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Abstract 

Ultrasonic axial transmission is a non-ionizing, compact and affordable alternative to X-ray-based devices 

used for fracture risk assessment and osteoporosis diagnosis in the clinic. In this work, a novel 500-kHz 

axial transmission probe was validated for the assessment of cortical bone microstructure at the tibia 

against site-matched reference methods. A waveguide model parameterized with cortical porosity (Ct.Po) 

and thickness (Ct.Th) was used to predict the measured guided wave dispersion curves. To simplify the 

model, cortical bone was considered as homogenized porous material with fixed matrix elastic properties. 

The approach was first validated ex vivo on 19 tibiae from adult donors without specific bone disorders 

affecting matrix elastic properties. The best fit between the measured and model-based dispersion curves 

provided estimates of Ct.Th (R2 = 0.92, RMSE = 0.20 mm) and Ct.Po (R2 = 0.83, RMSE = 2.2 %) in 

agreement with reference data from site-matched micro-computed tomography. We accounted for varia-

tions in bone matrix stiffness, reflected in the acoustic impedance measured by scanning acoustic micro-

scopy, and showed that the assumption on a fixed bone matrix stiffness is correct. The approach was then 

validated in vivo at the tibia of 20 patients against site-matched peripheral quantitative computed tomo-

graphy. Ct.Th was accurately predicted (R2 = 0.90, RMSE = 0.19 mm) despite the presence of soft tissue. 

A moderate correlation was found between Ct.Po and volumetric bone mineral density (R2 = 0.57), which 

is a strong predictor of Ct.Po. Resonant ultrasound spectroscopy was used to document the elastic tensors 

of 55 small cortical bone specimens harvested from the axial transmission measurement site. Strong linear 

correlations between the different elastic coefficients (0.70 < R² < 0.99) and between these coefficients 

and mass density (0.79 < R² < 0.89) were found. In conclusion, recovering cortical parameters at the tibia 

may provide valuable information about skeletal status and fracture risk. Further clinical studies are re-

quired to confirm this hypothesis.  
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Abstrakt 

Die axiale Transmission von Ultraschall in der Medizin ist eine nicht-ionisierende, kostengünstige und 

kompakte Alternative zu herkömmlichen röntgenbasierten Verfahren zur Beurteilung des Frakturrisikos 

im Rahmen der Osteoporose-Diagnostik. In dieser Dissertation wurde eine neuartige 500-kHz Sonde zur 

Messung kortikaler Parametern an der Tibia mit Referenzmethoden validiert. Ein Dispersionsmodell, pa-

rametrisiert mit kortikaler Dicke (Ct.Th) und Porosität (Ct.Po), wurde automatisch an die experimentellen 

Dispersionskurven geführter Wellen angeglichen. Der elastische Tensor des Dispersionsmodells wurde in 

alleiniger Funktion von Ct.Po beschrieben, und zwar unter Verwendung eines Modells mit konstanten 

elastischen Eigenschaften der Knochenmatrix. Die Methode wurde zunächst an 19 Tibiae ex vivo gegen 

Mikro-Computertomographie validiert. Ct.Th (R2 = 0.92, RMSE = 0.20 mm) und Ct.Po (R2 = 0.83, RMSE 

= 2.2 %) wurden sehr genau bestimmt. Als Unterschiede in der Matrixsteifigkeit zwischen den einzelnen 

Proben, abgeschätzt mittels akustischer Rastermikroskopie, berücksichtigt wurden, bestätigte sich die 

Validität bei der Annahme einer universellen Knochenmatrixsteifigkeit im Dispersionsmodell. Die Mess-

werte der neuen Sonde wurden dann an der Tibia von 20 Patienten in vivo mit peripherer quantitativer 

Computertomographie verglichen. Ct.Th konnte trotz überlagertem Weichgewebes akkurat vom Disper-

sionsmodell abgeleitet werden (R2 = 0.90, RMSE = 0.19 mm). Zudem wurde eine moderate Korrelation 

zwischen Ct.Po und der volumetrischen Knochenmineraldichte festgestellt (R2 = 0.57). Zuletzt wurde 

Resonanz-Ultraschall-Spektroskopie verwendet, um die elastischen Eigenschaften des kortikalen Kno-

chens an der Ultraschall-Messstelle der Tibia zu dokumentieren. Es fanden sich starke lineare Korrela-

tionen zwischen den elastischen Koeffizienten (0.70 < R² < 0.99), sowie zwischen diesen Koeffizienten 

und der Massendichte (0.79 < R² < 0.89). Über eine Messung kortikaler Parameter an der Tibia könnte in 

Zukunft das Frakturrisiko eines Patienten besser vorhergesagt werden. Weitere klinische Studien sind er-

forderlich, um diese Hypothese zu bestätigen.    
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Abbreviations 

µCT X-ray micro-computed tomography 

AT Axial transmission 

BDAT Bidirectional axial transmission 

BMC  Bone mineral content [g.cm-1] 

BMD  Bone mineral density [g.cm-2] 

BUA  Broadband ultrasonic attenuation [dB.MHz-1] 

BWV  Bulk wave velocity [m.s-1] 

CTXA Computed tomography X-ray absorptiometry 

CMUTs Capacitive micromachined ultrasonic transducers 

DXA Dual X-ray absorptiometry 

FAS First arriving signal 

FFT Fast Fourier transform 

HMI Human machine interface 

HR-pQCT High-resolution peripheral quantitative computed tomography 

pQCT Peripheral quantitative computed tomography 

QCT Quantitative computed tomography 

RMS-CV Root-mean-square coefficient of variation  

RUS Resonant ultrasound spectroscopy 

SAM Scanning acoustic microscopy 

SVD Singular vector decomposition 

TBS Trabecular bone score 

TMD Tissue mineral density [g.cm-3] 

TOF Time of flight 
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1 Introduction 

Osteoporosis is a systemic skeletal disorder characterized by a reduction of bone strength. In particular, 

vertebral and hip fractures impose high morbidity and mortality to society (1). Bone mineral density 

(BMD) measured with dual-energy X-ray absorptiometry (DXA) is the current standard parameter to 

diagnose osteoporosis. Though, a large amount of non-traumatic fractures occur in subjects above the 

diagnostic threshold for osteoporosis (T-score ≤ −2.5) (2). To improve the assessment of fracture risk, 

research emphasized the importance of cortical bone for the determination of skeletal stability. Recently, 

it was found that subjects with hip fractures have decreased cortical thickness (Ct.Th) and increased 

cortical porosity (Ct.Po) at the tibia (3). In the clinic, cortical bone microstructure can be assessed with 

high-resolution peripheral quantitative computed tomography (HR-pQCT). However, the technology is 

unlikely to become a screening tool for osteoporosis because it is expensive, based on ionizing radiation, 

and bound to dedicated rooms.      

Alternatively, axial transmission (AT) ultrasound systems are being explored, which are non-ionizing, 

low-cost, and portable. The setup enables the propagation of ultrasonic waves along the cortex of long 

bones such as the radius and tibia. The first arriving signal velocity (FAS) is a robust measurement 

parameter, but its ability to discriminate fractures was only found equivalent (4) or lower to DXA (5,6). 

To improve the discrimination of fractures, researchers considered the phase velocity of the guided A0 

mode (A0) (7). The propagation velocity of a guided wave is frequency-dependent. Each guided wave 

mode exhibits a specific dispersion curve which is determined by the elastic and geometric properties of 

the cortical waveguide. To date, A0 has only been measured in the time-domain based on extracted A0 

mode wave packages. In patients, this approach is usually affected by soft tissue, in which ultrasound 

propagates at similar velocities (~1500 m.s-1) as the A0 mode in cortical bone (8).         

Modern AT systems have focused on the measurement of multiple guided waves. Cortical bone properties 

are recovered by fitting a physical waveguide model to the measured guided wave dispersion spectrum. 

For this purpose, a transverse isotropic free plate model was proposed which accounts for the anisotropy 

of cortical bone (9). The model depends on the waveguide thickness and four elastic parameters. To 

simplify the model, cortical bone was considered as a homogenized porous material with fixed matrix 

elastic properties (10). This asymptotic homogenization approach permits to express the four elastic 

parameters of the transverse isotropic free plate model in sole function of Ct.Po (11). Consequently, the 

simplified wave-guide model can be used to create a database of theoretical dispersion curves depending 

on Ct.Th and Ct.Po only. Using a 1-MHz AT probe, the inversion this database was first validated ex vivo 

on a set of human radius and tibia specimens against site-matched X-ray micro-computed tomography 

(µCT) (12) and then tested in vivo at the radius of patients (13).                 
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Resonant ultrasound spectroscopy (RUS) is a non-destructive technique used to measure the effective 

elastic tensor of small cortical bone specimens (14). Experimental effective elasticity is required to 

calibrate the fixed tissue stiffness in cortical bone homogenization models, which allow to express the 

effective elasticity in function of Ct.Po alone. The two-phase material model used for the 1-MHz probe 

(12,13) was calibrated on the effective elasticity of human femur specimens retrieved from ultrasonic bulk 

wave velocity (BWV) measurements (11). The fixed tissue stiffness in this homogenization model was 

found by minimizing the error between the model-predicted and experimental effective elasticity values. 

In the future, the prediction of guided waves might be enhanced by using a waveguide model that is 

calibrated directly on the effective elasticity of the measurement site, obtained, for example, from RUS. 

Compared to the traditional BWV method, RUS is more convenient for measuring small cortical bone 

specimens, such as those harvested from the human radius or tibia. In this thesis, a novel 500-kHz AT 

probe was used to characterize the human tibia in terms of cortical microstructure (Ct.Po and Ct.Th) and 

ultrasonic velocities (FAS and A0). Moreover, the effective elasticity of cortical bone from the guided 

wave measurement site of the tibia was measured for the first time using RUS.   
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2 Aims 

The overall aim of this thesis was to validate a novel clinical tool (500-kHz AT) for the assessment of 

cortical bone parameters at the human tibia. The specific aims were:  

- To validate the model-based estimation of Ct.Th and Ct.Po ex vivo against site-matched reference 

values obtained from µCT (study A).    

 

- To test, if accounting for sample-specific variations in tissue stiffness improves the prediction of Ct.Th 

and Ct.Po, derived from a waveguide model with fixed bone matrix stiffness (study A).   

 

- To validate the model-based estimation of Ct.Th and Ct.Po in vivo against reference values from site-

matched pQCT and ultradistal HR-pQCT (study B).   

 

- To measure the first arriving signal velocity (FAS) using improved signal processing (study A and B).  

 

- To measure the A0 mode velocity (A0) using a novel signal processing (study A and B).  

 

- To document the effective elastic tensors at the AT measurement site using RUS (study C).   
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3 Background 

3.1 Human bone 

The human skeleton is composed of two main tissue types: Cortical and trabecular bone. Cortical bone is 

predominantly found at the central part (diaphysis) of long bones, such as the tibia, radius, or femur. 

Cortical bone becomes thinner towards the end of those bones (epiphysis), which in turn contains 

predominantly trabecular (cancellous) bone. Eighty percent of the total body bone mass is cortical with 

porosities ranging from 2 to 30 %. Trabecular bone forms a network of interconnecting plates and rods 

with thicknesses in the range 100 - 200 μm. The vertebra and calcaneus, for example, are mainly composed 

of trabecular bone surrounded by a thin cortical shell. Bone marrow is found inside the bone cavities, 

which are primary sites of new blood cell production.  

 

Fig. 1 Hierarchical organization of cortical bone. Reproduced with permission from Elsevier (15).  

Bone has a complex hierarchical structure (Fig.1) composed of collagen type I fibers, hydroxyapatite 

nanocrystals, non-collagenous proteins, and water. Continuous remodeling allows the material to adapt in 

response to external stimuli and to repair damage. The remodeling is performed by osteoblasts and 

osteoclasts. A remodeling cycle begins with osteoclasts resorbing bone tissue. Subsequently, osteoblasts 

are recruited to lay down unmineralized organic matrix (osteoid). During the first few days, osteoid 

reaches rapidly 70 % of its final mineral content and then slowly matures (16). Remodeling in cortical 

bone results in osteons consisting of a central (Haversian) canal surrounded by concentric layers of 

mineralized tissue (lamellae). Trabecular bone is remodeled from the surface with osteoclasts rather 

cutting trenches than tunnels. Both tissue types are hosting osteocytes which form a complex intercellular 

network. Apart from regulating phosphate metabolism, osteocytes are mechanosensitive, signal the 

presence of local damage, and recruit osteoclasts to initiate bone remodeling (17).    
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3.2 Osteoporosis 

Osteoporosis is characterized by imbalanced remodeling of bone tissue with resorption exceeding formation 

through increased osteoclastic activity (18). As a consequence, the skeleton is destabilized and may fracture 

due to minor overload. Typical osteoporotic fracture sites are the wrist, spine, and hip. Trabecular bone 

architecture rapidly deteriorates in patients with increased bone resorption due to its high surface area. That 

is why vertebral compression fractures may occur early after the onset of osteoporosis, typically after the 

50th year of life (19). Postmenopausal women are at particular fracture risk because estrogen deficiency is 

associated with higher osteoclast activity and, therefore, higher bone resorption (20). In cortical bone, the 

porosity increases with high variations in pore diameter ranging from 50 to 450 µm, and shape. The cortical 

bone may also become thinner by conversion into trabecular bone (trabecularization) (Fig. 2b). 

 

Fig. 2 Femoral shaft cross-sections from different elderly human donors scanned with 100-MHz scanning acoustic microscopy 

(SAM). (a) Intact bone with normal cortical porosity (~8 %) and thickness (~5 mm). (b) Trabecularized sample with decreased 

cortical thickness (~2 mm). (c) Sample with normal cortical thickness (~5 mm) and increased porosity (~20 %). 

3.3 In-vivo assessment of fracture risk  

In this section, the diagnostic methods included in the current German guideline for osteoporosis 

management and fracture risk estimation are discussed (DVO-Leitlinie 2017). Note that only DXA is 

recommended for use in routine clinical practice. However, other results from quantitative computed 

tomography (QCT), trabecular bone score (TBS), or calcaneal quantitative ultrasound (QUS) may be in-

cluded in the fracture risk assessment, when available.      

3.3.1 Dual X-ray absorptiometry (DXA) 

This clinical standard method is based on two X-ray beams of different energy transmitted through the 

examined skeletal site, i.e. the proximal femur or lumbar spine. The separate evaluation of the two 

absorption spectra allows to eliminate soft tissue effects. Areal BMD (aBMD in g.cm-2) is then derived 

from the attenuation coefficient. For each site, T-scores are calculated defined as the difference between 

5 mm

a

5 mm

b

5 mm

c



9 
 

the measured aBMD and the mean aBMD of a healthy reference population. According to the World 

Health Organization criteria, osteoporosis is diagnosed when a T-score is lower than -2.5. DXA scans 

represent 2D projections of complex 3D structures. This impedes the assessment of bone size and separate 

evaluation of cortical and trabecular compartments. In particular, bone size is important because larger 

bones will convey superior strength. The DVO-guideline proposes a risk model combining the T-score 

with clinical risk factors, such as age, smoking, or prolonged glucocorticoid use. Moreover, DXA images 

can be used to calculate a trabecular bone score (TBS). Although the TBS is not a direct measure of trabe-

cular bone microarchitecture, it was shown to reflect the structural quality of trabecular bone (21).    

3.3.2 Quantitative computed tomography (QCT) 

In QCT, a skeletal site is imaged using X-rays from multiple angles around a single rotational axis. Based 

on algebraic reconstruction techniques, tomographic images are reconstructed. Calibration phantoms are 

scanned with the patient to transform the grey-scale values into volumetric BMD (vBMD in g.cm-3). In 

general, the trabecular regions of the hip and spine are evaluated. However, dedicated segmentation 

software (e.g. the Medical Image Analysis Framework, University of Erlangen) can be used to calculate 

additional parameters of the cortical bone compartment, such as Ct.Th. Computed tomography X-ray 

absorptiometry (CTXA) is a tool for femur scans providing DXA-equivalent aBMD and T-score values. 

The major limitation of QCT is the limited spatial resolution and anisotropic voxel size, which is usually 

in the order of 0.5 x 0.5 x 1 mm. This complicates the evaluation of skeletal sites with thin cortical bone, 

such as the femoral neck or vertebrae. Regarding the assessment of fracture risk, consistent prospective 

clinical studies and large standardized reference data are still lacking.   

3.3.3 Peripheral quantitative computed tomography (pQCT) 

Compared to QCT, the peripheral QCT (pQCT) scanner is more compact with smaller gantries. The 

relatively low-cost and portable device is exclusively produced by Stratec Medizintechnik in Germany. 

Usually, the tibia or radius is imaged in single-slice mode at different scan locations. A typical site for the 

evaluation of cortical bone at the tibia is at 66 % of the total bone length. After scanning, a dedicated 

software automatically segments the cortical and trabecular compartments based on fixed thresholds. 

Average vBMD values are then calculated from grey-level values and daily calibration scans. Moreover, 

bone stability indexes can be obtained integrating information on the distribution of bone material, e.g. 

cross-sectional moments of inertia (22). Nevertheless, few studies have investigated the association be-

tween pQCT and fracture risk. A prospective study found that several bone stability indexes measured at 

the radius and tibia were strongly associated with non-vertebral fractures (23), but the improvements over 

DXA were only minor.      
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3.3.4 High-resolution peripheral quantitative computed tomography (HR-pQCT) 

The HR-pQCT technology is being developed in Switzerland by Scanco Medical. The clinical scanner 

allows to image bone microstructure at the tibia and radius with a physical resolution in the order of 

100 µm. Due to integrated cooling systems, the scanner is much heavier compared to pQCT. The first 

generation HR-pQCT was introduced in 2004 with an isotropic voxel size of 82 µm. Ten years later, the 

second generation HR-pQCT entered the market with superior image stack, faster scanning and smaller 

voxel size (62 µm). Although the novel scanner has a better resolution, small cortical pores may still not 

fully be resolved (24). Usually, the ultradistal sites are scanned in order to visualize the trabecular bone 

architecture (Fig. 3b). However, the ultradistal cortex is very thin (Ct.Th < 2 mm) which complicates the 

accurate differentiation between cortical and trabecular bone compartments (25). Therefore, cortical bone 

parameters should be assessed more proximally which is possible with the second generation HR-pQCT. 

 

Fig. 3 HR-pQCT images from the ultradistal tibia (82 µm voxel size). (a) The segmented intracortical pores are shown in grey. 

(b) The segmented cortical and trabecular compartments are shown in grey and green, respectively. Images courtesy of Z. Ritter.      

3.3.5 Calcaneal quantitative ultrasound (QUS) 

The calcaneus scanner, commercialized in the 1990s, is the earliest and best-validated clinical QUS 

technology for the assessment of fracture risk. In a pioneering work, women with hip fractures were dis-

criminated from non-fractured controls by measuring the broadband ultrasonic attenuation (BUA) (26). 

The attenuation of ultrasound transmitted through the heel depends on the amount and material properties 

of the trabecular bone structure. However, the relation is complex due to multiple effects that occur simul-

taneously, such as scattering, diffusion, and absorption. In the range 0.2 – 0.6 MHz the attenuation is line-

arly proportional to frequency. The slope of the attenuation curve with respect to frequency was shown to 

depend on BMD (27). Large prospective clinical studies then demonstrated the ability of BUA to predict 

fractures (28), but the technology did not overcome important challenges, such as the collection of large 

reference data and standardization between different systems. Conversion formulas have been established 

for six different commercial heel scanners on the Japanese market, reflecting an attempt of standardization 

in the bone ultrasound field (29).     

a b 5 mm
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3.4 Ex-vivo assessment of cortical bone properties  

3.4.1 Scanning acoustic microscopy (SAM) 

Scanning acoustic microscopy (SAM) provides both elastic and structural information of bone tissue with 

spatial resolutions ranging from 1 to 25 µm (Fig. 2) (30). Bone samples are positioned below a focusing 

ultrasound transducer operating in the frequency range of 50 MHz - 2 GHz. Typically, degassed and 

temperature-controlled water is used as coupling fluid. The sample surface needs to be flat and smooth 

without scratches to avoid changes in the propagation direction of the incident waves. Images are acquired 

by raster scanning the surface in the focal plane of the transducer. For each scan point, the reflected 

acoustic wave from the sample surface is recorded. The reflection amplitude is directly proportional to the 

reflection coefficient R, which is determined by the acoustic impedance mismatch between the bone 

sample (ZB) and coupling fluid (ZCF):  

𝑅 =  𝑍𝐵 − 𝑍𝐶𝐹𝑍𝐵 + 𝑍𝐶𝐹 . (1) 

The reflection amplitude is usually obtained from the maximum of the Hilbert transform Hmax. A 

calibration curve correlating the reflection amplitude of scanned reference materials with their corre-

sponding well-known reflection coefficients is used to transform Hmax into R (31). The calculation of ZB 

(expressed in Mrayl, 1 rayl = 1 kg.m-2.s-1) then becomes possible via equation (1) with ZCF being known. 

When the wave propagation and particle displacement are in the same direction xi, the acoustic impedance 

Zii is proportional to the elastic coefficient cii and the mass density 𝜌: 

𝑍𝑖𝑖 =  √𝑐𝑖𝑖 𝜌. (2) 

The acoustic impedance was shown to be a strong predictor for the elastic stiffness of bone tissue in the 

probing direction (R2 = 0.996) (32). 

3.4.2 X-ray micro-computed tomography (µCT) 

X-ray micro-computed tomography (µCT) is routinely used in research to evaluate cortical and trabecular 

bone morphology with standardized nomenclature and key variables (33). Tissue mineral density (TMD) 

can be obtained from the average attenuation value of bone tissue. Most µCT systems generate poly-

chromatic X‐ray beams which are the cause for beam hardening artefacts. Although beam hardening re-

duction methods are available, e.g. aluminum filters or correction algorithms, it is important to adjust the 
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X-ray energy to the diameter and density of the object being scanned. In the early stage of the develop-

ment, µCT was mainly used to measure trabecular bone microarchitecture (34). In recent years, enhanced 

resolution allowed researchers to visualize and quantify the complex cortical pore network (35).  

3.4.3 Resonant ultrasound spectroscopy (RUS) 

Resonant ultrasound spectroscopy (RUS) is a non-destructive method used to estimate the elastic tensor 

of rectangular parallelepiped cortical bone specimens (14). The specimen is clamped with slight contact 

between two shear transducers, which act as emitter and receiver (Fig. 4a). The resonant frequencies are 

recorded by tuning the frequency band, typically in the range between 150 - 500 kHz. Then, the elastic 

tensor is estimated by comparing the experimental resonant frequencies to those obtained from a model. 

The resonant frequencies are completely determined by the geometry, mass density, and elastic moduli of 

the specimen. With given geometry and mass density of the specimen, the elastic constants of the model 

can be adjusted until reaching the best match between the predicted and measured resonant frequencies. 

In low damping materials, such as metals, the resonant frequencies are clearly separated. In bone, which 

is a highly damping material, the peaks are broad and strongly overlap (Fig. 4b). To overcome this pro-

blem, a statistical approach was proposed including the modelling errors and measurement uncertainties 

in the inverse problem (Bayesian formulation) (36).    

 

Fig. 4 (a) Resonant ultrasound spectroscopy (RUS) of a small (3 x 3 x 4 mm) rectangular parallelepiped cortical bone specimen 

clamped between two shear ultrasound transducers. (b) Typical set of spectra showing the relative amplitudes of the resonant 

frequencies which vary when the specimen is rotated (Position 1 – 6). Images courtesy of Xiran Cai. 

3.5 Axial transmission (AT) 

Ultrasound is transmitted by a source through the skin to the surface of a long bone where vibrations are 

generated that continuously interact with the cortical boundaries. In that way, ultrasonic waves are guided 

over distances up to several centimeters. The ultrasound propagation can be detected by sensors placed on 

the surface of the skin through waves leaking out from the cortical bone into the overlaying soft tissue. 
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Early approaches implemented a simple configuration with one transmitter and receiver, separated a few 

centimeters from each other (Fig. 5). This setup was used to evaluate the velocity of the first arrival signal 

(FAS) (37). Although FAS contains relevant information on the cortical bone microstructure and material 

properties (38), the ability to discriminate fractures was found lower (5,6) or equivalent to DXA (4).   

Fig. 5 Snapshots of 2D ultrasonic wave propagation in a cortical bone plate. (a) Snapshot taken at 3 µs after emission. The waves 

have entered the cortical bone layer. (b) Snapshot taken at 7 µs after emission. The first arriving signal (FAS) is followed by slo-

wer propagating guided waves. E: emitter. R: receiver. The simulations were conducted in SimSonic2D (www.simsonic.fr). 

Current research has focused on the measurement of ultrasonic guided waves, which arise from multiple 

reflections and mode conversions at the waveguide boundaries (39). Each guided wave mode exhibits a 

characteristic dispersion curve determined by the geometric and elastic properties of the waveguide. 

Bidirectional multi-emitter multi-receiver array probes are being developed in our group for guided wave 

measurements in cortical bone. Fig. 6a shows the novel 500-kHz probe used in this thesis at the human 

tibia. The probe consists of a central 24-receiver array (1.2 mm pitch) and two lateral 5-emitter arrays 

(1.5 mm pitch) separated by a distance of 8 mm. Five time delays ranging from 0 to 0.8 μs are used to 

excite the emitters successively. Consequently, five different array waveforms of 24 time-domain signals 

are recorded for each propagation direction (Fig. 6b).    

cortical bone

FAS

guided waves

2 mma b

E R E R

soft tissue

cortical bone
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Fig. 6 (a) 500-kHz axial transmission (AT) probe designed for the tibia. Picture courtesy of D. Ramiandrisoa. (b) Typical array 

waveform recorded at the human tibia ex vivo (study A). The detected first arriving signals (FAS) are marked in red. (c) Schematic 

diagram showing the array arrangements of the probe. 

First arriving signal velocity (FAS)  

The bidirectional principle allows to correct errors induced by small inclination angles between the probe 

and the bone surface. The harmonic mean of two sound velocities (V1 and V2) measured in opposite direc-

tions provides the corrected first arriving signal velocity (FAS) (40): 

                                                 𝑣𝐹𝐴𝑆 = 21V1 + 1V2.     (3) 

The unidirectional sound velocities are derived from the time delays between the first arriving signals 

(FAS) detected at each receiver. The time of flight (TOF) of the FAS is defined as the first extremum 

emerging from noise (Fig. 7a). The exact TOF is obtained from a parabolic interpolation around the first 

extremum (Fig. 7b). V1 and V2 are inferred from the inverse slope of a linear regression between the TOF 

and known inter-receiver distances (Fig. 7c).    

 

 

a b

c
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Fig. 7 (a) The first arriving signal (FAS) is defined as the first extremum emerging from noise. (b) The exact temporal location 

is refined using a parabolic interpolation around the first extremum. (c) The inverse slope of a linear regression between the 

determined times of flight (TOF) and known inter-receiver distances provides the sound velocities V1 and V2. 

Estimation of Ct.Th and Ct.Po 

The estimation of Ct.Th and Ct.Po based on a 2D transverse isotropic free plate model was recently 

validated ex vivo using a 1-MHz probe for the radius (12). For the purpose of this thesis, the previously 

described signal processing was applied to the novel 500-kHz probe designed for the tibia. In the fol-

lowing, the signal processing procedure is described in detail. 

1. Experimental dispersion curves 

The so-called Norm function reveals the presence rate of a guided wave mode in a normalized scale 

between 0 and 1 (Fig. 8a). To obtain the Norm function, each temporal signal is Fourier transformed to 

produce a response matrix R with the size NE x NR x Nf, where NE is the number of emitters, NR the number 

of receivers and Nf the number of frequencies. A singular value decomposition (SVD) is processed at each 

frequency Nf on the NE x NR elements of R generating NE singular vectors (41). The weak singular vectors 

containing the noise from the signal are removed (denoising). A testing vector etest is defined as a norma-

lized and attenuated spatial plane wave with a complex wave number (42). The projection of etest on the 

denoised singular vector basis U(f) provides: 

𝑁𝑜𝑟𝑚(𝑓, 𝑘) = ‖𝑒𝑡𝑒𝑠𝑡(𝑘)‖𝑈(𝑓)2 . (4) 

In the Norm function, the maxima of the guided wave modes are close to 1 while the contribution of noise 

is close to 0. Accordingly, the dispersion curves can be extracted above a heuristical threshold, which is 

usually set to 0.4. In the next step, the extracted maxima of the guided wave modes are fitted to the 

theoretical dispersion curves (Fig. 8b) calculated from a 2D transverse isotropic free plate waveguide 

model. The procedure is performed on the signals from both propagation directions. 

V1 = 4123 m.s-1
a b c
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Fig. 8 Signal processing procedure for the estimation of Ct.Th and Ct.Po. (a) Norm function calculated from singular values at 

each frequency and projection of a testing vector onto the singular vector basis. (b) Extracted local maxima from bidirectional 

measurements (red and blue dots) fitted to the symmetric (dashed lines) and anti-symmetric (continuous lines) dispersion curves 

of a waveguide model. (c) Contour plot representation of the objective function with red cross indicating the global solution. 

 

2. Theoretical dispersion curves 

The theoretical dispersion curves are obtained from a 2D transverse isotropic non-absorbing free plate 

model, which was shown to accurately predict the experimental modes at the human radius ex vivo (43). 

In what follows, the directions x2 and x3 of the free plate model are considered infinite and the dimension 

x1 as finite. The isotropy plane is parallel to the x1x2-plane and guided waves propagate only along the 

x1x3-plane. Consequently, the wave propagation can be described by four independent elastic coefficients 

(c11, c13, c33, c55), the mass density , and the plate thickness h. The general form of the dispersion equation 

can be written as: 

𝐹𝐴,𝑆(𝑓, 𝑘; 𝑐11, 𝑐13, 𝑐33, 𝑐55, , ℎ) =  0. (5) 

A and S represent the antisymmetric and symmetric modes, respectively. The dispersion equation can be 

expressed in function of three bulk wave velocities. The mass density  is then embedded in the velocity 

parameters: 

𝑉𝐿⊥ =  √𝑐11


, 𝑉𝐿∥ =  √𝑐33


, 𝑉𝑇 =  √𝑐55


. (6) 

 𝑉𝐿⊥ and 𝑉𝐿∥ correspond to compressional waves propagating along the x1-and x3-axes, respectively, 

whereas VT corresponds to a shear wave propagating along the x3-axis. Consequently, the components in 

a b c
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the dispersion equation which account for the plate stiffness can be alternatively formulated as two bulk 

wave velocities and two stiffness ratios: 

𝐹𝐴,𝑆 (𝑓, 𝑘; 𝑐13𝑐11 , 𝑐33𝑐11 , 𝑉𝐿⊥, 𝑉𝑇 , ℎ) =  0. (7) 

Granke et al. suggested that the effective (mesoscale) elasticity of cortical bone specimens from the human 

femur can be reasonably predicted by Ct.Po alone (11). In that study, a micromechanical model was used 

considering cortical bone as a homogeneous transverse isotropic matrix pervaded by periodically 

distributed cylindrical pores filled with water (Fig. 9b) (44). The theoretical approach allows one to 

compute the effective elastic tensor, with given elasticity of the matrix 𝐶𝑚 and pore fluid 𝐶𝑓, the mass 

densities of the latter 𝑚 and 𝑓, and Ct.Po. The cortical bone matrix was considered uniform among 

individuals. Fig. 9c shows that the effective elastic coefficients computed from the model correlate well 

with the experimental data.    

 

Fig. 9 (a) Reconstruction of cortical bone volume from synchrotron radiation µCT. (b) Cortical bone simplified as homogeneous 

anisotropic matrix pervaded by periodically distributed cylindrical pores. (c) Effective longitudinal elastic coefficients versus 

porosity: results from experiments and model (solid and dotted lines). Reproduced with permission from Elsevier (11).  

The above mentioned micromechanical model is used to calculate a set of effective mesoscale stiffness 

tensors for different Ct.Po values with a fixed transverse isotropic elasticity of the matrix 𝐶𝑚 and mass 

density 𝑚 (Table 1) (11). In other words, one particular Ct.Po value corresponds to four effective elastic 

coefficients (c11, c13, c33, c55) and to the effective mass density  which can be calculated using the 

following equation: 

 =  𝑚 ×  (1 − 𝐶𝑡. 𝑃𝑜) +  𝑓 ×  𝐶𝑡. 𝑃𝑜. (8) 

 

a b c

1 mm
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Microscale Mesoscale 

Fixed properties Variable parameter Effective properties Model parameters 

𝑚, 𝐶𝑚, 𝑓 , 𝐶𝑓 Ct.Po 𝑐11, 𝑐13, 𝑐33, 𝑐55, , 𝑐11𝑐11 , 𝑐33𝑐11 , 𝑉𝐿⊥, 𝑉𝑇 

Table 1 Input (microscale) and output (mesoscale) parameters of two-phase homogenization model. 

To compute the theoretical dispersion curves via equation (7), the model output parameters can be 

rewritten in terms of two stiffness ratios (c13/c11 and c33/c11) and bulk wave velocities (𝑉𝐿⊥ and 𝑉𝑇). In 

summary, the waveguide model has been parameterized in terms of Ct.Po assuming that the mineralized 

cortical bone matrix is spatially homogeneous and uniform among individuals.  

3. Inversion scheme 

The best fit between the theoretical and experimental dispersion curves is obtained by maximizing the 

objective function, defined as the projection of a tested model into the singular vector basis U(f) of the 

Norm function (4): 

 𝑃𝑟𝑜𝑗(𝐶𝑡. 𝑇ℎ, 𝐶𝑡. 𝑃𝑜) =  1𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛    ∫ ∑  ‖ 𝑒𝑡𝑒𝑠𝑡(𝑘𝑚(𝑓, 𝐶𝑡. 𝑇ℎ, 𝐶𝑡. 𝑃𝑜))‖𝑈(𝑓)2  𝑑𝑓𝑀𝑚=1𝑓𝑚𝑎𝑥𝑓𝑚𝑖𝑛 , 
 

(10) 

 

where fmin and fmax correspond to the limits of the frequency bandwidth and M denotes the number of 

theoretical guided wave modes. Similar to the Norm function, each pixel of the objective function reflects 

the presence rate of a tested model in a 0 - 1 scale. This approach is efficient because at each frequency 

only a finite number of experimental modes is present for a projected model. 
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4 Materials and Methods 

4.1 Samples and patients 

Nineteen tibia pairs without soft tissue from human cadavers (6 male, 13 female, age 69 – 94 years, mean 

83.7 ± 8.4 years) were used in study A (left side) and study C (right side). In study B, twenty patients 

(12 male, 8 female, age 69 – 94 years, mean: 51 ± 14 years) participated. Table 2 shows the applied 

methods per study. 

 Study A Study B Study C 

Methods - AT 

- µCT 

- SAM 

- AT 

- pQCT 

- HR-pQCT 

- RUS 

Samples / Patients 19 tibiae 20 patients 19 tibiae 

Table 2 Overview of samples, patients, and methods used in the three studies.  

4.2 Measurement protocol 

The former AT measurement protocol used in our group for the 1-MHz probe included three cycles of ten 

successive measurements per specimen (12). In study A and B, notably longer scan times were applied, 

i.e. three cycles of 400 successive measurements per tibia. Thereby, the probe was slowly tilted in both 

circumferential directions to scan a wide region above the medullary cavity.   

4.3 Statistical analysis 

In study A and B, linear regression analysis and Pearson’s correlation coefficients were used to quantify 

the degree of association between all parameters site-matched with AT. Bland-Altman plots were used to 

reveal biases in the prediction of Ct.Po and Ct.Th obtained from the waveguide model. The single-cycle 

repeatability of the AT measurements, expressed as root mean square coefficient of variation (RMS-CV), 

was assessed from the repeated cycles per tibia. Paired t-tests and Wilcoxon signed-rank tests were used 

to test for differences between the means. In study A, a stepwise multiple regression analysis was used to 

evaluate the optimal combination of parameters for the prediction of Ct.Po and Ct.Th. In study B, the 

associations between AT and HR-pQCT were assessed using the Spearman’s rank-correlation coefficient 

due to the small sample size (N = 8). In study C, linear least square regressions were computed to analyze 

the relationships between the different elastic coefficients, quality factors, and mass densites. The level of 

significance for all statistical tests in this thesis was set to p < 0.05. 
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4.4 Data analysis 

First arriving signal velocity (FAS) 

In study A and B, the following adjustments to the previously used FAS algorithm (40) were made. Two 

binary masks were applied to the array waveforms restricting the region for the noise floor calculation 

(magenta) and FAS detection (green). The starting position for both masks was calculated from the sum 

of the last three signals (Fig. 10b). The signals of the first receivers were not considered, although much 

stronger in amplitude, because in patients with thick soft tissue the detected waves may have traveled 

through soft tissue only without having reached the bone (see first signal in Fig. 10a). The envelope 

(Hilbert transform) was computed from the sum of the last three signals. The first peak was determined 

from the envelope (Fig. 10c) based on a threshold that was 0.4 times the maximum of the envelope 

amplitude. The temporal location of this peak was used as starting position for the two masks at the last 

(24th) signal. From this position, the masks followed down the FAS with fixed slopes corresponding to the 

average axial bulk wave velocity in cortical bone (3900 m.s-1) (4). The width of the green mask was chosen 

large enough to cover a broad range of individual sound velocities, i.e. 3400 – 4300 m.s-1.   

 

Fig. 10 Signal processing steps for the calculation of the first arriving signal velocity (FAS). (a) The noise level of each receiver 

is measured in the time interval marked in magenta used to determine the threshold for the peak detection in the time interval 

marked in green. (b) The last three signals (22 – 24) are summed and then Hilbert transformed. (c) The temporal location of the 

first peak is used as starting position at the latest receiver (24) for both masks which then follow down the FAS with fixed slopes.  

 

 

a b

c
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A0 mode velocity (A0) 

In study A and B, a novel signal processing method for the calculation of A0 in the frequency-domain 

was applied. The first step was to convert the Norm function from wave number k (Fig. 11a) into phase 

velocity cp (cphase = 2πf / k) (Fig. 11b). Subsequently, the A0 mode was extracted within a window with 

fixed ranges (Fig. 11c). For both studies the same phase velocity range was used (1400 to 1900 m.s-1), 

whereas the frequency range was set higher and wider in study A (0.5 - 1.0 MHz) compared to study B 

(0.4 - 0.5 MHz). Within the window, the extracted amplitudes of the Norm function were averaged over 

frequency, generating a characteristic single-peak function (Fig. 11d). The maximum of that function was 

defined as unidirectional A0. The harmonic mean of two A0 measurements in opposite directions was 

calculated to correct for small inclination angles between the probe and bone surface (40).   

 

Fig. 11 Signal processing steps for the calculation of the A0 mode velocity. The Norm function is converted from the frequency-

wavenumber (a) into the frequency-phase velocity domain (b). (c) The A0 mode is extracted in a window with fixed ranges. (d) 

The amplitudes of the Norm function are averaged over frequency generating a characteristic single-peak function with the 

maximum defined as A0. In-vivo measurement from study B.  
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5 Results 

5.1 Study A – AT ex vivo 

The results from 17 specimens were used for statistical analysis. The best predictor for Ct.PoµCT was 

Ct.PoAT (R2  = 0.83, p < 0.001, RMSE = 2.2 %). The Bland-Altman plot revealed a bias of Ct.Po that de-

pended positively on the porosity level. This effect was also reflected in the slope of the linear regression 

which, however, was not statistically different from 1 (confidence interval: 1.00 - 1.68). Ct.ThµCT was best 

predicted by Ct.ThAT (R2 = 0.92, p < 0.001, RMSE = 0.20 mm) after the exclusion of one sample with 

heavily trabecularized cortex. For this sample the difference between the two Ct.Th estimates was parti-

cularly large (2.2 mm). AT significantly overestimated Ct.Th with respect to µCT (p < 0.001; mean 

difference between both methods: 0.28 mm). A multiple regression analysis, including the tissue acoustic 

impedance from SAM, did not perform better than the simple regression analysis. The following single-

cycle repeatabilities were obtained: 0.32 mm for Ct.ThAT, 2.9 % for Ct.PoAT, 43.3 m.s-1 for FAS, and 

47.8 m.s-1 for A0. Table 3 shows the linear correlations between the different measurement parameters.  

 Ct.PoµCT Ct.ThµCT vBMD 

Ct.PoAT (%) 0.83*** n.s. (-) 0.80*** 

Ct.ThAT (mm) n.s. 0.92*** n.s. 

FAS (m.s-1) (-) 0.49** n.s. 0.58*** 

A0 (m.s-1) (-) 0.72*** 0.28* 0.64*** 

Ct.PoµCT (%) - 0.27* 0.77*** 

Ct.ThµCT (mm) 0.27* - n.s. 

vBMD (g.cm-3) 0.77*** n.s. - 

Table 3. R² of the linear regressions between the variables. One outlier has been removed. The associations are positive unless 

otherwise indicated by a negative sign. n.s. = not significant. *p < 0.05; **p < 0.01; ***p < 0.001. N = 17 

5.2 Study B – AT in vivo 

The results from 15 out of 20 patients were used for statistical analysis. vBMDpQCT was best correlated 

with Ct.PoAT (R2 = 0.57, p < 0.001) followed by FAS (R2 = 0.43, p < 0.01) and A0 (R2 = 0.28, p < 0.05). 

Ct.Th was accurately predicted by AT after exclusion of one outlier (R2 = 0.90, p < 0.001, RMSE = 0.19). 

A strong correlation between FAS and total vBMD from HR-pQCT at the ultradistal tibia was found 

(Spearman's rho = 0.98, p = 0.0004). The following single-cycle repeatabilities were obtained: 0.13 mm 

for Ct.ThAT, 1.6 % for Ct.PoAT, 25.8 m.s-1 for FAS and 17.2 m.s-1 for A0. Table 4 shows the linear 

correlations between AT and site-matched pQCT parameters.  
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 Ct.ThpQCT vBMDpQCT 

Ct.PoAT (%) - (-) 0.57*** 

Ct.ThAT (mm) 0.90*** - 

FAS (m.s-1) - 0.43*** 

A0 (m.s-1) 0.31* 0.28* 

Table 4. R² of the linear regression between parameters from AT and pQCT. One outlier has been removed. Associations are 

positive unless otherwise indicated by a negative sign. *p < 0.05; **p < 0.01; ***p < 0.001. N = 15. 

5.3 Study C - RUS 

The measured transverse isotropic stiffness tensors from 55 out of 59 specimens were used for statistical 

analysis. The ranges of variations of the elastic coefficients and mass densities are shown in Fig. 12a. In 

Fig. 12b, the shear stiffness coefficients are plotted in function of mass density in comparison with the 

results of two other experimental studies conducted on human femur specimens (11,45). Except for the 

Poisson’s ratios and non-diagonal stiffness coefficients, strong linear correlations between the different 

elastic coefficients (0.70 < R² < 0.99) and between these coefficients and mass density (0.79 < R² < 0.89) 

were found. 

 

Fig. 12 (a) Stiffness and engineering coefficients plotted as a function of C66 illustrating the interdependency of the different 

elastic coefficients. (b) Comparison of C11 and C66 from different studies: study C (B), Granke et al. (11) (G), Rudy et al. (45) 

(R). Reproduced with permission from Springer (46).  

 

a b
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6 Discussion  

To advance the clinical management of osteoporosis, further diagnostic tools are needed to measure 

skeletal factors related to fracture risk other than classical BMD. Ct.Po and Ct.Th are potential target 

parameters, because they were shown to be associated with hip fracture at the fracture site, i.e. femoral 

neck (47,48), and tibia (3). Accordingly, it was proposed to test the hypothesis that an ultrasound-based 

assessment of cortical bone properties at the tibia might improve the identification of patients at fracture 

risk. To reach this goal, a novel 500-kHz AT probe was designed and used to characterize the human tibia 

in terms of cortical microstructure (Ct.Po and Ct.Th) and ultrasonic velocities (FAS and A0). 

An automatic signal processing has been developed in our group to estimate Ct.Po and Ct.Th from guided 

waves measured using the 1-MHz probe (12). In study A and B, the procedure was successfully applied 

to the signals of the novel 500-kHz probe. In both studies, excellent agreement was found between Ct.Th 

estimates and reference values (study A: R2 = 0.92; study B: R2 = 0.90). However, in each study one 

outlier had to be excluded. In study A, the outlier could be associated with a heavily trabecularized cortex 

visible in the µCT images. In study B, trabecularization was not observable due to the poor resolution of 

pQCT (500 µm voxel size). It remains unclear whether trabecularized cortical bone accurately guides 

ultrasound. 3D simulations of ultrasonic wave propagation in diverse geometries from µCT could provide 

a deeper insight into this problem. Ct.Po was accurately predicted in study A (R2 = 0.83), but a bias was 

found depending positively on the porosity level. This bias may be associated with larger partial volume 

effects in the µCT reference scans for samples with higher Ct.Po. Alternatively, the bias may be related 

to the two-phase material model which was recently found to provide slightly biased estimates in com-

parison to a model based on real cortical bone microstructure (49). The discrepancy between these models 

increased with higher porosities, which is similar to the bias we observed in study A.  

For study A and B, a novel measurement protocol was established to ensure reproducible estimates of 

Ct.Po and Ct.Th, particularly in the presence of soft tissue. The repeatability found in vivo (study B) 

(Ct.Th: 0.13 mm, Ct.Po: 1.6 %) was comparable to what Minonzio et al. (12) previously found ex vivo 

(Ct.Th: 0.11 mm, Ct.Po: 1.9 %). This result is promising, considering the disturbing effect of soft tissue 

modes on the inversion procedure. During the measurements, the main difficulty was to obtain proper 

experimental dispersion curves, which are mandatory for an accurate solution of the inverse problem. 

When the ultrasound data was acquired, the human machine interface (HMI) only visualized the 

experimental modes, but did not superimpose the waveguide model. This feature has recently been added 

to the HMI in order to better guide the operator during scanning. The updated HMI is currently being 

tested clinically with the 1-MHz probe at the radius by trained operators.    
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We accounted for inter-specimen variations in matrix stiffness and showed that the assumption of the 

waveguide model on uniform bone matrix stiffness among individuals is correct (study B). However, the 

used specimens were donated by elderly subjects without diseases known to affect the intrinsic material 

properties of bone tissue, such as osteogenesis imperfecta (50). The same concern would apply for children 

and adolescents, which are known to have a different matrix elasticity than adults. The validity of the 

assumption on uniform matrix stiffness needs to be confirmed also for such distinct subpopulations. 

Alternatively, the 2D transverse isotropic free plate model could be used without homogenization of 

cortical bone elasticity (43) to overcome the bone matrix assumption. The retrieved four stiffness coef-

ficients, instead of Ct.Po, may then directly be used as cortical bone biomarkers to identify patients at 

fracture risk. However, the complex (5D) inverse problem has not yet been validated.  

The fixed bone matrix elastic tensor used in the waveguide model was set according to Granke et al. (11). 

In that study, the effective elastic components of human femur specimens were retrieved from bulk wave 

velocity (BWV) measurements. Ct.Po was calculated from scanning acoustic microscopy (SAM). The 

effective elastic constants were then predicted in function of Ct.Po using a two-phase material model with 

fixed elastic tensors of the bone matrix (10). The fixed elastic tensor, also used in this thesis, was finally 

obtained by minimizing the discrepancies between the experimental and predicted elastic components. 

Recently, the calibration of the two-phase material model was repeated, but using the elastic data from 

RUS (49). The study also proposed a fast Fourier transform (FFT) homogenisation model based on real 

cortical bone microstructure from synchrotron µCT. Such a multiscale cortical bone model cannot be 

created from the RUS data of study C, because Ct.Po was not assessed. Nevertheless, the established 

measurement and sample preparation protocols will facilitate a follow-up RUS study including Ct.Po to 

build a site-specific waveguide model for the human tibia.   

In conclusion, a novel 500-kHz AT probe for the clinical assessment of cortical bone parameters at human 

tibia was successfully validated against site-matched reference methods. For the first time, the elastic 

properties of the tibia were assessed using RUS, a non-destructive tool that allows one to measure large 

series of small cortical bone specimens conveniently. The data might be useful in the future to model 

ultrasonic wave propagation. The estimation of four cortical parameters (Ct.Th, Ct.Po, FAS, A0) at the 

tibia using the novel 500-kHz probe might advance the clinical assessment of fracture risk. Moreover, an 

accurate estimation of additional skeletal characteristics may allow clinicians to better select and monitor 

individual treatment strategies. In contrast to current clinical imaging technologies for cortical bone, such 

as HR-pQCT, the ultrasound device tested in this thesis is non-ionizing, compact, and affordable.       
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7 Outlook 

Another clinical validation study could be conducted using the second generation HR-pQCT. The novel 

scanner is no longer restricted to the distal tibia, which would allow scanning the midshaft at 62 µm voxel 

size site-matched with AT. Consequently, the model-based estimates of Ct.Po could directly be compared 

to those from HR-pQCT. Small cortical pores may still not fully be resolved (24), but HR-pQCT currently 

provides the best in-vivo option for imaging cortical bone of human subjects.   

Further work is also needed on the waveguide model. To improve the accuracy of the Ct.Th and Ct.Po 

estimates, the creation of a site-specific waveguide model is envisioned. In other words, the two-phase 

material model used in this work could be calibrated on the elastic tibia data from RUS, as it has been 

recently reported for the human femur (49). Another idea is to generate a more sophisticated waveguide 

model which accounts for the soft tissue layer. The soft tissue layer could be evaluated using additional 

methods, such as conventional pulse-echo imaging. 

Further technical improvements could be made on the hardware side and HMI. In both studies, guided 

waves were not sufficiently excited in thin cortical bone (Ct.Th < 2 mm) using the novel 500-kHz probe. 

Capacitive micromachined ultrasonic transducers (CMUTs) might allow the design of a novel probe with 

a larger frequency bandwidth. Combining CMUTs with smaller receiver pitches could significantly en-

hance the detection of guided waves modes over a larger Ct.Th range. Finally, for a reproducible measu-

rement it is crucial to align the probe with the main axis of the tibia. Real-time feedback on the probe ali-

gnment could be added to the HMI for a better guidance of the operator during scanning.   
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Abstract

Summary The estimation of cortical thickness (Ct.Th) and porosity (Ct.Po) at the tibia using axial transmission ultrasound was

successfully validated ex vivo against site-matchedmicro-computed tomography. The assessment of cortical parameters based on

full-spectrum guided-wave analysis might improve the prediction of bone fractures in a cost-effective and radiation-free manner.

Purpose Cortical thickness (Ct.Th) and porosity (Ct.Po) are key parameters for the identification of patients with fragile bones.

The main objective of this ex vivo study was to validate the measurement of Ct.Po and Ct.Th at the tibia using a non-ionizing,

low-cost, and portable 500-kHz ultrasound axial transmission system. Additional ultrasonic velocities and site-matched reference

parameters were included in the study to broaden the analysis.

Methods Guided waves were successfully measured ex vivo in 17 human tibiae using a novel 500-kHz bi-directional axial

transmission probe. Theoretical dispersion curves of a transverse isotropic free plate model with invariant matrix stiffness were

fitted to the experimental dispersion curves in order to estimate Ct.Th and Ct.Po. In addition, the velocities of the first arriving

signal (υFAS) and A0 mode (υA0) were measured. Reference Ct.Po, Ct.Th, and vBMD were obtained from site-matched micro-

computed tomography. Scanning acoustic microscopy (SAM) provided the acoustic impedance of the axial cortical bone matrix.

Results The best predictions of Ct.Po (R2 = 0.83, RMSE = 2.2%) and Ct.Th (R2 = 0.92, RMSE = 0.2 mm, one outlier excluded)

were obtained from the plate model. The second best predictors of Ct.Po and Ct.Th were vBMD (R2 = 0.77, RMSE = 2.6%) and

υA0 (R
2 = 0.28, RMSE = 0.67 mm), respectively.

Conclusions Ct.Th and Ct.Po were accurately predicted at the human tibia ex vivo using a transverse isotropic free plate model

with invariant matrix stiffness. The model-based predictions were not further enhanced when we accounted for variations in axial

tissue stiffness as reflected by the acoustic impedance from SAM.

Keywords Acoustic microscopy . Axial transmission ultrasound . Cortical bone porosity . Guided waves . Micro-computed

tomography
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Introduction

In postmenopausal women, themajority of bone is lost from the

cortical bone compartment as a result of both reduced cortical

thickness (Ct.Th) and increased cortical porosity (Ct.Po) [1].

Both parameters can be measured in vivo with high-

resolution peripheral quantitative computed tomography (HR-

pQCT) and were recently shown to be associated with a higher

prevalence of hip fractures [2]. However, this novel imaging

technology is still rarely available and based on ionizing radia-

tion. Alternatively, quantitative ultrasound (QUS) techniques

are being developed, which are non-ionizing, low cost, and

portable. For example, a simple ultrasonic pulse-echo measure-

ment was proposed to predict Ct.Th, but the ultrasonic wave-

speed in the cortical bone layer was assumed to be known [3].

Modern ultrasound axial transmission (AT) measures the

dispersion curves of guided waves, which propagate in the

cortical shell of long bones [4]. In early AT applications, iso-

tropic tube models were fitted to the dispersion curves, pro-

viding Ct.Th ex vivo at the human radius [5] and bovine tibia

[6]. Subsequently, a transverse isotropic free plate model was

proposed, the use of which allowed estimating Ct.Th and four

bone elastic coefficients at the same time [7]. The unknown

coefficients of this plate model were then reduced to Ct.Th

and Ct.Po [8]. To build such a model, asymptotic homogeni-

zation [9] has been applied to estimate the effective stiffness

tensor as a function of porosity, assuming an invariable stiff-

ness of the tissue matrix. However, the mineralization of the

bone tissue matrix in humans, intimately related to the stiff-

ness, is not constant, but affected by age [10], gender [11],

treatment, and disease [12].

In the beginning of its development, AT has extensively

been used to measure the first arriving signal velocity (υFAS)

in the cortex of the radius and tibia. The first arriving signal

measured at low frequencies has a larger penetration depth

than at high frequencies. Thus, it can capture features of

deeper cortical bone layers in which disease-associated chang-

es usually start to occur [13]. Accordingly, low-frequency υFAS
(200 kHz) measured at the tibia was significantly correlated

with Ct.Th (R = 0.24, p < 0.001), whereas high-frequency

υFAS (1.25 MHz) was not [14]. The ability of υFAS to discrim-

inate subjects with osteoporotic fractures from non-fractured

controls was shown to be similar [15] or inferior [16, 17] when

compared to areal bone mineral density (aBMD) measured by

dual-energy X-ray absorptiometry (DXA) at the hip or spine.

DXA is considered the current standard method for osteopo-

rosis diagnosis and fracture risk prediction.

In an attempt to provide complementary parameters to υFAS
with improved fracture discrimination ability, researchers also

considered the phase velocity of the A0 mode (υA0) [18, 19].

A0 is a fundamental flexural guided wave, which propagates

within the cortical bounds and is particularly sensitive to both

Ct.Th and to pathological changes in the endosteal region

depending on the frequency-thickness ratio regime [20].

Following these findings, an ex vivo study at the radius

showed significant correlations of υA0 with Ct.Th (R2 = 0.52,

p < 0.001) and with volumetric bone mineral density (vBMD)

(R2 = 0.45, p < 0.001) [21]. However, when investigated

in vivo at the tibia, the correlations between both υA0 and

vBMD and υA0 and Ct.Th were less strong [14]. According

to the authors, the correlations decreased due to interferences

with the soft tissue, in which ultrasound propagates at similar

velocities (~ 1500 m.s−1) as the A0mode in cortical bone [22].

In this ex vivo study, we predicted Ct.Th and Ct.Po at the

human tibia using a model-based inversion methodwhich was

previously proposed by our group for a similar 1-MHz radius

probe [23]. To account for the difference in Ct.Th between the

tibia and radius, a novel probe was designed to optimize the

excitation of guided waves in the Ct.Th range usually found in

humans at the diaphysis of the tibia. Compared to the former

radius probe, the central frequency is reduced from 1.0 to

0.5 MHz, whereas the probe dimensions are slightly in-

creased. Cortical bone samples were extracted from the region

below the receiver array forCt.PoμCT reference measurements

using high-resolution micro-computed tomography (μCT,

7.4 μm isotropic voxel size). Site-matched reference

Ct.ThμCT and vBMD were obtained from a larger μCT scan

at lower resolution (39 μm isotropic voxel size). In addition,

we assessed the acoustic impedance (a surrogate for matrix

stiffness) using scanning acoustic microscopy (SAM) to eval-

uate the assumption of a waveguide model with invariant ma-

trix stiffness. The ultrasonic velocities υFAS and υA0were mea-

sured and compared to site-matched cortical bone properties.

Methods

Bone samples

Nineteen left tibia specimens without soft tissue from human

cadavers (6 male, 13 female, age 69–94 years, mean 83.7 ±

8.4 years) were provided by the Institute of Anatomy,

University of Lübeck. The sample collection was obtained

in accordance with the German law BGesetz über das

Leichen-, Bestattungs- und Friedhofswesen des Landes

Schleswig-Holstein, Abschnitt II, § 9 Leichenöffnung,

anatomisch^ from 04.02.2005. All specimens were received

without distal ends (cut off at approximately 50%) and stored

at − 20 °C.

Axial transmission ultrasound

Experimental system

The axial transmission (AT) system (Azalée, Paris, France)

included a custom-made probe (Vermon, Tours, France),
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driving electronics (Althais, Tours, France), and a human-

machine interface (BleuSolid, Paris, France). The multi-

channel probe consisted of a central 24-receiver array (pitch =

1.2 mm) and two lateral 5-emitter arrays (pitch = 1.5 mm). The

dimensions of each rectangular receiver and emitter element

were 1.2 × 13 mm2 and 1.5 × 13 mm2, respectively. A distance

of 8 mm separated the receiver from each emitter array. This

configuration enabled the propagation of ultrasound in two op-

posite directions, a technique used to correct errors induced by

small inclination angles between the probe and the bone surface

[24]. The excitation signal consisted of a wideband pulse with a

center frequency of 500 kHz (− 6 dB frequency bandwidth

from 0.3 to 0.7MHz). The five multi-element transmitters were

used successively with time delays ranging from 0 to 0.8 μs.

After 16 averages performed by the hardware, a set of 120

radio-frequency (RF) signals corresponding to all possible

transmission-receiver pairs were digitized (12 bits, 20 MHz,

1024 samples) for each propagation direction.

Measurement protocol

Measurements were performed in water at room temperature

(21 °C) (Fig. 1a). The probe was placed in contact with the

specimens at the medial surface of the tibia (facies medialis)

above the medullary cavity. The edge of the probe was aligned

with (i) the distal cut plane and (ii) the long main axis of the

bone. The protocol required the acquisition of three cycles of

400 successive measurements. During each cycle, the probe

was slowly tilted in both circumferential directions (arrow in

Fig. 1a) to scan a wide region above the medullary cavity.

Between the cycles, the probe was removed from the water

bath and repositioned. At each measurement, 120 RF signals

(5 × 24) were acquired from each propagation direction. The

scan time per cycle was about 3 min.

Cortical porosity and thickness estimation

Cortical thickness (Ct.Th) and porosity (Ct.Po) were estimated

by fitting a transverse isotropic free plate model (Fig. 2) to the

measured guided wave dispersion curves in line with

Minonzio et al. [23]. Briefly, the recorded time signals were

transformed to the frequency-wavenumber (f-k) space using a

singular value decomposition (SVD) enhanced two-

dimensional spatiotemporal Fourier transform. This signal

processing step provided the so-called Norm function of

which each pixel (f, k) reflects the presence rate of a guided

wave mode in a 0 to 1 scale [4]. Subsequently, a transverse

isotropic free plate model was fitted to the maxima of the

Norm function (Fig. 3c). A plate model was used since effects

from the bone’s curvature can be neglected [25]. The model

Fig. 1 a 500-kHz axial transmission (AT)multi-channel probe positioned

on the facies medialis and aligned with the z-axis of a tibia specimen. The

arrow indicates the movement of the probe during the acquisition of 400

individual measurements. b Top left sketch of probe showing the number

and positions of central receivers and adjacent lateral emitters. The distal

ends of each tibia (pointed line box) were imaged using micro-computed

tomography (μCT, 39 μm isotropic voxel size). A cross-section (dashed

line box) was extracted from the AT measurement region. The proximal

surface of the cross-section was scanned with 100-MHz scanning acous-

tic microscopy (SAM). A parallelepiped sample of around 2 × 3 × 4 mm3

was obtained from the facies medialis of this cross-section and imaged

withμCT (7.4μm isotropic voxel size). Typical waveforms acquired after

one ultrasound transmission at the tibia ex vivo (c) and in a water tank of

65 mm depth (d)
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required four elastic coefficients, the mass density, and the

thickness of the waveguide. Granke et al. suggested that in

aged women, changes in Ct.Po account for most of the bone’s

mesoscopic elasticity variations [26]. We used thus a micro-

mechanical model [9] to calculate a set of effective mesoscale

stiffness tensors for a set of porosity values assuming that

transverse isotropic elastic coefficients (c11 = 26.8 GPa,

c13 = 15.3 GPa, c33 = 35.1 GPa, and c55 = 7. 3 GPa) and mass

density (ρ = 1.91 g.cm−3) for the tissue matrix are invariant

[26]. Then, the predicted mesoscale stiffness tensors were

Fig. 2 Dispersion curves of the transverse isotropic free plate model with

homogenized elastic properties in the frequency-wavenumber (f-k) space.

a Constant cortical thickness (Ct.Th) (2.5 mm) with varying cortical

porosity (Ct.Po) (5 and 15%). b Constant Ct.Po (5%) with varying

Ct.Th (2.5 and 2.0 mm). Antisymmetric (A) and symmetric (S) modes

are represented as continuous and dashed lines, respectively

Fig. 3 a 100-MHz scanning acoustic microscopy (SAM) images with

12 μm pixel size, showing the axial transmission (AT) measurement

region. The cortical thickness (Ct.Th) below the probe was measured

using μCTwith 39 μm voxel size. The black square indicates the region

from which a parallelepiped sample was extracted for cortical porosity

(Ct.Po) measurements using μCTwith 7.4 μm voxel size. b Contour plot

representations of the objective functions with global maxima (crosses)

corresponding to the best fit between the waveguide model and experi-

mental dispersion curves (c). Continuous and dashed lines represent an-

tisymmetric and symmetric modes, respectively. Red and blue dotted

lines correspond to the experimental dispersion curves obtained from

bi-directional guided wave measurements
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used to create a database of dispersion curves for a combina-

tion of porosity and thickness values. The thickness ranged

from 2.5 to 5.5 mm with intervals of 0.1 mm and the porosity

from 1 to 25% with intervals of 1%. Figure 2 shows the effect

of changes in Ct.Th and Ct.Po on the modeled dispersion

curves. Ct.Po mainly modifies the slope of the curves in the

f-k space (a), whereas the curves shift towards lower frequen-

cies with increasing Ct.Th (b).

To find the best fit between the plate model and the exper-

imental dispersion curves (Fig. 3c), the model database was

projected onto the singular vector basis U(f) of the Norm

function. Accordingly, the objective function is denoted as

Proj Ct:Th;Ct:Poð Þ

¼
1

fmax−fmin
∫
fmax

fmin∑
M
m¼1 etest km f ;Ct:Th;Ct:Poð Þð Þk k

2

U fð Þdf ;

ð1Þ

where fmin and fmax correspond to the frequency bandwidth

limits, M denotes the number of theoretical guided modes,

and etest the testing vector being a normalized attenuated plane

wave. Figure 3b shows contour plot representations of the

objective function with the global maxima corresponding to

the fitted models in Fig. 3c. Due to ill conditioning of the

objective function, i.e., incomplete experimental dispersion

curves, often more than one local maxima was obtained. To

remove this model ambiguity, we compared the two highest

local maxima for each of the 400 successive measurements:

when the highest maximum (global) exceeded the second

highest of at least 3%, this was considered to be a valid solu-

tion to the problem. The threshold was empirically chosen

based on a tradeoff between the standard deviation of the

Ct.Th/Ct.Po estimates and the total number of valid measure-

ments per measurement cycle. If at least 10 of the 400 succes-

sive measurements produced a valid parameter pair, the me-

dians of the Ct.Th/Ct.Po estimates were calculated.

Otherwise, the entire measurement cycle would have been

rejected. Finally, if at least two out of three cycles were valid,

the medians of these valid cycles were averaged for every

specimen. Otherwise, the entire measurement series for that

sample would have been rejected.

Estimation of the first arriving signal velocity

The velocity of the first arriving signal (υFAS) was calculated

based on a bi-directional measurement [27]. Briefly, the time of

flight was determined for each emitter-receiver distance using

the first extremum of the signal in the time domain. The sound

velocity was derived from the inverse slope of a linear fit

through these time points plotted against the known emitter-

receiver distances. This procedure was performed for each of

the five transmissions and from both directions to account for

small inclination angles between the probe and the bone

surface. It was previously shown that larger probe inclination

angles increase the relative measurement error of υFAS [28].

Accordingly, bi-directional measurements for which the abso-

lute difference between the two opposite velocities exceeded

50m s−1were eliminated [29]. Ideally, a measurement provided

five corrected velocities, corresponding to the five bi-

directional ultrasound transmissions per measurement, which

were then averaged. Histograms of the corrected velocities were

obtained for each measurement cycle. For each specimen, the

υFASwas calculated as the average of the three histogram peaks.

Estimation of the A0 mode velocity

The A0 mode phase velocity (υA0) was calculated in the

frequency-domain based on SVD-enhanced 2D Fourier trans-

forms of the acquired multi-dimensional radiofrequency sig-

nals. The principal signal processing steps are illustrated in

Online Resource 1. First, the Norm function was converted

from the frequency-wavenumber (f-k) into the frequency-

phase velocity (f-cp) domain (cp = 2π f/k) [30]. Afterwards,

the A0 mode was extracted using a fixed frequency (0.5 to

0.8 MHz) and cp range (1400 to 1900 m s−1). Inside this

window, the amplitudes of the Norm function were averaged

over frequency generating a characteristic single-peaked func-

tion of which the maximum was defined as uni-directional

velocity υA0. For each individual measurement of a cycle,

the harmonic mean of the two bi-directional velocities was

calculated to correct for inclination angles between the probe

and bone surface [28]. Unstable measurements for which the

absolute difference between two opposite velocities was larger

than 50 m s−1were eliminated [15]. The final velocity υA0 of a

tibia specimen was calculated by averaging the peak values of

the velocity histograms obtained for each cycle.

Reference measurements

Micro-computed tomography—39 μm

Micro-computed tomography (μCT) with 39 μm isotropic

voxel size was used to measure cortical thickness (Ct.ThμCT)

and vBMD. The proximal epiphyseswere removedwith a hand

saw to fit the frozen shaft specimens into a custom-made

thermo-isolated plastic tube. The tube containing the specimen

was filled with dry ice and scanned with the μCT system

(VivaCT 80, Scanco Medical, Brüttisellen, Switzerland).

Before scanning, the bone’s longitudinal axis was aligned with

the rotation axis of the sample holder. The diameter of the field

of view was 50 mm, allowing the imaging of the entire shaft

cross-section. Source voltage and current were set at 70 kV

and 114 μA, respectively. Five hundred projections were ac-

quired over a range of 360° using an integration time of

200 m s. A filtered back-projection reconstruction was used

to obtain stacks of 1850 slices with an isotropic voxel size of
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39 μm. The gray values of the images were transformed into

mgHA.cm−3 based on a calibration procedure provided by the

scanner vendor. The bone region insonified by ATwas extract-

ed from the μCT stack (approximately 30 mm, equivalent to

795 slices) and first binarized using Otsu’s method [31]. After

this, the cortical bone compartment was automatically seg-

mented applying the algorithm proposed by Burghardt et al.

[32]. The radius of the structuring element for morphological

closing of the mask was set to 0.03 mm. A manual correction

was needed for one sample which had the highest Ct.PoμCT
(22%). vBMD was defined as the mean mineralization value

for all voxels in the cortical compartment at the medial portion

of the tibia and above the medullary canal. Ct.Th was calcu-

lated in that region as theminimumdistance between endosteal

and periosteal surfaces [33].

Scanning acoustic microscopy

Scanning acoustic microscopy (SAM) provided the acoustic

impedance (ZSAM) of the cortical bone matrix. Cross sections

of approximately 20 mm thickness were extracted from the

diaphysis, site-matchedwith the region of the AT receiver array

(Fig. 1b). Of each section, the proximal surface was polished

using a planar grinder (Phoenix 4000, Buehler Ltd., Illinois) at

constant speed (50 rpm) and decreasing grain size (ISO/FEPA

grit: P80, P600, P1200, P2500, and P4000, Buehler Ltd.,

Illinois). Subsequently, the samples were washed and degassed

for approximately 30 min. The custom-made microscope and

scanning procedure have been described in detail elsewhere

[34]. Briefly, a 100-MHz spherically focused transducer was

used (KSI 100/60°, Krämer Scientic Instruments, Herborn,

Germany) which had a − 6-dB bandwidth at the confocal pulse

echo between 84.4 and 100.7 MHz. The − 6-dB depth of focus

and lateral beam diameter in the focal plane were 139 and

19.8 μm, respectively [35]. The samples were immersed in a

temperature-controlled tank with a 25 °C degassed 1% PBS

solution. Images were acquired by moving the transducer

along the x-y-plane with a scan increment of 12 μm. The scan

timewas up to 5 h. A defocus correction was applied before the

images were converted into acoustic impedance maps (Fig. 3a)

using calibration materials (PMMA and titanium). The cortical

compartment was obtained by drawing the endosteal boundary

manually (following the rules proposed by Malo et al. [10])

whereas the periosteal boundary was detected automatically by

morphological region filling and tracing of the contour on the

segmented image. Segmentation was performed using an

adaptive threshold as described by Lakshmanan et al. [36].

The acoustic impedance (ZSAM) was calculated as the mean

impedance value of all bone tissue pixels within the cortical

compartment at the medial portion of the tibia and above the

medullary canal. ZSAM was converted into the stiffness coeffi-

cient c33 using a non-linear regression function [37].

Micro-computed tomography—7.4 μm

Rectangular parallelepiped samples of cortical bone were har-

vested from the cross sections, previously scanned with SAM

(Fig. 3a), for the characterization of cortical porosity

(Ct.PoμCT). The typical sample size was 2 × 3 × 4 mm3.

Cutting was performed using a precision linear saw (Isomet

4000, Buehler GmbH, Düsseldorf, Germany). In the desktop

μCT system (Skyscan 1172, Bruker MicroCT, Kontich,

Belgium), the samples were positioned so that the anatomical

vertical axis was aligned with the rotation axis of the sample

holder. A source voltage of 80 kV, a current of 100 μA, and

steps of 0.3° over 180° rotation were used. The exposure time

for each frame was 320 ms. Twenty frames were averaged

leading to a total scan time of 60 min per sample. A 0.5-

mm-thick aluminum filter reduced beam hardening artifacts.

Images were saved as 16-bit TIFF files and reconstructed

using a filtered back-projection algorithm (NRecon,

V1.6.10.4, Skyscan NV, Kontich, Belgium) with 20% ring

artifact correction. For each parallelepiped sample, a stack of

650 sections was reconstructed with a 1968 × 1968 pixel field

of view and 7.4 μm isotropic voxel size. Further post-

processing was performed using the software CTan

(V1.16.1.0, Skyscan NV, Kontich, Belgium). To separate the

sample from the background, a semi-automatic procedure was

performed, based on manual contouring on a selected number

of slices, and followed by interpolation. A Gaussian 2D filter

(R = 1) was applied to the images which were then segmented

using the Otsu’s method [31]. Finally, in a 3D analysis, the

tissue volume (TV), pore volume (PV), and cortical porosity

(Ct.Po = PV / TV * 100%) were calculated.

Statistical analysis

The normality of the distributions of the derived parameters

was verified with Shapiro-Wilk tests. Linear regression anal-

ysis and Pearson’s correlation coefficients were used to quan-

tify the degree of association between parameters obtained

from AT, SAM, and μCT. Bland-Altman plots were used to

reveal biases in the prediction of Ct.PoμCT and Ct.ThμCT.

Differences between the means were tested either with paired

t tests or Wilcoxon signed-rank tests in case the data was not

normally distributed. Correlations were considered statistical-

ly significant for p values lower than 0.05. Stepwise multiple

regression analysis was applied to evaluate the optimal com-

bination of parameters to predict Ct.PoμCT and Ct.ThμCT. The

single-cycle repeatability of the AT measurement parameters

(Ct.ThAT, Ct.PoAT, υFAS, υA0) was estimated using the root-

mean-square average of the standard deviation [38] obtained

from at least two repeated cycles. Unless stated otherwise, all

image processing and statistical analysis were performed

using MATLAB (R2017a, The MathWorks Inc., Natick,

MA, USA).
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Results

The results from 17 out of 19 specimens were used for statis-

tical analysis. Two samples (Fig. 5a, b) were excluded due to

large deviations of the ultrasonic measurements between the

cycles. The distributions of the parameters were normal after

logarithm transformation except for vBMD (p = 0.004).

Between both groups, no statistically significant differences

were found for all parameters. The single-cycle repeatability

was 0.32 mm for Ct.ThAT, 2.9% for Ct.PoAT, 43.3 m.s−1 for

υFAS, and 47.8 m.s−1 for υA0. Table 1 shows the results and

correlations between the different measurement parameters.

Prediction of cortical porosity

The best predictor for cortical porosity (Ct.PoμCT) was

Ct.PoAT (R2 = 0.83, p < 0.001, RMSE = 2.2%, Fig. 4c). The

difference between the estimates of the two methods was not

statistically significant. Figure 4d shows the according Bland-

Altman plot which suggests a bias of Ct.Po that depends pos-

itively on the porosity level. This effect was also reflected in

the slope of the linear regression (Fig. 4c) which, however,

was not statistically different from 1 (confidence interval

1.00–1.68).

Prediction of cortical thickness

Ct.ThμCTwas best predicted by Ct.ThAT (R
2 = 0.92, p < 0.001,

RMSE = 0.20 mm) after removal of one sample with a heavily

trabecularized cortex (Fig. 5c). For this sample, the difference

between the two Ct.Th estimates was particularly large

(2.2 mm); approximately five times larger than the 95% con-

fidence interval at ± 1.96 SD (0.4 mm, Fig. 4b). Figure 5c

suggests that ultrasonic guided waves may also propagate in

the trabecularized bone region (red line) which in the μCT

images was not considered to belong to the cortical

compartment (green). Moreover, AT significantly

overestimated Ct.Th with respect to μCT (p < 0.001; mean

difference between both methods 0.28 mm). The second best

predictor of Ct.ThμCTwas υA0 (R
2 = 0.29, p = 0.031, RMSE =

0.59 mm). Multiple regression analysis did not perform better

than the abovementioned simple regression analysis.

Discussion

In this ex vivo study, the estimation of cortical thickness (Ct.Th)

and porosity (Ct.Po) at the human tibia using full spectrum

guided-wave analysis was successfully validated against site-

matched high-resolution micro-computed tomography (μCT).

We utilized a novel 500-kHz axial transmission (AT) transducer

which was designed to optimize the excitation of guided wave

modes at the diaphysis of the tibia. Furthermore, we accounted

for a possible inter-specimen variation of the cortical bone ma-

trix elasticity by incorporating the acoustic impedance from

site-matched scanning acoustic microscopy (SAM). The vari-

ability of the matrix elasticity did not improve our model-based

predictions of Ct.Po and Ct.Th. This result supports the concept

of variations inmatrix stiffness which has aminor impact on the

effective elasticity tensor compared to the effect of variations in

porosity [26]. Note that our matrix stiffness measurements

might have also been biased by experimental errors. For the

first time, the A0 mode velocity (υA0) was measured in human

cortical bone using SVD-enhanced 2D Fourier transforms and

compared to site-matched Ct.Th and Ct.Po at the same time.

The systematic overestimation of Ct.Th (0.28 mm) by AT

has twofold implications. On the one hand, the Ct.ThμCT ref-

erence measurement is affected by the natural variability of

the bone morphology, as illustrated in Fig. 5, and by the hor-

izontal error bars of Fig. 4a. On the other hand, the exact

behavior of guided waves in samples with irregular and

trabecularized boundaries (Fig. 5c) has not yet been

Table 1 Descriptive statistics:

mean, standard deviation (SD),

and range of the measurement

variables. R2 of the univariate

linear regression between the

variables. The outlier (Fig. 4

circle) has not been removed. The

associations are positive unless

otherwise indicated by a negative

sign. n.s. not significant. N = 17

Descriptive statistics R2

Mean ± SD Range Ct.PoμCT Ct.ThμCT vBMD

Ct.PoAT (%) 11.1 ± 7.7 2.0–25.0 0.83*** n.s. (−) 0.80***

Ct.ThAT (mm) 4.0 ± 0.6 2.9–5.2 n.s. 0.57*** n.s.

υFAS (m
.s−1) 3806 ± 183 3429–4034 (−) 0.49** n.s. 0.58***

υA0 (m
.s−1) 1701 ± 89 1583–1865 (−) 0.72*** 0.28* 0.64***

Ct.PoμCT (%) 11.5 ± 5.2 5.6–22.8 – 0.27* 0.77***

Ct.ThμCT (mm) 3.6 ± 0.8 2.0–5.1 0.27* – n.s.

vBMD (g.cm−3) 923 ± 59 794–980 0.77*** n.s. –

ZSAM (MRayl) 6.7 ± 0.5 6.8–8.4 n.s. n.s. n.s.

c33 (GPa) 32.0 ± 3.5 24.3–36.7 n.s. n.s. n.s.

*p < 0.05; **p < 0.01; ***p < 0.001
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investigated. Interpreting the results for these cases is particu-

larly challenging, since the distinction of cortical bone from

the trabecular compartment in the μCT images is itself a mat-

ter of arbitrary decision, as discussed in the next paragraph.

Numerical simulations of ultrasound propagation using real-

istic (structurally heterogeneous) cortical bone models could

help in clarifying to what extent trabecularized regions partic-

ipate in the waveguide. Figure 4d suggests a bias of Ct.Po that

depends positively on the porosity level. This bias might be

partially caused by larger partial volume effects in the estima-

tion of reference Ct.PoμCT for samples with higher Ct.Po. The

assumption of a waveguide model with invariant matrix stiff-

ness might also contribute to the bias. To partially correct for

this effect, we accounted for variations in the axial tissue stiff-

ness (c33) by means of average acoustic impedance of miner-

alized tissue from SAM. Future ex vivo studies could

incorporate the full transverse isotropic stiffness tensor of the

waveguide, e.g., as experimentally obtained from resonant

ultrasound spectroscopy [39].

The prediction of Ct.Th (R2 = 0.57) was weaker than for

Ct.Po (R2 = 0.83). This was mainly caused by one sample

(indicated with a circle in Fig. 4) which had a heavily

trabecularized cortex as shown in Fig. 5c. When this sample

was excluded, the correlation between Ct.ThAT and Ct.ThμCT
improved significantly (R2 from 0. 57 to 0.94, RMSE from

0.37 to 0.16 mm). We believe that this is due to the definition

used for the determination of Ct.ThμCT, which is especially

uncertain within highly trabecularized cortical bone regions.

Note that a consensus on how to segment the cortical bone

compartment has not yet been reached. The longitudinal μCT

section of Fig. 5c (right) obtained from the outlier sample

explains the Ct.Th discrepancy between μCT (green) and

Fig. 4 a Correlation between cortical thickness estimated from

ultrasound axial transmission (Ct.ThAT) and micro-computed tomography

(Ct.ThμCT) with 39 μm voxel size after exclusion of one outlier (red

circled) (Fig. 5c). The correlation including the outlier was R2 = 0.57,

p < 0.001, RMSE 0.37 mm. Horizontal error bars represent sample-

specific Ct.Th variations in the region below the probe obtained from

the full width of the distance histogram at 60% of its maximum.

Vertical error bars represent standard deviations (within at least two

cycles). b Mean difference and lines of according Bland-Altman plot

were calculated without outlier. Mean difference including the outlier

was 0.39 mm and 0.28 mm excluding the outlier. c Correlation between

cortical porosity from AT (Ct.PoAT) and μCT with 7.4 μm voxel

size (Ct.PoμCT). d According Bland-Altman plot. Solid lines represent

fitted linear regression curves (a, c) and mean values (b, d). Dotted lines

in (a, c) represent RMSE. Dashed lines and in (b, d) indicate 95% con-

fidence intervals at ± 1.96 SD. N = 17
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AT (red line). The figure suggests that guided waves also

propagated in the trabecularized bone region, but our applied

cortical compartment segmentation algorithm [32] did not in-

clude this region.

We have used cortical bone samples from adults without

report of metabolic bone diseases. For this reason, we cannot

conclude on the general applicability of our method to sub-

jects with considerably different matrix stiffness compared to

normal adult bone (e.g., children, patients with osteogenesis

imperfecta [40], or patients on long-term bisphosphonate

treatment [41]). To overcome the assumption of invariant

matrix stiffness, the elastic tensor could be derived from the

plate model instead of porosity as it was previously suggested

[7, 42]. However, this approach would increase the number of

unknown model coefficients and require complete resolutions

of the experimental dispersion curves. Our current guided

wave transducer technology is limited, particularly in spatial

resolution, and therefore cannot yet provide such reconstruc-

tion quality.

The major limitation of this study was the small sample size

used for statistics (N = 17). Nevertheless, a broad range of

Ct.ThμCT (2.3–5.1 mm) and Ct.PoμCT (5.6–22.8%) was cov-

ered, which represents what is usually found in other studies

[26, 43]. Furthermore, the dependency of υFAS on vBMD is

consistent with previous studies at the tibia using different fre-

quencies (200 kHz [14], 250 kHz [44], 400 kHz [45], and

1.25 MHz [43]). However, we did not find a statistically signif-

icant correlation between υFAS and Ct.ThμCT, as it has been

observed for the tibia using 200 kHz [14] and 400 kHz [45].

The dependency of υA0 on Ct.Th and vBMD confirms the find-

ings of an ex vivo study at the radius using 200-kHz AT [21].

We excluded two samples due to large deviations of the ultra-

sonic measurements between the cycles. The one failure case

(Fig. 5a) had a very thin cortical bone layer (Ct.Th < 2.0 mm) in

which ultrasonic guided waves cannot sufficiently be excited

using the 500-kHz probe. Alternatively, we could have used the

1-MHz probe which was originally designed for measurements

at the thinner radius. The second failure case exhibited a very

inhomogeneous and trabecularized cortex (Fig. 5b) which

might not have guided the ultrasonic waves appropriately.

Previous studies which measured υA0 in cortical bone ex-

tracted the wave packages of the A0 mode in the time domain

[5, 19]. In contrast, our method isolates the A0 dispersion curve

in the frequency-phase velocity domain. We assume that this

approach is more accurate since it ensures that no other signals

interfere. Furthermore, we accounted for small inclination an-

gles between the probe and bone surface using bi-directional

measurements whichwill becomemore beneficial in vivo in the

presence of soft tissue. However, the in vivo applicability of this

novel υA0 measurement technique remains to be demonstrated.

A former data acquisition protocol, used by our group at

the radius, was based on three cycles of ten successive mea-

surements [42]. For the current work, we used notably longer

scan times (i.e., 400 successive measurements per cycle) and

slowly tilted the probe. In the post-processing, a waveguide

model was then fitted to the dispersion curves of each mea-

surement, providing estimates of Ct.Th and Ct.Po. When the

dispersion curves were too noisy or incomplete, the solution to

the problem was no longer unique, as indicated by several

local maxima in the objective function. Therefore, we used a

criterion that allowed us to exclude such problematic measure-

ments. In the future, this automatic criterion could be evaluat-

ed in real time to retain only measurements without model

ambiguities.

Fig. 5 Images obtained from μCT stacks of 795 slices with 39 μm

isotropic voxel size. Longitudinal sections (right) were taken at the

dashed line in the cross sections (left) where axial transmission (AT)

was performed. The segmented cortex mask, used to calculate site-

matched vBMD and CtThμCT, is shown in green. a, b AT failure cases. c

Outlier sample with heavily trabecularized cortex (indicated by a circle in

Fig. 4). Here, the measurement of a reference CtThμCT (green) does not

agree with CtThAT (red line). The cross sections were rotated according to

the anatomical alignment: A anterior, M medial, P posterior, and L lateral
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In conclusion, the best predictions of cortical thickness

(Ct.Th) and porosity (Ct.Po) were obtained from a plate model

with invariant matrix stiffness, which was fitted to the mea-

sured guided wave dispersion curves. The second best predic-

tors of Ct.Po and Ct.Th were vBMD and υA0, respectively. No

further enhancements were observed by accounting for varia-

tions in matrix stiffness. Clinical pilot studies are currently

ongoing to confirm the possibility of a full-spectrum ultrason-

ic guided-wave analysis in vivo.
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Abstract—The aim of this study was to estimate cortical porosity (Ct.Po) and cortical thickness (Ct.Th) using
500-kHz bi-directional axial transmission (AT). Ct.ThAT and Ct.PoAT were obtained at the tibia in 15 patients
from a 2-D transverse isotropic free plate model fitted to measured guided wave dispersion curves. The velocities
of the first arriving signal (yFAS) and A0 mode (yA0) were also determined. Site-matched peripheral quantitative
computed tomography (pQCT) provided volumetric cortical bone mineral density (Ct.vBMDpQCT) and Ct.
ThpQCT. Good agreement was found between Ct.ThAT and Ct.ThpQCT (R2 = 0.62, root mean square error
[RMSE] = 0.39 mm). Ct.vBMDpQCT correlated with Ct.PoAT (R

2
= 0.57), yFAS (R

2
= 0.43) and yA0 (R

2
= 0.28). Fur-

thermore, a significant correlation was found between AT and distal high-resolution pQCT. The measurement
of cortical parameters at the tibia using guided waves might improve the prediction of bone fractures in a cost-
effective and radiation-free manner. (E-mail: kay.raum@charite.de) © 2019 The Author(s). Published by
Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology. This is an open access article
under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Key Words: Axial transmission ultrasound, Cortical bone porosity, Guided waves, Peripheral quantitative
computed tomography, Dual-energy X-ray absorptiometry.

INTRODUCTION

The diagnosis of osteoporosis is currently based on areal

bone mineral density (aBMD) measured by dual-energy

X-ray absorptiometry (DXA), the current gold standard

technique. However, a majority of bone fractures occur in

patients who are not classified osteoporotic according to the

current aBMD criteria (T-score< �2.5) (Schuit et al. 2004;

Wainwright et al. 2005). This might be due to the techni-

que’s limited capacity to capture bone microstructure and

differentiate between trabecular and cortical compartments.

High-resolution peripheral quantitative computed tomogra-

phy (HR-pQCT) is an advanced in vivo imaging technology

that provides 3-D characterization of trabecular and cortical

bone at the distal radius and tibia (Boyd 2008). Recent clini-

cal studies using HR-pQCT have reported that bone micro-

structure and volumetric bone mineral density (vBMD) are

associated with genetic disorder (Neto et al. 2017), effect of

treatment (Lespessailles et al. 2016) and fracture (Sundh et

al. 2017). However, HR-pQCT cannot easily be used for

population-based screening because it is expensive, volumi-

nous, non-portable and based on ionizing radiation. Cost-

effective and radiation-free systems for the measurement of

bone microstructure are needed to improve the prevention

of fragility fractures in our society.

Ultrasound-based solutions are attractive because

they are low cost, portable and non-ionizing. The heel

(calcaneus) scanner was among the first devices using

the transverse transmission configuration (emitter and

receiver placed on opposite sites) to measure ultrasound
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propagation through trabecular bone (Langton and Njeh

2008). Recent research has focused on the measurement

of guided waves in cortical bone using the axial trans-

mission (AT) configuration (emitter and receiver placed

on the same site). Guided waves depend both on the

geometry and on the material properties of the propaga-

tion medium. Accordingly, an ex vivo study revealed

that the phase velocity of the A0 mode (yA0), measured

at 200 kHz, was significantly correlated with cortical

thickness (Ct.Th) (R2 = 0.52, p < 0.001) and vBMD

(R2 = 0.45, p < 0.001) (Muller et al. 2005). Furthermore,

it is also possible to extract the dispersion curves of mul-

tiple guided wave modes (Minonzio et al. 2010) and to

predict them analytically using a 2-D transverse isotro-

pic free plate model (Foiret et al. 2014). If constant stiff-

ness of the bone matrix is then assumed, cortical

porosity (Ct.Po) and Ct.Th can be obtained from the fit-

ted theoretical dispersion curves (Bochud et al. 2016).

Recently, this approach was validated ex vivo on 31 radii

and 15 tibiae from human cadavers with site-matched

micro-CT (Minonzio et al. 2018).

To date, guided wave measurements were per-

formed in our group using a 1-MHz probe optimized for

the radius. Recent ex vivo (Kroker et al. 2017) and in

vivo (Sundh et al. 2017) studies suggest that cortical

bone parameters measured at the tibia are strong predic-

tors of hip fracture. These findings motivated us to

develop a novel AT probe for ultrasound measurements

at the tibia that exhibits a larger Ct.Th range (2�6 mm)

compared with the radius (1�4 mm) (Karjalainen et al.

2008). To optimize the excitation of guided waves, we

decreased the central frequency to 500 kHz and slightly

increased the probe dimensions. The novel probe was

used previously ex vivo on 17 tibiae and could success-

fully predict Ct.Po (R2 = 0.83, root mean square error

[RMSE] = 2.2%) and Ct.Th (R2 = 0.57, RMSE 0.37 mm)

measured by site-matched micro-CT (Schneider et al.,

2019). The aim of this study was to test the 500-kHz

probe for the first time in vivo at the tibia in a small

group of patients. We compared the results obtained

from the ultrasound measurements with those for site-

matched pQCT and ultradistal HR-pQCT.

METHODS

Patients

Twenty patients (mean age: 51 § 14 y, mean body

mass index: 25.5 § 3.0 kg/m2) participated in this study.

The study cohort represented a subgroup of 8 women and

12 men participating in two different ongoing studies.

The first study was a population-based cross-sectional

study approved by the local ethics committee (EA4/095/

05), as well as by the German Radiation Protection Ordi-

nance (Z5-22462/2-2005-063). The second study was a

randomized controlled trial, Preventing the Impairment of

Primary Osteoarthritis by High Impact Long-Term Physi-

cal Exercise Regimen, approved by the local ethics com-

mittee (EA4/027/15), as well as by the German Radiation

Protection Ordinance (Z5-22462/2-2015-027). Written

informed consent was obtained from all participants

before recruitment.

Peripheral quantitative computed tomography

The proximal third of the tibia (66% of the lower-

limb length up from the lateral malleolus of the fibula)

of all patients was imaged using a clinical pQCT scanner

(XCT2000, Stratec Medizintechnik GmbH, Pforzheim,

Germany) according to our previously described proce-

dure (Rittweger et al. 2000). The voxel size was

0.5£ 0.5£ 2.3 mm. The cortical volumetric bone min-

eral density (Ct.vBMDpQCT) was determined as the aver-

age across a single cross-sectional scan using the

manufacturer’s software package (threshold: 711 mg/

cm3). A custom MATLAB (The MathWorks, Natick,

MA, USA) program was used to calculate the cortical

thickness (Ct.ThpQCT) based on the only available cross-

sectional slice (Fig. 1b) downloaded from the scanner

per patient. The tibia cross section was cropped manu-

ally before the image was binarized using Otsu’s (1979)

method. Subsequently, Ct.ThpQCT was defined as the

minimum distance between the endosteal and periosteal

surfaces (Chappard et al. 2013) at the medial portion of

the tibia and above the medullary canal, according to the

location of the ultrasound measurement.

High-resolution peripheral quantitative computed

tomography

The ultradistal tibia (standard protocol, starting at

22.5 mm from the tibial endplate) of 8 patients was

imaged using a clinical HR-pQCT scanner (XtremeCT I,

Scanco Medical AG, Brüttisellen, Switzerland) accord-

ing to our previously described procedure (Armbrecht

et al. 2011). Each scan consisted of 110 slices with a

nominal isotropic resolution of 82 mm. The total volu-

metric bone mineral density (Tt.vBMDXCT) was

obtained from the standard morphologic analysis (Bout-

roy et al. 2005). Then, the cortical bone compartment

was segmented according to the morphologic analysis

described by Burghardt et al. (2010). The following

parameters were calculated based on these cortical bone

volumes: Ct.vBMDXCT, Ct.ThXCT, cortical pore diame-

ter (Po.DmXCT) and cortical porosity (Ct.PoXCT). The

scripts provided by the manufacturer were used.

Dual-energy X-ray absorptiometry

Dual-energy X-ray absorptiometry (DXA, iDXA,

GE Medical Systems, WI, USA, software EnCore v13)

was used to measure aBMD at the whole body
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(aBMDWB), lumbar spine (aBMDLS, L1�L4 in the pos-

terior�anterior projection) and total femur (aBMDTF).

All scans and analyses were performed by the same

operator to ensure consistency and standard quality con-

trol procedures. Patients were classified as normal or

osteopenic based on their total femur T-score in accor-

dance with World Health Organization criteria (Kanis

1994).

Axial transmission

An ultrasound bi-directional AT system (Azal�ee,

Paris, France) consisting of a custom-made probe (Ver-

mon, Tours, France), driving electronics (Althais, Tours,

France) and a human machine interface (HMI, Bleu-

Solid, Paris, France) was used. The multichannel probe

had a central 24-receiver array (pitch = 1.2 mm) and two

lateral five-emitter arrays (pitch = 1.5 mm). The dimen-

sions of each rectangular receiver and emitter were

1.2£ 13 and 1.5£ 13 mm2, respectively. A distance of

8 mm separated the receiver array from each emitter

array. This configuration enabled the propagation of

ultrasound in two opposite directions, a technique that is

used to correct errors induced by small inclination angles

between the probe and the bone surface (Moreau et al.

2014). A wideband pulse with a center frequency of

500 kHz (�6-dB frequency bandwidth from 0.3 to 0.7

MHz) was used to excite the five multi-element transmit-

ters successively with time delays ranging from 0 to 0.8

ms. One hundred twenty radiofrequency (RF) signals,

corresponding to all possible receiver�transmission

pairs, were digitized (12 bits, 20 MHz, 1024 samples)

for each propagation direction after 16 averages per-

formed by the hardware.

The ultrasound measurements were performed at

the proximal third of the tibia (66%) according to the

pQCT scan location (Fig. 1a). The probe was placed at

the anteromedial surface of the tibia (facies medialis)

aligned with the long axis of the bone. Acoustic coupling

gel was used to ensure sound transmission to and from

the body. The circumferential position of the probe is

illustrated in Figure 1b. One measurement cycle con-

sisted of 400 subsequent measurements. The reproduc-

ibility was assessed by repeating the acquisition of a

cycle at least three times with intermediate probe reposi-

tioning. During each cycle the probe was slowly tilted in

both circumferential directions to scan a wide region

above the medullary cavity. During every measurement

120 RF signals (5£ 24) were acquired from each propa-

gation direction. The scan time per cycle was about

3 min.

Ct.ThAT and Ct.PoAT were estimated by fitting a 2-

D transverse isotropic free plate model to the measured

dispersion curves as described in detail elsewhere (Min-

onzio et al. 2018). Briefly, the recorded time signals

were transformed to the frequency�wavenumber (f�k)

space using a 2-D spatiotemporal Fourier transform

Fig. 1. (a) Overview of measurements. Five hundred-kilohertz axial transmission (AT) was performed site-matched with
pQCT (voxel size: 500 mm) at the proximal third of the tibia (66%). The distal site of the same limb was scanned with
HR-pQCT (voxel size: 82 mm). (b) Cross-sectional pQCT image illustrating the tangential position of the ultrasound
probe, which was slowly tilted in both circumferential directions (arrow) during the acquisition of 400 individual meas-
urements. The side view of the lower limb was generated with the BodyParts3D/Anatomography service (DBCLS,

Japan). HR-pQCT = high-resolution peripheral quantitative computed tomography.
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enhanced with singular value decomposition. This pro-

vided the so-called Norm function, of which each pixel

(f, k) reflected the presence rate of a wave mode on a 0

to 1 scale (Minonzio et al. 2010). Then, a database of

dispersion curves from a 2-D transverse isotropic free

plate model was projected onto the singular vector basis

to obtain the objective function (Minonzio et al. 2018).

The dispersion curves of the plate model were generated

from a set of effective stiffness tensors which were pre-

dicted for different thickness�porosity combinations

(Bochud et al. 2016; Parnell et al. 2012). We thereby

assumed that the transverse isotropic elastic coefficients

(c11 = 26.8 GPa, c13 = 15.3 GPa, c33 = 35.1 GPa and

c55 = 7. 3 GPa) and mass density (r = 1.91 g/cm3) for the

tissue matrix are invariant (Granke et al. 2011).

The objective function of the projection was

obtained and optimized to find the best fit between the

theoretical and experimental dispersion curves (Fig. 2a).

Often, we obtained more than one local maximum

mainly because of incomplete experimental dispersion

curves. Such model ambiguities were removed by com-

paring the two highest local maxima for each of the 400

measurements of a cycle. When the highest local maxi-

mum exceeded the secondary maximum of at least 10%,

this was considered to be a valid solution to the problem.

Otherwise, the single measurement was rejected. If at

least 10 of the 400 measurements produced a valid

parameter pair, the medians of Ct.Po/Ct.Th were calcu-

lated. Otherwise, the entire measurement cycle was

rejected. Finally, if at least two cycles were valid, the

medians of the corresponding cycles were averaged for

every specimen. Otherwise, the entire measurement

series for that sample was rejected.

The velocity of the first arriving signal (yFAS) was

calculated based on a bi-directional measurement princi-

ple (Bossy et al. 2004). Briefly, the time of flight was

determined for each emitter�receiver distance using the

first extremum of the signal in the time domain. The

sound velocity was then derived from the inverse slope

of a linear fit through the measured times of flight plotted

versus the known emitter�receiver distances. This pro-

cedure was performed for each of the five emissions and

from both directions to account for small inclination

angles between the probe and the bone surface. Unstable

measurements for which the absolute difference between

two opposite velocities was larger than 50 m/s (Talmant

et al. 2009) were eliminated. Ideally, a single measure-

ment provided five corrected velocities, which were then

averaged. Velocity histograms were obtained for each

cycle, and yFAS was calculated as the average of the his-

togram peaks.

The A0 mode phase velocity (yA0) was calculated in

the frequency range 0.4 to 0.5 MHz (Fig. 2b). First, the

Norm function was expressed in the frequency-phase

velocity domain (cphase = 2pf/k) (Minonzio et al. 2010).

Then, its amplitudes were averaged over frequency in

the phase velocity cphase range 1400 to 1900 m/s, and

yA0 was defined as the maximum position of the aver-

aged Norm function. The harmonic mean of the veloci-

ties from the two opposite emissions was calculated to

correct for inclination angles between the probe and the

bone surface (Bossy et al. 2004). Similarly to yFAS,

Fig. 2. (a) Contour plot depiction of the objective function. The red cross indicates the global maximum, corresponding
to the best fit (b) between the transverse isotropic free plate model (continuous and dashed lines) and the measured dis-
persion curves (red and blue dots). The red and blue colors of the dots correspond to the two opposite directions of the

bi-directional guided wave measurements.

New probe for cortical measurements at tibia � J. SCHNEIDER et al. 1237



measurements for which the absolute difference between

two opposite velocities was larger than 50 m/s were con-

sidered unstable and eliminated. The subject’s final yA0
was calculated by averaging the peak values of the

velocity histograms obtained for each cycle.

Statistical analysis

Linear regression analysis and Pearson’s correlation

coefficients were used to quantify the degree of associa-

tion between site-matched parameters obtained with AT

and pQCT. Associations between AT and HR-pQCT

were assessed using Spearman’s rank-correlation coeffi-

cient. AT (N = 15), pQCT (N = 15) and HR-pQCT

(N = 8) parameters were normally distributed as deter-

mined by Shapiro�Wilk tests. The Bland�Altman plot

was used to reveal biases in the prediction of Ct.ThpQCT.

Differences between the means were tested with paired

t-tests. Correlations were considered statistically signifi-

cant for p values < 0.05. The AT in vivo single-cycle

repeatability (Ct.ThAT, Ct.PoAT, yFAS and yA0) was esti-

mated using the root-mean-square average of the stan-

dard deviation of repeated cycles for each measured

patient (Glüer et al. 1995). Unless stated otherwise, all

image processing and statistical analysis were performed

using MATLAB (R2017a).

RESULTS

The ultrasound measurements from 15 of 20

patients were used for statistical analysis. Five patients

were excluded after evaluating the pQCT scans because

Ct.ThpQCT was below 2.5 mm. In such thin cortical

layers, our ultrasound transducer does not excite suffi-

cient guided wave modes (in particular those existing at

higher frequencies) because of its limited frequency

bandwidth. Thirteen of the 15 patients received DXA

scans at the proximal femur. The total femur T-score

was used to classify the patients into two groups: osteo-

penic (�2.5 < T-score < �1.0, N = 4) and normal (T-

score > �1.0, N = 9). Note that no osteoporotic patients

(T-score < �2.5) were included. Between both groups,

no statistically significant differences were found for the

AT, pQCT and HR-pQCT parameters. The single-cycle

repeatability of the ultrasound measurements was

0.13 mm for Ct.ThAT, 1.6% for Ct.PoAT, 25.8 m/s for

yFAS and 17.2 m/s for yA0. The measurement data

obtained in the study sample are summarized in Table 1.

The R2 values of the linear regression between AT

and site-matched pQCT parameters are listed in Table 2.

Ct.vBMDpQCT was best correlated with Ct.PoAT
(R2 = 0.57, p < 0.001, Fig. 3a) followed by yFAS

(R2 = 0.43, p < 0.01) and yA0 (R2 = 0.28, p < 0.05).

Good agreement was found between Ct.ThAT and Ct.

ThpQCT (R2 = 0.62, p < 0.001, RMSE = 0.39). When one

outlier was excluded, the correlation improved signifi-

cantly (R2 = 0.90, p < 0.001, RMSE = 0.19, Fig. 3b) and

decreased the mean difference between both methods

from 0.39 to 0.23 mm in the Bland�Altman plot

(Fig. 3c). There was a statistically significant difference

between the values of both methods with (p = 0.013) and

without (p = 0.009) the outlier.

We compared the AT parameters with those of dis-

tal HR-pQCT and found a strong correlation between

yFAS and Tt.vBMDXCT (Spearman’s r = 0.98,

p = 0.0004, Fig. 4). The negative correlation between Ct.

PoAT and Tt.vBMDXCT was the second strongest but did

not reach the significance level (Spearman’s r =�0.64,

p = 0.096).

DISCUSSION

In this in vivo pilot study, we used a novel 500-kHz

tibia probe to measure guided waves successfully in 15

Table 1. Descriptive statistics

Mean § SD Range N

Axial transmission
Ct.ThAT (mm) 4.0 § 0.7 3.1�5.1 15
Ct.PoAT (%) 12.7 § 4.2 5.3�20 15
yA0 (m/s) 1626 § 67 1491�1711 15
yFAS (m/s) 3918 § 40 3838�3965 15

pQCT
Ct.vBMDpQCT (mg/cm3) 1176 § 26 1134�1208 15
Ct.ThpQCT (mm) 3.7 § 0.8 2.7�5.1 15

HR-pQCT
Ct.ThXCT (mm) 1.3 § 0.4 0.7�1.7 8
Ct.PoXCT (%) 5.5 § 1.6 2.8�7.5 8
Po.DmXCT (mm) 123 § 11 102�136 8
Ct.vBMDXCT (mg/cm3) 842 § 56 769�928 8
Tt.vBMDXCT (mg/cm3) 296 § 77 176�381 8

DXA
aBMDLS (mg/cm2) 1.19 § 0.16 0.98�1.50 13
aBMDTF (mg/cm2) 1.04 § 0.19 0.76�1.29 13
aBMDWB (mg/cm2) 1.32 § 0.14 1.07�1.50 15

DXA = dual-energy X-ray absorptiometry; HR-pQCT = high-resolu-
tion peripheral quantitative computed tomography; SD = standard
deviation.

Table 2. R2 of the linear regression between parameters from
site-matched axial transmission and peripheral quantitative

computed tomography (N = 15)

Ct.ThpQCT Ct.vBMDpQCT

Ct.ThAT 0.62x ns
Ct.PoAT ns (�) 0.57x

yA0 0.31y 0.28y

yFAS ns 0.43z

ns = not significant.
*The associations are positive unless otherwise indicated by a nega-

tive sign.
y p < 0.05.
z p < 0.01.
x p < 0.001.
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patients. Excellent agreement was obtained between Ct.

ThAT and site-matched Ct.ThpQCT when one outlier was

removed. Moreover, Ct.PoAT correlated moderately with

site-matched Ct.vBMDpQCT. We adapted the ultrasound

signal processing from a previously reported ex vivo

study using a 1-MHz AT probe designed for measure-

ments at the radius (Minonzio et al. 2018). In that way,

Ct.ThAT and Ct.PoAT were obtained automatically from a

2-D transverse isotropic free plate model, which was fitted

to the extracted dispersion curves. We also modified the

former in vivo measurement protocol (Vallet et al. 2016):

The number of measurements per cycle was increased

from 10 to 400, and the probe was slowly tilted in both

circumferential directions during the acquisitions, instead

of performing static measurements. Thus, we maintained

a similar single cycle repeatability in vivo (Ct.Po: 1.6%,

Ct.Th: 0.13 mm) as previously reported ex vivo using the

1-MHz probe (Ct.Po = 1.9%, Ct.Th = 0.11 mm) (Minon-

zio et al. 2018).

A moderate correlation between site-matched Ct.

PoAT and Ct.vBMDpQCT was found (R2 = 0.57,

p < 0.001). Because vBMD is a strong predictor of Ct.

Po (R =�0.88, p < 0.001) (Ostertag et al. 2016), a stron-

ger correlation could have been expected. Several factors

could have contributed to it. First, the AT and pQCT

scan regions were not exactly site-matched. The pQCT

device scanned only a 2.3-mm-thick section, whereas

the region scanned by AT was much larger (i.e., approxi-

mately 29 mm, according to the length of the receiver

array). Second, Ct.vBMDpQCT was calculated from the

entire cortical compartment, whereas AT scanned only

the facies medialis (Fig. 1b). A more precise Ct.

vBMDpQCT evaluation, that is, smaller region of interest,

would have caused unreliable estimates because of the

limited number of available cortical bone voxels (pQCT

is a single-slice method with in-plane spatial resolution

of 0.5 mm). In a recent ex vivo study using the same

probe and site-matched mCT (with a 39-mm isotropic

voxel size), we found a stronger correlation between

Ct.PoAT and Ct.vBMDmCT (R2 = 0.80, p < 0.001)

(Schneider et al., under revision). To achieve this, we

had the means to adequately segment the cortical

Fig. 3. Axial transmission versus site-matched peripheral quantitative computed tomography parameters measured at the
proximal third of the tibia (N = 15). Linear regressions between (a) Ct.PoAT and Ct.vBMDpQCT and (b) Ct.ThAT and Ct.
ThpQCT after exclusion of red outlier marked with circle. The correlation including the outlier was R2 = 0.62, p < 0.001,
root mean square error = 0.39 mm. The dotted lines in (b) indicate the root mean square error. (c) Bland�Altman plot of
Ct.ThAT and Ct.ThpQCT. Mean difference and lines were calculated without outlier. Mean difference with outlier was

0.33 mm. Dashed lines indicate 95% confidence intervals at § 1.96 standard deviation.

Fig. 4. Correlation between yFAS at the midshaft and distal Tt.
vBMDXCT with strong Spearman’s rank-correlation coefficient
(r = 0.98, p < 0.001, N = 8). Vertical error bars represent stan-

dard deviations (within at least three repeated cycles).
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compartment (Burghardt et al. 2010) and considered

only the volume below the receiver array. Moreover,

these ex vivo measurements were conducted without

overlaying soft tissue, which might have improved the

correlation.

It is possible that soft tissue negatively affected the

quality of our signals, reducing the accuracy of the fit

between the plate model and the experimental dispersion

curves. The accurate estimation of waveguide properties

was previously reported despite the presence of soft tis-

sue modes, but only in 4 patients and using a 1-MHz AT

probe (Bochud et al. 2017). In that study, a bilayer model

was proposed to account for additional soft tissue modes.

However, the authors finally suggested using the plate

model, because it was able to predict the experimental

modes of the cortical waveguide equally well as the

bilayer model, but with less complexity and computa-

tional cost. On the basis of this finding, we used the sim-

pler plate model to predict the dispersion curves

measured in this study at the tibia.

Five of 20 patients had to be excluded because they

had thin cortical bone layers at the ultrasound measure-

ment site (Ct.ThpQCT < 2.5 mm). Interestingly, 3 of

these 5 excluded cases were significantly older (73 §

6 y) than the mean age of the 15 patients analyzed (47 §

10 y). The decreased Ct.Th of these elderly patients

might have been caused by endosteal trabecularization,

which their pQCT scans also indicated. However, the

two other excluded patients were relatively young (35

and 43 y), indicating that thin cortical bone at the tibia is

present in patients of different ages. As a solution, the 1-

MHz probe, originally designed for measurements at the

thinner radius, could be used at the tibia when guided

waves are not sufficiently excited using the 500-kHz

probe. In the future, capacitive micromachined ultra-

sonic transducers (CMUTs) might allow the design of a

probe with a larger frequency bandwidth. CMUTs in

combination with a smaller pitch, although keeping a

similar receiver array length, could significantly enhance

the detection of guided wave modes over a larger Ct.Th

range.

It is a limitation that the distal tibiae of only 8

patients were scanned with HR-pQCT. Thus, the linear

regression analysis between the AT and distal HR-pQCT

measurement parameters needs to be considered with cau-

tion because of the small sample size. However, we found

a statistically significant correlation (yFAS vs. Tt.

vBMDXCT, Fig. 4) that underlines the sensitivity of this

parameter to systemic microstructural changes. This find-

ing suggests that guided wave measurements conducted

at the midshaft tibia may also reflect microstructural

changes at relevant fracture sites, such as the proximal

femur. However, tibial yFAS at 250 kHz has previously

been found to correlate only weakly with femoral strength

(Bouxsein et al. 1999) and to be a poor discriminant of

osteoporotic fracture (Stegman et al. 1995). To date, only

one study investigated the direct association between Ct.

Po at the tibia midshaft and femoral neck fracture strength

(R =�0.50, p < 0.001, N = 56) (Abraham

et al. 2015). A strength of our ultrasound system is that it

measures four cortical bone parameters at the same time

(Ct.ThAT, Ct.PoAT, yFAS and yA0), which may provide

improved fracture prediction combined using multivariate

models. The scope of forthcoming studies will be to relate

these four ultrasound parameters to hip fracture, alone or

in conjunction with other measurements.

In this study, we used a first-generation HR-pQCT

system (XCT-I, isotropic voxel size: 82 mm), which

allows scanning of only the distal tibia (Boyd 2008). At

this site, we could not conduct site-matched guided

wave measurements because the cortex is too thin

(Ct.Th < 2 mm) and the facies medialis is not flat

enough. We did not find any statistically significant cor-

relation between the AT and cortical HR-pQCT parame-

ters (Ct.ThXCT, Ct.PoXCT, Po.DmXCT, Ct.vBMDXCT).

Only yFAS against Tt.vBMDXCT reached the significance

level (Fig. 4). However, this correlation needs to be con-

sidered with caution because of the small sample size.

One reason for the absence of significant correlations

between the cortical AT and HR-pQCT parameters may

be the distinct characteristic pattern of trabecular and

cortical bone mass distributions across the tibia. For

example, toward the epiphyses, cortical bone exhibits

significantly lower vBMD values compared with more

proximal sites (Kamer et al. 2016). Furthermore, little

cortical bone is present at the standard HR-pQCT ultra-

distal measurement site. Therefore, cortical parameters

should be assessed more proximally (Ostertag et al.

2014; Sundh et al. 2017). This is possible with the sec-

ond-generation HR-pQCT (XCT-II, isotropic voxel size:

61 mm), which allows scanning of the tibia midshaft at

even higher resolution (Ensrud et al. 2018). Conse-

quently, future guided wave studies should be conducted

with the site-matched XCT-II to improve the accuracy

of reference thickness estimates. Moreover, it would be

of great interest to observe the correlation between Ct.

PoAT and site-matched Ct.PoXCT, although the HR-

pQCT scanner cannot accurately measure small pores

with diameters less than 100 mm (Cooper et al. 2016;

Ostertag et al. 2014, 2016).

We found a moderate correlation between yFAS and

Ct.vBMDpQCT (R2 = 0.43, p < 0.01, Table 1). This find-

ing is in agreement with previously reported in vivo

measurements of tibial yFAS at different frequencies:

200 kHz (Moilanen et al. 2003), 400 kHz (Kilappa et al.

2010) and 1.25 MHz (Siev€anen et al. 2001). We did not

find a statistically significant correlation between yFAS

and Ct.ThpQCT similarly to the studies at 400 kHz
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(Kilappa et al. 2010) and 1.25 MHz (Siev€anen et al.

2001). Only the study at 200 kHz (Moilanen et al. 2003)

found a weak but statistically significant correlation

(R = 0.24, p < 0.05), indicating that larger wavelengths,

reaching deeper into the cortex, are needed to obtain a

dependency between yFAS and Ct.Th at the tibia (Bossy

et al. 2005). The reproducibility of yFAS (0.7 %) obtained

in this study is in line with other in vivo studies, as, for

example, the 1.8% obtained by Moilanen et al. (2003).

Compared with that of yFAS, the measurement of yA0
has been less studied in vivo. Here, we found that yA0 corre-

lated moderately with Ct.ThpQCT and Ct.vBMDpQCT. This

was expected because the velocities of guided waves

depend on both thickness and material properties, that is,

represented here by Ct.vBMDpQCT. Furthermore, these

results agree with a clinical study using 200-kHz AT at the

tibia of pubertal girls to measure yA0 (Moilanen et al.

2003). However, in that study the wave packages of the A0
mode were extracted in the time domain, whereas we iso-

lated the A0 dispersion in the frequency-phase velocity

domain. The authors report that 22% of their yA0 measure-

ments were judged unreliable because of interference with

soft tissue, in which ultrasound propagates at velocities

(»1500 m/s) similar to those of the A0 mode in cortical

bone (Moilanen et al. 2008). In our study, we observed a

regular disappearance of the A0 mode at higher frequencies

(0.5�1.0 MHz), particularly in patients with thick soft tis-

sue layers. Thus, to improve robustness, we chose to esti-

mate yA0 in a lower and narrower frequency range

(0.4�0.5 MHz, Fig. 2b) compared with what we used ex

vivo (0.5�0.8 MHz) (Schneider et al. 2019). Consequently,

we did not observe any yA0 failure case and our in vivo

reproducibility (1.1%) was superior to that of Moilanen et

al. (2008), 2.3%.

CONCLUSIONS

It is possible to estimate Ct.Po and Ct.Th at the tibia

using a novel 500-kHz AT probe. Good agreement was

found between Ct.ThAT and site-matched Ct.ThpQCT.

We found a moderate correlation between Ct.PoAT and

site-matched Ct.vBMDpQCT which was used as a surro-

gate for Ct.Po. The second-generation HR-pQCT (XCT-

II), which allows measurements at the tibia midshaft

with significantly enhanced resolution compared with

pQCT, is now on the market. Further in vivo studies

should be conducted site-matched with XCT-II to

improve the accuracy of reference estimates. The mea-

surement of guided waves at the tibia might improve the

prediction of bone fractures in a cost-effective and radia-

tion-free manner.
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