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Abstract 

Background: The Asian bush mosquito Aedes japonicus japonicus is an invasive species native to East Asia and has 
become established in North America and Europe. On both continents, the species has spread over wide areas. Since 
it is a potential vector of human and livestock pathogens, distribution and dissemination maps are urgently needed 
to implement targeted surveillance and control in case of disease outbreaks. Previous distribution models for Europe 
and Germany in particular focused on climate data. Until now, effects of other environmental variables such as land 
use and wind remained unconsidered.

Results: In order to better explain the distribution pattern of Ae. j. japonicus in Germany at a regional level, we have 
developed a nested approach that allows for the combination of data derived from (i) a climate model based on 
a machine-learning approach; (ii) a landscape model developed by means of ecological expert knowledge; and 
(iii) wind speed data. The approach is based on the fuzzy modelling technique that enables to precisely define the 
interactions between the three factors and additionally considers uncertainties with regard to the acceptance of 
certain environmental conditions. The model combines different spatial resolutions of data for Germany and achieves 
a much higher degree of accuracy than previous published distribution models. Our results reveal that a well-suited 
landscape structure can even facilitate the occurrence of Ae. j. japonicus in a climatically unsuitable region. Vice versa, 
unsuitable land use types such as agricultural landscapes and coniferous forests reduce the occurrence probability in 
climatically suitable regions.

Conclusions: The approach has significantly improved existing distribution models of Ae. j. japonicus for the area of 
Germany. We generated distribution maps with a resolution of 100 × 100 m that can serve as a basis for the design of 
control measures. All model input data and scripts are open source and freely available, so that the model can easily 
be applied to other countries or, more generally, to other species.

Keywords: Asian rock pool mosquito, Biological invasions, Climate change, Landscape interactions, Land use, 
Machine learning, Nested approach, Species distribution models, Wind speed
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Background
The Asian bush mosquito Aedes japonicus japonicus 
(Theobald, 1901) (Diptera: Culicidae), native to Japan, 
Korea, Taiwan, China and south-eastern Russia [1], is 
an invasive species of currently great importance in 

the northern hemisphere, especially within temper-
ate climatic areas, although it has also been discovered 
in subtropical and tropical regions such as Florida and 
Hawaii [2–6]. The first record of the species in Europe 
was in France in 2000. Since then, it has been detected 
in 12 European countries [7–10]. In Germany, the species 
was discovered in 2008 at the Swiss border [11]. Mean-
while, Ae. j. japonicus is widespread in the country. Its 
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main areas of distribution are in the west, southwest and 
southeast [8].

Although it has been assumed that it will be no longer 
possible to eliminate Ae. j. japonicus completely  from 
Germany by means of control measures [8], its continu-
ing spread is closely monitored because the species is a 
potential vector of disease agents of humans and live-
stock. Its vector competence includes at least 11 different 
viruses (including West Nile virus and Zika virus) and 
two filarial nematode species [12–14].

The aim of this study is to use modelling and the inte-
gration of ecological expert knowledge to generate maps 
that show the risk of colonisation with Ae. j. japonicus in 
Germany as accurately and detailed as possible. The maps 
should (i) be suitable for informing the public to support 
preventive measures and initiate targeted control meas-
ures in the event of a disease outbreak for whose agent 
Ae. j. japonicus is a competent vector and (ii) assess how 
the species will spread under the influence of climate 
change.

Distribution models for Ae. j. japonicus already exist 
for Europe [15] and, more specifically, for Germany [16, 
17] and Slovenia [7]. They rely on climate data such as 
precipitation sums and average monthly and seasonal 
temperatures with a resolution of 1 × 1 km to 10 × 10 km, 
and partly on elevation data [7]. As these distribution 
models score well in their validation, it can be con-
cluded that climatic factors are relevant for the species to 
become established in a region. However, the distribution 
maps derived from climate models are not suitable for 
planning concrete control measures due to their usually 
broad scale. It should also be noted that recently intro-
duced species may not yet be in equilibrium with their 
environment, so that the ecological niche determined by 
machine learning is often calculated too narrowly [15]. 
In addition, the occurrence of mosquitoes is strongly 
dependent on local weather events, which can sometimes 
deviate dramatically from average climatic conditions.

On a smaller scale, the occurrence of certain mos-
quito species can be predicted using landscape data (see 
for example [18–20]). Landscape data are an indicator 
of the occurrence of breeding sites for which each mos-
quito species has its own requirements. Egg deposition 
and larval development of the Asian bush mosquito take 
place in small containers, both in natural habitats, such 
as stream rock pools and tree holes of deciduous trees 
[1], and in artificial containers like plant dishes, rainwater 
catchments and trash cans, the latter particularly often 
being available in human settlements [11, 21–23]. The 
landscape does not only affect egg deposition and larval 
development. It can, for instance, also be correlated with 
the occurrence of blood hosts and predators. Besides 
climate and landscape (including land use and further 

landscape elements), we found that regional mean wind 
speeds also seem to have an important influence on the 
presence of Ae. j. japonicus.

Based on the assumption that the three factors “cli-
mate”, “landscape” and “wind” mainly determine the pos-
sible distribution of the species, the question arises with 
which model type the interaction of the corresponding 
geodata can be expressed. Requirements for implemen-
tation were that (i) it is comprehensible to biologists; (ii) 
it allows uncertainties; and (iii) the interplay of the fac-
tors can be controlled by the modeller. The first point is 
important as ecological knowledge about Ae. j. japonicus 
is incomplete. As soon as new results from ecological 
studies emerge, the model can be adapted. The second 
requirement results from the fact that biological expert 
knowledge is often expressed by use of linguistic terms 
instead of exact numbers, which in turn is mainly due to 
the fact that individuals within a species show a variabil-
ity with regard to the acceptance of certain environmen-
tal conditions.

The fuzzy modelling technique meets all the mentioned 
criteria. It is a white box modelling approach that allows 
for the integration of biological expert knowledge [24] 
and enables the influence of each input variable on the 
model to be tracked and easily understood by biologists 
without an informatics background. The fuzzy approach 
[25] can deal with uncertainties and is ideal for habitat 
models, as its basic idea is that assignments do not always 
have to follow Boolean principles, but that there is often 
a degree of membership. For a habitat model, each envi-
ronmental variable that is relevant to the species can be 
divided into fuzzy sets, which are given a name, a so-
called linguistic term. For example, if the environmental 
variable is “wind speed”, it could be divided into the fuzzy 
sets “comfortable” (unrestricted flight capability), “high” 
(causing moderate flight restrictions) and “too high” 
(causing strong flight restrictions). By means of member-
ship functions, values are assigned to the sets with every 
value having degrees of membership to the sets on a per-
centage scale. The interplay of environmental variables 
and their different states can be directly controlled by the 
modeller with the help of rules.

There are already numerous studies on the ecology of 
the Asian bush mosquito available, and fuzzy modelling 
is an established method in ecological niche modelling 
(see e.g. [26–28]). Our particular research questions were 
therefore (i) whether fuzzy modelling allows to combine 
models developed on the basis of machine learning (a 
climate model), expert knowledge (a landscape model) 
and additional important data (wind) in such a way that 
more accurate predictions can be achieved compared to 
the initial models (landscape only and climate only), and 
(ii) whether, despite the originally different resolutions 
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of the input data (100 × 100  m, 200 × 200  m and 
1000 × 1000  m), the outcome, calculated for the finest 
scale, performs better in the validation than that of the 
most detailed input model (landscape). As the novelty of 
the approach is the combination of local landscape and 
wind data with large scale mean climate data by means 
of fuzzy logic, as well as the interplay of ecological expert 
knowledge and the power of machine learning, we call 
the approach hereafter a nested approach.

Methods
Habitat requirements and selection of model input 
parameters
For the selection of input data of the fuzzy model, and 
especially for the development of the landscape model 
on which the fuzzy model is partly based, both ecological 
characteristics of the species as well as generally favour-
able conditions for the occurrence of mosquitoes were 
considered. To improve our understanding of the species 
and its potential habitats in the study area we reviewed 
the literature, talked to other mosquito specialists and 
statistically assessed various geodata and satellite images 
of Germany. A summary of the habitat requirements is 
presented here in order to understand the setup of the 
model.

Habitat choice of mosquitoes is basically driven by the 
availability of suitable breeding sites for egg deposition 
and larval development. Ae. j. japonicus uses small breed-
ing habitats and naturally occurs in stream rock pools, 
kinked bamboo trunks and tree holes of deciduous trees 
[1]. It can also be found in human settlements, where 
the larvae develop in small artificial containers, includ-
ing plant dishes, buckets, trash cans, discarded snack 
bags, rainwater catchments, fountains and used tires 
[11, 21–23]. Shade is also beneficial for both larvae and 
adults of the species as it minimises the risk of breed-
ing site evaporation and desiccation and provides resting 
places during hot days [2, 22, 29]. The general availabil-
ity of plants, flowers and fruits is important for mosquito 
adults, as they feed on plant juices and nectar. Organic 
material such as leaf litter and pollen is equally impor-
tant for the larvae, as they feed on detritus and bacteria 
[22, 30, 31]. For egg production, female mosquitoes need 
proteinaceous blood meals. Ae. j. japonicus females were 
observed to feed on mammals (such as white-tailed deer, 
fallow deer, horses and humans) and birds, but not on 
amphibians or reptilians [11, 32, 33].

Regarding the parameter terrain height, we find a nega-
tive correlation of Ae. j. japonicus occurrence with height 
by intersecting collection data with an elevation map 
(25 × 25  m resolution) and by considering small areas 
(about 10 × 10  km), which confirms findings of a study 
in Japan [29]. It seems that Ae. j. japonicus prefers valleys 

over higher altitudes. When looking at the area of Ger-
many, however, there is no relationship between eleva-
tion and the occurrence of the mosquito. As land use and 
climate, which sometimes correlate with height, did not 
explain the observed distribution pattern, we suspect that 
the correlations for smaller areas are rather due to wind 
speed.

To our knowledge, no study exists about how the 
behaviour and distribution of Ae. j. japonicus are affected 
by wind. However, the flight activity of haematophagous 
insects can be greatly influenced by wind, and females of 
most mosquito species drastically reduce host-seeking 
flights when wind speeds are greater than about 3 km/h 
(0.83  m/s) [34]. Some mosquito species have been 
observed to fly close to the ground and to cling to the 
vegetation above certain wind speeds, e.g. Aedes albop-
ictus [35]. In fact, wind speed affecting the mosquito 
flight behaviour is known to be species-specific (the wind 
speed threshold at which mosquitoes stop flying was 
reported to be between 3 km/h (0.83 m/s) for species in 
central Alaska and 29 km/h (8.06 m/s) for Canadian sub-
arctic species [34]), and thus could serve as an indicator 
to describe the ecological niche of a species.

Data
Species distribution data
Species collection data were relevant for the model to 
analyse and select environmental input data (to complete 
our understanding of the ecological dependencies) as 
well as to evaluate the model. They were derived from the 
German mosquito database “CULBASE” [36], which con-
tains data from active and passive mosquito monitoring 
approaches. The passive monitoring data originate from 
the citizen science project “Mueckenatlas” [37] and the 
active monitoring data from inspections of regions and 
their adjacent areas from which invasive mosquito spe-
cies were submitted. In the latter case, possible breeding 
habitats were screened for larvae, and traps were set up 
in some cases [37]. At the time of download (10 April 
2018), the database included 1110 records of Ae. j. japoni-
cus sampling sites from 2012–2017, 79% of them linked 
to passive monitoring. The distribution of the species in 
Germany regarding to this update is shown in Fig. 1.

Model input data and transformations
The fuzzy model is based on three submodels that pro-
cess appropriate geodata (climate data, land use data and 
wind data). To integrate all datasets into the model, they 
were pre-processed in several steps and harmonised in 
terms of file type, coordinate system, grid cell resolution 
and raster alignment (Fig. 2). Finally, the model input data 
were saved as grid files with a resolution of 100 × 100 m 
in the coordinate system DHDN Gauss-Kruger-Zone 
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3 (EPSG 31467). Data processing was done with the 
GDAL (1.11.3) library and Python (2.7). Additionally, the 
GRASS GIS tool “r.resample” was used to calculate the 
grid orientations.

Climate data
A dataset based on the approach by Früh et al. [17] was 
included into the fuzzy model. It defines the climate suit-
ability of Ae. j. japonicus as values between zero and one, 
within Germany depending on climate variables accord-
ing to Wieland et  al. [38]. The underlying data have a 
resolution of 1 × 1 km and are derived from the German 
Weather Service [39]. They include the monthly pre-
cipitation sums of February, April and June, the autumn 
(average of September, October and November) drought 
index, the average monthly temperatures of September, 
October and December, and the average seasonal tem-
perature of spring (average of March, April and May). 
The model is based on a support vector machine [40] as a 
training algorithm that distinguishes the climate niche of 
Ae. j. japonicus from the niche of three mosquito species 

native to Germany (Aedes vexans, Aedes geniculatus and 
Anopheles daciae).

To transform the climate model trained for the period 
2012–2014 into a long-term climate model, a calibration 
was performed with mean climate data for the period 
of 1981–2010 (most recent international climate refer-
ence period) and an updated set of field collection data 
from 2012–2017. Ten percent of the collection data 
was reserved for k-fold cross validation. Additionally, 
we changed the data scaling before starting the training 
and calculated it by Eq. 1, with x being the input and s(x) 
being the scale(x):

To forecast the future distribution of Ae. j. japonicus 
until 2050, we changed the input variables of the cli-
mate model according to the average of several IPCC 
climate change scenarios from the ATEAM project 
(HadCM3 SA1, HadCM3 SA2, HadCM3 SB1, HadCM3 
SB2, CGCM2 SA2, CSIRO2 SA2 and PCM SA2) [41] and 
reapplied it. On average, summer temperature increased 
by 1.4 K, summer precipitation declined by 4%, and win-
ter precipitation increased by 5%.

Land use data
Land use data were derived from satellite image interpre-
tations from the CORINE Land Cover database [42] and 
the ATKIS vector data from the State Survey Authority 
[43]. The satellite image interpretations (Europe-wide 
dataset) had a resolution of 100 × 100  m and included 
44 different land use types. From the ATKIS data, we 
extracted additional datasets that were relevant for the 
occurrence of the species. The vector data were gridded 
by assigning a 100 × 100  m grid cell from 51% fill level 
onwards. Considering the habitat requirements of the 
species, we assigned suitability values between zero (no 
suitability) and one (very good suitability) for each type 
of land use (Tables 1, 2).

Landscapes were classified as completely unsuitable if 
they either did not meet the known habitat requirements, 
as is the case with non-irrigated arable land and sparsely 
vegetated areas (because of their lack of shade and breed-
ing sites), or with large open waters (which do not serve 
as breeding sites inter alia due to the presence of preda-
tors), or if they simply have not been reported to be 
appropriate habitats for Ae. j. japonicus. The latter applies 
to moors and heathland, beaches and dunes, glaciers and 
places with perpetual snow, marshes, and peat bogs.

Land use types and landscape structures that we 
assumed to be particularly suitable and that have been 

(1)

s(x) =
x − x̄

σ 2
; x̄ = mean(x); σ 2

= variance(x)

Fig. 1 Collection sites of Aedes japonicus japonicus in Germany. The 
collection sites (n = 1110) are indicated as black dots and include 
samplings from the years 2012–2017. The geodata of Germany 
originate from the Bundesamt für Kartografie und Geodäsie [58]
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reported to be hot spot occurrence areas included: (i) 
broad-leaved and mixed forests (due to the availability 
of shade and resting sites); (ii) green urban areas; (iii) 
sport and leisure facilities; (iv) harbours (the last three 
mentioned due to their diverse habitat structure and 
the availability of breeding sites in the form of trash); (v) 
cemeteries (both due to the flower vase density and the 
abundance of flowers whose nectar serves as food, and 
because of its structural diversity including shady rest-
ing sites [44]); (vi) gardens (due to the availability of small 
water-filled containers such as rain barrels and flower 
pots and a similar landscape structure as cemeteries); 
(vii) zoological gardens (due to the high abundance of 
blood-feeding hosts, animal drinking stations that could 
function as breeding sites, and their diverse park-like 
landscapes [45]); and (viii) garden centres (where plenty 
of nectar and water-filled flower pots are available).

The CORINE and ATKIS suitability arrays were com-
bined, overwriting the CORINE data with the higher-
resolution, selected ATKIS data when available. We 
considered the interactions of neighbouring landscape 
elements by applying the sliding (or moving) window 
technology [46, 47]. The sliding window calculates the 
mean value for each grid cell and its surrounding cells 
within a certain distance. This leads to the result that 
highly rated cells in the neighbourhood of poorly rated 
cells become less highly rated and cells with origi-
nally low suitability can get upgraded by a very suitable 
neighbourhood. We tested sliding windows with sizes 
of 100 × 100 m to 1100 × 1100 m (100 m corresponds to 
one raster cell) at a stepwise enlargement by 200 m edge 
length each, because the window required an uneven 
pixel number. Then we intersected the outcome with the 
Ae. j. japonicus occurrence data and chose the window 

Fig. 2 Input data of the fuzzy model and steps of pre-processing
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with 700 m edge length, which best described the natu-
ral distribution of the species, supposing that a succes-
sive increase of findings should be given with increasing 
degrees of landscape suitability. The resulting array, con-
taining the suitability values from zero to one, was used 
as model input.

Wind data
Wind data were provided by the Climate Data Centre of 
the German Weather Service [39] and downloaded for 
the most recent international climate reference period of 
1981–2010. They have a resolution of 200 × 200  m and 
rely on a statistical wind field model, which considers 
measurements 10 m above the ground as well as the geo-
graphical location, terrain and type of land use. The data 
are represented by continuous real values.

Fuzzy rule‑based modelling
For each input dataset (climate suitability, wind speed 
and landscape suitability), we defined fuzzy sets by 
giving membership functions to linguistic terms, e.g. 
“wind speed is comfortable”, “wind speed is high” or 
“wind speed is too high” (Fig.  3). The membership 
functions were derived from statistical analyses with 
the Ae. j. japonicus occurrence data and the input 
raster maps of the model. We set nine thresholds to 
define occurrence probability values for the model 

Table 1 CORINE land use data. Suitability of land use types for the occurrence of Aedes j. japonicus with the attributes being derived 
from the CORINE Land Cover dataset

No. CORINE land use category Degree 
of suitability (from 
0 to 1)

Percentual area 
of Germany

No. CORINE land use category Degree 
of suitability (from 
0 to 1)

Percentual 
area 
of Germany

1 Continuous urban fabric 0.2 0.04 23 Broad-leaved forest 0.9 9.73

2 Discontinuous urban fabric 1 6.91 24 Coniferous forest 0.1 16.57

3 Industrial or commercial units 0.2 1.38 25 Mixed forest 0.8 4.08

4 Road and rail networks and associ-
ated land

0.5 0.06 26 Natural grasslands 0 0.42

5 Port areas 0.8 0.02 27 Moors and heathland 0 0.27

6 Airports 0.2 0.11 28 Sclerophyllous vegetation – –

7 Mineral extraction sites 0 0.20 29 Transitional woodland-shrub 0.6 0.63

8 Dump sites 0.2 0.04 30 Beaches, dunes, sands 0 0.03

9 Construction sites 0.3 0.01 31 Bare rocks 0.1 0.04

10 Green urban areas 1 0.20 32 Sparsely vegetated areas 0 0.03

11 Sport and leisure facilities 1 0.45 33 Burnt areas – –

12 Non-irrigated arable land 0 37.92 34 Glaciers and perpetual snow 0 3.63

13 Permanently irrigated land – – 35 Inland marshes 0 0.09

14 Rice fields – – 36 Peat bogs 0 0.21

15 Vineyards 0.1 0.35 37 Salt marshes 0 0.05

16 Fruit trees and berry plantations 0.3 0.42 38 Salines – –

17 Olive groves – – 39 Intertidal flats 0 0.05

18 Pastures 0.2 17.98 40 Water courses 0 0.21

19 Annual crops associated with 
permanent crops

– – 41 Water bodies 0 0.89

20 Complex cultivation patterns 0.1 0.20 42 Coastal lagoons 0 0.05

21 Land principally occupied by 
agriculture, with significant areas 
of natural vegetation

0.2 0.27 43 Estuaries 0 0.03

22 Agro-forestry areas – – 44 Sea and ocean 0 0.06

Table 2 ATKIS land use data. Suitability of land use types 
for the occurrence of Aedes j. japonicus with the attributes being 
derived from the ATKIS dataset

ATKIS object category Degree of suitability 
(from 0 to 1)

Percentual area 
of Germany

Cemeteries 1 0.11

Landfill sites 0.2 0.05

Garden centres 1 0.05

Gardens 1 0.37

Zoological gardens 1 0.01
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output (Fig.  4). The value ‘bbbb’ represents the low-
est occurrence probability (‘b’ for ‘bad’), ‘m’ a medium 
occurrence probability and ‘gggg’ the highest occur-
rence probability (‘g’ for ‘good’). In the next step, we 
defined the fuzzy rules (Table 3).

Software and implementation
The tool Samt2Fuzzy from the software SAMT2 
[48, 49] was used for implementing the fuzzy model. 
After applying the model, an output raster was cre-
ated and saved as grid file using Python 2.7. The cal-
culation time for one model application was 20.25 min 
on a computer with an Intel Xeon CPU E5-1620 v2 
(3.70  GHz) processor under Ubuntu 16.04 (xenial). 
Detailed maps were generated with QGIS 2.14.

Results
Results of input models
Of the three input variables of the model (Fig.  5), two 
were based on submodels: landscape suitability and cli-
mate suitability. The climate model calculated for the 
actual weather conditions (1981–2010) reached an accu-
racy of 84.13% under 40-fold repeated trainings with a 
standard deviation of 1.22%. The intersections of the cli-
mate map with the occurrence points of Ae. j. japonicus 
yielded a median prediction value of 0.78 (mean 0.68).

For the landscape suitability model, the sliding win-
dow script was applied after assigning the suitability 
values for each land use type. The question arose how 
big the window had to be. An application for the num-
ber of seven pixels (corresponding to 700 m) turned out 
to be the most suitable distance measure. As shown in 
Fig. 6, the land use probabilities at the observed occur-
rence points of Ae. j. japonicus in Germany changed 
from a bimodal distribution to a unimodal left-skewed 
distribution, which better reproduces the real envi-
ronmental conditions. When the number of pixels was 
increased to nine, the curve became bell-shaped and 
thus inappropriate for representing the relationship of 
landscape suitability and the number of species sam-
plings. Figure  7 shows a section of the resulting land 
use dataset and how it developed by applying the slid-
ing window technique. Intersecting the outcome of the 

Fig. 3 Membership functions of the fuzzy model

Fig. 4 Output definitions of the fuzzy model
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landscape suitability model with the Ae. j. japonicus 
occurrence data gave a median prediction value of 0.75 
(mean 0.71).

The membership functions of the fuzzy model 
defined for each input dataset (landscape suitability, 
climate suitability and mean annual wind speed) were 
derived from statistics that compare the distribution 
of the values over the entire area of Germany with 
the distributions at the sites where the mosquito spe-
cies occurs (Fig. 8). For all parameters, the distribution 
curves at the sites of discovery clearly differed from the 
distributions over the entire area of Germany. Strik-
ingly, Ae. j. japonicus was not shown to occur in regions 
of Germany characterised by wind speeds higher than 
4.7  m/s. Therefore, special attention was paid to the 
input variable ‘wind’ when defining the fuzzy rules 
(Table 3). At average wind speeds of 3.7 m/s, the suit-
ability for the occurrence of Ae. j. japonicus is already 
significantly reduced according to the model and at 
an average wind speed of 4.7  m/s, the model reduces 
habitat suitability to a maximum of 25%. Figure 9 dis-
plays the consequences of the fuzzy rule definitions on 
a metric scale.

Results of the fuzzy model
Our results (Fig.  10) provide a very detailed picture 
of how the Asian bush mosquito could spread under 
current and future climatic conditions. The predic-
tion maps for both actual and future conditions reveal 
that urban areas are generally suitable for occurrence. 
Under current climatic conditions, the largest areas 
suitable for the mosquito are to be found in central 
to southwestern Germany. In southeastern Germany, 
appropriate areas will steadily expand under future cli-
matic conditions. The coastal north, the generally more 
northern plains and parts of the alpine mountains in 
the south seem consistently unsuitable for the estab-
lishment of the species. Also remarkable is that highly 
suitable conditions are predicted for regions that are 
inappropriate according to the climate model input; 
at the same time, unsuitable conditions are predicted 
inside climatically suitable regions, e.g. in the south-
western part of the country.

Table 3 Linguistic fuzzy rules

Premises Conclusion

If the suitability 
of landscape is…

And 
if the wind 
speed is…

And 
if the suitability 
of climate is…

Then (linguistic)

low comfortable bad bbbb

low comfortable medium bad bbb

low comfortable medium good bb

low comfortable good b

low high bad bbbb

low high medium bad bbbb

low high medium good bbb

low high good bbb

low too high bad bbbb

low too high medium bad bbbb

low too high medium good bbbb

low too high good bbb

medium low comfortable bad bb

medium low comfortable medium bad b

medium low comfortable medium good m

medium low comfortable good g

medium low high bad bbb

medium low high medium bad bb

medium low high medium good m

medium low high good m

medium low too high bad bbbb

medium low too high medium bad bbbb

medium low too high medium good bbb

medium low too high good bbb

medium high comfortable bad m

medium high comfortable medium bad gg

medium high comfortable medium good ggg

medium high comfortable good gggg

medium high high bad bb

medium high high medium bad m

medium high high medium good g

medium high high good gg

medium high too high bad bbbb

medium high too high medium bad bbb

medium high too high medium good bb

medium high too high good bb

high comfortable bad m

high comfortable medium bad gg

high comfortable medium good gggg

high comfortable good gggg

high high bad bb

high high medium bad m

high high medium good gg

high high good ggg

high too high bad bbbb

high too high medium bad bbb

high too high medium good bb

Table 3 (continued)

Premises Conclusion

If the suitability 
of landscape is…

And 
if the wind 
speed is…

And 
if the suitability 
of climate is…

Then (linguistic)

high too high good bb
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Evaluation of the fuzzy model
In the application of the fuzzy model to the climati-
cally suitable areas of the years 1981–2010, the pre-
dictive values, ranging from 0 to 1.0, at the validation 
points (n = 1110) show a dominance of 1.0 values and a 
strongly left-skewed distribution (Fig.  11). Comparing 
the fit values of the fuzzy model with those of the input 

models of landscape suitability and climate suitability 
(Fig. 12), it becomes clear that the fuzzy model explains 
the occurrence of the species significantly better than 
the input models. The ‘exactness’ after Früh et  al. [17] 
(average prediction value at all validation points) is 0.86. 
Small occurrence probabilities with a maximum value 
of 0.5 still accounted for 10% of the predictive values at 

a b c

Fig. 5 Model input data. Landscape suitability (a), mean wind speed in the period 1981–2010 (b), and climate suitability for the periods 1981–2010 
(left) and 2021–2050 (right) (c). The geodata of Germany originate from the Bundesamt für Kartografie und Geodäsie [58] 

a b

Fig. 6 Procedure for selecting the pixel size of the sliding window. Occurrence probabilities at the collection sites of Aedes japonicus japonicus in 
Germany (1110 samplings), depending on the pre-processed land use data before applying the sliding window technique to the data (a) and after 
applying the technique with 700 m as a distance parameter (b)



Page 10 of 17Kerkow et al. Parasites Vectors          (2019) 12:106 

the validation points (Fig.  12), yielding a model selec-
tivity [17] of 0.85 (‘selectivity’ considers the threshold 
prediction value at 10% of the lowest predictions at the 
species collection sites, and reflects the percentage size 
of the area of Germany that remains unsuitable at this 
threshold.). 

Discussion
Model validation
The fuzzy model scored very well in the valida-
tion regarding the analysis of the species collec-
tion sites. Compared to the climate models based on 

combinations of different machine learning methods 
[17], the fuzzy model achieved a significantly higher 
value of exactness (0.86 compared to 0.63–0.65) and 
selectivity (0.85 compared to 0.63–0.67), while provid-
ing a ten times higher model resolution (only the three 
best results of the mentioned study were used for com-
parison). The better performance of our model can 
be partly explained by the calibration of the climate 
model, with a larger set of occurrence data being used 
for training (data for the years 2015–2017 were addi-
tionally used, but not those from 2011 which were only 
few). However, the calibrated climate model scored 

a b

c d

Fig. 7 Illustration of the effect of the sliding window on the data. Image section from Germany-wide datasets of land use data in the area of Berlin. 
a Outline map. b Aerial photographs of the section (Senatsverwaltung für Stadtentwicklung und Wohnen Berlin, 2016). c, d Land use suitability 
maps based on the CORINE and ATKIS land use data before (c) and after (d) the application of the sliding window technique. These maps illustrate 
the model input factor “landscape suitability” on a large scale. A random area in the city of Berlin was chosen, where aerial photographs [59] can 
be freely utilised. The area mainly consists of continuous and discontinuous urban fabric, road and rail networks and associated land, green urban 
areas, gardens and water bodies. The outline map for the area of Berlin originates from geodata of the Bundesamt für Kartografie und Geodäsie [58]
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Fig. 8 Analyses that helped define the fuzzy membership functions. Histograms showing for each input raster array (landscape suitability, climate 
suitability and mean wind speed) the distribution of values at the field collection sites (black line) compared to the distribution of values of the 
input raster arrays (red line)

Fig. 9 Illustration of the influence of wind speed in the model. Outputs of the fuzzy model according to wind speeds of 3 m/s (a) and 5 m/s (b). 
The different scales of both graphs illustrate the strong influence of the model input parameter ‘wind’
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only slightly better in the validation, the exactness 
improved by 5–7% while the data resolution remained 
unchanged.

We did not calculate the standard model quality 
parameter of AUC (area under the curve [50]) due 
to the lack of true absence data in our study. We also 
decided to not generate any pseudo-absence data for 
evaluating the model, as such data have a high degree 
of uncertainty caused by the methodology of collect-
ing the model species [50]. In our case, the collection 
data are especially unsuitable for identifying unsuit-
able land use types, as 79% of the validation data origi-
nate from the citizen science project “Mueckenatlas”, 
hence the collections are mostly derived from densely 
populated regions. By contrast, data from the active 
collections came from deliberately selected sites, in 
particular cemeteries and private gardens. Forested 
and agricultural regions are, however, underrepre-
sented in the collection data.

Advantages and disadvantages of the fuzzy model 
approach
The dependence of the Ae. j. japonicus findings on the 
monitoring method was a strong argument for using a 

modelling technique that can be directly controlled by 
the modeller and that is not based on machine learning 
algorithms. Therefore, we chose the method of fuzzy 
modelling where biological expert knowledge and field 
observations could be integrated into the model. The 
logical approach made the model robust against the dis-
covery of dependencies not existent in reality (e.g. sig-
nificantly more individuals of the species occur in less 
densely populated areas than the monitoring data con-
firm, but this has no effect on the model). The approach, 
however, also contained sources of error because we 
were dependent on the availability of biological knowl-
edge about this species which is still incomplete. It is 
also possible that we misjudged the importance of cer-
tain environmental requirements of Ae. j. japonicus or, 
based on the areas investigated, developed a subjective 
impression of possible landscape suitability, which was 
incorrect or not applicable throughout Germany (see 
subsection “Input data” below).

Input data
The process of creating the dataset of landscape suit-
ability was challenging, mainly because some ecologi-
cal characteristics of Ae. j. japonicus have not yet been 

a b

Fig. 10 Results of model applications for current and future climate conditions. Occurrence probability of Aedes japonicus japonicus, depending on 
our fuzzy model approach applied for climate conditions of the period 1981–2010 (a) and the prediction of future climate conditions of the period 
2021–2050 (b). Projection: Gauss-Krüger zone 3. The geodata of Germany originate from the Bundesamt für Kartografie und Geodäsie [58]
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determined. This led to uncertainties in the alloca-
tion of suitability values for some forms of land use 
(Tables  1, 2). Major uncertainties concerned human 
settlements and coniferous forests. Regarding human 
settlements, we have not differentiated between urban 
and rural settlements. This differs from studies in 
which significantly more individuals of Ae. j. japonicus 
were found in rural areas compared to urban areas [22, 
51]. However, this observation cannot be confirmed 
for Germany. A large number of collection data linked 
to the citizen science project “Mueckenatlas” was 
obtained from both rural and urban areas; only centres 
of larger cities seemed hardly populated. Gardens and 
discontinuous urban fabrics therefore received a suit-
ability value of 1.0 on a scale between 0 and 1, while a 
low value of 0.2 was allocated to the category of con-
tinuous urban fabric. A residential dataset specifically 
for rural areas was not integrated into the landscape 
model.

Also for coniferous forests, little information is avail-
able about the habitat suitability for Ae. j. japonicus. The 

biologists among us had different experiences. For exam-
ple, some observed little to no larvae of the species in 
coniferous forests within their distribution areas in Ger-
many. If containers (small clay pots) were made available, 
however, these were colonised. They also reported that 
larvae usually do not occur in flower vases in populated 
cemeteries under certain coniferous species, while they 
can be found under deciduous trees. This is probably 
because substances in the needles of various species (ter-
penes and oil) can be detrimental for larvae and pupae 
of mosquitoes [52, 53]. Therefore, and also because it is 
unusual that conifers provide cavities that can fill with 
water compared to deciduous trees [54, 55], we have 
assigned a low suitability value (0.2) to coniferous forests.

The distance at which land use types influence each 
other in terms of the potential occurrence of the species 
has also not yet been widely investigated by biologists. In 
repeated applications of the sliding window (for the crea-
tion of the landscape suitability input map) with differ-
ent window sizes, the most plausible results were shown 
for a size of 700 × 700 m, which corresponds to a radius 

a b

c d

Fig. 11 Model evaluation. Calculated probability and suitability for the occurrence of Aedes japonicus japonicus at the field sampling sites according 
to the fuzzy model application for 1981–2010 (a), the climate model for 1981–2010 (b) and the landscape model (c). The wind histogram (d) 
demonstrates the mean annual wind speeds for 1981–2010 at the sampling sites. The species sampling data are from the years 2012–2017 
(database update 10 April 2018, number of collections = 1110)
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of around 350 m when looking at the central pixel of the 
window. Our finding roughly corresponds to the results 
of flight distance studies of mosquitoes, as summa-
rised by Verdonschot and Besse-Lototskaya [56]. These 
authors showed that, although the maximum flight dis-
tance of an individual of the species can be up to 1600 m, 
the mean flight distance, measured by mark-recapture 
experiments, within the genus Aedes is only 89  m with 
a standard deviation of 50  m (to our knowledge, there 
is no information about the mean flight distance of Ae. 
j. japonicus). Also of interest are calculations of the per-
centual reduction of the number of mosquitoes with 
increasing distance when an inhospitable buffer zone is 
established. Aedes albopictus, which is also a container-
breeding species in settlements and has similar host 
preferences, would be reduced by 99% for a 617 m wide 
barrier, 90% for a 347 m wide barrier and 70% for a 97 m 
wide barrier [56].

Another reason why the creation of the landscape suit-
ability dataset was challenging was due to difficulties in 
data acquisition. It is possible that the age structure of 
deciduous trees could also be taken into account into the 
landscape model, since young deciduous trees have fewer 
tree holes than older trees. However, since such a dataset 
is not available for Germany, we were not able to evalu-
ate this aspect and integrate it into the landscape model. 
Another problem caused by the availability of geodata 
was the combination of berry fruit and fruit tree plan-
tations. This category of land use was derived from the 

CORINE dataset and is problematic, as fruit tree plan-
tations are probably well suited and berry shrub planta-
tions clearly poorly suited habitats for Ae. j. japonicus. 
We have given this category a rather low value of land-
scape suitability (0.3 within a range of 0 to 1) as there are 
yet no particular occurrence reports of Ae. j. japonicus 
from within fruit tree plantations (where pesticide appli-
cation might also have a negative effect on the develop-
ment of mosquitoes). With an additional effort, the two 
types of land use could be separated from each other to 
improve the model, e.g. by satellite image analysis. How-
ever, fruit tree and berry plantations cover less than 0.5% 
of the total area of Germany, so the unfavourable combi-
nation of both forms of land use into one category is not 
expected to reduce the quality of the model significantly.

Wind as a model input is an interesting novelty com-
pared to previously published climate models for the 
occurrence of Ae. j. japonicus [7, 15–17]. This factor 
significantly improves the model. However, it is also a 
parameter that is dependent on land use. Wind data for 
Germany are also not exclusively based on measurements 
but partly on a model that takes into account land use as 
well as terrain elevation and geographical location. The 
data relate to 10 m above ground level, but a wind speed 
map related to a maximum of 5 m above ground would 
be preferable for our purposes.

The climate model that served as input for this 
approach shows similar results to other climate models 
for the occurrence of Ae. j. japonicus in Germany under 
current climatic conditions [15, 16]. Under future condi-
tions, however, the results from [15] differ significantly 
from ours: a general reduction of suitable areas is pre-
dicted, while our forecast indicates a continuing high 
availability of suitable areas in Germany, only with par-
tially shifted central areas. The difference is probably due 
to the use of different climate variables and training data 
of Ae. j. japonicus as well as to the application of differ-
ent modelling approaches. Generally, the estimation of 
the effects of climate change on the potential distribution 
of the species is very vague in all approaches, since no 
regional effects have been considered and the forecasts 
of precipitation development in Germany vary consider-
ably. Precipitation, however, is of particular importance 
for container-breeding mosquito species.

Concerning the result of the fuzzy model for the prob-
able future conditions of the years 2021–2050 (Fig. 10b) 
one has to be aware that the aspect of land use change, 
which in turn might have an influence on wind condi-
tions, is not considered.

Fuzzy rules
The model applications show highly suitable occurrence 
areas in climatically unsuitable regions, especially in 

Fig. 12 Evaluation of the fuzzy model in comparison to the 
underlying models. Cumulative gain chart showing the calculated 
occurrence probabilities at Aedes japonicus japonicus field sampling 
sites. The occurrence probabilities are derived from the application 
of the fuzzy model for the period 1981–2010 (black line) and, for 
comparison, from the fuzzy model inputs “landscape suitability” (dark 
grey line) and “climate suitability”, depending on the application of 
the climate model for the same time period (light grey line). The 
species sampling data are from the years 2012–2017 (database 
update 10 April 2018, number of collections = 1110)
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densely populated areas. This is due to the fuzzy rules we 
have established based on the assumption that an unsuit-
able climate can partially compensate for a very suitable 
form of land use. We founded this assumption on the 
fact that the climate model, which served as input to the 
fuzzy model, had a high proportion of precipitation vari-
ables on all climate parameters, and the climate model 
classified areas with low precipitation as unsuitable. This 
is correct for calculating the climatically suitable regions 
for Ae. j. japonicus in Germany, as the species is relatively 
tolerant to different temperature conditions considering 
its ecological adaptations to cold regions as well as its 
occurrence in subtropical to tropical regions (Florida [6], 
Hawaii [51]) and the Mediterranean region (Spain [10]), 
in addition to its predominance in cool temperate zones.

However, certain types of land use can compensate for 
the lack of precipitation, e.g. in residential areas and gar-
dens it can be assumed that people regularly refill flower 
pots, that rain water barrels and wells are available or 
that there are irrigation systems. In forested areas, cool 
air and limited insolation can reduce evaporation, which 
means that the water in tree cavities probably lasts longer 
than in other water containers.

Conversely, we assumed that an unsuitable land use 
type can only marginally be outweighed by a suitable 
climate in our model, as the absence of certain habitat 
characteristics make the occurrence of the species con-
siderably more unlikely. For example, there are no breed-
ing and shady resting sites on pastures, which cannot be 
compensated for by an appropriate climate.

The fuzzy model could be further improved by train-
ing procedures as for example applied in Wieland and 
Mirschel [57]. Another important step would be to build 
a model that considers the propagation paths and inva-
sion speeds of Ae. j. japonicus. Simulation applications 
are presently being planned for this purpose.

Conclusions
The paper introduces a nested approach to model the 
habitat suitability of invasive mosquito species (here 
Aedes japonicus japonicus in Germany). The first step 
of the approach is to model the habitat suitability with 
respect to climate variables using machine learning. 
The second step is the development of a model that 
considers regional influences such as land use and the 
availability of specific landscape elements. For this pur-
pose, the integration of expert knowledge has proven 
to be useful. In a final step, these models and any fur-
ther relevant data can be logically combined by means 
of fuzzy modelling. The nested approach has proven to 
be very effective in this study. We were able to gener-
ate potential distribution maps with a high prediction 

accuracy and spatial resolution of 100 × 100  m, which 
could serve as a basis for the conceptual design of con-
trol measures in the event of a disease outbreak mainly 
caused by the vector activity of Ae. j. japonicus. The 
combination of all parameters could better explain the 
distribution pattern of the species in Germany than the 
individual models (climate or landscape only) and data 
(wind). All model input data, scripts and software are 
open-source and freely available, so the model can eas-
ily be applied to other countries or, more generally, to 
other species, especially, but not exclusively, within the 
family of Culicidae.

Abbreviation
Ae. j. japonicus: Aedes japonicus japonicus.
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