 100000 125000

Called crosslink sites (#PP)

P
re

ci
si

on
 %

0

100

200

300

400

500

−40 −30 −20 −10 0

Distance to 3' splice site

C
ou

nt

10

20

30

40

50

0e+00 1e+05 2e+05 3e+05

Called crosslink sites (#PP)

P
re

ci
si

on
 %

(a) PUM2 eCLIP

(b) RBFOX2 eCLIP

(c) U2AF2 eCLIP

(d) U2AF2 iCLIP

top 1000
sites

top 5000
sites

top 5000
sites

top 5000
sites

-11

-11

Crosslink site maps Precision-PP curves

PureCLIP: basic

PureCLIP: input signal

PureCLIP: CL-motifs

PureCLIP: input signal + CL-motifs

CITS

iCount

Simple threshold

Figure 8.5.: Performance in detecting crosslink sites within bona fide binding regions
(highlighted in gray). Left: Distribution of the of top ranking sites around the closest
motif start position or 3’ splice site. Right: Precision of the called sites in relation to
the number of predicted positives.
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the top 5000 sites where randomly sampled from this set. This might be an additional
reason why a relatively low fraction of the top sites is located within the bona fide
binding regions. Nevertheless, not providing different ranks for such a high number of
high scoring crosslink sites is a clear drawback of the method.

Incorporation of input control data and CL-motifs greatly improves
PureCLIP’s crosslink site detection

We then investigated the performance of PureCLIP when additionally incorporating
covariates to correct for non-specific background binding or the CL-bias. Compared
to PureCLIP in basic mode, the results show that the incorporation of input signal
improves the precision for PUM2 and RBFOX2 eCLIP datasets over the entire range of
#PPs (see Figure 8.5a-c, right), in particular for the top ranking sites. For U2AF2 eCLIP
data the results to not change much. One possible reason for this is the relatively high
crosslinking efficiency of U2AF2, so that background binding is less of an issue. Never-
theless, these results demonstrate that artefacts caused by non-specific background
signal can cause top scoring sites and highlight the need to correct for such.
Alternatively, incorporating CL-motif scores also greatly improves the precision

for PUM2 (see Figure 8.5a) and in particular for RBFOX2 eCLIP data (see Figure 8.5b).
Moreover, we can see that for U2AF2, whose sequence motif coincides with CL-motifs,
the performance of PureCLIP is robust and not impaired by the incorporation of CL-
motif scores. Altogether, we could see that when incorporating CL-motifs PureCLIP
consistently performs better than all other crosslink sites detection methods for all
datasets, even without considering input control data (see Figure 8.5a-c). Note that for
the U2AF2 iCLIP data, no covariates are incorporated (see Figure 8.5c), as no matching
input control dataset is available.
Interestingly, the simultaneous incorporation of input signal and CL-motif scores

can improve the precision of PureCLIP even further (see Figure 8.5a, b).

Characteristics of the called crosslink sites

To gain a better understanding of the behaviour of the different tools and the effect of
the different biasing factors on their performance, we explored some characteristics of
the called sites regarding their pulled-down fragment densities as well as their location
within different bias prone regions. The fragment densities reflect both the local binding
affinities and the local transcript abundances, and we explore them to understand how
highly regions have to be covered to be called by the different methods. Figure 8.6
shows these characteristics for the PUM2 eCLIP data as an example, equivalent plots
for RBFOX2 and U2AF2 eCLIP data are shown in Figures A.4 and A.5.

Although these characteristics depend on the target protein, the results demonstrate
that there is a large fraction of sites with high fragment densities called by CITS
and the simple threshold method that is not called by PureCLIP (see Figures 8.6a
and A.4a). The reason for this is most likely that PureCLIP is designed to capture the
strongest protein-RNA interaction footprints, while accurately modeling the crosslink
truncation patterns, rather than detecting the highest peaks. The crosslink sites called
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Figure 8.6.: Characteristics of the crosslink sites reported by the different methods for
PUM2 eCLIP data. a) Distribution of the log fragment densities and b) of the log-fold
fragment density enrichments over the input for the top 1000 called sites. c) Fraction of
called sites located within common background binding regions and d)within CL-motif
occurrences for different numbers of predicted positives.
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by iCount, on the other hand, have the lowest fragment densities. Furthermore, CITS
and the simple threshold method call a certain fraction of crosslink sites in regions with
fragment densities not enriched over the input signal, likely caused by non-specific
background binding (see Figure 8.6b). iCount and PureCLIP call notably less sites in
those regions.

We also investigated how many of the sites called by each method are located within
known common background binding regions. These background binding regions were
taken from [119], as already done for the simulation. In this analysis, we used only
regions with observed background binding in at least 6 different CLIP-seq datasets,
and extended them upstream and downstream by 200 bp. Such regions are prone to
false positive calls caused by highly abundant RNAs as well as by highly abundant
background proteins binding these RNAs. The simple threshold method clearly calls
more crosslinks at sites that are located within known background binding regions
compared to other methods (see Figure 8.6, c). In contrast, PureCLIP calls the lowest
fraction of sites within such background binding regions in all settings.

Moreover, we were interested in how much each of the methods suffers from the CL-
bias. CL-motif occurrences were obtained with FIMO [55] (as done for the computation
of CL-motif scores, see Figure A.5). Interestingly, for all datasets the highest fraction of
called sites within CL-motif occurrences is called by PureCLIP in modes not correcting
for the sequence bias (see Figure 8.6, d). A relatively high bias is expected, since
PureCLIP is designed to capture cDNA truncation footprints. Consequently, if the data
contains a large fraction of non-specific crosslinks, either solely caused by background
binding or by co-purified proteins bound to the same RNA fragments at sites with
higher crosslinking efficiencies (see Section 3.3.4), PureCLIP also detects those. For
RBFOX2, which has a sequence binding motif distinct from reported CL-motifs, we
observed that up to 40% of the sites called by PureCLIP in basic mode overlap with
CL-motif occurrences (see Figure A.4). This explains the relatively low precision of
this setting for RBFOX2 data and highlights the necessity to correct for this bias in
the model. However, in general high sensitivity for crosslink patterns is indented,
because we aim to also capture protein-RNA interactions within lowly abundant
transcripts. Importantly, the incorporation of CL-motifs into the PureCLIP model
drastically reduces this bias (see Figure 8.6, d), enabling a high precision across all
datasets.

8.3.3. Detection of known binding regions

Besides single-nucleotide crosslink sites, we investigated the performance of PureCLIP
in calling binding regions (see Section 8.1.1), and compared it against other existing
tools designed for peak-calling or able to detect crosslink clusters. For this purpose we
show the distribution of called regions around the protein’s bona fide binding regions,
using for each tool the same number of top-ranking regions (see Figure 8.7, left). Note
that here for each position the density of binding regions covering it is plotted for each
tool. We use the density, because we aim to recover the true binding region at a high
resolution and will refer to this measurement as the binding region coverage density.
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The resulting plots will be referred to as binding region maps.
Similar to the evaluation of called crosslink sites, we aimed to assess the methods’

precisions in relation to the number of predicted positives by applying different score
thresholds (see Section 8.1.3). Since we do not want to classify called regions simply as
either true or false positives, we need a measurement additionally representing the
region-wise precision. For PUM2 and RBFOX2 we assume that for a called region, a
higher target motif density corresponds to a higher precision. However, we do not
know if the protein only binds sites within the motif or also within close proximity. We
therefore make use of a smoothing approach to score sites located closely to the motif
higher than sites further away. We computed region-wise motif scores as follows:

1. Genome-wide motif occurrences were detected and scored using FIMO [55]
(-thresh 0.005).

2. The scores were smoothed using a kernel density estimation (KDE) [43] with a
Gaussian kernel function and a default bandwidth of 5 nt. KDE values within
one motif occurrence of the same score were flattened by using the minimum
value.

3. A score smotif = mean(KDE) is assigned to each reported binding region.

4. For a set of called binding regions we then use the mean score as an estimate for
the precision.

Figure 8.7a and b (right) show the corresponding (estimated) precision-PP curves for
the PUM2 and RBFOX2 eCLIP data.
For U2AF2 a similar region-wise score is computed. Here we assign a value of 1

to positions 11 nt upstream of 3’ splice sites and again apply a smoothing. We refer
to this score as s11−3ss. The results are shown in Figure 8.7c and d (right) for a KDE
bandwidth of 5 nt and in Figure A.6 for a bandwidth of 10 nt.

PureCLIP’s performance in comparison to other methods

The binding regionmaps depicted in Figure 8.7 (left) reveal similar distributions for CITS
and PureCLIP around bona fide binding regions as previously observed for individual
crosslink sites, with strong accumulations within the bona fide regions. While for CITS
these accumulations still occur at individual sites, PureCLIP’s binding regions cover
larger parts of the bona fide binding regions, which becomes particularly apparent
for RBFOX2 (see Figure 8.7b, left). In contrast, Piranha, CLIPper and surprisingly also
iCount show a much broader positional distribution of binding regions around the
bona fide regions, with CLIPper showing the broadest distribution for all datasets. The
latter is expected, since CLIPper is the only tool using whole reads and not read starts
for the analysis.

The corresponding precision-PP curves estimated using the mean region-wise scores
smotif and s11−3ss demonstrate that CLIPper consistently achieves the lowest score,
while CITS and PureCLIP reach the highest scores (see Figure 8.7, right). For Piranha
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Figure 8.8.: Length distribution of the top 1000 called binding regions by each method
for PUM2 eCLIP data.

we observed that the incorporation of input signal improves its precision, mostly for
the RBFOX2 eCLIP data. Nevertheless, in general it still reaches lower mean scores
than CITS and PureCLIP, which can be expected as it calls regions of at least 20 bp
(see Section 8.1.4). For the PUM2 and RBFOX2 eCLIP data PureCLIP outperforms
all other methods when incorporating CL-motifs, while CITS and PureCLIP perform
comparably for the U2AF2 eCLIP and iCLIP data. In this context it is noteworthy that
the applied scores, although penalizing positions outside of bona fide binding regions,
do not distinguish between called regions covering the whole bona fide region and
regions covering only parts of it. This directly arises from the objective to estimate the
region-wise precisions, which provides valuable information about how much we can
trust the called regions.

Characteristics of the called binding regions

To better understand the behaviour of the different tools used for peak-calling and
crosslink cluster detection, we explored the length distributions of the called binding
regions for each method, shown in Figure 8.8 for PUM2 (for equivalent plots for
RBFOX2 and U2AF2, see Figure A.8). Recall that for the three crosslink site detection
tools CITS, iCount and PureCLIP, called sites within a distance of 8 nt were merged to
obtain binding regions. Accordingly to the previously shown results, we observed that
on average CLIPper binding regions are the longest, while CITS binding regions are
the shortest. Interestingly, the vast majority of CITS binding regions spans only one
position. This indicates that CITS strongly favours individual crosslinks sites, or in
other words, that strong crosslinking patterns at nearby positions prevent each other
from being called by CITS. In comparison, the binding regions of PureCLIP in all four
settings have a median length of 3 nt, while iCount calls regions with a median length
of 10 nt. The longer regions of iCount can at least partly be explained by that fact that
is uses a moving sum on the read start counts computed for 7 nt windows to detect
crosslink sites. Obviously, for CITS, iCount and PureCLIP, beside the distribution of
the individual called crosslink sites, the lengths of the called regions also depend on
the distance parameter used to merge crosslink sites. In any case, this remains to be
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explored, although it is not trivial to infer the optimal setting, as this highly depends
on the objective, for example, if the binding of multiple proteins within close proximity
or of multiple RBDs is of interest.

Additionally, similarly to the evaluation of called crosslink sites, we explored selected
characteristics of the called binding regions regarding their fragment densities and
their location within different bias prone regions (see Figure A.7). However, since these
characteristics strongly depend on the length distribution of the called binding regions
and are difficult to compare, we omit these details here.

8.3.4. Agreement of called crosslink sites between eCLIP
replicates

Since the previously described evaluation strategies have the limitation that the exact
binding regions and crosslink sites remain unknown, we additionally aimed to assess
the performance of the different methods independently of bona fide binding regions.
For this purpose, we explored each method’s precision based on the agreement of
called crosslink sites between replicates, assuming that target-specific binding events
are likely to be observed in both replicates. Note that we use this measurement only for
the evaluation of called crosslink sites, but not for binding regions, since for the latter
it would be additionally influenced by the methods’ length distributions of binding
regions and thus not suitable for comparison. Using the replicate agreement as an
estimate for the precision, we can again create precision-PP plots. We applied all
crosslink detection methods to the individual replicates and measured for each score
threshold how many of the x called crosslink sites in one replicate overlap with the x
top ranking crosslink sites in the other replicate.
However, non-specific signals caused by highly abundant background proteins

binding to highly abundant RNAs or by the CL-bias are likely to be reproducible as
well, and thus contribute to the measured replicate agreement. We therefore count only
those sites to the agreement that are also enriched over the input and located outside
of regions that are known to be prone to background binding (as published in [119]).
With this we avoid overestimating the precision of methods that consistently call false
crosslink sites in both replicates due to systematic, reproducible biases. This potentially
also excludes a certain number of true positives that cannot be distinguished from
non-specific background noise, but we expect this to affect all methods more or less
equally and thus still allow for a fair comparison. We refer to this measurement as the
bias-corrected replicate agreement.

To further prevent a contribution of common non-specific crosslinks, for PUM2 and
RBFOX2 we counted only sites to the bias-corrected replicate agreement that are not
located within CL-motif occurrences. Since the target motifs of these two proteins are
clearly distinct from CL-motifs, we expect that we do not miss relevant target-specific
sites by doing so. For U2AF2, whose sequence motif coincides with a common CL-motif,
we omit this step, since we would loose a large fraction of true positives. Furthermore,
in comparison to other proteins, U2AF2 has most likely a higher crosslinking efficiency
at target-specific interactions sites and, as a consequence, less biased crosslink calls
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(see Section 8.3.2). The U2AF2 iCLIP data is excluded from this evaluation, since no
input control experiment is available and thus the bias-corrected replicate agreement
can not be computed.

In summary, to compute the bias-corrected replicate agreement, we define sites that
(1) have sufficient enrichment over the input signal, (2) are not located in common
background regions or (3) in CL-motifs (for PUM2 and RBFOX2). For (1) we chose an
individual log fold-change threshold for each protein dataset, based the distribution
of log fold-change values at bona fide crosslink sites compared to the distribution
at all sites with at least one read starting (see Figure A.10). In this context, a bona
fide site is a site that is called by PureCLIP (in basic mode) and located within the
target sequence motif. We then chose a threshold with the aim to separate the two
distributions. Common background binding regions as well as CL-motif occurrences
were obtained as previously described (see Section 8.3.2 and 5.4.2).

PureCLIP has a higher bias-corrected agreement of called sites between
eCLIP replicates compared to other methods

Interestingly, when not accounting for any biases the simple threshold method achieves
by far the highest agreement for all three eCLIP datasets compared to other methods
(see Figure A.9). However, we found that the simple threshold method also calls the
most crosslinks at sites where the fragment density is not enriched over the input and
at sites that are located within known background binding regions (see Figures 8.6, A.4
and A.5). These results underline that beside target-specific binding regions or crosslink
sites, transcriptomic regions that are particularly prone to false positive calls contribute
to the raw replicate agreement.

When correcting for biases, our evaluations show that compared to the other cross-
link detection methods PureCLIP has a higher replicate agreement for the top ranking
sites in all four settings (in basic mode and when correcting for biases) and over all
three eCLIP datasets, as shown in Figure 8.9. This is a particularly valuable result, since
we assume that the strongest target-specific protein-RNA interactions cause signals in
both CLIP replicates, and are thus ideally part of the top ranking calls of both replicates.
Furthermore, the performance of PureCLIP in basic mode is in general comparable to
that of other methods, while when incorporating input signal and CL-motifs PureCLIP
strictly outperforms all other methods. Similar to the results on bona binding regions
(see Figure 8.5b, right), we observed that PureCLIP reaches a relatively low precision for
RBFOX2 when not correcting for biases, which notably increases when incorporating
CL-motifs. While the individual use of the covariates already improves the agreement,
the best results are again obtained when both are incorporated simultaneously.
Beside the described biases, there might be a remaining bias affecting the replicate

agreement caused by different fragment densities. We expect that crosslink sites with
a high fragment density are more likely to be called in both replicates. However,
in comparison to CITS and the simple threshold method PureCLIP calls sites with
comparable or lower fragment densities (see Figures 8.6a, A.4a and A.5a) and thus
a potentially remaining bias would likely lead to an under-estimation of PureCLIP’s
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9. Additional evaluations

In the previous chapter we demonstrated the high precision of PureCLIP both in calling
crosslink sites and binding regions in comparison to other methods by using different
evaluation strategies. We will now first show the run time and memory requirements
in comparison to the other methods. Then we will review PureCLIP’s performance over
different settings and show that it also correctly captures the binding region for PTBP1,
which is known to create longer clusters of crosslink sites. We will furthermore discuss
a potential incorporation of RNA-seq data for normalization, which could be useful, for
example if no input control data is given. We show that PureCLIP can incorporate this
type of data and discuss some of the pitfalls and challenges that should be considered
by the user. Finally, we will show that the individual incorporation of CLIP replicates
can further boost PureCLIP’s precision. For the sake of conciseness, we will mostly
limit the following results to the crosslink site evaluation strategy based on bona fide
binding regions as described in Section 8.3.2 and consider only CITS for comparison,
which performs best among the other existing crosslink detection methods. Moreover,
since the performance of all compared methods is rather similar for the U2AF2 eCLIP
and iCLIP datasets, we will omit them here.

9.1. Run time and memory requirements
In Section 5.6.4 we discussed the computational complexity characteristics of the
PureCLIP method. In Table 9.1 we now present its actual run time and memory
requirements of for the RBFOX2 data, which is the largest among the three analysed
eCLIP datasets (see Table 6.1), in comparison to the other methods. All tests were
carried out on systems with 80 CPU cores (Intel Xeon E7-8891 at 2.80GHz) and 1 TB
RAM running Linux.

We observed that Piranha has by far the lowest run time and memory consumption,
both when comparing methods that incorporate covariates and methods that do not.
The reason for this is its relatively simple model, which models bin-wise read start
counts using one (background) distribution. CITS achieves the second lowest run
time and memory consumption. It is noteworthy that CITS, iCount and CLIPper all
perform permutation tests, which likely constitute the largest part of their run times
(see Section 3.6.2). However, while CITS performs these permutation tests on clusters
of read starts, iCount and CLIPper use whole transcripts or genes, which likely explains
their larger run times to some degree. When running with only one thread, CLIPper
has the longest run time and PureCLIP the second longest. PureCLIP has the highest
memory consumption, which is, as already discussed, mainly caused by multiple
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Table 9.1.: Run times and memory consumption of compared methods on RBFOX2
eCLIP data. Methods supporting multi-threading were run using 1, 10, 20 and 40
threads. For comparison, we highlighted for each method the lowest achievable run
time and memory consumption.

run time [min] peak memory [GB]

# threads 1 10 20 40 1 10 20 40
method

without covariates
CITS 40.17 - - - 2.31 - - -
iCount 405.52 - - - 15.51 - - -
Piranha 1.18 - - - 2.10 - - -
CLIPper 3,114.71 344.25 196.27 165.74 6.28 10.58 17.85 32.20
PureCLIP 835.18 130.24 91.59 65.28 25.37 33.97 33.12 38.33

with covariates
Piranha: input signal 26.25 - - - 2.28 - - -
PureCLIP: input signal 1,779.68 236.6 154.28 100.01 30.97 38.20 40.30 37.31

+ CL-motifs

position-wise probability values that have to be stored. Importantly, PureCLIP’s run
time can be notably reduced when using multi-threading, resulting in run times lower
than those of iCount. Moreover, while in general requiring a relatively large amount of
memory, when increasing the number of threads the memory consumption increases
only moderately.

9.2. PureCLIP’s performance for different settings

9.2.1. Validity of model choices

As described in Section 5.3, only covered regions with more than one read start are
considered within the model. Moreover, the gamma and the binomial probability pa-
rameters, modelling the fragment densities and read start count emission probabilities,
respectively, are only fitted to sites with at least one read start (see Sections 5.3.1
and 5.3.2). With this we aimed to reduce the computational costs and, additionally, to
improve the method’s robustness by reducing the impact of noise.
To test the validity of these model choices we investigated their influence on Pure-

CLIP’s precision, separately for the gamma and the binomial distributions. For the sake
of conciseness, we summarize in the following the main findings and show the detailed
results in Appendix A.9. For the gamma distributions, we observed that when not
incorporating input control data, PureCLIP’s precision is robust for the different model
choices. However, when incorporating input signal, both including singleton read
starts as well as including all positions for the parameter estimation lowers PureCLIP’s
precision notably. This indicates that the learning of the GLM regression coefficients α
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is impaired by a large number of sites that have very low fragment densities as well as
a lower correlation between the target and the input signal. Similarly, we observed
that for the binomial distributions PureCLIP reaches a higher precision when using
only positions with at least one read start for parameter estimation 1. In summary,
beside the reduced computational cost, the precision results for all three eCLIP datasets
demonstrate the superiority of these model choices over the naive approach of using
all positions.

9.2.2. Influence of training set
Throughout the previously shown evaluations, PureCLIP’s model was trained only on a
subset of the provided data, i.e. on chromosomes 1 to 3 for pooled datasets. This choice
was made mainly due to run time considerations. We found that the performance of
PureCLIP in this setting is surprisingly robust in comparison to training on the full
dataset, as shown in Figure 9.1. Only for PUM2 eCLIP data – which is the smallest
among the analysed datasets – and when additionally incorporating input signal
and CL-motifs, PureCLIP reaches a higher precision when training on the whole
dataset. However, even when training the model on the subset, PureCLIP still strictly
outperforms all other compared methods in calling crosslink sites (see Figure 8.5a) and
binding regions (see Figure 8.7a) for this dataset. It is noteworthy that when using the
whole dataset for model training, for RBFOX2 eCLIP data PureCLIP’s run time in basic
mode was increased by a factor of 2.5 and its memory consumption by a factor of 4.
We conclude that for the analysed datasets PureCLIP outperforms other methods when
training its model on chromosomes 1 to 3. Moreover, if time and memory resources are
not limited, it is advisable to train PureCLIP on a larger subset or on the entire dataset
(default setting) to achieve optimal performance.

9.2.3. Robustness over a range of different bandwidth
parameters

One parameter PureCLIP depends on is the bandwidth used to smooth the read start
counts when estimating the fragment densities (see Section 5.3). The default bandwidth
is 50 nt, which was also used in the previously shown evaluations. Importantly, the
resulting fragment densities are not only used by the model to distinguish between
non-enriched and enriched sites, but also to estimate the position-wise binomial n
parameters which are then used to distinguish between non-crosslink and crosslink sites
(see Section 5.3.2). Although it is possible to run PureCLIP with separate bandwidths
for the two tasks, here we consider the default case of using the same bandwidth.
Additionally it is worth noting that when input control data is incorporated, by default
the same bandwidth is also used to compute the input fragment densities.

The optimal bandwidth is not obvious and depends on the characteristics of the CLIP
data. In the following we will briefly discuss the expected effects of the most important
1Singleton read starts do not play a role in this context, since only positions with a fragment coverage
nt ≥ 10 are used for the binomial probability parameter estimation (see Section 5.3.2).
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Figure 9.1.: Comparison of PureCLIP’s performance when using only a subset (chro-
mosomes 1 to 3) and when using the whole dataset for model training. The performance
of CITS is shown for comparison.
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Figure 9.2.: Comparison of PureCLIP’s performance when using different bandwidth
parameters h to estimate the pulled-down fragment densities. The performance of
CITS is shown for comparison.
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ones on the different layers of the PureCLIP model, i.e. on the classification of sites as
non-enriched or enriched and on the classification as non-crosslink or crosslink. First, to
accurately distinguish between non-enriched and enriched sites, the bandwidth should
ideally roughly reflect half of the width of the protein-RNA interaction footprints. The
width of these footprints depends on the protein’s binding characteristics, i.e. whether
it interacts with rather short, defined regions, as PUM2 and RBFOX2 do, or whether
it binds to longer regions, for example via multiple RNA binding domains. Moreover,
such footprints comprise all read starts originating from cDNAs pulled-down via the
target protein, including non-truncated and off-target truncated cDNAs. Consequently,
the optimal bandwidth also depends on the cDNA length distribution, i.e. the longer
the cDNAs the larger the optimal bandwidth.
As already mentioned, to distinguish between non-crosslink and crosslink sites the

same bandwidth, or more precisely, the same fragment densities are used to estimate the
binomialn parameters. Recall that the number of read start counts kt at position t is then
modelled in relation to nt. As a consequence, the bandwidth affects how crosslinking
patterns in the neighbourhood affect the position’s emission probabilities. However,
PureCLIP learns the protein-specific non-crosslink and crosslink binomial probability
parameters p0 and p1, respectively, which counterbalances varying bandwidths for the
most part.
Since these effects are difficult to assess for the user, we investigated PureCLIP’s

performance for a range of different bandwidths. The results shown in Figure 9.2
(left) demonstrate that PureCLIP’s performance in its basic mode is highly robust for
different bandwidths. When incorporating input signal (using the same bandwidth)
and CL-motifs, the optimal bandwidths vary for different eCLIP datasets (see Figure 9.2,
right). One possible reason for this is that the input signals – caused by a mixture of
proteins – generate broader footprints compared to the target proteins and require
larger bandwidths for some datasets. For other datasets a higher resolution might be
beneficial, allowing a better distinction between target signals and nearby background
signals. Nevertheless, PureCLIP reaches a higher precision robustly for all tested
bandwidth parameters compared to CITS. It is also worth noting that the runtime
and memory consumption of PureCLIP increases with increasing bandwidths (see
Section 9.1). For this reason and since it produces a consistently good precision for all
datasets, we chose a default bandwidth of 50 nt.

9.2.4. Performance of alternative scoring schemes

We further explored the scoring scheme used by PureCLIP to rank the called crosslink
sites. Recall that alternative schemes were described in Section 5.3.6, where the default
scoreUC is the log ratio of the state posterior probability of the most likely hidden
state, i.e. enriched + crosslink, and of the second most likely hidden state. However, we
do not know if the position-wise fragment density enrichment and the crosslinking
information are equally important to capture target-specific interactions. We expect
that this varies for the different protein-specific binding characteristics. For example,
for a protein such as RBFOX2, which causes rather sharp truncation patterns at the
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9.3. Incorporation of RNA-seq data

two predominantly crosslinked sites within the bound sequence motif, the crosslink
posterior probability might be more important than for proteins causing less sharp
truncation patterns. With the alternatively implemented scoring schemes we addition-
ally aim to score the confidence that a site is enriched (scoreE), crosslinked (scoreCL)
or both equally weighted (scoreB). The evaluation of these scores allows us to achieve
a better understanding of the contribution of the individual signals. For the sake of
completeness, we additionally compared the described scoring schemes against the
raw posterior probability.

The results shown in Figure 9.3 (left) confirm that when running PureCLIP in basic
mode, i.e. not correcting for any biases, the default scoreUC is among the best per-
forming scores for all three eCLIP datasets. It reaches the same precision as scoreCL

and the raw posterior probability. The score with the lowest precision is the enrich-
ment focused scoreE . These results clearly demonstrate that when not correcting for
biases, the position’s crosslinking signal is more important than its fragment density
enrichment for all three proteins.
In contrast, when incorporating input signal and CL-motifs, for PUM2 eCLIP data

scoreE reaches the highest precision, while scoreCL reaches by far the lowest precision
(see Figure 9.3a, right). For the RBFOX2 and U2AF2 eCLIP data the different scores
perform more similarly, but while for RBFOX2 again scoreE performs best, for U2AF2
scoreE performs worst (see Figure 9.3b,c, right). One possible reason for the high
difference between the performance of scoreE and scoreCL on the PUM2 data is that
the protein causes crosslinks at multiple sites within its binding region (see Figure 8.5,a,
left) and consequently less sharp truncation patterns at individual sites. Taken together,
the results indicate that scoreB , which equally weights the confidence that a site is
enriched and crosslinked, might be a good choice when correcting for biases and no
prior knowledge is given about the protein’s binding characteristics. However, since
these results are highly protein dependent, this should be evaluated on a larger scale
in the future.

9.3. Incorporation of RNA-seq data

Previously we described how we incorporate data from input control experiments to
correct for non-specific background noise (see Section 5.4.1) and demonstrated how
this improves PureCLIP’s precision (see Section 8.3.2). Beside input data, it is also
possible to include data from other types of control experiments or, to normalize for
transcript abundances, from RNA-seq experiments. We preliminarily investigated if
and how RNA-seq data can be included for the three analysed eCLIP datasets. In the
following we will discuss the main challenges in this context, the obtained results as
well as the potential for future improvements.

When normalizing for transcript abundances based on RNA-seq data, it is crucial
to use data that reflects the abundances of the bound transcripts as accurately as
possible. In this context, as proteins act differently in different subcellular compart-
ments, the compartment specific transcript abundances play an important role (see
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Figure 9.3.: Performance of PureCLIP for the four alternative scoring schemes. The
orange line (raw posterior probability) is overlapped by the green line (scoreUC). The
performance of CITS is shown for comparison.
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9.3. Incorporation of RNA-seq data

Section 3.2.2 and 3.4). In order to account for this, we used the K562 RNA-seq datasets
of different subcellular compartments from ENCODE for comparison: whole cell
(ENCSR885DVH, total), cytoplasmic fraction (ENCSR000COK, polyA), nucleoplasmic
fraction (ENCSR000CQA, total) and chromatin fraction (ENCSR000CPY, total).
Another question to address is the resolution at which the RNA-seq signal should

be included. Since PureCLIP uses position-wise fragment densities to detect enriched
sites, it seems natural to use a corresponding signal from the given RNA-seq data. In
comparison to gene- or transcript-wise signals, this also accounts for local changes
in transcript abundances (see Section 3.3.3). Moreover, this avoids the problem of
dealing with overlapping annotations. There remains the question which bandwidth
to use to compute the RNA-seq fragment densities. A larger bandwidth might be more
robust and able to reduce noise. On the other hand, signals might be more likely to be
impaired by nearby intron-exon junctions, causing sharp jumps in read coverages. For
the sake of simplicity, in the following we use the same bandwidth to compute target
CLIP and RNA-seq fragment densities.

To explore which of the four compartment specific RNA-seq datasets is most suitable
for normalization for each of the eCLIP datasets, we compared PureCLIP’s performance
when incorporating the signals using a bandwidth of 200 nt to compute the fragment
densities. We found that for PUM2 and RBFOX2, whole cell RNA-seq data improves
the precision of the called crosslink sites the most, while for U2AF2 the nucleoplas-
mic RNA-seq data does (see Figure A.13). These results are in agreement with the
proteins known predominant subcellular locations [14]. As an example, Figure 9.4a
shows the correlation between PUM2 eCLIP and whole cell RNA-seq fragment densi-
ties. Figure 9.4b shows PureCLIP’s classification into non-enriched and enriched sites,
normalized for the RNA-seq fragment densities.

For each eCLIP dataset we included the most suitable RNA-seq dataset and compared
the obtained precision for different bandwidths (see Figure A.14). Of the compared
bandwidths, 200 nt achieves the largest improvements. The results presented in Fig-
ure 9.5 show that the incorporation of the RNA-seq signals generally leads to only
moderate improvements of the overall precision over PureCLIP in basic mode. The
overall precision is comparable to the precision that is achieved when including input
signal, however, the ranking of the sites is notably worse. Note that in combination
with the incorporation of CL-motifs for PUM2 and RBFOX2 eCLIP data, the benefit
of using RNA-seq data for normalization almost vanishes (see Figure A.15). The most
likely reason for this is that the incorporation of RNA-seq data mainly prevents false
positives with relatively weak interaction footprints located within CL-motifs in highly
abundant RNAs, which can already be avoided when correcting for the crosslinking
sequence bias. Furthermore, for RBFOX2 larger bandwidths result in lower precisions,
as already observed when incorporating input signal and CL-motifs (see Figure 9.2b,
right).
We conclude that PureCLIP is able to incorporate RNA-seq signals to normalize

for transcript abundances, although the increase in precision is moderate and the
biggest impact occurs when not simultaneously correcting for the sequence bias. For
most cases, input control experiments – which indirectly control for background
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Figure 9.4.: a) Correlation between PUM2 eCLIP and whole cell RNA-seq fragment
densities, computed using a KDE bandwidth of 200 nt and plotted at all sites with
at least one read start. The grey lines represent the fragment density thresholds, i.e.
the fragment density corresponding to a singleton read start, used when learning the
HMM parameters (see Section 5.4.1). b) The orange and green lines represent the
mean parameters µ0,t, µ1,t predicted by PureCLIP for the non-enriched and enriched
emission probability distributions, respectively, based on the position-wise RNA-seq
fragment density bt. Additionally, the resulting classification into non-enriched and
enriched sites is shown.
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Figure 9.5.: PureCLIP’s precision when including RNA-seq data from the best suitable
available cellular compartment (bandwidth h = 200) in comparison to PureCLIP in
basic mode and when including input control data (bandwidth h = 50). a) and b)
Incorporation of whole cell RNA-seq data. c) Incorporation of nucleoplasm RNA-seq
data.
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binding, crosslinking preferences and transcript abundances – are more suitable for
bias correction. However, in particular for CLIP experiments performed for subcellular
compartments, such as Fr-iCLIP [17] experiments, and for which matching RNA-seq
but no input control experiments exist, the ability to incorporate this data can be useful.

9.4. Performance on PTBP1 iCLIP data

We furthermore investigated PureCLIP’s performance on PTBP1 iCLIP data, based on
its known binding upstream of 3’ splice sites of silenced exons, similar to the study
published by Chakrabarti et al. [24]. For this we used a list of regulated exons obtained
from an RNA-seq analysis of CRISPR PTBP1 knockout cells provided by the Ule lab [24].
PTBP1 has four RNA-binding domains, binds to CU-rich regions and is known to build
clusters of crosslink sites, which are on average 29 nt long [61, 63]. Moreover, it is
known that PTBP1 can bind in clusters of multiple proteins, causing the formation of
higher-order complexes [28]. As a consequence, we expect read starts originating from
truncated cDNAs being more distributed within such clusters and thus to form less
sharp truncation patterns compared to, for example, PUM2 or RBFOX2 which bind
to short defined sequence motifs. However, it is noteworthy that this evaluation is
less significant compared to the evaluations described for PUM2, RBFOX2 and U2AF2
(see Section 8.3.2) due to the relatively low number of silenced exons (776) available
for the analysis. Furthermore, the results should be interpreted with care, since for
some silenced exons PTBP1 might also bind within or downstream of the exons [63].
Nevertheless, it provides an important insight into the performance of PureCLIP for
data with less strong truncation patterns compared to other existing methods.
We used the top 17,629 ranking sites of all methods, defined based on the lowest

number of called crosslink sites obtained with CITS to allow a fair comparison, and
investigated the distribution of calls around the bona fide binding region. Although
the exact binding site of PTBP1 is unknown, as expected we observed an accumulation
of crosslink sites and binding regions upstream of 3’ splice sites of silenced exons
(see Figure 9.6) for most methods. Interestingly, the highest density was reported by
PureCLIP, both for called crosslink sites and binding regions, 37 and 34 nt upstream of
3’ splice sites of silenced exons, respectively.
Because iCount calls much more crosslink sites than other methods and was used

in previous studies on PTBP1 iCLIP data [24] with its default setting, we additionally
investigated weather its performance would be notably different in a higher #PP range.
Therefore we performed an equivalent analysis as described above for the top 100,000
sites (see Appendix A.11). For this we used a PureCLIP setting optimized for longer
crosslink clusters (see Section A.12), which increases its sensitivity for individual sites
within longer clusters and enables the comparison in a higher #PP range. We observed
that here iCount calls the highest density of crosslink sites ∼ 35 nt upstream of 3’
splice sites of silenced exons, while PureCLIP still reaches a higher density of binding
regions within this region (see Figure A.16).

In summary, PureCLIP performs well also in detecting bona fide protein-RNA inter-
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Figure 9.6.: (a) PTBP1 binding upstream of silenced exons as schematically depicted
by Haberman [60]. (b) Distribution of the top 17,629 crosslink sites and (c) binding
regions called by each method for PTBP1 iCLIP data around 3’ splice sites of silenced
exons. The distributions were smoothed with a Gaussian kernel density estimate using
a bandwidth of 10 nt to reduce the noise caused by the relatively low counts and
densities. The dashed gray lines denote the position with the highest signal.
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actions for proteins generating larger crosslink clusters, such as PTBP1, both when
using its default setting as well as when using a setting optimized for larger crosslink
clusters.

9.5. Incorporation of individual CLIP replicates
As described in Section 5.5, we extended PureCLIP to incorporate individual replicates.
To recapitulate, for this purpose PureCLIP uses joint emission probabilities, while
learning the emission probability parameters separately for each replicate.
To investigate whether this strategy achieves a gain in performance, we compared

it 1) to PureCLIP run on pooled replicates and 2) to the intersection of crosslink sites
obtained by running PureCLIP on each replicate separately. The results shown
in Figure 9.7 demonstrate that PureCLIP reaches a higher precision when including
replicates over a broad range of #PPs for PUM2 and RBFOX2 eCLIP datasets in com-
parison to using pooled data. For U2AF2 eCLIP data, for which the precision is already
relatively high using pooled data, the precision does not change notably. Interestingly,
for PUM2 the precision is only increased when simultaneously incorporating input
signal and CL-motifs. One possible reason for this is that biases are often also repro-
ducible between replicates, counteracting the gain obtained from reproducible target
signals. Thus, to ensure target specificity, it is also important to correct for biases when
including replicate information. As expected, the sensitivity, reflected by the number
of obtained PPs, is reduced, i.e. for all datasets the number of called crosslink sites is
less than half of the number called on pooled data. In comparison, for PUM2 eCLIP
data the intersection strategy reaches an even higher precision over all #PPs, while
reaching a similar precision for RBFOX2 and U2AF2 data. However, when including
individual replicates PureCLIP is clearly more sensitive and calls up to five times as
many crosslink sites. Moreover, due to a lower precision of the top ranking sites, for
RBFOX2 eCLIP data the overall precision when including individual replicates is also
higher than for the intersected sites.

We conclude that including individual replicates further improves PureCLIP’s preci-
sion for some datasets in comparison to using pooled replicate data, while enabling a
much higher sensitivity in comparison to the naive intersection approach.
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10. Discussion and Conclusion
In this last chapter we will first discuss the presented work and gained insights, then
give an outlook on possible applications and future extensions, and finally conclude
this thesis with some general remarks.

10.1. Discussion
The detection of target-specific protein-RNA interaction sites from single-nucleotide
resolution CLIP-seq data remains a challenge. Previous methods for the analysis of
such data typically report a large fraction of false positives, as they are sensitive to
different sources of biases. Peak callers such as Piranha, which call regions enriched
in read coverage without explicitly modelling read start counts as an indicator for
truncation sites, are prone to capture high background signals. On the other hand,
permutation based crosslink site detection methods such as CITS and iCount call sites
with a significant fraction of read starts, but cannot distinguish whether such sites are
caused by target-specific crosslinks or by non-specific crosslinks or artefacts within
highly abundant regions.

To overcome these limitations, we presented a new statistical approach called Pure-
CLIP. It calls crosslink sites considering both regions enriched in protein-bound frag-
ments and the specifics of iCLIP/eCLIP truncation patterns. It also explicitly models
possible sources of errors, such as non-specific background binding and the crosslink-
ing sequence bias in order to reduce the number of false positives. This number can
then be further reduced with our method by incorporating several individual replicates
at once. We have demonstrated in a comprehensive evaluation, based on simulated
and real data, that PureCLIP reaches a higher precision in calling both individual
crosslink sites and binding regions compared to previous methods. For most datasets
and settings, this already holds for PureCLIP in basic mode, i.e. without incorporating
any covariates.
In the following, we will first discuss our model design choices and their practical

implications retrospectively in comparison to other methods, and then a few general
issues concerning truncation-based CLIP signals.

10.1.1. Model design
Footprint modeling

The strength of PureCLIP is that it does not simply detect the highest peaks or pile-ups
of read starts but accurately models the two signals, the position-wise pulled-down
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fragment density, and the read start count in relation to this fragment density. In
this way, read start counts are indirectly normalized for local changes in transcript
abundances. As a consequence, for the analysed eCLIP datasets PureCLIP calls far
fewer crosslink sites within regions of high read coverage and within known common
background binding regions [119] than CITS and the simple threshold method. iCount
calls sites in even less covered regions, likely because it performs a transcript-wise
normalization, however, it also reaches consistently lower precisions than PureCLIP
across all evaluations.
In comparison to general peak-calling methods, crosslink site detection methods

are more likely to be affected by the CL-bias. This particularly applies to PureCLIP,
as the modeling of the read start counts aims to detect footprints also at low-affinity
binding sites or within lowly abundant RNAs. Nevertheless, this unique feature allows
for the distinction between target-specific interactions and non-specific crosslinking
patterns within highly abundant RNAs. For datasets containing a high fraction of
non-specific truncation patterns, caused for example by CL-motifs within proximity of
less crosslinking affine target binding regions, this bias can be corrected.

The accurate modeling of the signals allows for the correction for different biases at
the two layers, i.e. broader background binding footprints and increased individual
read start counts caused by the CL-bias. We demonstrated that the incorporation of
input signals as well as the incorporation of CL-motif scores greatly improves the
precision of our method, which for the latter strictly outperforms all other methods
over all analysed datasets. Both covariates can also be incorporated simultaneously,
which increases PureCLIP’s precision even further.

Two-component mixture models: tradeoff between precision and sensitivity

Different CLIP analysis methods achieve different precision-sensitivity ranges: while
PureCLIP provides high precision, iCount provides a relatively high sensitivity even
for the lowest applicable FDR threshold. The reason for this are different underlying
model assumptions. iCount models a background distribution using a permutation test,
so that the classification into crosslink sites depends on a user-defined FDR threshold.
For some datasets, even when using only sites with a reported FDR of 0, it still reports
more sites than PureCLIP altogether. Beside numerical imprecision, the reason for this
is most likely that varying read start counts caused by artefacts are not considered,
and are also highly unlikely under the null hypothesis. In contrast, PureCLIP explicitly
models the background (non-enriched, non-crosslink) and the target (enriched, crosslink)
signals and will thus always classify a certain fraction of sites as background.
In practice, different objectives exist for the analysis of CLIP data. For example,

for studies investigating the global positional distribution of binding signals around
regulated splice sites [24, 154], a higher sensitivity is often beneficial, in particular
when the number of regulated sites is low. Therefore, often raw or normalized read
densities are used for the analysis. Accordingly, in such cases, methods such as iCount
would likely be more suitable than PureCLIP. On the other hand, when the objective
is to precisely detect interactions for individual transcripts or to reduce the impact
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of systematic biases, methods that are able to reliably control the number of false
positives, such as PureCLIP, are essential.

Hidden Markov model

A main design decision was to use an HMM framework based on a first-order Markov
chain to account for the spatial dependencies between neighbouring positions. In
practice, we observed that the learned transition probabilities between the four hidden
states reflect protein-specific binding and crosslinking characteristics. For example,
for PUM2, which can cause crosslinks at all bases within its preferentially bound
sequence motif, the probability of staying within the enriched + crosslink state is notably
higher than for RBFOX2, for which the predominant crosslink sites are typically 4 nt
apart. The latter raises the question in how far higher-order Markov chains would
be more suitable for this task; however, they would also increase the computational
complexity considerably. Concerning the non-enriched and enriched states, the emitted
position-wise fragment densities already contain information about neighbouring
positions. Although this violates the assumption that the observations are independent
given the state, in practice this yields good results, as this causes the generation
of larger non-enriched and enriched segments with few transitions, while the state
posterior probabilities mainly depend on the corresponding fragment density emission
probabilities.

From crosslink sites to binding regions

Although PureCLIP’s main objective is to detect individual target-specific crosslink
sites, it is sometimes desirable to identify binding regions for the investigated protein.

Instead of defining binding regions at a broader peak level, PureCLIPmerges crosslink
sites to binding regions based on their genomic distance, similar to CITS and iCount.
Further investigation is needed to explore which distance is optimal for which proteins,
or to address this task in a more systematic manner, for example by segmenting
enriched regions based on crosslink posterior probabilities. Nevertheless, we were able
to show that on simulated and experimental CLIP data PureCLIP recovers the known
binding regions with higher precision compared to the other methods designed for
peak calling or crosslink cluster detection. For PUM2, RBFOX2 and U2AF2, we know
that they predominantly bind short, defined regions of 6 to 9 nt. Piranha, CLIPper and
iCount report regions that include large flanking regions. CITS mainly calls individual
sites distributed across the transcriptome, but fails to recover regions. In contrast,
PureCLIP detects relatively short regions, often only a few nucleotides long.
We further conclude that for proteins binding the target RNA with multiple RBDs

simultaneously or for proteins binding in clusters of multiple instances, PureCLIP is a
promising method for recovering the individual bound regions.
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10.1.2. Protein-binding characteristics are reflected by signal
contribution

PureCLIP classifies sites as enriched + crosslink based on the position-wise fragment
densities and read start counts. We have shown that in order to rank the identified
crosslink sites, different scoring schemes perform best for different proteins. While
for PUM2 a score focusing on the confidence that a site is enriched achieves the
highest precision, for U2AF2 a score focusing on the confidence that a site is crosslinked
performs best. These results demonstrate how for proteins with different binding and
crosslinking characteristics the relative importance of the two used signals varies. As
a tradeoff, we suggested a score to equally weight the confidence that a site is enriched
and crosslinked, which performs reasonably well for the investigated proteins; this,
however, remains to be explored on a larger scale.
Independently of the scoring scheme, PureCLIP assumes cDNA truncations for

calling crosslink sites. However, certain proteins generate weak truncation patterns,
for example, because they slide along the RNA with multiple RBDs instead of binding
to a short, defined region. On such data, PureCLIP and other crosslink site detection
and peak-calling methods will likely perform less optimally. A strength of PureCLIP is
that it learns the protein-specific read start rates, both for non-crosslink and crosslink
states, which can counterbalance weaker crosslinking signals to a certain degree. For
PTBP1, which generates longer clusters of crosslink sites, we showed that PureCLIP
captures its known binding regions upstream of regulated splice sites comparably well
or better than other methods. Whether PureCLIP can also be applied to proteins that
bind rather diffusely across entire transcripts such as MATR3 [24] remains to be tested.

10.1.3. Ranking of reported protein-RNA interactions

Ideally, given a method’s ranking of called crosslink sites or binding regions, when
increasing the score threshold and thus decreasing the number of predicted positives
(#PP), we would expect increasing precision. However, in particular for the top ranking
sites, the opposite is often the case, indicating highly scoring artefacts. Moreover, even
for higher #PP ranges, we observed a plateau in the precision-PP curves for most of
the compared methods, where the precision stays roughly constant for an increasing
#PP. We observed this for the evaluation both based on known predominant binding
regions and based on the bias-corrected replicate agreement. From a user’s perspective,
this is counter-intuitive, since one would expect more precise results when increasing
the applied score threshold.
These effects are clearly reduced for crosslink sites and binding regions called by

PureCLIPwhen correcting for biases. For the PUM2 eCLIP data, a remaining plateau can
be further reduced by using the enrichment focused posterior-ratio score. Although in
general we need to keep in mind that with our evaluation strategy we can only estimate
the precision, the results demonstrate that likely false positives frequently occur across
the entire ranking for most methods, which underlines the need to precisely model
target-specific interaction footprints.
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10.1.4. Recent developments
Recently, a new tool that can be used for the analysis of truncation-based CLIP data
called omniCLIP [41] was published. As the name suggests, it is designed to handle
different types of CLIP data. It learns the important diagnostic events from the data
and uses them to support peak calling based on the position-wise read coverage.
OmniCLIP models the data across replicates, while, similarly to PureCLIP, using a
non-homogeneous HMM to include covariates to correct for non-specific background
signals. Despite featuring similar model characteristics as PureCLIP, it has a somewhat
different scope as it is designed to call broader peaks and not individual crosslink sites.
Furthermore, as it is not explicitly designed for truncation-based CLIP data, it does not
account for the effect of truncations on the read coverage.

10.2. Outlook
In the following, we will first describe possible future improvements of our method,
and then list applications which would be interesting to explore and which would
likely benefit from high-resolution binding regions.

10.2.1. Future improvements
Currently, PureCLIP allows the incorporation of covariates which influence the emis-
sion probabilities of the pulled-down fragment density or of the read start counts.
Besides information from control experiments or CL-motifs, information about com-
mon background binding regions or mappability would be interesting candidates for
investigation as covariates. However, it is uncertain to what degree this information
is contained in input data and thus already successfully integrated. A step further
would be the modelling of non-homogeneous transition probabilities between states,
for example, to incorporate information about the sequence or structure binding prefer-
ences of the target protein. Furthermore, PureCLIP could be adapted to simultaneously
model other types of diagnostic events to improve the analysis for CLIP protocols such
as PAR-iCLIP [68] which additionally cause a higher fraction of base substitutions at
crosslink sites.
Another topic worth investigating would be the parameter settings for different

protein-binding characteristics, for example the optimal bandwidth and scoring scheme.
Ideally, these parameters would then be derived directly from the data.

10.2.2. Applications
Binding site prediction

The number of recoverable binding sites is generally limited in CLIP experiments due
to low transcript abundances or poor mappabilities within repetitive regions. However,
sometimes the aim is to recover all potential binding sites of a certain protein of
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interest. To address this problem, methods such as GraphProt [99] and Pysster [18]
were developed which learn the sequence and structure binding preferences of proteins
from CLIP peaks, and then predict binding sites in silico. Although such predictions
cannot account for in vivo regulations, for example by cooperative binding with other
proteins, they provide a valuable supplement to experimental CLIP data. For this task,
the use of high-confidence, high-resolution binding regions called by PureCLIP might
improve future predictions.

Protein interactions with long non-coding RNAs

The functional roles of the diverse lncRNAs are still poorly understood. Besides their
structure, expression, conservations, and interactions with other RNAs or DNAs, un-
derstanding their interactions with RBPs, both in facilitating other regulatory processes
and the regulation of the lncRNAs itself, is the key to the understanding of their overall
function [101]. However, the analysis of lncRNA interaction landscapes is challenging,
as they are often less expressed than mRNAs [101] and thus tend to generate lower
peaks in CLIP data. Consequently, when applying peak-calling methods, binding sites
within such lowly abundant lncRNAs are more likely to be missed. On the other hand,
in case of highly abundant RNAs, such as MALAT1 and XIST, which contain a high
fraction of background signal, other methods often tend to call a large number of
false positive crosslink sites or large regions. Nevertheless, it is desirable to accurately
capture target-specific signals within such regions [143]. PureCLIP is designed to
handle both described scenarios, and thus has the potential to improve the analysis for
lncRNAs, allowing for a better functional characterization [101].

Genetic variants and protein-RNA interactions

Another interesting application would be to investigate the effect of genetic variants
on protein-RNA binding. This could be interesting in the context of determining the
deleteriousness of genetic variants [32] or when known disease-causing variants are
given, and the goal is to understand the underlying mechanism. For each variant, one
could test if it is located within a protein’s binding region, for example by making use
of the available eCLIP datasets for 150 RBPs, which might be disrupted. Moreover, if
available or possible to generate, disease specific CLIP experiments for the candidate
proteins together with RNA-seq experiments could then be further used to infer the
effect on the disease-causing pathway.
For many proteins, the CLIP signals overlap due to cooperative or competitive

binding at the same transcript. Long, imprecise binding regions would further impair
the results, and thus methods providing high-resolution binding regions are crucial.

Allele-specific protein-RNA interactions

Recently, advances were made towards the detection of allele-specific binding from the
available ENCODE eCLIP datasets. Two methods were recently published [9, 152], both
based on the idea of using the ratio of allele-specific eCLIP reads to detect allele-specific
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binding. Both methods are based on binding regions, called with the peak-calling
methods CLIPper and Piranha, respectively. PureCLIP may be a promising alternative
here, not only because of its superior precision, but also because allele-specific binding
events by definition cause lower peaks, and might thus be missed by other methods.

10.2.3. Differential binding analysis

Another interesting and challenging problem is the detection of differential protein-
RNA binding under two or more conditions. This is crucial, for example, in order to
understand the regulatory differences between healthy and diseased cells. As already
mentioned, such differences can be caused by mutations interrupting binding sites, by
mutations changing the binding affinities of the protein, or by differences originating
from other interaction partners.
Few methods for the detection of differential protein-RNA binding have been pub-

lished so far. dCLIP [147] uses a hidden Markov model on bin-wise log-fold read
count enrichments between two conditions. In contrast, PEAKachu [67] does not rely
on fixed bins, but instead determines peak boundaries and then uses DESeq2 [89] to
detect significant count enrichments while modeling the variance between replicates
and conditions. To our knowledge, no currently available method explicitly corrects
for biases; however, it has been shown that, for example, differences in transcript
abundances between conditions also cause differential CLIP signals [109]. Further-
more, differences in background binding might cause non-specific differential signals,
which need to be distinguished from target-specific differential binding. Therefore, a
modeling framework such as the one used in PureCLIP may be able to improve the
precision of the detection.

A potential approach could be based on the comparison of the position-wise poste-
rior probabilities (enriched, crosslink) computed for each condition separately. In this
way, one could detect differentially bound regions and differentially crosslinked sites
simultaneously, and weight these signals depending on the investigated protein. In
order to additionally make use of replicate information, such an approach could be
further improved by modeling the variance between replicates and across binding
regions, for example by using the limma package [120, 131].

10.3. Conclusion
In this thesis we presented a new statistical model for the analysis of truncation-based
CLIP data that allows for the detection of target-specific crosslink sites and binding
regions more precisely than other state-of-the-art methods. PureCLIP captures protein-
RNA interaction footprints, while not relying on the highest peaks alone, and being
able to correct for biases, such as transcript abundances, background binding and
crosslinking sequence preferences. Therefore, it provides a promising method for the
analyses of the growing number of truncation-based CLIP datasets, also for proteins
with lower binding affinities or proteins binding to lowly abundant RNAs, such as
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lncRNAs.
PureCLIP was the first method that explicitly corrects for the crosslinking sequence

bias and, to our knowledge, the first that is able to include replicates for the detection
of individual crosslink sites. Furthermore, it robustly reaches a high precision for a
range of different parameter settings, and can be applied to proteins with different
binding characteristics. It can be easily installed via Bioconda [59] and, thanks to the
Freiburg Galaxy Team, accessed via the European Galaxy server [1].
The presented computational strategies to increase the numerical stability of Pure-

CLIP (see Section 5.6.2) are an effort to allow for its application on a larger scale,
including datasets with different characteristics. This could for example be different
binding characteristics as well as occurrences of multi-mapping reads causing huge
pile-ups of read starts. Given the specifics of the PureCLIP model, besides iCLIP and
eCLIP data, it can be used to analyse data from other types of truncation-based CLIP pro-
tocols, such as irCLIP [156], FLASH [4] and miCLIP (methylation-iCLIP), a customized
version of iCLIP for capturing m5C methylated sites on RNAs with single-nucleotide
resolution [69]. At the time of writing this thesis, PureCLIP is already being used by
multiple labs for the analysis of in-house CLIP data, and to re-analyse the 223 published
ENCODE eCLIP data datasets [109].
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A.1. Baum-Welch algorithm
The following rearrangements are used to obtain the individual update functions from
the expected log-likelihood Q(θ|θ′):

Q(θ | θ′) =
∑︂

s∈{1,...,l}T

P (S = s | Y = y; θ′)

(︄
log πs1 +

T∑︂
t=2

log ast−1st +

T∑︂
t=1

log est(yt)

)︄

=
∑︂

s∈{1,...,ℓ}T

P (S = s | Y = y; θ′) log πs1

+
∑︂

s∈{1,...,ℓ}T

P (S = s | Y = y; θ′)

T∑︂
t=2

log ast−1st

+
∑︂

s∈{1,...,ℓ}T

P (S = s | Y = y; θ′)

T∑︂
t=1

log est(yt)

=

T∑︂
t=1

ℓ∑︂
j=1

∑︂
s:s1=j

P (S = s | Y = y; θ′) log πj

+

T∑︂
t=2

ℓ∑︂
m=1

1∑︂
n=1

∑︂
s:st−1=m,st=n

P (S = s | Y = y; θ′) log amn

+

T∑︂
t=1

ℓ∑︂
j=1

∑︂
s:st=j

P (S = s | Y = y; θ′) log ej(yt)

=

ℓ∑︂
j=1

P (S1 = j | Y = y, θ′) log πj

+

T∑︂
t=2

ℓ∑︂
m=1

ℓ∑︂
n=1

P (St−1 = m,St = n | Y = y, θ′) log amn

+

T∑︂
t=1

ℓ∑︂
j=1

P (St = j | Y = y, θ′) log ej(yt) (A.1)
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A.2. Model choice: gamma distribution
The gamma distribution is a popular and flexible choice to model non-negative con-
tinuous values with a right skewed distribution and thus we use it for the fragment
density values. We investigated the properties of the observed fragment densities with
skewness-kurtosis plots (originally proposed by Cullen and Frey [35], implemented in
the fitdistrplus R package [38] which was used here). For this we used all sites which
are used by PureCLIP for fitting the non-enriched and enriched emission probability
distributions: sites with at least one read starting while discarding singleton reads.
Although we do not know the empirical distributions corresponding to the assumed
non-enriched and enriched components of our model, the skewness-kurtosis plots indi-
cate that the total fragment densities within real data can be best modeled with the
properties of a gamma distribution, in comparison for example to a lognormal distribu-
tion (see Figure A.1a). Furthermore, when dividing the observed values for different
ranges of associated input fragment densities, the gamma distribution remains the best
fitting distribution with respect to the skewness-kurtosis properties (see Figure A.1b).
This shows that also for the non-homogeneous HMM the gamma GLM is likely a well
suited model.

A.3. Preprocessing of iCLIP and eCLIP data
The following tools and settings were used for data preprocessing:

• Adapter removal and filtering

Possible adapter contaminations at 3’ ends were removed using TrimGalore [80]
(v0.4.2, based on cutadapt) for iCLIP data, and by running cutadapt [98] (v1.12)
twice for eCLIP data. The later was done in order to correct for possible double
ligation events [143]. Reads shorter than 18bp were discarded.

• Read mapping

Reads were mapped against the human genome (hg19) using STAR [39] (v2.5.1b)
with setting ‘--alignEndsType EndToEnd’, ‘--scoreDelOpen -1’ for gap penalty,
and ‘--outFilterMultimapNmax 1’ to discard reads mapping to multiple locations.
Ensembl Release 75 annotations were included to account for splice junctions.

• PCR duplicate removal

To remove PCR duplicates we used UMI-tools [130] (v0.4.3) with its default
setting for iCLIP data and with setting additionally ‘--paired’ for eCLIP data.
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Figure A.1.: Skewness-kurtosis plots [38] for the pulled-down fragment densities
from all sites that are used by PureCLIP to fit the non-enriched and enriched emission
probability distributions, a) for different eCLIP datasets and b) for PUM2 eCLIP data
divided for different ranges of input fragment densities.
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A. Appendices

A.4. Extension of the Nelder-Mead algorithm
We extended the Nelder-Mead algorithm to account for constraints regarding the
gamma shape parameter λ, allowing for upper λmax and lower boundaries λmin. Recall
that for n-dimensional optimization problems the algorithm uses an n-simplex with
(n+1) vertices as function evaluation points (see Section 4.2.8). Since we do not want to
modify the GSL implementation of the core algorithm, we addressed this by returning
modified function values f ∗ to the GSL interface for any λ < λmin or λ > λmax. We
generate an artificial likelihood landscape using mirrored or boundary function values
in combination with penalty terms, aiming to prevent the simplex from moving to
far outside of the constrained parameter space. The penalty terms are based on the
distance between the current parameter value λ and the corresponding boundary.
Note that we use these soft constraints to ensure that the algorithm remains able to
find optima within the valid parameter space that are located close to the parameter
boundaries.
Let f be the original objective function corresponding to Equation 5.10, which is

dependent on the parameters µ and λ. Algorithm A.1 depicts the computation of the
modified function value f ∗. Equivalently modified function values are computed for
Equation 5.4.1.

1: function fGSL(µ, λ)
2: p← 0.01 ▷ Penalty factor
3: ϵ← 0.001
4: if λ < λmin then
5: d = λmin − λ ▷ Distance to λmin

6: if f(µ, λmin + ϵ)− f(µ, λmin) > 0 then ▷ f is descending towards λmin

7: f∗ = f(µ, λmin + d) ▷ Mirrored function value
8: f∗ =+ (d · f(µ, λmin + d) · p)2 ▷ added penalty
9: else ▷ f is ascending towards λmin

10: f∗ = f(µ, λmin) ▷ Function value at λmin

11: f∗ =+ (d · f(µ, λmin) · p)2 ▷ added penalty
12: end if
13: else if λ > λmax then
14: . . . ▷ Computation accordingly for the other side
15: else ▷ Within valid parameter space
16: f∗ = f(µ, λ) ▷ Use unmodified value
17: end if
18: return f∗

19: end function

Algorithm A.1:Modified objective function used for the GSL Nelder-Mead routine to
implement soft constraints.

130



A.5. Computation of CL-motif scores

A.5. Computation of CL-motif scores
To learn the CL-motifs on the input eCLIP data we run DREME (meme suite v4.11.3)
[10] with the parameters ‘-norc -k 6 -4’ on 10 bp windows spanning the called crosslink
sites, while using 10 bp windows 20 bp upstream and downstream as control. We use
FIMO (meme suite v4.11.3) [55] with the parameters (--thresh 0.01 --norc) to compute
the corresponding motif matches. Figure A.2 shows the learned CL-motifs for RBFOX2
and U2AF2 eCLIP input data.
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Figure A.2.: CL-motifs as shown in Figure 7.4a, but for RBFOX2 and U2AF2 eCLIP
input data.
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A. Appendices

A.6. Evaluation of called crosslink sites

Table A.1.: Number of crosslink sites reported by different methods.
PUM2 eCLIP RBFOX2 eCLIP U2AF2 eCLIP

simple threshold (5) 12,449 60,891 119,195
CITS 7,045 27,446 82,454
iCount 113,189 358,987 913,179
PureCLIP: basic 7,106 31,554 122,223
PureCLIP: input 5,639 24,815 117,147
PureCLIP: CL-motifs 5,958 17,748 91,545
PureCLIP:
input signal + CL-motifs

4,861 14,308 89,718
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Figure A.3.: Precision of the called crosslink sites shown for the entire range of #PPs
obtained by applying different score thresholds.
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Figure A.5.: Same as Figure 8.6, but for U2AF2 eCLIP data and using the top 5000
called crosslink sites for a) and b).
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A. Appendices

A.7. Evaluation of called binding regions

Table A.2.: Number of binding regions reported by different methods.
PUM2 eCLIP RBFOX2 eCLIP U2AF2 eCLIP

Piranha 11,918 42,191 29,579
CLIPper 97,970 426,338 332,168
CITS 15,424 16,651 44,134
iCount 25,680 87,113 196,753
PureCLIP: basic 3,373 18,707 54,087
PureCLIP: input 2,528 14,607 50,404
PureCLIP: CL-motifs 2,862 13,592 44,970
PureCLIP:
input signal + CL-motifs

2,223 10,949 42,702

0.0

0.5

1.0

1.5

0 5000 10000 15000

Called binding regions (#PP)

M
ea

n 
sc

or
e 

(s
m

ot
if)

0.0

0.2

0.4

0.6

0 5000 10000 15000

Called binding regions (#PP)

M
ea

n 
sc

or
e 

(s
m

ot
if)

0.00

0.01

0.02

0 20000 40000

Called binding regions (#PP)

M
ea

n 
sc

or
e 

(s
11

−
3s

s)

0.000

0.005

0.010

0.015

0.020

0e+00 5e+04 1e+05

Called binding regions (#PP)

M
ea

n 
sc

or
e 

(s
11

−
3s

s)

(a) (b)

(c) (d)

Figure A.6.: Same as Figure 8.7, but using bandwidth of 10 nt to compute region-wise
scores.
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Figure A.7.: Characteristics of reported binding regions with respect to bias prone
regions exemplarily shown for PUM2 eCLIP data. a) Distribution of log mean fragment
density values and b) log-fold mean fragment density enrichments over the input for
the top 1000 called binding regions. c) Fraction of called binding regions overlapping
common background binding regions and d) fraction of positions within called binding
regions overlapping common background binding regions for different #PPs.
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Figure A.8.: Length distributions of called binding regions.
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A.8. Replicate agreement
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Figure A.9.: Raw replicate agreement on eCLIP datasets. For each given number x of
called sites in one replicate, we report the percentage that were also found within the
x top ranking called sites of the other replicate.
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for sites called by PureCLIP, for sites called by PureCLIP and located within the target
motif, and for all sites with at least one read start. Based on the distributions a threshold
is set for bias correction (black vertical line).
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A.9. Model choices
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Figure A.11.: Precision of PureCLIP in default setting (using left-truncated gamma
distributions fitted to sites with >= 1 read starts, discarding singleton reads) in com-
parison 1) to using non-truncated gamma distributions fitted to all positions, i.e. also
positions with no read start, and 2) to not discarding singleton read starts.
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Figure A.12.: Precision of PureCLIP in default setting (using zero-truncated binomial
distributions fitted to sites with >= 1 read starts) in comparison to PureCLIP when
using non-truncated binomial distribution fitted to all positions, i.e. also to positions
with no read start.
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A.10. Incorporation of RNA-seq data
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Figure A.13.: PureCLIP’s performance when including RNA-seq data from different
cellular compartments.
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Figure A.14.: Precision of PureCLIP when including RNA-seq data from best suitable
cellular compartment for different bandwidths h in comparison to PureCLIP in basic
mode. a) and b) Incorporation of whole cell RNA-seq data and c) of nucleoplasmic
RNA-seq data.
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Figure A.15.: PureCLIP’s performance when including whole cell RNA-seq data in
combination with CL-motifs for different bandwidths h in comparison to PureCLIP in
basic mode.
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A.11. PTBP1 iCLIP

A.11. PTBP1 iCLIP
Additionally, since iCount calls much more sites than other methods we aimed for
a comparison in a higher #PP range. The reason for this is that in previous studies
iCount was used on PTBP1 CLIP data using its default sensitivity setting [24] and
we do not want to exclude a for iCount potentially more optimal #PP range from the
comparison. This is particular interesting on this dataset, since iCount uses a moving
sum to call crosslink sites (see Sections 3.6.2) and, furthermore, normalizes these for
broader regions in comparison to PureCLIP, which might be valuable for this type
of data. The used default half-window parameter of 3 nt corresponds to the optimal
parameter for PTBP1 as suggested by Haberman [60]. Consequently we expected
iCount to perform better on this data in comparison to PUM2 or RBFOX2 eCLIP data.
Since PureCLIP calls only 25,258 crosslink sites in its defaults setting, we run it using
a setting optimized for longer crosslink clusters (see Section A.12), which increases
its sensitivity and allows a comparison. We then explored the distribution of the top
100,000 called crosslink sites or regions around the 3’ splice sites of silenced exons (see
Figure A.16).

We observed that iCount calls the highest density of crosslink sites∼ 35 nt upstream
of 3’ splice sites of silenced exons, while PureCLIP shows a higher density of binding
regions in this area.
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A. Appendices

A.12. PureCLIP parameters
The most important user parameters PureCLIP depends on are the following:

• Read to use -ur <num>

Flag to define which read of a pair should be used for the analysis: 1->R1, 2->R2.
Default: all.

• Position of crosslink site -ctr

Use position of read starts as potential crosslink sites. Default: position upstream
of read starts.

• Training set -iv <id>[;<id>;...]

The set of chromosomes to use for training the HMM. Default: all.

• KDE bandwidth -bw <num>

Bandwidth of kernel density estimation used to compute fragment densities.
Default: 50.

• Distance -dm <num>

Distance used to merge individual crosslink sites to binding regions. Default: 8.

• Binding characteristics -bc <num>

Flag to optimize parameters according to binding characteristics of protein: e.g.
for proteins causing larger crosslink clusters with relatively lower read start
counts. Default: 0, i.e. the parameters are optimized for proteins binding to short
defined binding regions.

• Number of threads -nt <num>

Number of threads used for learning. Default: 1.
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Zusammenfassung
Interaktionen zwischen Proteinen und RNAs spielen eine wichtige Rolle in allen post-
transkriptionalen regulatorischen Prozessen. Die in den letzten Jahren entwickelten
CLIP-seq Technologien haben die Hochdurchsatz-Detektion von Protein-RNA Interak-
tionen möglich gemacht. Anreicherungen alignierter Reads sowie Transitionen oder
Deletionen einzelner Basen können dabei genutzt werden, um auf die Binderegio-
nen rückzuschließen. Durch die Erfassung des hohen Anteils von cDNAs, die an der
Protein-RNA Crosslink-Stelle trunkiert wurden, kann des Weiteren eine Auflösung bis
hin zu einzelnen Nukleotiden erreicht werden.

Die steigende Anzahl publizierter Datensätze sowieWeiterentwicklungen der Verfah-
ren erfordern maßgeschneiderte, computergestützte Analysemethoden. Existierende
Methoden sind bislang nicht in der Lage, die Besonderheiten der cDNA-Trunkierungs-
muster und mögliche Biase durch unspezifische Hintergrund-Binde-Ereignisse oder
Crosslink-Sequenz-Präferenzen zu modellieren.
In dieser Arbeit stellen wir PureCLIP vor, eine neue Methode basierend auf einem

Hidden Markov Modell, welche simultan die Detektion von Peaks und individuellen
Crosslink-Positionen durchführt. Zusätzlich können externe Daten zur Korrektur
unspezifischer Hintergrundsignale und des Crosslink Bias integriert werden. Um die
Methode zu evaluieren haben wir drei Strategien entworfen. Zunächst haben wir einen
Workflow für die Simulation von iCLIP Daten entwickelt, welcher, ausgehend von
echten RNA-seq Daten und bekannten Binderegionen, die experimentellen Schritte
des iCLIP Protokolls einschließlich der Generierung von Hintergrundsignalen imitiert.
Als zweites haben wir experimentelle iCLIP und eCLIP Datensätze von Proteinen
verwendet, deren prädominante Binderegionen bekannt sind. Schließlich haben wir
als drittes die Übereinstimung von detektierten Bindestellen zwischen Replikaten zur
Evaluation verwendet, unter der Annahme, dass Protein-spezifische Signale zwischen
den Replikaten reproduzierbar sind.

Sowohl auf simulierten als auch auf experimentellen Daten zeigt sich, dass PureCLIP
präziser in der Detektion von Crosslink-Positionen ist als andere Methoden. Insbeson-
dere durch die Integration von Input Kontrolldaten und Crosslink assoziierten Motiven
ist PureCLIP bis zu 13% präziser als andere Methoden und erreicht eine um bis zu 20%
höhere Übereinstimmung zwischen Replikaten. Unsere Methode kann außerdem detek-
tierte Crosslink-Positionen auf Basis ihrer Distanz zu Binderegionen zusammenfassen.
Wir zeigen auch hier, dass die resultierenden Regionen bekannte Binderegionen mit
einer hohen Präzision wiedergeben.

Darüber hinaus demonstrieren wir, dass unsere Methode für zahlreiche unterschied-
liche Konfigurationen und auch für Proteine mit unterschiedlichen Bindeeigenschaften
eine hohe Präzision erreicht. Als Letztes haben wir die Methode dahingehend erweitert,
dass mehrere Replikate gleichzeitig integriert werden können und zeigen, dass dadurch
die Präzision weiter gesteigert werden kann. PureCLIP und die zugehörige Dokumen-
tation sind öffentlich verfügbar unter https://github.com/skrakau/PureCLIP.
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