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Abbreviations 
 

ANXA2  Annexin A2 

ApoC1  Apolipoprotein C1 

ApoE  Apolipoprotein E 

AXL  A member of receptor tyrosine kinase family 

C  Carbon 

CCL2  CC-chemokine ligand 2 

CCL4  CC-chemokine ligand 4 

CCL5  CC-chemokine ligand 5 

CNS  Central nervous system 

CST3  Cystatin 3 or Cystatin C 

CTSD  The gene encoding cathepsin D 

CyTOF  Cytometry by Time-of-Flight 

CXCL10 C-X-C motif chemokine 10 

eGFP   Enhanced green fluorescent protein 

FISH  Fluorescence in situ Hybridization 

GCL  Ganglion cell layer 

GPNMB Glycoprotein non-metastatic b 

hCMEC/D3 Human cerebral microvessel endothelial cells/D3  

hiPSCs  Human-induced pluripotent stem cells 

HLA-DR Major histocompatibility complex class II cell surface receptor 

IBA1  Ionized calcium binding adaptor molecule 1 

IGF1  Insulin like growth factor 1 

INL   Inner nuclear layer 

IPL   Inner plexiform layer 

ITGAX  Integrin a-X (or CD11c) 

LGALS1 Lectin or Galactose binding, soluble 1 

LYZ2  Lysozyme 2 

MAFB  V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B 

mRNA  messenger Ribonucleic acid 

MS  Mass spectrometry 
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N  Nitrogen 

O  Oxygen 

ON  Optic nerve 

OPL  Outer plexiform layer 

PKCa  Protein kinase C alpha 

RPE   Retinal pigment epithelium 

SILAC  Stable isotope labelling by amino acid in cell culture 

SH-SY5Y Human neuroblastoma cell line 

SPARC  Secreted protein, acidic and rich in cysteine 

SPP1  Secreted Phosphoprotein 1 or osteopontin 

TBI  Total body irradiation 

TDP-43  Transactive response DNA binding protein 43 KDa 

TMEM119 Transmembrane protein 119 

TNFa  Tumor necrosis factor alpha 
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1. Introduction and Aims 

 

1.1. Diversity of the non-neuronal cell compartment of the CNS 

Resident macrophages in the central nervous system (CNS) are key players in CNS homeostasis 

and during CNS pathology. In the brain, this cellular compartment comprises parenchymal 

microglia and non-parenchymal macrophages that reside in the perivascular (Virchow-Robin) 

spaces, choroid plexus, and meningeal compartments [Prinz & Priller 2014]. Brain macrophages 

play critical roles in regulation of immune responses at the boundaries and in the parenchyma of 

both healthy and diseased brain. In addition, microglia are involved in the clearance of apoptotic 

neurons and the refining of synaptic connectivity, and thus play an important role in maintaining 

CNS integrity and function [Sierra et al., 2010; Parkhurst et al., 2013]. Other brain macrophages 

sense danger signals at brain interfaces such as the blood-brain barrier (BBB; perivascular 

macrophages) or the blood-cerebrospinal fluid barrier (choroid plexus macrophages). Brain 

microglia originate from yolk sac-derived precursors that enter the CNS during early embryonic 

development. Under homeostasis, microglia expansion depends on local self-renewal of the 

resident population throughout life [Ginhoux et al., 2010; Kierdorf et al., 2013; Schulz et al., 2012; 

Ajami et al., 2011; Ajami et al., 2007; Saederup et al., 2010; Mizutani et al., 2012]. Likewise, the 

other CNS macrophage populations (these are meningeal, perivascular and choroid plexus 

macrophages) are also derived from yolk sac precursor, which largely relied on similar 

transcription factors such as PU.1 [Goldmann et al., 2016]. Similarly, the retina is populated by 

both perivascular macrophages and parenchymal microglia. Although the contribution of microglia 

in retinal homeostasis remains unclear, they are a key regulator in a variety of retinal diseases 

[Rathnasamy et al., 2019].  

During CNS diseases, hematogenous cells such as monocytes can enter the CNS, differentiate into 

brain parenchymal and/or non-parenchymal macrophages. On the one hand, these cells share some 

phenotypical characteristics with the resident macrophage population, on the other hand, their 

phenotypes are slightly differ from parenchymal microglia. For example, the monocyte-derived 

macrophages can be characterized as CD45hiCD11c+F4/80+MHCII+, whereas the parenchymal 

microglia are CD45loCD11cloF4/80loMHCII- [O’Koren et al., 2016]. Moreover, resident and 

hematogenous brain macrophages differentially contribute to local immune responses and the 

regulation of CNS inflammation [Hoogerbrugge et al., 1988; Priller et al., 2001; Corti et al., 2004; 
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Malm et al., 2005; Priller et al., 2006; Simard et al., 2006; Solomon et al., 2006; Djukic et al., 2006; 

Schechter et al., 2009; Derecki et al., 2012]. It has been suggested in mouse models of 

neurodegenerative disorders that hematogenous brain macrophages engrafted preferentially at the 

lesioned sites of the brain provide therapeutic advantages over resident populations [Simard et al., 

2006; Corti et al., 2004; Derecki et al., 2012; Hoogerbrugge et al., 1988; Schechter et al., 2009]. 

Whether the monocytes can also target the damaged retina and provide such therapeutic potential 

remains to be investigated. Furthermore, the above-mentioned findings are obtained from mouse 

models of neurodegenerative diseases that were applied to total body irradiation (TBI) and bone 

marrow (BM) transplantation. In these mouse models, the immune compartment of the recipients 

is diminished and, subsequently, TBI-induced brain damage triggers the engraftment of 

transplanted BM-derived cells, independently of neurodegenerative conditions [Mildner et al. 

2007], thus the migratory capability of hematogenous cells to the CNS remained questioned. 

Therefore, to precisely determine engraftment potential of peripheral cells into the CNS, an 

experimental protocol avoiding lethally irradiation and systemic collapse of host immunity is 

required.  

Importantly, spatially heterogeneity and functional differences between resident brain 

macrophages, in particular microglia, has been displayed at mRNA level in the mouse brains 

[Grabert et al., 2016]. These differences may explain region-dependent vulnerability of microglia 

and regional differences in the involvement in neurological and psychiatric diseases. In human, 

overall transcriptomic signature of microglia has been provided [Gosselin et al. 2017 & Galatro et 

al. 2017] at the bulk system analysis. However, a comprehensive profiling of human microglia 

transcriptomes and phenotypes at the single-cell level has remained to be investigated. In general, 

the phenotypic profiling on the basis of marker protein expressions on human microglia relied on 

either immunohistochemistry of post-mortem brain tissue or flow cytometric analysis of acutely 

isolated microglia cells [Melief et al. 2016, Mizee et al. 2017, Mildner et al. 2017, Moore et al. 

2015]. However, these approaches are limited to the high autofluorescent background of post-

mortem tissue and the limitation of investigated markers that can be simultaneously analysed in 

one measurement (generally less than 20). To unravel the phenotypic and functional diversity of 

the macrophage/microglial compartment of the CNS and to investigate how they interact with other 

CNS cells, a comprehensively high-dimensional analysis at the single-cell level is required. Better 

understanding of the phenotypic and functional differences between CNS macrophage populations, 
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as well as the differences between brain regions, may have clinical implications for the treatment 

and diagnosis of neurological and psychiatric disorders. 

 

1.2.  Mass spectrometry (MS) techniques in neurosciences  

MS techniques are widely applied for the elucidation, identification and quantification of 

molecules, including proteins. MS determines the mass-to-charge ratio of ionized species of 

molecules in simple and/or complex samples. MS can be applied to a broad spectrum of research 

fields and applications, including proteomics and metabolomics in neurosciences.  

As previously described in 1.1., the CNS hosts various cell types including neurons, glial cells and 

infiltrating immune cells, studying dynamic changes of CNS cell phenotypes and functions requires 

high-dimensional single-cell analytical methods. A complementary method for cell identification 

and quantification is needed to better understand cellular heterogeneity of the CNS during disease 

pathogenesis and progression. Cytometry by Time-of-Flight (CyTOF) or mass cytometry, a cell 

profiling technique that combines metal isotope-labelling technology, flow cytometric analysis 

with time-of-flight mass spectrometry, has been introduced for the real time high-dimensional 

single-cell immune profiling [Bandura et al., 2009]. Using CyTOF technology, cellular targets are 

labelled with metal-conjugated antibodies, and detected and quantified by time-of-flight mass 

spectrometry (Figure 1).  

 

 
 

Figure 1 Mass cytometry in neurosciences. CNS cells are isolated from the brain tissue and 
subsequently stained with stable metal isotope-labelled antibodies. The antibody-labelled cell 
mixture can be then identified and quantitatively analysed by mass cytometry (CyTOF), a 
combination of flow cytometry and mass spectrometry techniques.  
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Taking advantage of the low signal overlap between metal isotopes, CyTOF allows the 

simultaneous cell identification and quantification on the basis of more than 45 marker targets on 

a single cell. This technique can also overwhelm difficulties of investigating samples with the high 

background signal such as the post-mortem brain samples. Data obtained from CyTOF 

measurement are processed and analysed in an unsupervised manner using algorithm-based data 

analysis.  

The combination of a comprehensive array of protein markers and unsupervised data analysis 

provides a powerful strategy for cellular identification and quantification in a complex system of 

the CNS. Of note, CyTOF is however not a high-throughput-omics technique, since only up to 40-

45 selected molecules can be simultaneously assessed, and CyTOF assesses cellular phenotypes 

and functions using an antibody-based approach, thus it is not really an un-biased method. 

Nonetheless, CyTOF analysis reveals the comprehensive information on phenotypes and functions 

at the single-cell level, which is to date the only high-dimensional array of protein markers that 

could greatly complement the transcriptomic signature of various cell types in the complex 

environment of the CNS. 

Apart from the cell phenotypic heterogeneity revealed by CyTOF, the real-time cellular responses 

to the environment as well as the cell-cell interaction are also crucial information needed to 

understand the maintenance and regulation of CNS function. This dynamic interaction can be 

assessed using for example a mass spectrometry technique – metabolomic analysis –. Unlike 

classical proteomics, metabolomics reveal the alteration of abundance and/or characteristics of the 

downstream metabolites in a dynamic system, which result from environmental, genomic and/or 

proteomic factors as well as disease conditions. Although the methodology is still limited as bulk 

system investigations, the information obtained from metabolomic analyses during disease 

progression can provide a functional readout of target cells at different states, which is invaluable 

complementary information to phenotypic information obtained from CyTOF analysis, and thus 

will facilitate the investigation of cell signalling and/or biomarkers specifically involved in disease 

pathogenesis or disease progression and severity.  

One of the methodological approaches to study metabolomics is the stable isotope-resolved 

metabolomics, a supervised investigation in which selected isotopically labelled metabolites are 

dynamically traced in order to unequivocally assess metabolic alterations of the selected signalling 

pathway [Patti et al., 2012a; Patti et al., 2012b]. To apply this analytical approach, the metabolic 
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or signalling pathways are pre-selected prior to labelling experiments. Subsequently, cells of 

interest are cultured in the medium containing the isotope-labelled precursors of the pre-selected 

pathway. After some hours/days in vitro, cells are harvested, isotope-labelled molecules yielded 

from the labelling experiment are then isolated and subsequently digested prior to elucidation and 

quantification using MS. 

The most well-known stable isotope-metabolomic analysis is the stable isotope labelling by amino 

acid in cell culture (SILAC). In SILAC experiments, cells are cultured in the medium containing 

stable isotope-labelled amino acids. Commonly, amino acids lysine and arginine such as 2H4-lysine 

with 13C6-arginine or 15N213C6-lysine and 15N413C6-arginine were used for the labelling 

experiments. The labelled proteins are then isolated, digested and measured by MS (Figure 2). 

 

 
 

Figure 2 Schematic representation of stable isotope-resolved metabolomics. Isolated CNS 
cells or CNS cell lines are cultured in the presence of stable isotope-labelled amino acid or 
precursors of the signalling pathway of interest. The resulting isotope-labelled protein is then 
isolated, digested and subsequently analysed by mass spectrometry with or without a pre-separation 
step.  

 

SILAC has been widely applied for the investigation of disease-associated changes in proteomic 

profiles during neurological and psychiatric diseases, including glioblastoma [Formolo et al., 2011; 

Kozuka-Hata et al., 2012; Narushima et al., 2016], ischemia [Llombart et al., 2016], Alzheimer’s 

disease [Klegeris et al., 2008; McGeer et al., 2010; Tan et al., 2014] and Parkinson’s disease [Sarraf 

et al., 2013], TDP-43 proteinopathy [Seyfried et al., 2010]. Various CNS cell types can be used for 

SILAC experiments, for example the brain endothelial cell line hCMEC/D3 [Llombart et al., 2016], 

neuroblastoma SH-SY5Y cell line [Klegeris et al., 2008; Gokhale et al., 2012], human induced 

pluripotent stem cell (hiPSC)-derived neurons [Brennand et al., 2015], primary murine microglia 

11



[Pinho et al., 2017; Zhang et al., 2017; Zhang et al., 2016] or primary cultures of mouse cerebellar 

granule neurons [Thouvenot et al., 2012].  

For example, Brennand et al. (2015) performed a discovery study on an alteration of cellular 

proteomics during schizophrenia using SILAC quantitative proteomic mass spectrometry analyses. 

In this particular study, the hiPSC neuronal progenitor cells (NPCs) were differentiated from 

fibroblasts, and were subsequently cultured in isotope (13C15N)-enriched arginine and lysine. 

Protein including isotope-labelled protein was then isolated from the cultured cells. The protein 

identification, quantification and analyses were performed using mass spectrometry and 

proteomics data analysis platform. In the comparison with the hiPSC-NPCs from healthy controls, 

cells from four schizophrenia patients showed abnormal protein expressions related to cytoskeletal 

remodelling and oxidative stress. 

Similar to SILAC, other precursor molecules instead of amino acids can be applied in vitro and/or 

in vivo, to elucidate the metabolomic phenotypes of the target cells. In this particular case, the 

labelled molecules obtained from the labelling experiment are not necessary to be proteins. For 

example, to demonstrate evidence for endogenous morphine biosynthesis in human neuronal cells, 

the human neuroblastoma cells, SH-SY5Y, were cultured in the medium containing 18O-labelled 

oxygen (18O2), [ring-13C6]-tyramine, (S)-[1-13C,N-13CH3]-reticuline or [N-C2H3]-thebaine, the 

precursors of the morphine biosynthetic pathway [Poeaknapo et al., 2004]. After seven days in 

vitro, morphine (the final product) and other intermediates of the morphine biosynthetic pathway 

were isolated from the cultured SH-SY5Y cells and were further elucidated and quantified by gas 

chromatography coupled with ion-selective tandem MS (GC/MS/MS). The results showed specific 

incorporation of the 18O, 13C or 2H isotopes into endogenous morphine and it’s intermediates, thus 

unequivocally proved the capability of synthesizing morphine of human neuroblastoma cells 

[Poeaknapo et al., 2004] (Figure 3). 
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Figure 3 Schematic representation showing two examples of stable isotope-resolved 
metabolomic experiments from Poeaknapo et. al. 2004. Incubation of SH-SY5Y cells in the 
presence of 18O-oxygen (A) or [ring-13C6]-tyramine (B) resulted in an incorporation of two atom 
of 18O per morphine molecule (A) or six atom of 13C at specific positions per morphine molecule 
(B).  
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1.3. Aims 

This study attempts to reveal cellular complexity of the myeloid compartment of the CNS including 

the retina in mouse models, as well as in the human system. Furthermore, analytical protocols for 

phenotypic and functional characterization of neuronal and non-neuronal cells (in particular 

microglia) in the CNS during homeostasis and diseases shall be established and evaluated.  

First, the study aims to investigate the migratory and engraftment capability of peripheral cells into 

the retina of mouse models for retinal degeneration. It should prove whether the retina processes 

the cellular complexity similar to that was observed in the brain. An integration of blood-derived 

macrophages into the network of the retinal macrophages/microglia will be determined.  

Second, this study shall demonstrate an induction of the engraftment of blood-derived cells under 

an experimental protocol avoiding lethally irradiation and systemic collapse of host immunity, 

which may in the future serve as a tool to precisely evaluate the migratory capacity of the 

circulating cells into the CNS and/or as a tool for development of therapeutic strategy in CNS 

diseases. 

Finally, analogue to mouse models, heterogeneous phenotypes and functions of the human CNS 

cells will be investigated. In this study, exploratory experiments aim to comprehensively 

characterise various CNS cell types and their responses during diseases will be demonstrated 

utilizing multi-parameter analysis including mass spectrometry techniques such as mass cytometry 

and stable isotope-resolved metabolomics. 
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2. Selected own work 

Summary 

Microglia and brain macrophages are increasingly evidenced as key regulators in CNS 

development, homeostasis and pathology. A better understanding of the cellular dynamics and 

mechanisms that regulate microglial homeostasis and function will provide the means to 

manipulate these cells for therapeutic purposes.  

In the first section of the selected own works (2.1.), the cellular complexity of CNS myeloid 

compartment were unraveled using an adoptive transfer experiment with gene-modified bone 

marrow cells (2.1.1.), bone marrow transplantation in a mouse model of facial nerve axotomy 

(2.1.2.) or high-throughput techniques such as single-cell RNA sequencing (scRNA-Seq) (2.1.3.). 

These findings demonstrated that, followed CNS conditioning, bone marrow-derived cells are 

recruited to the CNS including the retina, preferentially to the lesioned sites of the CNS. These 

infiltrating bone marrow-derived macrophages stably integrated into the CNS myeloid cell 

compartment of the lesioned brain. Similarly, the results obtained from scRNA-Seq revealed spatial 

and temporal microglial heterogeneity in both mouse and human brain. In diseased brain, the 

composition of microglial sub-populations was altered, and their microglial signatures could be 

rapidly changed during neurodegeneration (such as facial nerve axotomy) and/or 

neuroinflammation (such as multiple sclerosis).  

In the second part of the selected own works (2.2.), microglial heterogeneity was investigated in 

human post-mortem brain tissue and fresh brain biopsies (2.2.1.) at the single-cell protein level. 

Again, these results highlight the cellular complexity of the CNS myeloid compartment including 

the microglia subpopulations described in the first section (2.1.), which complemented the 

transcriptomic signatures revealed by scRNA-Seq. Moreover, the findings translated mouse 

microglial phenotypes to the human system, emphasizing the translational potential of the 

methodology for further investigation in clinical applications. Besides single-cell phenotypic and 

functional characterization by mass cytometry, functions and metabolomics of CNS cells can be 

assessed using mass spectrometry. For this approach, the human neuroblastoma cell line SH-SY5Y 

was used for the establishment of the methodology (2.2.2.). The study demonstrated that the SH-

SY5Y cell line was capable of synthesizing targeted metabolites (in this case “morphine”). Briefly, 

SH-SY5Y cells were cultured in the presence of 13C-, 2H- or 18O-labelled precursors of the 

morphine biosynthetic pathway. SH-SY5Y cells de novo incorporate the stable isotope-labelled 

15



 16 

precursors into endogenously synthesized morphine. The finding unequivocally proved the 

capacity of de novo morphine synthesis of human neuroblastoma cells. This established 

methodology can be applied for future metabolomic study of CNS cells including microglial cells.    

 

2.1.  Cellular complexity of CNS myeloid compartment 

2.1.1. Boettcher C, Ulbricht E, Helmlinger D, Mack AF, Reichenbach A, Wiedemann P, 
Wagner HJ, Seeliger MW, Bringmann A, Priller J. 
Long-term engraftment of systemically transplanted, gene-modified bone marrow-
derived cells in the adult mouse retina.  

Br J Ophthalmol, 92:272-275 (2008).  
http://dx.doi.org/10.1136/bjo.2007.126318 

 
The study provided evidence for the engraftment of BMDCs in the retina, preferentially around 

sites of retinal damage, and hence provided proof-of-principle of an application of BMDCs as 

vehicles for gene delivery to the retina.  

Similar to the brain, after retinal damage, BMDCs can be targeted to the retina, precisely into the 

inner (IPL) and outer (OPL) plexiform layers and the ganglion cell layer (GCL), as well as into 

the optic nerve (ON). These cells differentiated into retinal macrophages.  

These observations were also true for BMDCs that were transduced with a retroviral vector to 

express the enhanced green fluorescent protein (eGFP) prior to transplantation. The eGFP-

expressing BMDCs engrafted in the central retina (i.e. IPL, OPL and GCL), where the retinal 

vascular plexuses are present. Rarely, the gene-modified BMDCs were found in the inner nuclear 

layer (INL), but virtually none of them engrafted to the photoreceptor layer or retinal pigment 

epithelium (RPE). The engrafted cells were immunoreactive for the myeloid markers CD11b and 

Iba1, but did not express vimentin (marking astrocytes, retinal Müller glial cells and retinal 

horizontal cells), calbindin (marking retinal horizontal cells), PKCa (marking retinal bipolar cells) 

or NeuN (marking ganglion cells). Strikingly, the gene-modified BMDCs engrafted in the retina 

and expressed the delivered gene eGFP for up to 15 months after transplantation.  

In mouse models of retinal degeneration (i.e. rd1 mutant FVB/N mice and spinocerebellar ataxia 

type 7 mice), eGFP-expressing BMDCs were found at high frequency, predominantly at the sites 

of retinal degeneration both in central and peripheral retina. These cells also expressed the GSA 

lectin, a marker for activated microglia and macrophages. 

 



In sum, the findings provided evidence for the cellular complexity of the retinal myeloid 

compartment and the capability of BMDCs to enter the retina, in particular the degenerated retina. 

These findings are in line with previously mentioned observations in the brain (see 2.1.2.). 
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2.1.2.  Böttcher C, Fernández-Klett F, Gladow N, Rolfes S, Priller J.  

Targeting myeloid cells to the brain using non-myeloablative conditioning.  
Plos One, 8:e80260 (2013).  

https://doi.org/10.1371/journal.pone.0080260 
 

Besides microglia, brain macrophages are involved in the maintenance of brain homeostasis. In 

neurogenerative diseases like Alzheimer´s disease, brain macrophages are capable of 

phagocytosing b-amyloid, whereas the resident microglia seem to be ineffective in this function. 

Ontogenetically, microglia are derived from immature yolk sac macrophages that enter the brain 

during early embryogenesis, while brain parenchymal macrophages originate from bone marrow-

derived cells (BMDCs). Since the phenotypes of resident microglia and brain parenchymal 

macrophages are overlapping, it is challenging to distinguish between these two cell types.  

In this particular study, a mouse model of bone marrow transplantation (BMT) was used as a tool 

to study bone marrow-derived brain macrophages. Unlike the classical mouse model of BMT that 

uses total body irradiation (TBI) or chemotherapy for host conditioning prior to the transplantation 

of eGFP-expressing BMDCs, non-myeloablative focal head irradiation (HI) was applied in this 

study to target the BMDCs to sites of brain damage in mice. This mild treatment induced 

recruitment of BMDCs to the sites of motoneuron degeneration in the brainstem as early as 7 days 

after facial nerve axotomy despite much lower levels of blood chimerism (i.e. <5% of donor-

derived cells in the peripheral blood of the recipients) compared with TBI (>95%). Of note, the HI 

regimen showed comparatively lower inflammatory responses in the CNS than TBI or 

chemotherapy, as revealed by lower mRNA expression of CCL2, CXCL10, TNF-a and CCL5. The 

findings demonstrated that peripheral BMDCs can be targeted to the CNS, in particular after 

neuronal damage, even at the very low chimerism in the peripheral blood. At the sites of brain 

damage, these cells differentiated to brain parenchymal macrophages. The established conditioning 

regimen is an alternative protocol for recruiting BMDCs to the CNS with minimal disturbance of 

the hematopoietic compartment, and thus can be used to selectively study BM-derived brain 

macrophages in animal models of neurodegenerative diseases. 
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Introduction

Microglia are the key immune effector cells of the central
nervous system (CNS), mediating local inflammatory and
innate immune responses. This CNS cell population has
recently been shown to derive from immature yolk sac
macrophages that infiltrate the brain during early
embryogenesis [1-3]. Thus, microglia are ontogenetically
distinct from hematopoietic stem cell (HSC)-derived tissue
macrophages that originate from the bone marrow continuously
throughout adult life. In line with these findings, no engraftment
of myeloid cells was observed in the CNS of parabiotic mice, in
which blood from two different animals is chronically shunted,
suggesting that circulating hematopoietic progenitors and
circulating monocytes do not significantly contribute to
microglia homeostasis after birth [1-5].

However, bone marrow-derived cells (BMDCs) are able to
colonize the adult CNS under certain conditions.

Transplantation of genetically labelled BMDCs into total body-
irradiated hosts has demonstrated that circulating myeloid cells
engraft in the CNS and contribute to the pool of brain
macrophages, both in the absence and during overt brain
pathology [6-21]. Irradiation-induced changes in the CNS, as
well as the introduction of hematopoietic stem/progenitor cells
into the circulation have been suggested as necessary
conditions for the recruitment of myeloid cells into the brain
[1,4,21].

In line with their different origin, bone marrow-derived
myeloid cells and microglia appear to exert differential
functions in the CNS. In a mouse model of Alzheimer’s
disease, myeloid cells were able to phagocytose β-amyloid,
whereas resident microglia appeared to be rather ineffective in
this task [13,14]. Similarly, BMDCs were found to attenuate or
even arrest pathology in mouse models of neuropsychiatric
disorders including Rett syndrome, amyotrophic lateral
sclerosis, Krabbe’s disease and Parkinson’s disease
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[19,20,22,23]. Hence, myeloid cells have a tremendous
therapeutic potential for neurological and psychiatric diseases.
However, establishing a clinical conditioning regimen remains a
challenge. Although total body irradiation (TBI) is an effective
conditioning protocol to target the myeloid cells to the brain,
this myeloablative treatment induces massive CNS
inflammation and disturbance of the host’s hematopoietic
system [21,24]. Recently, conditioning with the alkylating
chemotherapeutic agent, busulfan, has been suggested as an
alternative [24]. Indeed, myeloablation with busulfan is being
used in the clinical setting [25]. However, myeloid cell
engraftment at sites of CNS damage after busulfan
conditioning in mice was either absent [26] or dramatically
reduced compared to irradiation [24].

Here, we established a protocol for CNS conditioning using
focal head irradiation (HI) that avoids myeloablation and
minimally disturbs the host’s hematopoietic system. Regardless
of the low presence of donor-derived cells in the peripheral
circulation, BMDCs rapidly and selectively engrafted at sites of
neurodegeneration. This conditioning regimen may serve as an
alternative protocol for targeting myeloid cells to the CNS with
minimal impairment of the hematopoietic compartment.

Materials and Methods

Mice
C57BL/6 wild type mice were purchased from Charles River

(Sulzbach). C57BL/6 mice expressing the enhanced green
fluorescent protein (GFP) under the control of β-actin promoter
(ACTβ-EGFP) [27] were obtained from breeding facility of
Charité. All recipient mice were 7-12 weeks old at the time of
bone marrow transplantation (BMT).

All animal experiments were performed in strict accordance
with national and international guidelines for the care and use
of laboratory animals (Tierschutzgesetz der Bundesrepublik
Deutschland, European directive 2010/63/EU, as well as GV-
SOLAS and FELASA guidelines and recommendations for
laboratory animal welfare). The experiments were specifically
approved by the committee on the ethics of animal experiments
of Berlin (Landesamt für Gesundheit und Soziales, Berlin,
Germany, Permit Number: G0364/10).

Conditioning
Mice were anesthetized by subcutaneous injection of a

mixture of ketamine (50 mg/kg) and xylazine (7.5 mg/kg) prior
to either total body irradiation (TBI) or focal head irradiation (HI)
with a single dose of 11Gy. Irradiation was performed using a
Caesium137 source (Gammacell 40 Exactor, Theratronics).
During HI, the body was protected from irradiation with lead
bars (3 cm thick). Dosimetric studies revealed a shielding
efficieny >90% (cumulative dose < 1 Gy in protected areas).
Busulfan-treated animals received two intraperitoneal (i.p.)
injections of 50 mg/kg busulfan (Busilvex®, Pierre Fabre
Pharma) at 5 and 3 days before BMT.

Bone marrow transplantation
After conditioning with either TBI or HI, wild type mice were

intravenously (i.v.) injected with 2 x 107 unsorted bone marrow
cells from ACTβ-EGFP mice within 24 hr after irradiation.
Animals were examined at 1, 2, 4 and 16 weeks post-
transplantation.

In the case of facial nerve axotomy (FNA), conditioning with
HI was performed at 2 weeks and with busulfan at 5 and 3
days prior to BMT (i.v. injection of 2 x 107 unsorted bone
marrow cells from ACTβ-EGFP mice). FNA was performed 24
hr before BMT and animals received daily i.p. injections of 2
mg/kg rapamycin (Enzo Life Science) thereafter. Groups with
HI or FNA alone served as controls. Animals were examined at
7 and 14 days post-transplantation.

Facial nerve axotomy
Facial nerve axotomy (FNA) was performed as described

previously [6]. Briefly, mice were anesthetized by
subcutaneous injection of a mixture of ketamine (50 mg/kg)
and xylazine (7.5 mg/kg). The right facial nerve was transected
at the stylomastoid foramen, resulting in ipsilateral whisker
paresis. The left facial nerve served as control.

Immunohistochemistry
Mice were anesthetized and perfused transcardially with cold

phosphate-buffered saline (PBS). Brains were dissected, post-
fixed in 4% paraformaldehyde (PFA) and cryoprotected with
30% sucrose. Coronal brain sections (30 µm) were obtained on
a cryostat.

Sections were blocked at room temperature for 1 hr with
20% normal goat/donkey serum (Biozol) in Tris-buffered saline
(TBS) containing 0.3% Triton X-100. After three washes in
TBS, sections were incubated with primary antibodies diluted
1:200 [anti-Iba-1 (Wako), anti-F4/80 (Invitrogen) or anti-GFP
(Nacalai Tesque, Invitrogen)] at 4°C overnight. After washing
with TBS, sections were incubated with Alexa-conjugated
secondary antibodies diluted 1:250 (Alexa 488-IgG and Alexa
594-IgG, Invitrogen) at room temperature for 3 hr. All
antibodies were diluted in TBS containing 1% normal goat/
donkey serum and 0.3% Triton X-100. Nuclei were
counterstained with 4,6-diamidino-2-phenylindole diluted
1:10,000 (DAPI, Sigma). The immunostained sections were
examined using a conventional fluorescence or laser-scanning
confocal microscope (Leica TCS SP5, Leica Microsystems).

Flow cytometric analysis
Spleens were excised and pushed through a 70-μm strainer,

bone marrow cells were flushed from both femurs and tibias.
All samples were collected in Dulbecco's PBS (Gibco)
containing 2% fetal bovine serum (Biochrom) and were stored
on ice during staining and analysis. Blood was collected from
the inferior vena cava using a citrate-coated syringe. Red blood
cells were lysed in Pharm LyseTM buffer (BD Biosciences).

Following Fc blocking, cells were stained with anti-CD115
(AFS98), Ly6C (AL-21), CD11b (M1/70), CD4 (RM4-5), CD8
(53-6.7), Ly6G (1A8) and CD19 (6D5). All antibodies were
purchased from Biolegend. Fluorescence-activated cell sorting
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(FACS) was performed using a Canto II (Becton Dickinson).
Forward- and side-scatter parameters were used for exclusion
of doublets from analysis. Data were analyzed with the FlowJo
software (TreeStar).

Quantitative real-time PCR (qPCR)
Animals were anesthetized and perfused transcardially with

cold PBS at 1, 2, 4 and 16 weeks after irradiation/BMT. Brains
were dissected and immediately shock-frozen in liquid nitrogen.
Total RNA was isolated from the brain using RNeasy Plus Mini
kit (Qiagen). RNA (approximately 2 µg) was transcribed into
cDNA using Amplitaq® DNA Polymerase kit (Applied
Biosystems, Roche). PCR reactions were carried out using the
LightCycler FastStart DNA Master Kit (Roche Molecular
Biochemicals) according to the manufacturer’s protocol. The
following primer pairs were used: CCL5 (forward 5’-TGC CCA
CGT CAA GGA GTA TTT-3’, reverse 5’-TCT CTG GGT TGG
CAC ACA CTT-3’), CXCL10 (forward 5’-TGC TGG GTC TGA
GTG GGA CT-3’, reverse 5’-CCC TAT GGC CCT CAT TCT
CAC-3’), TNF-α (forward 5’-CAT CTT CTC AAA ATT CGA
GTG ACA A-3’, reverse 5’-TGG GAG TAG ACA AGG TAC
AAC CC-3’) and CCL2 (forward 5’-TCT GGG CCT GCT GTT
CAC C-3’, reverse 5’-TTG GGA TCA TCT TGC TGG TG-3’).
qPCR was performed using a LightCycler 2.0 (Roche).

Statistical analysis
Results were analyzed with Prism 4.0 (GraphPad) and

statistical differences were evaluated using a non-paired
Student’s t test or one-way ANOVA with Posthoc Bonferroni
correction. Significance was accepted for p<0.05. Data are
shown as means ± SEM.

Results

Focal head irradiation induces delayed BMDC
engraftment in the brain

Irradiation has been described to be a necessary condition
for BMDC engraftment in the brain [21]. We hypothesized that
non-myeloablative conditioning using HI would induce CNS
microenvironment changes that suffice to trigger the
recruitment of circulating myeloid cells to the CNS in the
absence of full hematopoietic reconstitution. To this end, we
transplanted adult mice with unsorted GFP-expressing bone
marrow cells following either HI or TBI (Figure 1A). Thereafter,
we analyzed the induction of different cytokines and
chemokines in the brain (Figure 1B). Irradiation-induced
increases in gene expression of monocyte chemoattractant
protein-1 (MCP-1 or CCL2), interferon gamma-induced protein
10 (IP-10 or CXCL10), regulated on activation, normal T cell
expressed and secreted (RANTES or CCL5) and tumor
necrosis factor (TNF)-α were observed in the brains of both TBI
and HI mice (Figure 1B). However, the induction of CCL2 and
CXCL10 mRNAs was strongly reduced in HI compared with
TBI animals although the doses of radiation to the brain were
identical (Figure 1B). CCL5 and TNF-α mRNAs were also
reduced at 2 weeks after HI compared with TBI (Figure 1B).

As expected, chimerism (determined as the percentage of
GFP+CD45+ cells among all CD45+ cells) was significantly
lower in peripheral blood of HI mice compared with TBI animals
at 16 weeks post-BMT (TBI: 97 ± 0.6%, HI: 3 ± 0.3%; Figure
2A). When analyzing the brains of the chimeras, no donor-
derived GFP+ cells were detected up to 12 weeks after BMT in
HI animals, whereas TBI animals showed engraftment of
ramified BMDCs in all brain regions (data not shown). At 16
weeks after BMT, clusters of donor-derived GFP+ cells
appeared in the cortex of HI mice (Figures 2B,C). At this time
point, olfactory bulb, cortex and cerebellum were populated by
ramified GFP+ cells in the TBI group (Figures 2B,C).
Quantitative analysis revealed reduced BMDC engraftment in
the brains of HI mice compared with TBI animals (Figure 2B).
The numbers of ramified GFP+ cells were 5 ± 1/ mm2 (TBI)
versus 0/ mm2 (HI) in the olfactory bulb, 25 ± 1/ mm2 (TBI)
versus 5 ± 1/ mm2 (HI) in the cortex, and 18 ± 3/ mm2 (TBI)
versus 0/ mm2 (HI) in the cerebellum. These results suggest
that low blood chimerism and reduced expression of
chemoattractants like CCL2 in the brain result in reduced and
delayed engraftment of BMDCs in the HI protocol.

Enhanced recruitment of myeloid cells to sites of brain
damage

We next tested whether HI in combination with neuronal
damage accelerates the recruitment of BMDCs to the brain. To
this end, we performed facial nerve axotomy in chimeric mice,
which results in motoneuron degeneration in the absence of
blood-brain barrier disruption [6]. Given that some potential
precursors of brain macrophages, such as bone marrow-
derived Ly6Chi inflammatory monocytes [21] or Cx3CR1+

progenitors [5], do not self-renew and have a short life span in
the blood stream, we performed FNA one day before BMT
(Figure 3A). HI was carried out 14 days prior to transplantation
to match the peak of chemokine/cytokine expression after
irradiation (cf. Figure 1B) with the time points of analysis at 7
and 14 days after BMT (i.e. 3 and 4 weeks after irradiation).
For comparison, we also used the chemotherapeutic agent
busulfan for conditioning (Figure 3A). Busulfan has recently
been demonstrated to trigger the entry of BMDCs into the brain
with reduced CNS inflammation [24]. Mice receiving either HI
or FNA alone prior to BMT served as control groups (Figure
3A).

As expected given the myelotoxic properties of busulfan, HI
treatment resulted in lower blood chimerism compared to
busulfan conditioning (HI + FNA: 5 ± 0.7% versus busulfan +
FNA: 50 ± 4%; Figure 3B). FNA had no impact on blood
chimerism (HI + FNA: 5 ± 0.7% versus HI: 8 ± 1%; Figure 3B),
and conditioning was required to establish blood chimerism
(FNA: <0.5%; Figure 3B). Notably, the vast majority of GFP+

cells in peripheral blood of HI, HI + FNA and busulfan + FNA
chimeras were identified as CD11b+ myeloid cells (> 90% of
GFP+ cells; Figure 3C). These included Ly6Chi monocytes (HI:
8 ± 1%; HI + FNA: 9 ± 1% and busulfan: 10 ± 2% of GFP
+CD11b+ cells; Figure 3C) and Ly6G+ neutrophils (HI: 60 ± 3%;
HI + FNA: 62 ± 2% and busulfan: 67 ± 7.0% of GFP+CD11b+

cells; Figure 3C). No significant differences in the contribution
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of donor-derived myeloid cells were observed between the
groups.

As early as 7 days after BMT, GFP+ cells were specifically
detected in the lesioned facial nucleus of HI + FNA mice (26 ±
7 cells/facial nucleus; Figures 4A,B). These cells were
amoeboid and localized in the brain parenchyma. They were
immunoreactive for Iba-1 and F4/80, which are markers of
macrophages (Figure 4A). At 14 days after BMT, GFP+ cells
with a characteristic ramified morphology and expression of
Iba-1 and F4/80 were detected in the lesioned facial nucleus of
HI + FNA mice (40 ± 12 cells/nucleus, Figures 4A,B). The
unlesioned contralateral facial nucleus was devoid of GFP+

cells at all time points (Figure 4A). Notably, no donor-derived
GFP+ cells were observed in the lesioned facial nucleus of
busulfan + FNA mice at 7 and 14 days after BMT despite high
levels of blood chimerism (Figure 4B). Similarly, FNA and HI
alone also failed to recruit donor-derived myeloid cells into the
lesioned facial nucleus at 7 and 14 days after BMT (Figure 4B).

This is in line with the delayed engraftment kinetics of myeloid
cells after HI treatment (Figures 2B,C), and with published
evidence documenting the necessity of conditioning for myeloid
cell engraftment in the CNS [7,21].

Since myeloid cell recruitment into the CNS has been
suggested to correlate with the induction of CCL2 and CXCL10
mRNAs [21], we used real-time PCR to quantify the expression
levels of both chemokines in the facial nucleus of mice with
FNA, HI and HI + FNA. The expression of CXCL10 and CCL2
mRNAs was potentiated in the HI + FNA group at 14 days after
BMT (Figure 4C). The results suggest that HI and FNA act
synergistically to induce chemokines, which may accelerate the
recruitment of myeloid cells into the CNS.

Discussion

We established a novel non-myeloablative conditioning
protocol for targeting BMDCs to the brain using focal head

Figure 1.  Gene expression profiles of cytokines and chemokines in the brain after HI and TBI.  A) Overview of the
experimental protocol. HI, TBI and Tx denote focal head irradiation, total body irradiation and bone marrow transplantation,
respectively. B) Quantitative real-time PCR of CCL2, CXCL10, CCL5 and TNF-α mRNA expression in brains of HI (grey columns)
and TBI (white columns) animals at 1, 2, 4 and 16 weeks after irradiation and BMT. The mRNA expression levels were normalized
to GAPDH mRNA and compared to naïve mice (fold induction). Reduced cytokine/chemokine mRNA levels were observed in HI
brains compared to the TBI paradigm. Data are means + SEM from 3-5 animals per group. Statistical significance is indicated by
asterisks (*p<0.05; **p<0.01; ***p<0.001).
doi: 10.1371/journal.pone.0080260.g001
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irradiation plus rapamycin. In contrast to TBI or busulfan
treatment, this conditioning regimen minimally disturbs the
host’s hematopoietic system and enables rapid transmigration
of adoptively transferred myeloid cells into the CNS.

BMDCs have emerged as promising treatment vehicles in
neurological and psychiatric disorders [6,14,18,19,22,23].
However, the transmigration of BMDCs into the brain is tightly
regulated. In animal models, in which peripheral blood
chimerism was obtained by parabiosis, no engraftment of

Figure 2.  Delayed engraftment of BMDCs after HI.  A) Flow cytometric analysis of GFP expression in peripheral blood
leukocytes of HI and TBI chimeras. The level of chimerism was significantly lower in HI compared with TBI animals at 16 weeks
after transplantation. Data are means + SEM from 3-5 animals per group. Statistical significance is indicated by the asterisk
(****p<0.0001). B) Quantification of BMDC engraftment in the brains of HI and TBI chimeras. Data are expressed as GFP+ cells per
area in three different brain regions (olfactory bulb, cortex and cerebellum) at 16 weeks after BMT. Data are means + SEM from 3-5
animals per group. n.d. = none detected. Statistical significance is indicated by asterisks (**p<0.01; ***p<0.001). C) Representative
laser confocal microscopic images of ramified donor-derived GFP+ cells in the brains of HI and TBI animals at 16 weeks after BMT.
Note that GFP+ cells were restricted to the cortex in the HI group, but distributed throughout the grey and white matter in TBI
animals.
doi: 10.1371/journal.pone.0080260.g002
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BMDCs in the adult brain was observed [4]. Similary, no CNS
engraftment of BMDCs was observed after irradiation with
brain protection [4,21]. In contrast, TBI is a highly effective
conditioning regimen for targeting BMDCs to the rodent brain
[6,24,26].

In the past, TBI has played an important role in patients
undergoing HSC transplantation. However, TBI may result in
serious acute graft-versus-host disease (GVHD) causing
transplant-related morbidity and mortality, as well as damage to
non-target tissues, which may predispose to GVHD or enhance
the clinical manifestations of acute GVHD [28-30]. Targeted
irradiation with selective delivery of myeloablative doses to
bone and marrow resulted in reduction of tissue damage and
allowance for dose escalation compared with conventional TBI
[28]. Thus, focal irradiation may serve as an alternative
regimen for host conditioning that causes less irradiation/

transplant-related morbidity and mortality. Furthermore, the
availability of a computed tomography (CT) image-guided
radiotherapy, such as helical tomotherapy, provides the
opportunity to deliver highly conforming dose distributions to
complex target shapes while simultaneously avoiding
excessive doses to critical normal tissue [28].

In this study, we established a conditioning protocol in mice
using targeted head irradiation that induced comparatively low
inflammatory responses in the CNS despite cranial radiation
doses which were identical to TBI. Moreover, HI minimally
perturbed the host’s hematopoietic compartment. In contrast to
TBI and busulfan chemotherapy, the HI regimen achieved very
low chimerism in peripheral blood. Nevertheless, HI
conditioning enabled rapid and selective recruitment of myeloid
cells to sites of brain damage. Note that HI alone did not trigger
any CNS engraftment of BMDCs in the absence of additional

Figure 3.  Blood chimerism in HI- and busulfan-conditioned mice with FNA.  A) Overview of the experimental protocol. HI, FNA
and Tx denote focal head irradiation, facial nerve axotomy and bone marrow transplantation, respectively. B) Flow cytometry of
GFP expression in peripheral blood CD45+ cells at 2 weeks after BMT. The level of chimerism was significantly higher in the
busulfan + FNA group compared with the HI + FNA group. FNA had no impact on blood chimerism. Data are means + SEM from
3-5 animals per group. Statistical significance is indicated by asterisks (****p<0.0001). C) Flow cytometric characterization of GFP-
expressing cells in peripheral blood at 2 weeks after BMT. The vast majority of GFP+CD45+ cells express CD11b (>90%). Gating of
this cell population reveals predominantly CD115+Ly6ChiLy6G- monocytes and CD115-Ly6C+Ly6G+ neutrophils. Data are means +
SEM from 3-5 animals per group. n.d. = none detected. No statistical differences were observed between the groups.
doi: 10.1371/journal.pone.0080260.g003
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Figure 4.  Selective engraftment of donor-derived myeloid cells in the lesioned facial nucleus after HI.  A) Identification of
GFP+ myeloid cells in the lesioned facial nucleus of HI chimeras at 7 and 14 days after BMT. Note the increase in F4/80
immunoreactivity at day 14 compared with day 7, indicating increased inflammation. The contralateral unlesioned facial nucleus is
devoid of donor-derived GFP+ cells and shows minimal F4/80 immunoreactivity. Laser confocal microscopic images of areas of
interest (white squares) are shown at increasing magnifications (scale bars: 100 µm – 25 µm). Seven days after BMT, amoeboid
GFP+F4/80+ and GFP+Iba-1+ cells were detected in the lesioned facial nucleus. At 14 days after BMT, GFP+F4/80+ and GFP+Iba-1+

cells in the lesioned facial nucleus were highly ramified. All donor-derived GFP+ cells expressed the macrophage markers, F4/80
and Iba-1. Nuclei were counterstained with DAPI. B) Quantification of myeloid cell engraftment in the lesioned facial nucleus at 7
and 14 days after BMT in FNA, HI, HI + FNA and busulfan + FNA animals. Note that donor-derived GFP+ cells were only detected in
HI + FNA mice. Data are means + SEM from 3-5 animals per group. n.d. = none detected. C) Quantitative real-time PCR of CXCL10
and CCL2 mRNA expression in the facial nucleus of animals with FNA (white bars), HI (grey bars) and HI + FNA (black bars) at 14
days after BMT. The mRNA expression levels were normalized to GAPDH mRNA and compared to naïve mice (fold induction).
Increased chemokine mRNA levels were observed in the facial nucleus of HI + FNA mice compared to HI animals. Data are means
+ SEM from 3-5 animals per group. Statistical significance is indicated by asterisks (*p<0.05).
doi: 10.1371/journal.pone.0080260.g004
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brain damage. Engraftment occurred with a short latency after
BMT (7 days). In contrast, busulfan treatment failed to target
myeloid cells to the CNS within 14 days after BMT. Although
myeloablative chemotherapy with busulfan is often used
clinically in allogeneic HSC transplantation, the effectiveness of
busulfan conditioning in triggering BMDC recruitment to the
rodent brain remains controversial. Lampron et al. did not
observe any donor-derived cells in the CNS after the
administration of 80 mg/kg of busulfan plus 200 mg/kg
cyclophosphamide before BMT [26]. Other reports showed
reduced [24,31] or enhanced [32] BMDC engraftment
compared with TBI using 80 mg/kg, 90 mg/kg and 125 mg/kg of
busulfan, respectively. In our study, the myelosuppressive dose
of 100 mg/kg busulfan failed to rapidly target BMDCs to the
CNS within the first two weeks after BMT.

In order to prevent transplant rejection, we administered the
immunosuppressant drug, rapamycin, in the FNA, HI, HI+FNA
and busulfan+FNA groups. Thus, the differences in CNS
engraftment of BMDCs between the groups cannot be
attributed to rapamycin. Moreover, rapamycin has been used to
stabilize the blood-brain barrier [33].

Cytokines and chemokines are among the signals which may
mediate the transmigration of BMDCs into the brain. Notably,
TBI and busulfan treatment were found to induce CCL2,
CXCL10, CCL3, CCL5, TNF-α and IL-1 gene expression in the
murine brain [21,24,32]. We observed that HI induces the same
pattern of cytokines/chemokines, but to a much lower degree
than TBI. CCL2 is de novo expressed in facial motoneurons
after axotomy [34]. Interestingly, HI increases CCL2 mRNA
expression in the axotomized facial nucleus, which may trigger
myeloid cell engraftment.

The receptor for CCL2, CCR2, was suggested to be
necessary for the egression of monocytes from the bone
marrow (BM) to the spleen [35] and from the blood stream to
the tissue [36], including the brain [21]. Results obtained in
chimeric mice generated by TBI and transplantation of CCR2-

deficient BM cells suggested that BM-derived myeloid cells in
the adult brain originate from circulating Ly6ChiCCR2+

inflammatory monocytes [21]. In contrast, using parabiotic
mice, Ajami et al. showed that the progenitors of BM-derived
myeloid cells in the brain do not spontaneously enter the blood
stream, but need to be artificially administered into the
circulation. The authors proposed HSCs and CX3CR1+

myelomonocytic progenitors (a mixture of non-self-renewing
progenitor populations) as sources of microglia and brain
macrophages, respectively [4,5]. However, these results were
based on hematopoietic reconstitution of the TBI recipients by
transplantation of partially purified BMDCs. Since selective
transplantation of purified BMDC populations is not possible in
a myeloablative setting, the precise characterization of the
precursors of brain myeloid cells has posed a significant
challenge. The optimized conditioning and transplantation
regimen presented in this study allows for the first time to
adoptively transfer selected BMDC populations into wild-type
recipients and to perform short-term analysis of the
transmigration of BMDCs into the CNS without hematopoietic
reconstitution. Thus, the HI protocol provides a valuable tool for
tracking the fate of short-lived BMDCs and for identifying the
precursors of brain macrophages, a promising cell population
for the treatment of neurodegenerative disorders.
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2.1.3. Masuda T*, Sankowski R*, Staszewski O*, Böttcher C, Amann L, Sagar, Scheiwe 
C, Nessler S, Kunz P, van Loo G, Coenen VA, Reinacher PC, Michel A, Sure U, 
Gold R, Grün D, Priller J, Stadelmann C, Prinz M.  

 Spatial and temporal heterogeneity of mouse and human microglia at single-cell 
resolution. 

   Nature. 566:388-392 (2019). 

https://doi.org/10.1038/s41586-019-0924-x 

 

The study used multiple advanced techniques including single-cell RNA sequencing (scRNA-Seq), 

single-molecule FISH, immunohistochemistry and computational modelling to comprehensively 

characterize microglial heterogeneity both spatially and temporally. To investigate the single-cell 

transcriptional profiles, microglia were isolated from different regions of embryonic, juvenile and 

adult mouse brains. Transcriptomic landscapes were comparatively analysed using scRNA-Seq 

technique. The results demonstrated spatial and temporal heterogeneity of microglia across 

developmental stages. The transcriptomic landscape of microglia isolated from cerebellum was 

comparable over the course of development. In contrast, the microglial signatures elucidated in the 

cortex and hippocampus were different between embryonic and postnatal microglia. For example, 

the CST3+SPARC+IBA1+ microglia subpopulation was prominent in the cortex of the postnatal 

brain, whereas the embryonic forebrain lacked of this population. The major microglial subset in 

embryonic forebrain was negative for both CST3 and SPARC expression. During demyelination 

and remyelination, disease-dependent microglial transcriptomic signatures were characterized by 

an induction of mRNA expression of Apoe, Axl, Igf1, Lyz2, Itgax, Gpnmb and Apoc1. Subsets that 

associated with demyelination (SPP1+CD74−IBA1+ and TMEM119−CD74−IBA1+) and 

remyelination (SPP1−CD74−IBA1+ and TMEM119−CD74+IBA1+) were identified. Analysis of 

human microglial signatures revealed similarities with gene expression profiles of mouse microglia 

in the homeostatic brain. However, different gene expression profiles between species were also 

identified, including the expression of Ccl4 mRNA in human microglia but not in mouse cells. In 

the brains of patients with multiple sclerosis, disease-associated microglial subpopulations, which 

were distinct from homeostatic microglia, were identified. These particular microglial subtypes 

showed increased expression levels of APOE, MAFB, CTSD, APOC1, GPNMB, ANXA2, LGALS1, 

CD74, SPP1 and HLA-DR, while microglial homeostatic markers such as TMEM119 were strongly 

reduced. The findings suggested heterogenous responses and/or regulation of the microglial 

population in the CNS, as well as immunoregulatory functions of microglia during CNS diseases. 
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2.2. Phenotypic and functional characterization of CNS cells utilizing mass spectrometry 
technique  

2.2.1. Böttcher C*, Schlickeiser S*, Sneeboer MAM*, Kunkel D, Knop A, Paza E, 
Fidzinski P, Kraus L, Snijders GJL, Kahn RS, Schulz AR, Mei HE, NBB-Psy, Hol 
EM, Siegmund B, Glauben R, Spruth EJ, de Witte LD*, Priller J*. 

Human microglia regional heterogeneity and phenotypes determined by 
multiplexed single-cell mass cytometry.  

Nat Neurosci. 22:78-90 (2019). 

* These authors contributed equally.          

https://.doi.org/10.1038/s41593-018-0290-2 

 
The cellular complexity of the CNS myeloid compartment has been extensively investigated, both 

in the context of cell ontogeny and phenotypic heterogeneity, as well as in response to brain 

pathology. However, these studies were mostly performed in the rodent models, and thus human 

CNS myeloid cells remained largely unexplored. Although some comparative analyses of the 

transcriptomic landscapes of microglia and CNS myeloid cells revealed similarities between mouse 

and man, species-specific patterns of gene expression, and differences in the responses of human 

and mouse microglia to altered CNS conditions were observed.  

In this study, the comprehensive characterization of microglial phenotypes and regional 

heterogeneity was performed using high-dimensional single-cell cytometry by time-of-flight mass 

spectrometry (mass cytometry or CyTOF). Microglial characteristics were compared with other 

immune cells in the brain including perivascular macrophages. To do so, human microglia (huMG) 

were isolated from different brain regions of post-mortem brain tissues and from fresh brain 

biopsies, and at the same time peripheral immune cells were isolated from peripheral blood and 

cerebrospinal fluid (CSF). Subsequently, the isolated cells were fixed and cryopreserved according 

to a newly established protocol, which allowed for a long-term storage of huMG, which are 

otherwise strongly susceptible to cryopreservation-induced damage. To simultaneously determine 

multiple samples from different individuals and compartments, a cellular barcoding technology 

was applied for multiplexing samples prior to CyTOF analysis. 

Based on the expression of 57 selected markers, human microglial core signature was identified, 

which were distinct from myeloid cells in the peripheral blood and CSF, as well as different from 

the infiltrating immune cells (Figure 4).  

 



 
 

Figure 4 Representative two-dimensional t-SNE map of brain mononuclear cells (n = 36). 
Each dot represents one cell. The color spectrum represents expression of P2Y12 (a microglia-
specific marker; red denotes high expression, blue denotes no expression). P2Y12+ cells were gated 
as microglia (red gate) and P2Y12- cells were gated as different infiltrating immune cells (blue gate). 
Heat maps and cluster analysis of all samples based on the mean expression of 57 markers. 
Similarities between PBMCs (blue), CSF cells (orange) and huMG (green), as well as the 
similarities between microglia from different brain regions (SVZ (bright green) = subventricular 
zone; THA (grey) = thalamus; CER (red) = cerebellum; temporal lobe (GTS, bright blue); frontal 
lobe (GFM, dark blue) samples and expression levels are indicated by dendrograms. Heat colours 
of expression levels have been scaled for each marker individually (to the 1st and 5th quintiles), 
while red denotes high and blue low expression. 

 
Post-mortem huMG were phenotypically comparable to fresh biopsy huMG. Using algorithm-

based data analysis, microglia clustered separately from perivascular brain macrophages, another 

cell type of CNS tissue resident macrophages, which are phenotypically very similar to microglia. 

Furthermore, regional heterogeneity of microglia in the human brain was identified. These findings 

are in line with the previous mentioned study (2.1.3.). Four region-dependent microglial 

subpopulations were identified. The microglial subpopulation that is predominantly found in the 
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subventricular zone (SVZ) and thalamus (THA) highly expressed CD11c, CCR5, CD45, CD64, 

CD68, CX3CR1, EMR1 and HLA-DR, whereas cortical microglia expressed higher levels of 

CD206 compared with the other subpopulations. Taken together, the identification of microglial 

heterogeneity in the human brain suggests region-specific functions and/or regional vulnerability 

to brain diseases, and thus encourages the development of the more specific therapeutic approaches 

targeting subpopulation of human microglia.  
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2.2.2. Boettcher C, Fellermeier M, Boettcher C, Dräger B, Zenk MH. 

How human neuroblastoma cells make morphine.  

Proc Natl Acad Sci USA, 102:8495-500 (2005). 

https://doi.org/10.1073/pnas.0503244102 

 

Dynamic interactions between neurons and non-neuronal cells (in particular microglia) are 

necessary for CNS homeostasis and function. Microglia dynamically regulate neuronal activity and 

synaptic transmission by clearance of cellular and subcellular elements of damaged neurons and/or 

providing factors with trophic or neuroprotective properties, such as BDNF, ATP and glutamate. 

Vice versa, neuronal activity can modulate microglial behavior by secreting for example 

chemokines such as CCL21, CX3CL1. However, the molecular cues that regulate the dynamic 

interaction between both cell populations remain largely unknown, which has previously resulted 

from the lack of high-resolution analytical techniques to reveal dynamic biosynthesis of key 

regulators responsible for the neuron-glial crosstalk. 

In this study, targeted metabolomic analysis was performed in human SH-SY5Y neuroblastoma 

cells, the cell line that was proven to be capable of synthesizing morphine [Poeaknapo et al. 2004]. 

The entire morphine biosynthetic pathway was investigated in SH-SY5Y cells by applying various 

isotope-labelled precursors of morphine including L-[1,2,3-13C3]- and [ring-2´,5´,6´-2H3]-dopa, 

[2,2-2H2]-dopamine, (S)-[1,3,4,-2H3]-norlaudanosoline, [7-2H]-salutaridinol, [7-2H,N-C2H3]-

oripavine, and [6-2H]-codeine (Figure 5). 

 



 
 

Figure 5 Schematic representation of stable isotope-resolved metabolomic experiments 
elucidating morphine biosynthesis in SH-SY5Y cells. 
 

Five days after the feeding experiment, isotope-labelled morphine was isolated from SH-SY5Y 

cells and analysed by gas chromatography-tandem mass spectrometry (GC/MS/MS). Based on the 

positions where the applied isotopes incorporated into morphine, 19 chemical steps of morphine 

biosynthesis in human neuroblastoma cells were detected. Unlike morphine biosynthesis in the 

poppy plant, human morphine was synthesized via the tetraoxygenated initial isoquinoline alkaloid 

(S)-norlaudanosoline and not via trioxygenated (S)-norcoclaurine. 

The study demonstrated the feasibility of studying targeted metabolomics in a human 

neuroblastoma cell line using an isotope-labelling approach, and thus serves as a platform for 

metabolomic analysis in primary neuronal or non-neuronal cells in the CNS at the homeostasis or 

during diseases. 

 

 

 

60



3. Discussion 	

The CNS is a highly dynamic compartment with complex cellular networks. Apart from neurons, 

microglia and infiltrated immune cells play crucial roles in the regulation of CNS homeostasis and 

function. Microglia perform dynamic phenotypic and functional changes throughout the lifespan, 

depending upon the cue signals from other CNS cells. Better understanding characteristics of these 

cells and how they interact with each other may lead to more effective strategy for treatment 

development in neurological and psychiatric disorders. 

 

Infiltrating immune cells integrate into the myeloid cell compartment of the retina and the brain 

Adoptive transfer experiments of gene-modified bone marrow-derived cells (BMDCs) in mouse 

models of retinal [selected own works 2.1.1] and brain [selected own works 2.1.2.] degenerations 

performed in this study unequivocally provides evidence for capability of circulating cells from the 

periphery to engraft into the CNS, preferentially into the damage sites. These engrafted cells stably 

integrate into myeloid cell compartment of the CNS and express their transferred gene, even at 

more than one year after adoptive transfer. These findings suggest therapeutic potential of 

circulating cells like transplanted BMDCs as live Trojan horse for delivery of therapeutic gene to 

the damage sites of damage retina and brain. However, circulating cells have been shown to be 

able to trigger neuroinflammation and/or involve in resolution of neuroinflammation in CNS 

diseases [Schwartz & Baruch 2014; Ajami et al., 2011], and hence therapeutic effects of these 

engrafted bone-marrow-derived cells in CNS diseases remain to be precisely evaluated. 

The other concern for clinical application of gene-modified BMDCs is the host-precondition and 

the route of administration, especially an application route for treatment in retinal degenerative 

diseases. Our study in mouse models of retinal degeneration [selected own works 2.1.1] 

demonstrated that BMDCs engrafted only into particular layers of the retina, these were the inner 

(IPL) and outer (OPL) plexiform layers and the ganglion cell layer (GCL). None of them were 

detected in the photoreceptor cell layer, where the degeneration actually occurred, thus an 

alternative route of application remains to be investigated for treatment development. Furthermore, 

in mouse models, total body irradiation (with a lethal irradiation dosage) has been normally applied 

to precondition the host immune system prior to adoptive transfer of gene-modified donor-derived 

cells. It has already been demonstrated that BMDCs were not capable of entering the non-
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conditioned brain, and thus required host-preconditioning [Ajami et al., 2007; Mildner et al., 2007]. 

This precondition leads to systemic collapse of host immunity, which avoids the immune rejection 

of the donor cells. However, this strategy is not a viable option for a clinical application in human 

patients. Herein, an alternative protocol for host-precondition that avoids a complete ablation of 

the host immunity was demonstrated. This non-myeloablative precondition using focal-head 

irradiation effectively targeted the BMDCs from the periphery to the damage brain. Although the 

number of engrafted cells were much lower compared to the classical precondition using lethally 

total body irradiation, the engraftment in this precondition model was more specific and restricted 

to the damage sites. Therefore, it may be used to precisely identify the cell population of BMDCs 

that are capable of entering the CNS. Whether this low number of infiltrating cells would 

effectively result in subtle therapeutic effects also remains further evaluation. 

 

Spatial and temporal heterogeneity of microglia in homeostasis and during brain disease 

Microglia are highly plastic cells. They provide multifaceted effects on neuronal as well as non-

neuronal cells in homeostasis and during disease. In an in vitro environment, microglia can express 

a variety of neuroactive agents that are considered as pathological factors, including TNF-α or 

ligands for chemokine receptors such as CCR1, 3, 5, and 7 and CXCR1 or 3, but they can also 

express trophic factors like brain-derived neurotrophic factor (BDNF), the gaseous transmitter NO 

or neurotransmitters (ATP and glutamate) [Kettenmann et al., 2011; Biber et al., 2001; de Jong et 

al., 2005]. These substances rapidly modulate neuronal function and/or mediate the regulation of 

synapse integrity and plasticity in the healthy brain.  

In the selected own work 2.1.3., we identified the spatial and temporal transcriptomic heterogeneity 

of mouse and human microglia using single-cell RNA sequencing. These findings were in line with 

the previous observations by Grabert et al. [2016], which were shown in the RNA-bulk system 

analysis that, under CNS homeostasis, various microglial subpopulations have different 

characteristics and differential functions in a region-specific manner. During diseases, microglia 

respond to the local inflammation and undergo activation, and thereby can either resolve the 

neuroinflammation or escalate the tissue toxicity and subsequently induce neuronal degeneration. 

In this study (2.1.3.), we showed that disease-associated microglial responses were also temporally 

heterogenous. Early after neurodegeneration induced by facial nerve axotomy, homeostatic 

microglial population rapidly changed their phenotypes to disease-specific signatures, 
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characterized by higher expression of Apoe, Axl, Igf1, Lyz2, Itgax, Gpnmb and Apoc1. At recovery 

phase, strongly reduced microglial activation was observed. Moreover, microglial signatures at this 

late disease phase was comparable to homeostatic signatures, thus confirmed high plasticity of 

microglial population. Similarly, we could also identify disease-specific microglial signatures in 

human patients with multiple sclerosis. However, in this study (2.1.3.), the correlation between 

phenotypic alteration of microglia and the number and phenotypic of infiltrating cells during 

disease remains undiscovered. Since circulating cells have been shown to be able to trigger 

neuroinflammation and/or involve in resolution of neuroinflammation in CNS diseases [Schwartz 

& Baruch 2014; Ajami et al., 2011], investigating the correlation between changes in microglial 

subpopulations and infiltrating cells may lead to better understanding of disease pathogenesis 

and/or regulation. Nonetheless, microglial heterogeneity at the single-cell protein level remains to 

be elucidated.  

 

Elucidating CNS cell phenotype and function using mass spectrometry techniques 

In the selected own work 2.2.1., mass cytometry (CyTOF) was used to simultaneously characterize 

circulating immune cells in the peripheral blood and cerebrospinal fluid, the infiltrating immune 

cells in the brain and the perivascular brain macrophages, in comparison to the parenchymal 

microglia isolated from different brain regions. In this study (2.2.1.), we confirmed unique 

microglial signature, which was distinct from peripheral and infiltrating immune cells. Moreover, 

similar to the selected own work 2.1.3., regional microglial heterogeneity could be confirmed by 

CyTOF analysis. However, it remains to be investigated whether these proteomic signatures of 

microglia can be rapidly altered during disease, as it has been observed at the transcriptomic 

signatures (selected own work 2.1.3.). For the first time, CyTOF allows a comprehensive 

investigation of multiple cell subtypes at the single-cell protein level. Although these results were 

in line with and nicely complement the previously reported transcriptomic profiles in the human 

system, many transcriptomic signatures could not yet be proven, which largely due to the limitation 

of availability of CyTOF antibodies and stable metal isotopes. Adding more antibodies for the 

characterization of other CNS cells such as anti-NeuN antibody for neurons, anti-GFAP and anti-

GLAST antibody for astroglia, or anti-CD31 (or platelet endothelial cell adhesion molecule-1, 

PECAM-a) antibody for endothelial cells can expand the phenotypic spectrum of detected cell 

types. However, finding a validated protocol for simultaneous isolation of all different cell types 
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from the brain tissue or the retina, and optimizing a staining protocol that is suitable for all cell 

types of interest are major challenges of such objectives. Open questions also include the spatial 

characteristics and dynamic crosstalk between each cell population in the CNS. Imaging mass 

cytometry (IMC) has recently become commercially available and may serve as the technique of 

choice for uncovering spatial phenotypic and functional heterogeneity in the CNS, since this 

technique allows multi-parameter profiling of a wide spectrum of cell types on tissue sections using 

the same principle as mass cytometry. In IMC, a total of about 37 markers can be simultaneously 

determined on the brain tissue section [Giesen et al., 2014]. 

Yet phenotypic profiles per se merely outline the characteristics of the cells, whereas metabolomics 

reflect dynamic responses of living cells, which can be rapidly altered to maintain their energy, 

cycling and communication with others in the complex system. Thus, metabolomics reveal gene 

expression products, protein outputs and metabolites/small molecules reflecting their responses to 

environment changes. Exquisitely sensitive methods are required to quantify rare compounds 

whose abundances can change rapidly in a living system. In this study (selected own work 2.2.2.), 

a stable isotope-labelling approach was successfully used for metabolomic analysis of human 

neuronal cells. This methodology can be optimized for in vitro metabolomic studies of other CNS 

cell types, both cell lines and isolated primary cells. Although it is still limited as a bulk system 

analysis, this method complements the results obtained from transcriptomic analysis (such as 

single-cell RNA-sequencing) and phenotypic profiling, for example utilizing mass cytometry. And 

vice versa the transcriptomic analysis and/or phenotypic profiling at the single-cell level can be 

used to identify the targeted metabolites and their precursors a priori. Nonetheless, concerns should 

be taken into account in the context of differential characteristics of the targeted cells in vitro and 

in vivo, which could lead to differences in phenotypes and metabolomics between cells from 

different experimental conditions. 

Perspectively, it is important to further explore this CNS myeloid cell compartment under disease 

conditions along with neurons and other non-neuronal cells in the CNS, how they interact with 

each other, how they response to disease and how they regulate or obliterate CNS homeostasis 

during pathology. In sum, comprehensive analysis using in vivo isotope-resolved metabolomics 

(Figure 6A) and single-cell multiplexed mass cytometry of the isolated CNS cell populations 

(Figure 6B) will provide invaluable information on dynamic interaction between multiple cell 

types in homeostasis and during diseases. The obtained results can be then confirmed, for example, 
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in in vitro isotope-resolved metabolomic experiment with and without co-culturing between 

different cell types (Figure 6C). Although the in vitro system could not completely represent the 

in vivo conditions, it provides possibility to directly study interaction (especially cell-cell 

signalling) between two or more CNS cell population under modified conditions. Finally, to 

achieve subcellular spatial information of dynamic changes detected, imaging mass cytometry 

(Hyperion) can be applied on the brain (or the retina) tissue to investigate up to 37 markers 

simultaneously. 

 

 

 

 

Figure 6 Suggestive combination of mass spectrometry techniques for simultaneous 
characterization of multiple cell types of the CNS. (A) Isotope labelling can be performed in vivo 
(for example in patients with brain tumour prior to tumour biopsy [Charidemou et al., 2017]). CNS 
cells can be then isolated and analysed for their metabolomic characteristics using mass 
spectrometry. (B) Multiple isolated CNS cell populations including perivascular macrophages, 
microglia, astrocytes and neurons can be directly and simultaneously characterized by mass 
cytometry (CyTOF). (C) Isolated CNS cells can be cultured in vitro for further metabolomic 
characterization using mass spectrometry. Using this experimental approach two or more cell types 
can be co-cultured for further metabolomic analysis. (D) High-dimensional immunohistochemistry 
(for determination of up to 37 markers on one tissue section) of formalin-fixed paraffin embedded 
(or frozen) brain tissue can be performed to obtain multiplexed data with subcellular spatial 
resolution.  
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4. Conclusion 	

In sum, this study combined multiple techniques including flow cytometry, immunohistochemistry, 

RT-PCR and mass spectrometry to comprehensively characterize CNS microglia/myeloid cell 

compartment in mouse and man. The findings confirmed the complexity of this cell population in 

the CNS comprising various cell types of both CNS-resident cells and infiltrating immune cells. 

Our results suggested their importance in the regulation of CNS homeostasis. Furthermore, we 

provided herein evidence for possibility to use infiltrating myeloid cells as cellular vehicle to 

deliver therapeutic gene/protein to the sites of brain lesion.  

We demonstrated the power of two mass spectrometry techniques, mass cytometry and stable 

isotope-resolved metabolomics for comprehensive elucidation of CNS cell phenotypes and 

functions, both in in vitro and in vivo system. The combination of both mass spectrometry 

techniques, as well as the novel imaging mass cytometry, for phenotypic and functional elucidation 

will make the leap to unravel complex systems biology of the CNS cellular compartment. In 

addition, beyond the scope of this study, the number of available high-throughput techniques that 

can be applied for simultaneous characterization of various CNS cell populations (such as the 

cutting edge technology of single-cell metabolomics that may make the leap to unravel [Fessenden 

2016]) has already increased. Again, the combination of these techniques is required to provide 

unprecedented insights into the complex biology of the CNS.  
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