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1. Introduction 

1.1 Inhibitory motor control in health and movement disorders 

The capacity to control our actions and guide them according to our goals is a fundamental 

characteristic of behavioural flexibility and a key aspect of volition 1. For example, the ability 

to either refrain from executing a prepared action (e.g. not clicking the enter button to send an 

angry e-mail) or disengage from ongoing motor behaviours (e.g. stop pressing the gas pedal 

when approaching a red light) is intrinsically connected to our ability to thrive in a stimulus-

rich environment. The importance of the capacity to inhibit actions is also a central theme of 

regulatory laws, which penalize consequences of impulsive actions in children and adolescents 

or people with structural brain damage, where this capacity is respectively underdeveloped or 

diminished, differently from healthy adults 2-4. Religious and moral codes (‘no sex until 

marriage’) and social campaigns (‘just say no’) frequently assume an entire range of action 

inhibition capacities, further emphasizing the importance of voluntary inhibitory motor control 

in social life. Crucially, effective inhibitory control early in life has been associated with better 

psychosocial measures, including educational achievements, stress-coping capacity and sense 

of self-worth 5. 

 

However, despite the intrinsic importance of voluntary inhibition of actions in daily living, the 

effects of inhibitory control are difficult to observe, as the successfully inhibited behaviour 

never occurs. On the other hand, the consequences of insufficient behavioural inhibition can be 

readily exposed in a spectrum of neuropsychiatric and movement disorders 6. These disorders 

not only provide clear clinical examples of the relevance of voluntary inhibitory control in the 

successful fulfilment of life goals, but also offer a unique opportunity to experimentally explore 

the neural circuitry of inhibitory control 6. Among the wide range of movement disorders, 

several conditions known as hyperkinesias present with excessive involuntary motor output that 

is thought to reflect disinhibition at different levels of the motor system 6. For example, in 

cortical myoclonus, single, irregular and rapid bursts of involuntary muscle activation are 

viewed as the result of disinhibition of the primary sensorimotor cortex and possibly combined 

with cerebellar damage 7. In contrast, the brief jerks of brainstem myoclonus are suggested to 

reflect excessive brainstem excitability 8 and choreic movements are one behavioural 

consequence of neurodegeneration within the striatum, where there is severe loss of inhibitory 

Gamma-aminobutyric acid (GABA)ergic medium spiny neurons 9, 10. In dystonia, corticospinal 

disinhibition in motor and sensory systems is a key pathophysiological finding 11, 12. However, 

beyond the aforementioned examples, where inhibitory deficits lead to non-physiological 
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movement patterns, one particular neuropsychiatric movement disorder has long puzzled 

medical literature as a prototypical example of behavioural disinhibition due to the unique 

qualities of its abnormal motor behaviours known as tics.  

 

1.2 Tic disorders and Tourette Syndrome 

In current literature, tics are defined as movements or sounds that typically resemble voluntary 

actions, but appear repetitive, often exaggerated in intensity and are not bound to a certain social 

context 13. Tics are categorized as either clonic or tonic, based on the duration of their 

occurrence, or dystonic if they lead to prolonged and abnormal body postures 14, 15. Tics are 

labelled as simple, to describe movements as a result of activation of individual muscles (e.g. 

eye twitching, head jerking) or brief sounds without meaningful content (e.g. sniffing sounds, 

simple vocalizations). In contrast, complex tics denote motor behaviours and sounds that may 

be misunderstood as having social intent, although by definition they do not (e.g. winking, 

sending kisses, shrugging shoulders). Other complex tics include pali- (the repetition of actions 

or sounds), echo- (the imitation of movements or sounds in the absence of explicit awareness) 

and coprophenomena (the execution of socially obscene actions or words without intent), 

although the question as to whether all these behaviours should be truly labelled as tics has 

more recently been disputed 16. It is noteworthy that any possible movement or sound may be 

a tic-behaviour, and thus, among the entire range of hyperkinetic movement disorders, tics have 

the widest phenomenological variability. Tics that significantly interfere with the execution of 

ongoing voluntary actions are labelled as ‘blocking tics’ 17. The term ‘malignant tics’ refers to 

tics that may lead to serious injuries, as for example intense neck jerks leading to cervical 

myelopathy, or repetitive head banging as the cause of intracranial haemorrhage 18. Malignant 

tics are not common.  

 

Tics are prevalent in many different disorders, including neurodevelopmental syndromes and 

neurometabolic or neurodegenerative conditions 13, but are most commonly documented in 

primary tic disorders. Tourette syndrome (TS) is the prototypical primary tic disorder 

encountered in clinics and affects up to 1% of school-age children 19. It is defined as a 

syndrome, which occurs before the age of 18 and where at least two motor tics (i.e. tic 

movements) and one phonic or vocal tic (i.e. tic sounds) have been present for at least a year 
20. Beyond TS, the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders, 

Fifth Edition (DSM-5) of the American Psychiatric Association also recognises other primary 

tic disorders, to include ‘chronic motor/vocal tic disorder’, where the main presentation before 



 5 

the age of 18 is that of isolated motor or vocal tics respectively, and ‘provisional tic disorder’, 

where tics have been present for less than a year’s period 20. Most likely, tics in all these 

disorders share the same pathophysiological underpinnings 21. However, it should be noted that 

most research in tics stems from studies of patients with TS, as they the most prevalent clinical 

population.   

 

Tics in primary tic disorders and patients with TS appear during early development and are 

typically first noted in children aged 4 – 6 years. However, they may already occur within the 

first years of life 19, 22, 23 , parallel to the developing emergence of voluntary actions.  The clinical 

course of tics is variable and longitudinal case-series have shown that tics persist in adulthood 

in the majority of cases 24-26. However, worst-ever tic period is typically reported in early 

adolescence (ages between 12 – 14 years), after which the severity of tics most often improves. 

Unfortunately, large longitudinal studies to determine robust predictors of tic persistence into 

adulthood are missing. Of note, the distribution of tics in primary tic disorders and TS is not 

random, but systematic. Tics most commonly affect the face alongside the neck and shoulders 
15. Also, in the majority of patients with TS neuropsychiatric comorbidities often complicate 

clinical presentation and may further impact tic outcome 15. Indeed, approximately 90% of 

patients with TS will also suffer from disorders, such as attention-deficit hyperactivity disorder 

(ADHD), obsessive-compulsive disorder (OCD), anxiety disorders and depression 15, 27.  

 

1.3 The pathophysiology of tics 

The pathophysiology of tics has a long history of misconceptions and confusion. Historically, 

tics were considered as signs of ‘hysteria’ 28. The reasons behind that include both the 

phenomenology of tic behaviours, as they strikingly resemble voluntary actions but are often 

exaggerated and on occasion socially-inappropriate, and the often-challenging behavioural 

facets of people with tics due to the aforementioned range of neuropsychiatric comorbidities. 

However, Gilles de la Tourette’s seminal two-part study of “…a nervous affliction 

characterized by motor incoordination with echolalia and coprolalia…” placed tic disorders in 

a different context 29. According to Tourette, the malady of tics was a progressive and hereditary 

syndrome, which despite fluctuations in the expression of symptoms, was resistant to any 

treatment at the time. However, the profound overlap of tics with voluntary actions continued 

to create resistance in the acceptance of tic-behaviours as involuntary movements, which is 

largely ongoing today.  
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Indeed, many of the neurophysiological characteristics of tics, such as the pattern of muscle 

activation and burst duration, can be indistinguishable from those of voluntary actions. 

Moreover, tics, similar to volitional movements, are often preceded by an impending urging 

somatic (interoceptive) experience 30, which is typically relieved upon the execution of a tic 31. 

Consequently, people with tics often view their tic movements as partially voluntary responses 

to involuntary sensory (urge) signals 32. This perception clearly differs from the perception of 

other hyperkinetic movement disorders, such as dystonia or myoclonus, where patients clearly 

describe their abnormal movements as purely involuntary and beyond their control 32. 

Accordingly, some behavioural treatments view tics as reinforced stimulus-response 

associations, as result of negative reinforcement 33, 34, where the occurrence of a tic provides 

temporary relief from the pressing experience of the premonitory urge. Evidence from 

reinforcement learning and habit formation studies in patients with TS further support this view 
35, 36.  

 

However, the view of tics as purely repetitive/habitual volitional movements (“nervous habits”, 

“nervous dispositions” or “psychological tics”) is not in line with other key clinical and 

neurophysiological data. First, tics typically lack behavioural flexibility, which is characteristic 

for voluntary actions. That means that even though tic patterns may change over time, most tics 

characteristically lack contextual adaptation, and within a given time period (from days to 

years) their phenomenology typically remains unchanged (e.g. blinking, eye rolling, sniffing, 

head jerking). Second, different from voluntary actions which are normal constituents of our 

behavioural output, the occurrence of tics may actually interfere with ongoing voluntary motor 

output. Blocking tics are examples of such interference, which may on occasion even 

temporarily lead to complete cessation of any behavioural output 17. We have previously 

explored the potential pathophysiological implications of blocking tics elsewhere 17. Third, the 

subjective experience of tics - typically perceived as unpleasant - differs from that of voluntary 

behaviours 32. Indeed, premonitory urges preceding tics are typically phenomenally intense and 

aversive somatic sensations 37. Finally, the neurophysiology of tics differs from that of 

voluntary actions. Although movement kinematics for most tic behaviours may be 

indistinguishable from volitional motor output, tics are only rarely preceded by movement-

related cortical potentials (MRCP; Bereitschaftspotential) 38-40. Crucially, the duration (shorter) 

and morphology of tic-related MRCPs differs from that of comparable volitional motor output 
38. Taken together, these findings support the view that the generation of tics may have some 



 7 

minimal involuntary component. Neuropathological studies of patients with TS and animal 

models of tic disorders further support this view 41-45.  

 

1.4 Voluntary inhibitory tic control 

Perhaps one of the greatest sources of confusion in the pathophysiological understanding of tic 

disorders and their position within the voluntary-involuntary continuum is their characteristic 

susceptibility to volitional inhibitory control. This means that patients can voluntarily suppress 

their abnormal motor output for variable periods of time (typically from seconds to minutes). 

Voluntary tic suppression is both specific and selective. This means that during the ongoing 

inhibition of targeted tics, the performance of voluntary actions remains unaffected. At the end 

of the effortful inhibitory process, tics characteristically reappear 31. The strong effects of 

voluntary inhibition over tic behaviours is typically used in the clinical setting to distinguish 

tics from other jerky hyperkinesias, as the ones described above, that cannot be voluntarily 

suppressed. Most importantly, the capacity to voluntarily suppress tics on demand lies at the 

core of behavioural treatments of tics.  

 

The two main behavioural interventions specifically designed for the reduction of tics are habit-

reversal training (HRT) - either as standalone or together with its multiple component treatment 

package of comprehensive behavioural intervention for tics (CBIT)- and exposure-response 

prevention (ERP) 33, 34, 46. These interventions are first-line recommendations of international 

treatment guidelines and pragmatic treatment approaches (reviewed in 47). Both in HRT/CBIT 

and ERP, patients are provided with appropriate neurocognitive tools to enhance their volitional 

capacity to control tics. Here, the association of tics with premonitory urges is viewed as a key-

component of tic pathophysiology and a central element to voluntary tic inhibition. This 

proposition stems from early clinical descriptions of tic disorders and the acknowledgment that 

premonitory urges are a driving force both for the emergence of tics, as well as their voluntary 

control 48. However, the exact relation between premonitory urges, tic generation and voluntary 

tic inhibition remains unclear and several studies, which addressed this complex issue have 

provided conflicting results (reviewed in 49). For example, data collected on the basis of phone 

interviews of 254 children and adolescents with TS (ages 8-19) revealed a striking dissociation 

between voluntary inhibitory tic control and presence of premonitory urges 50. Indeed, 64% of 

study participants reported being able to voluntarily suppress their tics, but only 37% reported 

awareness of premonitory urges preceding their tics 50. Most importantly, the intrinsic role of 

voluntary tic inhibition in the scientific study of the pathophysiology of tic disorders has been 
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largely overlooked. These questions are not only of academic interest, but have important 

implications, because understanding how voluntary tic inhibition temporarily reduces tics may 

profoundly impact the treatment of tics, which still remains unsatisfactory for a majority of 

clinical cases. Indeed, only about half of patients with tics respond to HRT/CBIT or ERP and 

tics are typically reduced by about 32% (range 25.8-37.5%; data for CBIT) 51.  

 

The five studies comprising this Habilitationsschrift explicitly explore core qualities of 

behavioural markers and neural correlates of voluntary tic inhibition in adolescents and adults 

with TS with the ultimate goal of providing novel insights into tic pathophysiology and 

effective tic control.  

 

1.5 Research topics  

The first two studies presented here explore the behavioural associations of voluntary tic 

inhibition. Specifically, the first study explores the association of voluntary tic inhibition with 

premonitory urges. A key assumption of previous literature is that premonitory urges are a 

prerequisite of voluntary tic inhibition, i.e. a patient can only inhibit their tics as long as they 

are aware of their impeding onset. Given a range of controversial evidence on the topic 

(reviewed in 49) and a wealth of different methodologies to examine this, we here address this 

question and introduce a novel and simple measure of voluntary tic inhibition in patients with 

chronic tic disorders and TS. Specifically, we assess whether the capacity to voluntarily inhibit 

tics is related to the perceived intensity of premonitory urges.  

 

Using this simple clinical measure of voluntary tic inhibition, the second study is informed by 

the clinical observation that patients with tics can selectively suppress a target tic behaviour, 

while other movements, as for example voluntary actions, remain unaffected. This implies that 

patients with tics have the capacity to selectively distinguish between neuromotor signals 

related to tic behaviours and those related to voluntary actions. The key research question of 

this second study, therefore, is how voluntary tic inhibition relates to the awareness of voluntary 

actions.  

 

The third study explores the effector specificity of voluntary tic inhibition. Indeed, in the 

previous two studies, voluntary tic inhibition was assessed as the general capacity to suppress 

tics across individuals. However, patients can selectively target and suppress isolated tic 

behaviours, as for example those that may not be socially acceptable (e.g. inhibition of tic-
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vocalisations during school classes, in the presence of ongoing blinking tics). This third study 

explores the spatial properties of voluntary tic inhibition and focuses on the concept of 

somatotopic selectivity of the inhibitory process.  

 

The remaining two studies expand beyond behavioural methodology to address the neural 

correlates of inhibition in TS using functional magnetic resonance imaging (fMRI). Informed 

by the influential disinhibition theory in TS (reviewed in 21), the fourth study specifically 

assesses the neural underpinnings of voluntary action control in a sample of well-characterized 

adults with TS. The fifth and final study explores the neural events associated with voluntary 

tic inhibition.  
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2. Publications  
2.1 Are premonitory urges a prerequisite of tic inhibition in Gilles de la 
Tourette syndrome? 
 
Ganos C, Kahl U, Schunke O, et al. Are premonitory urges a prerequisite of tic inhibition in Gilles de la Tourette 

syndrome? J Neurol Neurosurg Psychiatry 2012;83:975-978. 

URL: http://dx.doi.org/10.1136/jnnp-2012-303033 

 

Classic literature of voluntary tic control suggests that the presence of premonitory urges 

facilitates tic inhibitory capacity. According to this view, premonitory urges would serve as 

triggers for a cognitive process of voluntary inhibition, which would reduce tic output. 

However, only few studies addressed this experimentally and produced conflicting results. 

Here, therefore, we systematically examined the relation between the trait of premonitory urges 

and the capacity to voluntarily inhibit tics in a sample of adults with TS. According to previous 

literature, we hypothesised that the presence of premonitory urges would facilitate voluntary 

tic inhibition. Fifteen adult patients with TS (14 men, mean age 32.2 years) with no relevant 

neuropsychiatric comorbidities participated in the study. Actual tic severity was captured by 

means of the Yale Global Tic Severity Scale and the Modified Rush Video Scale (MRVS). A 

novel measure of voluntary tic inhibitory capacity was computed based on video-captured tic 

scores during “free ticcing” and “voluntary tic inhibition” conditions. The Premonitory Urge 

for Tics Scale assessed the perceived trait measure of premonitory urges. All participants 

reported being aware of premonitory urges and being able to voluntarily inhibit their tics. The 

reported intensity of premonitory urges correlated with the interference subscale of the Yale 

Global Tic Severity Scale. This indicates that patients with stronger experience of premonitory 

urges preceding tics may also perceive that their actions are interrupted to a greater extent by 

the abnormal movements. However, there was no relation between the reported intensity of 

premonitory urges and the capacity to voluntarily inhibit tics. This result suggested that the 

capacity to voluntarily inhibit tics is largely independent from the perceptual experience 

associated with tics. This implies a dissociation between a putative urge and tic generator and 

voluntary tic control in adults with TS.   
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2.2 Volitional action as perceptual detection: Predictors of conscious 
intention in adolescents with tic disorders.  
 
Ganos C, Asmuss L, Bongert J, Brandt V, Munchau A, Haggard P. Volitional action as perceptual detection: 

predictors of conscious intention in adolescents with tic disorders. Cortex 2015;64:47-54. 

URL: http://dx.doi.org/10.1016/j.cortex.2014.09.016 

Voluntary tic inhibition specifically targets tic behaviours, whereas ongoing voluntary actions 

remain unaffected. This suggests that in patients with tic disorders, motor signals related to tic 

behaviours are processed and classified separately from those related to voluntary actions. 

However, in light of the first study, which showed a clear dissociation between voluntary tic 

inhibition and premonitory urges, the behavioural correlates of this classification process 

remain unclear. In this study, therefore, we sought to explore the relation between awareness 

of voluntary actions with the perceptual experience of tics and voluntary tic control in a well-

characterized sample of 27 adolescents with TS and 30 healthy controls. We used Libet’s 

mental chronometry 52. Here, study participants make judgments as to the timing of either their 

motor actions or, in different blocks, their motor intentions. First, we were able to replicate 

previous reports and showed that the conscious intention to act occurs several hundred 

milliseconds before a simple voluntary action (keypress). A multiple regression model between 

tic-specific factors, to include the intensity of premonitory urges, voluntary tic inhibitory 

control and tic severity revealed strong associations between the first two factors and intention 

awareness, but no effect of tic severity. Patients who reported stronger premonitory urges 

preceding their tics showed delayed intention awareness. In contrast, patients who were more 

able to suppress their tics made earlier judgements of their intention awareness of voluntary 

actions. Crucially, the capacity to voluntarily inhibit tics was not related to the reported intensity 

of premonitory urges. Taken together, these findings provided evidence that the experience of 

voluntary actions in patients with tic disorders relies on a perceptual discrimination process 

between competing neuromotor signals. In the presence of strong interference between these 

signals, as in patients with greater levels of premonitory urges, the detection of action intention 

might be more difficult and thereby delayed. On the other hand, patients who have earlier 

intention awareness might also have better capacity to distinguish between the different types 

of neuromotor signals and thereby greater capacity to voluntarily control their tics.  
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2.3 The Somatotopy of Tic Inhibition: Where and How Much? 
 
Ganos C, Bongert J, Asmuss L, Martino D, Haggard P, Münchau A. The somatotopy of tic inhibition: Where and 

how much? Mov Disord. 2015 Aug;30:1184-9. URL: http://dx.doi.org/10.1002/mds.26188. 

 

In the previous two studies voluntary tic inhibition was examined as the general capacity to 

suppress tics across individuals. However, one key feature of voluntary tic inhibition is effector 

specificity: Patients can suppress any given tic behaviour on demand. However, the 

somatotopic specificity of voluntary tic inhibition has not been previously explored. It, 

therefore, remains unclear whether the strength of voluntary tic inhibition varies across the 

different body parts. This finding could have important implications not only for therapeutic 

interventions, but also for the understanding of the neurocognitive mechanisms underlying the 

interaction between tic generation and voluntary tic inhibition. In order to address the 

somatotopic properties of voluntary tic inhibitory control, we, therefore, analysed video 

segments of 26 adolescents with TS during the different conditions of free ticcing and voluntary 

tic inhibition. We used two measures for our assessments: the distribution of tic counts across 

the different body parts of our studied population and the normalized ratios of voluntary tic 

inhibitory capacity for each body part. We then investigated the relation between body-part 

specific voluntary tic inhibition and tic frequency for that body part. First, we replicated the 

characteristic pattern of somatotopic distribution of tics across our sample. Ocular and other 

cranial tics were most common, followed by the neck/shoulders and the limbs. The trunk 

exhibited the fewest tic behaviours in our sample. Second, there was a significant negative 

correlation between tic frequency and voluntary inhibitory tic capacity across body parts. 

Voluntary tic inhibition was least effective for the body parts that were most affected by tics. 

These data indicate that voluntary tic inhibitory capacity is not random, but a somatotopically 

selective process. The specificity of voluntary tic inhibition to suppress tic behaviours without 

affecting voluntary motor output could explain these findings. We suggest that voluntary tic 

inhibition selectively targets weak motor signals such as those related to less frequent tics and 

is less efficient for strong neuromotor commands, as for example those related to frequently 

occurring tics or voluntary actions. Future behavioural intervention studies to treat tics should, 

therefore, factor somatotopic tic distribution in the design and analyses of their results.  

  



 



 



 



 



 



 



 31 

2.4 Action Inhibition in Tourette Syndrome 
 
Ganos C, Kühn S, Kahl U, Schunke O, Feldheim J, Gerloff C, Roessner V, Bäumer T, Thomalla G, Haggard P, 

Münchau A. Action inhibition in Tourette syndrome. Mov Disord. 2014 Oct;29:1532-8.  

URL: http://dx.doi.org/10.1002/mds.25944 

 

The spatial characteristics of voluntary tic inhibition reveal somatotopic specificity. However, 

the overall inhibitory tone could be influenced by further factors, such as the general capacity 

to control any given motor behaviour, including voluntary actions. According to one influential 

account, tics represent disinhibited fragments of motor programs that escape voluntary control 

due to deficits in motor inhibitory tone 53. This view predicts that the capacity to inhibit 

voluntary actions is also impaired. However, literature on this topic remains unclear. Studies 

provided evidence for either deficient, normal or even enhanced motor inhibitory control over 

voluntary actions. This could be due to heterogeneity of studied populations (e.g. patients with 

TS with ADHD, OCD or other comorbidities vs patients without) and tasks to study inhibition 

(e.g. Go-NoGo, Simon task etc). Crucially, the neural correlates of action inhibition remain 

understudied. Here, we examined behavioural and neural correlates of action inhibition in a 

sample of 14 adults with TS without relevant comorbidities and a matched control sample. 

Action inhibition was examined using a classic stop-signal reaction-time task during event-

related fMRI. In patients, clinical correlations were performed between stop-signal reaction-

time task-related fMRI signal activations and clinical measures (e.g. motor tic frequency). We 

show that inhibitory task performance was comparable between the two groups. However, 

fMRI results revealed differences in the neural correlates of normal inhibitory performance. 

Although, healthy controls engaged the dorsal premotor cortex more strongly during the 

StopSuccess than in the Go condition, patients with TS showed the opposite pattern. Clinical 

correlations between action inhibition in the TS group and motor tic frequency revealed that 

patients who exhibited more tics engaged the supplementary motor area stronger during 

StopSuccess versus Go. Taken together, this pattern of results showed that deficits in inhibitory 

performance are not universal in patients with TS, specifically in the absence of clinically 

relevant comorbidities, such as ADHD. Aberrant patterns of brain activation in key areas 

involved in action control could facilitate normal inhibitory performance in patients. The 

supplementary motor area appears to represent a critical neural substrate both for the inhibition 

of voluntary actions and the suppression of tics.   
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2.5 The neural correlates of tic inhibition in Gilles de la Tourette syndrome 
 
Ganos C, Kahl U, Brandt V, Schunke O, Bäumer T, Thomalla G, Roessner V, Haggard P, Münchau A, Kühn S. 

The neural correlates of tic inhibition in Gilles de la Tourette syndrome. Neuropsychologia. 2014 Dec;65:297-301. 

URL: http://dx.doi.org/10.1016/j.neuropsychologia.2014.08.007 

 

The first four studies presented here examined the behavioural associations and key 

characteristics of voluntary tic inhibition, as well as the brain circuitry involved in voluntary 

action control in adolescents and adults with TS. However, the neural correlates of voluntary 

tic inhibition remain largely unknown. In this study, we sought, therefore, to examine the neural 

underpinnings of voluntary tic inhibition using a block-design voluntary tic inhibition paradigm 

during fMRI. For this purpose, the same sample of 14 TS adults with uncomplicated TS from 

the previous study was recruited. Tic severity and voluntary tic inhibitory capacity were first 

assessed outside the scanner, and subsequently during resting-state fMRI. Online and video-

based tic-counts were performed. Regional homogeneity (ReHo) analysis was used to assess 

synchronization of spontaneous fMRI-signal between a given voxel and its immediate 

neighbours contrasting the two tic conditions (free ticcing vs voluntary tic inhibition). Clinical 

correlations of ReHo parameters with tic frequency, voluntary tic inhibitory capacity and the 

intensity of reported premonitory urges were also executed. Increased ReHo of the left inferior 

frontal gyrus (IFG) during voluntary tic inhibition vs the free ticcing state was found. 

Importantly, extracted ReHo values correlated with voluntary tic inhibitory capacity both 

during fMRI and outside the scanner underscoring the clinical specificity of findings. There 

was no correlation with the severity of reported premonitory urges. Taken together, these results 

emphasized the role of frontal cortical engagement during top-down voluntary inhibitory tic 

control. They also further highlighted the dissociation between the neural mechanisms involved 

in voluntary tic inhibition from premonitory urges.  
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3. Discussion 

3.1 Voluntary inhibitory tic control  

The current pathophysiological understanding of tic disorders is dominated by two influential 

pathophysiological accounts. On the one hand, tics are viewed as the result of abnormally 

enhanced stimulus-response associative learning 36, 54, 55. Here, tic behaviours represent 

pathologically reinforced motor programs (often referred to as habits), which occur due to 

abnormally enhanced dopaminergic neurotransmission 36. The efficacy of antidopaminergic 

pharmacological agents for the treatments of tics, and the comparable results achieved through 

behavioural interventions such as HRT lend further support to this view. On the other hand, tics 

represent disinhibited fragments of movements as the result of hyperexcitable cortico-basal 

ganglia-thalamo-cortical loops due to GABAergic dysfunction 41, 56-58. According to this view, 

some level of cortical control is possible, particularly related to the temporal onset of tic 

behaviours, even though their generation is the result of neuronal disinhibition 58. 

Neuropathologic investigations and animal models of tic disorders support the disinhibition 

theory 41-45.  

 

The two different theories may in fact share common pathophysiological ground. Indeed, they 

both propose that tics are the result of pathologically enhanced neuromotor signals - either 

stimulus-response associations or disinhibited fragments of behaviour. They also suggest that 

the neural pathways that generate tics are also involved in the generation of voluntary actions. 

Crucially, they both introduce a concept of voluntary tic inhibition, either within the 

behavioural intervention of habit-reversal or as the neurophysiological manifestation of 

hierarchically arranged cortical top-down control. In-depth understanding of voluntary 

inhibitory tic control may, thereby, have important implications for the treatment of tics 

irrespective of the current views related to the tic generator.    

 

In the medical literature the term of voluntary tic inhibition has also been synonymously used 

with tic control. However, the latter term has also been used to describe a range of different 

processes related to tic reduction not relevant to the specific designation that is suggested here 

(summarized in table 1). Voluntary tic inhibition (or voluntary tic control) denotes a specific 

cognitive effortful process of tic suppression. The inhibitory process is an intentional and goal-

directed activity, which is specifically decided and initiated by the patient themselves. 

Voluntary tic inhibition is also amenable to reinforcement 59. Voluntary tic inhibition thus 
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resembles willed action, even though its consequence is to reduce motor output, and not 

promote it.  

 

Table 1. Different forms of tic control as used in Tourette syndrome literature. 
 

Forms of tic control Description 
Voluntary inhibitory tic control Inhibition of tics on demand; an 

active, effortful form of tic inhibition  
Tic control through behavioural 
interventions 

Tic control through behavioural 
training in programs such as  “habit 
reversal training” or “exposure 
response prevention”; an active, 
effortful form of tic control 

Tic control through pharmacological or 
surgical interventions 

Therapeutic interventions that lead to 
the reduction of tics; a passive, 
effortless form of tic control 

Tic control through modulation of attention Reduction of tics through attentional 
bias or distraction; a passive, 
effortless form of tic control 

Age-related tic control  Tic control as a result of aging; also 
considered an effect of brain 
maturation; a passive, effortless form 
of tic control 

Adapted from 49 and used with publisher permission.  

3.2 The interplay between premonitory urges and voluntary tic inhibition  

Premonitory urges are an integral element of tic pathophysiology. Their presence is documented 

in the majority of patients and, indeed, most tics are reported to emerge as responses to 

preceding urge sensations 60. Although, the exact language to describe premonitory urges – as 

any other interoceptive experience - lacks precision (e.g. often vaguely referred to as “muscle 

tightness”, “the need to do something” or a “just right” sensation 37, there is a surprising 

specificity of the tic events that occur subsequent to their perception. Indeed, patients typically 

report that there appears to be only a very specific type of tic-movement (or sound) that can 

satisfy any given premonitory urge. Based on this observation, Bliss, who was both a clinician 

and a TS patient himself, and others suggested that tics may represent voluntary responses to 

involuntary premonitory urges 48, 61. Bliss also proposed that the cognitive process of voluntary 

tic inhibition is mediated through the perception of the urges, which signal the impeding 

occurrence of a motor event to be suppressed. According to Bliss’ model, patients with stronger 

premonitory urges should also be able to voluntarily inhibit their tics most efficiently.   
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However, literature has provided conflicting results (summarized in 49), perhaps owing to the 

absence of validated measures to capture state measures of premonitory urges and voluntary tic 

inhibitory capacity. Crucially, explicit state assessments of any of the two measures could 

influence performance in the other. For example, asking patients to attend to their urges could 

lead to a baseline increase of tic behaviours through shifting attention towards involuntary 

neuromotor signals. Conversely, patients who focus on voluntary inhibitory tic control may be 

less able to monitor their premonitory urges. These examples show that the explicit assessment 

of either premonitory urges or voluntary tic inhibition could be influenced by the effects of a 

third factor, namely the cognitive capacity of attentional allocation and processing.  

 

One way to overcome this difficulty is to capture premonitory urges as a trait measure. 

Although, there is a surprising absence of longitudinal assessments of premonitory urges in 

literature, a validated scale has been devised to reflect the overall perceived trait intensity of 

premonitory urges 62. In our first study of this submitted work, we used assessments using this 

established rating scale and examined their relation to a state measure of voluntary inhibitory 

tic control we introduced. Importantly, this measure reflects a normalized ratio of voluntary tic 

inhibition, taking into account actual tic severity 63. The surprising absence of a relation 

between perceived premonitory urges and voluntary inhibitory tic control in our study suggests 

a clear dissociation between the two measures and shows that voluntary tic inhibition does not 

reflect a conditioned response to premonitory urges, against Bliss’s original suggestion. 

Importantly, our results were replicated in all subsequent studies, which employed similar 

conceptual methodologies 64-66.  

 

How can this result be reconciled with the practice of the main behavioural intervention of 

HRT/CBIT 34, 46? The main focus in HRT/CBIT is attracting patient awareness to premonitory 

urges and instructing patients to use these as early triggers of voluntary tic inhibition 47. Our 

results do not nullify this practice but rather highlight an important distinction. Classic 

voluntary tic inhibition is an intentional process mediated through an internally triggered 

intention “not to tic”. HRT/CBIT adds a further quality to the inhibitory process by using 

premonitory urges as external signals of motor inhibition. Although it remains unclear how 

baseline voluntary tic inhibitory capacity may influence results of HRT/CBIT, a clear prediction 

would be that patients who are able to voluntarily inhibit their tics on demand before 

behavioural training would also have the best outcome after HRT/CBIT. The role, however, of 
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voluntary tic inhibition as a moderator or predictor of any kind of behavioural intervention has 

not been yet explored 67.  

 

3.3 The association of voluntary tic inhibition and action awareness 

One of the fundamental qualities of tic behaviours is their phenomenological and 

neurophysiological overlap to willed actions 13. Tics frequently involve well-structured motor 

actions, including gestures, gait patterns and utterances and in most cases, any given single tic 

cannot be distinguished from a voluntary action 68. This raises an intriguing question of how 

the developing nervous system classifies each individual movement as voluntary or 

involuntary. This approach first requires working models of how voluntary actions arise, and 

how they are classified as voluntary in the healthy motor system. Most views of voluntary 

action are based on a model of threshold-crossing 69, 70. Voluntary actions occur when an 

internal signal within the motor system reaches a threshold, generating a perception-like 

experience 69, 70. These models imply a clear, categorical experience of volition, yet people with 

tics are often unable to report whether a given tic is voluntary or involuntary 32. This suggests 

that the perceptual experience of tics could interfere and/or partially overlap with 

neurocognitive signals related to voluntary actions. In line with this suggestion, one previous 

study demonstrated that adults with TS have difficulties in monitoring their own intentions 71. 

However, it remained unclear whether these difficulties are the result of a perceptual adaption 

to the chronic occurrence of tic-related signals, or a primary deficit of an action monitoring 

system. Also, the limited sample size of this study did not allow to include several important 

tic-specific variables, as the capacity to voluntarily control tics.  

 

People with tics are typically able to selectively control their tic behaviours without suppressing 

voluntary motor output. This suggests an intact neurocognitive capacity to distinguish between 

neuromotor signals related to tics from those related to voluntary actions. Elucidating the 

interaction between the voluntary motor system with involuntary tic behaviours and voluntary 

tic control is, therefore, crucial in providing an overall understanding of the pathophysiology 

of tic disorders and the mechanisms underlying successful tic inhibition.  

 

In the current study, we employed the same methodology as Moretto et al. (Fig. 1A) 71 and 

examined the capacity to monitor voluntary actions in a relatively large sample of adolescents 

with TS and healthy, age-matched controls. First, we showed that there were no differences in 

action monitoring between the two groups 72. This highlights that the perceptual delay of 
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intention awareness, which was demonstrated in adults with TS 71, should most likely be the 

result of perceptual adaptation. Chronic exposure to the continuous occurrence of involuntary 

tic behaviours would be related to increased levels of neuromotor noise. Over time, this would 

in turn lead to an adaptive increase of perceptual thresholds for voluntary actions in order to 

reduce perceptual uncertainty (Fig. 1C). Our multiple regression model for the TS sample 

further supported this hypothesis. The strongest predictors of intention awareness were two tic-

specific, independent factors: premonitory urges and the capacity to voluntarily inhibit tics. 

Patients who experienced stronger premonitory urges and, thereby, had greatest interference 

with their experience of volition, were also less able to detect their intentions early. In contrast, 

patients who had greater capacity to voluntarily control their tics, thereby being able to 

distinguish between different types of neuromotor signals, also had earlier experience of 

volition (Fig. 1B).  

 

These results underline three important issues in the study and treatment of tic disorders. First, 

they provide a framework, whereby the interaction between voluntary actions, involuntary tic 

behaviours and voluntary tic inhibitory control is explained. Patients who are better able to 

distinguish the different premotor signals within the wide range of neuromotor noise are the 

ones with a better capacity to control their abnormal motor behaviours. Second, the long-

standing presence of tic behaviours could lead to perceptual adaptations of action monitoring. 

Although, the malleability of such adaptive processes and their reversibility have not been yet 

explored, these results suggest that early interventions in the treatment of tics, as for example 

during childhood or adolescence – before perceptual adaptations occur – could provide 

important tools to improve prognostic outcome. It is noteworthy, that similar perceptual 

adaptations of action monitoring have already been reported in people with functional 

neurological disorders, a range of conditions often treatable with behavioural interventions 73. 

Finally, these results highlight one key-issue of current behavioural interventions for the 

treatment of tics. The ultimate goal of HRT/CBIT is to reduce tics. As aforementioned, this is 

achieved through the direction of attention towards premonitory urges and tics. Our results here 

demonstrate that an increase in the perception of premonitory urges is associated with 

impairments of action monitoring 72. Perhaps, alternative treatments, such as those that distract 

attention away from tics and focus improving the perception and honing of voluntary actions 

(summarized in 47) could be more beneficial for the long-term outcome and prognosis of people 

with tic disorders and TS.   
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FIG. 1. (A) Representation of the Libet clock task. Participants view a rotating clock hand on a screen. At a time 

of their own choosing they press a button with their right hand. The clock stops at a random interval following the 

button press and participants provide a time estimate when they first “felt the urge” to perform their voluntary 

action - “Will” or “W” judgment – suggested to reflect the timing of their “intention awareness.” (B) Schematic 

representation of W-judgment estimates from 25 adolescents (10-17 years old) with chronic tic disorders. Patients 

with better voluntary tic inhibitory capacity experienced earlier W-judgements. In contrast, patients who reported 

stronger premonitory urges preceding their tics had later W-judgements. (C) A graphic representation model of 

conscious intention as a signal detection problem. Intention is perceived when motor signal activation surpasses a 

first threshold (corresponds to W). Further motor signal activation leads to actual movement (M) upon exceeding 

a higher threshold. In tic disorders, less noisy motor signals are associated with a better capacity to voluntarily 

inhibit tics (left plot). Conversely, the presence of noisier motor signals, as in patients with strong experience of 

premonitory urges, may produce a wide range of intention (W1-W3) and be associated with perceptual uncertainty. 

Adaptive increase of the threshold level prevents perceptual uncertainty but also delays experience of W (right 

reproduced from 49 and with permission from the publisher).  

 

3.4 Somatotopic selectivity of voluntary tic inhibition  

Beyond the associations of voluntary tic inhibitory control, little is known with regard to its 

spatial characteristics. Indeed, one key characteristic of voluntary tic inhibition is that patients 
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can selectively suppress a target tic behaviour on demand (e.g. vocalizing in classroom, or 

clapping hands while driving a car). Importantly, behavioural treatments such as HRT/CBIT 

capitalize on the selectivity of the inhibitory mechanism to further enhance control over specific 

unwanted tic behaviours. However, only about half of participants undergoing HRT/CBIT will 

respond to treatment and prognostic factors or moderators of treatment response still remain 

underexplored 67. Crucially, the question as to whether the clinical distribution of tics might 

influence treatment outcome remains unanswered.  

 

In our study we determined tic frequencies for individual body parts across participants and 

calculated, for the first time, body part specific indices of voluntary tic inhibition 74. We could 

demonstrate that voluntary tic inhibition was not random but somatotopically selective and was 

most efficient for the least affected body parts. This finding provides important insights into 

the neurocognitive mechanisms of voluntary tic inhibition and treatment research.  

 

Tics are generated within the cortico-striato-thalamo-cortical loops, presumably as a result of 

aberrant, sensorimotor activation within these circuits 13, 75, 76. Importantly, tic generation 

engages the same neural structures that are also involved in the formation of voluntary actions 

and shares characteristic qualities of this circuitry, such as the disproportionality of somatotopic 

representation 77. Body parts with large corresponding cortical representation, such as the face, 

are also most frequently affected by tics. In contrast, areas with small cortical representations, 

such as the feet or trunk, tic the least. An increase of sensorimotor activity within these circuits 

as a result of a putative tic generator would thereby lead to a disproportional increase in tic 

frequency over the different body parts (e.g. face vs feet). Voluntary tic inhibition specifically 

suppresses tic behaviours but does not affect voluntary motor output (also see ‘The association 

of voluntary tic inhibition and action awareness’ section). Our results suggest that the inhibitory 

specificity is achieved through the preferential attenuation of weak motor signals (i.e. those 

corresponding to smaller portions of cortical activity). In contrast, strong motor signals related 

to more frequent tics, and also voluntary actions, remain unaffected. Of note, this theory 

predicts that voluntary tic inhibition acts at a common motor command centre within the 

cortico-striato-thalamo-cortical circuitry, most likely at the level of the primary motor cortex 

as the final motor output relay. A neurophysiological study we more recently performed indeed 

confirmed this prediction. During voluntary tic inhibition motorcortical excitability over the 

primary motor cortex was reduced 78.   
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A final comment relates to behavioural treatment studies and clinical practice. To date, 

predictors and moderators of response to behavioural treatments such as HRT/CBIT have 

focused on few tic-specific characteristics, such as tic severity, tic complexity and the intensity 

of premonitory urges, and several non-tic specific factors, as the presence of neuropsychiatric 

comorbidities or the intake of pharmacological anti-tic medication 67. However, the spatial 

characteristics of voluntary tic inhibition have not been previously explored. Our results suggest 

that future studies should also capture the somatotopic distribution of tics. Indeed, sample sizes 

of comparable tic severity and complexity may only differ in their somatotopic tic distribution, 

which may in turn bias treatment results due to differences in the baseline strength of voluntary 

tic inhibition.  

 

3.5 The neural correlates of action inhibition and voluntary inhibitory tic 

control in Tourette syndrome  
One key-pathophysiological assumption in tic disorders and TS literature is that tics represent 

disinhibited fragments of voluntary actions, possibly as a result of deficient motor inhibitory 

control 21. This hypothesis stems from two clinical observations. First, the resemblance of tics 

to voluntary actions and the capacity to voluntarily control tics on demand evokes the idea that 

tics are voluntary motor behaviours, which escape tonic inhibitory control 53. This view assumes 

that the same neural circuitry that generates voluntary actions also generates tics. It also deems 

that all motor behaviours are subject to continuous tonic voluntary inhibition. Indeed, classic 

neuropsychiatric disinhibition disorders, such as the anarchic hand syndrome offer support to 

this view 79. However, tics in primary tic disorders and TS do not share hallmark qualities of 

such disinhibition behaviours. For example, although involuntary movements in the anarchic 

hand syndrome are typically triggered by immediate environmental stimuli (also called 

“affordance”) 80, tics are characteristically not stimulus-bound behaviours and are not driven 

by environmental affordances. Second, people with tic disorders and TS often exhibit impulsive 

behaviours, to include hyperactivity, rage attacks and socially inappropriate behaviours 81, 82. 

However, many of these behaviours are often associated more strongly with the presence of 

comorbid ADHD than with tics 81-83. Therefore, the role of disinhibition as the core deficit of 

tic pathophysiology remains disputed.  

 

In line with this, our study on action control in a sample of adults with TS and no relevant 

comorbidities, such as ADHD or OCD, revealed no deficits of inhibitory performance (Stop-

signal reaction time task) compared to an age-matched healthy control group 84. However, the 
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neural circuitry related to inhibitory performance differed between patients and healthy 

controls, thus highlighting the differential role of two neural areas during action inhibition in 

tic disorders: the dorsal premotor cortex and the supplementary motor area 84. Both these areas 

are involved in the inhibition of motor actions in healthy volunteers, both during proactive tonic 

inhibitory control (dorsal premotor cortex) and reactive, global inhibition (supplementary 

motor area) 85. Crucially, a meta-analysis of fMRI studies in tic disorders and TS revealed a 

key role both for the lateral premotor cortex and the supplementary motor area in the expression 

of tic behaviours further confirming the disorder-specific significant of these findings 86.  

 

Our study also investigated the relation between the inhibition of voluntary actions and the 

voluntary suppression of tics and found no association between the two measures. This, together 

with the previous two studies reported here 63, 72 provides an additional insight into the 

correlates of voluntary tic control. The capacity to voluntarily inhibit tics does not relate to 

classic forms of voluntary action control. It most likely represents a distinctive cognitive 

process of top-down motor inhibitory control specifically to address and modulate tic 

behaviours. However, the exact neural underpinnings involved in voluntary tic inhibition 

remain unclear.  

 

One of the first studies to systematically address the differences in neural activity between the 

states of free ticcing and voluntary tic inhibition was performed by Peterson and colleagues, 

who in the early days of fMRI employed a block-design study 87. The results of this study 

revealed a wide range of cortical and subcortical blood-oxygen-level dependent (BOLD) signal 

changes between the two different states, to involve primary and secondary sensorimotor areas 
87. Importantly, an increase of signal change in cortical structures and a reduction in respective 

subcortical areas was documented during voluntary tic inhibition and was suggested to reflect 

top-down motor inhibitory control. However, this study did not provide online tic-measures 

between the different states and, therefore, the relevance of these signal changes to the specific 

cognitive instruction of voluntary tic inhibition remains unclear. Following, two further studies 

assessed neural correlates of voluntary tic suppression in children and adults with TS by using 

electroencephalography (EEG) and demonstrated prefrontal cortical involvement during the 

tic-inhibitory process 88, 89. Our results, based on ReHo analysis, revealed increased local 

connectivity also in the prefrontal cortex, specifically in the left inferior frontal gyrus 90. 

Crucially, there was a strong correlation of the extracted ReHo values with our behavioural 

measures of voluntary tic inhibition both during the rs-fMRI scan and also prior to the scanning 
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session, but not with the trait intensity of premonitory urges. This suggests that our finding of 

increased ReHo of the left inferior frontal gyrus most likely reflects a specific neural event 

associated with voluntary tic inhibition. Unfortunately, no further structures or connectivity 

profiles were identified during the two states, perhaps owing to the limited sample size of the 

study. However, the results of the studies cited here support the view that during voluntary tic 

inhibition frontal cortical areas are preferentially recruited. Clearly, larger well-designed 

studies that monitor tics online and employ multimodal-assessments, as for example combined 

EEG with fMRI 91, or neurophysiological measures (e.g. TMS/EEG 92) can further help 

elucidating the neural mechanisms involved in the voluntary inhibition of tics.   

 

3.6 Limitations and future directions 

Our concept of voluntary tic inhibition refers to the specific cognitive process of tic suppression 

on demand. In most of our studies we used a video-based measure to capture this inhibitory 

capacity in temporal segments of 2.5 minutes each. This was based on the previously validated 

and widely employed modified Rush-video rating scale 93. Although, our methodology 

provided novel and important insights into the behavioural associations and neural correlates 

of voluntary tic inhibition in patients with tic disorders and TS, it remains unclear whether 

different time periods of voluntary tic inhibition could provide more accurate measures of this 

capacity.  

Also, the sample size of patients we studied was relatively small (14-27 individuals per study).  

However, the range of our sample size is comparable to most other pathophysiological studies 

of tic disorders and Tourette syndrome (for example reviewed in 21, 94). Given the wide clinical 

heterogeneity of the disorder and the broad range of associated neuropsychiatric comorbidities, 

which may influence voluntary tic inhibition, future research should aim to include larger study 

populations. Obviously, this can only be achieved through organized national and international 

collaborations, as for example through organizations such as the ‘European Society for the 

Study of Tourette Syndrome’ or the newly formed ‘Tic Disorders and Tourette syndrome Study 

Group’ of the Movement Disorders Society.   

 

Moreover, all of the studies reported here were based on cross-sectional data-collection. Given 

the dynamic character of neurodevelopmental tic disorders and the shift in the clinical 

characteristics of tics in time, as well as the related profiles of neuropsychiatric comorbidities 
24, 26 prospective studies should focus on the acquisition of robust datasets with a focus on 

longitudinal evaluations. On the one hand, this will provide key insights into the developmental 
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pathophysiology of the disorder and will ultimately allow to identify predictive markers of 

future tic outcome and response to treatments. Based on the data we presented here, a strong 

capacity to voluntarily inhibit tics at a young age may, in fact, constitute a positive predictor of 

either response to pharmacological and/or behavioural treatments and ultimately overall tic 

outcome. However, this hypothesis has not been yet studied.  

 

Finally, studies in Tourette syndrome and voluntary tic inhibitory control provide a unique 

opportunity to bring together scientists from the entire tenor of neural disciplines, to include 

neurophysiology, neuroimaging, neuropharmacology, cognitive psychology, neurology, 

neuropsychiatry and psychiatry. Indeed, only through scientific cross-talk between the different 

disciplines can an in-depth understanding of the multifaceted disorder be reached. A holistic 

view of tic disorders and TS may then, in turn, provide novel and meaningful treatments in 

order to improve the quality of life of our patients and their families.  
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4. Summary 
 

Tics are a hyperkinetic movement disorder. They are defined as movements or sounds that 

typically resemble voluntary actions, but appear repetitive, often exaggerated in intensity and 

are not bound to a certain social context. Tics are typically preceded by a phenomenally strong 

sensory experience known as the premonitory urge. Crucially, and different from most other 

hypekinesias, tics can be voluntarily inhibited on demand. Tics are prevalent in many disorders, 

including neurodevelopmental syndromes and neurometabolic or neurodegenerative 

conditions, but are most commonly documented in primary tic disorders. Tourette syndrome 

(TS) is the prototypical primary tic disorder encountered in clinics and affects up to 1% of 

school-age children.  

 

The predominant pathophysiological models of tic disorders view the abnormal motor 

behaviours as the result of pathological gain increase of neuromotor signals within the circuitry 

that also generates voluntary actions. Crucially, they introduce a concept of voluntary tic 

inhibition, as the capacity to exert top-down inhibitory control to temporarily suppress the 

pathologically increased neuromotor activity. In-depth understanding of voluntary tic inhibition 

may, thereby, have important implications for the regulatory control of tics, including the 

development and implementation of more efficient treatment interventions.  

 

In the medical literature, the term of voluntary tic inhibition has also been synonymously used 

with tic control. However, the latter term has also been used to describe a range of different 

processes related to tic reduction not relevant to the specific designation that is suggested here. 

Voluntary tic inhibition (or voluntary tic control) denotes a specific cognitive effortful process 

of tic suppression. The inhibitory process is an intentional and goal-directed activity, which is 

specifically decided and initiated by the patients themselves, and, thereby, is also amenable to 

reinforcement.  

 

In a progression of five consecutive studies, we here explore the behavioural associations and 

neural correlates of voluntary tic inhibition in adolescents and adults with tic disorders and TS. 

First, we explore the putative association between premonitory urges and voluntary tic 

inhibition. Importantly, we provide experimental evidence to support the view that the two 

processes are not directly related. We then examine the characteristic capacity of voluntary tic 

inhibition to specifically suppress tic movements without affecting motor performance for 
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voluntary actions. We assess the relation between the voluntary motor system and voluntary tic 

inhibitory control and introduce the concept of neuromotor noise in the pathophysiology of tic 

disorders to explain our findings. We also discuss the spatial characteristics of voluntary tic 

inhibition and provide a model of somatotopic-specificity of voluntary inhibitory tic control. 

Finally, we review the pathophysiological concept of deficient action control underlying the 

manifestation of tics and provide experimental evidence against it. We also examine the neural 

correlates of inhibitory control both over voluntary actions and involuntary tic behaviours. 

Current limitations in the research of voluntary tic inhibition are discussed and future directions 

of the scientific study of voluntary tic inhibitory control are suggested.   
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6. Abbreviations 
 

TS – Tourette Syndrome 

MRCP – Movement-related cortical potential  

GABA - Gamma-aminobutyric acid 

DSM-5 - Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 

ADHD- Attention-deficit hyperactivity disorder  

OCD - Obsessive-compulsive disorder  

HRT – Habit-reversal training 

CBIT - Comprehensive behavioural intervention for tics 

ERP - Exposure-response prevention 

FMRI - functional magnetic resonance imaging 

MRVS - Modified Rush Video Scale 

ReHo – Regional Homogeneity 

IFG – Inferior frontal gyrus 
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