Aus der Klinik für Urologie

der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

DISSERTATION

Tissue-Based MicroRNAs as Predictors of Biochemical Recurrence after Radical Prostatectomy: What Can We Learn from Past Studies?

> zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.)

vorgelegt der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

von

Zhongwei Zhao aus China, Shandong

Datum der Promotion: 13.12.2019

Table of contents

Abstract (English)	2 -
Abstrakt (Deutsch)	3 -
Essential aspects of the thesis paper	4 -
Eidesstattliche Versicherung/Anteilserklärung	12 -
Auszug aus der Journal Summary List (ISI WoS)	13 -
Printed copy of the thesis publication	18 -
Curriculum vitae	51 -
Complete publication list	52 -
Acknowledgements	53 -
Curriculum vitae Complete publication list Acknowledgements	51 52 53

Abstract (English)

With the increasing understanding of the molecular mechanism of the microRNAs (miRNAs) in prostate cancer (PCa), the predictive potential of miRNAs has received more attention by clinicians and laboratory scientists. Compared with the traditional prognostic tools based on clinicopathological variables, including the prostate-specific antigen, miRNAs may be helpful novel molecular biomarkers of biochemical recurrence for a more accurate risk stratification of PCa patients after radical prostatectomy and may contribute to personalized treatment. Tissue samples from prostatectomy specimens are easily available for miRNA isolation. Numerous studies from different countries have investigated the role of tissue-miRNAs as independent predictors of disease recurrence, either alone or in combination with other clinicopathological factors. For this purpose, a PubMed search was performed for articles published between 2008 and 2017. We compiled a profile of dysregulated miRNAs as potential predictors of biochemical recurrence and discussed their current clinical relevance. Because of differences in analytics, insufficient power and the heterogeneity of studies, and different statistical evaluation methods, limited consistency in results was obvious. Prospective multi-institutional studies with larger sample sizes, harmonized analytics, well-structured external validations, and reasonable study designs are necessary to assess the real prognostic information of miRNAs, in combination with conventional clinicopathological factors, as predictors of biochemical recurrence.

Abstrakt (Deutsch)

Mit dem zunehmenden Verständnis der molekularen Mechanismen von microRNAs (miRNAs) beim Prostatakarzinom (PCa) hat das mögliche Vorhersagepotenzial von miRNAs für den Verlauf dieser Erkrankung das besondere Interesse von Klinikern Laborwissenschaftlern geweckt. Im Vergleich zu den und traditionellen Prognoseindikatoren, die auf klinisch-pathologischen Variablen unter Einschluss des prostata-spezifischen Antigens (PSA) im Serum basieren, können miRNAs möglicherweise neue molekulare Biomarker zur Erkennung des "biochemischen Rezidivs" (d.h., Wiederanstieg des PSA nach Prostatektomie) darstellen. Sie bieten damit Möglichkeiten für eine genauere Risikostratifizierung von PCa-Patienten nach radikaler Prostatektomie und könnten zu einer besseren personalisierten Behandlung und Verlaufsbeobachtung beitragen. Gewebeproben von Prostatektomie-Präparaten sind für die miRNA-Isolierung leicht verfügbar. Zahlreiche Studien aus verschiedenen Ländern haben die Rolle von Gewebe-miRNAs als unabhängige Prädiktoren für ein PCa-Rezidiv untersucht, entweder nur anhand von miRNAs oder in Kombination mit traditionellen klinisch-pathologischen Faktoren. Es wurde eine systematische Übersichtsarbeit der bisher publizierten Ergebnisse erstellt, die auf einer PubMed-Suche der zwischen 2008 und 2017 veröffentlichten Studien beruht und diese kritisch ausgewertet hat. Profile von fehlregulierten miRNAs als potenzielle Prädiktoren für ein biochemisches Rezidiv wurden erarbeitet und deren aktuelle klinische Relevanz diskutiert. Aufgrund der Unterschiede in der Analytik, der oftmals unzureichenden statistischen Effektgrößen und der Heterogenität der Studien sowie der unterschiedlichen statistischen Auswertungsmethoden war nur eine begrenzte Ergebniskonsistenz offensichtlich. Prospektive multi-zentrische Studien mit größeren Analyseverfahren, gut strukturierten Stichproben und besser harmonisierten externen Validierungen und vernünftigen Studiendesigns sind notwendig, um die tatsächlichen prognostischen Informationen von miRNAs in Kombination mit konventionellen klinisch-pathologischen Prädiktoren Faktoren als für das biochemische Rezidiv bewerten und eventuell routinemäßig einsetzen zu können.

Essential aspects of the thesis paper "Tissue-Based MicroRNAs as Predictors of Biochemical Recurrence after Radical Prostatectomy:What Can We Learn from Past Studies?"

Background

Prostate cancer (PCa) is the second most common type of cancer in males worldwide. Approximately 15-30% and 25-53% of postoperative patients suffer from a biochemical recurrence after 5 and 10 years, respectively [1,2]. In line with the guidelines of the European Association of Urology, biochemical recurrence is termed as a reappeared prostate-specific antigen (PSA) to 0.2 µg/L after radical prostatectomy that is confirmed by two consecutive elevated values. Previous studies showed that approximately 24-34% of patients who develop biochemical recurrence will experience clinically evident recurrence (e.g. metastatic disease) within 15 years after surgery [3]. Therefore, an early and reliable prediction of PCa patients with high risk after surgery would aid in the decision-making for the implement of adjuvant therapy and for selecting patients who need a more frequent monitoring during follow-up. However, the predictors based on traditional clinicopathological variables like concentration of prostate-specific antigen in serum, tumor stage, surgical margin, and also Gleason grade have only limited prognostic accuracy of biochemical recurrence. In general, an agreement between predicted and observed outcome of only 70 to 80% can be achieved using the different nomograms or electronic tools [4].

For this reason, many efforts have been made to search for genetic variables like microRNAs that may contribute to better prediction. MiRNAs with about only 18 to 22 nucletides belong to the class of small non-coding RNAs like small nucleolar RNAs, small nuclear RNAs, and PIWI-interacting RNAs [5]. MiRNAs have been regarded as transcriptional "trash" for a long time, but there is meanwhile a great evidence that these special RNAs have numerous interactive functional roles in both physiological and pathological processes, for example also in prostate cancer [6]. Numerous studies from the whole world have investigated the role of tissue-based miRNAs as prognostic biomarkers of PCa recurrence. It was therefore the aim of this study to make an overview on the current state of the published results using the different miRNAs as predictive tools for forecasting the biochemical recurrence after radical prostatectomy.

Materials and Methods:

For this systematic review, a search for original articles published between 2008 to May 2017 was conducted in the database PubMed. The search strategy was performed using MeSH terms as follows: ["microRNAs" OR "microRNA" OR "micro-RNA" OR "micro-RNAs" OR "miRNAs"] AND ["prostatic neoplasms" OR "prostate cancer"] AND ["biochemical recurrence" OR "recurrence" OR "biochemical relapse" OR "biochemical failure"] AND "radical prostatectomy". In addition, references in the identified articles and reviews were utilized to search for further relevant publications and studies. Publications were eligible for inclusion only if: (a) they were peerreviewed and provided with full text in English, (b) the sample resources were tissue specimens including fresh-frozen or formalin-fixed, paraffin-embedded (FFPE) tissue, whereas articles focusing on miRNAs from blood, urine, cell lines, and animal models were excluded, and (c) objective of study was to evaluate the prognostic potential of single miRNAs, combinations of diverse miRNAs, or miRNAs combined with clinicopathological variables for biochemical recurrence of PCa. The procedures of the extraction of the study results and the evaluation of data was performed according to the recommendations of the Cochrane Collaboration.

All the tissue-based miRNAs validated as potential independent predictors by previous studies were summarized. All included publications were briefly summarized regarding the following aspects: study design, analytical methods, result of miRNAs validated as predictors and our own comments on every study.

Results

According to the inclusion criteria, 53 out of 148 publications were finally including into the review, which comprised 29 studies performed in FFPE and 26 in fresh-frozen tissue samples (two studies included both FFPE and fresh-frozen cohorts). Fifty of these 53 articles were published in the recent seven years, whereas only three papers emerged before 2011. Based on the different development phases of miRNAs as predictors of biochemical recurrence [7], all the studies could be divided into three categories: 1. Discovery and selection of potential miRNAs; 2. Validation by clinical assessment; 3. Validation by clinical usability.

From the 53 identified studies, 58 distinct miRNAs were detected as potentially prognostic biomarkers of biochemical recurrence, including 41 different miRNAs in FFPE and 27 miRNAs in fresh-frozen tissue samples. Furthermore, only 10 miRNAs were simultaneously observed in both sample types. Among these 58 miRNAs, only 15 miRNAs were found in at least two studies, whereas 43 miRNAs were determined in only one study. Additionally, five miRNAs including miR-221-3p, miR-21-5p, miR-145-5p, miR-1-3p, and miR-96-5p were found to be the most frequently analyzed miRNAs in the reviewed studies of biochemical recurrence. Paradoxically, three miRNAs comprising miR-21-5p, miR-133b, and miR-145-5p were found to be both up- and downregulated in different studies. Apart from that, other types of heterogeneity were found in the results of some particular miRNAs. The correlations between expression of miRNA and clinicopathological variables were found to be discrepant in studies of miR-21-5p and miR-221-3p. In addition, four miRNAs (miR-96-5p, miR-145-5p, miR-182-5p and miR-221-3p) acted as independent predictors in some studies, whereas they failed to be validated as prognostic biomarkers in other studies. Moreover, some miRNAs such as miR-141-3p, miR-148a-3p and miR-221-3p were found to act in the opposite way as tumor suppressors or oncogenes in different studies. All these results are detailed summarized in five Tables and two Figures.

Discussion

In the reviewed studies of prognostic miRNAs in PCa, the discrepancies of results of some particular miRNAs may be explained by the variation of variables in analytical and study design considerations. The studies used different collection, processing and storage methods of tissue samples in the pre-analytical phase, different extraction and quantification methods of RNAs in the analytical phase and different normalization strategies in post-analytical phase. The variation in study design was reflected in the different definition of biochemical recurrence using different cutoffs of reappeared prostate-specific antigen in serum, sample size, number events of biochemical recurrence, follow-up time, and internal or external validation of results. For example, the opposite dysregulated directions of miR-145-5p in different studies may result from different normalization strategies. Two studies normalized the miRNA value with small nuclear RNAs (RNU43 and RNU48) that were criticized by their instability as reference genes [8]. The failure of miR-221-3p as

prognostic biomarker in one of two other studies could be caused by the short followup time (<2 years) [9]. Thus, a strict method harmonization will be necessary for improving the comparability of miRNA results from different studies. For instance, RT-qPCR measurements should be referred to the "Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE)" guidelines, which could be used to evaluate the quality and potential traceability of RT-qPCR measurements [10]. In addition, the studies that aim to search for prognostic biomarkers should be performed in line with the "Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK)" [11].

In the discovery phase of miRNA candidates for predicting biochemical recurrence, almost half of the reviewed PCa studies performed high-throughput "omics" approaches such as microarrays and sequencing techniques. The provided rich information makes it possible to search not only single miRNAs but also to combine multiple miRNAs into a predictive signature together with clinicopathological variables. The orthogonal feature of miRNAs seems to be a prerequisite for building such a predictive signature. Orthogonal miRNAs are termed miRNAs that are uncorrelated among each other of miRNAs and to the clinicopathological variables [12]. This orthogonal characteristic could be shown in miR-29c-3p, miR-34a-5p, miR141-3p and miR-148a-3p that were found to be uncorrelated with tumor size and pathological stage [13]. The potential promising effectiveness of a multi-miRNA predictive tool could be demonstrated in the Decipher genomic classifier utilizing a 22-gene signature for stratification of postsurgical risk [14,15]. In addition, a clinicogenomic classifier combining clinicopathological variables and miRNAs will be also a good direction for further improvement of predictive accuracy compared with clinicopathological variables alone [16,17].

In the reviewed studies, there were some contradictions about the miRNAs' functional roles in prostate cancer. For instance, miR-141-3p was found as suppressor in PCa by inhibiting PCa cell proliferation and migration [13], whereas it was also reported as oncogene in untreated PCa and castration-resistant PCa by enhancing PCa cell proliferation [18]. Similar to miR-141-3p, miR-148-3p was reported as oncogene by promoting prostate cell growth [19], whereas it was also found as suppressor by inhibiting the growth of androgen-refractory prostate cancer cells [20]. Depending on the difference of the types of prostate cancer cells between these studies, we considered that the expression of both miR-141 and miR-148a

would be altered during the progression of cancer stages. Moreover, the tumorsuppressive function of downregulated miR-221-3p in PCa was observed in several previous studies by inhibiting proliferation, apoptosis, and invasion of prostate cancer cells [21,22]. However, miR-221-3p with upregulation was also described as oncogene in PCa metastases and PCa mouse models by enhancing the growth of PCa cell [23]. The reverse expression and opposite functional roles as suppressor or oncogene of miR-221-3p in PCa may reflect diverse phases of PCa development [21].

Future Directions:

Despite the above-mentioned critical points and limitations of the reviewed studies, promising results provided by several studies can be considered as strong evidence of the real potential of miRNAs as predictors of biochemical recurrence. The final aim of this review is to learn from the shortcomings of previous studies and draw corresponding conclusions and suggestions for future studies. Hence, based on the published results and the background data of the 53 reviewed studies, two essential conclusions can be drawn:

- 1. No study has been able to satisfy the suggested requirements and standards specified in the final development phase "Validation of clinical usability" to establish a robust tool of predicting biochemical recurrence for clinical practice using miRNAs. Additionally, due to the lack of internal validation in most of the studies, only few studies can be considered as successfully finished in the second development phase "Validation by clinical assessment".
- 2. The assessment and comparison of analytical and clinical conditions in the various studies provided a wealth of experience in the evaluation of study design features. On basis of these experiences, critical study shortcomings could be identified and important conclusions of future directions could be drawn to avoid these deficiencies.

The results of the various studies and their generalized assessment confirm once more the urgent need of a good coordination between the study aims, all study design elements, and pre-analytical and analytical conditions. The three guidelines MIQE, REMARK, and STARD should be strictly considered in future studies since they define the basic foundation for conducting a study under common clinical and analytical conditions [10,11,24]. For prospective, multi-institutional studies, appropriate elements of these guidelines should be respected, and their compliance should be a key factor of constant control to guarantee necessary preconditions for a reliable database. These guidelines not only allow the necessary transparency but also the harmonization and comparability of results between multi-institutional studies. However, because of numerous factors, such as different methods of RNA extraction, reverse transcription, and true miRNA measurements, as well as various platform applications that could influence RT-qPCR results, it is recommended to perform all analyses at one institution in early studies. The issue of analytical differences could be solved later in a second step of method harmonization. The same applies to retrospective studies. Since biochemical recurrence does not equal clinical relapse, future studies should additionally focus on the predictive capability of miRNAs with regard to the clinical endpoints of distant metastasis, cancer-specific death, and response rate to drugs. Further multi-institutional studies are needed to validate the clinical usability of miRNA-based tools, either alone or combined with clinicopathological factors, for BCR prediction. The additional information provided by miRNAs in comparison to well-defined BCR prediction tools [4,25,26] is necessary to reflect the true prognostic capability of miRNAs. It is worth considering whether the multiple-miRNA signatures provided by reviewed studies could be confirmed in comparison to these clinically well-defined prediction tools in retrospective multiinstitutional approaches as a validation step to initiate prospective studies.

Conclusion

In summary, miRNAs were shown in several studies of this systematic review as promising marker candidates and miRNA signatures for predicting biochemical recurrence after radical prostatectomy. However, the general non-consideration of the MIQE, REMARK, and STARD guidelines in most studies resulted in study design deficiencies, primarily a lack of internal validation of data. The clear evidence of additional information through miRNAs in comparison to the conventional approaches of biochemical recurrence has not been proven so far. Further studies are needed to overcome these deficiencies both in retrospective and prospective multi-institutional studies to validate the clinical usability and benefit of miRNA-based BCR tools in combination with the conventional clinicopathological variables.

References

- 1. Amling CL, Blute ML, Bergstralh EJ, Seay TM, Slezak J, Zincke H. Long-term hazard of progression after radical prostatectomy for clinically localized prostate cancer: continued risk of biochemical failure after 5 years. J Urol 2000;164:101-5.
- Lowrance WT, Eastham JA, Savage C, Maschino AC, Laudone VP, Dechet CB, Stephenson RA, Scardino PT, Sandhu JS. Contemporary open and robotic radical prostatectomy practice patterns among urologists in the United States. J Urology 2012;187:2087-92.
- Boorjian SA, Thompson RH, Tollefson MK, Rangel LJ, Bergstralh EJ, Blute ML, Karnes RJ. Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: the impact of time from surgery to recurrence. Eur Urol 2011;59:893-9.
- Punnen S, Freedland SJ, Presti JC, Jr., Aronson WJ, Terris MK, Kane CJ, Amling CL, Carroll PR, Cooperberg MR. Multi-institutional validation of the CAPRA-S score to predict disease recurrence and mortality after radical prostatectomy. Eur Urol 2014;65:1171-7.
- 5. Kutter C, Svoboda P. miRNA, siRNA, piRNA: Knowns of the unknown. RNA Biol 2008;5:181-8.
- **6**. Schaefer A, Jung M, Mollenkopf H-J, Wagner I, Stephan C, Jentzmik F, Miller K, Lein M, Kristiansen G, Jung K. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 2010;126:1166-76.
- **7**. Fendler A, Stephan C, Yousef GM, Kristiansen G, Jung K. The translational potential of microRNAs as biofluid markers of urologic tumors. Nat Rev Urol 2016;13:734-52.
- Carlsson J, Helenius G, Karlsson M, Lubovac Z, Andren O, Olsson B, Klinga-Levan K. Validation of suitable endogenous control genes for expression studies of miRNA in prostate cancer tissues. Cancer Genet Cytogenet 2010;202:71-5.
- **9**. Kang SG, Ha YR, Kim SJ, Kang SH, Park HS, Lee JG, Cheon J, Kim CH. Do microRNA 96, 145 and 221 expressions really aid in the prognosis of prostate carcinoma? Asian J Androl 2012;14:752-7.
- Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55:611-22.
- **11**. Altman DG, McShane LM, Sauerbrei W, Taube SE. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): explanation and elaboration. PLoS Med 2012;9:e1001216.
- **12**. Gerszten RE, Wang TJ. The search for new cardiovascular biomarkers. Nature 2008;451:949-52.
- Lichner Z, Ding Q, Samaan S, Saleh C, Nasser A, Al-Haddad S, Samuel JN, Fleshner NE, Stephan C, Jung K, Yousef GM. miRNAs dysregulated in association with Gleason grade regulate extracellular matrix, cytoskeleton and androgen receptor pathways. J Pathol 2015;237:226-37.
- Karnes RJ, Choeurng V, Ross AE, Schaeffer EM, Klein EA, Freedland SJ, Erho N, Yousefi K, Takhar M, Davicioni E, Cooperberg MR, Trock BJ. Validation of a Genomic Risk Classifier to Predict Prostate Cancer-specific Mortality in Men with Adverse Pathologic Features. Eur Urol 2018;73:168-75.
- 15. Ross AE, Johnson MH, Yousefi K, Davicioni E, Netto GJ, Marchionni L, Fedor HL, Glavaris S, Choeurng V, Buerki C, Erho N, Lam LL, Humphreys EB, Faraj S, Bezerra SM, Han M, Partin AW, Trock BJ, Schaeffer EM. Tissue-based genomics augments post-prostatectomy risk stratification in a natural history cohort of intermediate- and high-risk men. Eur Urol 2016;69:157-65.
- **16**. Bovelstad HM, Nygard S, Borgan O. Survival prediction from clinico-genomic models--a comparative study. BMC Bioinformatics 2009;10:413.
- **17**. Cooperberg MR, Davicioni E, Crisan A, Jenkins RB, Ghadessi M, Karnes RJ. Combined value of validated clinical and genomic risk stratification tools for predicting prostate cancer mortality in a high-risk prostatectomy cohort. Eur Urol 2015;67:326-33.

- **18**. Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM, Kallioniemi OP, Jenster G, Visakorpi T. Androgen regulation of micro-RNAs in prostate cancer. Prostate 2011;71:604-14.
- **19**. Murata T, Takayama K, Katayama S, Urano T, Horie-Inoue K, Ikeda K, Takahashi S, Kawazu C, Hasegawa A, Ouchi Y, Homma Y, Hayashizaki Y, Inoue S. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer P D 2010;13:356-61.
- Fujita Y, Kojima K, Ohhashi R, Hamada N, Nozawa Y, Kitamoto A, Sato A, Kondo S, Kojima T, Deguchi T, Ito M. MiR-148a attenuates paclitaxel resistance of hormonerefractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem 2010;285:19076-84.
- **21**. Gui B, Hsieh CL, Kantoff PW, Kibel AS, Jia L. Androgen receptor-mediated downregulation of microRNA-221 and -222 in castration-resistant prostate cancer. PLoS One 2017;12:e0184166.
- 22. Kristensen H, Thomsen AR, Haldrup C, Dyrskjot L, Hoyer S, Borre M, Mouritzen P, Orntoft TF, Sorensen KD. Novel diagnostic and prognostic classifiers for prostate cancer identified by genome-wide microRNA profiling. Oncotarget 2016;7:30760-71.
- 23. Sun T, Wang X, He HH, Sweeney CJ, Liu SX, Brown M, Balk S, Lee GS, Kantoff PW. MiR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. Oncogene 2014;33:2790-800.
- 24. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, Lijmer JG, Moher D, Rennie D, de Vet HC, Kressel HY, Rifai N, Golub RM, Altman DG, Hooft L, Korevaar DA, Cohen JF, Group S. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. Clin Chem 2015;61:1446-52.
- Lughezzani G, Budaus L, Isbarn H, Sun M, Perrotte P, Haese A, Chun FK, Schlomm T, Steuber T, Heinzer H, Huland H, Montorsi F, Graefen M, Karakiewicz PI. Head-to-head comparison of the three most commonly used preoperative models for prediction of biochemical recurrence after radical prostatectomy. Eur Urol 2010;57:562-8.
- **26**. Shariat SF, Karakiewicz PI, Roehrborn CG, Kattan MW. An updated catalog of prostate cancer predictive tools. Cancer 2008;113:3075-99.

Eidesstattliche Versicherung/Anteilserklärung

"Ich, Zhongwei Zhao, versichere an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorgelegte Dissertation mit dem Thema: "Tissue-Based MicroRNAs as Predictors of Biochemical Recurrence after Radical Prostatectomy: What Can We Learn from Past Studies?" selbstständig und ohne nicht offengelegte Hilfe Dritter verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel genutzt habe.

Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche in korrekter Zitierung kenntlich gemacht. Die Abschnitte zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen werden von mir verantwortet.

Meine Anteile an etwaigen Publikationen zu dieser Dissertation entsprechen denen, die in der untenstehenden gemeinsamen Erklärung mit dem Betreuer, angegeben sind. Für sämtliche im Rahmen der Dissertation entstandenen Publikationen wurden die Richtlinien des ICMJE (International Committee of Medical Journal Editors; <u>www.icmje.og</u>) zur Autorenschaft eingehalten. Ich erkläre ferner, dass mir die Satzung der Charité – Universitätsmedizin Berlin zur Sicherung Guter Wissenschaftlicher Praxis bekannt ist und ich mich zur Einhaltung dieser Satzung verpflichte.

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§156,161 des Strafgesetzbuches) sind mir bekannt und bewusst."

Datum

Unterschrift

Ausführliche Anteilserklärung an der erfolgten Publikation

Publikation 1: Zhao Z, Stephan C, Weickmann S, Jung M, Kristiansen G, Jung K. Tissue-based microRNAs as predictors of biochemical recurrence after radical prostatectomy: what can we learn from past studies? Int J Mol Sci 2017;18:E2023. Erscheinungsdatum: 21. September 2017

Zhongwei Zhao elaborated the essential parts of the concept and design of this systematic review. He performed the literature search, extracted the study results, and summarized the data in tables shown in the paper. He presented all the data and critical analyses in the working group. PD Dr. Ecke controlled together with Prof. Dr. Stephan as the other tutor of this thesis and Prof. Jung as the senior author of this thesis paper the correctness and plausibility of extracted data. Finally, Zhongwei Zhao drafted the concept for this paper and wrote the manuscript independently after the draft was accepted in the discussion round of the working group.

Unterschrift, Datum und Stempel des betreuenden Hochschullehrers/der betreuenden Hochschullehrerin

Unterschrift des Doktoranden/der Doktorandin

Auszug aus der Journal Summary List (ISI WoS).

Journal Data Filtered By: Selected JCR Year: 2017 Selected Editions: SCIE,SSCI Selected Categories: "BIOCHEMISTRY and MOLECULAR BIOLOGY" Selected Category Scheme: WoS

	Gesal		Journal Impact	
Rank	Full Journal Title	Total Cites	Factor	Eigenfactor Score
1	NATURE MEDICINE	75,461	32.621	0.171980
2	CELL	230,625	31.398	0.583260
	Annual Review of			
3	Biochemistry	19,873	20.154	0.030170
	TRENDS IN BIOCHEMICAL			
4	SCIENCES	16,944	15.678	0.030830
5	MOLECULAR CELL	61,604	14.248	0.181170
6	Nature Chemical Biology	19,562	13.843	0.061240
	NATURE STRUCTURAL &			
7	MOLECULAR BIOLOGY	27,547	13.333	0.081820
8	TRENDS IN MICROBIOLOGY	11,344	11.776	0.020970
9	MOLECULAR PSYCHIATRY	18,460	11.640	0.047200
10	NUCLEIC ACIDS RESEARCH	168,962	11.561	0.402470
	NATURAL PRODUCT			
11	REPORTS	9,973	11.406	0.016090
	TRENDS IN MOLECULAR	12		
12	MEDICINE	9,213	11.021	0.019720
13	EMBO JOURNAL	67,036	10.557	0.079780
	MOLECULAR BIOLOGY AND		10.017	0.404550
14	EVOLUTION	44,664	10.217	0.101560
15	GENOME RESEARCH	38,842	10.101	0.105060
16	Molecular Plant	7,010	9.326	0.021690
17	CURRENT BIOLOGY	56,595	9.251	0.137200
18	PLOS BIOLOGY	28,750	9.163	0.058680
19	Cell Systems	1,129	8.982	0.009600
20	EMBO REPORTS	13,293	8.749	0.031350
21	Molecular Systems Biology	8,447	8.500	0.019830
	PROGRESS IN LIPID			
22	RESEARCH	5,302	8.435	0.006750
23	PLANTCELL	48,393	8.228	0.063640
	BIOCHIMICA ET			10
	BIOPHYSICA ACTA-			
24	REVIEWS ON CANCER	5,276	8.220	0.009300
25	MATRIX BIOLOGY	4,803	8.136	0.008500
	CELL DEATH AND			
26	DIFFERENTIATION	18,865	8.000	0.031540
27	Molecular Cancer	10,301	7.776	0.017280
	CURRENT OPINION IN			
28	CHEMICAL BIOLOGY	10,226	7.572	0.019010
	MOLECULAR ASPECTS OF			
29		5,157	/.344	0.009700
20		10 610	7 170	0.024220
50	Baday Bists	10,019	7.1/9	0.024320
51	Redox Biology	4,083	/.126	0.012060

Selected JCR Year: 2017; Selected Categories: "BIOCHEMISTRY and MOLECULAR BIOLOGY"

28

Rank	Full Journal Title	Total Cites	Journal Impact Factor	Eigenfactor Score
	Molecular Ecology			
32	Resources	9,272	7.059	0.017390
33	ONCOGENE	66,411	6.854	0.075960
	CELLULAR AND			
34	MOLECULAR LIFE SCIENCES	23,341	6.721	0.041340
	ANTIOXIDANTS & REDOX			
35	SIGNALING	19,324	6.530	0.032120
	CYTOKINE & GROWTH			
36	FACTOR REVIEWS	5,668	6.395	0.008050
37	Science Signaling	10,316	6.378	0.037220
38	MOLECULAR ECOLOGY	37,813	6.131	0.062120
	FREE RADICAL BIOLOGY			
39	AND MEDICINE	40,089	6.020	0.043060
40	CHEMISTRY & BIOLOGY	12,036	5.915	0.022840
41	BIOMACROMOLECULES	36.807	5.738	0.040810
				0.0.0010
42	FASEB JOURNAL	41,572	5.595	0.051640
43	Cell Chemical Biology	936	5.592	0.005100
	EXPERIMENTAL AND			
44	MOLECULAR MEDICINE	3,538	5.584	0.007100
45	ADDICTION BIOLOGY	3,947	5.578	0.009640
	CRITICAL REVIEWS IN			
	BIOCHEMISTRY AND			
46	MOLECULAR BIOLOGY	3,337	5.279	0.007160
47	RNA Biology	5,089	5.216	0.019400
	Biochimica et Biophysica			
	Acta-Gene Regulatory			
48	Mechanisms	7,047	5.179	0.019420
	BIOCHIMICA ET			
	BIOPHYSICA ACTA-			
	MOLECULAR BASIS OF			
49	DISEASE	12,799	5.108	0.027740
	BIOCHIMICA ET			
	BIOPHYSICA ACTA-			
	MOLECULAR AND CELL			
50	BIOLOGY OF LIPIDS	8,827	4.966	0.019590
51	Epigenetics	5,167	4.918	0.014110
52	STRUCTURE	14.417	4.907	0.036760
	HUMAN MOLECULAR	,		
53	GENETICS	40.141	4.902	0.081220
	JOURNAL OF MOLECULAR			
54	BIOLOGY	59,295	4.894	0.047560
	BIOCHIMICA ET			
	BIOPHYSICA ACTA-			
	MOLECULAR CELL	÷		
55	RESEARCH	15,355	4.651	0.035090
	JOURNAL OF			
56	NEUROCHEMISTRY	37,022	4.609	0.030710
57	ACS Chemical Biology	10.139	4.592	0.038480

Selected JCR Year: 2017; Selected Categories: "BIOCHEMISTRY and MOLECULAR BIOLOGY"

Rank	Full Journal Title	Total Cites	Journal Impact Factor	Eigenfactor Score
	JOURNAL OF LIPID			
59	RESEARCH	22,697	4.505	0.029380
60	RNA	13,110	4.490	0.029440
	BIOCONJUGATE			
61	CHEMISTRY	15,194	4.485	0.021530
62	BIOESSAYS	9,697	4.419	0.016870
	JOURNAL OF NUTRITIONAL			×
63	BIOCHEMISTRY	9,815	4.414	0.014150
	MOLECULAR			
	PHYLOGENETICS AND			
64	EVOLUTION	18,604	4.412	0.029490
	NITRIC OXIDE-BIOLOGY			
65	AND CHEMISTRY	3,680	4.367	0.004970
	BIOCHIMICA ET			
	BIOPHYSICA ACTA-			
66	BIOENERGETICS	11,931	4.280	0.022190
67	ACS Chemical	4.226	4 2 1 1	0.010070
67	Computational and	4,336	4.211	0.013270
	Structural Biotechnology			
68	lournal	933	4 148	0.003730
00		555	4.140	0.003730
	BIOCHEMISTRY AND			
69	MOLECULAR BIOLOGY	10.325	4.095	0.012650
70	Metallomics	4 240	4 069	0.009600
	Journal of Genetics and	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.005000
71	Genomics	1,811	4.066	0.004100
	International Journal of			
72	Biological Sciences	4,432	4.057	0.009970
	AMYLOID-JOURNAL OF			
	PROTEIN FOLDING			
73	DISORDERS	1,262	4.048	0.002420
74	CHROMOSOMA	3,527	4.021	0.005850
	JOURNAL OF BIOLOGICAL			
75	CHEMISTRY	366,247	4.010	0.320840
76	METHODS	19,646	3.998	0.024790
77	APOPTOSIS	6,281	3.967	0.007390
78	BIOORGANIC CHEMISTRY	2,123	3.929	0.003030
	INTERNATIONAL JOURNAL			
	OF BIOLOGICAL			
79	MACROMOLECULES	20,621	3.909	0.030000
	EXPERT REVIEWS IN	1100		
80	MOLECULAR MEDICINE	1,790	3.865	0.001620
81	BIOCHEMICAL JOURNAL	47,538	3.857	0.037930
	CURRENT OPINION IN			
82	LIPIDOLOGY	3,849	3.853	0.006100
	MOLECULAR			
83	CARCINOGENESIS	5,244	3.851	0.007630
	MOLECULAR			
84	MICROBIOLOGY	35,698	3.816	0.036170

Selected JCR Year: 2017; Selected Categories: "BIOCHEMISTRY and MOLECULAR BIOLOGY"

.

Rank	Full Journal Title	Total Cites	Journal Impact Factor	Eigenfactor Score
	MOLECULAR AND			
85	CELLULAR BIOLOGY	58,133	3.813	0.047200
86	BIOELECTROCHEMISTRY	4,076	3.789	0.004420
	AMERICAN JOURNAL OF			
	RESPIRATORY CELL AND			
87	MOLECULAR BIOLOGY	11,713	3.785	0.016750
	JOURNAL OF TRACE			
	ELEMENTS IN MEDICINE			
88	AND BIOLOGY	2,994	3.755	0.004390
89	PLANT SCIENCE	12,750	3.712	0.014460
	INTERNATIONAL JOURNAL			
90	OF MOLECULAR SCIENCES	37,071	3.687	0.092530
	BIOCHIMICA ET			
	BIOPHYSICA ACTA-			
91	GENERAL SUBJECTS	13,602	3.679	0.025440
92	GLYCOBIOLOGY	7,259	3.664	0.009080
	JOURNAL OF ENZYME			
	INHIBITION AND			
93	MEDICINAL CHEMISTRY	4,162	3.638	0.005910
	EUROPEAN JOURNAL OF			
94	HUMAN GENETICS	9,453	3.636	0.024050
	International Review of			
95	Cell and Molecular Biology	1,641	3.622	0.005090
	NEUROCHEMISTRY			
96	INTERNATIONAL	8,367	3.603	0.009940
07	MOLECULAR PLANI-			
97	MICROBE INTERACTIONS	10,099	3.588	0.010270
		7 004	2.502	
98	AND MOLECULAR BIOLOGY	/,821	3.562	0.008930
00	PLANT MOLECULAR	12 722	2 5 4 2	0.010510
99	BIOLOGY	13,723	5.545	0.010510
100	PROTEOMICS	14,902	3.532	0.023220
86	BIOELECTROCHEMISTRY	4,076	3.789	0.004420
	AMERICAN JOURNAL OF			
	RESPIRATORY CELL AND			
8/	MOLECULAR BIOLOGY	11,/13	3./85	0.016750
	JOURNAL OF TRACE			
00		2 00 4	2 755	0.004200
88	AND BIOLOGY	2,994	3.755	0.004390
89	PLANT SCIENCE	12,750	3./12	0.014460
00	INTERNATIONAL JOURNAL	27.074	2 607	0.000500
90	DF MOLECULAR SCIENCES	37,0/1	3.687	0.092530
01	GENERAL SUBJECTS	12 (02)	2 670	0.025440
91	GENERAL SUBJECTS	13,602	3.6/9	0.025440
92	GLYCOBIOLOGY	7,259	3.664	0.009080
	JOURNAL OF ENZYME			
02		4.462	2.000	0.005010
93	IVIEDICINAL CHEIVIISTRY	4,162	3.638	0.005910

Selected JCR Year: 2017; Selected Categories: "BIOCHEMISTRY and MOLECULAR BIOLOGY"

t.

Biochemistry & Molecular Biology Rank 90 in 293 journals according to Impact Factor (30,7%).

InCites Journal Citation Reports

Home

Journals in BIOCHEMISTRY & MOLECULAR BIOLOGY

Go to Journal Profile		Journa	is By Ran	k Categories By Rank			
Master Search	Q	Journal	Titles Rank	ed by Impact Factor			
Compare Journals		Compa	re Selecte	d Journals Add Journals to	New or Exis	sting List	Customize
		Select All		Full Journal Title	Total Cites	Journal Impact Factor •	Eigenfactor Score
View Title Changes	0		01	MOLECULAR BIOLOGY	<u>ы, на</u>	3.103	0.01700
Select Journals	•		88	JOURNAL OF TRACE ELEMENTS IN MEDICINE	2,994	3.755	0.00400
Select Categories	•		89	PLANT SCIENCE	12,750	3.712	0.01500
Select JCR Year		V	90	INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES	37,071	<mark>3.</mark> 687	0.09300
			91	BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS	13,602	3.679	0.02500
			92	GLYCOBIOLOGY	7,259	3.664	0.00900
Open Access Category Schema			93	JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY	4,162	3.638	0.00600
Web of Science		m	94	EUROPEAN JOURNAL OF	9.4 <mark>5</mark> 3	3.636	0.02400

0

Printed copy of the thesis publication

Tissue-Based MicroRNAs as Predictors of Biochemical Recurrence after Radical Prostatectomy: What Can We Learn from Past Studies?

Zhongwei Zhao *, Carsten Stephan, Sabine Weickmann, Monika Jung, Glen Kristiansen and Klaus Jung

* Zhongwei Zhao is the first author of the publication

Zhao, Z.; Stephan, C.; Weickmann, S.; Jung, M.; Kristiansen, G.; Jung, K., Tissue-Based MicroRNAs as Predictors of Biochemical Recurrence after Radical Prostatectomy: What Can We Learn from Past Studies? Int J Mol Sci 2017, 18, (10):2023 <u>https://www.ncbi.nlm.nih.gov/pubmed/28934131</u>.

Review

Tissue-Based MicroRNAs as Predictors of Biochemical Recurrence after Radical Prostatectomy: What Can We Learn from Past Studies?

Zhongwei Zhao¹, Carsten Stephan^{1,2}, Sabine Weickmann¹, Monika Jung¹, Glen Kristiansen³ and Klaus Jung^{1,2,*}

- ¹ Department of Urology, University Hospital Charité, 10117 Berlin, Germany; zhongwei.zhao@charite.de (Z.Z.); carsten.stephan@charite.de (C.S.); Sabine.weickmann@charite.de (S.W.); monika.jung@charite.de (M.J.)
- ² Berlin Institute for Urologic Research at the Charité, 10115 Berlin, Germany
- ³ Institute for Pathology, University Hospital Bonn, 53123 Bonn, Germany; glen.kristiansen@ukbonn.de
- * Correspondence: klaus.jung@charite.de; Tel.: +49-30-450-515041

Received: 18 August 2017; Accepted: 19 September 2017; Published: 21 September 2017

Abstract: With the increasing understanding of the molecular mechanism of the microRNAs (miRNAs) in prostate cancer (PCa), the predictive potential of miRNAs has received more attention by clinicians and laboratory scientists. Compared with the traditional prognostic tools based on clinicopathological variables, including the prostate-specific antigen, miRNAs may be helpful novel molecular biomarkers of biochemical recurrence for a more accurate risk stratification of PCa patients after radical prostatectomy and may contribute to personalized treatment. Tissue samples from prostatectomy specimens are easily available for miRNA isolation. Numerous studies from different countries have investigated the role of tissue-miRNAs as independent predictors of disease recurrence, either alone or in combination with other clinicopathological factors. For this purpose, a PubMed search was performed for articles published between 2008 and 2017. We compiled a profile of dysregulated miRNAs as potential predictors of biochemical recurrence and discussed their current clinical relevance. Because of differences in analytics, insufficient power and the heterogeneity of studies, and different statistical evaluation methods, limited consistency in results was obvious. Prospective multi-institutional studies with larger sample sizes, harmonized analytics, well-structured external validations, and reasonable study designs are necessary to assess the real prognostic information of miRNAs, in combination with conventional clinicopathological factors, as predictors of biochemical recurrence.

Keywords: microRNA; prognostic biomarkers; prostate cancer; radical prostatectomy; biochemical recurrence

1. Introduction

Prostate cancer (PCa) is the second most common cancer among men worldwide. It encompasses 15% of all diagnosed male malignancies every year, with an estimated 1.112 million new cases and 307,000 deaths according to the last global cancer statistics in 2012 [1].

Since the mid 1980s, the widespread use of the prostate-specific antigen (PSA) has substantially shaped the management of this cancer, but its overdiagnosis and overtreatment has gained increasing attention after a controversial debate on the PSA-based early detection and screening approach [2,3]. This is a result of the heterogeneous behavior of the disease from the entirely indolent to the extremely aggressive tumor. Numerous pre- and post-treatment nomograms based on well-established clinicopathological factors, such as clinical and pathological tumor stage, bioptic and pathological

histological grading systems according to Gleason, and PSA values, have been used to estimate the individual risk of the disease course. This particularly refers to the prediction of different clinical end points like biochemical recurrence (BCR), occurrence of metastases, cancer-specific death, and overall survival [4–6]. However, the achieved accuracy of the outcome prediction using these nomograms is generally limited, resulting in an agreement between predicted and observed outcomes of only 70–80%. Thus, the identification of prognostic factors and the elucidation of the underlying molecular mechanisms that determine the course of the disease are essential future tasks for improving the cancer decision-making process [7,8]. This is true both for the risk estimation after PCa detection and for the follow-up after treatment.

Radical prostatectomy is the surgically preferred treatment option with curative intention of clinically significant PCa. Molecular markers of genomic, transcriptomic, proteomic or metabolomic nature are capable of enhancing the prediction accuracy if they are included in prediction tools that are based on only clinicopathological factors [9–12]. For such an approach, microRNAs (miRNAs), as decisive regulators of the cellular processes, are also candidate biomarkers [13–15]. miRNAs can function both as tumor suppressors or oncogenes in urological tumors as described in several recent reviews [16–21]. More detailed information regarding their special role in cancerogenesis and the progression of these tumors as well as their biogenesis and general function can be found in these reviews.

The expression of miRNAs can be specifically quantified in prostatectomy tissue samples. These analytes have been suggested in previous studies as promising prognostic markers to improve the prediction of the biochemical recurrence of PSA as the first alarming sign of cancer relapse after prostatectomy [22–25]. Approximately 15–30% of patients suffer from a biochemical recurrence after radical prostatectomy [26,27]. Thus, an early and reliable detection of these PCa patients at risk after radical prostatectomy would improve the decision-making for the initiation of adjuvant therapy and for the selection of patients who need a more frequent monitoring during follow-up.

Therefore, in the present review, we aimed (a) to compile the relevant data of existing miRNA-based studies, (b) to identify the most promising miRNAs as potential predictors of biochemical recurrence proven in several independent studies, (c) to critically assess the real benefit of these new markers compared or in combination with the conventional parameters and (d) to formulate preconditions for robust assays to translate validated results into clinical practice.

2. Literature Search Strategy

2.1. Medical Subject Heading (MeSH) Terms and Keywords

For this review, a PubMed search was performed for original articles in the database from 2008 to May 2017. The search strategy included the followings terms: the MeSH term "MicroRNAs" combined with the search string ["microRNAs" OR "microRNA" OR "micro-RNA" OR "micro-RNAs" OR "miRNAs"], the MeSH term "prostatic neoplasms" linked with the keyword "prostate cancer" using the Boolean operator "OR" and always connected with the search strings ["biochemical recurrence" OR "recurrence" OR "biochemical relapse" OR "biochemical failure"], and "radical prostatectomy" using the Boolean operator AND. Furthermore, references in the identified articles and reviews were considered to detect additional relevant articles. Publications were included in this review only if (a) they were peer-reviewed and supplied with full text in English, (b) the sample resources were tissue specimens, either fresh-frozen or formalin-fixed, paraffin-embedded (FFPE) tissue, whereas articles pertaining to miRNAs from blood, urine, cell lines, and animal models were disregarded, and (c) study objects were single miRNAs, patterns of various miRNAs, or miRNAs combined with clinicopathological variables, resulting in potential prognostic value for BCR.

2.2. Defining BCR as the Clinical Endpoint

BCR refers to the occurrence of increasing PSA value after its decline due to treatment. Radical prostatectomy and radiotherapy are the two main curative options for treatment of prostate cancer.

Here, we exclusively refer to the surgical option as only this treatment mode allows the investigation of tissue samples of the removed cancer.

After radical prostatectomy, circulating PSA rapidly declines in a biphasic elimination, with a half-life of approximately one to three days [28]. Thus, patients with a preoperative PSA value of 20 μ g/L generally reach a PSA level of <0.1 μ g/L after 10 to 20 days, but not later than four weeks after successful operation [28]. According to the guidelines of the European Association of Urology (EAU), a PSA value <0.1 μ g/L after radical prostatectomy is considered as undetectable. In this case, the definition of BCR is based on a renewed PSA increase to >0.2 μ g/L that is confirmed by two consecutive elevated values [29]. Patients with increasing PSA values before the PSA nadir is reached should not be included in this biochemical recurrence group as the clinical outcome of patients with such a persistent PSA value after radical prostatectomy is generally poor. The 0.2 μ g/L PSA cutoff also corresponds to the definition of BCR recommended by the American Urological Association (AUA) Prostate Guideline Update Panel [30]. However, it should be pointed out that this panel registered in their literature search of 145 studies more than 53 varying different definitions of biochemical recurrence after radical prostatectomy. The improved detection limit and analytical accuracy to measure low PSA values contributed to the recommendation to use the 0.2 μ g/L PSA cutoff instead of 0.4 μ g/L as previously suggested [31].

Thus, various factors summarized in Table 1 influence BCR directly, such as adverse tumor characteristics, or indirectly, such as different PSA analytics, varying definitions of BCR, and the clinician's judgment of BCR. Within a selected definition of BCR, the tumor characteristics of the individual patient are the most important factor that determine the occurrence of BCR [5,6,32–34]. The numerous pre- and postoperative nomograms predicting BCR-free probability after radical prostatectomy are based on these clinicopathological data [4–6,35,36]. Thus, the clinical usability of all additional classifiers, in our case miRNAs, as potential more informative decision-making tools or adjunctive parameters have to be validated in relation to these conventional clinicopathological data in multivariate statistical models. Only their additional diagnostic benefit or cost-efficiency in comparison to conventional tools would justify the introduction in clinical practice. In the present review, we focused on the assessment of this aspect in the studies. Despite the controversial discussions regarding a standardized definition of the PSA cutoff of BCR and its use as a surrogate for the clinical outcome in these patients [37–40], an increasing PSA concentration after radical prostatectomy is considered by the clinician to be the first sign of potential later cancer metastasis [41]. It is obvious that BCR is not equal to clinical relapse, but elevated postoperative serum PSA levels enable the isolation of patients with high risk of true disease recurrence [41]. Therefore, in our tabulated summary reports, we included the specific cutoffs of BCR used in the particular studies.

	Factors	Comments	References
1.	Definition of biochemical recurrence	Use of different PSA cutoffs combined with or without other criteria for estimation of biochemical recurrence	[27,31,37,42-44]
2.	Assay-dependent PSA concentrations	Lack of metrological traceability between different PSA assays because of biological (PSA heterogeneity) and methodological reasons (use of different antibodies with different epitope specificities and affinities; different technical principles)	[45,46]
3.	Clinicopathological particularities	Age and ethnic disparities; adverse tumor characteristics (TNM classification, Gleason score or ISUP grade groups; risk classification of patients); surgical complications (positive margins)	[5,6,32–34,47,48]
4.	Duration of follow-up	The selected follow-up period after surgery decisively determines the total number of observed events of biochemical recurrence	[41,47]

Table 1. Factors influencing the "biochemical recurrence" diagnosis after radical prostatectomy.

PSA, prostate-specific antigen; TNM, classification of malignant tumors describing the involment of the primary tumor, regional lymph nodes, and the distant metastatic spread; ISUP, International Society of Urological Pathology.

3. Overview of the Evaluated Studies

3.1. Number of Annual Publications and Type of Tissue Samples Used in the Studies

After preliminary screening of 148 papers, we identified 53 publications that complied with the described inclusion criteria. Forty-nine of these 53 articles were published in the past seven years. Only three papers appeared before 2011 [22–24]. Details can be seen in Figure 1.

Figure 1. Annual microRNA publications indexed in the PubMed database relating to biochemical recurrence after radical prostatectomy. The literature search was performed for the period from October 2008 to May 2017 with miRNA measurements in formalin-fixed, paraffin-embedded (FFPE) or fresh-frozen tissue samples. Two studies used both FFPE and fresh-frozen tissue samples [49,50].

Interest in the prognostic value of miRNAs in PCa has been reflected in the increasing number of publications. In 2009, Tong et al. [22] presented the first relevant study on the prognostic potential of miRNAs in PCa tissue; miR-135b and miR-194 were proven to reflect a tendency for early PCa relapse by comparing patients with early and late BCR. The results summarized in this review of 53 studies are based on data from 29 and 26 studies that analyzed FFPE and fresh-frozen tissue samples, respectively. In two studies, both FFPE and fresh-frozen tissue samples were used [49,50].

3.2. Characteristics of the Studies Evaluated in This Review

Biomarker studies with the intention to develop a robust assay for clinical practice must successfully undergo various phases of testing. Simply speaking, a discovery phase with the identification or selection of potential candidate biomarkers based on different principles for the intended objective should be distinguished from validation processes [51]. This classification with their subdivided characteristics is helpful to facilitate the assessment of studies and has therefore been adapted with regard to the use of miRNAs as BCR biomarkers in Table 2. On this basis, essential data and results of every study of the 53 evaluated studies including our own assessment have been compiled in Table 3. For the sake of clarity and facilitating the later discussion, the studies are listed by year of publication and are numbered accordingly.

Table 2. Development phases to use miRNAs as predictors of biochemical recurrence after radical prostatectomy.

1. Discovery and selection of potential miRNAs

Identification and selection of differentially expressed miRNAs based on various principles

- miRNA-wide profiling in prostatectomy tissue samples on array/sequencing basis
- Selected differentially expressed miRNAs in prostatectomy tissue samples from recurrent and non-recurrent patients
- Selected specific miRNAs from prostate cancer cell lines
- Selected miRNAs based on bioinformatic analyses and pathway data

2. Validation by clinical assessment

Proof as BCR predictor in retrospective/mono- or multi-institutional studies with internal validation

3. Validation by clinical usability

Proof in prospective, multi-institutional studies as advantageous or non-inferior tool in comparison to standard procedures in the decision making process of the clinical management of patients

Adapted from Fendler et al. [51]. BCR, biochemical recurrence.

3.2.1. Dysregulated miRNAs with Association to Biochemical Recurrence

The differentially expressed miRNAs in prostatectomy tissue samples that have been proven to be potentially predictive BCR markers in the 53 evaluated studies are represented in Figure 2 as a Venn diagram.

Fresh-frozen tissue

Upregulated let-7c-5p, miR-21-3p,

miR-30d-5p (2), miR-96-5p, miR-100-5p, miR-133b, miR-145-5p, miR-182-5p, miR-185-5p, miR-191-5p, miR-4534

Downregulated

let-7a-5p, miR-1-3p (2), miR-23b-3p, miR-30c-5p (2), miR-34b-3p, miR-126-3p, miR-128-3p, miR-133b, miR-145-5p, miR-146a-5p, miR-187-3p, miR-195-5p, miR-200b-3p, miR-221-3p, miR-224-5p, miR-326, miR-374b-5p, miR-378a-3p **Not associated with BCR risk** miR-182-5p

Overlap

Upregulated miR-96-5p, miR-182-5p, miR-185-5p

Downregulated

miR-1-3p,miR-145-5p, miR-187-3p, miR-195-5p, miR-221-3p, miR-224-5p, miR-326

FFPE <u>Upregu</u>lated

<u>miR-10b-5p, miR-21-5p (2)</u>, miR-96-5p, miR-135b-5p, miR-182-5p, miR-183-5p, miR-185-5p, miR-194-5p, miR-301a-3p (2), miR-449b-5p, miR-454-3p, miR-519, miR-601, miR-652-3p, miR-1207-3p, miR-4516

Downregulated

let-7b-5p, miR-1-3p, miR-21-5p (2), miR-29c-3p, miR-34a-5p, miR-129-5p, miR-139-5p, miR-141-3p (2), miR-145-5p, miR-148a-3p, miR-152-3p, miR-187-3p, miR-195-5p, miR-200a-3p, miR-221-3p (3), miR-221-5p, miR-223-3p, miR-224-5p, miR-326, miR-331-3p, miR-338-3p, miR-466, miR-647, miR-3622b-3p, miR-708-5p

Not associated with BCR risk

miR-96-5p, miR-145-5p, miR-221-3p (2), miR-222-3p

Figure 2. Venn diagram of the miRNAs analyzed in FFPE and fresh-frozen tissue samples of studies examining the predictive capability of miRNAs for biochemical recurrence. Numbers in parentheses indicate the number of studies that examined the respective miRNA.

2003	0404
18	'OT
2117	1T07
50.	.170
MAN	.INTAT
-	
1nt	.1111

~	
2)
E	
0	
1	
3	
ţ	
e c	
St	
õ	
Ľ	
0	
-	
G	
U	
Z	
1	
- 67	
÷	
F	
5	
Ŭ	
Ē	
5	
Ũ	
1	
Ť,	
G	
to	
õ	
ž	
0	
1	1
.9	
-	
2	
ž	
5	
1	
ч	
7	
0	
<u>ب</u>	
_	
a]	
Ŭ	
.=	
E	
G	
Ē	
5	
0	
10	
bio	
r bio	
or bio	
for bio	
s for bio	
ers for bio	
kers for bio	
rkers for bio	
arkers for bio	
narkers for bio	
markers for bio	
e markers for bio	
ve markers for bio	
tive markers for bio	
ctive markers for bio	
lictive markers for bio	
edictive markers for bio	
redictive markers for bio	
predictive markers for bio	
predictive markers for bio	
as predictive markers for bio	
as predictive markers for bio	
is as predictive markers for bio	
As as predictive markers for bio	
VAs as predictive markers for bio	
NAs as predictive markers for bio	
IRNAs as predictive markers for bio	
niRNAs as predictive markers for bio	
miRNAs as predictive markers for bio	
e miRNAs as predictive markers for bio	
the miRNAs as predictive markers for bio	
sue miRNAs as predictive markers for bio	
ssue miRNAs as predictive markers for bio	
tissue miRNAs as predictive markers for bio	
tissue miRNAs as predictive markers for bio	
ng tissue miRNAs as predictive markers for bio	
ing tissue miRNAs as predictive markers for bio	
ding tissue miRNAs as predictive markers for bio	
rding tissue miRNAs as predictive markers for bio	
arding tissue miRNAs as predictive markers for bio	
garding tissue miRNAs as predictive markers for bio	
egarding tissue miRNAs as predictive markers for bio	
regarding tissue miRNAs as predictive markers for bio	
is regarding tissue miRNAs as predictive markers for bio	
ies regarding tissue miRNAs as predictive markers for bio	
ties regarding tissue miRNAs as predictive markers for bio	
idies regarding tissue miRNAs as predictive markers for bio	
tudies regarding tissue miRNAs as predictive markers for bio	
Studies regarding tissue miRNAs as predictive markers for bio	
. Studies regarding tissue miRNAs as predictive markers for bio	
3. Studies regarding tissue miRNAs as predictive markers for bio	
e 3. Studies regarding tissue miRNAs as predictive markers for bio	
Ie 3. Studies regarding tissue miRNAs as predictive markers for bio	
ble 3. Studies regarding tissue miRNAs as predictive markers for bio	
able 3. Studies regarding tissue miRNAs as predictive markers for bio	
Table 3. Studies regarding tissue miRNAs as predictive markers for bio	

No.	Reference, Year	Study Details in the Marker Development Phases ¹	Sample	Methodology ²	Significant miRNAs ³	Statistical Methods and Results	Assessment of the Presented Clinical Findings
	Tong et al., 2009 [22]	Discovery: 20 early BCR pat. (<2 years after RP) vs. 20 non-BCR pat. (>10 years after RP). Validation: 11 early BCR vs. 11 non-BCR. BCR: PSA criterion not defined.	FFPE	Discovery: microarray, Validation: RT-qPCR (TaqMan) by analysis of 6 miRs; RM: synthetic RNA.	miR-135b-5p↑ miR-194-5p↑	Ratio of BCR to non-BCR: 1.6 for miR-135b and 1.4 for miR-194, but $p > 0.050$) with MW-test.	Aberrant expression of miR-135b and miR-194 may only reflect a tendency for early disease relapse. Low sample size.
7	Schaefer et al., 2010 [23]	Discovery: 24 matched normal and malignant tissue samples and literature data. Validation with two independent cohorts: 1) 76 pat, median follow-up of 50 months after R?, 12 BCR. nedian follow-up of 50 months; 14 BCRs. BCR: PSA >0.1 ng/mL, confirmed by at least one subsequent increasing value.	Fresh-frozen tissue	Discovery: Agilent microarray. Validation: RT-qPCR (TaqMan) by analysis of 15 dysregulated miRs; RM: miR-130b-3p.	miR-96-5p↑	(1). KMA of RFS: log-rank test, $p = 0.039$. (2). CoxM: HR = 3.20, $p = 0.023$, independent factor for BCR in the combined cohorts.	Increased miR-96 can be considered as a BCR predictor in combination with the Gleason score.
σ	Spahn et al., 2010 [24]	Discovery: 4 pairs of primary carcinoma and metastasis tissues vs. 4 BPH tissues. Validation of clinical utility: 92 high-risk patients with PSA >20 µg/L and positive lymph node status in >50% median follow-up of 74 months. BCR: PSA ≥0.2 ng/mL on 2 consecutive follow-up visits.	FFPE	Discovery: in-house microarray analysis Validation: RT-qPCR (TaqAhan) by analysis of 4 out of 14 divergulated milts in a limited sample size and later of miR-221 in the high-risk cohort; RM: RNU6B.	miR-221-3p↓	(1). KMA of RFS: log-rank test, $p < 0.01$. (2). CoxM: HR = 0.525, $p = 0.032$, combined with Glasson score and tumor stage, calculated relative to clinical recurrence (local or distant metastatic disease) but not BCR.	miR-221 downregulation was linked to clinical recurrence in a high-risk PCa cohort as independent factor.
4	Fendler et al., 2011 [25]	Discovery: 10 BCR pat. (<1 year after RP) vs. 10 BCR pat. (>1-4 years) vs. 10 non-BCR pat. (within 3 years). Validation: 24 BCR pat. (<1 year) vs. 22 non-BCR pat. (within 2 years). BCR: PSA >0.1 ng/mL confirmed by at least one subsequent increasing value.	FFPE	Discovery: TaqMan array. Validation: RT-qPCR (TaqMan) of out of 65 dysregulated miRs; RM: RNU44.	miR-10b-5p↑	(1). KMA of RF of only miR-10b: log-rank test, $p = 0.023$). (2). ROC of RFS: AUC = 0.72. (3). CoxM: HR = 2.10, $p = 0.033$.	miR-10b remained the only predictor variable of BCR in a multivariate Cox regression model.
ß	Leite et al., 2011 [52]	Discovery: 14 selected miRNAs based on miR-based prediction of Target genes (TargetScan). Validation: 21 BCR vs. 28 non-BCR, follow-up <10 years. BCR: postoperative PSA \geq 0.2 µg/L.	Fresh-frozen tissue	14 mißs were analyzed by RT-qPCR (TaqMan); RNU43.	miR-100-5p↑ miR-145-5p↑ miR-191-5p↑ let-7c-5p↑	(1). KMA of RFS for the 4 miRs: log rank test, $p < 0.05$. (2). CovU for the 4 miRs: HRs at least with $p < 0.05$. (3). CowN: miR-100 (HR: 3.68, $p = 0.009$), independent factor in addition with tumor volume.	High levels of miR-100, miR-145, miR-191, and let-7c were related to BCR, miR-100 with highest impact in multivariate model.
6	Long et al., 2011 [53]	Discovery: 29 BCR pat. median 19 months after RP) vs. 41 non-BCR pat. (median 83 months). Validation: independent cohort (13 BCR pat. vs. 27 non-BCR pat. BCR: two detectable PSA >0.2 ng/mL.	FFPE	Integrated DASL assays (Illumina) for mRNAs and miRNAs; RM: quantile normalization.	10 mRNAs miR-647 ↓ miR-519 ↑	Use of the combined mRNA-miRNA panel; KMA and CoxM: at least <i>p</i> < 0.05 of BCR prediction in discovery and validation sets.	Prediction model of the mRNA-miRNA combined with dinicopathological data outperformed the model based on only clinicopathological data.
М	Barron et al., 2012 [54]	18 PCa pat. after RP with BCR (<2 years) matched with 18 pat. without BCR (>3 years) according to pT3, similar Gleason score, and preoperative PSA. BCR: PSA criterion not defined.	FFPE	RT-qPCR (TaqMan); RM: RNU48.	miR-200a-3p ↓	Student's <i>t</i> -test $p = 0.057$	Unclear BCR prediction evidence of miR-200a underexpression although miR-200a overexpression reduced PCa cell growth.

	Assessment of the Presented Clinical Findings	Reduced miR-1 was considered a potential BCR risk factor.	None of the 3 miRs could be confirmed as BCR predictors; however, the follow-up period was <2 years.	miR-30d-overexpression and low SOCS expression seems to be a relevant orthogonal marker combination of early BCR prediction.	High miR-21 expression was associated with poor BCR-free survival and can predict the risk of BCR.	Low miR-23b expression was obviously associated with a short RFS; however, corresponding multivariate Cox regression analyses were not performed.	Clinical evidence of low miR-708 expression as BCR predictor was not statistically presented.
	Statistical Methods and Results	(1). KMA for RFS: log-rank test, p = 0.008. (2). CoxM: HR = 0.29 of high vs. low miR-1 in a model adjusted with clinicopathological factors.	KMA, CoxU and CoxM: no significant BCR prediction with all three miRs.	(1). No association with all standard clinicopathological factors but with BCR. (2). CoxM: in a model adjusted with all standard clinicopathological factors only the combination of high miR-30d and reduced level of its target SOCS remained as the only significant BCR predictor (HR: 4.447, $p = 0.004$).	 KMA: increased miR-21 with shorter RFS, log rank test, <i>p</i> = 0.001. CoxM: HR: 2.059, <i>p</i> = 0.029 as independent BCR predictor together with PSA in a model adjusted with standard clinicopathological factors. 	(1). KMA of RFS: log-rank test $p < 0.002$. (2). Multiple regression analysis (but not CoxM) showed miR-23b as an independent BCR predictor ($p < 0.02$).	Only the statement that 18 of the 22 BCR pat. had reduced miR-708 expression.
	Significant miRNAs ³	miR-1-3p ↓	miR-96-5p-5p (-) miR-145-5p (-) miR- 221-3p (-)	miR-30d-5p↑	miR-21-5p↑	miR-23b-3p	miR-708-5p ↓
Table 3. Cont.	Methodology ²	RT-qPCR (TaqMan); RM: U6.	RT-qPCR (TaqMan); RM: RNU6.	Discovery: microarray (Toray, Japan). Validation: RT-qPCR (TaqMan); RM: RNU6B.	Immuno-reactivity of miR-21 by locked nucleic acid in situ hybridization (Exiqon); RM: not defined.	Discovery: microarray of cell lines. Validation: RT-qPCR (TaqMan); RM: U6.	RT-qPCR; RM: RNU48.
	Sample	Fresh-frozen tissue	FFPE	Fresh-frozen tissue	FFPE	Fresh-frozen tissue	FFPE
	Study Details in the Marker Development Phases ¹	Discovery: miR-1 and miR-133a were selected based on a previous study [56]. Validation: 99 PCa samples and data from another study [57], unclear consideration of clinical factors and number of BCRs. BCR: postoperative PSA ≥ 0.2 µg/L on two occasions.	Intention to confirm miR-96, miR-145, and miR-221 as potential BCR predictors as shown in previous studies [22–24]. Validation: 73 PCa pat, 14 BCRs, mean follow-up of 19.4 months. BCR: PSA \ge 0.2 µg/L at 2 consecutive follow-up visits.	Discovery: Unfounded selection of miR-30d as one of 3 miRs with a >2-fold increased expression in PCa cell lines. Validation: 56 PCa pat. after RP with 10 BCR events. BCR: continuously elevated PSA >0.2 µg/L.	Discovery: miR-21 was found an oncogenic miR in a previous cell line study [61]. Validation: 116 BCR pat. vs. 52 non-BCR pat, with 78 low and 90 high miR-21 expressions. BCR: postoperative PSA of $\geq 0.2 \ \mu g/L$.	Discovery: downregulated miR-23b were found in PCa cell lines. Validation: 151 PCa tissues samples to confirm low expression of miR-23b in malignant vs. non-malignant tissue samples; 105 samples used for BCR prediction, number of BCR not given. BCR: PSA criterion not defined.	Differential expression of paired malignant to non-malignant miR-708 expression in 22 BCR pat. vs. 70 non-BCR pat. BCR: PSA level not defined.
	Reference, Year	Hudson et al., 2012 [55]	Kang et al., 2012 [58]	Kobayashi et al., 2012 [59]	Li et al., 2012 [60]	Majid et al., 2012 [62]	Saini et al., 2012 [63]
	No.	×	6	10	11	12	13

				Table 3. Cont.			
No.	Reference, Year	Study Details in the Marker Development Phases ¹	Sample	Methodology ²	Significant miRNAs ³	Statistical Methods and Results	Assessment of the Presented Clinical Findings
14	Amank-wah et al., 2013 [64]	Selection of miR-21, miR-221, and miR-222 as potential predictors of BCR based on literature data and the possible relationship between obesity and recurrence. Validation: 28 recurrent vo. 37 non-recurrent PCa. Recurrence criterion in this study: postoperative PSA \geq 02 µg/L or clinical metastasis or cancer specific death.	FFPE	RT-qPCR (TaqMan); RM: RNU6B.	miR-21-5p↓ miR-221-3p (-) miR-222-3p (-)	(1). KMA of RFS: significant log rank test only for miR-21, $p = 0.0001$. (2). CoxM: low miR-21 in age-adjusted model predicted in age-adjusted model predicted $p = 0.031$, but not in non-obese patients.	miR-21 was only associated with PCa recurrence in obese patients, but no evidence was provided in multivariate models with all standard clinicopathological variables.
15	Avgeris et al., 2013 [65]	Intention to confirm decreased miR-145 as potential BCR predictor as shown in previous studies. Validation: 62 PCa pat. with follow-ups >40 months, 32 BCRs. BCR: 2 consecutive measurements of PSA \geq 0.2 µg/L.	Fresh-frozen tissue	RT-qPCR (SYBR-Green); RM: SNORD48.	miR-145-5p ↓	(1). KMA for RFS: log-rank test $p = 0.027$. (2). CoxM: low miR-145 remained as the only significant unfavorable BCR predictor (HR: 4.467, $p < 0.02$).	Low miR-145 expression outperformed the BCR prediction through standard clinicopathological factors.
16	He et al., 2013 [66]	Discovery: 4 pairs of primary PCa and adjacent benign tissue. Validation: 104 PCa pat. with 27 BCRs but follow-up time not indicated. BCR: PSA level not defined.	Fresh-frozen tissue	Discovery: Microarray (Agilent). Validation: RT-qPCR (GeneCopoeia) and MIRCURY hybridization (Exiqon); RM: RNU6B and miR-130b-3p.	miR-374b-5p ↓	(1). KMA for RFS: log-rank test, $p = 0.005$. (2). CoxM: miR-374b (HR = 0.38 , $p = 0.018$) remained as an independent BCR predictor together with the Gleason score.	Low miR-374b was identified as an independent BCR predictor, specifically in Chinese patients.
17	Lame et al., 2013 [67]	Discovery: based on microarry data of Martens-Uzunova et al. [68] of 50 primary PCa and 11 normal adjacent tissue samples, BCR events not given. Validation for BCR: 52 PCa pat. of cohort 2, number of BCRs not indicated. BCR: consecutive PSA levels >0.2 µg/L or one single >1 µg/L.	FFPE	Discovery: Microarray (Agilent). Validation: RT-qPCR (Exiqon). RM: geometric mean of RNU47, RNU48, RNU66.	miR-96-5p ↑ miR-145-5p ↓ miR-183-5p ↑ miR-221-5p ↓	Ratio of (miR-96 x miR-183/miR145 x miR-221) was constructed to discriminate between malignant and non-malignant prostate tissue but also predict aggressiveness, metastasis, overall survival, and BCR risk; internal and external validation was performed.	This ratio termed as miQ (miRNA index quote) might be very useful as indicated; however, its use for BCR prediction remains unclear despite the significant KMA, as the relationship and benefit to other clinicopathological variables were not shown.
18	Lichner et al., 2013 [69]	Discovery: 27 BCR pat. (<3 years) vs. 14 non-BCR pat. (<3 years). Validation: independent cohorts with 35 and 29 corresponding patients. BCR: PSA criterion not defined.	FFPE	Discovery: TaqMan array card A + B. Validation: RT-qPCR (TaqMan); RM: RNU48.	miR-152-3p↓ miR-331-3p↑	(1). Differential expression of 25 miRs between the 2 BCR groups; 16 miRs significantly discriminated (CC analysis) between them. (2). Three developed logistic negression models with 2–3 miRs correctly classified with >90%.	miR-331-3p and miR-152 were most useful both in the discovery and validation set and could predict BCR risk at the time of prostatectomy.
19	Majid et al., 2013 [70]	Intention: to validate miR-34b expression as a BCR prediction tool and identify its functional role. Validation: 74 pairs of matched tissue samples, 17 BCRs, follow-up period not given. BCR: first postoperative PSA >0.1 µg/L) after at least one undetectable PSA (<0.04 µg/) after RP.	Fresh-frozen tissue	RT-qPCR (TaqMan); RM: not defined.	miR-34b-3p ↓	KMA: low expression was associated with shorter RFS (log-rank test, $p = 0.02$).	Low miR-34b might have prognostic value in BCR prediction but that was not assessed by multivariate analysis.

				Table 3. Cont.			
No.	Reference, Year	Study Details in the Marker Development Phases ¹	Sample	Methodology ²	Significant miRNAs ³	Statistical Methods and Results	Assessment of the Presented Clinical Findings
20	Schubert et al., 2013 [71]	Discovery: 13 high-risk PCa cases and 6 BPH. Validation: 2 independent, two-centric cohorts of 98 and 92 high-risk PCa pat, mean follow-ups >6.5 years but BCR events not reported. BCR: $PSA \ge 0.2 \text{ tg/L}$ on 2 consecutive follow-up visits.	FFPE	Discovery: microarray analysis. Validation: RT-qPCR (TaqMan); RM: RNU6B.	let-7b-5p↓	Specific miR signatures of high-risk PCa patients with different clinical outcomes were identified. CoxM: let-7b was validated in the 2 validation colorts as independent BCR predictor (HR: 0.44 and 0.30, $p \leq 0.05$) together with the Gleason score.	Low let-7b expression was successfully validated as a predictor of BCR and clinical failure (local or distant metastasis) in high-risk PCa patients.
21	Sun et al., 2013 [72]	Intention to examine the clinical significance of miR-126 as it is known as a regulator in other tumors. Validation: 128 PCa tissue samples, follow-up from 3 to 10 years, BCRs not indicated. BCR: PSA $\geq 0.2 \ \mu g/L$ on 2 consecutive follow-up visits.	Fresh-frozen tissue	RT-qPCR (TaqMan); RM: RNU6B.	miR-126-3p ↓	(1). KMA of RFS: log-rank test, p < 0.001. (2). CoxM: low miR (HR = 3.68, $p = 0.01$).	miR-126 expression, tumor stage and lymph node status were identified as independent BCR predictors.
22	Avgeris et al., 2014 [73]	Discovery: Based on the reduced miR-378 expression in PCa tissue [68], the regulatory role of this miR on kallikrein 2 and 4 as PCa elements was predicted in silico. Validation: 62 PCa tissue samples, median follow-up <5 years with 32 BCRs. BCR: PSA $\geq 0.2 \ \mu g/L \ by 2 \ consecutive measurements.$	Fresh-frozen tissue	RT-qPCR; RM: SNORD48.	miR-378a-3p ↓	(1). KMA of RFS: reduced miR-378 discriminated Gleason 3 + 4 and 4 + log-rank test, <i>p</i> < 0.001). (2). CoxM: only in high and very-high-risk PCa pat. was the loss of miR-378 an independent BCR predictor together with the Gleason score but not in the whole cohort.	Loss of miR-378 expression showed a limited capability of BCR prediction only in high-risk PCa pat.
23	Casanova-Salas et al., 2014 [49]	Discovery: differential miR expression in 50 PCa tissue vs. 10 normal tissue samples. Validation: analytical validation in the discovery set, clinical validation in independent samples from 122 values. 151 non-BCR pat, mean follow-up time 7.7 years. BCR: PSA ≥0.4 µg/L during follow-up.	Fresh frozen tissue; FFPE	Discovery: microarray (Applied) Validation: RT-qPCR (TaqMan); RM: RNU44 and RNU48.	miR-182-5p ↑ miR-187-3p ↓	 miR-182/-87 as the most dysregulated miRs were further analyzed. (2). KMA: high miR-182 predicted shorter RFS, also within the Gleason score groups. CoXM: miR-182 was an independent factor, combined with the Gleason score especially for Gleason score 7. 	miR-182 in combination with the Gleason score showed a promising capability for BCR prediction but not for clinical progression.
24	Karatas et al., 2014 [74]	Discovery: 20 BCR vs. 20 non-BCR pat. Validation: independent 21 BCR vs. 21 non-BCR pat., mean follow-up <5 years. BCR: PSA ≥0.2 µg/L by 2 on 2 consecutive follow-up visits.	Fresh-frozen tissue	Discovery: microarray (Agilen), Validation: RT-qPCR (TaqMan) of selected miRs; RM: RNU43.	miR-1-3p↓ miR-133b↓	(1). Reduced expression of both miRs in BCR samples (Student's test, $p < 0.05$. (2). ROC analysis: miR-1 with AUC 0.661, miR-133b with AUC 0.692, but PSA 0.950.	miR-1 and miR-133b predicted between BCR and non-BCR pat; however, PSA clearly outperformed their BCR prediction. Multivariate analysis was missing.
25	Katz et al., 2014 [75]	Discovery: identification of miRNAs as potential modulators of epithelial-mesenchymal transition based on literature search. Validation: 51 PCa pat, mean follow-up 5.3 years with 17 BCRs. BCR: PSA ≥ 0.02 µg/L.	Fresh-frozen tissue	RT-qPCR (TaqMan); RM: RNU48.	miR-200b-3p ↓	KMA of RFS: low miR-200b resultet in shorter RFS (log rank test, p = 0.049). Multivariate analysis was not performed.	Functional significance of miR-200b for epithelial-mesenchymal transition verified but not for BCR compared with standard clinicopathological factors.

2023
18,
2017,
Sci.
Mol.
-
Int.

Table 3. Cont.

No.	Reference, Year	Study Details in the Marker Development Phases ¹	Sample	Methodology ²	Significant miRNAs ³	Statistical Methods and Results	Assessment of the Presented Clinical Findings
26	Li et al., 2014 [76]	Intention to identify the role of miR-133b as a tumor suppressor as shown in other cancers. Validation: 135 PCa tissue samples, follow-up <5 years with 71 BCRs. BCR: postoperative PSA ≥0.2 µg/L on 2 consecutive follow-up visits.	Fresh-frozen tissue	MIRCURY hybridization (Exiqon); RM: not defined.	miR-133b↑	(1). KMA of RFS: log-rank test, p = 0.032. (2). CoxM: HR = 1.775, p = 0.045.	Increased miR-133b expression, Gleason score, pre-operative PSA, and tumor margin status were identified as independent BCR predictors. Downregulated RBICCI protein as target of miR-133b acted as poor BCR predictor accordingly.
27	Lin et al., 2014 [77]	Discovery: Based on a previous microarray study [66] and studies in other tumors, miR-224 was identified as potential candidate. Validation: 114 PCa samples, follow-up from 0.2 to 14 years, BCRs not indicated. BCR: PSA \geq 0.2 µg/L on two occasions.	FFPE	RT-qPCR (GeneCopoeia) and MIRCURY hybridization (Exiqon); RM: RNU6B.	miR-224-5p	(1). KMA of RFS: low expression with shorter RFS, log rank test, $p = 0.017$. (2). CoxM: HR = 0.25, $p = 0.010$.	Reduced miR-224 expression, tumor stage and the Gleason socre were identified as independent BCR predictors. Upregulated TRBI protein as target of miR-224 corresponded as poor BCR predictor.
28	Ling et al., 2014 [78]	Discovery: Based on previous studies [79,80] that miR-30c acts as potential candidate. Validation: 103 pairs of tumor tissues and adjacent benign tissues, median 3.7 years after RP with 25 BCRs. BCR: postoperative PSA \ge 0.2 µg/L.	Fresh-frozen tissue	RT-qPCR (GeneCopoeia); RM: RNU6B.	miR-30c-5p	(1). KMA: low expression with shorter RFS, log rank test, $p = 0.023$. (2). CoxM: HR = 0.34, $p = 0.002$.	Reduced miR-30c expression, tumor stage and the Gleason score were identified as independent BCR predictors.
29	Melbø-Jørgense et al., 2014 [81]	Discovery: 14 PCa pat. with BCR within 24 months vs. 16 non-BCR. Validation: 535 PCa tissue samples, median follow-up 7.4 years with 170 BCRs. BCR. PSA ≥0.4 μg/L.	FFE	Discovery: microarray. Validation: RT-qPCR, in situ hybridization (Exiqon); RM: miR-23b-3p.	4 up- and 3 downregulated miRs in the discovery step. Only miR-21-5p↑ was significantly validated.	(1). Higher miR-21 expression in tumor stroma than in tumor stroma than in tumor strome peithelial cells. (2). KMA of shorter RFS: log rank tests of high miR-21 in tumor stroma and Cleason score 6 , $p = 0.006$ and $p = 0.023$. (3). CoxM for BCR: HR = 2.40, $p = 0.037$ for high stromal miR-21 in patients with Gleason 6, but only $p = 0.08$ for total cohort.	Upregulation of miR-21 was associated with BCR only in tumor stroma and only in low risk patients. Detection needs a more complicated and less convenient method than the in situ hybridization method.
30	Mortensen et al., 2014 [82]	Discovery: 22 BCR vs. 14 non-BCR pat. Validation: Independent 163 PCa cases, median follow up 5.5 years, 96 BCRs. BCR: postoperative PSA >0.2 µg/L on 2 consecutive follow-up visits.	FFPE	Discovery: TaqMan card A + B analysis, miR-449b 7: 2.8 times higher in BCR than in non-BCR compared to other 31 dysregulated miKs. Validation: RT-qPCR (TaqMan); RM: MammU6.	miR-449b-5p↑	(1). KMA of RFS: log rank test, $p = 0.026$. (2). CoxM: HR = 1.90, $p = 0.003$. 3. Overall prediction accuracy: Harrell's C index combined with clinical factors was 0.71.	High miR-449b expression was combined with tumor stage, Gleason score, preoperative PSA an independent BCR predictor.
31	Zheng et al., 2014 [83]	Discovery: Previous studies found dysregulated miR-21, miR-141, and miR-221 in PCa tissue. Validation: 59 BCR vs. matched paired 59 non-BCR pat. Recurrence: BCR with postoperative PSA >0.2 µg/L or local or distant metatasis or cancer-specific death.	FFPE	RT-qPCR (TaqMan); RM: RNU6.	miR-21-5p ↓ miR-141-3p ↓ miR-221-3p ↓	(1). Wilcoxon test with reduced miR levels in BCR vs. non-BCR pat., p < 0.05 for the 3 miRs. (2). CoxM: only miR-221 remained as an independent BCR predictor after multivariable adjustment.	Localized PCa pat. with lower miR-221 expression may have a greater risk for cancer recurrence after surgery.

ds and Results Assessment of the Presented	Clinical Findings at BCR after RP: 88 phenson scores; all in combined with 88-miRNA signature and the 89-miRNA signatures and in combination with (2). CoxM for first and after NA signatures (3) NA signatures (3	ver level miR-195 in R pat. ($p < 0.05$). (2). 55 in low miR-195 vs. = 0.022 . 3. CoxM: Gleason score indent BCR.	of low miR-195 recurrence (2). (2). CoxU, -M: miR-195 improved the BCR 96, $p < 0.001$ and prediction in a model combined he Glasson score with conventional status remained as clinicopathological factors. iors in the	est mean expression p = 0.014. (2), KMA: High level of miR-21 seems to be thed in shorter associated with BCR. However, 10 p = 0.003. (3), detailed data of the multivariate formiR-21 was the model were not shown. and ard and factors.	Rs showed a Identification of Gleason sion with increasing grade-dependent of miRNAs that 2). MW test: were related to BCR. Not -2)s. MW test: evaluated by multivariate -7)s. BCR pat. for evaluated by multivariate 1, miR-148a, $p < 0.05$ analysis. Detailed bioinformatic non-BCR regardless information based on
Statistical Metho	 CoxM for finmiRNA signatur miRNA signatur D'Amico and Site significant HRs. BCR after salvag significant 9 miR miR 4516 and mi with the Gleason node status signi he prediction of the prediction of factors (AUC of ((1). MW test: low BCR vs. non-BCI KMA: shorter RI high miR-195, p : miR-195, p : miR-195 and the remained indepe predictors.	 Association (1). Association (1). Association with expression with (Chi-square, 0.00 HR = 5.98 and 5. 0.031. miR-195, t and lymph mode independent fact multivariate moc 	(1). Student's t-ti in BCR group 7.2 non-BCR group, high miR-21 resu BCR-free survive CoXM: HR = 2.5 sole independen model with all st clinicopathologic	 Indicated mi decreased expres Gleason grade. (high-risk vs. low miR-29c, miR-14 and also BCR vs.
Significant	miKNAS ² Different miRNA signatures for different objectives. miR-4516 ↑ miR-601 ↑	miR-195-5p	mik-195-5p ↓	miR-21-3p↑ of the 31 dysregulated miRs identified in discovery were further validated.	miR-29c-3p ↓ miR-141-3p ↓ miR-148a-3p ↓ miR-34a-5p ↓
Methodoloov ²	Nanostring microarray with 800 miRNA probes; RM: geometric mean approach.	Містоаттау	RT-qPCR (TaqMan); RM: RNU6.	Discovery: microarray (Affymetrix), Validation: RT-qPCR (TaqMan); RM: RNU43.	Discovery: TaqMan miRNA array cards A + B. Validation: RT-qPCR (TaqMan); RNU6, RNU44 and RNU48.
Sample	. EFPE	FFPE	Fresh-frozen tissue	Fresh-frozen tissue	FFPE
Study Details in the Marker Development	Phases • 43 PCa pat. after RP and salvage radiation therapy radiation therapy, 19 with early BCR after RP <3 years and 24 with late BCR <3 years, after RP <3 years, median follow-up of 6.9 years. Recurrence: BCR as PSA >0.2 µg/L on 2 consecutive follow-up visits and clinical recurrence as local, regional and systemic recurrence.	Discovery: miR-195 was selected as a potential BCR marker according to the Taylor data set. Validation: use of the data of Taylor et al. [57], 61 BCR pat. vs. 137 non-BCR pat. with mean follow-up 4 years. BCR: PSA ≥ 0.2 µg/L on two occasions according to Taylor et al. [57].	Discovery/background: miR-195 was examined based on re-analysis of the Taylor data set [57] with decreased miR-195 in PCa tissue. Validation: 31 BCR vs. 109 non-BCR pat, follow-up time not given. BCR: PSA criterion not indicated.	Discovery: 13 BCR vs. 40 non-BCR pat. Validation: 51 of the discovery group and additional 37 BCR and 39 non-BCR pat. with follow-ups up to 10 years. BCR: postoperative PSA >0.2 µg/L.	Discovery: 45 PCa patients, 15 of each with a Gleason grade of 3, 4 or 5. Validation 1: independent 60 PCa after RP to validate relationship between miRNAs and Gleason grade. Validation 2: 23 high risk BCR pat. (<2 years) vs. 37 low risk BCR pat. BCR: PSA
Reference,	Year Bell et al., 2015 [84]	Cai et al., 2015 [85]	Guo et al., 2015 [86]	Leite et al., 2015 [87]	Lichner et al., 2015 [88]
Ŋ	33	33	34	35	36

No.	Reference, Year	Study Details in the Marker Development Phases ¹	Sample	Methodology ²	Significant miRNAs ³	Statistical Methods and Results	Assessment of the Presented Clinical Findines
37	Nam et. al 2015 [89]	Discovery: 18 PCa pat. with metastasis and 13 non-BCR within 5 years after RP. Validation: 491 PCa patients (167 with BCR and 25 with metastasis), median follow-up 8.7 years. BCR: PSA >0.2 µg/L on 2 consecutive follow-up visits.	EFPE	Discovery: Next-generation miRNA sequencing. Validation: RT-qPCR (Qiagen); RM: miR-28-5p.	Out of 33 potential candidates, 5 miRs were selected for validation: miR-301a-3p \uparrow miR-652-3p \uparrow miR-454-3p \uparrow miR-139-5p \downarrow	(1). This 5-miR panel predicted metastasis with ROC-AUC of 953% in the discovery set. (2). CoxU,-M: HR = 3.9 and 2.6, always $p = 0.0001$ for this miR panel in the validation set. The miR panel remained an independent factor in the multivariate model together with the Glasson score, tumor stage, and PSA.	This 5-miR signature could be used as a potential new and promising prognostic factor combined with known clinicopathological factors to improve the clinical management of patients after RP. Until now, it is one of the most convincing studies.
38	Sun et al., 2015 [90]	Discovery: previous study [91] on regulatory role of miR-128 in PCa cell invasion resulted in the aim of this study with a focus on the prognostic role of miR-128. Validation: 128 PCa pat, follow-up after RP between 3 and 10 years, number of BCRs not given. BCR: PSA \geq 0.2 µg/L on 2 consecutive follow-up visits.	Fresh-frozen tissue	RT-qPCR; RM: RNU6B.	miR-128-3p↓	(1). KMA and CoxU: low level of miR-128 predicted a shorter RFS, log rank test, $p < 0.001$. (2). CoxM: HR = 3.96, $p < 0.01$, remained with tumor stage and lymph node status as independent factors in the model.	Decreased expression of miR-128 was proved to be an independent predictor of the BCR-free survival.
39	Tian et al., 2015 [92]	Based on the significance of stem cells in cancerogenesis, 6 miRs previously reported as differentially expressed miRs in PCa stem cells were tested as BCR predictors:: 32 BCR (within <4 years) vs. 36 non-BCR (\geq 4 years) pat. BCR: PSA >02 µg/L on 2 consecutive follow-up visits.	Fresh-frozen tissue	RT-qPCR (TaqMan); RNU43.	let-7a-5p↓	Only let/a was significantly Onwrregulated in BCR pat. No further statistical evaluation in combination with clinicopathological variables.	Let-7a may be functionally involved in PCa cancerogenesis; however, its role as a BCR predictor remains an unsolved question in this study.
40	Wallis et al., 2015 [93]	Discovery: based on a previous Study, i.e., 22 [49], miR-182 was examined to obtain more information on the functional role of this miR. Validation: intended as external validation of [49] with 50 BCR and 50 non-BCR pat, median follow-up 5 years. BCR: PSA increase of ≥0.2 µg/L on at least 2 consecutive follow-up visits.	Fresh-frozen tissue	RT-qPCR (Qiagen); RNU6B.	miR-182-5p (-)	miR-182 was not associated with BCR according to the interpretation of the data by the authors; the used statistical methods (univariate and multivariate logistic regression) did not consider the follow-up time frame.	This study should not be considered as external validation of Study 22 [49].
41	Wan et al., 2015 [94]	Discovery: based on previous studies of the authors [77,79] with decreased miR-224 as potential modulator of its target apelin. Validation: 20 matched pairs of PCa for miR-224/apelin axis and 104 PCa data of the Taylor data set [57]. BCR: PSA threshold not reported, probably postoperative PSA \geq 0.2 µg/L on two occasions according to Taylor et al. [57].	Fresh-frozen tissue	Discovery: microarray. Validation: microarray and RT-qPCR (GeneCopoeia); RM: RNU6B.	miR-224-5p J, combined with its increased target APLN mRNA	(1). KMA of RFS: low miR-224 + high APLN vs. high miR-224 + low APLN 224 with shorter BCR-free survival, log-rank test, $p = 0.031$. (2). CoxM: miR-224 and APLN mRNA could not be confirmed as independent BCR predictors $(p > 0.3)$.	The association of the dysregulated miR-224/APLN axis to tumorigenesis, but their significance as prognostic markers of BCR could not be validated.

2023
18,
2017,
Sci.
Mol.
-
Int.

Table 3. Cont.

Assessment of the Presented Clinical Findings	Low level of miR-146a represented a high BCR risk but mitivariate analysis was not performed. The BCR analysis was obviously only intended to support the results of cell line experiments.	Less informative data regarding the usefulness of this miR for BCR prediction.	Low miR expression resulted in reduced BCR-free survival probability. Lack of evidence as independent factor because of the missing adjustment to standard clinical factors strongly limits the clinical significance.	PCa patients with a high miR-1207-3p expression had a high-risk of BCR.	This classifier (miR-185-5p + miR-321-3p + miR-326) was validated in two independent cohorts in an extensive manner and resulted in a benefit if included in a standard model with only clinicopathological factors.
Statistical Methods and Results	KMA of RFS: pat. with low level of miR-146a had shorter RFS than pat. with high level, log rank test, p < 0.048.	KMA of RFS: log-rank test, HIR = 0.78 , $p = 0.02$.	KMA: low miR-3622 expression predicted a shorter RFS, log rank test, $p = 0.0321$.	(1). miR expression higher in BCR pat. in comparison to non-BCR pat. (<i>t</i> -test, $p < 0.0001$). (2). CoxM: HR = 2.5, $p < 0.001$, adjusted for age and turnor stage.	 Development of a 3-BCR classifier from 11 individual miRs that remained significant in a multivariate model with standard clinicopathological factors. (2). KMA for RFS: log rank test, <i>p</i> < 0.050 in all 3 cohorts. (3). CoxM: Addition of the classifier to a multivariate model with clinicopathological factors increased the predictive accuracy.
Significant miRNAs ³	miR-146a-5p ↓	miR-338-3p↓	miR-3622b-3p ↓	miR-1207-3p †	RFS classifier: miR-185-5p ↑ miR-221-3p ↓ miR-326 ↓
Methodology ²	Microarray (Agilent).	Discovery: microarray/KT-qPCR (TaqMan), RM: RNU48. Validation: microarray (Agilent) according to Taylor et al. [57].	RT-qPCR (TaqMan); RM: RNU48.	RT-qPCR (SYBR Green); RM: RNU6.	For cohort 1 and 2: RT-qPCR platforms with different panels (Exigon); RM: miR-151a-5p. Cohort 3: Microarray (Agilent).
Sample	Fresh-frozen tissue	FFPE	FFPE	FFPE	cohort 1 & 2: FFPE cohort 3: fresh-frozen tissue
Study Details in the Marker Development Phases ¹	Study of the role of miR-146-5p as a modulator of apoptosis in PCa cells by targeting ROCK1 based on the re-analysis the Taylor data set with 98 pat. [57], BCR: PSA $\ge 0.2 \text{ µg/L}$ on two occasions according to Taylor et al. [57].	Discovery: in ERG differentially expressed PCa samples, miR-338-3p was identified as one of 11 differentially expression in 25 matched miR-338-3p expression in 25 matched anon-malignant vs. malignant PCa samples and RFS validation of this miR in the Taylor data set [57]. BCR: PSA ≥0.2 µg/L according to Taylor et al. [57].	Discovery/background: Based on the frequently genomic loss of chromosome 8p21 region in PCa and its association with the corresponding miR cluster, miR-3622b was examined as relevant cancer. Validation: 35 BCR vs. 57 non-BCR pat, follow-up up to ten years. BCR: PSA criterion not indicated.	No background was given why miR-1207-3p was selected as a potential BCR marker. Study of RP specimens in 155 BCR vs. 249 non-BCR pat. BCR: PSA criterion not indicated.	Discovery: Training cohort 1 with RP specimens of localized PCa from 57 BCR vs. 69 non-BCR pat, mean follow-up 3 years. Validation: using 2 cohorts, own cohort 2 with 50 BCR vs. 60 non-BCR pat, mean follow-up 3.3; external cohort 3 of a publicly data set with 25 BCR vs. 74 non-BCR pat, follow-up 6 years. BCR: postoperative PSA >0.2 µg/L.
Reference, Year	Xu et al., 2015 [95]	Bakkar et al., 2016 [96]	Bucay et al., 2016 [97]	Das et al., 2016 [98]	Kristensen et al., 2016 [50]
No.	42	43	14	45	46

	Presented	ysis of may be a CR prediction. core &-30c n in the he authors	e as a useful ker in data. mistic ling the role of ultors did not his single miR miR-signature r previous	rression was CR risk. Lack niR as an because of the t to standard	miR-129 was pr BCR-free	miR-466 can
	Assessment of the Clinical Findings	The combined anal miR-30c and BCL9 valuable tool for BC The benefit of this s compared with mil expression as show previous study of t was not explained.	miR-301a may serv single BCR biomari combination with clinicopathological Illuminating mecha experiments regard miR-301a, but the a comment whether the 5- recommend in thei paper [89].	High miR-4534 exp related to higher B6 of evidence of the r independent factor missing adjustmen clinical factors.	Downregulation of associated with poo survival.	Low expression of predict BCR.
	Statistical Methods and Results	CoxU and CoxM: HR = 5.79 and 5.08, $p = 0.023$ and 0.048 for miR-30c/BCL9 status. This score remained an independent factor in the multivariate mode, together with the Gleason score.	(1). No associations of miR-301a expression with conventional prognostic factors. (2). CoxU and CoxM: High level of miR-301a: HR = 1.55 and 1.42, $p = 0.003$ and $p = 0.019$. miR-301a remained an independent factor in the multivariate model, together with all conventional factors.	KMA: high miR-4534 expression predicted a shorter RFS, log rank test, $p < 0.01$.	(1). KMA: low miR-129 expression predicted a shorter RFS, log rank test, $p < 0.001$. (2). CoxU and CoxM: HR = 5.63 and 2.69, $p < 0.001$ in the = 5.63 and 2.69, $p < 0.001$ in the Gleason score, turnor and lymph node status as independent factors in the multivariate model.	(1). Association of down-regulated miR-466 with the Cleason score, tumor stage ($p < 0.0001$). (2). KMA: low miR-466 expression predicted a shorter RFS, log rank test, $p = 0.01$. (3). Missing multivariate analysis.
	Significant miRNAs ³	miR-30c-5p↓ combined with its target BCL9	miR-301a-3p↑	miR-4534 †	miR-129-5p ↓	miR-466
Table 3.	Methodology ²	RT-qPCR (GeneCopoeia); RM: RNU6B.	RT-qPCR (Qiagen); RM: miR-28-5p.	RT-qPCR (TaqMan); RM: not defined.	RT-qPCR (Takara); RM: RNU6.	RT-qPCR (TaqMan); RM: not defined.
	Sample	Fresh-frozen tissue	FFPE	Fresh-frozen tissue	FFPE	FFPE
	Study Details in the Marker Development Phases ¹	Part of the study on the role of miR-30c and its target BCL9 in PCa progression and their combined use for BCR prediction: 18 BCR pat. vs. 80 non-BCR pat, median follow-up 3.8 years. These 98 pat. were identical to 98 pat. of 103 pat. included in a previous study about miR-30c [78]. BCR: postoperative PSA >0.2 μg/L.	Based on a previous study about a 5-miR signature for BCR prediction [89], a more detailed study was performed using the single miR-301a: 585 PCa pat (197 with BCR and 32 with metastasis vs, 388 non-BCR), median follow-up 8.4 years. BCR: PSA $\geq 0.2 \mu g/L$ on 2 consecutive follow-up visits that are at least 3 months apart.	Discovery/background: based on a previous study on PCa cell lines that miR-4534 was upregulated [62]. Validation: 84 malignant vs. non-malignant matched PCa tissue samples, 34 BCR vs. 37 non-BCR, follow-up not given. BCR: PSA criterion not indicated.	Discovery/background: miR-129 was examined in this study based on the role of miR-129 in other cancers [103]. Validation: 29 BCR vs. 89 non-BCR pat. BCR: PSA $\ge 0.2 \mu g/L$ following surgical treatment.	Discovery/background: miR-466 was examined based on a previous study its dowrnegulation PCa cell lines [62]. Validation: 92 PCa pat. from two sources, 34 BCR vs. 37 non-BCR pat., follow-up up to 12 years. BCR: first postoperative PSA >0.1 µg/L.
	Reference, Year	Ling et al., 2016 [99]	Nam et al., 2016 [100]	Nip et al., 2016 [101]	Xu et al., 2016 [102]	Colden et al., 2017 [104]
	No.	47	48	49	50	51

2023
18,
2017,
Sci.
Mol.
-
Int.

Table 3. Cont.

No.	Reference, Year	Study Details in the Marker Development Phases ¹	Sample	Methodology ²	Significant miRNAs ³	Statistical Methods and Results	Assessment of the Presented Clinical Findings
52	Lin et al., 2017 [105]	Discovery /background: miR-30d was examined based on controversial expression and functional data [59,106]. Validation: with the Taylor data set [57] and TCGA data with 27 and 59 BCR and 80 and 365 non-BCR, respectively, follow-up up to 14 years. BCR: PSA \geq 0.2 µg/L on two occasions after RP according to Taylor et al. [57].	Fresh-frozen tissue	Microarray (Agilent), see Taylor et al. [57].	Model with miR-30d-5p↑+ MYPT1↓	(1). Upregulation of miR-30d and downregulation of its target MYPT1. (2). KMA: Combination of both (miR-30d ^{high} /MYPT1 ^{low}) predicted better shorter RFS than markers alone ($p = 0.003$). (3). CoxM: HR = 5.13, $p = 0.026$, remained as an independent factor with tumor stage in the Taylor data set but not in the TCGA data set.	miR-30d/MYPT1 combination was identified as an independent factor to predict BCR of PCa patients, but controversial results in two data sets were shown.
23	Wei et al., 2017 [107]	Discovery/background: miR-1 was examined based on a previous study with miR-1 downregulation in recurrent cases [74]. Validation: 27 BCR vs. 51 non-BCR pat. of clinically localized PCa, follow-up within 4 years after RP. Recurrence definition: BCR with PSA <0.2 µg/L, local and systemic recurrence and cancer-related death.	FFPE	RT-qPCR (TaqMan); RM: RNU43.	miR-1-3p ↓	(1). Downregulated miR-1 in recurrent pat, (t test, $p < 0.001$). (2). ROC for recurrence: AUC = 0.885, $p < 0.001$. (3). CoxU and CoxM: HR = 1.53 and 1.86, $p = 0.024$ and $p = 0.011$.	miR-1 can function as an independent recurrence predictor together with standard clinicopathological variables.
	¹ Development and ↑, upregula The miRBase A	phases are explained in Table 2. ² Manufacturer ted miRNAs predict a higher BCR risk. (-) indi ccession Numbers and the mature sequences (r/assay name i cates "not asso of the miRNA	is given in parentheses with the ociated with BCR risk". All miR s as truly stable identifiers are	reference method ts are adapted to t compiled in Supj	((RM) in the validation process. ³ Si the currently valid miRBase hsa-mi elementary Information, Supportir	ignificant 4, downregulated R nomenclature, version 21. ng Table S1. APLN, Apelin;

AUC, area under the ROC curve; BCL9, B-cell CLL/lymphoma 9; BCR, biochemical recurrence; BFH, benign prostatic hyperplasis; CoxU and CoxM, univariate and multivariate Cox regression analysis; FFPE; formalin-fixed, paraffin-embedded tissue; BrSA ≥ 20 µg/L and/or biopsy Gleason score > 8 and/or clinical stage ≥ T3; HR, hazard ratio; KMA, Kaplan-Meier analysis; MW test, Mam-Whitney *U*-test; MYPT1, protein phosphatase 1 regulatory subunit 12A; pat, patients; PCa, prostate carcinoma; PSA, prostate-specific antigen; RBICC1, RB1 inducible coiled-coil 1; RFS, biochemical recurrence-free survival; RM, reference method, in general the reference gene; ROC, receiver-operating characteristic curve; ROCK1, rho associated coiled-coil containing protein kinase 1; RP, radical prostatectomy; RT-qPCR, reverse transcription-quantitative polymerase chain reaction; SOCS, cytokine inducible SH2 containing protein; Tribbles pseudokinase 1.

As previously mentioned, both samples from fresh-frozen tissue and FFPE archived tissue blocks were used for analysis of miRNAs in these studies. In contrast to fresh-frozen tissue, FFPE tissue samples are easily available as they are generally used in the tissue-based diagnostic routine process and do not require time-consuming workflow in comparison to fresh-frozen tissue samples. FFPE blocks are archived in repositories of the pathological institutes along with all clinical and pathological information. In contrast to the non-stability of mRNAs in FFPE tissue, miRNAs were found to be congruently expressed in fresh-frozen and FFPE tissue samples including prostate cancer [108–111]. Because of their small size and association with protectively acting macromolecules, miRNAs are obviously more robust molecules and are less affected by degradation processes than mRNAs. This was also demonstrated in model experiments of RNA degradation [112]. Li et al. [113] showed comparable miRNA profiles between FFPE and paired snap-frozen materials with $R^2 > 1$ 0.95. Moreover, this observation is consistent with the results of Casanova-Salas et al. [49] and Kristensen et al. [50], who used both FFPE and fresh-frozen tissue samples in their BCR studies (see Table 3, Study nos. 22 and 46). However, there are conflicting data on the stability of miRNAs in FFPE tissue blocks stored for more than ten years [108,109,111,114]. Two studies recently proved the differential long-term stability of various miRNAs in FFPE samples over ten years [114,115], probably depending on the different GC contents in the distinct miRNAs [115]. This issue needs to be controlled in studies using long-term archived samples to consider this possible storage effect for a correct assessment of analytical data [114].

In reviewing the 53 studies, 41 distinct miRNAs were described in FFPE and 27 miRNAs in fresh-frozen tissue samples as significant miRNAs (Figure 2). Moreover, only 10 miRNAs were simultaneously detected in both sample types as shown in the overlap section of Figure 2. As miR-21-5p, miR-133b, and miR-145-5p were found to be both up- and downregulated in various studies, a total of 58 distinct miRNAs were used as potential BCR markers. Of these 58 miRNAs, only 15 miRNAs were examined in at least two studies, whereas 43 miRNAs were determined in only one study (Table 4, Table S2). The direction of the dysregulation of the miRNAs is indicated by arrows in Table 4.

miRNA	Studies, n	Study Nos. (Table 3)	References
miR-221-3p	6	↓: 3, 31, 46 ^a ; (-): 9, 14	[24,50,58,64,83]
miR-21-5p	4	↑: 11, 29; ↓:14, 31	[60,64,81,83]
miR-145-5p	4	↑: 5; ↓: 15 <i>,</i> 17; (-): 9	[52,58,65,67]
miR-1-3p	3	↓: 8, 24, 53	[55,74,107]
miR-96-5p	3	↑: 2, 17; (-): 9	[23,58,67]
miR-30c-5p	2	↓: 28, 47	[78,99]
miR-30d-5p	2	↑: 10, 52	[59,105]
miR-133b	2	1: 26; ↓:24	[74,76]
miR-141-3p	2	↓: 31, 36	[83,88]
miR-185-5p	2	↑: 46 ^a	[50]
miR-195-5p	2	↓: 33, 34	[85,86]
miR-224-5p	2	↓: 27, 41	[77,94]
miR-301a-3p	2	↑: 37, 48	[89,100]
miR-326	2	↑: 46 ^a	[50]
miR-182-5p	2	↑: 23: (-): 40	[49,93]

Table 4. Distinct miRNAs analyzed in at least two studies for predicting biochemical recurrence.

^a External validation was considered as a separate study. \uparrow , upregulated and \downarrow , downregulated miRNAs in the cohort with the higher BCR risk. (-) indicates "not associated with BCR risk". The complete list of the 53 studies is given in Supplementary Information, Supporting Table S2.

3.2.2. miR-221-3p, miR-21-5p, miR-145-5p, miR-1-3p, and miR-96-5p, the Most Frequently Analyzed miRNA-Based BCR Markers

The miRNAs miR-221-3p, miR-21-5p, miR-145-5p, miR-1-3p, and miR-96-5p were found to be the most frequently analyzed miRNAs in the reviewed BCR studies. Their results are of particular interest as they allow some general conclusions with regard to the potential predictive BCR capability of miRNAs but also to future research requirements. In referring to the direction of the dysregulation of these miRNAs in the corresponding studies as indicated in Table 4 and subsequently mentioned using the list number from Table 3, the following short comments should summarize the situation.

- miR-221-3p. Three of the four studies confirmed the downregulated expression of miR-221 as a useful BCR predictor and independent factor in multivariate analyses with the standard clinicopathological variables (Study nos. 3, 31, and 46; [24,50,83]). Kristensen et al. [50] (Study 46) validated miR-221 in two independent BCR cohorts and an additional external validation using a publicly available data set as part of their 3-miRNA signature while Spahn et al. [24] (Study 3) proved the usefulness of this miRNA especially in high-risk PCa patients. Thus, these studies can be assessed as successful approaches from the discovery phase to validation by clinical assessment with the aim to develop a potential clinical tool as suggested in Table 1. The miRNA tool miQ that was primarily developed for diagnostic purposes included the also downregulated 5p strand of miR-221 in predicting BCR (Study 17, [67]). Strong correlations were observed in these studies between the increased expression of miR-221 and the tumor stage, Gleason score, and the pre-operative PSA level. In contrast, these correlations were not found in Study 9 with the missing predictor evidence of miR-221 [58]. However, this failure could also be caused by the short follow-up period of less than two years in this study.
- miR-21-5p. Increased and decreased expression of this miRNA was suggested as a potential BCR predictor in two studies (Table 4). Correlations were described between the increased expression of miR-21-5p as a BCR predictor and the standard clinicopathological variables (Study nos. 11 and 29; [60,81] while these data were not reported in the controversial studies with the decreased miRNA expression (Study nos. 14 and 31; [64,83]). After adjustment with clinicopathological factors, decreased miRNA expression failed to be an independent BCR risk factor (Study 31, [83]) or was only appropriate in obese patients (Study 14, [64]). Only one of the three studies with upregulated expression in tumor tissue clearly proved miR-21 as an independent factor for shorter BCR-free survival in multivariate analysis (Study 11, [60]).
- miR-145-5p. Both a study with increased (Study 5, [52]) and two studies with decreased expression of miR-145 estimated this miRNA as a potential BCR predictor or part of a significant prediction signature (Study nos. 15 and 17; [65,67]). It cannot be excluded that these discrepant findings were caused by analytical reasons, as two studies calculated the expression of miR-145 with normalizers (RNU43 and SNORD48) that were criticized regarding their suitability as reference genes [116]. Another study with decreased miR-145-5p expression (Study 9, [58]) was not able to confirm miR-145-5p as a BCR predictor in Kaplan-Meier analysis. However, it should be noted that the above-mentioned very short follow-up period in that study makes a true assessment difficult.
- miR-1-3p. Three studies examined the potential BCR capability of downregulated miR-1. Two studies (Study nos. 8 and 53; [55,107]) identified miR-1 as an independent BCR predictor after adjustment with the conventional clinicopathological factors. However, the additional benefit was not demonstrated when miR-1-3p was included in the model based only on clinicopathological factors. miR-1 was also demonstrated to be a successful BCR predictor in the third study (Study 24, [74]), but its clinical accuracy was exceeded by the pre-operative PSA value. The inconsistent documentation of clinicopathological variables in these studies makes it impossible to attribute this uniform BCR predictor result to congruent clinical characteristics between the studies.
- miR-96-5p. In two studies (Study nos. 2 and 17; [23,67]), increased levels of this miRNA in PCa tissue were successfully identified as a single BCR predictor or part of a BCR predictor combination. A third study (Study 9, [58]) did not confirm an association of the recurrence-free survival and the miR-9-5p expression level.

The heterogeneity of results of the particular miRNAs in these multiple studies also reflects the situation of the other miRNAs with only two studies available (Table 4). For example, opposite

expression data were reported for miR-133b, but both studies suggested this miRNA as a potential BCR predictor despite their discordant expression data (Study nos. 24 and 26; [74,76]). Moreover, studies that partly use data from publicly available databases or from previous studies may lack clearly defined characteristics complicate objective assessment. This applies to miR-30c-5p (Study nos. 28 and 47; [78,99]) and miR-301-3p (Study nos. 37 and 48; [89,100]).

3.2.3. Multiple miRNAs as Signatures or in Combination with Other Analytes

In the discovery phase of the development of a tissue-based miRNA assay for predicting BCR, highthroughput "-omics" approaches like microarrays or sequencing technologies provide extensive data sets with numerous candidate miRNAs to meet this pursued objective. One approach is to search this pattern of analytes and to select the most effective miRNAs for the validation of BCR prediction in the subsequent development phases. However, there is now a great interest in using this wealth of information not only for selecting single markers but also for combining multiple markers into a specific panel or signature together with clinicopathological data [117,118]. Particular attention should be paid to implement orthogonal markers in such a signature [119]. Orthogonal markers are uncorrelated among each other and to the conventional clinicopathological factors. This uncorrelated particularity is an essential precondition to improve the predictive significance of the signature due to the additional information achieved by these independent factors. For miRNAs, this orthogonal aspect could be demonstrated for the miR-29c-3p, miR-34a-5p, miR-141-3p, and miR-148a-3p that were not associated with tumor size and pathological stage but were inversely correlated with Gleason grades [88]. The Decipher genomic classifier using a 22-gene signature for post-prostatectomy risk stratification or other similar approaches has shown the potential usefulness of such multi-analyte tools [120-122].

In this review, the studies by Nam et al. [89] (Study 37: 5-miR signature with miR-139-5p, miR-223-3p, miR-301a-3p, miR-454-3p, and miR-652-3p) and Kristensen et al. [50] (Study 46: 3-miRNA prognostic classifier with miR-185-5p, miR-221-3p, and miR-326) support these ideas. Based on the multiple-miRNA approach as a signature combined with rigorous validation processes (three validations in Study 46) or a high sample size and a high number of BCR events (n = 491, 167 BCRs in Study 37), the two studies yielded promising results. Both studies are among the most convincing studies evaluated in this review and can be considered future-oriented examples. Nam et al. [100] focused in a subsequent study (Study 48) on the predictive validity of the single miR-301a-3p from the above-mentioned 5-miRNA signature. The authors also described a good BCR prediction rate using only this single miRNA, but they did not compare the results of the two approaches. Bell et al. [84] published a further BCR prediction study based on a multiple miRNA signature (Study 32). A panel of 88 miRNA was required for a reliable BCR prediction within 3 years after surgery. However, the inclusion of only miR-4516 and miR-601 in a model with Gleason score and lymph node status alone improved the BCR prediction accuracy after salvage radiation treatment from 0.66 to 0.83 of the area under the receiver operating characteristic (ROC) curves. The previously discussed 4-miRNA tool miQ by Larne et al. [67] also proved that the integrated implementation of several differentially regulated miRNAs with orthogonal characteristics improved decision making in the management of PCa patients both in diagnosis and prognosis. Lichner et al. [69] developed three statistical models based on 2 to 3 miRNAs (Study 18: miR-331-3p + miR152-3p, miR-331-3p + miR-152-3p + miR135a-5p, and miR-148a-3p + miR-429) that were verified by internal validation and on an independent cohort. The authors achieved a correct classification rate of 92 to 100% in predicting patients with a high risk of BCR.

The combined use of panels with miRNA and mRNAs is also noteworthy. The mRNAs were either targets of the accompanying miRNAs or independently selected BCR markers, such as those in Study 6 [53] with miR-519, miR-647, and 10 mRNAs, in Study 41 [94] with miR-224-5p and its target APLN or in Study 52 [105] with miR-30d-5p and its target Protein phosphatase 1 regulatory subunit 12A (official symbol: PPP1R12A)(MYPT1).

4. Critical Assessment of the Recent Situation of miRNA-Based BCR Prediction

4.1. Analytical Considerations

In a previous review on circulating miRNAs in patients suffering from urological tumors, we discussed the typical influential and interfering factors that determine the results of miRNA measurements [51]. These are variables in the collection, further processing and storage of samples in the preanalytical phase, the various isolation and quantification methods based on different principles and technologies in the actual analytical phase and the different normalization strategies in the postanalytical phase. For more details of all these aspects, we refer the interested reader to the overview of Pritchard et al. [123]. In particular, different miRNA extraction procedures for fresh-frozen or FFPE samples and different measurement platforms showed qualitative and quantitative miRNA differences depending on the determination [124–127]. These differences might especially attribute to the lack of comparability of miRNA profiling data between studies that applied different analytical techniques. On the other hand, this effect needs a strict method harmonization in multi-institutional studies if the analytics are separately performed in every center. New comparative analyses recommended the Qiagen miRNeasy FFPE kit to be the best kit for miRNA isolation from FFPE samples and the new TaqMan advanced miRNA assays as the quantification method of superior sensitivity and specificity in comparison to competitor products [126,128].

All these issues also apply to the evaluated studies in this review and therefore do not need to be discussed again in detail. However, as a concrete example (Table 3, column "Methodology"), it is remarkable that confirmed stably expressed miRNAs for normalizing the expression results were only used in six (12%) of the 53 studies. In contrast, in 33 (63%) of the reviewed studies, different small nuclear and nucleolar RNAs (U6 or RNU6 [official name: RNU6-1], RNU6B [RNU6-6P], RNU43 [SNORD43], RNU44 [SNORD44], RNU47 [SNORD47], RNU48 [SNORD48], and RNU66 [SNORD66]) were used as endogenous normalizers. This was done even though most of these small RNAs were found to be unstably expressed across non-malignant and malignant prostate tissue and therefore considered as less suitable normalizers [116]. The real suitability of RNA47, RNU48, and RNU66 as normalizers was only tested in one study [67]. Thus, the general neglect of analytical basics was obvious in several studies. This was particularly underlined by the fact that none of the reviewed articles referred to the "Minimum Information for Publication of Quantitative Real-Time PCR Experiments" (MIQE) guidelines [129]. These guidelines address the analytical essentials that have to be considered to assess the quality and potential traceability of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) measurements in an extensive checklist. Our observation corresponds with results of a recent survey of over 1700 publications that criticized the frequently insufficient description of experimental details of RT-qPCR measurements in many articles [130]. The authors of that survey called upon journal editors and reviewers to draw more attention to this issue for improving the transparency and comparability of RT-qPCR data between studies. It might be a specific challenge for clinically oriented journals in publishing clinical studies based on modern molecular-biological methods as clinicians often do not place any great emphasis on analytical problems.

4.2. Study Design Considerations

Table 3, with the essential details of the evaluated recent miRNA-based BCR studies and our separate comments, illustrates the heterogeneity of the data situation in this field. Different starting points in the discovery phase and specific features in subsequent validation processes hamper a comparison of data between studies. However, to provide a more informative overview not only on the diversity of miRNAs examined but also on the fundamental characteristics between the various studies, we classified various study criteria into categories in Table 5. This facilitates the identification of protocol deficiencies of the particular studies according to the assessment criteria of the development phases for establishing a robust tool in clinical practice (Table 2). Some noteworthy points should be considered more closely in the following.

		20 of 3	32
ew.			
)			

Table 5. Characteristics of the 53 studies evaluated in this review.

Characteristics	Studies, n (%)
1. PSA cutoff for biochemical recurrence	
$>0.1 \mu g/L$	4(7)
$\geq 0.2 \mu g/L$	35 (66)
$\geq 0.4 \mu g/L$	2 (4)
Not specified	12 (23)
2. Preoperative PSA level	
<10 μg/L	3 (6)
>10 µg/L	43 (81)
Not specified	7 (13)
3. Tumor characteristics	
pT classification/clinical stage	
Specified	50 (94)
Not specified	3 (6)
Gleason score	
Specified	52 (98)
Not specified	1 (2)
Resection margin status	01 (10)
Specified	21 (40)
Not specified	32 (60)
Lymph node status/Metastasis	1((20)
Specified	16(30)
A Study design features	37 (70)
4. Study design reatures	
¹ guidelines	
Vos	2(4)
No	51 (96)
Type of study	51 (50)
Retrospective	53 (100)
Multi-institutional study $(n \ge 2)$	9 (17)
Studies with functional miR data) (1))
Yes	30 (57)
No	23 (43)
Sample size (patients/study)	
<50	7 (13)
50-100	23 (44)
>100-150	15 (28)
>150	8 (15)
Events of biochemical recurrence	
(n/study)	
10–20	11 (21)
20–30	15 (28)
>30	17 (32)
Not specified	10 (19)
Follow-up time (mean/median years)	
<5	18 (34)
>5	25 (47)
Not specified	9 (19)
Statistical analysis	10 (24)
Only univariate Multivariate	10 (34)
studios with internal /ortainal	33 (00)
validation	
Yes	8 (15)
No	45 (85)
- 10	10 (00)

¹ Reports with comments that the respective study was performed according to the of guidelines of MIQE, Minimum information for publication of quantitative real-time PCR experiments, REMARK, Reporting Recommendations for Tumor Marker Prognostic Studies , and/or STARD, Standards for Reporting of Diagnostic Accuracy [129,131,132].

The different definitions of the PSA cutoff as criterion for the biochemical recurrence were discussed in detail at the beginning of this review. This diversity of cutoffs was also reflected in our survey. Two-thirds of the studies used the cutoff of 0.2 μ /L recommended in the EAU and AUA guidelines [29,30]. However, 23% of the studies did not specify this threshold as a fundamental precondition of data comparability. We also noticed this essential lack of information with regard to the specification of the important risk variables "resection margin status" and "lymph node status" in 60 and 70% of the studies, respectively. In contrast, the pathological tumor stage and Gleason score were generally indicated. On the other hand, only 3% of the studies included PCa patients with PSA values below 10 μ g/L. This indicates that few studies focused on low-risk PCa patients.

In addition to these clinicopathological characteristics of the study patients as one part of the study design, more or less formal conditions determine the implementation and, finally, the validity of clinical studies. These study specifications are listed in Table 5 under the category "Study design features". The percentage data given for the respective items illustrate deficiencies and the limited validity deficiencies of several studies. Thus, studies with sample sizes of less than 50 patients, 10 to 20 BCRs, a mean follow-up period under 5 years, or evaluated only through univariate analysis remain questionable from the statistical and biological point of view. For example, in a multivariate Cox regression analysis as a standard statistical method for BCR analysis, at least ten events per predictor variable are necessary to obtain reliable results [133]. Because several clinicopathological factors have to be individually considered in such a model it is not surprising that a study cohort with 20 BRC events and the additional inclusion of miRNAs of interest can hardly meet a scientifically founded conclusion of clinical significance. Considering a proportion of one-third of patients with BCR as an example, cohorts of more than 150 patients would be advisable. In contrast to this, few (15%) of the studies reviewed here that were exclusively retrospective in nature included more than 150 patients, and those were mostly multi-institutionally implemented. In this regard, it is significant that power and sample size calculations were presented in only two studies (Study nos. 2 and 9; [23,58]). Furthermore, only eight studies (15%) performed an internal or external validation of data that was suggested as an important criterion of the development phase "Validation by clinical assessment" (Table 2; [51]). For example, Kristensen et al. (Study 46; [50]) confirmed the improved prognostic performance of their 3-miRNA prognostic classifier in comparison to the BCR prediction based on only clinicopathological factors in three independent PCa patient cohorts. A similar benefit, proved by increased C-indices, was shown by single miRNAs in two other studies (Study nos. 2 and 30; [23,82]). The proof of such an additional benefit by the inclusion of miRNAs in the conventional model has to be considered as a decisive criterion to proceed further with developing a new clinical decision-making tool. Therefore, it is striking that the authors of merely two studies (Study nos. 2 and 46; [23,50]) pointed out that their studies were performed according to the "Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK)" [131]. The generally "benevolent" neglect of the guideline suggestions in performing the prognostic studies by principal investigators and in accepting final study reports as publications by the journal editors is consistent with the above-mentioned attitude of ignoring the analytical MIQE and "Standards for Reporting of Diagnostic Accuracy (STARD)" guidelines [129,132].

4.3. Divergences between BCR Outcome and the Functional Role of miRNAs

Divergent BCR outcome data between different studies contrast with the functional data of miRNAs. In addition to the apparent differences due to the previously discussed reasons of the heterogeneity of study results, real divergences seem to exist between the miRNA expression level as a BCR predictor and the potential functional role of the respective miRNA. It is therefore worth briefly mentioning this rarely considered aspect using the examples of let-7c-5p, miR-141-3p, miR-148a-3p, and miR-221.

Leite et al. [52] showed in Study 5 that increased let-7c-5p in the primary untreated PCa tissue was associated with a higher BCR risk. This seems to be in contrast to the generally decreased expression of let-7c-5p in PCa tissue compared with normal prostate tissue and its suppressive action of this miRNA on the androgen receptor [134,135]. However, it should be considered that in the assessment of BCR risk, the expression of let-7c-5p is evaluated only in tumor cells. The BCR indicator effect of the let-7c-5p expression disappeared as an independent factor in the multivariate analysis with all risk factors showing the complex interplay between clinicopathological variables and expression levels of markers [52]. A similar, but contrasting and also not plausibly explainable phenomenon applies to miR-141-3p (Study nos. 31 and 36; [83,88]) and miR-148a-3p (Study 36; [88]). Decreased levels of both miRNAs indicated a shorter recurrence-free survival in the here reviewed studies, whereas their upregulation was found to be increased in untreated PCa and castration-resistant PCa specimens, and these miRNAs enhanced the proliferation of PCa cell lines [134,136,137]. For miR-221-3p and miR-221-5p, decreased expression levels were characteristics of a shorter BCR-free period (Studies nos. 3, 17, 31, 46; [24,50,67,83]. This tumor-suppressive function corresponds with the expression levels and functional data observed in other studies [138-141]. However, increased expression of miR-221 in PCa metastases and PCa mouse models and an enhanced proliferation of PCa cell lines by this miRNA were also described [142–144]. It was recently postulated that this oncogenic role of miR-221 is likely transient, and the dual tumor-suppressive and oncogenic function of miR-221 probably reflects different phases of PCa progression [140]. In this context, the possible divergences between BCR as clinical endpoint and the development-dependent functions of miRNAs would be understandable.

5. Future Directions

Despite the discussed critical points and limitations of the reviewed studies, promising results provided by several studies can be considered as proof of the true potential of miRNAs as BCR predictors. It is the final aim of this review to learn from the deficiencies of the conducted studies hitherto and draw corresponding conclusions for future studies. Therefore, our overview of the published results and the background data of the 53 studies allows two essential conclusions:

- No study has thus been able to comply with the suggested requirements specified in the final development phase "Validation of clinical usability" (Table 2) to establish a robust BCR tool for clinical practice using miRNAs. In addition, few studies can be valued as successfully finished in the second development phase due to the lack of internal validation in most of the studies (Tables 2 and 5).
- The evaluation and comparison of analytical and clinical conditions in the various studies provided a wealth of experience in the assessment of study design features. Based on these experiences, critical study deficiencies could be identified (see Section 4, comments to Table 5), and future directions could be elaborated to overcome these shortcomings. In the following, we focus on some essential issues.

The results of the various studies and their generalized assessment confirm once more the clear need of a good coordination between the intended study aims, all study design elements, and preanalytical and analytical conditions. The three guidelines MIQE, REMARK, and STARD should be strictly considered in future studies since they define the basic foundation for implementing a study under common clinical and analytical conditions [129,131,132]. For planned projects, especially prospective, multi-institutional studies, appropriate elements of these guidelines should be specified, and their compliance should be a subject of constant control to guarantee necessary preconditions for a reliable database. These guidelines not only allow the necessary transparency but also the harmonization and comparability of results between multi-institutional studies. However, because of numerous factors, such as different methods of RNA isolation, reverse transcription, and true miRNA measurements, as well as various platform applications that could influence RT-qPCR results, it is advisable to perform all analyses at one institution in early studies. This approach would a priori avoid misinterpretations, as errors can be excluded due to missing traceability between results obtained through different methods. The issue of analytical differences could be solved later in a second step of method harmonization. The same applies to retrospective studies.

While BCR does not equal clinical relapse, elevated postoperative serum PSA levels make it possible to filter patients with a high risk of true disease recurrence [41]. Therefore, future studies should additionally focus on the predictive capability of miRNAs with regard to the clinical endpoints of distant metastasis, cancer-specific death, and response rate to drugs. Some studies (Study nos. 3, 14, 32, 53; [24,64,84,107]) have already considered these endpoints. However, the "mixed" use of these endpoints should be avoided in future studies because the distinct time difference between the endpoints could result in a systematic bias. In this respect, the study design should also clearly address the specific need for different patient groups. For example, the predictive tools using miRNAs differ between low-risk and high-risk patients following radical prostatectomy [69,71]. This result, which is also shown by using other genomic classifiers [122], should be considered in an adapted composition of the study groups according to the specific clinical objective. In addition, the Gleason-related association of miRNAs shown exemplarily by Lichner et al. [88] requires a re-assessment according to the new International Society of Urological Pathology (ISUP) Gleason group classification. Further multi-institutional studies are needed to validate the clinical usability of miRNA-based tools, either alone or combined with clinicopathological factors, for BCR prediction. The additional information provided by miRNAs in comparison to established BCR prediction tools [4–6] must be proven in these studies and should be demonstrated by decision curve analysis [145]. It is worth considering whether the above described 2-5 miRNA signatures could be confirmed in comparison to these clinically established tools in retrospective multi-institutional approaches as a validation step to initiate prospective studies.

6. Conclusions

In summary, miRNAs were shown in several studies of this review as promising marker candidates and miRNA signatures for predicting BCR after radical prostatectomy. However, the general non-consideration of the MIQE, REMARK, and STARD guidelines in most studies resulted in study design deficiencies, primarily a lack of internal validation of data. The unequivocal evidence of additional information through miRNAs in comparison to the conventional approaches of BCR has not been proven thus far. Further studies are needed to address these deficiencies both in retrospective and prospective multi-institutional studies to validate the clinical usability and benefit of miRNA-based BCR tools in combination with the conventional clinicopathological variables.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/10/2023/s1.

Acknowledgments: The authors thank Wilhelm Sander-Stiftung, SONNENFELD-Stiftung, and Stiftung Urologische Forschung for their support of the research work.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors mentioned in the Acknowledgments had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Abbreviations

APLN	Apelin
AUA	American Urological Association
AUC	Area under the ROC curve
BCL9	B-cell CLL/lymphoma 9
BCR	Biochemical recurrence
BPH	Benign prostatic hyperplasia
CoxM	Multivariate Cox regression analysis
CoxU	Univariate Cox regression analysis
EAU	European Association of Urology
FFPE	Formalin-fixed, paraffin-embedded
HR	Hazard ratio
ISUP	International Society of Urological Pathology
KMA	Kaplan-Meier analysis

MeSH	Medical Subject Heading of the U.S. National Library of Medicine
miQ	miRNA index quote
MIQE	Minimum information for publication of quantitative real-time PCR experiments
miRNA, miR	microRNA
MW	Mann-Whitney U-test
MYPT1	Protein phosphatase 1 regulatory subunit 12A (official symbol: PPP1R12A)
PCa	Prostate carcinoma
PSA	Prostate-specific antigen
RB1CC1	RB1 inducible coiled-coil 1
REMARK	Reporting Recommendations for Tumor Marker Prognostic Studies
RFS	Biochemical recurrence-free survival
RM	Reference method, in general the reference gene
ROC	Receiver-operating characteristic curve
ROCK1	Rho associated coiled-coil containing protein kinase 1
RP	Radical prostatectomy
RT-qPCR	Reverse transcription-quantitative polymerase chain reaction
SOCS	Cytokine inducible SH2 containing protein (official symbol: CISH)
STARD	Standards for Reporting of Diagnostic Accuracy
TCGA	The Cancer Genome Atlas
TNM	Classification of malignant tumors describing the involment of the primary
	tumor, regional lymph nodes and the distant metastatic spread
TRIB1	Tribbles pseudokinase 1

References

- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. *Int. J. Cancer* 2015, 136, E359–E386. [CrossRef] [PubMed]
- Andriole, G.L.; Crawford, E.D.; Grubb III, R.L.; Buys, S.S.; Chia, D.; Church, T.R.; Fouad, M.N.; Gelmann, E.P.; Kvale, P.A.; Reding, D.J.; et al. Mortality results from a randomized prostate-cancer screening trial. *N. Engl. J. Med.* 2009, *360*, 1310–1319. [CrossRef] [PubMed]
- Schroder, F.H.; Hugosson, J.; Roobol, M.J.; Tammela, T.L.; Ciatto, S.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Lilja, H.; Zappa, M.; et al. Screening and prostate-cancer mortality in a randomized European study. *N. Engl. J. Med.* 2009, *360*, 1320–1328. [CrossRef] [PubMed]
- 4. Shariat, S.F.; Karakiewicz, P.I.; Roehrborn, C.G.; Kattan, M.W. An updated catalog of prostate cancer predictive tools. *Cancer* 2008, *113*, 3075–3099. [CrossRef] [PubMed]
- Lughezzani, G.; Budaus, L.; Isbarn, H.; Sun, M.; Perrotte, P.; Haese, A.; Chun, F.K.; Schlomm, T.; Steuber, T.; Heinzer, H.; et al. Head-to-head comparison of the three most commonly used preoperative models for prediction of biochemical recurrence after radical prostatectomy. *Eur. Urol.* 2010, *57*, 562–568. [CrossRef] [PubMed]
- Punnen, S.; Freedland, S.J.; Presti, J.C., Jr.; Aronson, W.J.; Terris, M.K.; Kane, C.J.; Amling, C.L.; Carroll, P.R.; Cooperberg, M.R. Multi-institutional validation of the CAPRA-S score to predict disease recurrence and mortality after radical prostatectomy. *Eur. Urol.* 2014, 65, 1171–1177. [CrossRef] [PubMed]
- Burke, H.B. Predicting clinical outcomes using molecular biomarkers. *Biomark. Cancer* 2016, *8*, 89–99. [CrossRef] [PubMed]
- Reiter, R.E. Risk stratification of prostate cancer 2016. Scand. J. Clin. Lab. Investig. Suppl. 2016, 245, S54–S59. [CrossRef] [PubMed]
- Jung, K.; Reszka, R.; Kamlage, B.; Bethan, B.; Lein, M.; Stephan, C.; Kristiansen, G. Tissue metabolite profiling identifies differentiating and prognostic biomarkers for prostate carcinoma. *Int. J. Cancer* 2013, *133*, 2914–2924. [CrossRef] [PubMed]
- Ross-Adams, H.; Lamb, A.D.; Dunning, M.J.; Halim, S.; Lindberg, J.; Massie, C.M.; Egevad, L.A.; Russell, R.; Ramos-Montoya, A.; Vowler, S.L.; et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study. *EBioMedicine* 2015, 2, 1133–1144. [CrossRef] [PubMed]

24 of 32

- Lalonde, E.; Alkallas, R.; Chua, M.L.; Fraser, M.; Haider, S.; Meng, A.; Zheng, J.; Yao, C.Q.; Picard, V.; Orain, M.; et al. Translating a prognostic DNA genomic classifier into the clinic: Retrospective validation in 563 localized prostate tumors. *Eur. Urol.* 2017, *72*, 22–31. [CrossRef] [PubMed]
- Saad, F.; Latour, M.; Lattouf, J.B.; Widmer, H.; Zorn, K.C.; Mes-Masson, A.M.; Ouellet, V.; Saad, G.; Prakash, A.; Choudhury, S.; et al. Biopsy based proteomic assay predicts risk of biochemical recurrence after radical prostatectomy. *J. Urol.* 2017, 197, 1034–1040. [CrossRef] [PubMed]
- 13. Filella, X.; Foj, L. Prostate cancer detection and prognosis: From prostate specific antigen (PSA) to exosomal biomarkers. *Int. J. Mol. Sci.* 2016, 17, 1784. [CrossRef] [PubMed]
- Luu, H.N.; Lin, H.Y.; Sorensen, K.D.; Ogunwobi, O.O.; Kumar, N.; Chornokur, G.; Phelan, C.; Jones, D.; Kidd, L.; Batra, J.; et al. miRNAs associated with prostate cancer risk and progression. *BMC Urol.* 2017, 17, 18. [CrossRef] [PubMed]
- 15. Shukla, K.K.; Misra, S.; Pareek, P.; Mishra, V.; Singhal, B.; Sharma, P. Recent scenario of microRNA as diagnostic and prognostic biomarkers of prostate cancer. *Urol. Oncol.* **2017**, *35*, 92–101. [CrossRef] [PubMed]
- Fendler, A.; Stephan, C.; Yousef, G.M.; Jung, K. miRNAs as regulators of signal transduction in urological tumors. *Clin. Chem.* 2011, *57*, 954–968. [CrossRef] [PubMed]
- 17. Dietrich, D.; Meller, S.; Uhl, B.; Ralla, B.; Stephan, C.; Jung, K.; Ellinger, J.; Kristiansen, G. Nucleic acid-based tissue biomarkers of urologic malignancies. *Crit. Rev. Clin. Lab. Sci.* **2014**, *51*, 173–199. [CrossRef] [PubMed]
- 18. Bertoli, G.; Cava, C.; Castiglioni, I. MicroRNAs as biomarkers for diagnosis, prognosis and theranostics in prostate cancer. *Int. J. Mol. Sci.* **2016**, *17*, 421. [CrossRef] [PubMed]
- Schubert, M.; Junker, K.; Heinzelmann, J. Prognostic and predictive miRNA biomarkers in bladder, kidney and prostate cancer: Where do we stand in biomarker development? *J. Cancer Res. Clin. Oncol.* 2016, 142, 1673–1695. [CrossRef] [PubMed]
- Gill, B.S.; Alex, J.M.; Navgeet; Kumar, S. Missing link between microRNA and prostate cancer. *Tumour. Biol.* 2016, 37, 5683–5704. [CrossRef] [PubMed]
- 21. Kurozumi, A.; Goto, Y.; Okato, A.; Ichikawa, T.; Seki, N. Aberrantly expressed microRNAs in bladder cancer and renal cell carcinoma. *J. Hum. Genet.* **2017**, *62*, 49–56. [CrossRef] [PubMed]
- Tong, A.W.; Fulgham, P.; Jay, C.; Chen, P.; Khalil, I.; Liu, S.; Senzer, N.; Eklund, A.C.; Han, J.; Nemunaitis, J. MicroRNA profile analysis of human prostate cancers. *Cancer Gene Ther.* 2009, *16*, 206–216. [CrossRef] [PubMed]
- Schaefer, A.; Jung, M.; Mollenkopf, H.J.; Wagner, I.; Stephan, C.; Jentzmik, F.; Miller, K.; Lein, M.; Kristiansen, G.; Jung, K. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. *Int. J. Cancer* 2010, *126*, 1166–1176. [CrossRef] [PubMed]
- Spahn, M.; Kneitz, S.; Scholz, C.J.; Stenger, N.; Rudiger, T.; Strobel, P.; Riedmiller, H.; Kneitz, B. Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. *Int. J. Cancer* 2010, *127*, 394–403. [PubMed]
- Fendler, A.; Jung, M.; Stephan, C.; Honey, R.J.; Stewart, R.J.; Pace, K.T.; Erbersdobler, A.; Samaan, S.; Jung, K.; Yousef, G.M. miRNAs can predict prostate cancer biochemical relapse and are involved in tumor progression. *Int. J. Oncol.* 2011, *39*, 1183–1192. [PubMed]
- Amling, C.L.; Blute, M.L.; Bergstralh, E.J.; Seay, T.M.; Slezak, J.; Zincke, H. Long-term hazard of progression after radical prostatectomy for clinically localized prostate cancer: Continued risk of biochemical failure after 5 years. J. Urol. 2000, 164, 101–105. [CrossRef]
- Han, M.; Partin, A.W.; Zahurak, M.; Piantadosi, S.; Epstein, J.I.; Walsh, P.C. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. *J. Urol.* 2003, 169, 517–523. [CrossRef]
- Lein, M.; Brux, B.; Jung, K.; Henke, W.; Koenig, F.; Stephan, C.; Schnorr, D.; Loening, S.A. Elimination of serum free and total prostate-specific antigen after radical retropubic prostatectomy. *Eur. J. Clin. Chem. Clin. Biochem.* 1997, 35, 591–595. [CrossRef] [PubMed]
- Cornford, P.; Bellmunt, J.; Bolla, M.; Briers, E.; de, S.M.; Gross, T.; Henry, A.M.; Joniau, S.; Lam, T.B.; Mason, M.D.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: Treatment of relapsing, metastatic, and castration-resistant prostate cancer. *Eur. Urol.* 2017, *71*, 630–642. [CrossRef] [PubMed]

- 30. Cookson, M.S.; Aus, G.; Burnett, A.L.; Canby-Hagino, E.D.; D'Amico, A.V.; Dmochowski, R.R.; Eton, D.T.; Forman, J.D.; Goldenberg, S.L.; Hernandez, J.; et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: The American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J. Urol. 2007, 177, 540–545. [PubMed]
- Amling, C.L.; Bergstralh, E.J.; Blute, M.L.; Slezak, J.M.; Zincke, H. Defining prostate specific antigen progression after radical prostatectomy: What is the most appropriate cut point? *J. Urol.* 2001, 165, 1146–1151. [CrossRef]
- Suardi, N.; Porter, C.R.; Reuther, A.M.; Walz, J.; Kodama, K.; Gibbons, R.P.; Correa, R.; Montorsi, F.; Graefen, M.; Huland, H.; et al. A nomogram predicting long-term biochemical recurrence after radical prostatectomy. *Cancer* 2008, *112*, 1254–1263. [CrossRef] [PubMed]
- Walz, J.; Chun, F.K.; Klein, E.A.; Reuther, A.; Saad, F.; Graefen, M.; Huland, H.; Karakiewicz, P.I. Nomogram predicting the probability of early recurrence after radical prostatectomy for prostate cancer. *J. Urol.* 2009, 181, 601–607. [CrossRef] [PubMed]
- Aktas, B.K.; Ozden, C.; Bulut, S.; Tagci, S.; Erbay, G.; Gokkaya, C.S.; Baykam, M.M.; Memis, A. Evaluation of biochemical recurrence-free survival after radical prostatectomy by cancer of the prostate risk assessment post-surgical (CAPRA-S) score. *Asian Pac. J. Cancer Prev.* 2015, *16*, 2527–2530. [CrossRef] [PubMed]
- Kang, M.; Jeong, C.W.; Choi, W.S.; Park, Y.H.; Cho, S.Y.; Lee, S.; Lee, S.B.; Ku, J.H.; Hong, S.K.; Byun, S.S.; et al. Pre- and post-operative nomograms to predict recurrence-free probability in korean men with clinically localized prostate cancer. *PLoS ONE* 2014, *9*, e100053. [CrossRef] [PubMed]
- Hu, X.; Cammann, H.; Meyer, H.-A.; Jung, K.; Lu, H.; Leva, N.; Magheli, A.; Stephan, C.; Busch, J. Risk prediction models for biochemical recurrence after radical prostatectomy using prostate-specific anitigen and Gleason score. *Asian J. Androl.* 2014, *16*, 897–901. [PubMed]
- Stephenson, A.J.; Kattan, M.W.; Eastham, J.A.; Dotan, Z.A.; Bianco, F.J., Jr.; Lilja, H.; Scardino, P.T. Defining biochemical recurrence of prostate cancer after radical prostatectomy: A proposal for a standardized definition. *J. Clin. Oncol.* 2006, 24, 3973–3978. [CrossRef] [PubMed]
- Mir, M.C.; Li, J.; Klink, J.C.; Kattan, M.W.; Klein, E.A.; Stephenson, A.J. Optimal definition of biochemical recurrence after radical prostatectomy depends on pathologic risk factors: Identifying candidates for early salvage therapy. *Eur. Urol.* 2014, *66*, 204–210. [CrossRef] [PubMed]
- 39. Tosoian, J.J.; Pierorazio, P.M. Optimizing use of serum prostate specific antigen to define biochemical recurrence—Is there a method to the madness? *J. Urol.* **2016**, *195*, 1648–1649. [CrossRef] [PubMed]
- 40. Toussi, A.; Stewart-Merrill, S.B.; Boorjian, S.A.; Psutka, S.P.; Thompson, R.H.; Frank, I.; Tollefson, M.K.; Gettman, M.T.; Carlson, R.E.; Rangel, L.J.; et al. Standardizing the definition of biochemical recurrence after radical prostatectomy-what prostate specific antigen cut point best predicts a durable increase and subsequent systemic progression? *J. Urol.* 2016, *195*, 1754–1759. [CrossRef] [PubMed]
- Pound, C.R.; Partin, A.W.; Eisenberger, M.A.; Chan, D.W.; Pearson, J.D.; Walsh, P.C. Natural history of progression after PSA elevation following radical prostatectomy. *JAMA* 1999, 281, 1591–1597. [CrossRef] [PubMed]
- D'Amico, A.V.; Whittington, R.; Malkowicz, S.B.; Weinstein, M.; Tomaszewski, J.E.; Schultz, D.; Rhude, M.; Rocha, S.; Wein, A.; Richie, J.P. Predicting prostate specific antigen outcome preoperatively in the prostate specific antigen era. *J. Urol.* 2001, *166*, 2185–2188. [CrossRef]
- 43. Freedland, S.J.; Sutter, M.E.; Dorey, F.; Aronson, W.J. Defining the ideal cutpoint for determining PSA recurrence after radical prostatectomy. *Urology* **2003**, *61*, 365–369. [CrossRef]
- Ward, J.F.; Moul, J.W. Biochemical recurrence after definitive prostate cancer therapy. Part I: Defining and localizing biochemical recurrence of prostate cancer. *Curr. Opin. Urol.* 2005, 15, 181–186. [CrossRef] [PubMed]
- Stephan, C.; Klaas, M.; Müller, C.; Schnorr, D.; Loening, S.A.; Jung, K. Interchangeability of measurements of total and free prostate-specific antigen in serum with 5 frequently used assay combinations: An update. *Clin. Chem.* 2006, 52, 59–64. [CrossRef] [PubMed]
- 46. Stephan, C.; Kahrs, A.-M.; Klotzek, S.; Reiche, J.; Müller, C.; Lein, M.; Deger, S.; Miller, K.; Jung, K. Toward metrological traceability in the determination of prostate-specific antigen (PSA): Calibrating Beckman Coulter Hybritech Access PSA assays to WHO standards compared with the traditional Hybritech standards. *Clin. Chem. Lab. Med.* 2008, 46, 623–629. [CrossRef] [PubMed]

- 47. Boorjian, S.A.; Thompson, R.H.; Tollefson, M.K.; Rangel, L.J.; Bergstralh, E.J.; Blute, M.L.; Karnes, R.J. Long-term risk of clinical progression after biochemical recurrence following radical prostatectomy: The impact of time from surgery to recurrence. *Eur. Urol.* **2011**, *59*, 893–899. [CrossRef] [PubMed]
- Herranz-Amo, F.; Molina-Escudero, R.; Ogaya-Pinies, G.; Ramirez-Martin, D.; Verdu-Tartajo, F.; Hernandez-Fernandez, C. Prediction of biochemical recurrence after radical prostatectomy. New tool for selecting candidates for adjuvant radiation therapy. *Actas Urol. Esp.* 2016, 40, 82–87. [CrossRef] [PubMed]
- 49. Casanova-Salas, I.; Rubio-Briones, J.; Calatrava, A.; Mancarella, C.; Masia, E.; Casanova, J.; Fernandez-Serra, A.; Rubio, L.; Ramirez-Backhaus, M.; Arminan, A.; et al. Identification of miR-187 and miR-182 as biomarkers of early diagnosis and prognosis in patients with prostate cancer treated with radical prostatectomy. *J. Urol.* **2014**, *192*, 252–259. [CrossRef] [PubMed]
- Kristensen, H.; Thomsen, A.R.; Haldrup, C.; Dyrskjot, L.; Hoyer, S.; Borre, M.; Mouritzen, P.; Orntoft, T.F.; Sorensen, K.D. Novel diagnostic and prognostic classifiers for prostate cancer identified by genome-wide microRNA profiling. *Oncotarget* 2016, 7, 30760–30771. [CrossRef] [PubMed]
- 51. Fendler, A.; Stephan, C.; Yousef, G.M.; Kristiansen, G.; Jung, K. The translational potential of microRNAs as biofluid markers of urologic tumors. *Nat. Rev. Urol.* **2016**, *13*, 734–752. [CrossRef] [PubMed]
- Leite, K.R.; Tomiyama, A.; Reis, S.T.; Sousa-Canavez, J.M.; Sanudo, A.; Dall'Oglio, M.F.; Camara-Lopes, L.H.; Srougi, M. MicroRNA-100 expression is independently related to biochemical recurrence of prostate cancer. *J. Urol.* 2011, *185*, 1118–1122. [CrossRef] [PubMed]
- Long, Q.; Johnson, B.A.; Osunkoya, A.O.; Lai, Y.H.; Zhou, W.; Abramovitz, M.; Xia, M.; Bouzyk, M.B.; Nam, R.K.; Sugar, L.; et al. Protein-coding and microRNA biomarkers of recurrence of prostate cancer following radical prostatectomy. *Am. J. Pathol.* 2011, *179*, 46–54. [CrossRef] [PubMed]
- Barron, N.; Keenan, J.; Gammell, P.; Martinez, V.G.; Freeman, A.; Masters, J.R.; Clynes, M. Biochemical relapse following radical prostatectomy and miR-200a levels in prostate cancer. *Prostate* 2012, 72, 1193–1199. [CrossRef] [PubMed]
- 55. Hudson, R.S.; Yi, M.; Esposito, D.; Watkins, S.K.; Hurwitz, A.A.; Yfantis, H.G.; Lee, D.H.; Borin, J.F.; Naslund, M.J.; Alexander, R.B.; et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. *Nucleic Acids Res.* **2012**, *40*, 3689–3703. [CrossRef] [PubMed]
- 56. Ambs, S.; Prueitt, R.L.; Yi, M.; Hudson, R.S.; Howe, T.M.; Petrocca, F.; Wallace, T.A.; Liu, C.G.; Volinia, S.; Calin, G.A.; et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. *Cancer Res.* 2008, 68, 6162–6170. [CrossRef] [PubMed]
- Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, V.K.; Kaushik, P.; Cerami, E.; et al. Integrative genomic profiling of human prostate cancer. *Cancer Cell* 2010, *18*, 11–22. [CrossRef] [PubMed]
- Kang, S.G.; Ha, Y.R.; Kim, S.J.; Kang, S.H.; Park, H.S.; Lee, J.G.; Cheon, J.; Kim, C.H. Do microRNA 96, 145 and 221 expressions really aid in the prognosis of prostate carcinoma? *Asian J. Androl.* 2012, 14, 752–757. [CrossRef] [PubMed]
- 59. Kobayashi, N.; Uemura, H.; Nagahama, K.; Okudela, K.; Furuya, M.; Ino, Y.; Ito, Y.; Hirano, H.; Inayama, Y.; Aoki, I.; et al. Identification of miR-30d as a novel prognostic maker of prostate cancer. *Oncotarget* **2012**, *3*, 1455–1471. [CrossRef] [PubMed]
- Li, T.; Li, R.S.; Li, Y.H.; Zhong, S.; Chen, Y.Y.; Zhang, C.M.; Hu, M.M.; Shen, Z.J. miR-21 as an independent biochemical recurrence predictor and potential therapeutic target for prostate cancer. *J. Urol.* 2012, 187, 1466–1472. [CrossRef] [PubMed]
- Li, T.; Li, D.; Sha, J.; Sun, P.; Huang, Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. *Biochem. Biophys. Res. Commun.* 2009, 383, 280–285. [CrossRef] [PubMed]
- Majid, S.; Dar, A.A.; Saini, S.; Arora, S.; Shahryari, V.; Zaman, M.S.; Chang, I.; Yamamura, S.; Tanaka, Y.; Deng, G.; et al. miR-23b represses proto-oncogene Src kinase and functions as methylation-silenced tumor suppressor with diagnostic and prognostic significance in prostate cancer. *Cancer Res.* 2012, 72, 6435–6446. [CrossRef] [PubMed]
- Saini, S.; Majid, S.; Shahryari, V.; Arora, S.; Yamamura, S.; Chang, I.; Zaman, M.S.; Deng, G.; Tanaka, Y.; Dahiya, R. miRNA-708 control of CD44⁺ prostate cancer-initiating cells. *Cancer Res.* 2012, *72*, 3618–3630. [CrossRef] [PubMed]

- 64. Amankwah, E.K.; Anegbe, E.; Park, H.; Pow-Sang, J.; Hakam, A.; Park, J.Y. miR-21, miR-221 and miR-222 expression and prostate cancer recurrence among obese and non-obese cases. *Asian J. Androl.* **2013**, *15*, 226–230. [CrossRef] [PubMed]
- 65. Avgeris, M.; Stravodimos, K.; Fragoulis, E.G.; Scorilas, A. The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients. *Br. J. Cancer* **2013**, *108*, 2573–2581. [CrossRef] [PubMed]
- He, H.C.; Han, Z.D.; Dai, Q.S.; Ling, X.H.; Fu, X.; Lin, Z.Y.; Deng, Y.H.; Qin, G.Q.; Cai, C.; Chen, J.H.; et al. Global analysis of the differentially expressed miRNAs of prostate cancer in Chinese patients. *BMC Genomics* 2013, 14, 757. [CrossRef] [PubMed]
- Larne, O.; Martens-Uzunova, E.; Hagman, Z.; Edsjo, A.; Lippolis, G.; den Berg, M.S.; Bjartell, A.; Jenster, G.; Ceder, Y. miQ—A novel microRNA based diagnostic and prognostic tool for prostate cancer. *Int. J. Cancer* 2013, 132, 2867–2875. [CrossRef] [PubMed]
- Martens-Uzunova, E.S.; Jalava, S.E.; Dits, N.F.; van Leenders, G.J.; Moller, S.; Trapman, J.; Bangma, C.H.; Litman, T.; Visakorpi, T.; Jenster, G. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. *Oncogene* 2012, *31*, 978–991. [CrossRef] [PubMed]
- 69. Lichner, Z.; Fendler, A.; Saleh, C.; Nasser, A.N.; Boles, D.; Al-Haddad, S.; Kupchak, P.; Dharsee, M.; Nuin, P.S.; Evans, K.R.; et al. MicroRNA signature helps distinguish early from late biochemical failure in prostate cancer. *Clin. Chem.* **2013**, *59*, 1595–1603. [CrossRef] [PubMed]
- Majid, S.; Dar, A.A.; Saini, S.; Shahryari, V.; Arora, S.; Zaman, M.S.; Chang, I.; Yamamura, S.; Tanaka, Y.; Chiyomaru, T.; et al. miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. *Clin. Cancer Res.* 2013, *19*, 73–84. [CrossRef] [PubMed]
- 71. Schubert, M.; Spahn, M.; Kneitz, S.; Scholz, C.J.; Joniau, S.; Stroebel, P.; Riedmiller, H.; Kneitz, B. Distinct microRNA expression profile in prostate cancer patients with early clinical failure and the impact of *let-7* as prognostic marker in high-risk prostate cancer. *PLoS ONE* **2013**, *8*, e65064. [CrossRef] [PubMed]
- 72. Sun, X.; Liu, Z.; Yang, Z.; Xiao, L.; Wang, F.; He, Y.; Su, P.; Wang, J.; Jing, B. Association of microRNA-126 expression with clinicopathological features and the risk of biochemical recurrence in prostate cancer patients undergoing radical prostatectomy. *Diagn. Pathol.* **2013**, *8*, 208. [CrossRef] [PubMed]
- 73. Avgeris, M.; Stravodimos, K.; Scorilas, A. Loss of miR-378 in prostate cancer, a common regulator of KLK2 and KLK4, correlates with aggressive disease phenotype and predicts the short-term relapse of the patients. *Biol. Chem.* **2014**, *395*, 1095–1104. [CrossRef] [PubMed]
- 74. Karatas, O.F.; Guzel, E.; Suer, I.; Ekici, I.D.; Caskurlu, T.; Creighton, C.J.; Ittmann, M.; Ozen, M. miR-1 and miR-133b are differentially expressed in patients with recurrent prostate cancer. *PLoS ONE* 2014, 9, e98675. [CrossRef] [PubMed]
- 75. Katz, B.; Reis, S.T.; Viana, N.I.; Morais, D.R.; Moura, C.M.; Dip, N.; Silva, I.A.; Iscaife, A.; Srougi, M.; Leite, K.R. Comprehensive study of gene and microRNA expression related to epithelial-mesenchymal transition in prostate cancer. *PLoS ONE* **2014**, *9*, e113700. [CrossRef] [PubMed]
- 76. Li, X.; Wan, X.; Chen, H.; Yang, S.; Liu, Y.; Mo, W.; Meng, D.; Du, W.; Huang, Y.; Wu, H.; et al. Identification of miR-133b and RB1CC1 as independent predictors for biochemical recurrence and potential therapeutic targets for prostate cancer. *Clin. Cancer Res.* 2014, 20, 2312–2325. [CrossRef] [PubMed]
- 77. Lin, Z.Y.; Huang, Y.Q.; Zhang, Y.Q.; Han, Z.D.; He, H.C.; Ling, X.H.; Fu, X.; Dai, Q.S.; Cai, C.; Chen, J.H.; et al. MicroRNA-224 inhibits progression of human prostate cancer by downregulating TRIB1. *Int. J. Cancer* 2014, 135, 541–550. [CrossRef] [PubMed]
- Ling, X.H.; Han, Z.D.; Xia, D.; He, H.C.; Jiang, F.N.; Lin, Z.Y.; Fu, X.; Deng, Y.H.; Dai, Q.S.; Cai, C.; et al. MicroRNA-30c serves as an independent biochemical recurrence predictor and potential tumor suppressor for prostate cancer. *Mol. Biol. Rep.* 2014, *41*, 2779–2788. [CrossRef] [PubMed]
- He, H.C.; Zhu, J.G.; Chen, X.B.; Chen, S.M.; Han, Z.D.; Dai, Q.S.; Ling, X.H.; Fu, X.; Lin, Z.Y.; Deng, Y.H.; et al. MicroRNA-23b downregulates peroxiredoxin III in human prostate cancer. *FEBS Lett* 2012, *586*, 2451–2458. [CrossRef] [PubMed]
- Xiong, S.W.; Lin, T.X.; Xu, K.W.; Dong, W.; Ling, X.H.; Jiang, F.N.; Chen, G.; Zhong, W.D.; Huang, J. MicroRNA-335 acts as a candidate tumor suppressor in prostate cancer. *Pathol. Oncol. Res.* 2013, 19, 529–537. [CrossRef] [PubMed]

- Melbo-Jorgensen, C.; Ness, N.; Andersen, S.; Valkov, A.; Donnem, T.; Al-Saad, S.; Kiselev, Y.; Berg, T.; Nordby, Y.; Bremnes, R.M.; et al. Stromal expression of miR-21 predicts biochemical failure in prostate cancer patients with Gleason score 6. *PLoS ONE* 2014, *9*, e113039. [CrossRef] [PubMed]
- Mortensen, M.M.; Hoyer, S.; Orntoft, T.F.; Sorensen, K.D.; Dyrskjot, L.; Borre, M. High miR-449b expression in prostate cancer is associated with biochemical recurrence after radical prostatectomy. *BMC Cancer* 2014, 14, 859. [CrossRef] [PubMed]
- 83. Zheng, Q.; Peskoe, S.B.; Ribas, J.; Rafiqi, F.; Kudrolli, T.; Meeker, A.K.; de Marzo, A.M.; Platz, E.A.; Lupold, S.E. Investigation of miR-21, miR-141, and miR-221 expression levels in prostate adenocarcinoma for associated risk of recurrence after radical prostatectomy. *Prostate* **2014**, *74*, 1655–1662. [CrossRef] [PubMed]
- 84. Bell, E.H.; Kirste, S.; Fleming, J.L.; Stegmaier, P.; Drendel, V.; Mo, X.; Ling, S.; Fabian, D.; Manring, I.; Jilg, C.A.; et al. A novel miRNA-based predictive model for biochemical failure following post-prostatectomy salvage radiation therapy. *PLoS ONE* **2015**, *10*, e0118745. [CrossRef] [PubMed]
- Cai, C.; Chen, Q.B.; Han, Z.D.; Zhang, Y.Q.; He, H.C.; Chen, J.H.; Chen, Y.R.; Yang, S.B.; Wu, Y.D.; Zeng, Y.R.; et al. miR-195 inhibits tumor progression by targeting RPS6KB1 in human prostate cancer. *Clin. Cancer Res.* 2015, 21, 4922–4934. [CrossRef] [PubMed]
- 86. Guo, J.; Wang, M.; Liu, X. MicroRNA-195 suppresses tumor cell proliferation and metastasis by directly targeting BCOX1 in prostate carcinoma. *J. Exp. Clin. Cancer Res.* **2015**, *34*, 91. [CrossRef] [PubMed]
- Leite, K.R.; Reis, S.T.; Viana, N.; Morais, D.R.; Moura, C.M.; Silva, I.A.; Pontes, J., Jr.; Katz, B.; Srougi, M. Controlling RECK miR21 promotes tumor cell invasion and is related to biochemical recurrence in prostate cancer. J. Cancer 2015, 6, 292–301. [CrossRef] [PubMed]
- Lichner, Z.; Ding, Q.; Samaan, S.; Saleh, C.; Nasser, A.; Al-Haddad, S.; Samuel, J.N.; Fleshner, N.E.; Stephan, C.; Jung, K.; et al. miRNAs dysregulated in association with Gleason grade regulate extracellular matrix, cytoskeleton and androgen receptor pathways. J. Pathol. 2015, 237, 226–237. [CrossRef] [PubMed]
- 89. Nam, R.K.; Amemiya, Y.; Benatar, T.; Wallis, C.J.; Stojcic-Bendavid, J.; Bacopulos, S.; Sherman, C.; Sugar, L.; Naeim, M.; Yang, W.; et al. Identification and validation of a five microrna signature predictive of prostate cancer recurrence and metastasis: A cohort study. *J. Cancer* **2015**, *6*, 1160–1171. [CrossRef] [PubMed]
- Sun, X.; Yang, Z.; Zhang, Y.; He, J.; Wang, F.; Su, P.; Han, J.; Song, Z.; Fei, Y. Prognostic implications of tissue and serum levels of microRNA-128 in human prostate cancer. *Int. J. Clin. Exp. Pathol.* 2015, *8*, 8394–8401. [PubMed]
- Khan, A.P.; Poisson, L.M.; Bhat, V.B.; Fermin, D.; Zhao, R.; Kalyana-Sundaram, S.; Michailidis, G.; Nesvizhskii, A.I.; Omenn, G.S.; Chinnaiyan, A.M.; et al. Quantitative proteomic profiling of prostate cancer reveals a role for miR-128 in prostate cancer. *Mol. Cell Proteom.* 2010, *9*, 298–312. [CrossRef] [PubMed]
- 92. Tian, B.; Huo, N.; Li, M.; Li, Y.; He, Z. *let-7a* And its target, insulin-like growth factor 1 receptor, are differentially expressed in recurrent prostate cancer. *Int. J. Mol. Med.* 2015, *36*, 1409–1416. [CrossRef] [PubMed]
- Wallis, C.J.; Gordanpour, A.; Bendavid, J.S.; Sugar, L.; Nam, R.K.; Seth, A. mir-182 is associated with growth, migration and invasion in prostate cancer via suppression of FOXO1. *J. Cancer* 2015, *6*, 1295–1305. [CrossRef] [PubMed]
- 94. Wan, Y.; Zeng, Z.C.; Xi, M.; Wan, S.; Hua, W.; Liu, Y.L.; Zhou, Y.L.; Luo, H.W.; Jiang, F.N.; Zhong, W.D. Dysregulated microRNA-224/apelin axis associated with aggressive progression and poor prognosis in patients with prostate cancer. *Hum. Pathol.* 2015, *46*, 295–303. [CrossRef] [PubMed]
- Xu, B.; Huang, Y.; Niu, X.; Tao, T.; Jiang, L.; Tong, N.; Chen, S.; Liu, N.; Zhu, W.; Chen, M. Hsa-miR-146a-5p modulates androgen-independent prostate cancer cells apoptosis by targeting ROCK1. *Prostate* 2015, 75, 1896–1903. [CrossRef] [PubMed]
- 96. Bakkar, A.; Alshalalfa, M.; Petersen, L.F.; Abou-Ouf, H.; Al-Mami, A.; Hegazy, S.A.; Feng, F.; Alhajj, R.; Bijian, K.; Alaoui-Jamali, M.A.; et al. microRNA 338-3p exhibits tumor suppressor role and its downregulation is associated with adverse clinical outcome in prostate cancer patients. *Mol. Biol. Rep.* 2016, 43, 229–240. [CrossRef] [PubMed]
- 97. Bucay, N.; Sekhon, K.; Majid, S.; Yamamura, S.; Shahryari, V.; Tabatabai, Z.L.; Greene, K.; Tanaka, Y.; Dahiya, R.; Deng, G.; et al. Novel tumor suppressor microRNA at frequently deleted chromosomal region 8p21 regulates epidermal growth factor receptor in prostate cancer. *Oncotarget* 2016, *7*, 70388–70403. [CrossRef] [PubMed]

- Das, D.K.; Osborne, J.R.; Lin, H.Y.; Park, J.Y.; Ogunwobi, O.O. miR-1207-3p is a novel prognostic biomarker of prostate cancer. *Transl. Oncol.* 2016, *9*, 236–241. [CrossRef] [PubMed]
- Ling, X.H.; Chen, Z.Y.; Luo, H.W.; Liu, Z.Z.; Liang, Y.K.; Chen, G.X.; Jiang, F.N.; Zhong, W.D. BCL9, a coactivator for Wnt/β-catenin transcription, is targeted by miR-30c and is associated with prostate cancer progression. *Oncol. Lett.* 2016, *11*, 2001–2008. [CrossRef] [PubMed]
- Nam, R.K.; Benatar, T.; Wallis, C.J.; Amemiya, Y.; Yang, W.; Garbens, A.; Naeim, M.; Sherman, C.; Sugar, L.; Seth, A. miR-301a regulates E-cadherin expression and is predictive of prostate cancer recurrence. *Prostate* 2016, 76, 869–884. [CrossRef] [PubMed]
- 101. Nip, H.; Dar, A.A.; Saini, S.; Colden, M.; Varahram, S.; Chowdhary, H.; Yamamura, S.; Mitsui, Y.; Tanaka, Y.; Kato, T.; et al. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer. *Oncotarget* 2016, 7, 68371–68384. [CrossRef] [PubMed]
- Xu, S.; Yi, X.M.; Zhang, Z.Y.; Ge, J.P.; Zhou, W.Q. miR-129 predicts prognosis and inhibits cell growth in human prostate carcinoma. *Mol. Med. Rep.* 2016, 14, 5025–5032. [CrossRef] [PubMed]
- 103. Zhai, J.; Qu, S.; Li, X.; Zhong, J.; Chen, X.; Qu, Z.; Wu, D. miR-129 suppresses tumor cell growth and invasion by targeting PAK5 in hepatocellular carcinoma. *Biochem. Biophys. Res. Commun.* 2015, 464, 161–167. [CrossRef] [PubMed]
- 104. Colden, M.; Dar, A.A.; Saini, S.; Dahiya, P.V.; Shahryari, V.; Yamamura, S.; Tanaka, Y.; Stein, G.; Dahiya, R.; Majid, S. MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by direct regulation of osteogenic transcription factor RUNX2. *Cell Death Dis.* 2017, *8*, e2572. [CrossRef] [PubMed]
- 105. Lin, Z.Y.; Chen, G.; Zhang, Y.Q.; He, H.C.; Liang, Y.X.; Ye, J.H.; Liang, Y.K.; Mo, R.J.; Lu, J.M.; Zhuo, Y.J.; et al. MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer. *Mol. Cancer* 2017, *16*, 48. [CrossRef] [PubMed]
- 106. Xuan, H.; Xue, W.; Pan, J.; Sha, J.; Dong, B.; Huang, Y. Downregulation of miR-221, -30d, and -15a contributes to pathogenesis of prostate cancer by targeting BMI-1. *Biochemistry* **2015**, *80*, 276–283. [CrossRef] [PubMed]
- 107. Wei, W.; Leng, J.; Shao, H.; Wang, W. miR-1, A potential predictive biomarker for recurrence in prostate cancer after radical prostatectomy. *Am. J. Med. Sci.* 2017, 353, 315–319. [CrossRef] [PubMed]
- 108. Xi, Y.; Nakajima, G.; Gavin, E.; Morris, C.G.; Kudo, K.; Hayashi, K.; Ju, J. Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. *RNA* 2007, 13, 1668–1674. [CrossRef] [PubMed]
- 109. Szafranska, A.E.; Davison, T.S.; Shingara, J.; Doleshal, M.; Riggenbach, J.A.; Morrison, C.D.; Jewell, S.; Labourier, E. Accurate molecular characterization of formalin-fixed, paraffin-embedded tissues by microRNA expression profiling. *J. Mol. Diagn.* 2008, 10, 415–423. [CrossRef] [PubMed]
- Leite, K.R.; Canavez, J.M.; Reis, S.T.; Tomiyama, A.H.; Piantino, C.B.; Sanudo, A.; Camara-Lopes, L.H.; Srougi, M. miRNA analysis of prostate cancer by quantitative real time PCR: Comparison between formalin-fixed paraffin embedded and fresh-frozen tissue. *Urol. Oncol.* 2011, 29, 533–537. [CrossRef] [PubMed]
- 111. Liu, A.; Tetzlaff, M.T.; Vanbelle, P.; Elder, D.; Feldman, M.; Tobias, J.W.; Sepulveda, A.R.; Xu, X. MicroRNA expression profiling outperforms mRNA expression profiling in formalin-fixed paraffin-embedded tissues. *Int. J. Clin. Exp. Pathol.* 2009, *2*, 519–527. [PubMed]
- Jung, M.; Schaefer, A.; Steiner, I.; Kempkensteffen, C.; Stephan, C.; Erbersdobler, A.; Jung, K. Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. *Clin. Chem.* 2010, 56, 998–1006. [CrossRef] [PubMed]
- 113. Li, J.; Smyth, P.; Flavin, R.; Cahill, S.; Denning, K.; Aherne, S.; Guenther, S.M.; O'Leary, J.J.; Sheils, O. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. *BMC Biotechnol.* 2007, 7, 36. [CrossRef] [PubMed]
- 114. Peskoe, S.B.; Barber, J.R.; Zheng, Q.; Meeker, A.K.; de Marzo, A.M.; Platz, E.A.; Lupold, S.E. Differential long-term stability of microRNAs and RNU6B snRNA in 12–20 year old archived formalin-fixed paraffin-embedded specimens. *BMC Cancer* 2017, 17, 32. [CrossRef] [PubMed]
- 115. Kakimoto, Y.; Tanaka, M.; Kamiguchi, H.; Ochiai, E.; Osawa, M. MicroRNA stability in FFPE tissue samples: Dependence on GC content. *PLoS ONE* 2016, *11*, e0163125. [CrossRef] [PubMed]

- Carlsson, J.; Helenius, G.; Karlsson, M.; Lubovac, Z.; Andren, O.; Olsson, B.; Klinga-Levan, K. Validation of suitable endogenous control genes for expression studies of miRNA in prostate cancer tissues. *Cancer Genet. Cytogenet.* 2010, 202, 71–75. [CrossRef] [PubMed]
- 117. Bovelstad, H.M.; Nygard, S.; Borgan, O. Survival prediction from clinico-genomic models—A comparative study. *BMC Bioinform.* **2009**, *10*, 413. [CrossRef] [PubMed]
- 118. Klein, E.A.; Cooperberg, M.R.; Magi-Galluzzi, C.; Simko, J.P.; Falzarano, S.M.; Maddala, T.; Chan, J.M.; Li, J.; Cowan, J.E.; Tsiatis, A.C.; et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. *Eur. Urol.* 2014, *66*, 550–560. [CrossRef] [PubMed]
- 119. Gerszten, R.E.; Wang, T.J. The search for new cardiovascular biomarkers. *Nature* 2008, 451, 949–952. [CrossRef] [PubMed]
- Klein, M.E.; Dabbs, D.J.; Shuai, Y.; Brufsky, A.M.; Jankowitz, R.; Puhalla, S.L.; Bhargava, R. Prediction of the Oncotype DX recurrence score: Use of pathology-generated equations derived by linear regression analysis. *Mod. Pathol.* 2013, 26, 658–664. [CrossRef] [PubMed]
- 121. Xiao, K.; Guo, J.; Zhang, X.; Feng, X.; Zhang, H.; Cheng, Z.; Johnson, H.; Persson, J.L.; Chen, L. Use of two gene panels for prostate cancer diagnosis and patient risk stratification. *Tumour. Biol* 2016, 37, 10115–10122. [CrossRef] [PubMed]
- 122. Ross, A.E.; Johnson, M.H.; Yousefi, K.; Davicioni, E.; Netto, G.J.; Marchionni, L.; Fedor, H.L.; Glavaris, S.; Choeurng, V.; Buerki, C.; et al. Tissue-based genomics augments post-prostatectomy risk stratification in a natural history cohort of intermediate- and high-risk men. *Eur. Urol.* 2016, *69*, 157–165. [CrossRef] [PubMed]
- Pritchard, C.C.; Cheng, H.H.; Tewari, M. MicroRNA profiling: Approaches and considerations. *Nat. Rev. Genet.* 2012, 13, 358–369. [CrossRef] [PubMed]
- 124. Meng, W.; McElroy, J.P.; Volinia, S.; Palatini, J.; Warner, S.; Ayers, L.W.; Palanichamy, K.; Chakravarti, A.; Lautenschlaeger, T. Comparison of microRNA deep sequencing of matched formalin-fixed paraffin-embedded and fresh frozen cancer tissues. *PLoS ONE* **2013**, *8*, e64393.
- 125. Nagy, Z.B.; Wichmann, B.; Kalmar, A.; Bartak, B.K.; Tulassay, Z.; Molnar, B. miRNA isolation from FFPET specimen: A technical comparison of miRNA and total RNA isolation methods. *Pathol. Oncol. Res.* 2016, 22, 505–513. [CrossRef] [PubMed]
- Howe, K. Extraction of miRNAs from formalin-fixed paraffin-embedded (FFPE) tissues. *Methods Mol. Biol.* 2017, 1509, 17–24. [PubMed]
- 127. Doleshal, M.; Magotra, A.A.; Choudhury, B.; Cannon, B.D.; Labourier, E.; Szafranska, A.E. Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. *J. Mol. Diagn.* **2008**, *10*, 203–211. [CrossRef] [PubMed]
- 128. ThermoFisher Scientific. TaqMan Advanced miRNA Assays—Superior Performance for miRNA Detection and Quantification. Available online: https://www.thermofisher.com/content/dam/LifeTech/Documents/ PDFs/TaqMan-Advanced-miRNA-Performance-White-Paper.pdf (accessed on 20 September 2017).
- 129. Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. *Clin. Chem.* 2009, 55, 611–622. [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.; et al. The need for transparency and good practices in the qPCR literature. *Nat. Methods* 2013, 10, 1063–1067. [CrossRef] [PubMed]
- Altman, D.G.; McShane, L.M.; Sauerbrei, W.; Taube, S.E. Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration. *PLoS Med* 2012, 9, e1001216. [CrossRef] [PubMed]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; de Vet, H.C.; et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. *Clin. Chem.* 2015, *61*, 1446–1452. [CrossRef] [PubMed]
- Peduzzi, P.; Concato, J.; Feinstein, A.R.; Holford, T.R. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. *J. Clin. Epidemiol.* 1995, 48, 1503–1510. [CrossRef]

- 134. Nadiminty, N.; Tummala, R.; Lou, W.; Zhu, Y.; Zhang, J.; Chen, X.; eVere White, R.W.; Kung, H.J.; Evans, C.P.; Gao, A.C. MicroRNA *let-7c* suppresses androgen receptor expression and activity via regulation of Myc expression in prostate cancer cells. *J. Biol Chem.* 2012, 287, 1527–1537. [CrossRef] [PubMed]
- 135. Ozen, M.; Creighton, C.J.; Ozdemir, M.; Ittmann, M. Widespread deregulation of microRNA expression in human prostate cancer. *Oncogene* 2008, 27, 1788–1793. [CrossRef] [PubMed]
- 136. Murata, T.; Takayama, K.; Katayama, S.; Urano, T.; Horie-Inoue, K.; Ikeda, K.; Takahashi, S.; Kawazu, C.; Hasegawa, A.; Ouchi, Y.; et al. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. *Prostate Cancer Prostatic. Dis.* 2010, 13, 356–361. [CrossRef] [PubMed]
- Waltering, K.K.; Porkka, K.P.; Jalava, S.E.; Urbanucci, A.; Kohonen, P.J.; Latonen, L.M.; Kallioniemi, O.P.; Jenster, G.; Visakorpi, T. Androgen regulation of micro-RNAs in prostate cancer. *Prostate* 2011, 71, 604–614. [CrossRef] [PubMed]
- 138. Coarfa, C.; Fiskus, W.; Eedunuri, V.K.; Rajapakshe, K.; Foley, C.; Chew, S.A.; Shah, S.S.; Geng, C.; Shou, J.; Mohamed, J.S.; et al. Comprehensive proteomic profiling identifies the androgen receptor axis and other signaling pathways as targets of microRNAs suppressed in metastatic prostate cancer. *Oncogene* 2016, 35, 2345–2356. [CrossRef] [PubMed]
- 139. Kneitz, B.; Krebs, M.; Kalogirou, C.; Schubert, M.; Joniau, S.; van, P.H.; Lerut, E.; Kneitz, S.; Scholz, C.J.; Strobel, P.; et al. Survival in patients with high-risk prostate cancer is predicted by miR-221, which regulates proliferation, apoptosis, and invasion of prostate cancer cells by inhibiting IRF2 and SOCS3. *Cancer Res.* 2014, 74, 2591–2603. [CrossRef] [PubMed]
- Gui, B.; Hsieh, C.L.; Kantoff, P.W.; Kibel, A.S.; Jia, L. Androgen receptor-mediated downregulation of microRNA-221 and -222 in castration-resistant prostate cancer. *PLoS ONE* 2017, 12, e0184166. [CrossRef] [PubMed]
- 141. Goto, Y.; Kojima, S.; Nishikawa, R.; Kurozumi, A.; Kato, M.; Enokida, H.; Matsushita, R.; Yamazaki, K.; Ishida, Y.; Nakagawa, M.; et al. MicroRNA expression signature of castration-resistant prostate cancer: The microRNA-221/222 cluster functions as a tumour suppressor and disease progression marker. *Br. J. Cancer* 2015, 113, 1055–1065. [CrossRef] [PubMed]
- 142. Sun, T.; Wang, Q.; Balk, S.; Brown, M.; Lee, G.S.; Kantoff, P. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. *Cancer Res.* **2009**, *69*, 3356–3363. [CrossRef] [PubMed]
- 143. Sun, T.; Yang, M.; Chen, S.; Balk, S.; Pomerantz, M.; Hsieh, C.L.; Brown, M.; Lee, G. M.; Kantoff, P.W. The altered expression of miR-221/-222 and miR-23b/-27b is associated with the development of human castration resistant prostate cancer. *Prostate* **2012**, *72*, 1093–1103. [CrossRef] [PubMed]
- 144. Sun, T.; Wang, X.; He, H.H.; Sweeney, C.J.; Liu, S.X.; Brown, M.; Balk, S.; Lee, G.S.; Kantoff, P.W. miR-221 promotes the development of androgen independence in prostate cancer cells via downregulation of HECTD2 and RAB1A. *Oncogene* **2014**, *33*, 2790–2800. [CrossRef] [PubMed]
- 145. Vickers, A.J.; Elkin, E.B. Decision curve analysis: A novel method for evaluating prediction models. *Med. Decis. Making* **2006**, *26*, 565–574. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Curriculum vitae

My curriculum vitae does not appear in the electronic version of my paper for reasons of data protection

Complete publication list

- 1. Ralla B, Busch J, Flörcken A, Westermann J, Kilic E, **Zhao Z**, Weickmann S, Jung M, Fendler A, Jung K. miR-9-5p in nephrectomy specimens is a potential predictor of primary resistance to first-line treatment with tyrosine kinase inhibitors in patients with metastatic renal cell carcinoma. Cancers 2018;10:321.
- Ecke TH, Stier K, Weickmann S, Zhao Z, Buckendahl L, Stephan C, Kilic E, Jung K. miR-199a-3p and miR-214-3p improve the overall survival prediction of muscle-invasive bladder cancer patients after radical cystectomy. Cancer Med 2017;6:2252-62.
- 3. **Zhao Z**, Stephan C, Weickmann S, Jung M, Kristiansen G, Jung K. Tissuebased microRNAs as predictors of biochemical recurrence after radical prostatectomy: what can we learn from past studies? Int J Mol Sci 2017;18:E2023.
- 4. Stephan C, Lein M, Matalon J, Kilic E, **Zhao Z**, Busch J, Jung K. Serum vitamin D is not helpful in predicting prostate cancer aggressiveness compared with the prostate health index. J Urol 2016;196:709-14.
- 5. **Zhao Z**, Zhang X, Chen X, Dai Y, Bai Y, Xao X. Effect of percutaneous nephrostolithotomy combined with flexible ureteroscopy on renal function in elderly patients with renal calculi. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2015;40:276-80.
- 6. **Zhao Z**, Zhang X, Chen X, Dai Y, Luo Q. Comparison of flexible ureteroscope incision and drainage and retroperitoneoscopic unroofing in treatment of renal cyst. China J Endoscopy 2014;20:No. 10.

Patents list

- 1. **Zhongwei Zhao**, Min Wang and Xiaobo Zhang. Medical device for increasing infusion pressure. ZL 201320237301.7, May 2013.
- 2. **Zhongwei Zhao**, Min Wang and Xiaobo Zhang. Accommodate pot for urological surgery. ZL 201420236297.7, May 2014.
- 3. **Zhongwei Zhao**, Min Wang and Xiaobo Zhang. Elastic underwear used after scrotal surgery. ZL 201420238987.6, May 2014.

Acknowledgements

I would like to thank Prof. Dr. med. Carsten Stephan, PD Dr. med. Thorsten Ecke and Prof. Dr. Klaus Jung for giving me the precious opportunity to join the urologic research group and do my doctoral research in the laboratory. They were great supervisors and supported me in planning and conducting the project. They also gave me numerous good suggestions that helped to improve my thesis.

I also would like to thank all colleagues in the laboratory, especially Sabine Weickmann, Dr. Monika Jung and Silke Rabenhorst, for their enthusiastic care and support during my study within these three years.

Special thanks to my motherland for the financial support and help for my life in Germany.

My biggest thanks go to my family. They gave me confidence and strength whenever it was necessary.