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... trying to find the simple in the complex



Abstract

Graphite and carbon-based structures represent important test case systems for the
validation of novel computational methodologies aimed at accurately describing van
der Waals interactions at the nanoscale. In this context, Density Functional Theory
(DFT)71,90 has played a key role when describing the ground-state properties of a wide
variety of molecular systems, under local and semi-local approximations150,152 to the
exchange-correlation (XC) potential. Nevertheless, non-covalent systems, such as bi-
layer graphene, cannot yet be accurately described under these DFT functionals due to
the lack of long range correlation. In addition, they suffer from spurious self-interaction
as well as the absence of discontinuity in the chemical potential58,93,140. In this sense,
exchange-correlation functionals have been specifically developed to account for van der
Waals interactions34,35,57,145, commonly as a post-processing correction to an initial cal-
culation based on local or semi-local XC functionals. One successful example is the
PBE+vdW functional, by A. Tkatchenko and M. Scheffler184. On the other hand highly
accurate wavefunction-based methods represent an alternative, even though they come
at a high-computational expense. Such methods mainly involve Møller-Plesset pertur-
bation theory and the Random Phase Approximation (RPA) and Coupled Cluster (CC).
In this work we focus mainly on the former two methods, which represent a good com-
promise between accuracy and computing time and are considered as the cheapest al-
ternative to DFT. Indeed they scale as the N5 and N4 power of the number of wave
functions N respectively, against the N3 scaling of local and semi-local DFT function-
als. Furthermore, a representative π−π system, like the benzene dimer, shows excessive
binding in the MP2 method while underbinding in the RPA method compared to accu-
rate coupled cluster calculations84. It is expected that in an infinite system like bilayer
graphene, the binding would be between the two. Moreover, RPA theory describes the
dispersion interactions correctly in the infinite limit of electron densities and interlayer
distances42,47,122 (i.e. the distances between two subsystems taken apart), and for such
a reason the binding in a bulk material like graphite, where dispersion effects are larger
due to a larger number of neighbouring atoms, is expected to be described more accu-
rately. In our study we implemented, for such a purpose, the Møller-Plesset perturbation
theory at the second order (MP2) in our in-house code FHI-AIMS19, based on numerical
atomic orbitals (NAO)19, and we have applied it along with PBE+vdW and RPA/RPA+
techniques to the study of mono and bilayer graphene with the aim of understanding in
particular the role of dispersion in such a bilayer graphene system.
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Zusammenfassung

Graphit und andere auf Kohlenstoff basierende Strukturen sind wichtige Testsysteme für
die Überprüfung neuartiger Computermethoden zur akkuraten Beschreibung von van der
Waals Wechselwirkungen im Nanometerbereich. Die Dichtefunktionaltheorie (DFT)71,90

unter Verwendung lokaler und semilokaler Näherungen für das Austauschkorrelationspo-
tential150,152 spielt eine Schlüsselrolle in der Berechnung der Grundzustandsobservablen
einer Vielzahl molekularer Systeme. Dennoch können nicht-kovalent gebundene Sys-
teme, wie zweilagiges Graphen, durch diese DFT Funktionale nicht akkurat beschrieben
werden, da langreichweitige Korrelations-Wechselwirkung vernachlässigt wird. Weitere
Probleme dieser Funktionale sind die artifizielle Selbstwechselwirkung und ein fälschlicher-
weise kontinuierliches chemisches Potential58,93,140. Aus diesem Grund wurden spezielle
Austauschkorrelations - Funktionale entwickelt, um van der Waals Wechselwirkungen
besser beschreiben zu können34,35,57,145 Dies geschieht üblicherweise in Form einer nachtr-
äglichen Korrektur von Rechnungen, die auf üblichen lokalen oder semilokalen Austausch-
korrelations-Funktionalen basieren. Ein erfolgreiches Beispiel hierfür ist das PBE+vdW
Funktional von A. Tkatchenko und M. Scheffler184. Einen alternativen Ansatz stellen
äußerst genaue wellenfunktionsbasierte Methoden dar. Speziell vom Interesse sind Møller-
Plesset Störungsrechung, die Random Phase Approximation (RPA) oder die Coupled
Cluster Methode (CC), deren Anwendung jedoch durchweg mit einem sehr hohen rech-
nerischem Aufwand verbunden ist. In dieser Arbeit konzentriere ich mich vor allem
auf die ersten beiden Methoden, da sie einen guten Kompromiss zwischen Genauigkeit
und rechnerischem Aufwand darstellen und im Allgemein als die günstigste Alterna-
tive zu DFT betrachtet werden können. In der Tat skalieren die Rechenzeiten wie N5

beziehungsweise N4, wobei N die Anzahl der Wellenfunktionen ist. Im Vergleich dazu
skalieren Methoden die auf lokalen oder semilokalen DFT Funktionalen basieren, mit N3.
Bindungsenergien eines repräsentativen π-π Systems wie dem Benzen-Dimer werden im
Vergleich zu hochgenauen Coupled Cluster Rechnungen von MP2 überschätzt, wohinge-
gen RPA sie unterschätzt84. Es wird erwartet, dass für ein unendlich ausgedehntes
System, wie zweilagiges Graphen, die Bindungsenergie dazwischen liegt. Ausserdem
beschreibt RPA die Dispersionswechselwirkung im Limes unbeschränkter Elektronen-
dichte und grossem Abstand zwischen zwei Schichten exakt42,47,122. Daher ist zu er-
warten, dass in einem Volumenmaterial wie Graphit, wo Dispersioneffekte aufgrund der
höheren Koordinierung größer sind, die Bindungsenergien von RPA genauer beschrieben
werden. Im Rahmen dieser Arbeit wurde daher Møller-Plesset-Störungstheorie bis zur
zweiten Ordnung für den FHI-AIMS Programmcode19, der auf numerischen Atomor-
bitalen (NAO) basiert implementiert19. Diese wurde zusammen mit PBE+vdW und
RPA/RPA+ Techniken zur Untersuchung von ein- und zweilagigem Graphen eingesetzt.
Ziel war es die Rolle von Dispersion in zweilagigem Graphen zu verstehen.
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1 Introduction

Carbon, which takes its name in different languages from charcoal or burnt wood, is,
after hydrogen, helium and oxygen, the most abundant element in the universe11 and
it is considered fundamental for the presence of life. Most of the surrounding everyday
objects and all life forms are made of carbon. The large variety of carbon-based config-
urations is attributed to the capacity of carbon atoms to bind or hybridize in different
manners, providing thus finely tuned properties which are essential for such systems.
Examples range from the well-known strength of diamond to the weak interaction be-
tween layers of graphite and the elasticity of carbon nanotubes26 among others.
Even though carbon has been known to mankind since the earliest civilizations, it was
not until the 18th century when Lavoisier suggested carbon to be an ”oxidizable and acid-
ifiable nonmetallic element” in his ”Traité Élémentaire de Chemie”, published in Paris
in 1789. Lavoisier also showed that diamond is another form of carbon. Graphite was
thought to be a form of lead until 1779, when C.W. Scheele demonstrated the opposite
by burning a piece of it, weighing it and then comparing it to the same initial amount of
lead. It then took two hundreds years to find another form of carbon, or allotrope, when
H. Kroto, R. Curl and R. Smalley discovered buckminsterfullerene in 19858,91, which
has very important properties in catalysis, in drugs and as a lubricant, and its discovery
earned them the Nobel Price in Chemistry in 1996. In the same years carbon nanotubes,
which can be considered geometrically as a 2D honeycomb carbon lattice, or graphene,
folded in different manners, were discovered20,74.
The term graphene first appeared in 1987134 to describe single layers of graphite, but
not until 2004 was a layer of graphene pulled out by graphite and deposited on a Silicon
substrate142. According to the Mermin-Wagner theorem126 2D crystals cannot exist
because of long-wavelength oscillations which would eventually break the 2D symme-
try. However such modes can be largely suppressed 45 by anharmonic interactions or
the presence of a substrate. Since its discovery graphene and derivates have attracted
plenty of scientific interest due to their materials properties52,88,140, their electronic band
structure33,60,123–125,192, and the relatively weak interactions with many substrates. Ap-
plications appear unlimited, including steel production, hydrogen storage in fuel cells180,
electronics, optics, spintronics and detectors of organic molecules56 among many oth-
ers. The interested reader is referred to ref.140 and references therein, for a wider and
more detailed description of graphite applications. Some properties like the band struc-
ture of mono or multilayer graphene can be accurately described by tight-binding mod-
els or model pseudo-relativistic Hamiltonians, but the correct description of van der
Waals (vdW) interactions in different environments, in particular in bilayer graphene
and graphite itself, still represents a major challenge to the scientific community.
Van der Waals forces are a pure quantum mechanical effect: they are due to the zero-
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Chapter 1 Introduction

point oscillations between two parts of a system, and they decay at most as the sixth
power of distance25,41,113,118. However, it is fundamental to understand such interactions
and to provide suitable methodologies for their accurate description. For such a reason
the role of dispersion has not been clear, while short range interactions and the role of
electrostatics in graphene and graphite, are generally considered very weak86,158,190. In
the last century computational power has seen major improvements, allowing to calculate
more complex systems with more and more sophisticated theories. Density Functional
Theory (DFT) local and semilocal functionals by construction fail to describe dispersion
forces, so higher order theories are needed. To achieve high accuracy it is vital to make
use of an efficient code, such as FHI-AIMS 19,161, which employs the resolution of iden-
tities technique and efficient numerical atomic orbitals basis sets (NAO). Such orbitals
have been successfully implemented in the past for DFT approximations19, and, now we
have implemented such a technique for wavefunction methods, ranging from Hartree-
Fock (X. Ren) to MP2 (A. Sanfilippo) to GW approximations (X. Ren)161 along with
the essential basis set superposition error counterpoise correction (BSSE-CP)22 (A. San-
filippo).
Regarding graphitic systems, it has been shown that RPA is expected a priori to give
good agreement with experiments since the adimensional parameter rs, often used to
describe the electron density in diagrammatic theories, is very low for graphene, about
rs ∼ 0, 5, and RPA is known to recover the exact correlation in the limit rs → 047,122,139.
RPA provides at the same time the correct description of correlation in the long range
of distances separating the graphitic layers. MP2 perturbation theory on the other side
fails, generally overbinding84 small aromatic systems, although it can provide upper
bonding limits. Within the present work we aim to describe the cohesive energy of a
layer of graphene and subsequently the interaction between two layers of graphene by
using higher order quantum chemical methods, like PBE+vdW184, MP2112 and RPA42

and RPA+ 94. We will extrapolate from small systems to the infinite limit with a proper
mathematical formalism. Moreover, with such a scheme we wish to understand the inter-
binding between layered π − π structures and the role of van der Waals interactions via
ab-initio treatments.
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2 Theory and Methodologies

2.1 The Schrödinger Equation

Every particle system is characterized, according to the most widespread interpretation
of quantum mechanics 154, by a state, which can be expressed as a generalized vector
in a Hilbert or Fock space4,6,37,47,127,139,154,165. The measure of the position of such an
entity provides the so-called wave function, related to the density probability of finding a
particle in a certain position and its momentum as well. The linear operators, which are
defined on the domain of Hilbert (Fock) space of states, dictate their evolution through-
out space-time and can measure observables 6,154. All such notions appear in standard
quantum mechanics courses and we will move rapidly through all these concepts. A
propagator is an entity which describes how a state propagates through space-time. The
fundamental properties of the system are hence deeply linked to such an entity, since it
describes the system response to external perturbations and the measures themselves.
The propagation for an isolated system, by physical intuition, should satisfy some prop-
erties like hermitianicity and completeness of the fermionic Hilbert (Fock) space6,9,98,139.
If we consider the propagation along the time direction, we can introduce a time evolution
operator Û , ∗

Û(t0 + dt, t0)|ψ(t0)〉 = (1 + ı̇Ĥdt)|ψ(t0)〉, (2.1)

where |ψ〉 is a state, in the Dirac notation37, which evolves from time t0 to t0 + dt. Ĥ
is an Hermitian operator for isolated systems, and it is regarded as a generator of time
evolution, which in classical mechanics is shown to be equal to the energy by symmetry
reasons53,96,99,100,127. Ĥ is hence defined as the Hamiltonian of our quantum system.
Such an expression for infinitely small transformations, or rotations, in the Hilbert space,
brings us to the following differential equation, also known as the Schrödinger equation

Ĥ|ψ(t)〉 = E|ψ(t)〉, (2.2)

where the Ĥ operator is Hermitian, and identified as the classical energy provided by
the principle of correspondence, E is an observable and it corresponds to the internal
energy of our isolated system. Such an Hamiltonian can be written, in the adiabatic
Born-Oppenheimer (ABO) approximation, i.e. adiabatic coupling between the motion
of electrons and nuclei, as53,76,96,97,99,100,127

∗Throughout this thesis we will apply atomic units in mathematical expressions in order to simplify

the notation. Physical constants are taken from references1,132.
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Chapter 2 Theory and Methodologies

Ĥ = K̂N+e + ÛN −
∑Nnuclei,Nel

ij ZiV̂ij +
∑Nel

ij V̂ij =

=
∑Nel

i
p̂2
i

2 +
∑Nnuclei

i
P̂2

i

2 +
∑Nnuclei

ij
ZiZj

|Ri−Rj |
−

∑Nnuclei,Nel

ij
Zi

|ri−Rj |
+

∑Nel

ij
1

|ri−rj |
,(2.3)

whereNel is the number of electrons with momentum p̂, Nnuclei is the number of nuclei,
Z the number of protons of each nucleus with coordinate R and momentum P̂. If we ne-
glect the electron-electron interaction, this system of equations can be easily solved99,127,
and for such a reason, it appears a natural choice to put the Coulomb interaction as a
perturbation. Such an expression is at the basis of all perturbative theories in zero and
non-zero temperature formalism. In such treatment the system is assumed to be moved
to a perturbed state which can be expressed as a superposition of unperturbed states.
The beauty of such methodologies is that they simplify notably in mathematical series,
in particular when we wish to express all our formalism in a single-particle picture, i.e.
to rewrite our equations in a formalism of a particle in a potential. This is possible only
when the kinetic energy prevails over the potential energy4,47,122,139. The major issue is
then to find a proper way to take into account the proper terms in such series47,75,122,139.
The zero temperature Green function is defined as47,139,165 (the non-zero tempera-
ture formalism can be derived straightforwardly, and it does not concern us in our study)

iGαβ(x, t,x′, t′) =
〈ψ0|T [ψ̂Hα(x, t), ψ̂Hβ(x′, t′)]|ψ0〉

〈ψ0|ψ0, 〉
(2.4)

where |ψ0〉 is the ground state, ψ̂Hβ(x, t) is the field operator in the Heisenberg rep-
resentation, and T is the time ordering operator. All fundamental properties like the
expectation values of single-particle operators, ground state energy and excitation spec-
trum, can be represented in terms of this function. A fundamental quantity like the
electron density is e.g. simply derived as47

ρ(x) = iT r[Gαβ(x, t,x, t+)], (2.5)

where the + superscript denotes the limit along the positive direction of the time axis
and the trace is over the real space.

2.2 Perturbation Theory

Let us partition our Hermitian operator in an unperturbed part H0, of which we know
the solutions already, and an additional ”perturbative” term H1. The equation (2.4) for
a perturbation Ĥ1, can thus be written as a series expansion, as follows47

ı̇Gαβ(x, y) ≡ ı̇G0
αβ(x, y) −

ı̇

2

∑

λλ′µµ′

ˆ

Ĥ1 λλ′µµ′(x′, x′′)〈ψ0|T [ψ̂λ(x′)ψ̂λ′(x′′)ψ̂µ(x′)

ψ̂µ′(x′′)ψ̂α(x)ψ̂β(y)]|ψ0〉 + ...

, (2.6)
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2.2 Perturbation Theory

where we defined (x ≡ x, t), greek letters represent spin-states and G0
αβ(x, t,x′, t) is the

unperturbed Green function. All integrals are done over space and time.
The Wick-Theorem47,139 allows us to write the perturbed Green function as a Dyson
equation for the inter-particle interactions under a Ĥ1 perturbation,

ı̇Gαβ(x, y) = ı̇G0
αβ(x, y) + ı̇G1

αβ(x, y) + ... = ı̇G0
αβ(x, y) −

1

2
ı̇

∑

λλ′µµ′

ˆ

V ′,V ′′

Ĥ1 λλ′µµ′(x′, x′′)

{ı̇G0
αβ(x, y)[ı̇G0

µµ′(x′′x′′)ı̇G0
λ′λ(x′, x′) − ı̇G0

µ′λ(x′′, x′)ı̇G0
λ′µ(x′, x′′)] +

+ı̇G0
αλ(x, x′)[ı̇G0

λ′µ(x′, x′′)ı̇G0
µ′β(x′, x′) − ı̇G0

λ′β(x′, x)ı̇G0
µ′µ(x′′, x′′)] +

+ı̇G0
αµ(x, x′)[ı̇G0

µ′λ(x′′, x′)ı̇G0
λ′β(x′, y) − ı̇G0

µ′β(x′′, y)ı̇G0
λ′λ(x′x′)} + ...,

(2.7)

where G1
αβ is the first-order perturbation, and V ′,V ′′ are volumes in phase space.

Such an equation can be written in a more compact form as follows 47,139

Gαβ(x, y) = G0
αβ(x, y) +

ˆ

V ′

G0
αλ(x, x′)Σλµ(x′, x′′)G0

µβ(x′′, y) =

G0
αβ(x, y) +

ˆ

V ′

G0
αλ(x, x′)Σ∗

λµ(x′, x′′)Gµβ(x′′, y), (2.8)

where the Einstein sum rule has been applied and Σ is called self-energy, and Σ∗ is
also known as proper self-energy47, which allows to write a Dyson equation in terms
of Gαβ . The latter form leads to a self consistent equation and we can first replace the
perturbed Green function G with the unperturbed Green function G0. Such a formal-
ism is very general and can be applied to a large variety of physical systems, such as
retarded fields and relativistic quantum electrodynamics. Since there are many terms in
such equations, graph theories have been applied to simplify the formalism, the so-called
Feynman or Stueckelberg diagrams. What is truly important, is that for each class
of retained diagrams in a certain approximation, such an approximation should be con-

serving, i.e. the continuity equation and physical conservation laws must be satisfied29.
The objective of the physicist is to find suitable approximations to such a formalism,
depending on the system and the feasibility of the mathematical treatments and their
eventual implementation in a computer code. There are many ways to approximate
equation (2.8), among them the best known in the history of quantum mechanics are
the Epstein-Nesbet, Hartree, Hartree-Fock, RPA and Coupled Cluster approximations
and Møller-Plesset perturbation theory12. Even though such theories have been initially
derived by different formalisms, they can be unified in one unique formalism using Green
function methods. In our study we will focus specifically on Møller-Plesset perturbation
theory at the second order (MP2)112, based on the Hartree-Fock approximation, and
RPA47,122,139.
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2.3 Hartree-Fock Approximation

In the Hartree-Fock approximation12,47,122,139, we assume a mean-field, where each par-
ticle moves in a single-particle potential that comes from its average interaction with all
the other particles 47. In such a case, for an unperturbed hamiltonian Ĥ0 = K̂ + Û (K̂
stands for the kinetic energy, Û for the nuclear potential), in an instantaneous single
particle Coulomb potential76,127 Ĥ1(x, x

′) ≡ V (x,x′)δ(t − t′), we obtain at first order
in perturbation theory the well-known self-consistent Hartree-Fock equation for the
ground state

[−
1

2
△ + U(x)]φj(x) +

ˆ

V ′′

Σ∗
HF(x,x′′)φj(x

′′) = ǫjφj(x), (2.9)

where φj(x) ≡ 〈x|φj〉 is an eigenstate of the system with energy ǫj, U is the nuclear
potential, while the proper mean-field self-energy Σ∗ depends only on the coordinates,
not on the energy

Σ∗
HF(x,x′′) = δ(x − x′′)

ˆ

V ′′′

V (x− x′′′)
∑

j

φj(x
′′′)φ∗j (x

′′′)θ(ǫF − ǫj) +

−V (x − x′′)
∑

j

φj(x)φ∗j (x
′′)θ(ǫF − ǫj), (2.10)

where ǫF is the Fermi level, θ the Heaviside function and
∑

j φj(x
′′′)φ∗j (x

′′′)θ(ǫF − ǫj)
simply corresponds to the electron density. We can notice how the proper self-energy
consists of a local term which depends on the electron density, the direct term47,122

EH, and a non-local term, called exchange, Ex. The exchange term is zero for all states
of pairs with different spin, so electrons with different spin do not repel each other. The
total energy is then the summation over occupied orbitals98

EHF =

∞
∑

i=0

ǫiθ(ǫF − ǫi) − EH − Ex. (2.11)

2.4 Beyond Hartree-Fock and Dispersion Forces

2.4.1 Møller-Plesset Perturbation Theory

Historically all contributions to the ground state energy beyond the Hartree-Fock ap-
proximation were defined as correlation. Correlation contributions are dominant over
exchange at large separation (the range of distances where the wave functions are neg-
ligibly overlapping). In such a distance range the exchange term is almost zero, since
it decays exponentially86. Therefore, if we want to describe dispersion forces at large
distances from the nuclei, we need to accurately evaluate the correlation contributions.
Such contributions can be evaluated via perturbative expansions at higher order terms.
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2.4 Beyond Hartree-Fock and Dispersion Forces

If we go further in perturbation theory, it is possible to show, through the Goldstone
theorem47, that the second-order self-energy (excluding the case of the degeneracy of
wave functions) is simply given by

Σ∗
MP2 ij(E) =

1

2

Nocc, Nvirt
∑

ars

((ir|as) − (is|ar))((jr|as) − (js|ar))

|E + ǫa − ǫr − ǫs|
+

+
1

2

Nocc, Nvirt
∑

abr

((ia|rb) − (ib|ra))((ja|rb) − (jb|ra))

|E + ǫr − ǫa − ǫb|
, (2.12)

where E is the energy variable, the indices i, j represent the projection on the unper-
turbed states, r, s are indices over occupied orbitals and a, b are indices over the so-called
virtual excitations, i.e. empty states, simplifying

(ia|jb) ≡

ˆ

V ,V ′

φi(x)φj(x
′)φa(x)φb(x

′)

|ri − rj|
, (2.13)

so that the total energy at the second order of the perturbation expansion is

E(2) ≡ EMP2 = −
1

4

Nocc, Nvirt
∑

ijab

|(ia|jb) − (ja|bi)|2

ǫa + ǫb − ǫi − ǫj
, (2.14)

where, i, j are occupied states, and the total ground state energy can be approximated
as

E ≈ EHF + EMP2, (2.15)

The numerator in Eq. (2.14) involves now a summation over direct terms and an ex-
change term over excited levels, called second order exchange. Such a term provides
a positive contribution to the total energy, hence a repulsive contribution to the ground
state energy.
We can see how the denominator in Eq. (2.14) becomes larger the higher the number
of excited states involved in the summation. However the numerator of Eq. (2.14) is
equally important, since the superposition of certain occupied and virtual states can
be relatively high even at high excitation energies, thus determining a relatively slow
convergence behaviour of the summation in Eq. (2.14) with respect to a, b excited levels.
This observation is fundamental for the implementation of such a theory in a numerical
code67,80 and for the choice of the basis set, as we will see in the next sections.

An equally important derivation, with plenty of physical insight, follows from the defi-
nition of the response function47

nind(x, ı̇ω) =

ˆ

V ′

χ(x,x′, ı̇ω)Vext(x
′, ı̇ω), (2.16)
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Chapter 2 Theory and Methodologies

or

χ(x,x′) =
δnind(x, ı̇ω)

δVext(x′, ı̇ω)
, (2.17)

where nind is the change of electron density, or induced density, caused by an exter-
nal time dependent (or, equally, frequency dependent) perturbation Vext, acting like an
external potential. Let us consider two separate fragments, or subsystems, each one
characterized by a response function χ1 and χ2 respectively, then we obtain the second
order perturbation energy as a Longuet-Higgins expression114,119

E′(2) = −
1

2π

ˆ

V ,V ′,V ′′,V ′′′

V (x−x′′)V (x′−x′′′)

ˆ ∞

0
χ1(x,x

′, ı̇ω)χ2(x
′′,x′′′, ı̇ω), (2.18)

where the response functions are the bare ones, obtained by the Hartree-Fock calculation.
However, such an expression for the second-order expansion of the correlation energy dif-
fers from Eq. (2.14) -even though they converge to the same result at large distances-
because it involves the Hartree-Fock responses of each isolated fragment, rather then
Hartree-Fock interactions61 in the whole system, as in Eq. (2.14). In fact, a the-
ory which takes into account the perturbation expansion of the interaction between
two fragments, or subsystems, is the so-called Symmetry Adapted Perturbation Theory
(SAPT)31,32,86,164,195, which allows to partition as well the contributions to the total
energy coming from van der Waals (dispersion) interactions, exchange and electrostat-
ics23,86. We remember the reader that such quantities cannot be partitioned by simple
energy difference between MP2 calculations for the total system and the energy of its
subsystems, because of the relaxation of the orbitals, and the different dimension of the
Hilbert Space86.
As we are interested in bilayer graphene equilibrium distances as well as in long range
we applied the MP2 methodology of Eq. (2.14). However, via the response function
formalism, it can be also easily shown that for large separations such an expression, for
a given response function, decays as the sixth power of the separation distance86,119,
i.e. E(2) ∼ O(R−6), as it is expected for the correct -at least in the asymptotic decay-
description of van der Waals interactions113. The proportionality coefficients can thus
be calculated from Eq. (2.18)119 and they will be encountered again in section 2.5.3, in
a different context.

2.4.2 Random Phase Approximation (RPA)

In the previous section we have considered only the first two orders in perturbation
theory. If we neglect the second and higher orders in the exchange, and we sum over
all orders of the direct terms, we obtain a geometric series, such that the ground state
correlation energy can be written as follows4,42,47,122,139

ERPA
c =

1

4π

ˆ ∞

0
dωTr[ln(1 − V χ0(iω)) + V χ0(iω))], (2.19)
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2.5 Density Functional theory (DFT)

where V is the Coulomb potential, and the previously employed response function χ, is
nothing other than the Kubo formula47,119,119

χ(x,x′, ı̇ω) = G0
αβ(x, y, ı̇ω)G0

βα(y, x, ı̇ω)|R, (2.20)

The term Π, multiplies the Coulombic part in Eq. (2.19), and it provides the so-called
screening of the bare Coulomb potential, due to the interaction of one electron with all
other electrons. We are still in a single-particle framework, that means we are mapping
the electrodynamics of an electron in a sea of electrons as the dynamics of a quasi-
particle represented by the electron and its perturbation itself as a unique entity122. It
can be shown that for large separation between two subsystems, the exchange terms
go to zero at all orders, such that RPA correlation correctly approximates the van der
Waals interaction119, and the second order perturbation of the correlation itself can be
written as

E′(2) = −
1

2π

ˆ

V ,V ′,V ′′,V ′′′

V (x−x′′)V (x′ −x′′′)

ˆ ∞

0
χRPA

1 (x,x′, ı̇ω)χRPA
2 (x′′,x′′′, ı̇ω),

(2.21)

which decays as E(2) ∼ O(R−6) for large separations R between two subsystems, and
where χRPA is the RPA response function.

2.5 Density Functional theory (DFT)

We derived all our formalism in the previous sections starting from the concept of a state
and we move for mathematical simplicity to the notion of Green’s functions. An impor-
tant observation is that all these equations can be rewritten in terms of an observable
quantity which depends only on the coordinates (or time in principle), the density. In
fact, we define the N-particle density matrix as

γ̂ = |ψ〉〈ψ|, (2.22)

and the so-called i-reduced density matrices, as the traces, or integrals, all over theN−i
coordinates. In particular integrals over N − 1 and N − 2 coordinates and spin states,
provide the electron density in real space ρ and the two-particle non-local density ρ2

respectively. The expectation value of a single particle operator47,139 Ô is easily obtained
as 〈Ô〉 = Tr[γ̂Ô] so that the generalization of the Schrödinger equation in this formalism
is straightforward, but too long to be discussed here58. It can be shown that the ground
state energy will depend on -or more precisely it is a functional of162- the electron density
ρ(x) ≡ ρ1(x,x

′)x=x′ , as well as on the two-particle non local-density58,146 ρ2(x,x
′)

E = E[ρ1(x,x
′), ρ2(x,x

′′)] = −
1

2

ˆ

V
[△ρ1(x,x

′)]x=x′ +

ˆ

V
VN(x)ρ(x) +

+
1

2

ˆ

V
V (x,x′)ρ(x)ρ(x′) +

1

2

ˆ

V
V (x,x′)ρ(x′)ρxc(x,x

′), (2.23)
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Chapter 2 Theory and Methodologies

where ρ represents the electron density and ρxc a correction to the single particle density
ρ, known also as the exchange-correlation hole, VN the nuclear potential and V the
Coulomb potential. Such a description involves the treatment of a non-local functional,
and this problem is not yet practical to solve. In particular we need an approximate
expression for the two-particle ρxc term.
Ideas on how to treat such an equation in a relatively simple and feasible manner,
although in a slightly different formalism, go back to Thomas, Fermi and Dirac36,46,183.
A major step forward was given by the theorems of Hohenberg, Kohn71 and by the
Kohn-Sham ansatz90 (and further extended by the works of Lieb109 and Levy106,107)
and it allowed to reduce the problem of the ground state of a see of interacting electrons
to the ground state of a free particle moving in an effective potential82

E[n] = K ′[n] + VN[n] + VH[n] + Exc[n], (2.24)

where K ′ is the kinetic energy of the non-interacting system, VN is the external potential
represented by nuclei or other additional fields, VH is the classical Coulomb, or Hartree,
potential between two charge densities, and Exc is the so-called exchange-correlation

term, which includes all the differences between the real and the fictitious system, and its
exact form is not known yet. There is no perturbative, or diagrammatic expansion,
of the exchange-correlation energy, but Schlüter and Sham devised a scheme to obtain
the exchange-correlation potential from the self-energy29,170.
Kohn and Sham in their seminal paper pointed out the simplest form of the exchange-
correlation functional, a local density approximation (LDA) (or more generally LSDA,
when spin degrees of freedom are included). As the name suggests, the energy functional
depends only on the density in every point in space.

ELDA
xc [n] ≡

ˆ

V
n(x)ǫheg

xc (n(x)), (2.25)

where ǫheg
xc is the exchange-correlation energy per electron in a homogeneous electron

gas. A well known form of such an exchange-correlation functional, that we will use in
this work, is known as the Perdew-Wang-LDA (PW-LDA)152. Such an approximation
has been obtained fitting correlation energies to analytical or accurate Monte-Carlo
computations for the degenerate electron gas.
An extension of the LDA approximation involves naturally the gradients of the density,
hence it is addressed as semi-local functionals, even though it is not a simple series
expansion. It is named generalized gradient approximation (GGA), and in our study we
will apply the parameters optimized by Perdew, Burke and Ernzerhof (PBE-GGA)150,

EGGA
xc [n] ≡

ˆ

V
n(x)ǫxc(n(x),∇n(x)). (2.26)

While the PBE-GGA approximation is fitted to reproduce well jellium properties and
the exchange energy in atoms, a variant of such a functional has been elaborated to
fit better jellium bulk and surface energies, the so-called PBEsol functional151. This
flavour tends to worsen cohesive energies, but it will improve the equilibrium geometries
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2.5 Density Functional theory (DFT)

and lattice constants, in particular for closed packed structures151.
Such local and semi-local functionals are easily tractable from a computational point of
view, since they involve the density and only few degrees of freedom (space coordinates
and possibly spin). By construction they can approximate with a relatively good accu-
racy, short-range properties, like bond lengths in chemical bonding and the electrostatic
interaction, a classical property which depends on the density itself. A plethora of func-
tionals, or flavours 5,54,69,77,104,153,181,182,200, have been formulated in the last forty years,
but only few of them have been largely tested and are now widely used by the scientific
community.
When it comes to the long range, where non-local properties of the correlation are im-
portant and densities are negligibly overlapping, i.e. van der Waals interaction, such
functionals fail or, in certain cases, recover relatively good energies and geometries due
to the fortuitous error cancellations44,121,133,147. A review of details and limitations of
such functionals is found in textbooks and reviews58,82,93,121,146.

2.5.1 Linear Response

The fact that density functional theory maps the interacting electron problem on the
problem of a non-interacting electron in an effective potential, has brought considerable
success to such a theory. However, when it comes to response properties and excited
states, the current approximations cannot be applied successfully121. Furthermore there
is no Koopman’s theorem for DFT. For this purpose a Green functions approach, as
we wrote about in last sections, is a natural choice. Another approach, but inherently
different, is time-dependent density functional theory (TDDFT)119,155,163,198. Green
functions involve the effect of the perturbation in the system caused by addition or
removal of electrons, while TDDFT involves excitations conserving the number of par-
ticles. Notwithstanding response properties of the collective mode of the system can be
determined for both methods, since it can be shown that, through the adiabatic con-

nection fluctuation dissipation theorem (ACFDT)101,102, the response function for
a Coulomb potential V is

χ(x,x′, ı̇ω) ≡
δnind(x, ı̇ω)

δVext(x′, ı̇ω)
=

χ0(x,x′, ı̇ω) +

+

ˆ

V ′′,V ′′′

χ0(x,x′′, ı̇ω)(V (x′′,x′′) + fxc(x
′′,x′′′, ı̇ω))χ(x′′′,x′, ı̇ω),

(2.27)

where GKS
αβ are the Green functions obtained from the Kohn-Sham orbitals, fxc is the

so-called exchange-correlation function, which contains the dynamical exchange and
correlation effects, i.e.

fxc(x,x
′, ı̇ω) ≡

δVxc[n(x, ı̇ω)]

δn(x′, ı̇ω)
, (2.28)
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where Vxc is the exchange-correlation potential.
If we apply the Longuet-Higgins response function formalism114,119, we can rewrite the
second-order perturbation and RPA equations using Kohn-Sham orbitals 38,119, rather
than Hartree-Fock ones. Moreover the RPA approximation can be shown as resulting
by putting fxc = 0 in equation (2.27) 119. RPA can be regarded, in the TDDFT for-
malism, as the lowest order of approximation, where fxc is set to 0. This shows how all
methods, even though they appear radically different, are intertwined when we consider
fundamental properties like the response function. Such properties are easily defined via
Green’s functions, and are as well a collective property of the system which can be calcu-
lated via DFT, TDDFT and in general, linear response theory141. RPA in the TDDFT
formalism, i.e. based on Kohn-Sham orbitals, received recently considerable success for
atomic, molecular and infinite systems10,51,63 as well in the Green function formalism130.
Since the Hartree-Fock approximation does not include the correlation, polarizabilities
(response functions are simply their gradients119) are relatively poor, while in the DFT
case, they have been shown to be better179. On the other side, a DFT perturbation
theory has been well formulated by Görling and Levy (GL), but it is beyond the scope
of our study54.
In the present study we therefore focus on the RPA approximation based on the TDDFT
formalism.

2.5.2 RPA+

We showed how the random phase approximation (RPA) gives the correct dispersion
decay and correlation energy in the asymptotic limit of infinite distances between two
sub-systems. However, when it comes to short range interactions, such as around equilib-
rium distances, short range correlation is expected to play an important role, competing
with the exchange interaction. For such a reason S. Kurth and J.P. Perdew proposed a
correction to RPA which includes DFT short range correlation, called RPA+94. Such a
short range part can be tackled in principle by local and semi-local functionals, and we
can thus write

ELDA/PBE
c sr = ELDA/PBE

c − ERPA
c , (2.29)

where the subscript c means correlation, sr means short range, and ERPA
c is obtained

from the RPA expression for a uniform electron gas94.

2.5.3 PBE+vdW

In the last section we introduced DFT and we briefly discussed about its limitations
for long range distances, i.e. where densities or wave functions overlap are essentially
negligible. There have been many attempts34,35,55,57,145 to overcome this issue, and a
promising scheme has been recently elaborated by A. Tkatchenko and M. Scheffler: the
PBE+vdW method184.
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The non-relativistic interaction between two spherically symmetric atoms decays asymp-
totically as the sixth power of the distance113. Such asymptotes are in practise assumed
at distances not further than ∼ 100Å, as can happen in suspensions, otherwise relativis-
tic corrections must be included, which lower the asymptotic power law to the seventh
power of the distance75,86,135.
The dispersion interaction among atoms in molecules or in bulk can be generally ap-
proximated by a pairwise summation, noting that second-order perturbation theory -as
shown in section 2.4.1- is additive38,86,119,

E(2) =

∞
∑

l=3

C2lAB

r2l
AB

, (2.30)

where rAB is the separation between two sub-systems. The first non-vanishing coeffi-
cients of such a series are the so-called dispersion coefficients C6 and they are usually
expressed as functionals of the polarizabilities, i.e. using the Casimir-Polder integral

C6AB =
3

π

ˆ ∞

0
αA(iω)αB(iω), (2.31)

where ω are real frequencies. The difficult task is to express such coefficients in terms
of the atomic contributions, taking into account that atoms in molecules have different
hybridizations.
Following the treatments described in ref.81,184,185, one can define a weight over the
C6 coefficients of isolated species in order to obtain effective C6 coefficients for atoms
in molecules, which take into account the depletion or increase of the electron density
compared to the isolated, or free, species. Such weight can be based for example on a
Hirshfeld partitioning of the charge densities 70.
The C6AB hetero coefficients are determined by the equation, 185

C6AB =
2C6AAC6BB

α0
B

α0
A
C6AA +

α0
A

α0
B

C6BB

, (2.32)

where α0 represent static polarizabilities of atoms in molecules (taken from the database
in ref.28), so that the effective coefficients are approximated by the following formula

C6AA ∼
( V eff

A

V free
A

)2
C free

6AA, (2.33)

where V free
A is the volume of the free atomic species and V eff

A represents the effective
volume of the species in the compound185. The so-called van der Waals radius is
defined as

Reff =
( V eff

A

V free
A

)1/3
Rfree. (2.34)
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Since corrections using the C6 coefficients are valid only for long range distances, where
the series does not diverge and higher order terms are negligible, a damping function
must be used for shorter distances. Following Tkatchenko-Scheffler (xc) a Fermi type
damping function has been employed in this work,

fdamp(rAB) =
1

1 + e−d(rAB/(sRRAB
free

)−1)
, (2.35)

where RAB
free = RA

free +RB
free and d, sR are parameters set equal to 20 and to 0.94 respec-

tively for PBE calculations184.
The total ground state energy as a post-processing correction then reads

E = EPBE +
∑

ij

fdamp(rij)
C6ij

r6ij
, (2.36)

where the indices represent summations over the atoms of the system considered, and
rij the distance between two given atoms.

2.6 Basis Set: Which one?

Hilbert space has an infinite dimension, and to represent a given state we need in principle
an infinite number of orthonormal states. Such states can be determined analytically
only in few cases, where the symmetry of the system allows a representation in special
functions (in particular plane waves, spherical harmonics, spherical Hankel and Bessel
functions, Slater and Gaussian functions, confluent hypergeometric functions3,9,30,103).
However, only a relative small number of basis functions is often required to describe to
a sufficient accuracy our observables of interest, like the ground state energy, equilibrium
geometries, band gaps and electron density67,80. MP2 and RPA/RPA+ methods need
a certain amount of excited -also know as empty or virtual states- to be considered, so
that the amount of basis sets necessary to converge ground state properties, is slower
than in other methods, e.g. Hartree-Fock and DFT50,67,80.
Since it is often not possible to find an orthonormal basis set for each system of interest, it
is fundamental to find the smallest and most accurate basis set expansion. For periodic
systems the obvious choice are plane-waves3,9,13,43,59,80 . In atoms and molecules the
most common approach is a linear combination of atomic orbitals (LCAO), where we
define the atom-centered basis functions in spherical coordinates13,80 or even wavelets24.
We can then expand the wave functions of our isolated system of interest as

φi(x) =
∑

im

cimψm(x), (2.37)

where φi is an eigenstate of the system, and

ψm(x) =

Kmax,Lmax
∑

k=Kmin,l=Lmin

umk(r)

r
Ykl(θ, φ), (2.38)

14



2.7 Scaling

where cim are expansion coefficients, optimized with certain procedures80, r, θ, φ spheri-
cal coordinates, and ψm the basis set of choice centered on atoms and of angular part Ykl.
umk are the radial parts with quantum numbers m and k. K and L refers to the range of
the angular expansion. Such a range is naturally chosen as the analytical solutions of the
hydrogenoid Schrödinger equation, and is therefore chosen as 0 < K < m and L < |k|,
but in many cases higher angular quantum numbers are included in order to achieve
a better convergence of the correlation energy (as for Gaussian basis sets)80. This is
particularly important for numerical simulations, where a limited amount of resources is
available and a high efficiency in needed.
In the history of quantum computations in condensed matter, the first basis sets em-
ployed for molecular systems or crystals where plane waves and the so-called Slater type
orbitals (STO)173. Such functions have the same shape as for the hydrogenoid solution
of an atom, i.e. an exponential decay, so they were thought to efficiently describe molec-
ular orbitals (MO). This has been indeed the case, but numerical codes were made faster
by expanding such functions in Gaussian basis sets21,66, also known as Gaussian type
orbitals (GTO), and later on only by using Gaussian functions as basis set65. Gaussian
basis sets have the advantage of being analytically tractable, so that integrals can be
easily calculated. The disadvantage of such basis functions is that they do not have a
correct asymptotic behaviour, i.e. they decay is too steep and they do not diverge in the
atomic center73,80,87,95,172,196.
For these reasons, a viable alternative has been represented by numerical atomic orbitals
(NAO)(ref.19 and references therein), and is the basis set we are going to employ in our
study. Such a basis set has an angular part represented by spherical harmonics and a
radial part which can be, in principle, of the shape we wish, i.e. ionic, Slater, Gaussian-
like or a mixture of all of them, and it is numerically tabulated, thus allowing a high
flexibility19.

2.7 Scaling

Taken a method of choice and assigned a basis set, the major issue, if we want to calculate
our system within a given accuracy, is that we have to face the problem of how much a
method scales computationally. This means we need to evaluate the number of required
calculations as a function of the basis set size. Moreover, it should be determined if such a
method is size consistent, i.e. it scales linearly with the system size. It can be shown that
local and semi-local functionals in density functional theory, since they depend on the
electron density, scale like N3, where N is the number of basis set functions. Functionals
involving non-local terms and wave functions calculations, like for the exchange term,
yield a N4 order scaling. Hartree-Fock approximation involves the calculation of the
exchange term, where the so-called electron repulsion integrals (ERIs) -or four center
integrals- have to be calculated. Therefore the scaling is of the order of N4. When we
move towards correlated methods like MP2 and RPA the situation is more problematic,
since the scaling is proportional to N5, while RPA scaling can be lowered to N4, 51,168.
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However there exist numerical methods which reduce the scaling to linear, and thus they
reduce dramatically the computational effort for large systems15,67,80,83,92,144,167,193.
For what concerns the memory, local and semi-local functionals and PBE+vdW have a
lower amount of memory to be stored since they involve density integrals, while other
quantities can be calculated on-the-fly. Wavefunction methods, like MP2 and RPA,
involve the storage of the product of wave functions spanning the excited states and of
the Coulomb matrix, i.e. the projection of the Coulomb potential on the basis set. To
cope with such a problem, the not required quantities can be stored on disk and the
needed quantities are calculated on-the-fly 67,80. The present version of our code19,161

calculates efficiently the ERIs terms through the resolution of the identities technique.
The scaling for HF and RPA/RPA+ is still of the order of N4, for MP2 is N5, and N3 for
DFT local and semi-local functionals and PBE+vdW, but with low prefactors. Further
features like disk-storage to decrease the demanding amount of computer memory have
not yet been implemented and are planned for future development.

2.8 Resolution of Identities Technique

In the previous sections, we noticed the problem of calculating ERIs of the kind

(ia|jb) ≡

ˆ

V ,V ′

φi(x)φj(x
′)φa(x)φb(x

′)V (x−x′) =

ˆ

V ,V ′

φi(x)φj(x
′)φa(x)φb(x

′)

|x − x′|
, (2.39)

where i, j are occupied states and a, b are excited states. To cope with this issue, a
technique known as the resolution of the identities, or in certain cases as density

fitting, has been developed throughout the years48,49,80,108,111,116,188. It is a complete-
ness insertion in the ERIs, which allows to split the matrices into products of smaller
matrices. The advantage of such a technique is that calculations are relatively faster
(fewer indices in matrices are more easily accessed by a computer), reportedly ten times
faster80,89, and at little cost of accuracy. Of the so-called SVS, S and V schemes, it has
been reported that the V scheme as the most satisfactory, which is confirmed by tests
done with our code161. With such a scheme I implemented the Møller-Plesset perturba-
tion theory, while X. Ren (FHI) implemented the RPA method161.
The product between two local basis functions of a chosen basis set, e.g. NAO, are fitted
with an auxiliary basis set, Pµ -which have to be optimized- and a projection of a state
of the system can always be expanded in terms of such a basis set, so that

φi(x)φj(x) ≈
∑

ijµ

OijµPµ(x), (2.40)

where Oijµ varies according to the chosen scheme.
In the V scheme Eq. (2.39) reads

(ia|jb) ≡

ˆ

V ,V ′

φi(x)φj(x
′)φa(x)φb(x

′)V (x − x′) = OiaµV
−1
µν Ojbν , (2.41)
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where

Oijµ = V −1
µt

ˆ

V ,V ′

φi(x)φj(x)V (x− x′)Pt(x
′), (2.42)

and where V −1
µν is the inverse of the Coulomb potential projected on the auxiliary ba-

sis set, Vµν =
´

V ,V ′ Pµ(x)V (x − x′)Pν(x′). The present in-house code FHI-AIMS19,161

has been developed with such a functionality for wavefunction methods, i.e. Hartree-
Fock, MP2, RPA, and such a technique, differently from what was used in litera-
ture48,49,80,108,111,116,188, is applied to all integrals involving four wave functions. The
reason is that for numerical atomic orbitals, all integrals have to be calculated on a
real-space grid, while Gaussian type orbital integrals over occupied states are efficiently
calculated analytically, thus it is does not make any sense to apply the resolution of iden-
tities technique in Hartree-Fock implementations. Integrals are evaluated in FHI-AIMS
using the V scheme and using a multi-step procedure when available159. Moreover we
apply the singular valued decomposition (SVD)159 technique for the inversion of the
Coulomb potential19,161.
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3 Monolayer and Bilayer Graphene

3.1 Background and Main Assumptions

Graphitic systems represent an important benchmark for the study of extended aromatic
systems and are the basis for more complex nanostructured ones. In our study we focus
on graphene and bilayer graphene, and we are interested in determining the equilibrium
geometry, cohesive and binding energy of such systems. Previous studies with local and
semi-local DFT functionals, i.e. LDA and GGA, showed how the interaction between
two graphene sheets is poorly described, while the accurate equilibrium geometries ob-
tained in LDA are attributed to error cancellations78,133. At the same time cohesive
energies are not described accurately in LDA, while in PBE they are relatively close to
the experimental results78,145. Since the interactions between two graphene sheets and
more in general, in graphite bulk, are weak, the cohesive energy is not much affected.
On the other side experimental results, due to the scale of the interactions, have always
shown a considerable error bar. This is caused by the fact that measurements are in-
directly extrapolated from thermal desorption of aromatic molecules on surfaces or are
extrapolated from models based on exfoliation of nanotubes, so that surface contribu-
tions are intrinsically taken into account17,197.
For such a reason a benchmark of new, improved functionals as well as post-Hartree-Fock
methods is important as advances in computational resources and algorithms become
available. In the previous chapter we have highlighted the importance of correlation,
in particular beyond the Hartree-Fock approximation (HF) and semi-local DFT. Such
contribution is very important in determining the correct equilibrium geometries and
binding energies. We described several suitable and computationally less demanding
theories and methodologies, e.g. PBE+vdW, MP2, RPA/RPA+, formulated in order
to cope with weakly interacting systems, where the repulsive exchange contribution is
relatively small compared to the other contributions. Correlation is, for isolated systems
in the non-relativistic Casimir-Lifshitz region136, an attractive contribution, without
which two graphene sheets cannot bind as we will see. On the other side, if we consider
multiple graphene sheets, depending on the stacking, they contain quadrupole contribu-
tions which could tend to cancel the attractive behaviour of the correlation27. On the
computational side, the so-called wavefunction methods such as MP2 and RPA, have
been mainly used for cluster calculations. Periodic implementations exist, and have
been successfully implemented63,157, but when it comes to systems close to metallicity,
or zero-gap semiconductors, like graphite, there are technical difficulties 39. The second
order perturbation theory, MP2, is known to diverge for metals in three dimensions47(as
well as second order perturbation DFT theory, i.e. the Görlitz-Levy approach), due to
the bare Coulomb potential47. However for two dimensional systems, it can be shown,

19



Chapter 3 Monolayer and Bilayer Graphene

starting from a jellium model, this is not the case160. Hence the use of MP2 for two
dimensional metallic or semi-metallic systems is justified.
In this study we will first evaluate properties like the equilibrium distance and cohesive
energy of graphene with the in-house numerical atomic orbital (NAO) code, using DFT
functionals already applied to graphene in literature. Such reported computations usu-
ally employ plane waves, hence pseudopotentials 59,121, or linear augmented plane waves
techniques59. We will use a tigh-binding approach starting from cluster calculations,
which will be subsequently validated with the corresponding bulk calculations and then
we will proceed to the evaluation of the corresponding quantities via the wavefunction
methods (MP2, RPA, RPA+). We will then apply the same methodologies to evaluate
equilibrium distance, cohesive and binding energy of AB-stacked bilayer graphene.
Such an approach can also represent an alternative way to estimate physical properties
for presently too demanding methodologies like coupled cluster at the third order in
perturbative excitations (CCSD(T)), which has been shown to provide accurate results
for aromatic systems84.

3.2 Preliminary Consideration on Geometry

Graphene has been discovered only recently142, and it has been mostly studied on sub-
strates, ranging from silicon oxide and carbide120,169,189 to transition metals178, graphite
(accurate measurements can be done nowadays on highly-oriented pyrolitic graphite
(HOPG)) and then only in 2007 as a suspended graphene sheet129. It has been debated
in the past over the possible symmetry breaking, from six-fold to three-fold, or even
two-fold and it has been argued by Pauling148 that quinoid structures were possible.
X-rays techniques did not provide strong evidence for this though72 Experiments using
scanning tunneling microscopy (STM) became available much later18 and revealed of-
ten only half of the surface atoms, since in graphitic structures only three atoms of the
honeycomb lattice have an atom underneath. Moreover it was not possible to accurately
evaluate bonds in graphite, and often disturbances like Moireé and Kekulé patterns form
on such surfaces138. Even movements of graphene layers have been reported during STM
experiments, due to the weak interlayer bonding. In particular electron density modu-
lation has been observed at low voltages85, and it has been sometimes associated with
STM tip effects68,199. Studies on graphene and nanotubes, which can be imagined as
rolled graphene sheets, reported similar effects, but it has been shown that they come
from a wavefunction modulation, as can be seen from ab-initio calculations as well85,105.
Furthermore, atomic force microscopy (AFM) experiments provided the visualization of
the full honeycomb structure68, and no quinoid structures have been found within the
accuracy limits. Thus the structure of graphite has been widely accepted as hexagonal,
with different arrangements of the stacked graphene sheets (ABA, ABC structures110),
and with equally spaced carbon atoms72. A six-fold symmetry break due to the variation
of the in-plane carbon bonds can be found instead as a result of the finite temperature
and phonon modes131, which are beyond the scope of our study due to computationally
demanding techniques we are going to apply. Recent experiments on suspended graphene
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3.3 Periodic Graphene

showed the absence of perfect two dimensional structures, but ripples, even though bond
distances of carbon atoms were not modulated. Such ripples can be present also on
certain surfaces117,189. Because of the large length scale of such warping and since we
are interested mostly in the cohesive energy and equilibrium distances between graphene
layers we can assume graphene as approximately flat. By all these considerations, in the
zero temperature limit, it is not expected that this approximation creates drastic differ-
ences with respect to accurate experimental measurements of the cohesive and binding
energies of the graphitic structures i.e. we will assume no modulation is present in the
in-plane distances, and we assume a perfect two dimensional structure. Hence we can
calculate the properties of mono and bilayer graphene, as we will see in the following
sections, only using two degrees of freedom, i.e. we vary the in-plane lattice constant
and the interlayer distance.

3.3 Periodic Graphene

The aim of the first part of our study is the investigation of the properties of a graphene
sheet using different quantum chemical methods, i.e. LDA, GGA-PBE, PBEsol, PBE+
vdW DFT functionals and MP2, RPA and RPA+. Our properties of interest are equilib-
rium geometries, cohesive and binding energies. As a first step we study the convergence
of density-functional theory periodic calculations to provide accurate references that af-
terwards will be compared to the bulk limits obtained from cluster calculations. Once
established that bulk extrapolations from clusters are reliable for various DFT meth-
ods, we extrapolate the bulk limit from MP2 and RPA/RPA+ calculations and compare
our periodic and extrapolated values with the theoretical and experimental references
presently available.

3.3.1 The LDA and GGA-PBE Functionals

We consider a graphene layer and study the convergence of the cohesive energy per atom
first with respect to the basis set size, then with respect to the number of k-points and in
the end we consider the effects of vacuum size and the order of the multipole expansion
(see Appendix A.2.1). Calculations are performed with PW-LDA152 and GGA-PBE150

DFT functionals.
The cohesive energy per atom is defined as

Ecoh =
Etot

NC
− EC, (3.1)

where NC is the number of carbon atoms in the supercell of energy Etot and EC the
energy of the isolated carbon atom. The way the free atom reference is computed is
important, in particular when atoms have partly occupied levels, like in the carbon case.
The present implementation of the code FHI-AIMS19 does not take the Hund’s rules
into account, and the electron population is eventually equally distributed among the
degenerate valence levels. To avoid this, we break the spacial symmetry using an external
perturbation and smear the Fermi level slightly in order to make such a symmetry-break
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Chapter 3 Monolayer and Bilayer Graphene

easier. As perturbation we choose a small external electric field, which we apply for the
first few self-consistency cycles. In this way the self consistency is directed into the right
attractor basin of the ground state of the employed DFT functional, i.e. the 3P0 ground
state. A similar effect can be obtained when a spin-collinear Hartree-Fock calculation
is preliminarily done and Hartree-Fock wave functions are used as a starting point for
DFT calculations. We also note that in Eq. (3.1) Etot does not contain the vibrational
zero-point energy (ZPE) contribution, estimated to be about 0, 166 eV/atom for ABA
stacked graphene layers7.
The basis sets in this study are NAOs, and in particular the LDA optimized sets provided
within FHI-AIMS19. In Appendix A.2.1 we report the convergence evaluations and we
conclude the following settings are enough for an accuracy at the meV/atom level: ”sb”,
an (18x18x1) k-mesh, lhartree = 4 and an interplane distance of 20 Å.
In Fig. (3.1) we show the resulting cohesive energy curve as a function of the in-plane
constant a.
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Figure 3.1: Dependence of the graphene cohesive energy on the in-plane lattice constant com-
puted at optimized computational settings ( ”sb” basis set, (18x18x1) k-mesh, lhartree = 4, and

intersheet distance of 20 Å).

We interpolate the DFT curves shown in Figure (3.1) with cubic splines, to obtain the
cohesive energies and equilibrium distances shown in Table (3.1). Our results agree well
with literature, in particular with ref.64, and differences are at most of the order of 4%.
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3.3 Periodic Graphene

Both PW-LDA and GGA-PBE functionals yield lattice constants in close agreement to
experimental values. As shown in refs.129,133 using a suspended graphene sheet, the in-
plane lattice constants of graphene and graphite are very similar, so that the comparison
to experimental data from graphite is permissible.

Table 3.1: Comparison of the computed graphene in-plane lattice constant a and cohesive
energy Ecoh with existing DFT literature and experiment. The values for Ecoh reported for
refs.62,64,78,145 are estimated from the published graphite binding and interaction energy. The
experimental values are zero-point energy corrected using the value for graphite of ref. 7 and are
considered at lower precision because the interaction energy between two graphite layers is known
only with a certain error bar. More LDA values can be found in reference64. For simplicity in
all the tables of this work the sign of cohesive energies is reversed in principle being negative.

.

a (Å) Ecoh (eV/atom) DFT method

2,446 8,92 PW-LDA (this work)
2,441 8,89 PW-LDA (PP)64

2,447 8,98 PW-LDA (FP-LAPW)78

2,452 8,57 HL-LDA (LCGTO-FF)186

2,441 8,53 PZ-LDA (PP)145

2,463 7,87 GGA-PBE (this work)
2,461 7,87 GGA-PBE (PP)64

2,462 7,75 GGA-PBE (PP)145

2,46 Exp.129

2,461 Exp. (293 K)40,187

2,459 ∼ 7,5 Exp. (303 K)62, ZPE from ref.7

3.3.2 The PBEsol Functional

As the PBEsol functional has been optimized for jellium bulk and surface properties, we
are interested in how this functional behaves for a two dimensional graphene sheet.
As for the previous section we determine the accuracy of the PBEsol DFT functional151

with respect to the cohesive energy of a graphene sheet and convergence tests are reported
in Appendix A.2.2. We conclude that the same settings as those applied to PW-LDA
and GGA-PBE are valid. The atomic references are calculated as we already mentioned
in the last section. Fig. (3.2) shows the variation of the cohesive energy as a function
of the lattice constant a. In Table (3.2) we summarise the results and we compare
them with the previous calculations for PW-LDA and GGA-PBE DFT functionals and
experiment. The lattice constant, already very close to the experimental one for the
GGA-PBE functional, now matches it exactly. However, as expected for solids and as
reported in literature151, the cohesive energy is worse than for the GGA-PBE functional.
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Figure 3.2: Dependence of the graphene cohesive energy on the in-plane lattice constant com-
puted at the optimized computational settings ( ”sb” basis set, (18x18x1) k-mesh, lhartree = 4,

and intersheet distance of 20 Å.
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3.3 Periodic Graphene

In conclusion the PBEsol functional provides a very accurate geometry, as it has been
built for 151, but energies lie between PW-LDA and GGA-PBE.

Table 3.2: Comparison of the PBEsol functional computed graphene in-plane lattice constant
a and cohesive energy Ecoh with the PW-LDA and GGA-PBE DFT functionals and experiment.
The values for Ecoh reported for refs.62,64,78,145 are estimated from the published graphite binding
and interaction energy. The experimental values are zero-point energy corrected using the value
for graphite of ref.7 and are considered at lower precision because the interaction energy between
two graphite layers is known only with a certain error bar.

.

a (Å) Ecoh (eV/atom) DFT method

2,446 8,92 PW-LDA (this work)

2,463 7,87 GGA-PBE (this work)

2,459 8,31 PBEsol (this work)

2,46 Exp.129

2,461 Exp. (293 K)40,187

2,459 ∼ 7,5 Exp. (303 K)62, ZPE from ref.7
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3.3.3 The PBE+vdW Functional

In the previous sections we have shown how a semi-local functional like GGA-PBE
recovers relatively well the cohesive energy with respect to the experimental data. We
consider now to a first extent the effect of the dispersion interaction on the cohesive
energy using the PBE+vdW method elaborated by A. Tkatchenko and M. Scheffler184.
Convergence tests are shown in Appendix A.2.3 and we employ the following settings:
”sb”, an (18x18x1) k-mesh, lhartree = 4 and an interplane distance of 20 Å and vdw cells
as (10 10 0) grid. In Fig.(3.3) we show the cohesive energy curve calculated using the
PBE+vdW functional compared to the underlying GGA-PBE functional. The van der
Waals interaction correction, as expected, does not provide substantial changes in the
cohesive energy equilibrium minimum, but only a small shift in the cohesive energy since
the free atom reference is the same as for the GGA-PBE functional.
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Figure 3.3: Dependence of the graphene cohesive energy on the in-plane lattice constant com-
puted at the optimized computational settings ( ”sb” basis set, (18x18x1) k-mesh, lhartree = 4,

and intersheet distance of 20 Å).

In Table (3.3) we compile the comparison between the PBE+vdW method and all other
tested functionals. As said previously the cohesive energy given by the addition of pair-
wise summations over van der Waals interactions is small and appears to be worse than
the PBE functional when comparing it to experiments. However a correct consideration
of the multiconfigurational atomic reference should be included as well.
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3.3 Periodic Graphene

Table 3.3: Comparison of the PBE+vdW computed graphene in-plane lattice constant a and
cohesive energy Ecoh with other DFT functionals and experiment. The values for Ecoh reported
for refs.62,64,78,145 are estimated from the published graphite binding and interaction energy (see
text). The experimental values are zero-point energy corrected using the value for graphite of
ref.7 and are considered at lower precision because the interaction energy between two graphite
layers is known only with a certain error bar.

a (Å) Ecoh (eV/atom) DFT method

2,446 8,92 PW-LDA (this work)

2,463 7,87 GGA-PBE (this work)

2,459 8,31 PBEsol (this work)

2,460 7,91 PBE+vdW (this work)

2,46 Exp.129

2,461 Exp. (293 K)40,187

2,459 ∼ 7,5 Exp. (303 K)62, ZPE from ref.7
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3.4 Graphene Sheet, Cluster Extrapolations

In many quantum chemical methods, the study of periodic systems is not straightforward
and at the present time in some cases it is restricted to non-conducting systems157.
In order to compute the bulk properties of our interest, i.e. the cohesive energy and
the equilibrium geometry, we have therefore investigated as an alternative to periodic
calculations the use of cluster extrapolations to the bulk limit. For this, we consider a set
of clusters with the geometric parameters of the periodic systems previously calculated.
As shown in Fig. (3.4) these clusters are saturated with peripheral hydrogens, at the
experimental C-H distance in benzene. This way we avoid problems due to the open-
shell nature of carbon and mimick better the properties of sp2-hybridized carbon in the
infinite sheets. However, the fact that clusters have borders and are saturated with
hydrogens, makes the straightforward convergence of the cohesive energy towards the
bulk limit rather slow. A suitable procedure is then needed to eliminate such edge effects,
and make an extrapolation efficient. To achieve this goal without parametrization, we
consider a formula of the type

Etot = NCEC +NHEH + Ecoh

∑

c

f(c)Nc + ECHNH, (3.2)

where Etot is the total energy of the cluster, EC the spin-polarized atomic references for C
and H, NC and NH the number of carbon and hydrogen atoms in the cluster respectively,
c the coordination number of carbon atoms, f(c) a function of the coordination number,
Nc the number of carbon atoms with c-fold coordination, ECH the carbon-hydrogen
interaction and Ecoh the extrapolated infinite bulk cohesive energy per atom. As long
as the unspecified function f assumes the right limit of f(3) = 1, this equation yields
the correct infinite sheet cohesive energy. Motivated by tight-binding174 we have chosen
f(c) =

√

c/3 to obtain the values for singly and doubly coordinated carbon. Next, let
us reorder the previous equation in the following form,

g(NH/b) ≡
Etot −NCEC −NHEH

b
= Ecoh + ECH

NH

b
, (3.3)

where b ≡
∑

c f(c)Nc. From this form we can see that the intercept of a least-square
interpolated linear function g(NH/b) with the ordinates provides the bulk limit extrap-
olation in absence of hydrogens while the slope of such a curve gives the C-H binding,
i.e. border, contribution.

3.4.1 The LDA and GGA-PBE Functionals

We apply this approach first to determine the graphene cohesive energies for PW-LDA
and GGA-PBE and compare to the previously established periodic reference values. As
said previously, we built hydrogen saturated graphene flakes of the same geometry as
in periodic graphene. The in-plane constant of PW-LDA is taken as a reference C-C
distance for all methods and clusters and we consider a set of progressively growing
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3.4 Graphene Sheet, Cluster Extrapolations

Figure 3.4: Clusters used in the present graphene calculations.

clusters starting from benzene to a flake of 120 atoms (C and H) as shown in Figure
(3.4).
Fig. (3.5) shows the computed data as obtained from Eq. (3.3), and using a C[min+2s2p3
d4f ] H[min+2s2p] basis set, called ”t1+f”. The values obtained for larger basis sets lie
on parallel lines to the ones shown in Fig. (3.5) and on the scale of Fig. (3.5) they
are essentially superimposed on the lines shown. The fact that calculated values lie on
the fitted linear curve shows how rapidly the ECH contribution per atom in Eq. (3.3)
converges to a constant value for a given method.
In table (A.1) in Appendix A.3.1 we compile the extrapolated cohesive energies using
different basis sets and different linear regressions, i.e. we considered different sets of
cluster sizes that are used in the least-square fit. We also compare the difference between
the cohesive energies computed with PW-LDA and GGA-PBE and obtain an absolute
error that is smaller with respect to the periodic calculations than for PW-LDA and
GGA-PBE separately. If we neglect the results for the smallest clusters (primarily ”6
C”) the accuracy of the bulk limit with respect to the known periodic case further im-
proves for both PW-LDA and GGA, and in the (PW-LDA - GGA-PBE) difference the
extrapolated value lies now within ±10 meV/atom of the periodic reference value.

3.4.2 The PBEsol Functional

As a further test we calculate the cohesive energy extrapolation from clusters shown in
Fig. (3.3) using the PBEsol DFT functional. The geometries considered are the same as
employed in the previous section, and we considered again the same progressively growing
clusters up to 120 atoms. Fig. (3.6) shows the computed extrapolated data at the ”t1+f”
basis set level. For the PBEsol DFT functional the values obtained for different basis sets
lie on parallel lines, superimposed at the scale shown in such a figure. In Table (A.2) in
Appendix A.3.2 we show the results obtained using different linear extrapolation ranges
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Figure 3.5: Convergence of PW-LDA and GGA-PBE extrapolated cohesive energies for

graphene taken at an in-plane lattice constant a = 2, 446 Å. The intercepts with the ordinates
represent the bulk limit extrapolation. Dashed lines represent the linear regressions and dotted
lines the periodic reference values described before. The labels at every point correspond to the
number of carbon atoms in the corresponding cluster, starting at benzene (labelled ”6 C”, cf.
Fig. (3.4)).

and using progressively growing basis sets. Again, the behaviour of the cohesive energy
with respect to the basis set size and clusters range appears very similar to the behaviour
already discussed in the previous section for PW-LDA and GGA-PBE functionals, and
the same conclusions are therefore valid. In particular the energy differences among two
different methods are more accurate (within 10 meV/atom) with respect to the periodic
calculations.
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Figure 3.6: Convergence of PBEsol extrapolated cohesive energy for graphene taken at an

in-plane lattice constant a = 2, 446 Å. The intercepts with the ordinates represent the bulk
limit extrapolation. Dashed lines represent the linear regressions and dotted lines the periodic
reference values described before. The labels at every point correspond to the number of carbon
atoms in the corresponding cluster, starting at benzene (labelled ”6 C”, cf. Fig. (3.4)).

3.4.3 The PBE+vdW Functional

We validate the cluster extrapolation approach also with the PBE+vdW van der Waals
correction scheme184. We compute all clusters with the same settings as in the previous
sections. In Fig. (3.7) we show the extrapolated data at at ”t1+f” basis set level, since
different basis sets data lie on parallel lines superimposed at such a scale. The behaviour
of the PBE+vdW functional with respect to clusters size and basis set convergence is
fairly similar to the other functionals previously employed. Again, in Table (A.3) we
report the results obtained for the most accurate basis sets and as for PW-LDA and
GGA-PBE DFT functionals, results are converged at meV/atom level. The difference
in cohesive energy between DFT local and semi-local functionals and PBE+vdW func-
tionals are more precise then the results obtained using one functional, and values lie
within 10 meV/atom from values obtained from periodic calculations.
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Figure 3.7: Convergence of PBE+vdW extrapolated cohesive energy for graphene taken at

an in-plane lattice constant a = 2, 446 Å. The intercepts with the ordinates represent the bulk
limit extrapolation. Dashed lines represent the linear regressions and dotted lines the periodic
reference values described before. The labels at every point correspond to the number of carbon
atoms in the corresponding cluster, starting at benzene (labelled ”6 C”, cf. Fig. (3.4)).

3.4.4 The MP2 Method

Having demonstrated the feasibility of our approach for DFT we consider the MP2
method. Now the atomic reference values have also been corrected with the counterpoise
correction method (BSSE-CP)22, which is not necessary for DFT functionals, according
to the settings and basis sets applied. In Figure (3.8) we plot the extrapolated cohesive
energies using different basis sets. The cohesive energies lie on the fitted linear curve
with good approximation. Moreover different basis sets provide parallel lines like in the
DFT case. In Table (A.4) in Appendix A.3.4 we show the extrapolated cohesive energies
corresponding to the ”t1+f”, ”sb”, ”t2”, ”t3”, ”t4C” and ”t4Cp”basis sets, setting product
basis threshold to 4 (3 for hydrogens) and basis set product cut-off threshold of 10−4

(10−3 for largest clusters and basis sets). The variation among different sets of clusters
are again very small and particularly in the difference to one of the DFT functionals
we obtain extrapolated values that scatter only within ±20 meV/atom. For the DFT
functionals the ”t3”, ”t4C” and ”t4Cp” basis sets are converged at the sub-meV/atom
level. However, as expected, the convergence of the MP2 value with basis set size is
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3.4 Graphene Sheet, Cluster Extrapolations

much slower than in the case of the DFT functionals, and it is monotonically reached
at the ”t4C” basis set level. Tentatively, we therefore assign a conservative error bar of
∼ 0.06 eV/atom to the ”t4Cp”values (accounting for extrapolation) and quote the latter
as the final result.
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Figure 3.8: Convergence of MP2 extrapolated cohesive energy for graphene taken at a = 2, 446

Å and starting from benzene (labelled ”6 C”). The intercepts with the ordinates represent the
bulk limit extrapolation. The dashed lines represent the linear regressions.
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3.4.5 The RPA method

We consider next the RPA method42,101. The atomic references have been corrected,
as before, with the counterpoise correction method (BSSE-CP)22. Fig. (3.9) shows
the linear regressions for ”t1+f”, ”sb”, ”t2”, ”t3”, ”t4C” and ”t4Cp” basis sets and with
the following parameters: number of basis set products are set to 4 (3 for hydrogens),
basis set product cut-off threshold set to 10−4 and frequency points set to 80. RPA
calculations are based on PW-LDA, and for such a reason atomic references have to
be computed in the same way as for DFT, i.e. introducing an electric field or doing a
preliminary Hartree-Fock calculation. In Fig. (3.9) we show the extrapolated cohesive
energy for different basis sets. Also in this case the curves are linear and parallel. In
Table (A.5) in Appendix A.3.5 we compile the results for different extrapolations and
basis sets. The differences in each clusters’ set are reduced when energy differences with
the other methods are taken into account. The convergence with respect to the basis set
size is again slow and it is essentially reached at the t4C level. We assign a similar error
bar as for MP2 of 0, 06 eV/atom, which takes account of the extrapolations.
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Figure 3.9: Convergence of RPA extrapolated cohesive energy for graphene taken at a = 2, 446

Å and starting from benzene (labelled ”6 C”). The intercepts with the ordinates represent the
bulk limit extrapolation. The dashed lines represent the linear regressions.
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3.4.6 The RPA+ method

Finally we consider the RPA+ method94. This method is based on exactly the same
computational framework of RPA, so that we do not need further parameters or con-
ditions in principle: number of basis set products are set to 4 (3 for hydrogens) and
frequency points are set to 80, basis set product cut-off threshold is set to 10−4. In Fig.
(3.10) we demonstrate that the extrapolated cohesive energy curves for different basis
sets are linear and parallel. In Table (A.6) in Appendix A.3.6 we show the results for
various extrapolation ranges and basis sets. Again the differences for each cluster set
with other DFT functionals improves the overall accuracy of the cohesive energy extrap-
olations. The convergence with respect to the basis set size is slow and is reached at the
t4C level. We assign again an error bar of 0, 06 eV/atom which takes into account the
extrapolation error bars.
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Figure 3.10: Convergence of RPA+ extrapolated cohesive energy for graphene taken at a =

2, 446 Å and starting from benzene (labelled ”6 C”). The intercepts with the ordinates represent
the bulk limit extrapolation. The dashed lines represent the linear regressions.
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3.4.7 Summary of the Results for Graphene

We summarise all extrapolation results for this isolated graphene sheet in Table (3.4)
and Figure (3.11). For the comparison to the periodic reference values and to assess the
wavefunction methods’ results one has to keep in mind that the cluster extrapolation was
only done for all methods at the fixed in-plane lattice constant of the PW-LDA periodic
calculations, a = 2, 446 Å. While it would, of course, be possible to do the cluster
extrapolation at different lattice constants to obtain the equation of state, the similarity
of the optimized periodic PW-LDA, GGA-PBE, PBEsol and PBE+vdW in-plane lattice
constants, c.f. Table (3.1), should already now permit the intended proof-of-concept.
Moreover, as to the MP2 and RPA/RPA+ extrapolations, we repeated an extrapolation
using the cluster size range ”6 C - 54 C” and the ”sb” basis set at the experimental in-
plane constant a = 2, 461 Å129,187 and obtained a shift at the meV level in the cohesive
energy compared to the extrapolation results obtained with the same settings at the PW-
LDA in-plane lattice constant a = 2, 446 Å. As long as the real MP2 and RPA/RPA+
optimized lattice constants are not too far from these values, the energetic hierarchy
seen in Table (3.4) will thus prevail.
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Figure 3.11: Comparison of regression curves for different chemical methods for graphene at

in-plane distance a = 2, 446 Å starting from benzene (bottom left points). Dotted lines represent
the periodic calculation reference values and dashed lines the linear regressions. The intercepts
with the ordinates represent the bulk limit extrapolations. Calculations shown here are computed
with the ”t3” basis set for DFT functionals and the ”t4C” basis set for the MP2, RPA, RPA+
methods.
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Table 3.4: Cohesive energy extrapolations compared with periodic calculations when available.
For GGA-PBE, PBEsol, PBE+vdW and wavefunction methods also the difference of the extrap-
olations with respect to the other methods are considered. The basis set used corresponds to the
converged ”t3” basis set for the DFT functionals applied and the ”t4Cp” for the wavefunction
methods. The error is estimated from the basis set convergence behaviour and extrapolation
scatter observable from the corresponding tables in the Appendix.

Ecoh (eV/atom) method

8,90 ±0, 03 PW-LDA extrapolated
8,92 PW-LDA periodic

7,84 ±0, 03 GGA-PBE extrapolated
7,86 ±0, 01 GGA-PBE periodic + δPW-LDA extrapolated

7,86 GGA-PBE periodic

8,28 ±0, 03 PBEsol extrapolated
8,29 ±0, 01 PBEsol periodic + δPW-LDA extrapolated
8,28 ±0, 01 PBEsol periodic + δGGA-PBE extrapolated

7,88 ±0, 03 PBE+vdW extrapolated
7,89 ±0, 01 PBE+vdW periodic + δPW-LDA extrapolated
7,89 ±0, 01 PBE+vdW periodic + δGGA-PBE extrapolated

7,84 ±0, 06 MP2 extrapolated
7,85 ±0, 02 PW-LDA periodic + δMP2 extrapolated
7,85 ±0, 02 GGA-PBE periodic + δMP2 extrapolated
7,84 ±0, 02 PBE+vdW periodic + δMP2 extrapolated

7,11 ±0, 06 RPA extrapolated
7,12 ±0, 02 PW-LDA periodic + δRPA extrapolated
7,12 ±0, 02 GGA-PBE periodic + δRPA extrapolated
7,11 ±0, 02 PBE+vdW periodic + δRPA extrapolated

7.04 ±0, 06 RPA+ extrapolated
7.05 ±0, 02 PW-LDA periodic + δRPA+ extrapolated
7.05 ±0, 02 GGA-PBE periodic + δRPA+ extrapolated
7.04 ±0, 02 PBE+vdW periodic + δRPA+ extrapolated

∼ 7,5 Exp. (303K)62, ZPE from ref.7
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3.5 Periodic Bilayer Graphene

3.5 Periodic Bilayer Graphene

Graphene can be stacked to form graphite bulk in three different ways, namely AAA,
ABA (hexagonal graphite) and ABC (rhombohedral graphite). Graphite found in nature
exhibits mainly ABA stacking110. However, for two stacked graphene sheets we have
the choice of only AA and AB-stacking, and we undertake the study of the latter. We
proceed again as we did for graphene, i.e. we first converge the properties of interest in
the periodic systems using the DFT functionals and then we compare the results to the
DFT cluster extrapolation. We consider first the cohesive energy and then the binding
energy per atom.
Two definitions are given about the interactions between graphene sheets: the exfolia-

tion energy, i.e. the energy required to remove a layer from graphite surface, and the
binding energy, which is the energy required to bring each layer infinitely far away. Of
the two notions we will focus on the binding energy and we will apply the definition used
for molecules, and mainly in literature, as the difference in total energies of the entire
systems minus the total energy of each layer. We note that sometimes in literature this
quantity is simply written as the difference between the cohesive energies per atom of
the graphitic systems and graphene, i.e. exactly half of what we will call in our work
binding energy. In summary, the cohesive energy is defined as in the graphene case, i.e.

Ecoh - AB =
Etot

NC
− EC, (3.4)

where NC is the number of carbon atoms in the supercell of energy Etot and EC the
energy of the isolated spin-polarized carbon atom in the 3P0 ground state. The binding
energy per atom, or interaction energy, is defined in this study as the difference of the
cohesive energy of two stacked graphene sheets (AB) and two single sheets of graphene
(monomer):

Ebind - AB = 2(Ecoh - AB − Ecoh - monomer). (3.5)

where the two-factor takes into account the fact that cohesive energies are calculated
per atom.

3.5.1 The LDA and GGA-PBE Functionals

In Appendix A.4.1 we describe the convergence tests and conclude that the following
settings are sufficient to describe cohesive and binding energies at a high accuracy, i.e.
the sub-meV/atom level: ”sb”, a (18x18x1) grid of 326 k-points in the full Brillouin zone,
25 Å vacuum and lhartree = 4.
Figure (3.12) shows the binding curves of two stacked graphene sheets as a function
of the interlayer distance obtained with this computational setup. Sample points on
the curve were also calculated with much higher converged parameters (lhartree = 6,
(24x24x1) mesh with 576 k-points in the full Brillouin zone) and the results agree at
the order of the 1 meV/atom for cohesive and at the sub-meV/atom level for binding
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energy. In Table (3.5) we summarise the results obtained and compare with literature
and experiment.
As in the graphene case, the GGA-PBE cohesive energy is closer to the experimental
value. However, its binding energy is very small and the interlayer distance is too large.
PW-LDA, because of error cancellation133, gives also for the graphite case geometric
constants close to experiments, but cohesive energies that are rather far from the exper-
imental values. This behaviour of local and semi-local functionals with respect to the
graphite binding energy is consistent with what is already described in literature (see
Table (3.5)), i.e. LDA tends to underbind, but GGA-PBE tends to overcorrect LDA.
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Figure 3.12: Binding energy between the stacked sheets as a function of the interlayer constant
c. Shown are data for PW-LDA and GGA-PBE at optimized graphene in-plane equilibrium
distances (see Table (3.1)) and using the ”sb” basis set and (18x18x1) k-points.
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Table 3.5: Comparison of the computed graphite AB bilayer interlayer distances (c), cohe-
sive energies (Ecoh) and binding energies (Ebind) per atom with existing DFT literature and
experiment. The ZPE correction is estimated for the cohesive energy as in Table (3.1).

c (Å) Ecoh (eV/atom) Ebind (eV/atom) DFT method

3,32 8,93 0,026 PW-LDA (this work)
3,32 8,90 0,028 PW-LDA (PP)64

3,436 8,60 0,060 HL-LDA (LCGTO-FF)186

3,33 8,78 0,024 PZ-LDA (PP)145

4,27 7,87 ∼ 0, 002 GGA-PBE (this work)
∼ 4,5 7,87 ∼ 0, 002 GGA-PBE (PP)64

∼ 4,45 7,72 ∼ 0, 002 GGA-PBE (PP)145

3,35 6,88 Increments (SCF/MRCI)149,177

3,35 7,54-7,56 0,054 Exp. (303K)186,
ZPE from ref.7

3,35 Exp. (293 K)40,187
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3.5.2 The PBEsol Functional

Using the optimized parameters (see Appendix A.4.2) we show in Fig. (3.13) the binding
curve of two stacked graphene sheets for the PBEsol functional compared to PW-LDA
and in Table (3.6) we report the results compared to literature and experimental val-
ues. Both curves have been interpolated with cubic splines. The PBEsol functional
shows better agreement with experimental values regarding the equilibrium distances,
but worse cohesive energies. The binding energy at equilibrium distance is still strongly
underestimated compared to experiment.
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Figure 3.13: Binding energy between the stacked sheets as a function of the interlayer constant
c. Shown are data for PW-LDA and PBEsol at optimized graphene in-plane equilibrium distances
(see Table (3.1)) and using the ”sb” basis set and (18x18x1) k-points.
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Table 3.6: Comparison of the computed graphite AB-stacked graphene interlayer distances (c),
cohesive energies (Ecoh) and binding energies (Ebind) per atom with experimental values. The
ZPE correction is estimated for the cohesive energy as in Table (3.1).

c (Å) Ecoh (eV/atom) Ebind (eV/atom) DFT method

3,32 8,93 0,026 PW-LDA (this work)
4,27 7,87 ∼ 0,002 GGA-PBE (this work)

3,65 8,30 ∼ 0, 002 PBEsol (this work)

3,35 6,88 Increments (SCF/MRCI)149,177

3,35 7,54-7,56 0,054 Exp. (303K)186,
ZPE from ref.7

3,35 Exp. (293 K)40,187
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3.5.3 The PBE+vdW Functional

Fig. (3.14) shows the binding energy curves interpolated using cubic splines (see Ap-
pendix A.4.3 for convergence tests) between two AB-stacked graphene sheets for the
PBE+vdW method compared to the underlying GGA-PBE functional. In Table (3.7)
results are compared to other ab-initio calculations and experiment. Equilibrium geome-
tries are in very good agreement with experiment and cohesive energies are slightly worse
then the underlying GGA-PBE functional. On the other hand van der Waals forces are
partly overestimated.
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Figure 3.14: Binding energy between the stacked sheets as a function of the interlayer constant
c. Shown are data for GGA-PBE and PBE+vdW at optimized graphene in-plane equilibrium
distances (see Table (3.1)) and using the ”sb” basis set and (18x18x1) k-points.
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Table 3.7: Comparison of the computed graphite AB-stacked graphene interlayer distances (c),
cohesive energies (Ecoh) and binding energies (Ebind) per atom with experimental values. The
ZPE correction is estimated for the cohesive energy as in Table (3.1).

c (Å) Ecoh (eV/atom) Ebind (eV/atom) DFT method

3,32 8,93 0,026 PW-LDA (this work)
4,27 7,87 ∼ 0,002 GGA-PBE (this work)

3,65 8,30 ∼ 0, 002 PBEsol (this work)

3,36 7,95 0,074 PBE+vdW (this work)

3,35 6,88 Increments (SCF/MRCI)149,177

3,35 7,54-7,56 0,054 Exp. (303K)186,
ZPE from ref.7

3,35 Exp. (293 K)40,187
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3.6 Bilayer Graphene, Cluster Extrapolations

Two graphene sheets, and more in general non covalently stacked systems, interact
weakly84. We can then make the hypothesis that at ”stacking” distances close or larger
than the equilibrium distance, border effects of finite flakes can be treated in the same
way as for the monomers. This means that we consider border effects in the same way
as for one graphene sheet, and apply the equation (3.3) to calculate the extrapolated
cohesive energies per atom.
In Fig. (3.15) we show the clusters used to model the AB-stacking of hexagonal graphite
at the equilibrium PW-LDA in-plane constant a = 2, 446 Å and at the experimental in-
terlayer distance of c = 3, 35 Å. The flakes are chosen to avoid open shell -or unsaturated-
systems, i.e. we have constructed the clusters’ geometries such as to have an even number
of carbon and hydrogen atoms in both monomers.

Figure 3.15: Clusters used in the present graphitic calculations.

3.6.1 The LDA and GGA-PBE Functionals

Fig. (3.16) shows the computed data as obtained from Eq. (3.3), and using a C[min+2s2p
3d4f ] H[min+2s2p] basis set, called ”t1+f”. The values obtained for larger basis sets lie
on parallel lines to the ones shown in Fig. (3.16) and on the scale of Fig. (3.16) they
are superimposed on the lines shown. As in the graphene case the fact that calculated
values lie on the fitted linear curve shows how rapidly the ECH contribution per atom
in Eq. (3.3) converges to a constant value for the chosen method.

In Table (A.7) in Appendix A.5.1 we compile the extrapolated cohesive energies using
progressively growing basis sets and different linear regressions, i.e. we considered dif-
ferent sets of cluster sizes that are used in the least-square fit. As for the graphene case,
we compare the difference between the cohesive energies computed with PW-LDA and
GGA-PBE. If we neglect the results for the smallest clusters the accuracy of the bulk limit
with respect to the known periodic case further improves for both PW-LDA and GGA,
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Figure 3.16: Convergence of PW-LDA and GGA-PBE extrapolated cohesive energies for two

stacked graphene sheets taken at in-plane lattice constant a = 2, 446 Å and interlayer constant
c = 3, 35 Å. The intercepts with the ordinates represent the bulk limit extrapolation. Dashed lines
represent the linear regressions and dotted lines the periodic reference values described before.
The labels at every point correspond to the number of carbon atoms in the corresponding cluster,
starting at the benzene dimer (labelled ”12 C”, cf. Fig. (3.15) ).

and particularly in the difference the extrapolated values are within ±10 meV/atom of
the periodic reference when smallest clusters are excluded. We also observe a conver-
gence behaviour with basis set size similar to the graphene case, and conclude that the
”sb” values are essentially converged.
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We now additionally apply the same extrapolation procedure to the binding energy.
Figure (3.17) shows the corresponding data as obtained from Eq. (3.5), and using the
”t1+f” basis set. The values obtained for larger basis sets are on this scale essentially
superimposed on the curves shown.
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Figure 3.17: Convergence of PW-LDA and GGA-PBE extrapolated binding energies for two

stacked graphene sheets taken at an in-plane lattice constant a = 2, 446 Å and interlayer constant
c = 3, 35 Å. The intercepts with the ordinates represent the bulk limit extrapolation. Dashed lines
represent the linear regressions and dotted lines the periodic reference values described before.
The labels at every point correspond to the number of carbon atoms in the corresponding cluster,
starting at the benzene dimer (labelled ”12 C”).

In Table (A.8) in Appendix A.5.1 we show the extrapolated binding energies using dif-
ferent basis sets and different linear regressions. We also compare the difference between
the binding energies computed with PW-LDA and GGA-PBE functionals. Already for
interpolations including only the smallest clusters the accuracy of the bulk limit with
respect to the known periodic cases is about 2 meV for both PW-LDA and GGA, except
for the smallest ranges of cluster sizes. Since the binding energy is very small, in the
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comparisons shown in Table (A.8) we use very fine parameters, a (24x24x1) grid with
576 points in the full Brillouin zone and lhartree = 6 and a large vacuum of 25 Å for
the periodic reference values. Unlike in the cohesive energy case, the energy differences
among the two DFT functionals applied in this study do not provide any further im-
provements. Intriguingly, the extrapolation procedure is applicable even for the GGA
which does not bind at the considered intersheet distance.

3.6.2 The PBEsol Functional

Similarly to what we have done in the previous section, we employ now the PBEsol func-
tional to determine the cluster extrapolations. Fig. (3.18) shows the cohesive energies
computed using Eq. (3.3) for ”t1+f” basis set. Since values for more precise basis sets
provide superimposed parallel lines at such a scale, they have been omitted. Again values
lie with a good approximation on the fitted linear curves. In Table (A.9) in Appendix
A.5.2 we compile the different extrapolations using different ranges of clusters. Again
the difference with respect to the periodic calculations of ECH lie within ±10 meV/atom
when smallest clusters are excluded in extrapolations.
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Figure 3.18: Convergence of PBEsol extrapolated cohesive energies for two stacked graphene

sheets taken at in-plane lattice constant a = 2, 446 Å and interlayer constant c = 3, 35 Å. The
intercepts with the ordinates represent the bulk limit extrapolation. Dashed lines represent the
linear regressions and dotted lines the periodic reference values described before. The labels at
every point correspond to the number of carbon atoms in the corresponding cluster, starting at
the benzene dimer (labelled ”12 C”, cf. Fig. (3.15) ).
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3.6 Bilayer Graphene, Cluster Extrapolations

Furthermore we compute the binding energy with Eq. (3.5) and results are shown in Fig.
(3.19). In Table (A.10) in Appendix A.5.2 data are compiled with all extrapolations.
Again values lie on linear curves as we can see from the figure and data scatter in the
table.
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Figure 3.19: Convergence of PBEsol extrapolated binding energy for two stacked graphene

sheets taken at an in-plane lattice constant a = 2, 446 Å and interlayer constant c = 3, 35 Å. The
intercepts with the ordinates represent the bulk limit extrapolation. Dashed lines represent the
linear regressions and dotted lines the periodic reference values described before. The labels at
every point correspond to the number of carbon atoms in the corresponding cluster, starting at
the benzene dimer (labelled ”12 C”).
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3.6.3 The PBE+vdW Functional

So far we demonstrated our approach for graphene’s cohesive energy using various ab-
initio techniques, we then have evaluated graphite cohesive and binding energy for dif-
ferent DFT functionals. We proceed now to evaluate the dispersion forces contribution
to the binding energy in bilayer graphene. Settings are alike to what was used in previ-
ous sections. In Fig. (3.20) are shown the extrapolation data and linear fitting for the
cohesive energy using a ”t1+f”basis set and the PBE+vdW functional. All basis sets are
superimposed at this scale and for such a reason they are not shown in figure. In Table
(A.11) in Appendix A.5.3 we report the extrapolations for different ranges of clusters,
and the same conclusions are valid as for the other DFT functionals.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
N

H
/b

-15

-14.5

-14

-13.5

-13

-12.5

-12

-11.5

-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

-7

E
co

h +
 E

C
H

N
H
/b

   
 -

  e
V

/a
to

m

12 C

20 C

28 C
32 C

40 C
48 C

108 C
64 C

192 C

Figure 3.20: Convergence of PBE+vdW extrapolated cohesive energies for two stacked

graphene sheets taken at in-plane lattice constant a = 2, 446 Å and interlayer constant c = 3, 35
Å. The intercepts with the ordinates represent the bulk limit extrapolation. Dashed lines repre-
sent the linear regressions and dotted lines the periodic reference values described before. The
labels at every point correspond to the number of carbon atoms in the corresponding cluster,
starting at the benzene dimer (labelled ”12 C”, cf. Fig. (3.15) ).
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3.6 Bilayer Graphene, Cluster Extrapolations

Applying the same procedure to the binding energy we obtain values lying, with good
approximation, on linear curves, as shown in Fig. (3.21). We notice that adding the
dispersion correction to the PBE functional provides an increase of the slope of the linear
regression in Fig. (3.21). This slope is small for local and semi-local DFT functionals
because they do not have any long-range dispersion contribution except the contributions
coming from exchange-correlation. In Table (A.12) in Appendix A.5.3 we report the
extrapolations using different basis and clusters sets, confirming that the data scatter is
relatively small.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
N

H
/b

-90

-85

-80

-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

B
in

di
ng

 E
ne

rg
y 

- 
 m

eV
/a

to
m

12 C

20 C

32 C
40 C

28 C

48 C
64 C

108 C

192 C

Figure 3.21: Convergence of PBE+vdW extrapolated binding energy for two stacked graphene

sheets taken at an in-plane lattice constant a = 2, 446 Å and interlayer constant c = 3, 35 Å. The
intercepts with the ordinates represent the bulk limit extrapolation. Dashed lines represent the
linear regressions and dotted lines the periodic reference values described before. The labels at
every point correspond to the number of carbon atoms in the corresponding cluster, starting at
the benzene dimer (labelled ”12 C”).
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3.6.4 The MP2 Method

Having demonstrated the feasibility of our approach for DFT functionals, we now con-
sider the MP2 method. In Fig. (3.22) we plot the extrapolated cohesive energies using
different basis sets. Since for MP2 the basis set superposition is relatively large, we have
corrected the total energies of the flakes with the interlayer counterpoise BSSE22, and
we have then applied the same BSSE-corrected free atom references previously used for
the graphene flakes. The cohesive energies lie again on fitted linear curves with good
approximation. Moreover different basis sets provide parallel lines like in the DFT case.
In Table (A.13) in Appendix A.5.4 we show the extrapolated cohesive energy as obtained
with the ”t1+f”, ”sb”, ”t2”, ”t3” and ”t4C” basis sets, setting product basis threshold to
4 (3 for hydrogens) and basis set product cut-off threshold of 10−4 (10−3 for largest
clusters and basis sets). For the largest basis sets available (”t3”, ”t4C” and ”t4Cp”) we
have not been able to compute the largest clusters. Unfortunately, calculations at the
”t4Cp” basis set level could also not be performed up to sufficiently large cluster sizes
to dare make a safe extrapolation. However the behaviour of the cohesive energy as a
function of the basis set is similar to the graphene case. At the smaller basis sets where
larger clusters could be computed, we again obtain extrapolated values for the cohesive
energy that depend little on the range of cluster sizes included in the fit. A reliable
extrapolation is even obtained when using only the restricted cluster range up to ”40
C”, i.e. forty C atoms in the cluster, that is available at the ”t4C” level, in particular in
the difference to DFT functionals. From the extrapolations compiled in Table (A.13) in
Appendix A.5.4 we therefore estimate that the extrapolated value at the ”t4C” level still
has an uncertainty of 0.06 eV/atom due to the extrapolation procedure. In Fig. (3.23)
we summarise the comparison among DFT methods and MP2 (using ”t4C” basis set).
We can see how the curves are relatively parallel one to each other, showing that the
short range physics is captured in the same way by all DFT functionals and the MP2
method.
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Figure 3.22: Convergence of MP2 extrapolated cohesive energy for two stacked graphene sheets

taken at the in-plane constant a = 2, 446 Å and interlayer constant c = 3, 35 Å starting from
benzene dimer (labelled ”12 C”). The intercepts with the ordinates represent the bulk limit
extrapolation. The dashed lines represent the linear regressions.
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Figure 3.23: Summary of regression curves for the cohesive energy of two stacked graphene

sheets at a = 2, 446 Å, c = 3, 35 Å, starting from the benzene dimer (bottom right points). Dotted
line represents the periodic calculations, and dashed lines the linear regressions. The basis set
considered are the converged ”t2” for DFT functionals and ”t4C” for the MP2 method. The ZPE
corrected experimental value of about −7, 54 eV/atom is shown for comparison. PBE+vdW
method is not shown because the relative curve is superimposed on the GGA-PBE and MP2
curves at such a scale.
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3.6 Bilayer Graphene, Cluster Extrapolations

As the next step, we proceed to the extrapolation of the MP2 binding energy. All
monomers have been corrected with the counterpoise correction method22 as usual. In
Table (A.14) in Appendix A.5.4 we show the results obtained using different basis sets,
namely ”t1+f”, ”sb”, ”t2”, ”t3”and ”t4C”. The scatter of the extrapolated binding energies
when using different cluster size ranges is few meV/atom for both the MP2 method and
its differences with respect to the DFT functionals. Considering the restricted size range
available this is rather remarkable. In Fig. (3.24) we show the computed data as obtained
from Eq. (3.5), and using different basis sets, namely ”t1+f”, ”sb”, ”t2”, ”t3”, ”t4C” and
”t4Cp”. As expected, the convergence with basis set size is slower than for the DFT
methods. For the ”t3” basis set data for the smallest six clusters are available, which
thus allows a safe extrapolation for the range of clusters up to ”12 C - 48 C”. For the
”t4C” and ”t4Cp” basis sets only the five and four smallest clusters, respectively, can be
computed. However, for such clusters, the binding energy obtained for the ”t3” basis
set is converged at the sub-meV/atom level with respect to the ”t4C” basis set and the
largest basis set available ”t4Cp”. Nevertheless, taking this value and all the data in
Table (A.14) we see that the largest limitation is the extrapolation. From the data
scatter in the table we conclude on an estimated error of about 4 meV/atom. In Fig.
(3.25), we summarise the comparison among the DFT methods and MP2 again, and
conclude again that the extrapolation approach is well applicable.
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Figure 3.24: Convergence of MP2 extrapolated binding energy for two stacked graphene sheets

taken at the in-plane constant a = 2, 446 Å and interlayer constant c = 3, 35 Å starting from
the benzene dimer (labelled ”12 C”). The intercepts with the ordinates represent the bulk limit
extrapolation. The dashed lines represent the linear regression.
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Figure 3.25: Summary of the regression curves for the binding energy between two stacked
graphene sheets and for different methods, using the converged ”t2”basis set for DFT functionals
and the ”t4C” basis set for wavefunction methods. Geometries are taken at in-plane constant
a = 2, 446 Å and interlayer constant c = 3, 35 Å, starting from the benzene dimer (bottom right
points). Dotted line represents the periodic calculations, and dashed lines the linear regressions.
The experimental range taken from reference197 is shown for comparison.
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3.6.5 The RPA method

In addition we apply the RPA method. In Fig. (3.26) we show the extrapolated cohesive
energy for different basis sets, i.e. ”t1+f”, ”sb”, ”t2”, ”t3”, ”t4C” and ”t4Cp”, number of
basis set products are set to 4 (3 for hydrogens), frequency points are set to 80 and
basis set product cut-off threshold is set to 10−4. As in all previous cases the flakes
interlayer total energies have been corrected with the counterpoise correction method
(CP-BSSE)22, and we have applied the same atomic reference as for the graphene flakes.
For the RPA method all regression curves lie parallel to each other, and we notice how the
computational requirements are rather similar to the MP2 method. Hence the sizes of
the permissible clusters which can be computed are similar, even though, at the present
level of implementation, MP2 and RPA methods scale like the fifth and fourth power
with respect to the number of basis functions, respectively. However, the code is efficient
and basis sets are still relatively small so that clusters are not large enough to clearly
exploit such a behaviour. This is due to the memory requirements of the underlying
calculations of the exact exchange, prior to MP2 and RPA calculations.
Table (A.15) in Appendix A.5.5 shows the extrapolated cohesive energy as obtained with
the ”t1+f”, ”sb”, ”t2”, ”t3” and ”t4C” basis sets. For the largest basis sets available (”t3”,
”t4C” and ”t4Cp”) we have not been able to compute the largest clusters. Unfortunately,
calculations at the ”t4Cp” basis set level could also not be performed up to sufficiently
large cluster sizes to dare make a safe extrapolation. However the behaviour of the
cohesive energy as a function of the basis set size is similar to what was already observed
in the graphene case.
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Figure 3.26: Convergence of RPA extrapolated cohesive energy for two stacked graphene sheets

taken at the in-plane constant a = 2, 446 Å and interlayer constant c = 3, 35 Å starting from
the benzene dimer (labelled ”12 C”). The intercepts with the ordinates represent the bulk limit
extrapolation. The dashed lines represent the linear regressions.
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In Fig. (3.27) we summarise the results for the cohesive energies with the RPA method.
Again the curves are relatively parallel one to each other, as in all previous cases, and this
behaviour is due to the dominance of the short range interactions for what concerns the
cohesive energy, as we can see in the figure. Moreover, while GGA-PBE and PBE+vdW
functionals and the MP2 method tend to overestimate the cohesive energy, the RPA
method is prone to underestimate it.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
N

H
/b

-15

-14.5

-14

-13.5

-13

-12.5

-12

-11.5

-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

-7

E
co

h +
 E

C
H

N
H
/b

   
 -

  e
V

/a
to

m

PW-LDA
PBE
MP2
RPA
Exp

12 C

20 C

28 C
32 C

40 C
48 C

64 C

108 C

192 C

Figure 3.27: Summary of regression curves for the cohesive energy of two stacked graphene

sheets at a = 2, 446 Å, c = 3, 35 Å, starting from the benzene dimer (bottom right points).
Dotted line represents the periodic calculations, and dashed lines the linear regressions. The basis
sets considered are the converged ”t2” for DFT functionals and ”t4C” for wavefunction methods.
The ZPE corrected experimental value of about −7, 54 eV/atom is shown for comparison. The
PBE+vdW method is not shown because the curve is superimposed on the GGA-PBE and MP2
curves at this scale.
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Once proven the reliability of our approach for RPA cohesive energies, we employ it
additionally to evaluate the interlayer interaction. Fig. (3.28) shows the regression
curves of the calculated binding energy for all basis sets. The calculations are performed
using the interlayer CP-BSSE counterpoise correction 22. As expected all curves lie
parallel to each other also for the RPA method. Table (A.16) in Appendix A.5.5 shows
the results for different regressions with respect to different basis sets, i.e. ”t1+f”, ”sb”,
”t2”, ”t3”, ”t4C” and ”t4Cp”, where the number of basis set products are set to 4 (3 for
hydrogens), frequency points are set to 80 and basis set product cut-off threshold is set
to 10−4. The convergence of the binding energy with respect to the basis set in this
case is slightly worse than for the MP2 method, and the ”t3” basis set is converged at
the meV/atom level. With the RPA method only few clusters can be calculated with
the larger basis sets, i.e. ”t4C” and ”t4Cp”. From the data scatter in Table (A.16), we
conclude on an error of about 4 meV/atom.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
N

H
/b

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

B
in

di
ng

 E
ne

rg
y 

- 
m

eV
/a

to
m

t1+f
t2
sb
t3
t4C
t4Cp

12 C

20 C
28 C32 C40 C

48 C
64 C

Figure 3.28: Convergence of RPA extrapolated binding energy for two stacked graphene sheets

taken at the in-plane constant a = 2, 446 Å and interlayer constant c = 3, 35 Å starting from
the benzene dimer (labelled ”12 C”). The dashed lines represent the linear regression.
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In Fig. (3.29) we summarise the results for the RPA binding energy compared to
the other ab-initio methods. The slope of the RPA curve is relatively similar to the
PBE+vdW method, indicating a similar dispersion interaction contribution. The RPA
method recovers the correct correlation energy in the limit of infinite distances, hence it
may be used as an additional proof of the reliability of the PBE+vdW method.
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Figure 3.29: Summary of the regression curves for the binding energy between two stacked
graphene sheets and for different methods, using the ”t2” basis set for DFT functionals and the
”t4C” basis set for wavefunction methods. Geometries are taken at in-plane constant a = 2, 446
Å and interlayer constant c = 3, 35 Å, starting from the benzene dimer (bottom right points).
Dotted line represents the periodic calculations, and dashed lines the linear regressions. The
experimental range taken from reference197 is shown for comparison.
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3.6.6 The RPA+ Method

Finally we calculate the RPA+ approximation to evaluate the effect on cohesive and
binding energy of AB-stacked graphene with the introduction of PW-LDA DFT short
range correlation.
The computational settings are exactly as for RPA method. Also the behaviour of the
energies with respect to the cluster sizes and basis sets is absolutely comparable. We
show in Fig. (3.30) the extrapolated cohesive energy and we compile the data in Table
(A.17) in Appendix A.5.6.
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Figure 3.30: Convergence of RPA+ extrapolated cohesive energy for two stacked graphene

sheets taken at the in-plane constant a = 2, 446 Å and interlayer constant c = 3, 35 Å starting
from benzene dimer (labelled ”12 C”). The intercepts with the ordinates represent the bulk limit
extrapolation. The dashed lines represent the linear regressions.
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In Fig. (3.31) we compare our new findings on the cohesive energy with the previous
results using other ab-initio methods, such as DFT, MP2 and RPA. The RPA+ method
shows a slighlty more repulsive behaviour with respect to the RPA method. Moreover
it does not provide any substantial improvement with respect to the RPA method. The
effect of the short range correlation coming from underlying DFT calculations is thus
relatively small.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
N

H
/b

-15

-14.5

-14

-13.5

-13

-12.5

-12

-11.5

-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

-7

E
co

h +
 E

C
H

N
H
/b

   
 -

  e
V

/a
to

m

PW-LDA
PBE
MP2
RPA
RPA+
Exp

12 C

20 C

28 C
32 C

40 C
48 C

64 C

108 C

192 C

Figure 3.31: Summary of regression curves for the cohesive energy of two stacked graphene

sheets at a = 2, 446 Å, c = 3, 35 Å, starting from the benzene dimer (bottom right points).
Dotted line represents the periodic calculations, and dashed lines the linear regressions. The basis
set considered are the converged ”t2” for DFT functionals and ”t4C” for wavefunction methods.
The ZPE corrected experimental value of about −7, 54 eV/atom is shown for comparison. The
PBE+vdW method is not shown because the curve is superimposed on the GGA-PBE and MP2
curves at this scale.
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Furthermore we calculate the binding energy using the RPA+ approximation. Extrap-
olations are shown in Fig. (3.32) and data are compiled in Table (A.18) in Appendix
A.5.6. From Table (A.18) we again conclude on an error of about 4 meV/atom.
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Figure 3.32: Convergence of RPA+ extrapolated binding energy for two stacked graphene

sheets taken at the in-plane constant a = 2, 446 Å and interlayer constant c = 3, 35 Å starting
from the benzene dimer (labelled ”12 C”). The intercepts with the ordinates represent the bulk
limit extrapolation. The dashed lines represent the linear regression.
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In Fig. (3.33) we summarise the results for the RPA+ binding energy compared to the
other methods. There are no major improvements to the RPA approximation, indicating
that in AB-stacked graphene the short range correlation correction provided by the
underlying calculation to the RPA+ method, has little influence on the binding energy.
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Figure 3.33: Summary of the regression curves for the binding energy between two stacked
graphene sheets and for different methods, using the converged ”t2”basis set for DFT functionals
and the ”t4C” basis set for wavefunction methods. Geometries are taken at in-plane constant
a = 2, 446 Å and interlayer constant c = 3, 35 Å, starting from the benzene dimer (bottom right
points). Dotted line represents the periodic calculations, and dashed lines the linear regressions.
The experimental range taken from reference197 is shown for comparison.
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3.6.7 Summary of the Results on Interaction Energies

Having established and validated the extrapolation approach for one specific intersheet
distance, we finally proceed to the calculation of the entire binding energy curve as
a function of the intersheet distance for all wave functions methods, i.e. MP2, RPA
and RPA+, keeping a fixed in-plane lattice constant of a = 2, 461 Å in all cases (see
discussion at the end of Section 3.4.7). For this we assume a similar validity of the
extrapolation procedure at the other distances and use the computed energetics for the
set of clusters ”12 C - 40 C” at the ”t3” basis set level (converged within 1 meV/atom
for binding energies), to obtain the extrapolated values. Figure (3.34) summarises the
obtained results, where we additionally include the binding energy curve as obtained
from the computed Hartree-Fock data (we remember the reader MP2 calculations are
based on HF) and using the same extrapolation approach.
Using cubic splines to interpolate, the minimum of the MP2 binding energy curve is at
a distance of 3, 02 Å and the binding energy is about 135 meV/atom. In the same figure
we include the results of the RPA, RPA+ calculations and the equilibrium distances are
found to be at about 3, 2 and 3, 3 Å respectively, while the binding energies are found
at about 61 and 58 meV/atom respectively.
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Figure 3.34: Binding energy curves for two stacked graphene sheets at the experimental in-

plane lattice constant a = 2, 461 Å for the wavefunction methods and the relative equilibrium
in-plane lattice constants for the DFT functionals (see table 3.4 in Section 3.4.7). Experiment
refers to data from ref. 186.
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3.6 Bilayer Graphene, Cluster Extrapolations

We summarise our results for MP2, RPA and RPA+ wavefunction methods compared
to literature and our DFT calculations in Table (3.8). Here the binding energy has been
corrected with the interlayer vibrational ZPE obtained using the ”frozen phonon”method
applied to each curve of Fig. (3.34), i.e. the fundamental frequency has been calculated
using the harmonic approximation considering only the second derivative of the binding
curves at their minimum interlayer distances. The obtained ZPE corrections are ∼ 1,
4 and 6 meV/atom for GGA-PBE, PW-LDA/PBE+vdW/RPA/RPA+ and MP2, re-
spectively. Using calculations based on the dispersion-corrected B97-D functional, ref.57

showed that adding further layers to a graphite stack affects the binding energy by a
small percentage. This suggests that it is permissible to compare our data for the two
AB-stacked graphene sheets with the experimental binding energy of graphite.
In particular, from the results obtained with PBE+vdW, MP2 and RPA/RPA+ methods
we conclude that dispersion plays a major role in determining the correct equilibrium
distance and the binding energy itself. RPA/RPA+ and PBE+vdW share similar dis-
persion contributions, thus enabling us to say that such a dispersion allows us to recover
the binding energy in the experimental range with a relatively good accuracy.
Worth of notice is the recent work of L. Spanu, S. Sorella and G. Galli175 where they cal-
culate the binding energy of graphite bulk, using the lattice regularized diffusion Monte
Carlo (LRDMC) method. Quantum Monte Carlo methods are well known to eventually
yield accurate ab-initio results. Even though the results of L. Spanu et al. are not fully
converged, with an extrapolation procedure they estimate a binding energy close to the
experiment of Zacharia et al. 197 (see Table (3.8)).
Moreover, we have undertaken a study of long range distances and asymptotics, where
energies are of the order of -or below- 1 meV/atom. However, for large distances, e.g.
over 10 Å, the linearity of the extrapolations is compromised for small clusters, so that
large clusters are required to recover the correct periodic limit. Unfortunately this is not
possible to-date for a computationally demanding methods as MP2 and RPA (RPA+
is only a short range correlation correction and it does not affect the long range of dis-
tances and the asymptotic properties as dispersion), and the asymptotes cannot yet be
determined and compared with previous analytical studies39.
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Table 3.8: AB-stacked graphene extrapolation results for interlayer distances (c), cohesive
energy (Ecoh) and binding energy (Ebind) per atom compared with periodic calculations when
available. The experimental cohesive energies are ZPE-corrected using the value from ref.7.
As the ZPE contribution to the experimental binding energy is unknown, such a correction is
not possible there. Instead, the theoretical values have been corrected by adding the ZPE as
estimated from Fig. (3.34) (see text). The error is estimated from the basis set convergence
behaviour and extrapolation scatter observable from the corresponding tables in the Appendix.

c (Å) Ecoh (eV/atom) Ebind(eV/atom) method

3,32 8,93 0,020 PW-LDA periodic (this work)

4,27 7,87 0,002 GGA-PBE periodic (this work)

3,36 7,95 0,073 ± 0,004 PBE+vdW periodic (this work)

3,02 7,91 ± 0,06 0,128 ± 0,004 MP2 (this work)

3,2 7,13 ± 0,06 0,061 ± 0,004 RPA (this work)

3,3 7,06 ± 0,06 0,058 ± 0,004 RPA+ (this work)

3,35 0,062 B97-D57

3,35 0,066 rev-PBE + vdW171

3,337 0,062 GS + vdW3+4 55

3,426 0,060 ±0, 005 LRDMC (300K) 175

3,35 7,54-7,56 Exp. (303K)115, see also ref. 186,
ZPE from ref.7

7,54 Exp (300K)133,
ZPE from ref.7

0,052 ± 0,005 Exp.197

0, 035+0,015
−0,010 Exp.17

As an additional proof of the reliability of the extrapolated van der Waals interaction
calculated at a fixed carbon-hydrogen distance, we have briefly analysed the role of the
border effects on van der Waals radii and C6 coefficients calculated using the PBE+vdW
method. We evince from such an analysis that:

i) the convergence of the binding energy with respect to the cluster size is essentially
not affected by small variations of the C-H distance.

ii) the effect of the borders with respect to the dispersion contribution is rather local-
ized.
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4 Conclusions

In many quantum chemical methods, the study of periodic systems is not straightforward
and at the present time in some cases they are restricted to non-conducting systems157.
Among these methods are the Møller-Plesset perturbation theory, the Random Phase
Approximation (RPA) and its variant RPA+. We have implemented Møller-Plesset per-
turbation theory at the second order (MP2) into our in-house code (FHI-AIMS) along
with the BSSE-CP correction method161. With the thus available computational tools
we have undertaken a study of graphene and bilayer graphene.
In order to compute bulk properties of interest, like the cohesive and binding energy and
the equilibrium geometry, as an alternative to periodic calculations we have investigated
the use of cluster extrapolations to the bulk limit. We have shown how an equation
of the type of Eq. (3.3) can be applied with good approximation to sp2-systems like
graphene and stacked graphene, thereby reducing significantly the overall computational
cost compared to studies aiming at a brute-force convergence57. For what concerns co-
hesive energies, they are computed at a similar level of accuracy for MP2, RPA/RPA+
and PBE/PBE+vdW methods.
Moreover we note that already a benzene molecule and benzene dimer, i.e. the small-
est representative clusters, lie, with a good approximation, on the fitted linear curves
regarding graphene and bilayer graphene respectively. Calculations made for π − π
stacked non-covalent weak bonds in molecules79,84 show that Møller-Plesset theory at
the second order is not sufficient to properly account for dispersion forces. On the other
side RPA and RPA+ methods tend to underestimate such a contribution in small sys-
tems161. However, for large and infinite systems the dispersion contributions are larger,
and eventually the binding energy is correctly evaluated for RPA/RPA+ or it is even
more overestimated in the MP2 case. Additional analyses on the computed atomic C6

coefficients, show that border effects are rather localized on the evaluation of the atomic
contribution to the dispersion in bilayer graphene, and the carbon-hydrogen distance is
not essentially relevant, while PBE+vdW and RPA tackle the dispersion at a similar
level. The dispersion is thus fundamental to recover the correct binding energy in bilayer
graphene.

Of all the methodologies we applied, PBE+vdW, is the computationally cheapest method-
ology and it provides dispersion corrections to functionals lacking by construction of such
a contribution, e.g. GGA-PBE. Besides it provides results relatively close to experiments
on one side and the random phase approximation, on the other.
Tables (4.1) and (4.2) summarise the present findings for the cohesive energy of graphene
and AB-stacked graphene and the interaction energy between two layers. Since our ap-
proach can be applied in principle to more accurate and predictive quantum chemical
methods (for which the computational cost of direct calculations would be prohibitive),
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this study paves the way to safe reference values also for extended systems.

Table 4.1: Cohesive energy extrapolations for a graphene layer compared with periodic calcu-
lations when available. For GGA-PBE, PBEsol, PBE+vdW and wavefunction methods also the
difference of the extrapolations with respect to the other methods are considered. The error is
estimated from the basis set convergence behaviour and extrapolation scatter observable from
the corresponding tables in the Appendix.

Ecoh (eV/atom) method

8,90 ±0, 03 PW-LDA extrapolated
8,92 PW-LDA periodic

7,84 ±0, 03 GGA-PBE extrapolated
7,86 ±0, 01 GGA-PBE periodic + δPW-LDA extrapolated

7,86 GGA-PBE periodic

8,28 ±0, 03 PBEsol extrapolated
8,29 ±0, 01 PBEsol periodic + δPW-LDA extrapolated
8,28 ±0, 01 PBEsol periodic + δGGA-PBE extrapolated

7,88 ±0, 03 PBE+vdW extrapolated
7,89 ±0, 01 PBE+vdW periodic + δPW-LDA extrapolated
7,89 ±0, 01 PBE+vdW periodic + δGGA-PBE extrapolated

7,84 ±0, 06 MP2 extrapolated
7,85 ±0, 02 PW-LDA periodic + δMP2 extrapolated
7,85 ±0, 02 GGA-PBE periodic + δMP2 extrapolated
7,84 ±0, 02 PBE+vdW periodic + δMP2 extrapolated

7,11 ±0, 06 RPA extrapolated
7,12 ±0, 02 PW-LDA periodic + δRPA extrapolated
7,12 ±0, 02 GGA-PBE periodic + δRPA extrapolated
7,11 ±0, 02 PBE+vdW periodic + δRPA extrapolated

7.04 ±0, 06 RPA+ extrapolated
7.05 ±0, 02 PW-LDA periodic + δRPA+ extrapolated
7.05 ±0, 02 GGA-PBE periodic + δRPA+ extrapolated
7.04 ±0, 02 PBE+vdW periodic + δRPA+ extrapolated

∼ 7,5 Exp. (303K)62, ZPE from ref.7
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Table 4.2: AB-stacked graphene extrapolation results for interlayer distances (c), cohesive
energy (Ecoh) and binding energy (Ebind) per atom compared with periodic calculations when
available. The experimental cohesive energies are zero point energy (ZPE) corrected using the
value from ref.7. As the ZPE contribution to the experimental binding energy is unknown, such
a correction is not possible there. Instead, the theoretical values have been corrected by adding
the ZPE as estimated from Fig. (3.34) (see text). The error is estimated from the basis set
convergence behaviour and extrapolation scatter observable from the corresponding tables in the
Appendix.

c (Å) Ecoh (eV/atom) Ebind(eV/atom) method

3,32 8,93 0,020 PW-LDA periodic (this work)

4,27 7,87 0,002 GGA-PBE periodic (this work)

3,36 7,95 0,073 ± 0,004 PBE+vdW periodic (this work)

3,02 7,91 ± 0,06 0,128 ± 0,004 MP2 (this work)

3,2 7,13 ± 0,06 0,061 ± 0,004 RPA (this work)

3,3 7,06 ± 0,06 0,058 ± 0,004 RPA+ (this work)

3,35 0,062 B97-D57

3,35 0,066 rev-PBE + vdW171

3,337 0,062 GS + vdW3+4 55

3,426 0,060 ±0, 005 LRDMC (300K)175

3,35 7,54-7,56 Exp. (303K)115, see also ref. 186,
ZPE from ref.7

7,54 Exp (300K)133,
ZPE from ref.7

0,052 ± 0,005 Exp.197

0, 035+0,015
−0,010 Exp.17
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4.1 Physical Effects Beyond Current Assumptions

When dealing with aromatic systems, it is important to consider effects which are be-
yond the classical two-body additive summation, since none of the approximations we
are going to employ, in particular PBE+vdW, MP2 and RPA/RPA+ take into account
dispersion non additive effects, and all fail to describe the Axilrod-Teller-Muto triple
dipoles14,137, the so-called three body effects86. Such effects can be described in more
sophisticated theories like coupled cluster (CC) approximation12,16 starting from third
order perturbative excitations (CCSD(T)), but they are still too demanding for extended
systems. Based on calculations published in literature on representative π − π systems
as well as non-covalent crystals as bilayer graphene, such an effect is repulsive and is ex-
pected to provide a substantial correction to the cohesive and binding energies191, even
though it is expected to be in part counterbalanced by higher order dispersion terms143.
Since we consider clusters to derive the properties of bulk bilayer graphene, bulk effects,
like plasmon-plasmon interactions cannot be calculated (they add another contribution
to the asymptotic behaviour of the dispersion interactions between two layers39,55). From
tight-binding considerations on the band structure on layered structures an independent
electron dielectric function model, J.F. Dobson, A. White and A. Rubio estimated such
an effect39, which provides a decay as the third order with respect to the interlayer dis-
tance instead of the faster decaying fourth order (given by C6 summations over surfaces)
as provided by pairwise summations. However by definition, such an effect is asymp-
totic, hence in regions not far from the equilibrium distance, additive summations for
the dispersion interaction can still hold. In their study electrostatic quadrupolar effects
(repulsive for AB-stacked structures) are not considered, since they are assumed to be
negligible for infinite layers. In fact quadrupole interactions76,190 (see Appendix A.1) do
not decay monotonically with the distance, but they have an oscillating behaviour, so
that the overall repulsive contribution is almost negligible.
All techniques employed have all the same underlying assumption of the adiabatic Born-
Oppenheimer (ABO) approximation, which is valid for pure infinite graphene layers
with respect to band structure, geometry and ground state calculations. Moreover it has
been shown that graphene violates the ABO approximation in certain cases156, like in
the study of Raman spectra.

4.2 Possible Future Developments

The techniques elaborated in this study allow a comprehension of the mechanism at the
basis of π− π systems, and show how relatively well RPA and PBE+vdW methods can
determine the binding energy between two extended π systems like in graphite. Such a
benchmark provides a cheap tool which can be applied to study corresponding systems.
Once established that such technique can be evaluated through cluster expansions, it
would be valuable to calculate the potential energy surfaces (PES) for different config-
urations and stackings with complex and accurate techniques like CCSD(T) and higher
orders, where for example, three body interactions are naturally taken into account. This
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4.2 Possible Future Developments

would be possibly the basis for studies on bulk elastic properties, and on the friction
between graphene layers with accurate and fully ab-initio calculations. Moreover our
methodology can be applied in principle to other systems, like multilayer or epitaxial
graphene, graphite with intercalated materials and physisorption and nanomesh studies
on layers or surfaces.
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A Appendices

A.1 Quadrupole-Quadrupole Interactions

It is often assumed that the quadrupole contribution to the interaction energy can be
calculated by taking a summation over point quadrupoles. We estimate the interaction
between two point quadrupoles of axial symmetry along the êz direction, normal to the
graphene plane, and quadrupole moment Q0. Such a traceless tensor can be written as

Q =





−Q0

2 0 0

0 −Q0

2 0
0 0 Q0,



 (A.1)

The quadrupole term in the expansion of the Coulomb potential around the origin, can
be written as

φ(r) = −
1

2r5

3
∑

i,j=1

xixjQij =
−Q0x2

2 − Q0y2

2 +Q0z
2

2 (x2 + y2 + z2)5/2
(A.2)

where by definition r = (x2 + y2 + z2)1/2 while the energy of a quadrupole interacting
with an external field, in this case another quadrupolar field, is given by

Wq =
1

6

3
∑

i,j=1

Qij
∂

∂xi∂xj
φ(0), (A.3)

where the Hessian is given by the espression (A.4)
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3Q0(4x4−y4+3y2z2+4z4+3x2(y2−9z2))
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15Q0xy(x2+y2−6z2)
4(x2+y2+z2)9/2

15Q0xz(3x2+3y2−4z2)
4(x2+y2+z2)9/2

15Q0xy(x2+y2−6z2)
4(x2+y2+z2)9/2

3Q0(−x4+4y4−27y2z2+4z4+3x2(y2+z2))
4(x2+y2+z2)9/2

15Q0yz(3x2+3y2−4z2)
4(x2+y2+z2)9/2

15Q0xz(3x2+3y2−4z2)
4(x2+y2+z2)9/2

15Q0yz(3x2+3y2−4z2)
4(x2+y2+z2)9/2 −

3Q0(3x4+3y4−24y2z2+8z4+6x2(y2−4z2))
4(x2+y2+z2)9/2 ,













(A.4)
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A.1 Quadrupole-Quadrupole Interactions

Thus, the energy of the interaction of two quadrupoles between two graphene layers is
given by

Wq =
3Q2

0

(

3x4 + 3y4 − 24y2z2 + 8z4 + 6x2
(

y2 − 4z2
))

16 (x2 + y2 + z2)9/2
, (A.5)

In ref 190 an expression for two axial quadrupoles displaced along the êx direction (fol-
lowing the results of ref.158) has been published,

Wq =
3Q2

0

(

35d4 − 30d2
(

x2 + y2 + z2
)

+ 3
(

x2 + y2 + z2
)2

)

4 (x2 + y2 + z2)9/2
, (A.6)

where d is the component of the distance of the two quadrupoles along the êz axis.
Comparing the two equations at a given distance, expression (A.5) contains a pre-factor
4 with respect to the expression we derived (our findings have been evaluated using
the Mathematica code2). Regardless of the prefactor, we nevertheless see that the in-
teraction does not decay monotonically with the distance between two point quadrupoles.

We calculated using Eq. (A.5), the interaction of AB-stacked graphene layers via point
quadrupoles, i.e. the estimated quadrupoles of the carbon atoms, using the experimental
value considered in refs.190,194, i.e. 1, 31B. In Fig (A.1) we show the resulting energy of
the quadrupole-quadrupole interaction as a function of the distance of two graphene
sheets, which is negligible at all relevant distances compared to the binding energy
computed in this thesis.
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Figure A.1: Quadrupole-quadrupole interaction between two AB-stacked graphene layers for
Q0 = 1, 31B = 1, 31 · 10−26esu.
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A.2 Convergence tests for graphene

A.2 Convergence tests for graphene

In the in-house code FHI-AIMS19 basis set are compiled according to their convergence
with respect to the calculations of PW-LDA total energies. This NAOs are named as
”tier”, followed but progressive numbers indicating their size, or, in a more compact form,
as ”t” basis sets.
In the following sections the basis set labels refer to: ”t1+f”= C[min+2s2p3d4f ] H[min+2s
2p], ”sb”= C[min+2s2p3s3p3d4f ] H[min+1s2s2p], ”t2”= C[min+2s2p3s3p3d4f5g] H[min+
1s2s2p3d], ”t3”= C[t2+2s2p3d4f ] H[min+1s2s2p3s3p4d4f ], ”t4C”=[min+2s2p3s3p3d4d
4f5g] H[min+1s2s2p3s3p4d4f ], ”t4Cp”=[t4C+3s3p4d] H[min+1s2s2p3s3p4d4f ].

A.2.1 PW-LDA and GGA-PBE

To evaluate the convergence of the computed cohesive energy∗ as a function of the basis
set size we focus on a fixed in-plane lattice constant of 2, 466 Å, which roughly corre-
sponds to the PW-LDA lattice constant. In the periodic calculations the distance be-
tween the periodic images of the graphene sheets is 15 Å and we first employ a (12x12x1)
k-point mesh containing 144 k-points in the full Brillouin zone. As apparent from Fig.
(A.2), already for a C[min+2s2p3s3p3d4f ] basis set, convergence is almost achieved (∼ 1
meV/atom for PW-LDA and for GGA-PBE with respect to the fully converged ”t3”basis
set).

∗For simplicity in all the tables of this work the sign of cohesive energies is reversed.
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Figure A.2: Convergence of the graphene cohesive energy as a function of the basis set size

per unit cell. Shown are data for a fixed in-plane lattice constant of a = 2, 466 Å, a (12x12x1)
k-mesh and using LDA and GGA-PBE.
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A.2 Convergence tests for graphene

With the thus determined basis set, we study the dependence on the employed k-mesh
by systematically increasing the k-mesh from a (2x2x1) grid with 4 k-points in the full
Brillouin zone to a (18x18x1) k-mesh with 324 k-points in the full Brillouin zone. The
corresponding data is summarized in Fig. (A.3) and shows a rapid convergence of the
cohesive energy to within ∼ 10 meV/atom already for a (8x8x1) k-mesh. Additionally
we have tested the convergence of the k-sampling in the direction perpendicular to the
periodic graphene sheets. However, due to the large extent of the supercell in this di-
rection, we find that already a single k-point along the perpendicular direction to the
surface is sufficient.
The rapid convergence of the cohesive energy with k-point sampling is rather surprising
in view of the semi-metallic nature of the system. In fact, in metallic systems128,176,
due to the fact that bands are generally partially filled, typically a rather large number
of k-points is required to sample the Fermi surface correctly. However, graphene is a
particular semi-metal, where bands cross in only one point, the K point, so that the
Fermi surface is zero dimensional. In ref.166 a Monkhorst-Pack (8x8x4) mesh with 256
k-points is reported to be converged at an accuracy of 11 meV/atom for a plane waves
basis set, while energies are converged within 30 meV/atom with respect to the number
of k-points.
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Figure A.3: Convergence of the graphene cohesive energy as a function of the k-point sampling.

Shown are data at a fixed in-plane lattice constant of a = 2,466 Å, the ”sb” basis set, and using
LDA and GGA-PBE.
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After determining the converged basis set and k-point sampling, we have also checked
the influence of the vacuum separation of the repeating graphene sheets. For distances
in the range 10−25 Å we have found a vanishing influence on the cohesive energy in the
sub-meV/atom range. Of similarly negligible influence is the truncation of the multipole
expansion of the Hartree potential. With the standard setting lhartree = 4 employed in all
previous calculations a convergence of the cohesive energy with respect to this computa-
tional parameter is again already achieved within ∼ 1 meV/atom. As optimized settings
for the calculation of the cohesive energy we thus determine the C[min+2s2p3s3p3d]
basis set, i.e. ”sb”, an (18x18x1) k-mesh, lhartree = 4 and an interplane distance of 20
Å. For these settings, Fig. (3.1) shows the variation of the computed cohesive energy
as a function of the in-plane lattice constant. To test how well our converged settings
perform at different in-plane distances, we have recalculated this curve with a larger
basis set (called ”t3” in Figure (A.2)), lhartree = 6 and (20x20x1) k-points. The obtained
results differ by only 1 meV/atom with respect to the previous results.

A.2.2 PBEsol

To evaluate the cohesive energy we apply the same scheme used in the previous section,
i.e. we focus first on an in-plane lattice constant of 2, 466 Å and then we study the
convergence with respect to k-points mesh, basis set size and additional parameters.
The behavior is very similar for all DFT functionals. In Figure (A.4) we show the
convergence of the cohesive energy with respect to the basis set size for a (12x12x1)
k-point mesh containing 144 k-points in the full Brillouin zone. At the ”sb” basis set
level the convergence is essentially achieved at the meV/atom level, as for the local and
semi-local functionals PW-LDA and GGA-PBE.
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Figure A.4: Convergence of the graphene cohesive energy as a function of the basis set size

per unit cell. Shown are data for a fixed in-plane lattice constant of a = 2, 466 Å, a (12x12x1)
k-mesh and using the PBEsol functional.
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Subsequently we study the dependence at the ”sb” basis set level with respect to the
k-point mesh, starting from a (2x2x1) grid with 4 k-points in the full Brillouin zone to
a (18x18x1) grid with 324 k-points in the full Brillouin zone. As shown in Fig. (A.5)
the convergence is already achieved within few meV/atom for a (8x8x1) k-point mesh.
As for the other parameters, namely lhartree and vacuum size, they behave like for the
previously employed functionals, and they are therefore set to 4 and 20 Å, respectively.
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Figure A.5: Convergence of the graphene cohesive energy as a function of the k-point sampling.

Shown are data at a fixed in-plane lattice constant of a = 2,466 Å, the ”sb” basis set, and using
LDA and GGA-PBE.

To test the convergence we performed also in this case calculations with the much larger
”t3” basis set with lhartree = 6 and a (24x24x1) k-points mesh. The results agree at the
meV/atom level.

A.2.3 PBE+vdW

The atomic reference contributions are exactly like in GGA-PBE ground state spin
collinear calculations, and geometries are kept as in the previous sections, i.e. we focus
first on an in-plane lattice constant of 2, 466 Å. We study the convergence with respect
to k-points mesh, basis set size and additional parameters. In Figure (A.6) we show
the convergence of the cohesive energy with respect to the basis set size for a (12x12x1)
k-point mesh containing 144 k-points in the full Brillouin zone, lhartree = 4 and 15
Å vacuum. At the ”sb” basis set level the convergence is essentially achieved at the
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order of ∼ 1 meV/atom. In periodic calculations the convergence with the number of
k-points is done with respect to the usual k-points as for the other DFT methods, and
additionally the van der Waals cells parameter vdw cells, i.e. the number of cells to
include in the pairwise summations over atoms for van der Waals interactions. The
latter converges relatively rapidly with the number of cells at already (5x5x0) cells, so
that a (10x10x0) grid is considered to be safe. The former converges similarly as for the
other DFT functionals, as we can see from Fig. (A.7).
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Figure A.6: Convergence of the graphene cohesive energy as a function of the basis set size

per unit cell. Shown are data for a fixed in-plane lattice constant of a = 2, 466 Å, a (12x12x1)
k-mesh and using the PBE+vdW functional.

Again, to test the convergence with respect to the parameters we repeated the calcu-
lations using a highly converged basis set ”t3” and lhartree = 6, using a (24x24x1) grid
with 576 k-points, and the results agree at the meV level.
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Figure A.7: Convergence of the graphene cohesive energy as a function of the k-point sampling.

Shown are data at a fixed in-plane lattice constant of a = 2,466 Å, the ”sb” basis set, and using
PBE+vdW functional.
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A.3 Clusters Extrapolations for Graphene

A.3 Clusters Extrapolations for Graphene

A.3.1 PW-LDA and GGA-PBE

Table A.1: Cohesive energy (eV/atom) extrapolation compared to the result of the periodic
calculations. Shown are the values obtained when using the indicated cluster ranges in the fit
(see Fig. (3.5)) at a = 2, 446 Å.

t1+f sb t2 t3 Carbon atoms method

Ecoh 8,86 8,87 8,87 8,87 6-96 PW-LDA
8,86 8,87 8,87 8,87 6-54 ””
8,84 8,86 8,86 8,85 6-32 ””
8,83 8,84 8,84 8,84 6-24 ””
8,88 8,89 8,89 8,89 10-96 ””
8,88 8,90 8,90 8,90 10-54 ””
8,88 8,89 8,89 8,89 10-32 ””
8,88 8,89 8,89 8,89 10-24 ””
8,89 8,90 8,90 8,90 14-96 ””
8,90 8,91 8,91 8,91 14-54 ””
8,92 8,93 8,93 8,93 14-32 ””
8,93 8,94 8,94 8,94 14-24 ””
8,89 8,90 8,90 8,90 16-96 ””
8,90 8,91 8,91 8,92 bulk PW-LDA

7,80 7,82 7,82 7,82 6-96 GGA-PBE
7,79 7,81 7,81 7,81 6-54 ””
7,78 7,79 7,79 7,79 6-32 ””
7,76 7,77 7,77 7,77 6-24 ””
7,83 7,84 7,84 7,84 10-96 ””
7,83 7,84 7,84 7,84 10-54 ””
7,82 7,83 7,84 7,84 10-32 ””
7,81 7,82 7,82 7,82 10-24 ””
7,84 7,85 7,85 7,85 14-96 ””
7,85 7,86 7,86 7,86 14-54 ””
7,86 7,87 7,87 7,87 14-32 ””
7,87 7,88 7,89 7,89 14-24 ””
7,84 7,85 7,85 7,85 16-96 ””
7,85 7,86 7,86 7,86 bulk GGA-PBE
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Table A.1 (continued)

t1+f sb t2 t3 Carbon atoms method

∆Ecoh 1,06 1,06 1,06 1,05 6-96 PW-LDA - GGA-PBE
1,06 1,06 1,06 1,06 6-54 ””
1,07 1,07 1,06 1,07 6-32 ””
1,07 1,07 1,07 1,07 6-24 ””
1,06 1,05 1,05 1,06 10-96 ””
1,06 1,06 1,06 1,06 10-54 ””
1,06 1,06 1,06 1,05 10-32 ””
1,06 1,07 1,06 1,07 10-24 ””
1,06 1,05 1,05 1,05 14-96 ””
1,06 1,05 1,05 1,05 14-54 ””
1,06 1,06 1,05 1,06 14-32 ””
1,06 1,06 1,06 1,06 14-24 ””
1,05 1,05 1,05 1,05 16-96 ””
1,05 1,05 1,05 1,05 bulk PW-LDA - GGA-PBE
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A.3.2 PBEsol

Table A.2: Cohesive energy (eV/atom) extrapolation compared to the result of the periodic
calculations. Shown are the values obtained when using the indicated cluster ranges in the fit
(see Fig. (3.5)) at a = 2, 446 Å.

t1+f sb t2 t3 Carbon atoms method

Ecoh 8,25 8,26 8,26 8,26 6-96 PBEsol
8,24 8,25 8,25 8,26 6-54 ””
8,22 8,24 8,24 8,24 6-32 ””
8,21 8,22 8,22 8,22 6-24 ””
8,27 8,28 8,28 8,29 10-96 ””
8,27 8,28 8,28 8,29 10-54 ””
8,27 8,28 8,28 8,28 10-32 ””
8,26 8,27 8,27 8,27 12-24 ””
8,28 8,29 8,30 8,30 14-96 ””
8,29 8,30 8,31 8,31 14-54 ””
8,30 8,31 8,32 8,32 14-32 ””
8,32 8,33 8,33 8,34 14-24 ””
8,28 8,29 8,29 8,29 16-96 ””
8,28 8,30 8,30 8,30 bulk PBEsol

∆Ecoh 0,62 0,62 0,61 0,61 6-96 PW-LDA - PBEsol
0,62 0,62 0,61 0,61 6-54 ””
0,62 0,62 0,62 0,61 6-32 ””
0,62 0,62 0,62 0,62 6-24 ””
0,61 0,62 0,61 0,61 10-96 ””
0,61 0,62 0,61 0,61 10-54 ””
0,62 0,62 0,61 0,61 10-32 ””
0,62 0,62 0,61 0,61 10-24 ””
0,61 0,61 0,61 0,61 14-96 ””
0,61 0,61 0,61 0,61 14-54 ””
0,61 0,61 0,61 0,61 14-32 ””
0,61 0,61 0,61 0,61 14-24 ””
0,61 0,61 0,61 0,60 16-96 ””
0,62 0,61 0,61 0,62 bulk PW-LDA - PBEsol

93



Appendix A Appendices

Table A.2 (continued)

t1+f sb t2 t3 Carbon atoms method

∆Ecoh 0,45 0,44 0,46 0,45 6-96 PBEsol - GGA-PBE
0,45 0,44 0,43 0,46 6-54 ””
0,45 0,44 0,45 0,46 6-32 ””
0,45 0,45 0,45 0,45 6-24 ””
0,45 0,44 0,46 0,45 10-96 ””
0,45 0,44 0,45 0,45 10-54 ””
0,45 0,44 0,46 0,46 10-32 ””
0,45 0,45 0,45 0,45 12-24 ””
0,45 0,44 0,46 0,45 14-96 ””
0,45 0,44 0,45 0,45 14-54 ””
0,45 0,44 0,45 0,45 14-32 ””
0,45 0,45 0,45 0,45 14-24 ””
0,45 0,44 0,46 0,45 16-96 ””
0,43 0,45 0,44 0,44 bulk PBEsol - GGA-PBE
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A.3.3 PBE+vdW

Table A.3: Cohesive energy (eV/atom) extrapolation compared to the result of the periodic
calculations presented in the previous sections. Shown are the values obtained when using the
indicated cluster ranges in the fit (see Fig. (3.5)) at a = 2, 446 Å.

t1+f sb t2 t3 Carbon atoms method

Ecoh 7,85 7,86 7,86 7,86 6-96 PBE+vdW
7,84 7,85 7,85 7,85 6-54 ””
7,83 7,83 7,84 7,83 6-32 ””
7,80 7,81 7,82 7,81 6-24 ””
7,88 7,89 7,89 7,89 10-96 ””
7,88 7,88 7,89 7,88 10-54 ””
7,87 7,88 7,88 7,87 10-32 ””
7,85 7,86 7,87 7,86 10-24 ””
7,89 7,90 7,90 7,90 14-96 ””
7,90 7,91 7,91 7,90 14-54 ””
7,91 7,92 7,92 7,91 14-32 ””
7,91 7,93 7,93 7,92 14-24 ””
7,89 7,91 7,90 7,90 16-96 ””
7,89 7,91 7,91 7,91 bulk PBE+vdW

∆Ecoh 1,01 1,01 1,01 1,01 6-96 PW-LDA - PBE+vdW
1,01 1,02 1,01 1,02 6-54 ””
1,02 1,02 1,02 1,02 6-32 ””
1,03 1,03 1,02 1,03 6-24 ””
1,01 1,01 1,00 1,01 10-96 ””
1,01 1,01 1,01 1,01 10-54 ””
1,01 1,02 1,01 1,02 10-32 ””
1,03 1,02 1,02 1,02 10-24 ””
1,01 1,00 1,00 1,00 14-96 ””
1,01 1,01 1,01 1,01 14-54 ””
1,01 1,01 1,01 1,02 14-32 ””
1,02 1,02 1,01 1,02 14-24 ””
1,00 1,00 1,00 1,00 16-96 ””
1,01 1,00 1,00 1,01 bulk PW-LDA - PBE+vdW
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Table A.3 (continued)

t1+f sb t2 t3 Carbon atoms method

-0,05 -0,05 -0,05 -0,05 6-96 GGA-PBE - PBE+vdW
-0,05 -0,04 -0,05 -0,04 6-54 ””
-0,05 -0,04 -0,05 -0,04 6-32 ””
-0,04 -0,04 -0,05 -0,04 6-24 ””
-0,05 -0,05 -0,05 -0,05 10-96 ””
-0,05 -0,05 -0,05 -0,04 10-54 ””
-0,05 -0,04 -0,05 -0,04 10-32 ””
-0,04 -0,04 -0,05 -0,04 10-24 ””
-0,05 -0,05 -0,05 -0,05 14-96 ””
-0,05 -0,05 -0,05 -0,04 14-54 ””
-0,05 -0,05 -0,05 -0,04 14-32 ””
-0,04 -0,04 -0,05 -0,04 14-24 ””
-0,05 -0,06 -0,05 -0,05 16-96 ””
-0,04 -0,05 -0,05 -0,05 bulk GGA-PBE - PBE+vdW
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A.3 Clusters Extrapolations for Graphene

A.3.4 MP2

The MP2 approximation parameters, i.e. the number of basis set products and the basis
set product cut-off threshold, have been tested at the ”sb” basis set level for the smallest
molecule, i.e. benzene, and provide an extrapolated cohesive energy rapidly converged
at the sub-meV/atom level, and they are therefore set to 4 (3 for hydrogens) and 10−4

respectively. Further tests on the basis set product cut-off threshold have been also made
for larger clusters, in particular using the ”t4C” and ”t4Cp” basis sets, and they do not
provide any substantial change. However, because of the numerical noise for the two
biggest clusters calculated with the ”t4C” and ”t4Cp” basis set, i.e. ”32 C” and ”24 C”
clusters, the cut-off threshold has been increased to 10−3.
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TableA.4:Cohesiveenergy(eV/atom)extrapolationasafunctionofthenumberofcarbonatomsintheclustersconsideredinthe

linearregressionandforthe”t1+f”,”sb”,”t2”,”t3”,”t4C”and”t4Cp”basissetsandata=2,446Å.Somevaluesforthe”t3”,”t4C”and
”t4Cp”basissetsaremissing,sincethecomputationalrequirementsareyettoodemanding.

t1+fsbt2t3t4Ct4CpCarbonatomsmethod

Ecoh7,477,607,736-54MP2
7,447,587,717,757,797,796-32””
7,427,567,687,737,767,776-24””
7,517,657,7710-54””
7,507,647,767,817,847,8410-32””
7,497,627,757,797,837,8310-24””
7,547,677,7914-54””
7,557,687,817,857,897,8914-32””
7,567,707,827,877,907,9014-24””

∆Ecoh1,391,261,146-54PW-LDA-MP2
1,401,271,151,101,071,076-32””
1,411,281,161,111,081,076-24””
1,381,251,1310-54””
1,381,261,131,081,051,0510-32””
1,391,261,141,091,061,0610-24””
1,371,241,1214-54””
1,371,241,121,071,041,0414-32””
1,371,251,121,081,041,0414-24””

0,330,200,086-54GGA-PBE-MP2
0,330,210,090,040,000,006-32””
0,340,210,090,040,010,006-24””
0,320,190,0710-54””
0,320,200,070,02-0,01-0,0110-32””
0,330,200,080,03-0,01-0,0110-24””
0,310,190,0714-54””
0,310,190,070,02-0,01-0,0114-32””
0,310,190,070,02-0,02-0,0214-24””9
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Table A.4 (continued)

t1+f sb t2 t3 t4C t4Cp Carbon atoms method

0,38 0,25 0,13 6-54 MP2 - PBE+vdW
0,38 0,25 0,13 0,08 0,06 0,06 6-32 ””
0,25 0,25 0,14 0,08 0,07 0,07 6-24 ””
0,37 0,24 0,12 10-54 ””
0,37 0,24 0,12 0,07 0,04 0,04 10-32 ””
0,22 0,24 0,12 0,07 0,05 0,05 10-24 ””
0,36 0,24 0,11 14-54 ””
0,36 0,24 0,11 0,06 0,01 0,02 14-32 ””
0,24 0,23 0,11 0,05 0,01 0,01 14-24 ””

9
9
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A.3.5 RPA

As for the MP2 method the convergence parameters have been thoroughly tested. The
computational framework of the RPA method is essentially the same used for MP2.
The convergence parameters behave in the same way and are therefore set to 4 (3 for
hydrogens) for the number of basis set products. An additional parameter coming from
the integration over the frequencies, is represented by the number of frequency intervals
to integrate, i.e. the frequency points parameter, which is converged rapidly at the sub-
meV/atom level and therefore set by default to 80. The recent implementation of a
multi-step integration procedure allows to calculate RPA total energies at the same level
of accuracy using a cut-off threshold of 10−4 for all basis sets and all clusters sizes.
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Table A.5: Cohesive energy (eV/atom) extrapolation as a function of the number of carbon atoms in the clusters considered in the

linear regression and for the ”t1+f”, ”sb”, ”t2”, ”t3”, ”t4C” and ”t4Cp” basis sets and at a = 2, 446Å. Some values for the ”t3”, ”t4C” and
”t4Cp” basis sets are missing, since the computational requirements are yet too demanding.

t1+f sb t2 t3 t4C t4Cp Carbon atoms method

Ecoh 6.37 6.72 7,02 6-54 RPA
6.35 6.74 7,07 7,07 7,09 7,08 6-32 ””
6.32 6.71 7,06 7,06 7,08 7,08 6-24 ””
6.45 6.79 7,06 10-54 ””
6.48 6.89 7,17 7,09 7,08 7,08 10-32 ””
6.50 6.92 7,23 7,09 7,05 7,05 10-24 ””
6.44 6.71 6.98 14-54 ””
6.49 6.79 7,09 7,14 7,14 7,13 14-32 ””
6.51 6.74 7,11 7,18 7,16 7,16 14-24 ””

∆Ecoh 2,49 2,15 1,85 6-54 PW-LDA - RPA
2,49 2,12 1,79 1,79 1,77 1,78 6-32 ””
2,51 2,13 1,78 1,78 1,76 1,76 6-24 ””
2,43 2,10 1,84 10-54 ””
2,40 2,00 1,72 1,80 1,81 1,82 10-32 ””
2,38 1,97 1,66 1,80 1,83 1,83 10-24 ””
2,46 2,21 1,93 14-54 ””
2,43 2,14 1,84 1,79 1,79 1,80 14-32 ””
2,42 2,20 1,83 1,77 1,78 1,78 14-24 ””

-1,43 -1,09 -0,78 6-54 RPA - GGA-PBE
-1,42 -1,05 -0,72 -0,72 -0,70 -0,71 6-32 ””
-1,44 -1,07 -0,71 -0,71 -0,69 -0,69 6-24 ””
-1,38 -1,05 -0,78 10-54 ””
-1,34 -0,94 -0,66 -0,74 -0,75 -0,76 10-32 ””
-1,31 -0,91 -0,60 -0,73 -0,77 -0,77 10-24 ””
-1,40 -1,15 -0,88 14-54 ””
-1,37 -1,09 -0,78 -0,73 -0,73 -0,74 14-32 ””
-1,36 -1,14 -0,78 -0,71 -0,72 -0,72 14-24 ””

1
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TableA.5(continued)

t1+fsbt2t3t4Ct4CpCarbonatomsmethod

-1,48-1,13-0,836-54RPA-PBE+vdW
-1,47-1,09-0,77-0,76-0,75-0,756-32””
-1,48-1,10-0,75-0,75-0,74-0,746-24””
-1,43-1,09-0,8310-54””
-1,39-0,99-0,71-0,78-0,80-0,8010-32””
-1,35-0,95-0,64-0,77-0,81-0,8110-24””
-1,45-1,20-0,9314-54””
-1,42-1,13-0,83-0,77-0,77-0,7814-32””
-1,40-1,18-0,82-0,75-0,76-0,7614-24””

1
0
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A.3 Clusters Extrapolations for Graphene

A.3.6 RPA+

For the RPA+ method exactly the same conclusions are valid as for RPA.
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TableA.6:Cohesiveenergy(eV/atom)extrapolationasafunctionofthenumberofcarbonatomsintheclustersconsideredinthe

linearregressionandforthe”t1+f”,”sb”,”t2”,”t3”,”t4C”and”t4Cp”basissetsandata=2,446Å.Somevaluesforthe”t3”,”t4C”and
”t4Cp”basissetsaremissing,sincethecomputationalrequirementsareyettoodemanding.

t1+fsbt2t3t4Ct4CpCarbonatomsmethod

Ecoh6.306.656.986-54RPA+
6.296.677,037,007,027,026-32””
6.266.647,046.997,017,016-24””
6.366.726.9910-54””
6.396.827,107,027,017,0110-32””
6.406.857,167,026.997,0010-24””
6.336.646.9114-54””
6.336.727,027,077,077,0714-32””
6.316.677,047,117,097,1014-24””

∆Ecoh2,562,221,896-54PW-LDA-RPA+
2,562,181,821,851,841,836-32””
2,572,201,801,851,831,836-24””
2,522,171,9110-54””
2,492,071,791,871,881,8810-32””
2,482,041,731,871,901,8810-24””
2,582,272,0014-54””
2,582,211,911,851,851,8514-32””
2,632,271,901,841,851,8414-24””

-1,50-1,16-0,836-54RPA+-GGA-PBE
-1,49-1,12-0,76-0,79-0,77-0,776-32””
-1,50-1,13-0,74-0,78-0,76-0,766-24””
-1,46-1,12-0,8510-54””
-1,43-1,01-0,73-0,81-0,82-0,8210-32””
-1,41-0,97-0,67-0,80-0,84-0,8210-24””
-1,52-1,22-0,9514-54””
-1,53-1,16-0,85-0,80-0,80-0,8014-32””
-1,57-1,21-0,84-0,78-0,80-0,7914-24””

1
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Table A.6 (continued)

t1+f sb t2 t3 t4C t4Cp Carbon atoms method

-1,55 -1,20 -0,88 6-54 RPA+ - PBE+vdW
-1,54 -1,16 -0,80 -0,83 -0,81 -0,81 6-32 ””
-1,54 -1,17 -0,78 -0,82 -0,81 -0,80 6-24 ””
-1,51 -1,16 -0,90 10-54 ””
-1,48 -1,06 -0,78 -0,85 -0,86 -0,86 10-32 ””
-1,45 -1,01 -0,71 -0,84 -0,88 -0,86 10-24 ””
-1,57 -1,27 -0,99 14-54 ””
-1,58 -1,20 -0,90 -0,84 -0,84 -0,84 14-32 ””
-1,60 -1,25 -0,89 -0,81 -0,83 -0,82 14-24 ””

1
0
5
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A.4 Convergence tests for bilayer graphene

A.4.1 PW-LDA and GGA-PBE

To evaluate the convergence in the DFT methods we focus first on a geometry with an in-
plane constant of a = 2, 446 Å and an experimental interlayer constant of c = 3, 35 Å133.
We start investigating the basis set convergence at a (12x12x1) grid with 144 k-points
in the full Brillouin zone and 25 Å vacuum size. We thus precede to the convergence
with respect to the number of k-points and in the end to the convergence with respect
to vacuum size and further convergence parameters (lhartree).
Figures (A.8) and (A.9) display the results for the cohesive energy, from which a similar
convergence behavior with respect to basis set and k-points as in the case of graphene
can be discerned. The cohesive energy is converged for a C[min+2s2p3s3p3d4f ] basis
set, called ”sb”, already at the order of ∼ 1 meV/atom for PW-LDA and GGA-PBE
with respect to the fully converged ”t3” basis set (corresponding to 220 basis functions
per unit cell, compared to 120 basis functions per unit cell of the ”sb” basis set). For
this optimized ”sb” basis set the cohesive energy is also converged to ∼ 1 meV/atom
already for a (8x8x1) k-mesh. At the large supercell size considered, a single k-point
along the direction perpendicular to the surface is found to be sufficient. As for lhartree

paramater and the vacuum size an analogous behavior is observed for PW-LDA and
PBE functionals and they are set to 4, and 20 Å, respectively.

106



A.4 Convergence tests for bilayer graphene

0 20 40 60 80 100 120 140 160 180 200 220 240
number of basis set functions

-9.0

-8.5

-8.0

-7.5

-7.0

-6.5

-6.0

C
oh

es
iv

e 
E

ne
rg

y 
- 

eV
/a

to
m

PW-LDA
PBE

min

eff
t1+f sb t3t2

Figure A.8: Convergence of the cohesive energy with basis set size per unit cell. Shown are

data for PW-LDA and GGA-PBE at a fixed in-plane distance of a = 2, 446 Å and interlayer
distance of c = 3, 35 Å.
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Figure A.9: Convergence of the cohesive energy as a function of the number of k-points. Shown

are data for PW-LDA and GGA-PBE at fixed in-plane distance of a = 2, 446 Å and interlayer
distance of c = 3, 35 Å, as a function of number of k-points and the ”sb” basis set is used.
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For what concerns the binding energy, the convergence behavior with respect to basis
set and k-points is again similar to the one of the cohesive energy. In Figs. (A.10) and
(A.11) we show the binding energy as a function of the basis set size and of the number
of k-points. The binding energy is converged at the sub-meV/atom level for the ”sb”
basis set, with respect to the ”t3 basis set. In Fig. (A.11) the binding energy is plotted
as a function of the number of k-points for the ”sb” basis set, and again the convergence
is reached within ∼ 1 meV/atom. The effects of the vacuum size and lhartree parameter
are very similar to the graphene case. Correspondingly we use as converged parameters
the ”sb” basis set, i.e. C[min+2s2p3s3p3d4f ], a (18x18x1) grid of 326 k-points in the
full Brillouin zone, 25 Å vacuum and lhartree = 4. Sample points on the curve were
also calculated with much higher converged parameters (lhartree = 6, (24x24x1) mesh
with 576 k-points in the full Brillouin zone) and the results agree at the order of the 1
meV/atom for the cohesive and at the sub-meV/atom level for the binding energy.

0 20 40 60 80 100 120 140 160 180 200
number of basis set functions

-250

-200

-150

-100

-50

0

B
in

di
ng

 E
ne

rg
y 

- 
m

eV
/a

to
m

PW-LDA
PBE

min

t1+feff sb t3t2

Figure A.10: Convergence of binding energies for PW-LDA and GGA-PBE at a fixed in-plane

distance of a = 2, 446 Å and interlayer distance of c = 3, 35 Å, as a function of basis set size per
unit cell.
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Figure A.11: Convergence of the binding energy between two stacked sheets as a function of
the number of k-points. Shown are data for PW-LDA and GGA-PBE at a fixed in-plane distance
of a = 2, 446 Å and interlayer distance of c = 3, 35 Å, as a function of number of k-points and
using the ”sb” basis set.
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A.4.2 PBEsol

We proceed to the evaluation of the convergence of parameters at the fixed geometry of
a = 2, 446 Å and c = 3, 35 Å. First we compute the cohesive energy for a (12x12x1) grid
with 144 k-points in the first Brillouin zone and 25 Å vacuum, and then we investigate
the convergence with respect to the lhartree parameter and vacuum size. Figs. (A.12)
and (A.13) show a behavior similar to the graphene case and to the other local and semi-
local DFT functionals previously employed in this study (PW-LDA and GGA-PBE). The
cohesive energy is again converged at the order of 1 meV/atom already for the ”sb”basis
set, i.e. C[min+2s2p3s3p3d4f ], with respect to the fully converged basis set ”t3”. At
the large supercell considered a single k-point along the direction normal to the surface
is found to be sufficient. With respect to the binding energy, Figs. (A.14) and (A.15),
the convergence with the basis set size is again similar to the cohesive energy case, and
it is converged at the sub-meV/atom level already for the ”sb” basis set. The same
conclusions are valid for the convergence parameters as for the other DFT functionals.
We therefore set lhartree = 4 and use a (18x18x1) grid of 326 k-points in the full Brillouin
zone. Sample points taken at finer parameter (24x24x1) grid with 576 k-points in the
full Brillouin zone show differences of the order of sub-meV/atom.
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Figure A.12: Convergence of the cohesive energy with basis set size per unit cell. Shown are

data for the PBEsol functional at a fixed in-plane distance of a = 2, 446 Å and interlayer distance
of c = 3, 35 Å.
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Figure A.13: Convergence of the cohesive energy as a function of the number of k-points.

Shown are data for PBEsol functional at fixed in-plane distance of a = 2, 446 Å and interlayer
distance of c = 3, 35 Å, as a function of number of k-points and the ”sb” basis set is used.
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Figure A.14: Convergence of binding energies for PBEsol functional at a fixed in-plane distance

of a = 2, 446 Å and interlayer distance of c = 3, 35 Å, as a function of basis set size per unit cell.

114



A.4 Convergence tests for bilayer graphene

0 100 200 300 400 500 600 700 800
number of k-points

-15

-10

-5

0

5

10

B
in

di
ng

 E
ne

rg
y 

- 
m

eV
/a

to
m

PBEsol

4x4x1

8x8x1

10x10x1

12x12x1

14x14x1

16x16x1
18x18x1

20x20x1

24x24x1

28x28x1

Figure A.15: Convergence of the binding energy between two stacked sheets as a function of
the number of k-points. Shown are data for PBEsol functional at a fixed in-plane distance of
a = 2, 446 Å and interlayer distance of c = 3, 35 Å, as a function of number of k-points and using
the ”sb” basis set.
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A.4.3 PBE+vdW

We evaluate the convergence of the PBE+vdW functional at the fixed geometry of
a = 2, 446 Å and c = 3, 35 Å as a function of k-points grid, number of van der Waals
cells and vacuum size. As for the other DFT functionals the cohesive energy, Figs. (A.16)
and (A.17), is converged at the meV/level already for a ”sb” basis set at (12x12x1) grid
with 144 k-points in the first Brillouin zone, and 25 Å vacuum and lhartree = 4. Similarly
the binding energy, Figs. (A.18) and (A.19), is converged at the sub-meV/atom level.
Hence we set lhartree = 4 and a (18x18x1) grid of 326 k-points and 25 Å vacuum in our
calculations. Sample points taken with a (24x24x1) grid with 576 k-points in the full
Brillouin zone show again differences of the order of sub-meV/atom.
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Figure A.16: Convergence of the cohesive energy with basis set size per unit cell. Shown

are data for PBE+vdW at a fixed in-plane distance of a = 2, 446 Å and interlayer distance of
c = 3, 35 Å.

116



A.4 Convergence tests for bilayer graphene

0 100 200 300
number of k-points

-8.00

-7.95

-7.90

-7.85

PBE+vdW

C
oh

es
iv

e 
E

ne
rg

y 
- 

eV
/a

to
m

4x4x1

8x8x1

10x10x1

12x12x1

14x14x1 16x16x1 18x18x1

Figure A.17: Convergence of the cohesive energy as a function of the number of k-points.

Shown are data for PBE+vdW at fixed in-plane distance of a = 2, 446 Å and interlayer distance
of c = 3, 35 Å, as a function of number of k-points and the ”sb” basis set is used.
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Figure A.18: Convergence of binding energies for PBE+vdW at a fixed in-plane distance of

a = 2, 446 Å and interlayer distance of c = 3, 35 Å, as a function of basis set size per unit cell.
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Figure A.19: Convergence of the binding energy between two stacked sheets as a function of
the number of k-points. Shown are data for PBE+vdW at a fixed in-plane distance of a = 2, 446
Å and interlayer distance of c = 3, 35 Å, as a function of number of k-points and using the ”sb”
basis set.
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A.5 Clusters Extrapolations for Bilayer Graphene

A.5.1 PW-LDA and GGA-PBE

Table A.7: Cohesive energy (eV/atom) extrapolation compared to the result of the periodic
calculations. Shown are the values obtained when using the indicated cluster ranges in the fit (see
Fig. (3.15)). Some values for the ”t3”basis set are missing, since the computational requirements
for the ”192 C” cluster are yet too demanding.

t1+f sb t2 t3 Carbon atoms method

Ecoh 8,88 8,89 8,89 12-192 PW-LDA
8,87 8,88 8,88 8,88 12-108 ””
8,86 8,87 8,87 8,87 12-64 ””
8,84 8,85 8,85 8,86 12-48 ””
8,81 8,82 8,82 8,82 12-40 ””
8,90 8,91 8,91 20-192 ””
8,90 8,91 8,91 8,91 20-108 ””
8,90 8,91 8,91 8,91 20-64 ””
8,89 8,89 8,90 8,90 20-48 ””
8,83 8,83 8,84 8,84 20-40 ””
8,91 8,92 8,92 28-192 ””
8,92 8,93 8,93 8,93 28-108 ””
8,93 8,94 8,94 8,94 28-64 ””
8,95 8,96 8,96 8,96 28-48 ””
8,89 8,90 8,90 8,90 28-40 ””
8,90 8,91 8,91 32-192 ””
8,92 8,92 8,93 8,93 bulk PW-LDA
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Table A.8 (continued)

t1+f sb t2 t3 Carbon atoms method

7,80 7,81 7,81 12-192 GGA-PBE
7,80 7,80 7,80 7,80 12-108 ””
7,77 7,79 7,79 7,79 12-64 ””
7,75 7,77 7,77 7,77 12-48 ””
7,71 7,72 7,72 7,72 12-40 ””
7,82 7,83 7,82 20-192 ””
7,82 7,83 7,83 7,83 20-108 ””
7,82 7,83 7,83 7,83 20-64 ””
7,81 7,82 7,82 7,82 20-48 ””
7,73 7,74 7,74 7,74 20-40 ””
7,83 7,85 7,84 28-192 ””
7,84 7,85 7,85 7,85 28-108 ””
7,86 7,87 7,87 7,87 28-64 ””
7,87 7,88 7,88 7,88 28-48 ””
7,79 7,80 7,80 7,80 28-40 ””
7,83 7,84 7,83 32-192 ””
7,85 7,85 7,86 7,86 bulk GGA-PBE

∆Ecoh 1,08 1,08 1,08 12-192 PW-LDA - GGA-PBE
1,07 1,08 1,08 1,08 12-108 ””
1,09 1,08 1,08 1,09 12-64 ””
1,09 1,09 1,09 1,09 12-48 ””
1,10 1,10 1,09 1,10 12-40 ””
1,08 1,07 1,08 20-192 ””
1,08 1,08 1,08 1,08 20-108 ””
1,08 1,08 1,08 1,08 20-64 ””
1,08 1,07 1,08 1,08 20-48 ””
1,10 1,09 1,10 1,10 20-40 ””
1,07 1,07 1,08 28-192 ””
1,07 1,07 1,07 1,07 28-108 ””
1,08 1,07 1,07 1,07 28-64 ””
1,08 1,08 1,08 1,08 28-48 ””
1,10 1,10 1,10 1,10 28-40 ””
1,07 1,07 1,08 32-192 ””
1,07 1,07 1,07 1,07 PW-LDA - GGA-PBE
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Table A.8: Binding energy (meV/atom) extrapolation compared to the result of the periodic
calculations. Shown are the values obtained when using the indicated cluster ranges in the fit (see
Fig. (3.15)). Some values for the ”t3”basis set are missing, since the computational requirements
for the ”192 C” cluster are yet too demanding.

t1+f sb t2 t3 Carbon atoms method

Ebind - AB -26 -26 -26 12-192 PW-LDA
-26 -26 -26 -26 12-108 ””
-28 -26 -26 -26 12-64 ””
-28 -26 -26 -26 12-48 ””
-28 -26 -24 -26 12-40 ””
-26 -24 -24 20-192 ””
-26 -24 -24 -24 20-108 ””
-26 -24 -24 -24 20-64 ””
-24 -22 -22 -22 20-48 ””
-22 -22 -22 -20 20-40 ””
-26 -24 -24 28-192 ””
-26 -24 -24 -24 28-108 ””
-24 -24 -24 -24 28-64 ””
-22 -22 -22 -22 28-48 ””
-16 -14 -14 -14 28-40 ””
-26 -24 -24 32-192 ””
-26 -26 -26 -26 bulk PW-LDA
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Table A.8 (continued)

t1+f sb t2 t3 Carbon atoms method

12 14 14 12-192 GGA-PBE
12 14 14 14 12-108 ””
12 14 14 14 12-64 ””
14 14 14 14 12-48 ””
14 14 14 14 12-40 ””
12 14 14 20-192 ””
12 14 14 14 20-108 ””
14 14 14 14 20-64 ””
14 16 16 14 20-48 ””
18 18 18 18 20-40 ””
12 14 14 28-192 ””
12 14 14 14 28-108 ””
12 14 14 14 28-64 ””
14 14 14 14 28-48 ””
22 22 22 22 28-40 ””
12 12 12 32-192 ””
12 12 12 12 bulk GGA-PBE

∆Ebind -40 -38 -38 12-192 PW-LDA - GGA-PBE
-40 -38 -40 -38 12-108 ””
-40 -40 -40 -40 12-64 ””
-40 -40 -40 -40 12-48 ””
-42 -42 -40 -40 12-40 ””
-38 -38 -38 20-192 ””
-38 -38 -38 -38 20-108 ””
-38 -38 -38 -38 20-64 ””
-38 -38 -38 -38 20-48 ””
-40 -40 -40 -38 20-40 ””
-38 -38 -38 28-192 ””
-38 -38 -38 -38 28-108 ””
-38 -36 -38 -36 28-64 ””
-36 -36 -36 -36 28-48 ””
-38 -36 -36 -36 28-40 ””
-38 -38 -38 32-192 ””
-38 -38 -38 -38 bulk PW-LDA - GGA-PBE
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A.5.2 PBEsol

Table A.9: Cohesive energy (eV/atom) extrapolation compared to the result of the periodic
calculations. Shown are the values obtained when using the indicated cluster ranges in the fit (see
Fig. (3.15)). Some values for the ”t3”basis set are missing, since the computational requirements
for the ”192 C” cluster are yet too demanding.

t1+f sb t2 t3 Carbon atoms method

Ecoh 8,25 8,26 8,26 12-192 PBESol
8,24 8,25 8,25 8,26 12-108 ””
8,23 8,24 8,24 8,24 12-64 ””
8,21 8,22 8,22 8,23 12-48 ””
8,17 8,18 8,18 8,18 12-40 ””
8,27 8,28 8,29 20-192 ””
8,27 8,28 8,29 8,29 20-108 ””
8,27 8,28 8,28 8,28 20-64 ””
8,26 8,27 8,27 8,27 20-48 ””
8,19 8,20 8,20 8,21 20-40 ””
8,28 8,29 8,30 28-192 ””
8,29 8,30 8,31 8,31 28-108 ””
8,31 8,31 8,32 8,32 28-64 ””
8,32 8,33 8,33 8,34 28-48 ””
8,25 8,26 8,27 8,27 28-40 ””
8,28 8,29 8,29 32-192 ””
8,31 8,32 8,32 8,32 bulk PBESol
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Table A.9 (continued)

t1+f sb t2 t3 Carbon atoms method

∆Ecoh 0,63 0,62 0,62 12-192 PW-LDA - PBEsol
0,63 0,62 0,63 0,63 12-108 ””
0,63 0,62 0,63 0,63 12-64 ””
0,64 0,62 0,63 0,63 12-48 ””
0,64 0,63 0,63 0,64 12-40 ””
0,63 0,61 0,62 20-192 ””
0,63 0,62 0,62 0,62 20-108 ””
0,63 0,62 0,62 0,62 20-64 ””
0,63 0,62 0,63 0,63 20-48 ””
0,64 0,63 0,63 0,63 20-40 ””
0,62 0,61 0,62 28-192 ””
0,62 0,61 0,62 0,62 28-108 ””
0,63 0,61 0,62 0,62 28-64 ””
0,63 0,62 0,62 0,62 28-48 ””
0,64 0,63 0,63 0,63 28-40 ””
0,62 0,61 0,62 32-192 ””
0,61 0,60 0,61 0,61 bulk PW-LDA - PBEsol

0,45 0,44 0,46 12-192 GGA-PBE - PBEsol
0,45 0,44 0,43 0,46 12-108 ””
0,45 0,44 0,46 0,46 12-64 ””
0,45 0,44 0,46 0,46 12-48 ””
0,46 0,45 0,46 0,46 12-40 ””
0,45 0,44 0,46 20-192 ””
0,45 0,44 0,45 0,45 20-108 ””
0,45 0,44 0,46 0,46 20-64 ””
0,45 0,44 0,46 0,46 20-48 ””
0,46 0,45 0,46 0,46 20-40 ””
0,45 0,44 0,46 28-192 ””
0,45 0,44 0,45 0,45 28-108 ””
0,45 0,44 0,45 0,45 28-64 ””
0,45 0,44 0,45 0,46 28-48 ””
0,46 0,45 0,47 0,47 28-40 ””
0,45 0,44 0,46 32-192 ””
0,46 0,47 0,46 0,46 bulk GGA-PBE - PBEsol
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Table A.10: Binding energy (meV/atom) extrapolation compared to the result of the periodic
calculations. Shown are the values obtained when using the indicated cluster ranges in the fit (see
Fig. (3.15)). Some values for the ”t3”basis set are missing, since the computational requirements
for the ”192 C” cluster are yet too demanding.

t1+f sb t2 t3 Carbon atoms method

Ebind - AB -4 -2 -2 12-192 PBEsol
-4 -2 -2 -2 12-108 ””
-4 -2 -2 -2 12-64 ””
-4 -2 -2 -2 12-48 ””
-4 -1 -2 -2 12-40 ””
-4 -1 -1 20-192 ””
-3 -1 -1 -1 20-108 ””
-3 -1 -1 -1 20-64 ””
-2 0 0 0 20-48 ””
0 3 3 2 20-40 ””
-4 -1 -1 28-192 ””
-4 -1 -1 -2 28-108 ””
-3 -1 -1 -1 28-64 ””
-1 1 1 1 28-48 ””
5 8 8 7 28-40 ””
-4 -2 -2 32-192 ””
-4 -2 -2 -2 bulk PBEsol
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Table A.10 (continued)

t1+f sb t2 t3 Carbon atoms method

∆Ebind 23 22 22 12-192 PW-LDA - PBEsol
19 22 22 21 12-108 ””
19 22 22 22 12-64 ””
20 23 23 22 12-48 ””
20 24 21 23 12-40 ””
19 22 22 20-192 ””
19 22 22 21 20-108 ””
19 22 22 22 20-64 ””
20 23 23 23 20-48 ””
23 26 26 25 20-40 ””
18 21 21 28-192 ””
18 22 21 21 28-108 ””
19 22 22 21 28-64 ””
20 23 23 23 28-48 ””
27 30 30 29 28-40 ””
18 21 21 32-192 ””
19 21 21 21 bulk PW-LDA - PBEsol

17 15 15 12-192 PBEsol - GGA-PBE
17 15 15 15 12-108 ””
17 15 15 15 12-64 ””
17 15 16 16 12-48 ””
18 16 16 16 12-40 ””
16 15 15 20-192 ””
16 15 15 15 20-108 ””
16 15 15 15 20-64 ””
16 15 15 15 20-48 ””
17 15 15 15 20-40 ””
16 15 15 28-192 ””
16 15 15 15 28-108 ””
16 14 14 14 28-64 ””
15 14 14 14 28-48 ””
9 7 7 7 28-40 ””
25 24 24 22 32-192 ””
15 15 15 15 bulk PBEsol - GGA-PBE
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A.5.3 PBE+vdW

Table A.11: Cohesive energy (eV/atom) extrapolation compared to the result of the periodic
calculations. Shown are the values obtained when using the indicated cluster ranges in the fit (see
Fig. (3.15)). Some values for the ”t3”basis set are missing, since the computational requirements
for the ”192 C” cluster are yet too demanding.

t1+f sb t2 t3 Carbon atoms method

Ecoh 7,89 7,90 7,90 12-192 PBE+vdW
7,88 7,89 7,89 7,88 12-108 ””
7,87 7,87 7,87 7,87 12-64 ””
7,84 7,85 7,85 7,85 12-48 ””
7,81 7,80 7,81 7,81 12-40 ””
7,91 7,93 7,93 20-192 ””
7,91 7,92 7,92 7,92 20-108 ””
7,91 7,91 7,92 7,91 20-64 ””
7,89 7,90 7,90 7,90 20-48 ””
7,82 7,81 7,83 7,83 20-40 ””
7,93 7,94 7,94 28-192 ””
7,93 7,94 7,94 7,94 28-108 ””
7,95 7,95 7,95 7,95 28-64 ””
7,95 7,96 7,97 7,96 28-48 ””
7,87 7,88 7,89 7,88 28-40 ””
7,92 7,94 7,94 32-192 ””
7,93 7,94 7,94 7,95 bulk PBE+vdW
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Table A.11 (continued)

t1+f sb t2 t3 Carbon atoms method

∆Ecoh 0,99 0,98 0,99 12-192 PW-LDA - PBE+vdW
0,99 0,98 0,99 1,00 12-108 ””
0,99 0,99 1,00 1,00 12-64 ””
1,00 1,00 1,00 1,01 12-48 ””
1,00 1,01 1,01 1,01 12-40 ””
0,98 0,97 0,98 20-192 ””
0,99 0,98 0,99 0,99 20-108 ””
0,99 0,98 0,99 1,00 20-64 ””
1,00 0,99 0,99 1,00 20-48 ””
1,01 1,02 1,00 1,01 20-40 ””
0,98 0,97 0,98 28-192 ””
0,98 0,97 0,98 0,99 28-108 ””
0,98 0,98 0,99 1,00 28-64 ””
1,00 0,99 0,99 1,00 28-48 ””
1,02 1,01 1,01 1,02 28-40 ””
0,98 0,96 0,98 32-192 ””
0,99 0,98 0,99 0,98 bulk PW-LDA - PBE+vdW

-0,09 -0,08 -0,10 12-192 GGA-PBE - PBE+vdW
-0,09 -0,08 -0,06 -0,08 12-108 ””
-0,09 -0,08 -0,09 -0,08 12-64 ””
-0,09 -0,07 -0,09 -0,08 12-48 ””
-0,10 -0,07 -0,09 -0,08 12-40 ””
-0,09 -0,09 -0,10 20-192 ””
-0,09 -0,08 -0,09 -0,08 20-108 ””
-0,09 -0,08 -0,09 -0,08 20-64 ””
-0,08 -0,07 -0,09 -0,08 20-48 ””
-0,09 -0,06 -0,09 -0,08 20-40 ””
-0,09 -0,09 -0,10 28-192 ””
-0,09 -0,08 -0,09 -0,08 28-108 ””
-0,09 -0,08 -0,09 -0,08 28-64 ””
-0,08 -0,07 -0,09 -0,08 28-48 ””
-0,08 -0,07 -0,09 -0,08 28-40 ””
-0,09 -0,09 -0,11 32-192 ””
-0,08 -0,09 -0,08 -0,09 bulk GGA-PBE - PBE+vdW
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Table A.12: Binding energy (meV/atom) extrapolation compared to the result of the periodic
calculations. Shown are the values obtained when using the indicated cluster ranges in the fit (see
Fig. (3.15)). Some values for the ”t3”basis set are missing, since the computational requirements
for the ”192 C” cluster are yet too demanding.

t1+f sb t2 t3 Carbon atoms method

Ebind - AB -76 -71 -71 12-192 PBE+vdW
-76 -70 -71 -70 12-108 ””
-75 -70 -70 -70 12-64 ””
-75 -69 -70 -70 12-48 ””
-76 -70 -71 -71 12-40 ””
-76 -72 -71 20-192 ””
-75 -71 -70 -70 20-108 ””
-74 -70 -69 -69 20-64 ””
-74 -68 -68 -68 20-48 ””
-76 -69 -69 -69 20-40 ””
-77 -72 -72 28-192 ””
-75 -71 -70 -70 28-108 ””
-74 -69 -69 -69 28-64 ””
-72 -67 -67 -67 28-48 ””
-75 -66 -66 -66 28-40 ””
-77 -73 -73 32-192 ””
-76 -72 -72 -72 bulk PBE+vdW
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A.5 Clusters Extrapolations for Bilayer Graphene

Table A.12 (continued)

t1+f sb t2 t3 Carbon atoms method

∆Ebind 50 46 46 12-192 PW-LDA - PBE+vdW
49 45 45 45 12-108 ””
48 44 44 44 12-64 ””
48 43 44 44 12-48 ””
48 43 46 44 12-40 ””
51 48 47 20-192 ””
50 47 46 46 20-108 ””
49 46 45 45 20-64 ””
50 46 46 45 20-48 ””
53 48 48 48 20-40 ””
51 48 47 28-192 ””
50 47 46 46 28-108 ””
49 46 45 45 28-64 ””
49 46 45 45 28-48 ””
58 52 52 52 28-40 ””
51 48 48 32-192 ””
49 47 47 47 bulk PW-LDA - PBE+vdW

89 85 85 12-192 GGA-PBE - PBE+vdW
88 84 84 84 12-108 ””
88 83 84 83 12-64 ””
88 83 84 83 12-48 ””
91 84 86 85 12-40 ””
89 85 85 20-192 ””
88 84 84 84 20-108 ””
87 84 83 83 20-64 ””
88 84 83 83 20-48 ””
93 87 87 87 20-40 ””
89 85 85 28-192 ””
88 84 84 83 28-108 ””
86 83 82 82 28-64 ””
86 82 82 82 28-48 ””
89 81 81 80 28-40 ””
98 95 95 32-192 ””
87 85 85 85 bulk GGA-PBE - PBE+vdW
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A.5.4 MP2

Also for what concerns the bilayer graphene case, the MP2 approximation parameters,
i.e. the number of basis set products and the basis set product cut-off threshold, have
been tested at the ”sb” basis set level for the smallest cluster, i.e. the benzene dimer.
They provide extrapolated cohesive and binding energies rapidly converged at the sub-
meV/atom level, and therefore they are set as for the graphene case. Also for the
graphitic case further tests on the basis set product cut-off threshold for larger clusters
using the ”t4C” and ”t4Cp” basis sets do not show any substantial change. Because of
the numerical noise for the biggest clusters, i.e. ”28 C” and ”32 C” clusters, calculated
with the ”t4C” and ”t4Cp” basis set, the cut-off threshold has been increased to 10−3.
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Table A.13: Cohesive energy (eV/atom) extrapolation as a function of the number of carbon atoms in the clusters considered in the
linear regression and different basis sets.Some values for the ”t3” and ”t4C” basis sets are missing, since the computational requirements
are yet too demanding.

t1+f sb t2 t3 t4C Carbon atoms method

Ecoh 7,49 7,64 7,76 12-64 MP2
7,47 7,62 7,74 7,79 12-48 ””
7,42 7,56 7,69 7,74 7,77 12-40 ””
7,55 7,70 7,82 20-64 ””
7,54 7,68 7,80 7,85 20-48 ””
7,45 7,60 7,72 7,77 7,80 20-40 ””
7,60 7,74 7,86 28-64 ””
7,61 7,75 7,87 7,92 28-48 ””
7,52 7,67 7,80 7,84 7,88 28-40 ””

∆Ecoh 1,36 1,23 1,11 12-64 PW-LDA - MP2
1,37 1,24 1,12 1,07 12-48 ””
1,39 1,25 1,13 1,08 1,05 12-40 ””
1,35 1,21 1,09 20-64 ””
1,35 1,21 1,10 1,05 20-48 ””
1,38 1,23 1,12 1,07 1,04 20-40 ””
1,33 1,20 1,08 28-64 ””
1,34 1,21 1,08 1,03 28-48 ””
1,37 1,23 1,10 1,06 1,02 28-40 ””

0,28 0,15 0,02 12-64 GGA-PBE - MP2
0,29 0,15 0,03 -0,02 12-48 ””
0,29 0,16 0,04 -0,02 -0,05 12-40 ””
0,27 0,12 0,04 20-64 ””
0,27 0,14 0,02 -0,04 20-48 ””
0,28 0,14 0,02 -0,03 -0,06 20-40 ””
0,26 0,13 0,01 28-64 ””
0,26 0,13 0,01 -0,04 28-48 ””
0,27 0,13 0,01 -0,04 -0,08 28-40 ””
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TableA.13(continued)

t1+fsbt2t3t4CCarbonatomsmethod

0,360,220,1012-64PBE+vdW-MP2
0,370,230,110,0512-48””
0,390,260,140,080,0412-40””
0,330,200,0820-64””
0,340,210,090,0320-48””
0,410,270,160,100,0520-40””
0,310,180,0528-64””
0,310,180,060,0028-48””
0,400,260,150,090,0428-40””
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Table A.14: Binding energy (meV/atom) extrapolation as a function of the number of carbon atoms in the clusters considered in the
linear regression and different basis sets.Some values for the ”t3” and ”t4C” basis sets are missing, since the computational requirements
are yet too demanding.

t1+f sb t2 t3 t4C Carbon atoms method

Ebind - AB -102 -112 -114 12-64 MP2
-100 -110 -112 -118 12-48 ””
-100 -112 -114 -120 -120 12-40 ””
-102 -112 -114 20-64 ””
-100 -108 -110 -118 20-48 ””
-100 -110 -112 -119 -118 20-40 ””
-102 -110 -112 28-64 ””
-96 -104 -106 -114 28-48 ””
-92 -102 -104 -110 -110 28-40 ””

∆Ebind - AB 74 86 88 12-64 PW-LDA - MP2
72 84 86 92 12-48 ””
72 84 88 92 92 12-40 ””
78 88 90 20-64 ””
76 86 88 96 20-48 ””
78 90 92 98 98 20-40 ””
76 88 90 28-64 ””
74 84 86 94 28-48 ””
76 88 88 96 96 28-40 ””

114 126 128 12-64 GGA-PBE - MP2
114 124 126 132 12-48 ””
114 126 128 134 134 12-40 ””
116 126 128 20-64 ””
114 124 126 132 20-48 ””
118 128 130 136 136 20-40 ””
114 124 126 28-64 ””
110 120 122 130 28-48 ””
114 124 126 132 132 28-40 ””
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TableA.14(continued)

t1+fsbt2t3t4CCarbonatomsmethod

-27-42-4312-64MP2-PBE+vdW
-25-41-42-4912-48””
-24-42-42-49-4912-40””
-28-42-4420-64””
-26-40-42-5020-48””
-24-41-43-50-4920-40””
-28-42-4428-64””
-24-38-40-4828-48””
-18-35-37-45-4528-40””

1
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A.5 Clusters Extrapolations for Bilayer Graphene

A.5.5 RPA

Since the computational framework of the current RPA implementation is the same as
MP2, such a method present similar demands with respect to the convergence of the
parameters. The recent implementation of multi-step integration159 allows to put safely
for all cluster ranges a cut-off threshold of 10−4, while the number of basis set products
for the carbon and hydrogen atoms are set to 4 and 3, respectively.
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TableA.15:Cohesiveenergy(eV/atom)extrapolationasafunctionofthenumberofcarbonatomsintheclustersconsideredinthe
linearregressionanddifferentbasissets.Somevaluesforthe”t3”and”t4C”basissetsaremissing,sincethecomputationalrequirements
areyettoodemanding.

t1+fsbt2t3t4CCarbonatomsmethod

Ebind-AB6,376,757,0912-64RPA
6,336,737,097,0912-48””
6,276,687,087,067,0812-40””
6,546,907,2020-64””
6,556,947,257,1220-48””
6,617,007,387,077,0820-40””
6,606,787,1128-64””
6,696,767,137,2128-48””
6,716,607,257,237,2528-40””

∆Ecoh2,492,141,7812-64PW-LDA-RPA
2,512,111,771,7712-48””
2,532,121,741,761,7412-40””
2,362,031,7120-64””
2,331,951,651,7820-48””
2,211,831,461,771,7620-40””
2,332,151,8328-64””
2,262,181,821,7528-48””
2,182,291,651,671,6528-40””

-1,40-1,04-0,6912-64RPA-GGA-PBE
-1,43-1,04-0,68-0,6812-48””
-1,44-1,05-0,65-0,66-0,6512-40””
-1,28-0,94-0,6620-64””
-1,25-0,88-0,57-0,7020-48””
-1,12-0,75-0,37-0,68-0,6620-40””
-1,25-1,09-0,7528-64””
-1,18-1,12-0,75-0,6728-48””
-1,08-1,21-0,55-0,57-0,5528-40””1
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Table A.15 (continued)

t1+f sb t2 t3 t4C Carbon atoms method

-1,48 -1,10 -0,77 12-64 RPA - PBE+vdW
-1,51 -1,11 -0,76 -0,75 12-48 ””
-1,54 -1,14 -0,75 -0,76 -0,73 12-40 ””
-1,35 -1,00 -0,70 20-64 ””
-1,33 -0,95 -0,64 -0,76 20-48 ””
-1,24 -0,87 -0,50 -0,80 -0,77 20-40 ””
-1,30 -1,13 -0,80 28-64 ””
-1,23 -1,16 -0,79 -0,71 28-48 ””
-1,21 -1,33 -0,69 -0,70 -0,66 28-40 ””
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TableA.16:Bindingenergy(meV/atom)extrapolationasafunctionofthenumberofcarbonatomsintheclustersconsideredinthe
linearregressionanddifferentbasissets.Somevaluesforthe”t3”and”t4C”basissetsaremissing,sincethecomputationalrequirements
areyettoodemanding.

t1+fsbt2t3t4CCarbonatomsmethod

Ebind-AB-42-47-4812-64RPA
-42-47-48-6112-48””
-43-48-49-61-6012-40””
-41-45-4720-64””
-41-45-46-6120-48””
-40-45-46-61-6120-40””
-41-45-4628-64””
-39-43-44-6028-48””
-36-40-41-59-5928-40””

15212212-64PW-LDA-RPA
1521223512-48””
152124343412-40””
16222320-64””
1722233820-48””
182425414020-40””
16212228-64””
1622223828-48””
192526454528-40””

-55-60-6112-64RPA-GGA-PBE
-56-61-62-74-7412-48””
-57-62-63-75-7412-40””
-55-60-6120-64””
-55-60-61-76-7720-48””
-58-63-64-79-7820-40””
-54-58-5928-64””
-53-58-59-74-7628-48””
-57-62-63-81-8028-40””1
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Table A.16 (continued)

t1+f sb t2 t3 t4C Carbon atoms method

34 24 23 12-64 RPA - PBE+vdW
33 22 22 9 12-48 ””
34 22 22 10 11 12-40 ””
34 25 24 20-64 ””
33 24 22 7 20-48 ””
36 24 23 8 8 20-40 ””
34 26 25 28-64 ””
33 24 23 7 28-48 ””
39 27 25 7 7 28-40 ””

1
4
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A.5.6 RPA+

For the RPA+ convergence tests, the same conclusions as for RPA are valid.
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Table A.17: Cohesive energy (eV/atom) extrapolation as a function of the number of carbon atoms in the clusters considered in the
linear regression and different basis sets.Some values for the ”t3” and ”t4C” basis sets are missing, since the computational requirements
are yet too demanding.

t1+f sb t2 t3 t4C Carbon atoms method

6,30 6,69 7,06 12-64 RPA+
6,26 6,66 7,06 7,02 12-48 ””
6,20 6,61 7,06 6,99 7,00 12-40 ””
6,47 6,84 7,13 20-64 ””
6,49 6,87 7,18 7,05 20-48 ””
6,54 6,92 7,30 7,00 7,01 20-40 ””
6,53 6,74 7,04 28-64 ””
6,62 6,70 7,06 7,14 28-48 ””
6,68 6,52 7,18 7,16 7,17 28-40 ””

2,56 2,20 1,81 12-64 PW-LDA - RPA+
2,58 2,18 1,79 1,84 12-48 ””
2,60 2,20 1,75 1,83 1,82 12-40 ””
2,43 2,09 1,78 20-64 ””
2,40 2,02 1,72 1,85 20-48 ””
2,28 1,91 1,53 1,84 1,83 20-40 ””
2,40 2,19 1,90 28-64 ””
2,33 2,25 1,89 1,82 28-48 ””
2,21 2,37 1,72 1,74 1,73 28-40 ””

-1,47 -1,10 -0,73 12-64 RPA+ - GGA-PBE
-1,49 -1,11 -0,71 -0,75 12-48 ””
-1,51 -1,12 -0,66 -0,73 -0,72 12-40 ””
-1,35 -0,99 -0,73 20-64 ””
-1,32 -0,96 -0,64 -0,77 20-48 ””
-1,19 -0,83 -0,44 -0,75 -0,73 20-40 ””
-1,32 -1,14 -0,82 28-64 ””
-1,25 -1,19 -0,82 -0,74 28-48 ””
-1,11 -1,29 -0,62 -0,64 -0,63 28-40 ””
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TableA.17(continued)

t1+fsbt2t3t4CCarbonatomsmethod

-1,55-1,16-0,8012-64RPA+-PBE+vdW
-1,58-1,18-0,79-0,8212-48””
-1,61-1,21-0,76-0,83-0,8112-40””
-1,42-1,05-0,7720-64””
-1,40-1,02-0,71-0,8320-48””
-1,31-0,95-0,57-0,87-0,8420-40””
-1,37-1,18-0,8728-64””
-1,30-1,23-0,86-0,7828-48””
-1,24-1,41-0,76-0,77-0,7428-40””
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Table A.18: Binding energy (meV/atom) extrapolation as a function of the number of carbon atoms in the clusters considered in the
linear regression and different basis sets.Some values for the ”t3” and ”t4C” basis sets are missing, since the computational requirements
are yet too demanding.

t1+f sb t2 t3 t4C Carbon atoms method

Ebind - AB -40 -45 -46 12-64 RPA+
-40 -45 -46 -59 12-48 ””
-41 -46 -47 -59 -58 12-40 ””
-40 -44 -45 20-64 ””
-39 -43 -44 -59 20-48 ””
-39 -43 -44 -60 -60 20-40 ””
-39 -43 -44 28-64 ””
-38 -41 -42 -58 28-48 ””
-34 -38 -39 -57 -58 28-40 ””

13 19 20 12-64 PW-LDA - RPA+
13 19 20 33 12-48 ””
13 19 22 33 32 12-40 ””
14 20 21 20-64 ””
15 20 21 36 20-48 ””
16 22 23 39 39 20-40 ””
14 20 21 28-64 ””
15 20 21 37 28-48 ””
18 23 24 43 44 28-40 ””

-53 -59 -60 12-64 RPA+ - GGA-PBE
-54 -59 -60 -73 -73 12-48 ””
-55 -60 -61 -73 -72 12-40 ””
-53 -58 -59 20-64 ””
-53 -58 -59 -74 -74 20-48 ””
-56 -61 -62 -77 -78 20-40 ””
-52 -57 -58 28-64 ””
-51 -56 -57 -73 -73 28-48 ””
-55 -60 -61 -79 -80 28-40 ””
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TableA.18(continued)

t1+fsbt2t3t4CCarbonatomsmethod

35252412-64RPA+-PBE+vdW
3524241112-48””
362424111212-40””
35262420-64””
352524920-48””
3726259920-40””
34262528-64””
352625928-48””
4128278828-40””

1
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[170] L.J. Sham and M. Schlüter. Phys. Rev. Lett., 51:1888, 1983.

[171] P.L. Silvestrelli. Phys. Rev. Lett., 100:053002, 2008.

[172] J.C. Slater. Phys. Rev., 31:333, 1928.

[173] J.C. Slater. Phys. Rev., 36:57, 1930.

[174] D. Spanjaard and M.C. Desjonqueres. Interactions of Atoms and Solids with
Molecules. Plenum, New York, 1990.

156



Bibliography

[175] L. Spanu, S. Sorella, and G. Galli. Nature and strength of interlayer binding in
graphite. Phys. Rev. Lett., 103(19):196401, 2009.

[176] V.N. Staroverov and G.E. Scuseria. Phys. Rev. B, 69:075102, 2004.

[177] H. Stoll. J. Chem. Phys, 97:8449, 1992.

[178] P.W. Sutter, J.I. Flege, and E.A. Sutter. Nature Materials, page 1, 2008.

[179] M. Swart, P.T. van Duijnen, and J.G. Snijders. J. Molec. Struct., 458:11, 1998.

[180] L. Zhechkov T. Heine and G. Seifert. Phys. Chem. Chem. Phys., 6:980, 2004.

[181] J.D. Talman and W. F. Shadwick. Phys. Rev. A, 14:36, 1976.

[182] J. M. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria. Phys. Rev. Lett.,
91:146401, 2003.

[183] L.H. Thomas. Proc. Cambridge Phil. Roy. Soc., 23:542, 1927.

[184] A. Tkatchenko and M. Scheffler. Phys. Rev. Lett., 102:073005, 2009.

[185] A. Tkatchenko, R. A. Di Stasio, M. Head-Gordon, and M. Scheffler. J. Chem.
Phys., 131:094106, 2009.

[186] S.B. Trickey, G.H.F. Diercksen, and F. Mueller-Plathe. Astrophys. J., 336:L37,
1989.

[187] S.B. Trickey, F. Mueller-Plathe, G.H.F. Diercksen, and J.C. Boettger. Phys. Rev.
B, 45:4460, 1992.
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