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Abstract. Invasion biology is a thriving ecological research field, and confusingly many hypotheses, con-
cepts, and ideas about biological invasions populate today’s literature. Moreover, some of these hypotheses
are very similar, whereas others contradict each other. It is not clear whether in such a situation a plausible
global relational structure—or map—of these hypotheses emerges in the minds of the involved researchers
and, if so, how this map can be reliably reconstructed from the expertise of individuals. Here, we report
results of an online survey with 357 experts on invasion biology and several reconstructions of such a map.
Using the distance information between hypotheses provided in the survey, the resulting network is essen-
tially random. This finding implies that invasion biologists currently do not have a joint vision how inva-
sion hypotheses are related to each other. However, the pattern of pairwise familiarities between the
hypotheses in the survey yields joint-mentions networks with highly non-random features. These networks
allow us to assign conceptual roles to many of the hypotheses in the field on purely topological grounds.
Such hypothesis networks can help everyone interested in research fields to understand their conceptual
structure. They can serve as maps of research fields.
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INTRODUCTION

When you visit a city such as Munich in Ger-
many for the first time in your life without a
smartphone or traditional map, you might be
able to find your way from the central train sta-
tion to the Oktoberfest. Maybe you would also
find your way to the “Marienplatz” (city center),
but you would definitely miss out some beautiful
spots. Without a traditional map or Google
Maps, visitors of a city such as Munich, Bremen,
or Berlin can quickly become lost. The only true
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alternative to such an external map is an internal
mental map acquired by visiting a city’s locations
on a regular basis. This is not only true for cities
but also for research disciplines where research-
ers can become lost in a multitude of concepts
and hypotheses. This leads to the intriguing
general question: Do researchers have a clear,
detailed, and unambiguous map of their scien-
tific field in their minds?

For one specific scientific field, we here use a
questionnaire to probe the representation of such
a knowledge map in the scientific community.
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We took the discipline of invasion biology as a
case example. This discipline focuses on non-
native species and emerged in the 1990s when
the number of publications on the topic started
to massively increase (Richardson and Pysek
2008). The first ideas, concepts, and hypotheses
about biological invasions date back to previous
centuries (Darwin 1859), and Elton’s (1958) book,
The ecology of invasions by animals and plants,
includes many ideas that are influential in the
field until today. Other concepts and hypotheses
were formulated later (Jeschke 2014), and many
of them are now populating the literature. Sev-
eral challenges have emerged with the raising
number of invasion hypotheses, for instance: (1)
it is becoming increasingly unclear what the cen-
tral concepts and hypotheses are of the field; (2)
some hypotheses have different names but repre-
sent the same, or a very similar, basic concept
(Catford et al. 2009); (3) some hypotheses com-
pletely contradict each other, and there is confu-
sion about which of these hypotheses are
empirically better supported; and (4) hypotheses
that are not empirically supported keep being
used (Jeschke et al. 2012a).

An important task for a discipline populated
by many hypotheses is to develop synthesis tools
that provide an overview or map of existing
hypotheses. Such an overview can then be con-
nected with meta-analyses to discriminate those
hypotheses that are empirically supported from
those that are not (Jeschke and Heger 2018). It
can also be connected to a larger atlas of scientific
disciplines (Borner 2015). There are several possi-
ble approaches to synthesize existing hypotheses,
for example, based on bibliometric analyses,
expert surveys, or conceptual meta-frameworks
(Catford et al. 2009, Gurevitch et al. 2011, Saul
et al. 2013, Borner et al. 2015).

For this study, we developed an online ques-
tionnaire covering 33 common invasion hypothe-
ses and asking experts which invasion hypotheses
they know best and how similar these are to other
invasion hypotheses. Based on the answers, we
are addressing the three following questions: (1)
Which are the best-known and most central inva-
sion hypotheses? (2) Do invasion biologists agree
on the similarity or dissimilarity of hypotheses
and already have a joint map or network of inva-
sion hypotheses in mind (i.e., an internal map)?
(3) If this is not the case, what would be a
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promising candidate for an explicit, external map,
or network of invasion hypotheses? To our
knowledge, this is the first study following such
an approach, within ecology or beyond, that cre-
ates hypothesis networks based on a survey
among experts in the field. A first, rather rudi-
mentary hypothesis network was presented by
Jeschke (2014) for invasion biology, and a second
one was created based on a matrix with character-
istics of hypotheses (Enders and Jeschke 2018).

METHODS

Survey among invasion biologists

We compiled a list of 33 common invasion
hypotheses and defined each hypothesis (Table 1).
Key references for compiling this list were as fol-
lows: Catford et al. (2009), Lamarque et al. (2011),
Jeschke et al. (20124, b), Jeschke (2014), Lockwood
et al. (2013), Lowry et al. (2013), and references
given in Table 1. The survey was available on the
Internet site https://www.soscisurvey.de/ for a
month, from 12 November 2014 to 12 December
2014. Links to the questionnaire were sent out to
invasion biologists and ecologists by using differ-
ent mailing lists (Ecolog-L, Alien-List, ISSG-
Members-List) and was, all in all, well received
(357 participants, 102 complete surveys [i.e., also
including personal information such as continent
of residence or age]). The first question that was
asked was as follows: “Which of the following
Hypotheses in Invasion biology do you know
best?” The participants could choose a maximum
of three hypotheses out of the 33 listed ones. A def-
inition was provided for each hypothesis (see
Table 1). We programmed the survey, so that
hypotheses selected by the participants were ran-
domly paired with other hypotheses, and the par-
ticipants were asked as follows: “From your
perspective, how similar are the following two
hypotheses? [selected hypothesis] and [random
hypothesis]?” The participant could pick from a
scale from 1 “These hypotheses completely contradict
each other” through 5; “No relationship between these
hypotheses” to 9; “These hypotheses are extremely simi-
lar to each other.” Based on the responses, we cre-
ated three different networks of invasion
hypotheses, which are further outlined below. In
the survey, participants were also asked about their
continent of residency, age (in 10-yr steps), current
academic position, and time since PhD. The
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Table 1. List of 33 common invasion hypotheses and how they were defined in the survey (key references
provided here were not given in the survey in order to minimize the amount of text in the survey).

Hypothesis and key reference(s)

Definition

Adaptation (ADP; Duncan and
Williams 2002)

Biotic acceptance aka “the rich get
richer” (BA; Stohlgen et al. 2006)

Biotic indirect effects (BID; Callaway
et al. 2004)

Biotic resistance aka diversity-
invasibility hypothesis (BR; Elton
1958, Levine and D’ Antonio 1999)

Darwin’s naturalization
(DN; Darwin 1859)

Disturbance (DS; Elton 1958,
Hobbs and Huenneke 1992)

Dynamic equilibrium (DEM;
Hutson 1979)

Empty niche (EN; MacArthur 1970)

Enemy inversion (EI;
Colautti et al. 2004)

Enemy of my enemy aka
accumulation-of-local-pathogens
hypothesis (EE; Eppinga et al. 2006)

Enemy reduction (ERD; Colautti
et al. 2004)

Enemy release (ER; Keane and
Crawley 2002)

Environmental heterogeneity
(EVH; Melbourne et al. 2007)

Evolution of increased competitive
ability (EICA; Blossey and
Notzold 1995)

Global competition (GC; Colautti
et al. 2006)

Habitat filtering (HF; Darwin 1859)

Human commensalism (HC;
Jeschke and Strayer 2006)

Ideal weed (IW; Elton 1958,
Rejmanek and Richardson 1996)

Increased resource availability
(IRA; Sher and Hyatt 1999)

Increased susceptibility (IS; Colautti
et al. 2004)

Invasion meltdown (IM; Simberloff
and Holle 1999, Sax et al. 2007)

Island susceptibility hypothesis
(ISH; Jeschke 2008)

Limiting similarity (LS; MacArthur
and Levins 1967)

Missed mutualisms (MM; Colautti
et al. 2004, Mitchell et al. 2006)

New associations (NAS; Colautti
et al. 2004)

Novel weapons (NW; Callaway and
Ridenour 2004)

Opportunity windows (OW;
Johnstone 1986)

The invasion success of non-native species depends on the adaptation to the
conditions in the exotic range before and/or after the introduction. Non-native
species that are related to native species are more successful in this adaptation

Ecosystems tend to accommodate the establishment and coexistence of non-native
species despite the presence and abundance of native species

Non-native species benefit from different indirect effects triggered by native species

An ecosystem with high biodiversity is more resistant against non-native species than
an ecosystem with lower biodiversity

The invasion success of non-native species is higher in areas that are poor in closely
related species than in areas that are rich in closely related species

The invasion success of non-native species is higher in highly disturbed than in
relatively undisturbed ecosystems

The establishment of a non-native species depends on natural fluctuations of the
ecosystem, which influences the competition of local species

The invasion success of non-native species increases with the availability of empty
niches in the exotic range

Introduced enemies of non-native species are less harmful for them in the exotic than
the native range, due to altered biotic and abiotic conditions

Introduced enemies of a non-native species are less harmful to the non-native as
compared to the native species

The partial release of enemies in the exotic range is a cause of invasion success
The absence of enemies in the exotic range is a cause of invasion success

The invasion success of non-native species is high if the exotic range has a highly
heterogeneous environment

After having been released from natural enemies, non-native species will allocate
more energy in growth and/or reproduction (this re-allocation is due to genetic
changes), which makes them more competitive

A large number of different non-native species is more successful than a small
number

The invasion success of non-native species in the new area is high if they are
pre-adapted to this area

Species that are living in close proximity to humans are more successful in invading
new areas than other species

The invasion success of a non-native species depends on its specific traits
(e.g. life-history traits)

The invasion success of non-native species increases with the availability of resources

If a non-native species has a lower genetic diversity than the native species, there will
be a low probability that the non-native species establishes itself

The presence of non-native species in an ecosystem facilitates invasion by additional
species, increasing their likelihood of survival or ecological impact

Non-native species are more likely to become established and have major ecological
impacts on islands than on continents

The invasion success of non-native species is high if they highly differ from native
species, and it is low if they are similar to native species

In their exotic range, non-native species suffer from missing mutualists

New relationships between non-native and native species can positively or negatively
influence the establishment of the non-native species

In the exotic range, non-native species can have a competitive advantage against
native species because they possess a novel weapon, i.e. a trait that is new to the
resident community of native species and therefore affects them negatively

The invasion success of non-native species increases with the availability of
empty niches in the exotic range, and the availability of these niches
fluctuates spatio-temporally
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Hypothesis and key reference(s)

Definition

Propagule pressure (PP; Lockwood
et al. 2005)

Reckless invader (RI; Simberloff and
Gibbons 2004)

Resource-enemy release (RER;
Blumenthal 2006)

Specialist-generalist (SG; Callaway
et al. 2004)

Sampling (SP; Crawley et al. 1999)

Tens rule (TEN; Williamson and
Brown 1986, Williamson 1996)

A high propagule pressure (a composite measure consisting of the number of
individuals introduced per introduction event and the frequency of introduction
events) is a cause of invasion success

A non-native species that is highly successful shortly after its introduction can get
reduced in its population or even extinct over time due to different reasons (such as
competition with other introduced species or adaptation by native species)

The non-native species is released from its natural enemies and can spend more
energy in its reproduction, and invasion success increases with the availability of
resources

Non-native species are more successful in a new region if the local predators are
specialists and local mutualists are generalists

A large number of different non-native species is more likely to become invasive than
a small number due to interspecific competition. Also the species identity of the
locals is more important than the richness in terms of the invasion of an area

Approximately 10% of species successfully take consecutive steps of the invasion
process

geographic bias we observed among survey partic-
ipants (Appendix S1: Fig. S1) was quite similar to
the results described by Pysek et al. (2008) for pub-
lications within invasion biology. The e-mail lists
we used to send out the survey (Ecolog-L, run by
the Ecological Society of America; Aliens-L, run by
the IUCN Invasive Species Specialist Group; ISSG-
Members-List, received by members of the [UCN
Invasive Species Specialist Group) are based in
North America, Europe, and Australia/New Zeal-
and, but experts worldwide receive e-mails sent
through them. Also, these lists are arguably the
most relevant ones globally on the topic for experts
in the field of invasion biology.

Similarity—dissimilarity networks

We used the similarity between invasion hypo-
theses that the participants indicated by answer-
ing the questions, “From your perspective, how
similar are the following two hypotheses?” In the
network, we connected two hypotheses if the
mean values taken from the participants” answers
related to these hypotheses were either below 3
(contradictory hypotheses) or above 7 (similar
hypotheses). This network is the only one of the
three networks that can discriminate between
similar and contradictory hypotheses. It is also
the only conscious network; it illustrates similari-
ties and dissimilarities between hypotheses that
the experts are readily aware of.

To address potential differences between the
academic background of participants and result-
ing hypothesis networks, we also created similar-
ity—dissimilarity networks with participants who
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specified their academic position (1) as PhD can-
didate, postdoc or higher, or (2) as other (e.g.,
managers or students). Furthermore, we created
alternative networks with only positive connec-
tions (using a threshold of 7) and with thresholds
below 2 (contradictory hypotheses) and above 8
(similar hypotheses).

Joint-mentions networks A and B

We used the number of joint mentions of
hypotheses to the question which hypotheses the
experts know best as an alternative for construct-
ing networks. In other words, we say that hypo-
theses that are frequently well-known by the
same people have a higher degree of similarity
compared to hypotheses that are rarely well-
known by the same people. Such joint-mentions
networks are unconscious networks, as they are
not based on the answers to the survey questions
related to similarity and dissimilarity of hypothe-
ses. The joint-mentions networks are thus net-
works based on local information that have been
reconstructed from the co-occurrences of two
hypotheses in the data.

Let H; denote the total number of mentions of
hypothesis i in the set of replies, and H;; the joint
mentions of hypotheses i and j. It should be
noted that sometimes a hypothesis i was given as
the sole expertise of a given survey participant,
whereas sometimes two or three hypotheses, say
i, j, and k, were given as expertise (thus contribut-
ing to three entries in the joint-mentions matrix:
Hjj, Hy, and Hj). Therefore, in general we do not
have Z] H,] = H,‘.
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We used two metrics for translating the co-
occurrence counts into a score and then into a
network. In the first metric which underlies joint-
mentions network A, the absolute number of co-
occurrence counts (normalized to values between
0 and 1) was used. This leads to pronounced
hubs as the dominant topological feature. Mathe-
matically, the observed number H;; of joint men-
tions of two hypotheses i and j was compared
with the maximal number of joint mentions that
could have been observed given the number of
individual mentions of each hypothesis, that is,
min(H;,H;). An example where such a normaliza-
tion is frequently used is in the evaluation of co-
activations of cortical areas in Computational
Neuroscience (Muller-Linow et al. 2008). The
matrix we used for creating the joint-mentions
network A thus has the following entries:

sS4 _ L 1)
Y min(Hl-, H])

Using this normalization, joint-mentions net-
work A shows the connected mentions of the
hypotheses and therefore indicates which
hypotheses are used together in the minds of sci-
entists and in practical work. Appendix Sl:
Fig. S2 shows a histogram of the entries SEA) from
Eq. 1. Zeros and diagonal elements have been
removed in order to focus on the non-trivial
entries of the matrix. In order to arrive at a (bi-
nary) adjacency matrix (and hence the joint-men-
tions network A), we need to select a binarization
threshold s;. Visual inspection of this distribution
suggests sy = 0.2, that is, the minimum after the
first dominant peak.

The second metric which underlies joint-
mentions network B compares the score with an
expected score based on randomized data. In this
case, the network’s degree distribution is not as
broad and additional topological features of
the hypotheses emerge. We use relative frequen-
cies as estimates of these probabilities; that is,
pi = H,-/X]- H; is the probability of mentioning
hypothesis i at random. Relatedly, p;; = Hi]‘/):kl Hy
serves as an estimate of the probability of jointly
mentioning hypotheses i and j. We compare this
probability p;; of joint mentions of two hypothe-
ses i and j with the expectation of joint mentions
based on randomly drawing pairs of hypotheses
from a pool, where a hypothesis i occurs with the
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probability p;. This expectation then is pp;. In
other words, joint-mentions network B shows
the probability of hypotheses chosen together
and so the probability of hypotheses used
together in any situation. Similar normalizations
are the basis of, for example, the mutual informa-
tion used in information theory (Shannon 1948).
The matrix leading to joint-mentions network B
thus has the following entries:

i = Fi @)
pip;

Appendix S1: Fig. S3 shows a histogram of the
entries 55].H> from Eq. 2. While the first normaliza-
tion requires somewhat arbitrarily selecting a
threshold in order to determine the links in the
joint-mentions network A, in the second normal-
ization here the value 1 is a natural choice of such
a threshold, as values above 1 indicate that the
observed joint-mentions count of the two
hypotheses is higher than expected at random. It
would also have been possible to use weighted
graphs instead of a binary adjacency matrix.
However, for the latter a much richer choice of
analysis methods is available.

Identifying communities within networks

A community within a network is a set of
nodes with a large number of links among them-
selves (many intracommunity links) and only
comparatively few links to the rest of the net-
work (i.e., to other communities; few intercom-
munity links). We calculated communities within
the programming environment Mathematica. We
used a modularity-maximizing algorithm (i.e., an
iterative search for maximizing the Girvan-New-
man modularity measure; Girvan and Newman
2002) for community detection.

REesuLTs

Well-known invasion hypotheses & statistics
about survey participants

The age of most participants ranged between
30 and 70 yr, where the age class 4049 yr was
less well represented than other age classes
(Appendix S1: Fig. S1). Similarly, participants
had a range of academic positions, and time
since PhD (including no PhD yet) varied as well.
Thus, participants included students, practition-
ers, PhD candidates, postdocs, and professors.
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Some hypotheses were significantly more fre-
quently selected by survey participants than
others: The distribution of the number of times
each hypothesis was selected significantly dif-
fered from an equal distribution (Pearson’s chi-
squared test, % =483.65, df =32, P <0.001;
Fig. 1). The three most frequently selected hypo-
theses were as follows: enemy release (ER, 150
times selected), propagule pressure (PP, 135
times), and disturbance (DS, 102 times). It is simi-
lar for survey participants who specified their aca-
demic position as PhD candidate or higher where
ER and PP were followed by BR (red columns in
Fig. 1). For participants specifying their academic
position as other (managers, students, etc.), the
three most frequently selected hypotheses were
PP, DS, and ER (blue columns in Fig. 1). There
was a strong and significant correlation between
the number of times that hypotheses were

ENDERS ET AL.

selected by academic vs. non-academic survey
participants (Appendix S1: Fig. S7; rs=0.78,
P < 0.001, Spearman’s rank correlation test).

Similarity—dissimilarity networks

The main similarity—dissimilarity network has
a total of 137 connections (edges) between
hypotheses which are differentiated by color and
thickness: The thickness of a line represents the
strength of a similarity (black) or contradiction
(red), respectively (Fig. 2). Despite that there
should be no difference which hypothesis is
mentioned first in the question, “From your per-
spective, how similar are the following two
hypotheses?” there were sometimes different
results for hypotheses pairs if one of the two
hypotheses was mentioned first. In such cases, the
more extreme result (stronger similarity or dissim-
ilarity) was taken. In one case (NAS-DEM),

Evolution of increased competitive ability (EICA)

L Enemy inversion (EI) Dynamic equilibrium model (DEM)
Enemy of my Enemy (EE) Darwini's naturalization (DN)
Missed mutualisms (MM) Enviromental heterogenity (EVH)
Reckless invader (RI) Habitat filtering (HF)
Increased susceptibility (IS) Adaptation (ADP)
Enemy reduction (ERD) Ideal Weed (IW)
Biotic indirect effects (BID) Specialist- generalist (SG)
Global competion (GC)
Sampling (SP) Island susceptibility (ISH)
100 Resource-enemy release (RER) Novel weapons (NW)

Human comensalism (HC) Tens rule (TEN)

8 Biotic acceptance (BA) Biotic resistance (BR)

"5 New associatons (NAS) Invasional meltdown (IM)

Q Increased resouce availability (IRA) Empty niche (EN)

8 Limiting similarity (LS) Disturbance (DS)

[%2] Opportunity windows (OW) Propagule pressure (PP)

OE) Enemy release (ER)
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Fig. 1. Number of times each hypothesis was selected by survey participants as those they know best (the
dashed line indicates the average across all 33 hypotheses). The red bars indicate the number of times each
hypothesis was selected by survey participants who specified their academic position as PhD candidate or
higher. The blue bars indicate the number of times each hypothesis was selected by survey participants who

specified their academic position as other (e.g., managers or students). The remaining gray part in each bar indi-
cates selections by survey participants who did not specify their academic position.
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@

Fig. 2. The similarity—dissimilarity network of invasion hypotheses, based on the participants” responses how
similar hypotheses are. Line thickness indicates the level of similarity (black lines) or dissimilarity (red lines)
between hypotheses. The degree centrality of a hypothesis is indicated by the size of its circle. Since this network
is similar to a random network (see main text and Appendix S1), it cannot be reasonably divided into communi-
ties of hypotheses within the network. This was only possible for the joint-mentions networks.

survey participants indicated similarities as well
as dissimilarities; here, the more frequent answer
was taken. Such differences are probably due to
different interpretations of the question: “From
your perspective, how similar are the following
two hypotheses?” For example, similarity be-
tween two hypotheses could mean compliance in
the topic or a compliance in the point of view.

ECOSPHERE *%* www.esajournals.org

In general, there was a large range of answers
to the question how similar two given hypothe-
ses are. To illustrate this huge variation among
answers, we plotted the minimum value of an
answer against the maximum value for all
hypotheses pairs (Appendix S1: Fig. 54).

The three hypotheses with the highest degree
centrality (i.e., the highest number of connections)
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in the similarity—dissimilarity network are as fol-
lows: opportunity windows (OW), dynamic equi-
librium (DEM, both 16 connections), and island
susceptibility hypothesis (ISH, 15 connections),
but several other hypotheses also have high
degrees. The average degree centrality for a
hypothesis in this network is 8.30 & 4.09 (SD).
The most isolated hypothesis is the tens rule
which has no connections here. Surprisingly, the
network reconstructed from the quantitative
information has many features of a random graph
(see Appendix S1 and below for more informa-
tion). However, when only local information
(“Name the hypotheses from the list you are
familiar with”) is used, non-random networks
emerge, which allow us to topologically charac-
terize the role each hypothesis has in shaping the
scientific field under consideration.

We also created similarity—dissimilarity net-
works using only answers of participants who
specified their academic position: either (1) PhD
candidate or higher (academic network; App-
endix S1: Fig. S9) or (2) other (e.g., managers or
students, non-academic network; Appendix S1:
Fig. S10). In addition to the strong correlation
between the number of times that hypotheses
were selected by academic vs. non-academic
survey participants (see above), there was also a
significant correlation between the degree cen-
tralities of hypotheses in the two networks
(Appendix S1: Fig. S8, rg=0.46, P =0.01,
Spearman’s rank correlation test). Since many
survey participants did not indicate their aca-
demic position, these two networks are based
on fewer information than other networks gen-
erated here.

Furthermore, we created a similarity—dissimi-
larity network based on positive answers only
(Appendix SI: Fig. S11). In this network, two
hypotheses are isolated (tens rule, TEN, and
biotic acceptance, BA), and OW is the hypothesis
with the highest degree centrality (16 connec-
tions) followed by the DEM and the ISH (both 14
connections).

Finally, we applied stricter thresholds for the
similarity—dissimilarity network, using a thresh-
old of 2 for contradictory hypotheses and a
threshold of 8 for similar hypotheses (Appen-
dix S1: Fig. S12). In this network, five hypotheses
are isolated, and the overall number of edges
was low.
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Joint-mentions networks A and B

The joint-mentions network A is dominated by
the three most central nodes: ER (21 connec-
tions), DS, and PP (both 19 connections; Fig. 3).
The next following hypothesis is empty niche
(EN) with 10 connections, with all other hypothe-
ses having only up to seven connections. One
hypothesis has no connection: enemy inversion
(EI). Overall, this network has 83 connections,
and the average number of connections for a
hypothesis is 5.03 £ 4.95 (SD).

The last network we created was the joint-
mentions network B. It has 107 connections,
and the hypotheses with the highest degree cen-
trality are specialist-generalist (SG, 11 connec-
tions) and environmental heterogeneity (EVH,
10 connections; Fig. 4). Here, the average num-
ber of connections for a hypothesis is 6.45 +
2.28 (SD).

Comparing well-known with central hypotheses

When comparing the degree centrality of each
hypothesis with the number of times it was
selected by survey participants as the ones they
know best, there was no significant correlation in
the similarity—dissimilarity network shown in
Fig. 2 (Pearson’s correlation coefficient » = —0.14,
P = 0.40; Appendix S1: Fig. S5a). The same was
true for joint-mentions network B (r = 0.03,
P =0.82; Appendix S1: Fig. S5c). However, the
degree centrality was significantly correlated
with the number of times a hypothesis was
selected in joint-mentions network A (r = 0.89,
P < 0.001; Appendix S1: Fig. S5b).

DiscussioN

Well-known and central invasion hypotheses

The best-known invasion hypotheses among
the survey participants were enemy release, pro-
pagule pressure, and disturbance. As further out-
lined below, the joint-mentions network A is,
among the networks compared here, best suited
to reveal the most central hypotheses in the field.
In this network, well-known invasion hypotheses
also have a high degree centrality.

In a systematic review, Lowry et al. (2013)
demonstrated differences in the number of stud-
ies on different invasion hypotheses. Their
results cannot be easily compared to ours
because a systematic review documents the past,
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Fig. 3. The joint-mentions network A of invasion hypotheses, based on the participants’ responses which
hypotheses they know best and standardized by the number of mentions of hypotheses. The degree centrality of
a hypothesis is indicated by the size of its circle, and colors indicate different hypothesis communities.

as it covers all publications until the date when
the review was done, whereas a survey as
reported here is a snapshot of the present time
when the survey was done. Also, Lowry et al.
partly used different terms and definitions for
their hypotheses, whereas we followed and
extended Catford et al. (2009) in our terminol-
ogy. Nonetheless, the most frequently selected
hypotheses in our survey are also well investi-
gated according to Lowry et al. (2013).

The three best-known hypotheses according to
our survey and the most central ones according
to the joint-mentions network A—PP, ER, and DS
—represent important aspects of biological inva-
sions: While the propagule pressure hypothesis
represents the principal importance of human
action (humans transport propagules of inva-
ders, either intentionally or unintentionally), the
enemy release and disturbance hypotheses repre-
sent the importance of classical ecological inter-
actions: ER related to interactions with other
biota and DS related to interactions with abiotic
factors.
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Do invasion biologists already have a map or
network of invasion hypotheses in mind?

The similarity—dissimilarity network showed
that there is no clear joint map of the field of
invasion biology in the heads of people working
in this field. The range of the answers varied
widely (Appendix S1: Fig. S4), and the similar-
ity—dissimilarity network resulting from these
answers lacks a clear structure and shows ran-
dom features (Fig. 2). This visual impression is
supported by statistical comparisons of the simi-
larity—dissimilarity network with an Erdés-Rényi
(ER) random graph (Erdés and Rényi 1959) with
100 nodes and a connectivity of 0.1. The connec-
tivity in the ER graph is the probability of each
possible (undirected) link to be present. In this
completely random graph, where no other influ-
ences shape the topological features, the degree
essentially determines centrality, leading to a
high correlation of these features (and to a high
correlation of the two centralities). Fur-
thermore, the clustering coefficient and the
betweenness centrality are negatively correlated
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Fig. 4. The joint-mentions network B of invasion hypotheses, based on the participants’ responses which
hypotheses they know best and standardized by the expected numbers of joint mentions. The degree centrality
of a hypothesis is indicated by the size of its circle, and colors indicate different hypothesis communities.

(Appendix S1: Figs. S13-515). Similar patterns
were observed for the similarity—dissimilarity
network (Appendix S1: Figs. S16-518). We also
performed quantitative statistical analysis which
confirmed that both the main similarity—
dissimilarity network (Fig.2) and the one
restricted to positive connections between hypo-
theses (Appendix S1: Fig. S11) are similar to
random networks (details are provided in App-
endix S1). These analyses were not performed for
the other similarity—dissimilarity networks due
to the lower number of participants in case of the
networks for different academic degrees and the
many isolated hypotheses as well as low number
of edges in case of the network for the thresholds
2 and 8. The comparisons to random networks
suggest that we can negate our question (2)

ECOSPHERE % www.esajournals.org

above: Do invasion biologists agree on the simi-
larity or dissimilarity of hypotheses and already
have a joint map or network of invasion hypo-
theses in mind (i.e., an internal map)?

What would be a promising candidate for a map
or network of invasion hypotheses?

Detailed analyses of topological properties of
the hypotheses in the two joint-mentions net-
works lead to a remarkably detailed characteri-
zation of the role of these hypotheses. These
analyses are outlined in Appendix S1 and
revealed, for instance, interesting sub-networks
or communities characterized by a higher
number of connections within than outside the
community. The question on which the joint-
mentions networks A and B were based on was
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which hypotheses the participants know best or
work with. Hence, the probability if you work
with one of the hypotheses in a community, to
know or work with another of the same commu-
nity, is higher than for hypotheses in different
communities.

The joint-mentions network A has four com-
munities, and the four most central hypotheses
(ER, PP, DS, and EN) are these communities” cen-
tral pillars. Furthermore, each central hypothesis
and thus each community represents different
factors that can benefit an invasion: The human
factor is represented by propagule pressure (in
purple, Fig. 3), the loss of parasites and preda-
tors is represented by enemy release (in red), and
disturbances (either anthropogenic or non-
anthropogenic, in yellow) and empty niches (in
orange) are represented by the respective
hypotheses. Within the communities, there is a
variety of different hypotheses representing dif-
ferent factors for a successful invasion.

The joint-mentions network B has three com-
munities. The first one (in red, Fig. 4) contains
the hypotheses with the highest degrees, for
example, SG, EVH, and NAS; the second com-
munity (in yellow) contains hypotheses with
intermediate numbers of connections such as dis-
turbance, limiting similarity, and biotic indirect
effects; and the third community (in blue) is char-
acterized by hypotheses with a low degree cen-
trality, for example, enemy inversion, invasion
meltdown, and the tens rule. All three communi-
ties include hypotheses focusing on biotic and
abiotic factors and unlike joint-mentions network
A are not dominated by hypotheses with a great
degree. The joint-mentions network B has a
richer, more intricate structure than joint-men-
tions network A, beyond the dominance of a few
prominent nodes.

There are other important differences among
the networks. In particular, the similarity—
dissimilarity network can discriminate between
similar and contradictory hypotheses, whereas
the joint-mentions networks do not show contra-
dictions between hypotheses. Another key differ-
ence is that the similarity—dissimilarity network
is based on the direct, conscious answers of the
survey participants how similar hypotheses are,
whereas the joint-mentions networks are based
on the unconsciously given information about
the similarity of hypotheses. We argue that the
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former information could be biased due to intel-
lectual-psychological reasons or since the partici-
pants were saturated with questions when being
asked to indicate similarities between hypotheses
(these questions were asked in the middle of the
survey); being saturated or tired of questions can
lead to unreliable survey data, which could also
explain the range in the answers (Faulbaum et al.
2009). Furthermore, these questions might not
have been straightforward to answer for all sur-
vey participants. The unconsciously given infor-
mation as a response to the first survey question
does not suffer from these problems: (1) The par-
ticipants should have been more focused, as they
were not exhausted by other questions; (2) the
first question did not require any specific
knowledge of invasion hypotheses (Porst 2009).
We thus argue that the unconsciously provided
information in responding to this question is
more robust.

From this perspective, it may not surprise that
the two joint-mentions networks, which are
based on arguably more robust data, show a
clearer picture of similarities between hypotheses
than the similarity—dissimilarity network. But the
two joint-mentions networks differ: Popular
hypotheses have a higher likelihood for being
mentioned together than less popular hypothe-
ses, and the two normalizations applied for cre-
ating joint-mentions network A and B (Egs. 1, 2
above) separate popular vs. similar hypotheses.
This separation is fully achieved for joint-
mentions network B, whereas in case of joint-
mentions network A, popular hypotheses still
have higher degree centralities than other
hypotheses as illustrated in Fig. 3 (cf. Fig. 1).
This incomplete separation of popularity vs. sim-
ilarity may, however, be useful because the cen-
tral hypotheses in such networks are like big
cities on regular maps: These are the well-known
hypotheses and landmarks that many people
will look for first when inspecting the network.

Both Egs. 1, 2 seem reasonable and have pro-
ven useful, although in other fields and for other
purposes. Joint-mentions network B shows the
probability of hypotheses chosen together and so
the probability of hypotheses used together in
any situation. This network seems to be better sui-
ted to visualize the structure among the hypothe-
ses of the field such as sub-networks. Depending
on which feature is more important, one might
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choose joint-mentions network A or B. However,
more networks based on different approaches
(e.g., bibliometric analyses) are clearly needed
before making decisions about the best-suited net-
work(s) or map(s) for the field.

Future Perspectives

This study is an early step toward a fully func-
tional network of invasion hypotheses. Our
approach was based on a survey among experts
in the field. An alternative approach based on a
matrix with characteristics of hypotheses was
recently applied by Enders and Jeschke (2018),
and other approaches, for example, based on bib-
liometrics, should be explored as well.

Hypothesis networks could prove very useful
for invasion biology and—in extended versions
—for other disciplines, as it is a powerful syn-
thesis tool that provides an overview of the
hypotheses and thus the theory of the field
(Jeschke 2014). One of the main benefits of visu-
alizing similarities and dissimilarities between
hypotheses is to reduce redundancy in the field:
Such a network allows researchers to quickly
identify (1) hypotheses with different names that
represent the same, or a very similar, basic idea
or concept; and (2) hypotheses that contradict
each other. Connecting the network with a data-
base for meta-analytic approaches will also
allow identifying and discarding zombie
hypotheses (Fox 2001), so that the field can bet-
ter focus on those hypotheses that are actually
supported empirically. More generally, hypothe-
sis networks can serve as maps of research fields
and will benefit everyone interested in the topic,
not only scientists but also managers and deci-
sion-makers, teachers and their students, etc.
Such networks could be complemented with
other navigation tools, so that we do not get lost
in the myriad of concepts and hypotheses that
nowadays populate invasion biology and other
disciplines.
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