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1. ABSTRACT 

1.1 German 

Einleitung: Zahlreiche Experimente und klinische Studien betonen den Zusammenhang  

einer hohen Salzaufnahme und einem erhöhten Risiko für Herz-Kreislauf- und 

Nierenerkrankungen im Kontext eines erhöhten Blutdrucks. Allerdings ist nur wenig über 

die geschlechtsspezifischen Effekte einer hohen Salzaufnahme auf den Blutdruck und 

die Genexpression in wesentlichen Herz-Kreislauf-Organen wie Herz und Niere bekannt.  

In der hier vorgestellten Arbeit wurden in einem Tierexperiment die Effekte einer 

salzreichen Diät in verschiedenen Organe auf funktioneller, struktureller und genetischer 

Ebene untersucht. Darüberhinaus lag ein Fokus auf der Herausarbeitung 

geschlechtsspezifische Unterschiede in den jeweiligen Parametern sowie in den 

analysierten Genen. 

Methoden: Männliche und weibliche Wistar-Ratten wurden auf zwei Gruppen aufgeteilt 

und erhielten jeweils entweder eine Standarddiät (NS, 0,2 % NaCl, n = 50) oder eine 

salzreiche Diät (HS, 4 % NaCl, n = 52). Die Fütterung der jeweiligen Diäten wurde zum 

Zeitpunkt des Absetzens vom Muttertier, im Alter von 21 Tagen, begonnen und bis zum 

Ende der Studie über sechs Monate fortgesetzt. 

Ergebnisse: Die Tiere, welche eine salzreiche Diät erhielten, entwickelten einen höheren 

Blutdruck und ein größeres Organgewicht von Herz und Nieren im Vergleich zu den 

Ratten mit der Standarddiät. Die Gesamtprotein/Kreatinin-Ratio sowie die Natrium- und 

Chloridwerte im Urin waren in der Gruppe mit salzreicher Diät erhöht, während die 

Kaliumwerte im Urin verringert waren. Der Effekt der salzreichen Diät auf den Blutdruck 

war geschlechtsabhängig, da bei den weiblichen Tieren ein signifikant höherer Blutdruck 

im Vergleich zur Kontrollgruppe mit Standarddiät erst später auftrat als bei den 

männlichen Tieren. Auch die Gesamtprotein/Kreatinin-Ratio im Urin war bei den 

männlichen Tieren bedeutend höher als bei den weiblichen. Die Expression mehrerer 

Gene in der Niere und im Herzen war bei den Tieren mit der salzreichen Diät anders 

reguliert als bei den Tieren auf der Standarddiät. Auffallend war, dass sich in einigen 

Genen die Effekte der salzreichen Diät bei den weiblichen Ratten von denen bei den 
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männlichen Ratten unterschieden. Zu diesen Genen gehörten Clock-Gene wie das period 

circadian clock 1 (Per1), dem RAAS zuzuordnende Gene wie das promyelocytic leukemia 

zinc finger (Zbtb16 ) Gen und dem Vitamin-D-Metabolismus zugehörige Gene wie das 

cytochrome p450 family 27 subfamily b member 1  (Cyp27b1) und das cytochrome p450 

family 24 subfamily a member 1 (Cyp24a1). 

Fazit: Bei männlichen Wistar-Ratten traten als Reaktion auf die salzreiche Diät 

Bluthochdruck und eine niedrige Gesamtprotein/Kreatinin-Ratio im Urin früher auf als bei 

weiblichen Ratten. Diese Beobachtungen könnten im Zusammenhang mit den 

geschlechtsspezifisch unterschiedlich exprimierten Genen in der Niere und im Herzen 

stehen. 
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1.2 English 

Introduction: Although numerous laboratory experiments and clinical studies have 

proven the strong correlation between high-salt intake and a higher risk of cardiovascular 

and kidney diseases through the influence of high-salt intake on blood pressure, little has 

been found out about how differences in high-salt intake impacts different sex in terms of 

blood pressure and gene expression in key cardiovascular organs such as the heart and 

kidney. Completely healthy Wistar rats were chosen here to specifically examine the 

effects of a high-salt diet on the functional, structural and genetic performance of different 

organs. We devoted ourselves to find out possible sex differences within the analyzed 

genes. 

Methods: Male and female Wistar rats were divided into the following two groups: 

normal-salt diet rats (n=50), which were fed with 0.2% NaCl, and high-salt diet rats (n=52), 

which were fed with 4% NaCl, which is approximately comparable to the salt content of 

an average unhealthy diet. Feeding with the diets started directly after weaning at an age 

of 21 days and was continued until 6 months of age. 

Results:  Greater organ weights of the heart and kidneys were detected in rats fed with 

a high-salt diet compared to those on a normal-salt diet. In the high-salt group we saw 

higher urinary total protein-to-creatinine ratio, sodium and chloride as well as lower 

urinary potassium. The high salt diet had an effect on blood pressure, with significantly 

increased blood pressure levels in both male and female rats. However, increases in 

blood pressure were more pronounced and had an earlier onset in male rats. Similarly, 

the urinary total protein-to-creatinine ratio was significantly higher in male than in female 

animals, indicating sex-specific differences in the response to high salt intake. Moreover, 

the different sexes showed very different performance in the expression of several genes 

with regard to the kidney and heart in response to high-salt intake. The genes concerned 

included clock genes, e.g. period circadian clock 1 (Per1), RAAS associated genes. e.g. 

the promyelocytic leukemia zinc finger (Zbtb16) and vitamin D metabolism-associated 

genes, e.g. cytochrome P450 family 27 subfamily b member 1 (Cyp27b1) and cytochrome 

P450 family 24 subfamily a member 1 (Cyp24a1). 



6 
 

Conclusion:  A later onset of high blood pressure and lower urinary total protein-to-

creatinine ratio were found in female Wistar rats compared to the male rats in response 

to high-salt intake. Sex-specific differentially expressed genes might be the cause of 

these phenomena.  
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2. INTRODUCTION 

2.1 History of human salt intake 

Before the discovery of sodium chloride as a food preservative about 10000 years ago 

(1)，the ancestors of humans consumed less than 0.69 g salt per day for millions of years. 

This small amount is comparable to the salt intake of other mammals (2). Utilization of 

sodium chloride as a preservative for fresh food during the cold months of the year 

became of great economic importance especially in highly urbanized societies (3). In 

contrast, today the average human daily consumption of sodium is about 4.9 grams (4). 

Human dietary habits may have changed over time, but the genetic adaption to today's 

environment and lifestyle might be limited (5). As a consequence, modern salt 

consumption patterns display several risk factors for common diseases. 

2.2 Salt intake, hypertension and cardiovascular disease 

The pathophysiological role of an increased dietary salt in the development of 

hypertension and cardiovascular disease has been acknowledged for a long time by 

scientists all over the world (6) and it is clinically supported by interventional studies 

showing that reduction of salt intake leads to a decrease in blood pressure (BP)(7, 8). 

Increased BP is one of the major reasons for death in the world (3). This has been 

indicated by numerous studies, all of which support salt intake as a major factor in 

increasing blood pressure in the population. The diversity and intensity for that evidence 

are much more than other lifestyle factors, such as overweight, inadequate physical 

activity and low consumption of fruits and vegetables (3). The first study which showed 

an association between sodium intake and cardiovascular outcomes appeared in 1985 

and was in Japanese men (9). Although it was reported that low-salt intake has no long-

term beneficial effects regarding cardiovascular disorders including hypertension (10), 

various other experiments and clinical studies have underlined the role of high-salt (HS) 

intake for a greater risk of cardiovascular (11) and kidney disease (12). 
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2.2.1 Animal studies 

Several animal studies have shown that salt intake can impact on BP. In almost all types 

of animal models, a HS intake caused the BP to rise. A study of chimpanzees (98.8% 

homologous to human genes) showed that a gradual increase of salt intake during 20 

months from 0.5 g/day, which is close to the human evolutionary intake, to 10-15 g/day, 

which is comparable to our current salt intake, led to a gradual increase in BP (13). 

Studies using other species including rats (14-16), mice (17-19), dogs and lower primates 

(20) have shown that HS intake leads to elevated blood pressure. 

2.2.2 Clinical studies 

The epidemical INTERMAP study (International study of macro and micro-nutrients and 

BP) showed that salt intake played an important role in determining the levels of BP in 

the population and excess salt intake was associated with hypertension (21). Some 

studies have shown that the migration from an area with a low salt consumption to an 

environment with increasing salt intake is associated with a rise in BP. For example, 

migration from a rural Kenyan tribe to an urban environment with increased salt intake 

led to higher BP in comparison to the control group, which stayed in the rural 

environment(22). A study in the Pacific Islands reported that using seawater in cooking 

and in the household resulted in higher BP in subjects who were not used to a HS intake 

(23). 

In the United States, it has been reported that a reduction in dietary salt intake by 3 

g per day would reduce the annual number of new cases of stroke by 32,000 to 66,000, 

coronary heart disease by 60,000 to 120,000, and myocardial infarction by 54,000 to 

99,000 and would to reduce the annual number of deaths from any cause by 44,000 to 

92,000(24). In a British cohort from 2003 to 2011, salt reduction contributed to a decrease 

in BP by 3.0±0.33/1.4±0.20 mm Hg and in mortality from stroke by 42% and ischemic 

heart disease by 40%. After adjusting for age, sex, ethnic group, education, household 

income, alcohol consumption, fruit and vegetable intake and BMI, who did not use 

antihypertensive drugs, the BP was failed by 2.7±0.34/1.1±0.23 mm Hg(25). 
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2.2.3 Mechanisms of salt- induced hypertension 

The body can detect an overabundance salt and responds with an increase in blood 

pressure. Earlier hypotheses focused mainly on raised plasma volume: sodium retention 

is thought to cause higher blood sodium, prompting increased thirst and plasma volume. 

Therefore, it leads to an increase in blood pressure. Although the cardiac index may 

initially rise under salt load conditions, it usually returns to normal levels whereas the total 

peripheral resistance (TPR) will rise and remain elevated (26). Another study reported 

that the cardiac index was not significantly, different while TPR was significantly elevated 

when the hemodynamics of normotensive and hypertensive individuals were compared 

(27). Therefore, the increase in blood pressure with chronic salt load appears to be the 

result of peripheral vasoconstriction where other hemodynamic parameters might remain 

unchanged. 

Furthermore, plasma sodium may have a direct effect on the vascular system, and a 

slight increase in sodium concentration was reported to result in an increased stiffness of 

isolated human endothelial cells (28). Plasma sodium may also indirectly cause systemic 

vasoconstriction by altering the sympathetic nervous system outflow in animals and 

humans (28). Further indirect effects may occur through the participation of dietary 

sodium in steroidal hormonal pathways, which has been studied in rats and has been 

previously described (29). In addition, it has been shown salt loading stimulated the 

adrenal gland to release marinobufagenin (30), which is an endogenous steroidal α1-

Na+K+-ATPase inhibitor, and resulted in peripheral vasoconstriction (31) and increased 

stroke volume (32). 

2.2.4 Effects of high-salt intake beyond blood pressure 

Hypertension is a traditional risk factor for cardiovascular disease and frequently 

associated with stroke, ischemic heart disease, ventricular hypertrophy, heart failure and 

chronic kidney disease (8, 33).  

The understanding of hypertension as the sole culprit for consequences of a HS 

intake, however, has changed over the years. There is increasing evidence that the 

deleterious effects of HS intake may be mediated by mechanisms beyond blood pressure. 
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Pooled analysis of data from four studies showed that the association between salt 

intake and cardiovascular risk persisted even after adjustment for blood pressure (34). 

Other important factors may contribute to the risk of HS intake for cardiovascular and 

kidney disease, dependent on or independent of changes in blood pressure. Some animal 

and human studies indicated that HS intake may have a direct effect on stroke and left 

ventricular mass independent of blood pressure. Polonia J et al. performed a 7.2 year 

follow-up experiment (35) and Perry IJ et al. demonstrated an ecological analysis(36) 

showing that there was a significant positive correlation between urinary sodium excretion 

and stroke mortality. Left ventricular hypertrophy is an independent predictor of 

cardiovascular morbidity and mortality, and is considered to be associated with high-

sodium intake(37). Du Cailar G et al. observed that in both hypertensive and 

normotensive individual, there was a positive correlation between left ventricular mass 

and 24-h urinary sodium excretion(38). This substantiated that dietary sodium intake may 

have a direct effect on left ventricular mass. 

Studies in humans have demonstrated that salt intake is associated with protein or 

albumin excretion (39, 40). Albuminuria is an important risk factor for cardiovascular and 

kidney disease (41). Moreover, HS intake may be positively associated with albuminuria 

in diabetic patients (42, 43). This finding is associated with insulin resistance, suggesting 

that insulin resistance may contribute to increased sodium sensitivity, increased blood 

pressure and proteinuria (43). 

The Renin–Angiotensin–Aldosterone system（RAAS）is important for maintaining the 

balance of sodium and water when reducing sodium or fluid intake(44). Physiological 

compensatory activation of the RAAS may occur during sodium limitation. Activation of 

the RAAS may be associated with increased cardiovascular morbidity and mortality. A 

meta-analysis study reported by Graudal NA et al. suggested that low sodium intake 

(<120 mmol / 24 h) was related to a significant increase in plasma renin and aldosterone, 

including a longer sodium limit study (≥4 weeks)(45). Therefore, severe sodium restriction 

in the diet may not be suitable for every case. 

Moderate to severe sodium restriction causes a reduction in the plasma volume and 

an increase in the concentration of lipids in plasma. Graudal NA et al. demonstrated that 
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low density lipoprotein cholesterol increased significantly with short-term large reductions 

of in sodium intake (sodium reduction of >100 mmol/24 h for <4 weeks), and in a meta-

analysis reported that with long-term moderate sodium restriction (mean sodium 

reduction of 75 mmol/24 h for >4 weeks), there was no significant change in low-density 

lipoprotein cholesterol (46). 

Another study has suggested that endothelial dysfunction might be related to high-

sodium intake in animal models and humans(47). Vascular endothelial dysfunction has 

been reported to increase the development of atherosclerosis, which plays an important 

role in the pathogenesis of the cardiovascular disease(47). In normotensive Sprague-

Dawley rats, a HS diet was given for 4-5 weeks and their arterioles were less responsive 

to acetylcholine-induced vasodilation during high-sodium intake. The mechanism behind 

this finding could be that the HS diet caused the increased production of reactive oxygen 

species in the arteriolar wall in response to increased salt intake(48). 

2.3 Sex-specific differences in the cardiovascular system and in kidney function 

2.3.1 Sex-specific differences in the cardiovascular system 

Although cardiovascular disease remains a major killer of both men and women, there 

are significant sex differences in the prevalence and burden of different cardiovascular 

diseases. A better understanding of the sex differences in the cardiovascular system is 

crucial for improving the ability to maintain a healthy population and for identifying and 

treating heart disease in both women and men. 

In basic electrophysiology, women have longer QT intervals and a faster heart rate 

than men. These become most obvious after puberty and they decrease after menopause, 

although they still exist. PR and QRS intervals are shorter in women than in men. Not 

only because of the smaller size of the female heart, but also because sex hormones 

such as estrogen, progesterone, and androgens regulate various ion currents that have 

been reported to affect the duration of the electrocardiogram(49). 

It has been reported that the incidence of atrioventricular nodal reentrant tachycardia 

(AVNRT) and inappropriate sinus tachycardia is higher in women than in men, whereas 

atrioventricular reentrant tachycardia (AVRT) is more common in men. Gowd BM et al. 

http://www.ncbi.nlm.nih.gov.sci-hub.tw/pubmed/22531673
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demonstrated that AVNRT is more easily induced in premenopausal women at the 

beginning of a premenstrual or menstrual cycle(49). 

According to a study, the absolute number of deaths from cardiovascular disease in 

women has surpassed that of men since 1984. However, when adjustments according 

for the differences in age distribution are made, the CVD-induced mortality in men was 

found to be significantly higher than in women(50).  

Heart failure can be divided into heart failure with preserved ejection fraction (HFpEF) 

or  heart failure with reduced ejection fraction (HFrEF). Most studies have found that 

patients with HFpEF are older, and more often hypertensive and obese in comparison to 

those with HFrEF.The most robust difference found is that HFpEF is more common in 

women and this may be associated with less coronary heart disease, increased 

concentric remodeling and age-related vascular stiffness(51). There is evidence that the 

outcomes of HFpEF differ between men and women; the I-PRESERVE trial (Irbesartan 

in Heart Failure with Preserved Ejection Fraction Study) had a high female enrollment 

rate of 60%, and showed a 20% reduction in the likelihood of death or hospitalization in 

women compared to men. Other studies of HFpEF have also shown similar findings(52). 

HFrEF with an ischemic and non-ischemic etiology is more common in men than in 

women. Women with HFrEF are more likely to suffer from a non-ischaemic etiology while 

men are more likely to suffer from ischemic cardiomyopathy. In people with systolic heart 

failure, women have a longer survival rate than men, mainly because of significant 

differences in mortality among women and men with nonischemic cardiomyopathy. 

Mortality in women with ischemic cardiomyopathy may be slightly better than in men, but 

the difference is not as pronounced as in non-ischemic cardiomyopathy(53). 

Mitral valve prolapse is more common in women, but compared to men, women tend 

to have a more benign course: fewer flail leaflets, lower regurgitation grades, higher 

ejection fractions, and smaller chamber dimensions. Clinically, women have shown fewer 

clinical manifestations, such as heart failure, atrial fibrillation, and stroke than men. 

However, with severe mitral regurgitation, referral to cardiac valve surgery is less likely, 

and long-term mortality is significantly higher in women than in men(54). 
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In patients with aortic stenosis who are at high risk and undergo transcatheter aortic 

valve replacement(TAVR), the incidence of postoperative complications in women is 

higher than that in men, such as major vascular complications, bleeding events and stroke, 

however, there is no difference in procedural or 30-day mortality. In addition, after TAVR 

women have less para-valvular aortic insufficiency and the late survival rate is 

significantly better than in men(55). 

2.3.2 Sex-specific differences in kidney function 

Traditionally, sex was seen as an important factor affecting the progression of kidney 

function and kidney disease. The biggest meta-analysis to date suggests that women with 

polycystic kidney disease, IgA nephropathy, membranous glomerulopathy, and ‘chronic 

renal disease of unknown etiology’ tend to progress to end-stage renal disease (ESRD) 

at a slower rate than men(56). The Prevention of Renal and Vascular End-stage Disease 

studies reported different results regarding the predictors of renal function in men and 

women: in both males and females high systolic blood pressure and plasma glucose were 

found to be independent predictors for a worse renal outcome. Moreover, in males urinary 

albumin excretion was considered the strongest independent predictor of renal function 

decline, and a better renal function outcome was associated with low waist circumference 

and cholesterol/HDL ratio. In women, on the other hand, better kidney outcomes were 

associated with low triglycerides(57). 

Low nitric oxide (NO) production is commonly observed in chronic kidney disease 

（CKD）patients and has been suggested as one of the causes of CKD. In an animal 

study, Hong Ji et al. demonstrated that sex differences in renal NO production play a role 

in the progression of renal injury and reported that female rats have higher NO levels than 

males(58). 

CKD appears to progress faster in men because of testosterone and in women CKD 

may progress more slowly because estrogen is protective. However, animal observations 

often conflict with human data. In animal models, endogenous estrogens have been found 

to show antifibrotic and antiapoptotic effects in the kidney(59). In addition, 17β-estradiol 

attenuated glomerulosclerosis and tubulointerstitial fibrosis and protected podocytes from 
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damage in animal models(60). Furthermore, orchiectomy attenuated glomerular and 

tubular damage, kidney fibrosis and proteinuria in animal models of kidney injury(61). 

However, the results of clinical studies are just the opposite. An observational study found 

an increased risk for microalbuminuria and cardiovascular disease in premenopausal oral 

contraceptive users and postmenopausal hormone replacement therapy users(62). 

However, a large case-control study found that androgen deprivation therapy increased 

the risk of acute kidney injury in men newly diagnosed with non-metastatic prostate 

cancer (63). 

2.4 Sex-specific differences in response to a high-salt diet 

One important aim of this experiment was to reveal possible sex specific differences of a 

HS diet. Several studies have suggested the presence of sex differences in BP regulation 

in response to a HS intake (64-68). After 3 weeks of a HS diet (8. 0% NaCl) , the blood 

pressure of both male and female Dahl salt-sensitive (DS) rats was significantly increased 

compared to that of rats on the corresponding low-salt diet (0. 3% NaCl),  In addition, 

male rats fed with a HS diet had significantly higher blood pressure compared to 

females(64). 

The kidney plays an important role in regulating blood pressure via alterations in 

sodium excretion. Reckelhoff et al. detailed that the administration of testosterone to 

ovariectomized female SHR increased blood pressure and changed the pressure-

natriuretic relationship(69). In addition, there is evidence that female sex hormones may 

actually prevent salt-induced hypertension by increasing renal excretion of sodium. In DS 

rats, gonadectomy led to the accelerated development of salt-sensitive hypertension in 

females (70). 

The impact of sex hormones on BP has been reported in many studies. Pechère-

Bertschi et al. performed a series of studies to assess the effects of exogenous and 

endogenous female sex hormones on the systemic hemodynamic response to sodium 

intake changes in healthy young women with normal BP and in menopausal women(71). 

They found that the response of BP and heart rate to salt was comparable during the 

luteal and follicular phases of the normal menstrual cycle, and the pressure-natriuresis 
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relationship was steep in both phases. This indicated that these women were generally 

insensitive to salt. The administration of oral contraceptives did not change the pressure-

natriuresis distribution, which suggest that no effect of exogenous female sex hormones 

on the BP in response to salt. In menopausal women, the pressure-natriuresis curve was 

shifted to the right, suggesting that menopausal women were sensitive to salt. In contrast 

to the BP respones, it was found that during the luteal phase of the menstrual cycle, 

control of the renal circulation is salt sensitive and endogenous female sex hormones act 

on glomerular hemodynamics either directly or indirectly due to a decrease in the 

fractional filtration after salt loading(72). 

Menstrual cycles and menopause are characterized by dramatic changes in plasma 

progesterone, estrogen, aldosterone and plasma renin activity-hormone systems that are 

known to regulate sodium excretion in the proximal and distal renal tubules. Moreover, 

androgen receptors have been found in the proximal tubule segment of the nephron, 

indicating that testosterone may also affect renal sodium reabsorption. Endogenous 

lithium clearance technique is a method for investigating proximal segmental renal 

sodium handling in humans. When young normotensive men switched from a low-salt 

diet to a HS diet, there was a significant increase in lithium clearance and a decrease in 

distal reabsorption of sodium fraction, indicating a reduction of sodium proximal and distal 

reabsorption to maintain sodium balance(73). A similar investigation was performed in 

normotensive women and a significant difference in tubular response was observed 

between the follicle and the luteal phases(74). 

There are also some genetic studies investigating sex differences in response to a 

HS intake. One study reported a blunted response to angiotensinogen II under HS 

conditions observed most commonly in males(75). David Gerhold et al., using microarray 

profiling, found that the effects of a HS diet were completely different in the kidneys of 

male and female rats. In female Dahl Iwai(DI) rats, the HS diet regulated hundreds of 

genes, and only 13 genes were observed to be changed in male DI rats in response to 

the HS diet (76). 
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2.5 Aim of the study 

Cardiovascular diseases and hypertension are on the rise around the world. Animal 

experiments, as well as epidemiological studies in humans, show sex-specific differences 

in their incidence and pathogenesis. A HS intake as a possible contributing factor to high 

blood pressure and cardiovascular diseases likewise may impact in a sex-specific 

manner. Therefore, this animal experiment was designed to investigate possible sex-

specific differences and potential health consequences of a HS intake in male versus 

female Wistar rats.  

To be able to characterize functional, morphological, and genotypical changes 

resulting from the HS intake, certain functional parameters such as blood pressure and 

plasma and urinary markers were analyzed and compared to data from rats with a normal-

salt (NS) intake. Moreover, to investigate potential micromorphological differences of the 

kidney and the heart, standard histological methods were applied. In order to determine 

differences in the expression in these two organs at the mRNA level, quantitative Real 

Time-PCR (qRT-PCR) was performed. All results were then statistically compared 

between male and female rats.  
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3. MATERIALS 

3.1 Technical devices 

Device Manufacturer 

Pressure / pulse measurement PowerLab,ADInstruments ,NSW,Australia 

Magnetic stirrer MR 2000 Heidolph Instruments GmbH & Co. KG 

Micropipettors(10µl - 1000µl) Eppendorf, Hamburg, Deutschland 

Power supply Biometra standard Biometra GmbH, Göttingen, Germany 

Precision balance Scaltec SBC22 Scaltec Instruments, Göttingen, Germany 

Safelock Tubes Eppendorf, Hamburg, Germany 

ShakerWT-17 Biometra GmbH, Göttingen, Germany 

Vortex mixer Neo Lab, Heidelberg, Germany 

Water purifier Milli Q Mili-Q Purification System, Billerica, USA 

Centrifuge Biofuge 13 Heraeus Sepatech GmbH, Osterode 

Mx3000P thermal cycler Stratagene, La Jolla, CA 

Microtome RM2025 Leica Mikrosysteme Vertrieb GmbH 

Digital Camera CFW-1310C Leica Mikrosysteme Vertrieb GmbH 

Bioanalyzer Agilent Technologies, Santa Clara, CA, USA 

ABI 7900HT Real-Time PCR System ThermoFisher Sci., Carlsbad, CA, USA 

Paraffin Embedding Center Microm EC-

350 

ThermoFisher Sci. Waltham, MA, USA  

3.2 Chemicals 

Chemicals Manufacturer 

Acetic acid Merck, Darmstadt, Germany 

Ethanol Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Xylol Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Paraffin Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Sirius Red staining kit Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

Hematoxylin-Eosin staining kit Carl Roth GmbH + Co. KG, Karlsruhe, Germany 
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Periodic Acid Schiff’s staining kit Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

hydrochloric acid Carl Roth GmbH + Co. KG, Karlsruhe, Germany 

RNeasy fibrous tissue kit Qiagen, Hilden, Germany 

RNase-free DNase I ThermoFisher Sci. Waltham, MA, USA 

ImProm II Reverse Transcription System Promega Corp. Fitchburg, WI, USA 

qPCR MasterMix Plus Eurogentec, Liege, Belgium 

Labeled Probes Sigma Genosys， Darmstadt, Germany 

3.3 Software 

Software Developer 

Image J 1.37v 

Shareware des National Institutes of Health, 

USA 

Software SPSS Version 21.0 SPSS, USA 

GraphPadprism Version 6 GraphPad Software Ltd, USA 

Excel 2013 Microsoft, USA 

Word 2013 Microsof, USA 

Endnote 8 Thomson Corporation, USA 

Primer 3 

Whitehead Institute, Howard 

Hughes Medical Institute, USA 
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4. METHODOLOGY 

4.1 Animals and protocol for salt loading 

Sex differences in experimental animal models affect hormonal responses and organ 

function among other characteristics. Environmental factors may also have a significant 

impact and influence on such interactions.  

In this study, the sex-dependence of physiological effects on heart and kidneys 

secondary to a HS diet were investigated. In order to clarify the molecular mechanisms 

of these interactions, biological samples were obtained from the organs of the 

experimental animals.  

Male and female Wistar rats were obtained from Charles River Laboratories 

International, Inc. (Wilmington, MA, USA). Wistar rats were divided into two groups: 

normal-salt diet (NS, 0.2% NaCl, n=50, Altromin GmbH, Lage, Germany) or high-salt diet 

(HS, 4% NaCl, n=52, Altromin GmbH, Lage, Germany). The feeding of the respective 

diets started after weaning (21 days of age) and was continued throughout the study until 

adulthood (6 months of age). Both diets were composed of the same nutrients and 

differed only in the percentage of sodium chloride. All procedures were approved by the 

Institutional Animal Care Committee and followed the guidelines of the National Institutes 

of Health Guidelines for the Care and Use of Laboratory Animals. Proper accommodation 

and care were ensured as required by §2 of the Animal Welfare Act, including medical 

treatment. All experimental animals were kept under controlled environmental conditions 

at a room temperature of 20°C, with 46% humidity and a 12-hour light cycle. The animals 

were allowed food and water ad libitum. The pelleted feed provided was a standardized 

complete rat feed. 

The animals were sacrificed under deep isoflurane-O2 anesthesia. The heart and the 

kidneys were removed, washed in saline, dried and weighed. The organs were either 

fixed in 10% neutral-buffered formalin for 24 hours or snap frozen in liquid nitrogen and 

subsequently stored at -80 °C for further testing. 
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 Diet Protein content [%] Fat content[%] 
Carbohydrate 

content [%] 

NaCl 

content [%] 

I) High salt 24 11 65 4 

II) Normal salt 24 11 65 0.2 

Table 1. Overview of the experimental diets used. 

4.2 Plasma and urine collection 

Twenty-four–hour urine samples were collected in metabolic cage experiments and 

plasma was drawn from the tail vein under anesthesia (2-3% isoflurane-O2 inhalation 

anesthesia mixture) at weeks 6, 12. 18 and 24. Blood was removed with a hematocrit 

capillary and expelled with a syringe into a reaction vessel (1.5 ml and 0.5M EDTA 

coated). It was then centrifuged for five minutes at 3000 rpm and plasma samples were 

stored at -20°C until further processing.  

4.3 Blood pressure measurement 

Systolic blood pressure (SBP) and pulse were measured by non-invasive tail cuff 

plethysmography of the tail artery at 5, 9, 13, 17 and 21 weeks of age. Animals were fixed 

in size-adjustable plexiglas tubes. In order to properly place the occlusion tail cuff, the tail 

was put through the occlusion cuff and placed as close to the base of the tail as possible 

without using force. After threading the tail through the pulse sensor cuff, it was placed 

within two millimeters of the occlusion cuff. Computer-aided software continuously 

monitored the heart rate and mean SBP over a pressure curve. After 10 minutes of 

familiarization for the animal, constant heart rate recording was begun. At intervals of 30 

seconds, at least four measurements were taken to obtain reliable means of heart rate 

and SBP. To get the animals used to this procedure, animals were trained before the 

actual measurement. The measurement was carried out with the PowerLab 4SP from AD 

Instruments and the associated Software Chart and Scope for Windows Version 4.1. 
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4.4 Morphological and histological analysis 

4.4.1 Organ removal and fixation 

The experimental animals were anesthetized with isoflurane at the age of 25 weeks, and 

at the onset of apnea, a cervical dislocation was performed for safe killing. Immediately 

thereafter, the organs were removed and weighed. 

4.4.2 Embedding 

Paraffin embedding of organs is used to achieve sufficient strength of the tissue so that 

the organs can be cut in the micrometer range. The prerequisite for the complete 

impregnation of the tissue with paraffin is the previous dehydration, which was carried out 

with an ascending alcohol series. The preparations were each dehydrated for one hour 

in 70%, 80%, twice in 96% and twice in 100% ethanol and then transferred twice for four 

hours in xylene. Xylene needs to be used as an intermediate because the residual alcohol 

in the tissue is not miscible with paraffin. Then the preparations were placed in pure 

molten paraffin at 56 °C for one hour and transferred to a second paraffin bath for an 

additional two hours. All of these steps were automatically performed overnight in the 

Shandon Citadel 1000 tissue machine from Thermo Electronics Corporation. The 

embedding in the histocassettes was then carried out on the paraffin machine Microm 

EC-350 from Thermo Scientific and the curing of the preparations on the cooling plate 

Microm EC-351. 

 

Solvent Duration 

70% Ethanol 1 hour 

80% Ethanol 1 hour 

2x96% Ethanol 1 hour each 

2x100% Ethanol 1 hour each 

2x Xylene 4 hours 

56 ° C molten paraffin 1 hour 

Second paraffin bath 2 hours  
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Paraffin until embedding 

Table 2.Protocol for embedding 

4.4.3 Preparation of the tissue sections 

3 μm thick tissue sections were cut using a Jung RM 2025 microtome (Leica Biosystems, 

Wetzlar, Germany) and the tissue sections were placed in a water bath, and then 

transferred onto glass slides. Then the slides were placed in a warming cabinet for 30 

minutes to dry. 

4.4.4 Histological stains 

The preparation of the histological tissue sections for the different stains was basically 

the same. First, the tissue sections were deparaffinized twice in xylene for each five 

minutes and then watered in a descending alcohol series for two minutes in 100%, 96%, 

80%, and 70% ethanol, so that the tissue sections were accessible to staining with various 

water-soluble stains. After the respective staining step in which the desired structures 

were stained, the dehydration of the tissue sections in the ascending alcohol series was 

carried out in each case as follows: a brief immersion in 70% and 80% ethanol and two 

minutes in 96% and 100% ethanol with subsequent transfer into xylene. For the 

histological examination of the heart and the kidney, three stains were made: 

1. Sirius Red staining to determine interstitial fibrosis, perivascular fibrosis in the 

heart and the kidney, and media-to-lumen-ratio in the kidney. 

2. Hematoxylin-eosin staining (HE) to determine cardiomyocyte size in the heart. 

3. Periodic Acid-Schiff staining (PAS) to determine glomerulosclerosis and 

glomerular size. 

The different steps are listed in the following table. 

 

Step Instructions  Incubation time 

Sirius red staining 

1 

Prepare the Sirius red staining solution (0.1 % w/v) by dissolving 

Sirius red in saturated picric acid solution (1.3% picric acid in 

water) 
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2 
Stain the sections by immersing the slides in the Sirius red 

staining solution at room temperature away from direct light. 

1 hour 

3 Wash the slides in 0.01 M HCl 30 seconds 

HE staining 

1 Incubate in hematoxylin solution. 6 minutes 

2 Rinse in tap water. 10 seconds 

3 Differentiate with hydrochloric acid 0.1 % 10 seconds 

4 Rinse in flowing tap water.  6 minutes 

5 Incubate in eosin solution. 30 seconds 

6 Rinse in flowing tap water. 30 seconds 

PAS staining 

1 Hydrolysis with periodic acid solution 1 %. 10 minutes 

2 Rinse with tap water. 10 minutes 

3 Rinse with distilled water. 2x2 minutes 

4 Stain with Schiff’s reagent (room temperature). 15 minutes 

5 Rinse with warm tap water (35 °C minimum). 5 minutes 

6 Rinse quickly with distilled water. 10 seconds 

7 Counterstain with hemalum solution acc. to Mayer. 5 minutes 

8 Blue in flowing tap water. 10 minutes 

Table 3. Histology: Protocols for Sirius Red, HE and PAS staining of paraffin ‐ embedded tissue 

slices. 

Renal fibrosis was determined in sirius-red-stained tissue sections using computer-

aided histomorphometry devices. The perivascular fibrosis of intrarenal arteries was 

evaluated in 30 randomly selected arteries of each sample using X200 magnification with 

the following scale: grade 0= no perivascular fibrosis; grade I=minor perivascular fibrosis; 

grade II=moderate perivascular fibrosis; grade III= strong perivascular fibrosis and grade 

IV= very strong perivascular fibrosis. Interstitial fibrosis was assessed by a macro for the 

image analysis software ImageJ, which was written to quantify the percentage of fibrosis 

as compared to the total area of the tissue section in approximately 30 randomly selected 



24 
 

pictures from each slide.  For the assessment of media-to-lumen ratio, sirius red staining 

was used. Small arteries were photographed under light microscope (magnification x400) 

using a digital camera. Then the freehand selection tool of the ImageJ software was used 

to quantify the area of the media and the lumen and the media-to-lumen ratio was 

calculated. The glomerulosclerosis index was assessed in PAS-stained sections. The 

severity of glomerular lesions was graded according to the percentage of the glomeruli 

involved: 1% to 25% (grade I); 25% to 50% (grade II); 50% to 75% (grade III); and 75% 

to 100% (grade IV). Glomerular size was assessed in at least 50 glomeruli in each 

longitudinal PAS–stained kidney section using ImageJ software.  

The perivascular and interstitial fibrosis of the heart were measured as described 

above. HE-stained tissue sections were used to quantify the cardiomyocytes’ diameter. 

About 30 randomly chosen pictures from each slide were taken under a light microscope 

(magnification x400). Longitudinally cut cardiomyocytes with a visible and non-

conspicuous nucleus from the left ventricular wall and the septum were photographed. 

The diameter was determined using the straight line selection tool of the ImageJ software. 

4.5 Quantitative Real Time PCR 

4.5.1 RNA extraction 

Total RNA was extracted from frozen pulverized whole kidney and heart samples using 

RNeasy fibrous tissue kit (Qiagen, Hilden, Germany). Samples were cut with alcohol-

sterilized scissors and were put into the homogenizing tube containing the lysis solution.4 

ceramic beads were put into the tube and the tube was rotated for the homogenization of 

the tissues. Then the lysate was placed on ice and ethanol was added to the lysate to 

provide ideal binding conditions. The lysate was then loaded onto the RNeasy silica 

membrane. RNA bound into the membrane, and all contaminants were efficiently washed 

away. Pure, concentrated RNA was eluted in 30–100 µl water and checked for integrity 

on a Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).  
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4.5.2 qRT-PCR 

In accordance with the standard protocol of the kit supplier, 1 µg of total RNA was first 

processed with RNase-free DNase I (Thermo Fisher Scientific. Waltham, MA, USA)  for 

15 minutes at room temperature for reverse transcription, and afterward reverse-

transcribed utilizing of ImProm II Reverse Transcription System (Promega Corp. 

Fitchburg, WI, USA) in an aggregate response volume of 40 µL. Real-time polymerase 

chain reaction was managed using ABI Prism Sequence Detection System (Applied 

Biosystems ABI HT7900 Fast Real-Time PCR System, Carlsbad, CA, USA). Using a PCR 

mix containing Taq polymerase (qPCR MasterMix Plus, Eurogentec, Liege, Belgium) and 

primer sets with 6-FAM and TAMRA labeled probes (Sigma Genosys) in 384 multiwell 

plates for cDNA samples amplification. Reaction under standard conditions prescribed by 

thermocycler, cDNA samples (20 ng) were kept running in triplicates in response volumes 

of 20 µl (384 multiwell plates). By using Primer3 Plus to create TaqMan probe sets. 

Relative gene expression was calculated using the ddCt term (Applied Biosystems, User 

Bulletin No. 2) related to endogenous controls ribosomal protein L32 (RPL32). The 

specificity of the real time PCR primers was verified by reference gene sequences of the 

following NCBI GenBank accession numbers (Table 4). 

 

Gene Forward Primer Backward Primer Probe 

Ace GGAGTACACCTGGACACCAAA AGTTGACGCGACTGGACTCT CTCGTGCAGAAGGCTCCCTCCC 

Acsl3 AAGTGCTTTCTGAGGCTGCT GGGCTCAAACGAATTTTCAG TCAGCAAGTCTGGAAAAGTTTGAAATCC 

Adm CGCAGTTCCGAAAGAAGTGG CCCGTAGGGTAGCTGCTGGA TAAGTGGGCGCTAAGTCGTGGGAAGAG 

Agt CACTTCCAAGGGAAGATGAGA GTGCTGTTGTCCACCCAGA CTTCTCCCAGCTGACTGGGCTCCAT 

Agtr1a GTGGACACTGCCATGCCCAT CCCAGAAAGCCGTAAAACAG ATAGCGTATTTTAACAACTGCCTGAACC 

Agtr2 CTTATGTAGTTCCCCTTGTTTGG AATGGTTCTGACATCTCGGAA TATGGCTTGTCTGTCCTCATTGCCAACA 

Alpl TTTCACGTTTGGTGGCTACA CTGTGAAGGGCTTCTTGTCC TTTGGTCTGGCTCCCATGGTGA 

Angpt2 CATCTGCAAGTGTTCCCAGA TTCAAGTTGGAAGGACCACA CTCACAGGAGGCTGGTGGTTCGAC 

Apoa1 CAAGAACCACCCTACCCTGA GGTTTGGCTTTCTCACCAAG CATACCAAGGCCAGCGACCACC 
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Arntl GAGACCCCAGGCTATCCCTA TCTATCATGTCGATGCCTATGTG TGATAGTTCGTCTATTCTTGGTGAGAACCC 

Atp2a2 CCTTTGATGAGATCACAGCTATGACT CCCGATTTCCGACTTCTTCA TGTGAACGACGCGCCCGCT 

Cdkn1A CTCAGGGCCGAAAACG CTTGCAGAAGACCAATCGG CAGACCAGCCTAACAGATTTCTATCACTCCA 

Chga GAGGCGACTTTGAGGAAAAGAA TGGCTGACAGGCTCTCTAGCT AGGGCAGCGCCAACCGCA 

Clock CCAGCCACCACAACAGTTC GGATGAGCTGTGTCGAAGGA CAGACATCTCGGTTGCTCCATGG 

Col1a1 GAAGCATGTCTGGTTTGGAGAGA ATCGGAACCTTCGCTTCCAT TGACCGATGGATTCCAGTTCGA 

Cps1 TAAGATACCTCAGAAGGGCATT AACTGCTCAGCAACACCAAG CATCCAGCAATCATTCCGTCCAAG 

Csad AAGAAGGAGAGCCCAGATTACA TCATGGTTCCCTTCTTCACC CAGAGGCTGTCTCAGGTGGCCC 

Cyp11b2 AGATGCTGCTCCTGCTTCAC GATAGGCCATCTGCACATCC TGCTGAAAACCTTCCAGGTGGAGA 

Cyp17a1 GGGACCAGCCAGATCAGTT TCTGCGTGGGTGTAATGAGA CGCTTCTTAGATCCAACGGGAAGCC 

Cyp24a1 GAAAGAATCCATGAGGCTTACC CGTATTCACCCAGAACCGTT CCATTTACAACTCGGACCCTTGACAAAC 

Cyp27b1 CATCCATTGCAGCACAAACT CTCACATGGTCAGGCAGAGA CACCTGGTCTGCACCTGGTTGC 

Dbh TGCACTGTAACAAGACCTCTGC CTGCGGAAGTGATCTTAGGC TCCCGGGTAACTGGAACCTGCA 

Ddc TGTGCTGAGGGCAGAGAA TTTTCTCTTCCCAGTTTTCG CCGCTTCAGAGACCCAAAGTTGAA 

Ddit4 CACCCTGGGAGTCTGCTAAG TCTCTTCAAACACCACCTCGT ATGTCGTCCCTGAGCCCAACCT 

Dhcr24 GAGGCAGCTGGAGAAGTTTG TCCTCCCGGTTCATATAGCA AGCGTGCACGGGTTCCAGATGT 

Dnmt3a ACATCCTCTGGTGCACTGAA TGGAGACGTCTGTGTAGTGGA TGGAAAGGGTGTTTGGCTTCCC 

Dnmt3b ACGTTCTGTGGTGCACTGAG CCATGTTGGACACGTCTGTG TCGAAAGGATCTTCGGGTTCCCA 

Fn1 GGGGTCACGTACCTCTTCAA GTTGTGCTGTCAGAGGCTTG TCTTTGCTGTGCATCAGGGCAG 

Gdf15 ATCCAGTTCCCATTTGTATGTCCT ACTCGCCCACGCACATG CTAGGTTGGAGCGACTGGGTACTGT 

Gsk3a CCCCCTCTTCAACTTCAGTC GGGATGAGAATGGCATTGAG TGGTGAACTTTCCATCCAACCGTC 

Gsk3b GACTTTGGAAGTGCAAAGCAG GGTGCCCTGTAGTACCGAGA TCCGAGGAGAGCCCAATGTTTCATATATC 

Havcr1 GGAATGGCACTGTGACATCCT CTGCGGCTTCCTCAAAGG AGGAGGCCTGGAATAATCACACTGTAAGA 

Hdac2 AGTGGTGAGAAAACAGACACCA TTGGGGAGTCAAATTCAAGG AGGAGCCAAATCAGAACAACTCAACAA 

Il1rl1 CCAAGATGGCATCTGTTGC ACGACTCAAAAGTGTTTCAGGTC TCCGTTGAGTGGCAAGGTGTGCT 

Kdm1a CTCAGCCAATCACTCCTGGT TGCGGATTGTATGTTCTCCA CCCCACAGCCAATTCCAAGACTC 

Lcn2 CTGGGGAATATTCACAGCTACC GCAAACTGGTCGTAGTCAGTGT TCAGATACAGAGCTACGATGTGCAAGTGG 

Lgals3 TGAGAGCGGCAAACCATTC TTGACCGCAACCTTGAAGTG AATACAGGTCCTGGTTGAAGCCGA 

Lyve1 CTGGGTGTTTGCTACGTGAA CCTTGGTTTCGATCATTTCC TGTGAAGGCCTTCCCTTTCACAA 
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Mc2r CCCTTTGTGCTCCATGTTCT ATGCCATTGACCTGGAAGAG TGCCCAAATAACCCTTACTGTGTTTGC 

Mmp2 GTTTATTTGGCGGACAGTGACA GGGAGCTCAGGCCAGAATG CCCACAGGTCCCTTGCTGGTGG 

Mmp9 GTAACCCTGGTCACCGGACTT ATACGTTCCCGGCTGATCAG CCGCGTCGTGGAGGGAAGG 

Myh7 TGGAGAACGACAAGCAGCAG CCTGGCGTTGAGTGCATTTA TGGATGAGCGACTCAAAAAGAAGGACTTTG 

Nos3 GCTACCACGAGGACATTTTCG GCTGTCGCTCCTGCAAAGA AGGTGACGAGCCGCATCCGC 

Nppa GGGGGTAGGATTGACAGGAT TCGAGCAGATTTGGCTGTTA CCCAGAGCGGACTAGGCTGCAA 

Nppb CGCCGCTGGGAGGTCACTCC TCTCTTATCAGCTCCAGCAG CTGGGAAGTCCTAGCCAGTCTCCAGA 

Nr3c2 CTGCAGGCTCCAGAAATGCC GAGGCCTTTTAACTTCCCCA CATGAACTTAGGAGCTCGAAAGTCAAAGAA 

Nr4a1 CTGCCTGTCTGCTCTGGTC GGTTCTGCAGCTCCTCCA ATCGACATGGCCTCCAGGACCC 

Nr4a2 TCGACATTTCTGCCTTCTCC CCACTCTCTTGGGTTCCTTG TGCTGCCCTGGCTATGGTCACA 

Nupr1 CAACCTGTAAACATAGAGGACGAA CTCCACCGACGACATAAGAT ATGGGATCCTGGATGAGTATGACCAGTACA 

Per1 CACCTCAGCCAGCATCACT CTCCAGCTTCAGCCTCTGA ACAAGCAAGTACTTTGGCAGCATCGAC 

Per2 CTACCGCCATCGACGTAAC TCCTCATATGGCAGACAAAGG TGTTTACTGTGAAAGTGAGGAGAAAGGCA 

Ptgs2 TCAAAGACACTCAGGTAGACATGATCT CGGCACCAGACCAAAGACTT CACGTCCCTGAGCACCTGCGG 

Ren GCAGGACCTACACTCTCAGCA GAGCCAGTATGCACAGGTCA TGTGCAAAAGAATCCCTTCAGGAACG 

Scarb1 GGTACTGCAAGAAGCCAAGC GGTCTGACCAAGCTATCAGG CCAGAAGACACCACGAGCCCCC 

Serpine3 AAGATCCAGGGACTGATCACA CCTTCCATTTGCCTTTAAAGTAG CCTAGCTAAGAAGACATCCATGGTACTGGTGAAT 

Serpine1 GGCCGACTTCACAAGTCTTTC CGATCCTGACCTTTTGCAGT ACCAAGAGCAGCTCTCTGTAGCACAGG 

Slc51a GCTTGCTCACCTCCCTATTC GGTCTCCAGGATGAGCATGT AAAATCAGGTCCCAAGTGATGAACTGTC 

Sod2 AAGGAGCAAGGTCGCTTACA AATCCCCAGCAGTGGAATAA CCACTGCAAGGAACCACAGGCC 

Spock2 AGGAGGCAGCCAAGAAGAAG CTGCTCTGGTCACACTGCAT TCATTCCGAGCTGTGATGAAGATGG 

Spp1 AGCCATGACCACATGGACGA GATTCGTCAGATTCATCCGAGT AGACCATGCAGAGAGCGAGGATTCTGTG 

Tgfb1 CTTTTGACGTCACTGGAGTTGT CTGTCACAAGAGCAGTGAGC CAGTGGCTGAACCAAGGAGACGGAAT 

Th TGTGTCCGAGAGCTTCAATG CGGGTCAAACTTCACAGAGA CGCCAAGGACAAGCTCAGGAAC 

Timp1 CCGCAGCGAGGAGTTTCTC GGCAGTGATGTGCAAATTTCC TCGCGGGCCGTTTAAGGAA 

Timp4 GAGAGCCTGAATCATCACTAC ATGGTACACGGCACTGCATA AACTGTGGCTGCCAAATCACCACTT 

Tnfrsf11b GCTGTGGAAGCATCAAAACA CGTTGCACACTGCTTTCAC CCAGGAAATGGTGAAGAAGATCATCCA 

Tsc22d3 GGAGGGGATGTGGTTTCCGT CTTGTTGTCTAGGGCCACCAC AACTGGATAACAGTGCCTCTGGAGCCAGC 

Vamp1 TGTGCCATCATCGTGGTAGT CTTGGATGGCAATGGAGAA TGAGAATGTGCCATCCCTTCCCTG 



28 
 

Zbtb16 GAGCAGCACAGGAAGCTG CAGGAACCGTTTTCCACAG ACAGTGGGATGAAGACATACGGATGCGA 

Table 4. List of primers used for qRT‐PCR. 

4.5.3 Computations 

For the study of the tissue, the relative quantity (Q) was normalized to the expression of 

RPL32 using the following formula: 

nQ = {2[minCt(gene of interest) ‐ Ct(gene of interest)]}/{2[minCt(RPL32) ‐ Ct(RPL32)]} 

4.6 Statistical Analysis 

All data are expressed as means ± standard error of the mean and using GraphPad Prism 

5 software (La Jolla, CA, USA). Data for multiple observations over time were compared 

between groups by 2-way ANOVA. For comparing means of two or more groups of data, 

one-way ANOVA was applied when appropriate. Differences were considered statistically 

significant if p<0.05. 
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5. RESULTS 

The following results are presented as mean ± standard error. Two experimental groups 

were analyzed, with the rats receiving either a NS diet or a HS diet until adulthood (24 

weeks), and both groups were further subdivided by sex for a total of four treatment 

groups. 

For all four groups, general data, such as body weight and blood pressure, and the 

organ weights were collected. The focus of this study was the investigation of sex specific 

differences in phenotype and genotype. Blood pressure was measured at 5, 9, 13, 17 and 

21 weeks of age by tail-cuff system. Twenty-four–hour urine samples were collected in 

metabolic cage experiments and plasma was drawn from the tail vein under anesthesia 

at weeks 6, 12, 18, and 24. 

5.1 Systolic blood pressure 

The SBP was measured non-invasively using the tail-cuff method (see Section 4.3). 

In male rats, there was no difference in SBP between the HS group and the NS group 

(NS) before week 5. Interestingly, from week 9 until the end of the study, the SBP was 

significantly elevated in HS males compared to NS males (week 9: NS=119±13, 

HS=144±18; week 13: NS=130±16, HS=159±24; week 17: NS=130±9, HS=149±24; 

week 21: NS=129±17, HS=153±25). In the female counterparts, the HS diet resulted in a 

significant elevation of the blood pressure only starting from week 13 of the experiment 

when compared to the NS fed females (week 13: NS=134±7, HS=147±17. Week 17: 

NS=132±11, HS=148±19. Week 21: NS=127±11, HS=150±18). 
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Figure 1. Mean systolic blood pressure of males. Values are given as mean ± SEM. ***P < 0.001, 

**P < 0.01,*P < 0.05. 

 

 

Figure 2. Mean systolic blood pressure of females. Values are given as mean ± SEM. ***P < 0.001, 

**P < 0.01,*P < 0.05.  

5.2 Body weight 

Growth curves were calculated using the body weights of the animals at different time 

points, as daily weighing was done from the first day of life until the 35th day of life, with 
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weighing twice weekly after the age of 35 to 168 days. There were no significant 

differences between NS and HS fed animals, either in males or in females.  

 

Figure 3.Body weights of males. Values are given as mean ± SEM. 

 

 

Figure 4. Body weights of females. Values are given as mean ± SEM. 
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5.3 Organ weight 

The organ weights were measured after their removal and related to the body weight of 

rats. 

5.3.1 Heart weight 

The absolute heart weight (Figure 5) of HS males was significantly higher than the heart 

weight of NS males and HS females. The hearts of HS females weighed significantly 

more than hearts of NS females.  

The relative heart weight (Figure 6) was higher in HS males than in NS males but 

lower than in HS females. HS females had a higher relative heart weight compared to NS 

females.  

 

Figure 5.Absolute heart weights of males and females. Values are given as mean ± SEM. ****P < 

0.0001, *P < 0.05. Data were found to be significantly different using anova. 
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Figure 6. Relative heart weights of males and females. Values are given as mean ± SEM. ****P < 

0.0001. Data were found to be significantly different using anova. 

5.3.2 Kidney weight 

The absolute kidney weight (Figure 7) of HS males was higher than the absolute kidney 

weight of NS males and HS females, whereas it was lower in NS females than in HS 

females and NS males. 

The relative kidney weight (Figure 8) was higher in HS males than in NS males but 

lower than HS females. NS females had a lower relative kidney weight than HS females 

but a higher kidney weight than NS males.   
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Figure 7. Absolute kidney weights of males and females. Values are given as mean ± SEM. ****P < 

0.0001, **P < 0.01, *P < 0.05. Data were found to be significantly different using anova. 

 

Figure 8. Relative kidney weights of males and females. Values are given as mean ± SEM. ****P < 

0.0001, *P < 0.05. Data were found to be significantly different using anova. 
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5.4 Urinary / renal function and plasma hormone 

Urinary chlorine and sodium levels were significantly higher, whereas the potassium was 

lower in both males and females of the HS fed groups compared to the NS fed groups. 

Adrenocorticotropic hormones did not show significant differences between the study 

groups. Corticosterone was higher in females compared to males in both in the NS and 

HS fed groups. The total protein-creatinine ratio was significantly higher in HS groups 

compared to the NS groups in both males and females. Females had lower levels than 

males in both the NS and the HS groups.  

 

 

Figure 9. Urinary total protein-to-creatinine ratio in male and female rats. Values are given as 

mean ± SEM. ***p<0.001; ****P<0.0001. Data were found to be significantly different using anova. 

 

 

Parameters 
Normal-salt 

males 

High-salt 

males 

Normal-salt 

females 

High-salt 

females 

Urinary chlorine, (mmol/l) 68.44±11.76 167.38±13.52**** 61.46±5.19 180.07±10.56aaaa 

Urinary potassium (mmol/l) 95.11±17.30 48.88±3.47** 84.07±7.46 47.29±3.00aa 
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Urinary sodium (mmol/24h) 45.11±5.53 167.25±12.83**** 46.46±3.61 176.50±9.87aaaa 

Urinary corticosterone 

(ng/mL) 

18±5.05 16.38±2.74 14.11±2.18 11.01±1.26 

Urinary total protein 

creatinine ratio (mg/mmol) 
93.842±8.573 214.3±28.92*** 29.04±1.28**** 104.6±18.28aaaa,bbbb 

Table 5. Urinary parameters. Values are mean ±SEM. *p<0.05; **p<0.01; ***p<0.001; ****P<0.0001 versus 

normal salt males. ap<0.05; aap<0.01; aaap<0.001; aaaaP<0.0001 versus normal salt females. bp<0.05; 

bbp<0.01; bbbp<0.001; bbbbP<0.0001 versus high-salt males 

 

Parameters 
Normal-salt 

males 

High-salt 

males 

Normal-salt 

females 

High-salt 

females 

Corticosterone (ng/mL) 368.36±18.28 324.95±23.20**** 600.16±46.96 485.21±44aaa 

Adrenocorticotropic hormone 

(pmol/L) 

28.33±2.56 25.43±3.29 18.22±3.81 20.31±1.96 

Table 6. Plasma hormone levels. Values are mean ±SEM. *p<0.05; **p<0.01; ***p<0.001; ****P<0.0001 

versus normal salt males. ap<0.05; aap<0.01; aaap<0.001; aaaaP<0.0001 versus normal salt females.  

5.5 Histology 

5.5.1 Cardiac histology 

Interstitial and perivascular fibrosis in cardiomyocytes was measured after Sirius red 

staining in six months old rats. Sirius red non-specifically binds extracellular matrix 

proteins, thus indicating the fibrotic state of the tissue. The role of the myocardial 

extracellular matrix is mainly to maintain muscle flexibility; its composition is therefore 

related to myocardial function. Likewise, the composition of the perivascular matrix plays 

an important role in the ability of a vessel to contract and dilate. Perivascular fibrosis and 

interstitial fibrosis were not impaired by the HS diet in males or females. 

An increase in cardiac myocyte size may be the consequence of pathophysiological 

triggers such as hypertension or aortic stenosis; therefore, the cardiomyocyte diameter 

was assessed as an indicator for cardiac hypertrophy using HE-staining. However, no 

difference between groups was observed for this readout. 
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Parameters 
Normal-salt 

males 

High-salt 

Males 

Normal-salt 

females 

High-salt 

females 

Heart perivascular fibrosis 

(%) 
1.90±0.26 1.93±0.49 1.83±0.48 1.90±0.25 

Heart interstitial fibrosis 

(%) 
4.25±1.00 2.52±0.43 2.84±0.22 4.24±0.47 

Heart cardiomyocyte 

Diameter (μm) 
57.20±1.53 53.00±1.73 58.75±1.65 54.83±0.91 

Table 7. Parameters of cardiac histology. Values are given as mean ± SEM. No significant 

differences were observed. 

5.5.2 Kidney histology 

Increased interstitial extracellular matrix deposition in the kidney is a hallmark feature of 

different chronic kidney diseases, and fibrosis of functional tissues contributes to loss of 

function in the organ. In this study, perivascular fibrosis and interstitial fibrosis of the 

kidney were not significantly different in HS fed animals compared with NS fed animals, 

either in males or in females. Hypertension may cause vascular remodeling of kidney 

vessels, but the media-lumen-ratio as a readout of vascular remodeling was not changed 

by the HS diet, either in males or in females. Morphologic changes of the glomerulus may 

be indicative of glomerular diseases and are therefore pathophysiologically relevant. 

However, glomerular size and glomerulosclerosis were not significantly different in the 

HS groups compared with the NS groups.  

 

Parameters 
Normal-salt 

males 

High-salt 

 Males 

Normal-salt 

females 

High-salt 

females 

kidney media-lumen ratio  2.42±0.12 2.79±0.25 2.58±0.17 3.11±0.11 

Kidney interstitial fibrosis (%) 2.08±0.89 3.12±0.91 2.14±0.21 4.74±0.39 

Kidney perivascular fibrosis 

(%) 
1.47±0.13 1.52±0.13 1.52±0.0.4 1.44±0.02 

Kidney glomerulosclerosis 

index 
1.08±0.03 1.23±0.13 1.12±0.03 1.2±0.06 
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Glomerular size (x 103 square 

pixels) 
443.50±22.11 444.86±29.54 350.86±10.59 390.98±17.80 

Table 8. Parameters of kidney histology. Values are given as mean ± SEM. No significant 

differences were observed. 

5.6 Gene expression 

One aim of this study was to investigate sex-specific changes of the genome in response 

to a HS diet. Numerous genes demonstrated significant differences when compared 

between treatment groups and between sexes. Here, only genes with sex-specific 

differences are presented. Data from all other genes analyzed during this study are 

displayed in the supplementary table. 

5.6.1 Effects of a high-salt diet on gene expression in the heart 

The feeding of a HS diet led to a significant up-regulation of the transforming growth factor 

and beta 1(Tgfβ1) in the heart in males compared to females. Matrix metalloproteinase-

2(Mmp-2) was significantly up regulated in HS males compared with NS males and HS 

females; on the other hand, this gene was down-regulated in NS females versus NS 

males. HS males had a significant up-regulation of the cardiac gene matrix 

metalloproteinase-9 (Mmp-9) compared to HS females. Lipocalin-2(Lcn-2) was up-

regulated in in HS females and NS males compared to NS females. The gene for 

osteopontin (Opn) was up-regulated in HS males compared to HS females. Remarkably, 

monocyte chemoattractant protein-1(Mcp-1) was down-regulated in HS females 

compared to HS males. 
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Figure 10. Relative gene expression levels of transforming growth factor and beta 1 in the heart. 

Values are given as mean ± SEM. *P < 0.05. Data were found to be significantly different using 

anova. 

 

 

Figure 11. Relative gene expression levels of matrix metalloproteinase-2 in the heart. Values are 

given as mean ± SEM. ***P <0.001, *P < 0.05. Data were found to be significantly different using 

anova. 
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Figure 12. Relative gene expression levels of matrix metalloproteinase-9 in the heart. Values are 

given as mean ± SEM. *P < 0.05. Data were found to be significantly different using anova. 

 

 
Figure 13. Relative gene expression levels of lipocalin-2 in the heart. Values are given as mean ± 

SEM. *P < 0.05, **P < 0.01. Data were found to be significantly different using anova. 
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Figure 14. Relative gene expression levels of osteopontin in the heart. Values are given as mean ± 

SEM. **P < 0.01. Data were found to be significantly different using anova. 

 

 

Figure 15. Relative gene expression levels of monocyte chemoattractant protein-1 in the heart. 

Values are given as mean ± SEM. *P < 0.05. Data were found to be significantly different using 

anova. 

 

5.6.2 Effects of a high-salt diet on gene expression in the kidney 

The feeding of a HS diet led to a significant up-regulation of the renal Lcn-2 gene in males 

compared to NS males and HS females. Zinc finger and BTB domain-containing 

16(Zbtb16), cytochrome P450 family 27 subfamily B member 1(Cyp27b1) and Tgfβ1 were 
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up-regulated in HS males compared to NS males and HS females. Feeding of a HS diet 

led to a significant down-regulation of the renal genes cytochrome P450 family 24 

subfamily A member 1(Cyp24a1) expression in males and females compared to the NS 

diet groups. Finally, the gene period circadian clock 1(Per-1) was significantly up-

regulated in HS females compared to HS males. 

 

Figure 16. Relative gene expression levels of lipocalin-2 in the kidney. Values are given as mean ± 

SEM. *P < 0.05, **P < 0.01. Data were found to be significantly different using anova. 

 

 
Figure 17. Relative gene expression levels of zinc finger and BTB domain containing 16 in the 

kidney. Values are given as mean ± SEM. **P < 0.01. Data were found to be significantly different 

using anova. 
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Figure 18. Relative gene expression levels of cytochrome P450 family 27 subfamily B member 1 in 

the kidney. Values are given as mean ± SEM. **P < 0.01. Data were found to be significantly 

different using anova. 

 

 

 

Figure 19. Relative gene expression levels of cytochrome P450 family 24 subfamily A member 1 in 

the kidney. Values are given as mean ± SEM. *P < 0.05, ***P < 0. 001. Data were found to be 

significantly different using anova. 
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Figure 20. Relative gene expression levels of transforming growth factor and beta 1 in the kidney. 

Values are given as mean ± SEM. **P < 0.01. Data were found to be significantly different using 

anova. 

 

 

Figure 21. Relative gene expression levels of period circadian clock 1 in the kidney. Values are 

given as mean ± SEM. *P < 0.05. Data were found to be significantly different using anova. 
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6. DISCUSSION 

The animal experiment investigated the effects of a HS diet on the expression of various 

genes in different organs of Wistar rats. Physiologic parameters such as blood pressure 

and kidney function as well as morphology in the heart and the kidney were analyzed. 

The HS diet was given to rats after weaning and they were compared to rats on a NS diet. 

A special focus of the study was put on revealing possible sex specific effects of the HS 

diet on a genetic level. Therefore data were calculated in a sex-specific manner.  

Animals on the HS diet developed higher blood pressure and greater organ weights 

of the heart and the kidneys compared to rats on a NS diet. Urinary total protein-to-

creatinine ratio, sodium and chlorine were increased in the HS group, whereas urinary 

potassium was decreased. Expression of several genes in the heart and the kidney were 

differently regulated in animals on a HS diet compared to the animals on a NS diet. 

Interestingly, in some of these genes the effects of the HS diet were different in female 

versus male rats. Moreover, the effect of the HS diet on blood pressure was also sex-

dependent, as female animals had a later onset of high blood pressure than males. 

Reflecting this finding, the urinary total protein-to-creatinine ratio was significantly higher 

in male than in female animals. 

6.1 Blood pressure and kidney function 

Animals on the HS diet demonstrated higher blood pressure and greater weights of the 

heart and the kidney compared to rats on a NS diet. Moreover, urinary total protein-to-

creatinine ratio, sodium and chlorine were higher in the HS groups, whereas urinary 

potassium was lower in comparison with animals receiving the NS diet. The effect of the 

HS diet on blood pressure seemed to be sex-dependent, as female animals on HS diet 

had a later onset of hypertension (defined as BP being significantly higher compared to 

the control group) than males. In line with this finding, the urinary total protein-to-

creatinine ratio at the study end was significantly higher in males on the HS diet than in 

females. HS intake as an environmental risk factor for the development of hypertension 

and associated end organ damage has been shown in studies all over the world (6, 7, 77, 

78). Studies using experimental animal models as well as studies in humans have led to 
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two main theories about the primary mechanisms causing salt-dependent hypertension: 

i) sodium and water retention in the extracellular fluids, which according to the Guyton’s 

theory of impaired renal pressure-natriuresis may explain the associated alterations in 

blood volume and peripheral resistance; ii) the neurogenic mechanisms that lead to 

sympatho-excitatory responses, and consequently to an increase in blood pressure (79). 

Likewise, a sex-specific effect of a HS diet on blood pressure is well known for humans 

(66) and for several salt-sensitive rat strains (68, 80). Explanatory models for the known 

sex differences in the development of salt-induced hypertension usually include an 

important role of sex hormones (80). Whereas female hormones are believed to increase 

renal sodium excretion and thus elicit protective effects on blood pressure regulation (67, 

81), male hormones may contribute to a characteristic resistance to sodium excretion, 

thus contributing to increased blood pressure in response to a HS intake (69, 82). Other 

mechanistic explanations for sex hormone dependent actions of blood pressure 

regulation include endothelium-dependent relaxation as an effect of estrogens, 

lipoprotein level regulation by testosterone, and others (83). In our study, we were able 

to show a sex-specific regulation of several genes in the heart and the kidney possibly 

involved in blood pressure regulation and kidney function. 

An important mechanism for the control of the salt and water balance and blood 

pressure regulation is the renin-angiotensin system (RAAS), and the essential genes of 

the RAAS pathway were indeed differentially expressed in the analyzed organs. In the 

kidney, renin expression (supplementary table) was significantly down-regulated by the 

HS intake in males and in females, which can be interpreted as an overall suppression of 

the RAAS as a physiologic response to the increased salt load (84). In contrast, other 

animal experiments showed that a HS diet induced an up-regulation of different renal 

RAAS components (85, 86). However, the contribution of an activated intrarenal RAAS 

for the development of salt-induced hypertension is not well defined so far. An explanation 

for this discrepancy could be that a 4% NaCl HS diet was used in the present study, 

whereas the studies reporting a HS-diet-induced up-regulation of renal RAAS used an 8% 

NaCl HS diet (85, 86). As also observed by other researchers, (87, 88) there were no 

sex-specific differences in the renal renin expression, whereas renal angiotensinogen and 
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heart angiotensin converting enzyme (Ace) expression were significantly higher in male 

than in female rats in the NS groups. A higher expression of the renal angiotensinogen 

gene has been described for male Wistar Kyoto rats and spontaneously hypertensive rats 

in comparison to the female rats of the same strains. Castration decreased the expression, 

whereas testosterone treatment increased it (87, 88). Male mice and ovariectomized 

female mice showed a higher expression of renal Ace2 than intact females. Interestingly, 

estradiol treatment led to a decreased expression in both sexes (89). These experiments 

showed that sex-specific differences in the expression of renal RAAS components are 

probably androgen/estrogen dependent. Another main factor of the RAAS pathway is 

aldosterone. Binding of aldosterone to the mineralocorticoid receptor regulates the 

expression of several genes in the pathway of aldosterone-regulated renal Na 

reabsorption (90). One of these aldosterone-regulated genes, Zbtb16, is a transcriptional 

repressor with pleiotropic effects and is possibly involved in the pathogenesis of 

hypertension (91). Renal Zbtb16 was significantly up-regulated in males on a HS diet 

compared with males on a NS diet. This was not the case in the female groups, and the 

expression of renal Zbtb16 was significantly higher in male versus female rats on a HS 

diet. A possible explanation for these observations could be a compensatory up-

regulation of Zbtb16 because of the higher blood pressure in the male HS group. Since 

Zbtb16 has a negative regulatory effect on aldosterone-stimulated sodium reabsorption 

in the kidney (90), an increased expression could be interpreted as an adaptive 

mechanism to decrease sodium reabsorption in order to control blood pressure. 

In the heart, we saw an increased expression (supplementary table) of atrial 

natriuretic peptide (Anp) and brain natriuretic peptide (Bnp) in male and female HS rats, 

which can be interpreted as a compensatory response to the elevated salt intake and 

increased blood pressure. Anp and Bnp are released from cardiomyocytes in the atria 

and ventricles in response to cardiac wall stretch. As physiologic regulators of blood 

pressure and salt and water excretion, natriuretic peptides (Nps) reduce intravascular 

fluid and cardiac filling, and decrease blood pressure (92). Due to their vasodilatative 

action and inhibitory effects on renin and aldosterone secretion, Anp and Bnp are 

important protective players in cardiovascular diseases and high blood pressure (93). We 
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did not measure plasma levels of these hormones, but a good correlation between mRNA 

levels and peptide synthesis of Nps has been reported (94). The increase observed in 

cardiac gene expression of Anp and Bnp in animals on a HS diet in comparison to the 

control animals on a NS diet may represent an increased production of these cardiac 

hormones in order to induce vasodilatation, diuresis, natriuresis and a reduction of the 

increased blood pressure. When comparing groups on a HS diet according to sex, Anp 

and Bnp expression were significantly higher in male than in female rats. This is rather 

contrary to sex differences for Np often describe in the literature. Female 

spontaneously hypertensive rats (95), mice (96), and women (97-100) showed higher 

plasma levels and cardiac expression than their male counterparts. As estrogens (101-

104) and apparently also androgens (105, 106) seem to have profound effects on the 

production and secretion of Nps, the sex specific differences might be partially attributed 

to the influence of sex hormones (94). Sex specific differences in the cardiac expression 

of Nps in response to an oral HS challenge have not been well defined. In context with 

the earlier onset of high blood pressure observed in males in our experiment, the 

increased Anp and Bnp expression in male rats could reflect an increased compensatory 

up-regulation of Nps as a response to the developing hypertension. 

6.2 Histology of the heart, and the kidney 

Histomorphological analyses of the heart and the kidney did not show abnormalities in 

rats on a HS diet. This is to some extent surprising as end organ damage both due to 

salt-induced hypertension as well as blood pressure independent detrimental effects of 

HS intake, have been described extensively (107-110). However, there are well known 

differences in susceptibility to HS for different rat strains (111, 112) and experimental 

approaches investigating the effects of a high dietary salt intake use specifically sensitive 

rat strains like the DAHL or spontaneously hypertensive rats (SHR) and/or a rather high 

amount of 8% salt in the diet (112, 113). Lower doses of dietary salt are usually combined 

with a chronic infusion of angiotensin for the angiotensin II-induced hypertension model 

(114). The rats used in this project were conventional normotensive Wistar rats fed with 

a 4% HS diet. Wistar rats are known to be more resistant to morphologic consequences 



49 
 

of experimental renal mass reduction than other strains and apparently the structural 

lesions are less pronounced in males than in females (115). It is possible that this rather 

resistant rat strain and the 4% instead of 8% salt might explain in part the lack of structural 

changes in the heart and the kidney despite clinically overt hypertension and proteinuria. 

Similar to the findings from our study, Gomes et al. did not see any morphological 

changes in the heart and kidney after 12 weeks of feeding a HS diet to Wistar rats despite 

a significant elevation of blood pressure (116). In their study, though, the salt content of 

the diet was only half of the amount used in our experiment. In addition, Berger et al. 

found that feeding a HS diet of 3% for 6 months to SHR, although increasing SBP, did 

not lead to morphological changes like hypertrophy or fibrosis of the heart (117). We also 

had a study duration of 6 months, so maybe this period was not long enough to detect of 

structural organ changes like fibrosis and hypertrophy on a histological level.  

The investigation of molecular pathways from different perspectives can increase the 

chances of identifying developing pathomorphological processes. Therefore, we 

supported the histological analyses by investigating of gene expression in the heart and 

the kidney. Changes on the genetic level may precede visible morphological alterations 

and can be considered as early markers of disease development and progression (118). 

Interestingly, we found an up-regulation of several genes indicative of structural 

adaptations in the kidney and in the heart. 

6.3 Expression of extracellular matrix (ECM)/fibrosis-related and inflammatory 

genes/pathways 

Investigation of tissue-specific gene expression in the heart and the kidney revealed 

a significant up-regulation of several genes in male HS rats but not in female HS rats 

compared to the respective control group on a NS diet. There were also differences in 

the expression between male and female rats on a NS diet, but except for Ace, these sex 

specific differences in expression were more evident in the groups on a HS diet, 

especially for genes known to be involved in cardiac and renal remodeling processes 

such as inflammation, hypertrophy and fibrosis. Comparable to our findings, a recently 

published meta-analysis aimed at identifying changes in cardiac gene expression during 
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the development of heart failure in the Dahl salt-sensitive rat fed a high-sodium diet found 

changes in pathways and genes of cardiac remodeling, inflammation and fibrosis. 

However, in this meta-analysis there was no information on sex differences (119).  

Inflammatory, hypertrophic and fibrotic changes of the heart are known responses to 

pressure overload and are closely interconnected processes (120). Moreover, myocardial 

and renal fibrosis are suggested to be blood pressure independent consequences of a 

HS intake (107). Tissue fibrosis is characterized by an increased biosynthesis and a 

decreased degradation of collagen and other extracellular matrix (ECM) components. By 

inducing the proliferation of fibroblasts and stimulating ECM deposition, Tgfβ1 plays an 

essential role in the formation of fibrosis (121). Other factors of tissue fibrosis are matrix 

metalloproteinases (Mmps), which represent the crucial enzymes for the ECM turnover, 

and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (Timps) and 

the plasminogen activator inhibitor type1 (Pal1) (122). If the tight balance between Mmps, 

Timps and Pal1 is disturbed, this may result in an excessive deposition of fibrotic ECM 

material, including collagen, resulting in a pathologic remodeling of the organ (123). In 

our experiment, we saw an up-regulation of renal collagen III and Tgf-β1 as well as an 

up-regulation of cardiac Timp1 and Mmp2 in male rats on a HS diet in comparison to male 

rats on the NS diet. The up-regulation of profibrotic markers probably indicated an 

abnormal ECM turnover as a consequence of the HS intake and developing hypertension. 

We did not see the same effects of the HS diet in female rats, which is in line with their 

later onset of hypertension. 

In general, a sexual dimorphism for hypertension and cardiovascular health and 

disease has been the subject of sex based research for a long time (124). An important 

part of that field is investigations of molecular sex-based differences on a transcriptional 

level (125-127). It is known that younger women are generally less susceptible to the 

deleterious effects of volume overload and the manifestation of certain other 

cardiomyopathies, and that there are tissue-specific differences in gene transcription 

between the sexes (124-128). In our study, we saw sex differences in cardiac and renal 

gene expression for several genes (supplementary table) between male and female rats 

in the groups with a NS diet, and as such, animals representing healthy control cohorts: 
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neutrophil gelatinase associated lipocalin 2 (Ngal), endothelial nitric oxide synthase 3 

(Nos3), Interleukin 1 Receptor Like 1(Il1rl1), angiotensin I converting enzyme (Ace), 

Timp4, Mmp2, and myosin heavy chain-7 (Mhc7). Of these genes, the expression of 

Mmp2 and Mhc7 was significantly higher in males on a HS diet compared to males on 

the NS diet, but it was not significantly different between female rats with a HS diet versus 

a NS diet. This allows the conclusion that, despite preexisting baseline differences, the 

HS diet still led to a more pronounced up-regulation of Mmp2 and Mhc7 in the male heart.  

Moreover, a sexually dimorphic response to HS intake and blood pressure was shown 

by significant differences between male and female rats on a HS diet for several other 

genes (supplementary table) involved in remodeling processes such as hypertrophy and 

fibrosis. Male HS rats had a significant higher expression of renal Tgf-β1 and cardiac 

Mhc7, growth differentiation factor 15 (Gdf-15), Galectin-3, Ace, Opn, Timp1, Mmp9, Tgf-

β1 and Serpine 1 (the gene for Pal 1). These findings suggest that male rats were more 

affected by the detrimental effects of the HS consumption.  

Sex-specific differences in adverse myocardial remodeling have been described for 

rodent models of myocardial infarction (129), volume overload (65), and ischemia-

reperfusion injury (130) as well as for human cohorts of different cardiomyopathies (128). 

So far, the detailed mechanisms and molecular basis for a sex-specific remodeling are 

not completely clear, but besides genetic and/or epigenetic factors (131), a modifying role 

of sex hormones and their respective receptors is being assumed (132). Though some 

studies have looked at the effects of testosterone (133-135), the role of male sex 

hormones has not been as well investigated as the impact of estrogens. In ovariectomized 

rats with left ventricular hypertrophy, estrogen replacement improved ventricular TIMP-

MMP balance, blocked MMP-9 activation, and attenuated perivascular fibrosis (136). 

Interestingly, gonadoectomized rats also showed an increased activity of MMP-9 and 

MMP-2, probably an effect of testosterone insufficiency, as testosterone replacement 

normalized the activity of these enzymes (135).  

Pre-menopausal women have a lower prevalence of cardiovascular diseases than 

post-menopausal women, and men have an earlier onset of cardiovascular disease than 

women, and this has been attributed to the influence of estrogens (131). However, data 
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from large interventional trials with hormones have come up with conflicting results (132, 

137) and there are still many unanswered questions about the role of sex hormones in 

the pathogenesis and treatment of cardiovascular diseases. In addition, it is known that 

estrogens modulate cardiac fibroblast growth, which may account for protective effects 

on remodeling (138). The cardioprotective mechanism in females level may involve an 

interaction on a molecular between estrogen and expression of proteins of the 

extracellular matrix, like cardiac MMPs, TIMPs, TGF-β1 and collagens (132, 136, 138-

141). Oestrogenic effects on the heart tissue could include inhibition of the expression of 

estrogen-responsive genes such as collagens and MMPs (142, 143). Fittingly, we 

observed a significantly lower expression of such markers in the female rats on a HS diet 

compared to the male rats on a HS diet.  

Other potentially protective mechanisms of estrogens include effects on immune cell 

function and inflammation (144, 145). In general, there are known sex discrepancies 

in immune responses which may be modulated by an estrogen/estrogen receptor (ER) 

signaling (145). Interestingly, ER-knockout mice with pressure overload-

induced hypertrophy showed a significant increased activation of cardiac inflammatory 

signaling compared to wild-type mice (146). Moreover, in heart biopsy samples of patients 

with aortic stenosis, inflammation-related genes were repressed to a higher degree in the 

female than in the male biopsy samples (140). In our experiment, a possible estrogen-

related protective effect against HS -induced pro-inflammatory pathomechanisms could 

be reflected by a decreased expression of pro-inflammatory markers in female cardiac 

tissue. We saw a significant lower expression of monocyte chemoattractant protein-1 

(Mcp-1), Galectin-3 and Opn in female rats on a HS diet compared to male rats on a HS 

diet. MCP-1 is a known pro-inflammatory cytokine, and animals and patients with heart 

failure show elevated plasma levels of MCP-1 (147, 148). Transgenic mice over-

expressing murine MCP-1 in the heart display an increased recruitment of monocytes to 

the myocardium and subsequent myocarditis and heart failure (149, 150). Increased 

myocardial levels of Mcp-1 might play an important role for fibroblast proliferation and 

collagen production, and therefore for cardiac remodeling (151). Blocking of Mcp-1 

signaling in a mouse model of myocardial infarction attenuated interstitial fibrosis and 
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macrophage infiltration, possibly due to a decreased Mmp-9 activation and myocardial 

TNF-α and Tgf-β gene expression (151). Furthermore, Mcp-1 knockout mice are 

protected against the inflammatory and fibrotic response of a continuous infusion of 

angiotensin-II (152). Like MCP-1, the two matricellular proteins Galectin-3 and OPN have 

been suggested to be crucial regulators of cardiac inflammation and fibrosis (123, 153). 

Both osteopontin and galectin 3 can act as cytokines and could therefore play a role in 

collagen disposition and degradation, and as such in cardiac fibrosis and remodeling (119, 

153). This may be partly due to their chemoattractant properties for monocytes and 

macrophages (154) and their impact on fibroblast adhesion and proliferation (123, 155).  

A higher expression of the proinflammatory markers Mcp-1, Galectin-3 and Opn in 

male rats on a HS diet compared to female rats on a HS diet could suggest a blunted 

activation of pro-inflammatory pathophysiological pathways, because of a protective 

influence of estrogens.   

The overall picture we saw in our study was a higher expression of pro-inflammatory 

and pro-fibrotic markers in male rats on a HS diet, probably reflecting a higher activation 

of pro-inflammatory and pro-fibrotic pathophysiological pathways which 

are closely interlinked.  

6.4 Expression of Clock and Vitamin D metabolism-associated genes 

The circadian clock is responsible for synchronizing our daily physiological activities with 

time, even on a molecular level. Many physiological functions, including blood pressure, 

show circadian rhythms (156, 157). Solocinski et al reported the involvement of the clock 

protein Per1 in the regulation of blood pressure (157). They showed that the 

administration of a 4% HS diet plus mineralocorticoid led to an increased blood pressure 

in Per1-knockout mice but not in wild-type mice. This indicated that genetic loss of Per1 

could increase the sensitivity to HS, leading to a higher blood pressure. In line with these 

results, we found that the renal expression of Per1 was significantly up-regulated in 

female rats on a HS diet (the group with a later onset of high blood pressure) compared 

to male rats receiving a HS diet. 
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Kidney dysfunction, impaired vitamin D metabolism and cardiovascular diseases are 

interrelated. Patients with end-stage renal disease are at a higher risk of mortality due to 

cardiovascular disease. Chronic kidney disease usually leads to uraemia, the formation 

of uremic toxins like indoxyl sulphate, elevated levels of circulating fibroblast growth factor 

23 (Fgf23) and disturbances in parathyroid hormone secretion. These events are 

associated with impaired vitamin D production and a disturbed mineral homeostasis, 

leading to an increased risk for uremic vascular calcification. Current literature suggests 

that uremic vascular calcification might be the major culprit for poor cardiovascular 

outcomes in patients with chronic kidney disease (158). In the present study, the renal 

expression of the vitamin D activating enzyme 1-α hydroxylase (Cyp27b1) was 

significantly up-regulated in male rats on a HS diet compared to female rats receiving a 

HS diet, whereas the renal expression of the vitamin D deactivating enzyme 24-α 

hydroxylase (Cyp24a1) was significantly down-regulated in male and female rats 

receiving a HS diet in comparison to control groups. These results indicate that a HS diet 

led to an impaired vitamin D metabolism and probably disturbed mineral homeostasis. 

Moreover, these effects seem to be more pronounced in male rats on a HS diet compared 

to female rats receiving a HS diet.  

6.5 Limitations 

In the present study, the systolic blood pressure measurement was performed using the 

non-invasive tail-cuff method. However, the invasive measurement method is still 

considered the gold standard in this regard. We decided to use the non-invasive tail-cuff 

method due to the technical complexity of the surgical procedure of the invasive method 

as well as the associated complications, including death.  

In order to investigate the effects of the high salt diet on the transcriptome level, we 

performed a candidate gene-approach analysis on the mRNA level using PCR. Thus, we 

cannot exclude the possibility that important genes that might be related to the effects of 

the high salt diet were not analyzed. 

  Moreover, we analyzed the gene expression only on the mRNA level and for technical 

reasons we did not confirm the findings on the proteome level due. 



55 
 

The rats used in this project were conventional normotensive Wistar rats fed with a 4% 

HS diet. Wistar rats are known to be more resistant to the morphologic consequences of 

experimental renal mass reduction than other strains. It is possible that this rather 

resistant rat strain and the 4% instead of 8% of salt might in part explain the lack of 

structural changes in the heart and the kidney despite clinically overt hypertension and 

proteinuria. Moreover, we had a study duration of 6 months, so maybe this period was 

still not long enough to detect of structural organ changes such as fibrosis and 

hypertrophy on a histological level.  
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11. SUPPLEMENTARY TABLE 

Heart genes 

Gene 

code 

Gene full name 
Normal salt 

males 

High-salt 

males 

Normal salt 

females 

High-salt 

females 

Fibrosis-associated genes 

Timp4 
Tissue Inhibitor Of 

Metalloproteinases 4 

421.9±26 398.1±26.82 297.1±23.29** 339.8±17.20 

Timp1 
Tissue Inhibitor Of 

Metalloproteinases 1 

180.50±9.57 233.7±15.61** 152.8±12.56 169.9±7.79bbb 

Mmp2 Matrix Metallopeptidase 2 935.1±61.39 1210±81* 679.5±63.98* 812.5±53.54bbbb 

Mmp9 Matrix Metallopeptidase 9 2.535±0.89 3.01±0.45 0.68±0.39 1.124±0.24b 

Serpine1 Serpin Family E Member 1 105.4±8 165.3±17.1 83.47±12.36 94.28±7.95bb 

Myh7 Myosin Heavy Chain 7  40342±3608 62873±5091**** 13785±2220**** 22267±2119bbbb 

Galec3 Galectin-3  635.4±35.41 733.8±46.06 536.9±42.77 589.1±17.47b 

Col1a1 Collagen Type I Alpha 1 765±52.85 942.1±59.58 416.8±104.6 872.3±64.02a 

Col3a1 collagen, Type III, alpha 1 1814±449.4 3986±1021 1578±376.5 2113±667.3 

Fn1 Fibronectin 1 632.6±34.26 918.1±84.46 443.8±121.5 760.9±83.06 

Spock2 

SPARC (Osteonectin), 

Cwcv And Kazal Like 

Domains Proteoglycan 2 

116.2±23 206.9±43 60.6±13.6 87.85±18.82 

Tgfb1 
Transforming Growth 

Factor, Beta 1 

540.5±21.73 702.4±47.56 325.3±61.81 491.7±22.5b 
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Renin–angiotensin–aldosterone system 

Nppb Natriuretic Peptide B 6686±575.1 11066±768.1**** 3839±559.5** 6171±573.6a,bbbb 

Ace 
Angiotensin I Converting 

Enzyme 
252.2±8.6 242.9±23.73 161.6±9.14*** 143.2±7.28bbb 

Agt Angiotensinogen 7.9±1 9±1 5±0.8 5.8±0.7 

Apn Atrial Natriuretic Peptide 7460±893.8 37074±7219**** 5252±1283 8910±1221a,bbbb 

Agtr1a 
Angiotensin II Receptor, 

Type 1 
0.47±0.039 0.57±0.05 0.59±0.03 0.49±0.03 

Inflammation 

Mcp-1 
Monocyte Chemoattractant 

Protein-1 
107.7±8.53 137.6±9.54 94.58±9.85 107.6±5.36b 

Gdf15 
Growth Differentiation 

factor 
6.11±1.41 22.51±5.39* 2.99±1.02 5.46±1.41bbbb 

Il1rl1 
Interleukin 1 Receptor Like 

1 
17.61±0.81 16.99±1.53 12.52±0.73** 14.78±0.93 

Ptgs2 
Prostaglandin-

Endoperoxide Synthase 2 

5.94±0.97 8.36±1.59 5.42±0.63 5.11±0.53 

Vascular-associated gene 

Nos3 
endothelial nitric oxide 

synthase 
941.7±57.34 958.6±46.54 749.5±30.51** 657.5±17.59bbbb 

Metabolism-associated genes 

Atp2a2 
ATPase 

Sarcoplasmic/Endoplasmic 
123750±5924 138064±5626 137335±4623 132873±3818 
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Reticulum Ca2+ 

Transporting 2 

Lcn2 Lipocalin 2 217.2±23.77 281.7±34.73 106±19.99** 186.4±25.11a 

Cell cycle regulator 

Lyve1 

Lymphatic Vessel 

Endothelial Hyaluronan 

Receptor 1 

207.9±18.13 199.7±17.93 177.6±8.59 176.6±10.83 

Others 

Opn Osteopontin 115.10±28.79 160.10±26.46 63.48±13.25 68.62±17.31bb 
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Kidney genes 

Gene 

code 

Gene full name 
Normal salt 

males 

High-salt 

males 

Normal salt 

females 

High-salt 

females 

Fibrosis-associated genes 

Timp1 
Tissue Inhibitor Of 

Metalloproteinases 1 

192.6±9.3 222.3±35.78 195.9±10.76 188.6±19.22 

Timp4 
Tissue Inhibitor Of 

Metalloproteinases 4 
144.3±5.79 122.8±19.39 159.8±11.05 117.7±14.39 

Mmp2 Matrix Metallopeptidase 2 153.7±27.14 182±41.11 193.8±25.6 162.2±33 

Mmp9 Matrix Metallopeptidase 9 33.84±12.02 24.43±10.19 59.66±13.25 28.65±12.31 

Serpine1 Serpin Family E Member 1 16.77±2 19.24±3.74 16.46±1.92 14.11±2.72 

Serpine3 Serpin Family E Member 3  5.9±1.28 6.33±0.71 2.78±0.52* 2.43±0.37b 

Alpl 
Alkaline Phosphatase, 

Liver/Bone/Kidney 
35084±5514 34244±7750 56124±9252 32734±5819 

Spock2 

Sparc/Osteonectin, Cwcv 

And Kazal-Like Domains 

Proteoglycan (Testican) 2 

108.8±23.28 108.2±24.36 259.1±43.37* 177±45.96 

Col1a1 Collagen Type I Alpha 1 214±43.07 353±29.67 204.2±33.99 244.5±44.84 

Col3a1 Collagen Type III Alpha 1 70.37±21.07 187.7±16.71* 82.58±23.07 98.85±28.02 

Fn1 Fibronectin 1 177.7±35.31 353.3±28.84 183.7±28.85 253±46.35 

Tgfb1 
Transforming Growth 

Factor Beta 1 

993.9±109.1 1804±183.9** 930.2±102.7 969.8±93.12bb 
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Renin–angiotensin–aldosterone system 

Zbtb16 
Zinc Finger And BTB 

Domain Containing 16 

75.94±10.24 167.3±24.8** 74.04±8.32 87.21±12.40bb 

Ren Renin 692.5±92.1 304.9±71.97** 919.9±89.72 202.7±21.91aaaa 

Agt Angiotensinogen 4604±801.3 1683±497.1 592.8±141.1*** 2130±516hs 

Ace 
Angiotensin I Converting 

Enzyme 
751.6±70.52 716.5±92.79 471.2±51.62** 473.3±47.12b 

Ace2 
Angiotensin I Converting 

Enzyme 2 

487.8±37.26 497.9±65.67 329.1±27.85* 377.3±22.79 

Inflammation 

Mcp1 
Monocyte Chemoattractant 

Protein-1 
165.6±13.56 184.6±38.30 201.4±25.99 154.7±26.94 

Gdf15 
Growth Differentiation 

Factor 15 

9.71±1.60 43.93±22.91 6.17±0.79 6.78±3.80 

Lgals3 
Lectin, Galactoside 

Binding Soluble 3 

10967±760.4 12100±1315 9872±820.2 7652±597.5bb 

Il1rl1 
Interleukin 1 Receptor Like 

1 

41.9±8.44 50.2±12.51 51.7±9.29 29.11±6.16 

Tsc22d3 
TSC22 Domain Family 

Member 3 
213.4±25.14 231±28.98 285.8±31.08 295.4±29.18 

Ddit4 
DNA Damage Inducible 

Transcript 4 
183.9±30.04 125.9±10.56 393±57.53** 289.9±76.87 

Vascular-associated gene 

Angpt2 Angiopoietin 2 625.7±96.28 532.2±105.1 8060±1494**** 4334±854.3 
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Tnfrs11b 

Tumor Necrosis Factor 

Receptor Superfamily 

Member 11b 

345.6±114.6 851.2±284.5 574.8±165.6 226.5±80.48 

Adm Adrenomedullin 41.47±4.77 81.69±12.06* 62.43±7.764 70.78±7.4 

Circadian rhythm regulator 

Per1 Period Circadian Clock 1 464.8±95.93 152.7±19.98 618.7±122.8 728.4±98.92b 

Vitamin-associated genes 

Cyp27b1 
Cytochrome p450 Family 

27 Subfamily B Member 1 
32.61±5.84 105.4±18.65** 20±3.79 26.88±4.61bb 

Cyp24a1 
Cytochrome P450 Family 

24 Subfamily A Member 1 
558.1±91.66 176.2±20.68* 1016±195.3 299.9±57.97aaaa 

Neurotransmitters  synthesis 

Vamp1 
Vesicle-associated 

Membrane Protein 1 
5.08±0.52 5.42±0.42 4.54±0.47 4.9±0.34 

Th Tyrosine Hydroxylase 1.65±0.3 1.91±0.36 1.38±0.19 1.78±0.18 

Ddc Dopa Decarboxylase 2229±282.6 2999±672.7 2206±247.8 2414±297.7 

Cell cycle regulators 

Cdkn1a 
Cyclin-Dependent Kinase 

Inhibitor 1A  

86.89±17.05 174.4±27.26* 103.6±21.73 116.1±25.85 

Nupr1 
Nuclear Protein 1, 

Transcriptional Regulator 

1248±209.3 2015±385 1376±228.4 1507±156.6 

Epigenetic regulator 
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Dnmt3a 
DNA (Cytosine-5-)-

Methyltransferase 3 Alpha 

276.7±51.79 533.3±41.55** 294.2±38.94 445.3±42.18 

Metabolism-associated genes 

Retn Resistin 24.1±6.72 5.67±1.87 15.9±6.29 6.44±2.8 

Lcn2 Lipocalin 2 1106±248.4 2544±396.5* 1031±236.9 707.3±197.9bb 

Atp2a2 

ATPase 

Sarcoplasmic/Endoplasmic 

Reticulum Ca2+ 

Transporting 2 

4465±396.8 4681±1013 4769±587.1 2726±563.5 

Cps1 
Carbamoyl-Phosphate 

Synthase 1 

1.167±0.301 3.875±2.01 6.29±1.41* 5.63±1.84 

Slc51a 
Solute Carrier Family 51 

Alpha Subunit 

1580±192.7 1378±196.6 1505±394 1097±187 

Csad 
Cysteine Sulfinic Acid 

Decarboxylase 

8175±681.0 10006±807.3 4179±450.3*** 4711±508.6bbbb 

Dhcr24 
24-Dehydrocholesterol 

Reductase 
83.53±13.6 161.6±14.15** 91.9±16.5 111.9±15.55 

Others 

Opn Osteopontin 4306±395.3 5421±1247 7201±841.7 7620±1637 

Havcr1 
Hepatitis A virus cellular 

receptor 1 

164.9±37.93 247±103.8 101.2±17.67 102.5±15.15 

Supplementary table.  Heart and kidney genes. Values are mean ±SEM. *p<0.05; **p<0.01; ***p<0.001; 

****P<0.0001 versus normal salt males. ap<0.05; aap<0.01; aaap<0.001; aaaaP<0.0001 versus normal salt 

females. bp<0.05; bbp<0.01; bbbp<0.001; bbbbP<0.0001 versus high-salt males. 


