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ABSTRACT

Soil is one of the most biodiverse terrestrial habitats. Yet, we lack an integrative conceptual framework for understanding
the patterns and mechanisms driving soil biodiversity. One of the underlying reasons for our poor understanding of soil
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biodiversity patterns relates to whether key biodiversity theories (historically developed for aboveground and aquatic
organisms) are applicable to patterns of soil biodiversity. Here, we present a systematic literature review to investigate
whether and how key biodiversity theories (species—energy relationship, theory of island biogeography, metacommunity
theory, niche theory and neutral theory) can explain observed patterns of soil biodiversity. We then discuss two spatial
compartments nested within soil at which biodiversity theories can be applied to acknowledge the scale-dependent

nature of soil biodiversity.

Key words: biodiversity theory, alpha diversity, beta diversity, spatial scale, species—energy relationship, theory of island
biogeography, metacommunity theory, niche theory, neutral theory.
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I. INTRODUCTION

Investigations aimed at understanding patterns of biological
diversity (hereafter biodiversity) are a popular tradition in
modern ecology (Gaston & Spicer, 2004; McGill et al.,
2015). The results of historic as well as contemporary
investigations have led ecologists to develop a number of
biodiversity theories that are intended to help us predict
biodiversity in a given space and/or time. An important
component of biodiversity theories is how variations in
spatial and temporal scales influence biodiversity patterns
(Levin, 1992; Rosenzweig, 1995). Consequently, there is
a growing consensus that biodiversity at any scale is a
result of multiple mechanisms that operate from local to
regional scales (Ricklefs, 2004; McGill et al., 2015). Often,
the mechanisms that underlie biodiversity patterns are a
result of the interaction of species with their environment
and neighbouring species and/or their movement in space
and time.

Soil biodiversity is a major component of terrestrial
biodiversity (Bardgett & Van Der Putten, 2014), but one
that was rarely considered during the historic development
of biodiversity theories (Wardle, 2006; Barot et al., 2007).
Our current understanding of terrestrial biodiversity
patterns and underlying interaction- and movement-based
mechanisms has mainly relied on studies of aboveground
and aquatic organisms. Our aim in this review is to
examine biodiversity theories based on interaction- and
movement-based mechanisms as applied to soil biodiversity.
We provide a systematic review of the literature to determine

how some of the key biodiversity theories have been applied
to explain soil biodiversity. Subsequently, we present a
conceptual framework for an integrative understanding
of soil biodiversity, from soil micro- (e.g. bacteria) to
macroorganisms (e.g. earthworms), to encompass both
interaction- and movement-based mechanisms at varying
spatial and temporal scales.

II. SOIL AS A COMPLEX HABITAT

Soil is one of the most complex habitats for life on Earth
(Young & Crawford, 2004; Aleklett ¢t al., 2018). It represents
a highly compact form of three-dimensionally structured
habitat featuring fine-scale gradients in physico-chemical
characteristics, resource availability, and gas concentrations
(Young & Crawford, 2004; Bardgett, 2005). Moreover, biota
in the soil have been suggested to be more abundant and
extremely species rich compared to most other habitats on
Earth (Orgiazzi et al., 2016). The body size of soil organisms
spans many orders of magnitude (Veresoglou, Halley, &
Rillig, 2015), requiring an appropriate choice of spatial scale
at which soil biodiversity should be studied (Berg, 2012). We
do not claim that this challenge is unique to soil; however,
the profound body size variation among soil organisms at
a very low gradient of spatial resolution (ranging from um
to cm) increases the likelihood of violating the underlying
assumptions of biodiversity theories (Table 1).

Soil ecologists long have investigated the patterns and
causes of biodiversity in soils. For instance, Anderson (1975)
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Table 2. Glossary of terms

Alpha diversity Species diversity or richness of a local community.
Beta diversity Differences in diversity associated with variations in habitat or spatial scale.
Metacommunity

Equalizing processes
Stabilizing processes
Grain

Extent
Self-organization

Total area of study.

components of the system.

Set of local communities interlinked by the dispersal of multiple species which also interact with each other.
Processes that lead multiple species to be equal (or close to equal) in their fitness.

Processes that cause species to limit their population size more than they limit other neighbouring species.
The first level of spatial resolution possible in a given data set or the spatial unit of sampling.

A process in which global-level patterns of a system emerge from numerous interactions among lower-level

highlighted that greater diversity of soil organisms is due
to their lack of trophic specialization combined with
widespread micro-scale abiotic heterogeneity. In recent
years, however, the key research agenda of soil biodiversity
studies has shifted to highlighting their crucial roles as
drivers of ecosystem functions and ecosystem services that
influence human well-being (Bardgett & Van Der Putten,
2014; Nielsen, Wall, & Six, 2015; Wall, Nielsen, & Six,
2015). These studies have yielded important insights on
how our well-being is closely related to healthy soils
with high biodiversity (Wall et al., 2015; Orgiazzi et al.,
2016). In addition, recent methodological advances such
as high-throughput sequencing have enabled investigations
of soil biodiversity with greater precision and have promoted
insights on patterns of soil biodiversity at varying spatial
scales (Bahram et al., 2018; Geisen ¢t al., 2018; Ramirez ¢t al.,
2018; Potapov, Tiunov, & Scheu, 2019). Yet, only a few
studies have tested contemporary biodiversity theories using
patterns of soil biodiversity.

Here, we consider five biodiversity theories: (i)
species—energy relationships, (it) theory of island biogeog-
raphy, (iif) metacommunity theory, (iv) niche theory, and (v)
neutral theory. We selected these based on their ability to gen-
erate clear predictions of species diversity (see Tables 1 and
2), as well as their known prominence in the aboveground
and aquatic biodiversity literature. We acknowledge that
there are many other ecological theories that might explain
patterns of biodiversity. However, we limit this review to the-
ories that make predictions for alpha and/or beta diversity,
and which mainly rely on movement- and interaction-based
mechanisms (Table 1). The five chosen theories also overlap
to varying degrees. For instance, metacommunity theory
extends several components of theory of island biogeogra-
phy, specifically mechanisms associated with colonization
and extinction processes (Hanski & Gilpin, 1991), while neu-
tral theory is often used as a null model for niche theory
(Alonso, Etienne, & McKane, 2006; McGill, Maurer, &
Weiser, 2006). We provide a general overview of these five
theories in Table 1.

III. SYSTEMATIC LITERATURE SEARCH

The literature search was performed on 21 June 2019 in
ISI Web of Science. We performed an initial search focused

on the five theories examined herein using the following
search terms: ‘island biogeography’; ‘metacommunity’
OR ‘meta—community’; ‘species—energy relations®” OR
‘species energy relations®” OR ‘productivity gradient” OR
‘productivity —diversity relations®* OR ‘productivity diversity
relations*’; and ‘neutral theory’ OR ‘Hubbell’s neutral
theory’ OR ‘the unified neutral theory of biodiversity” OR
‘niche theory’ OR ‘competitive exclusion principle’. The
total number of results for each search was used as an
indication of the number of papers investigating a given
biodiversity theory. To identify the research conducted
on these biodiversity theories in belowground systems,
the search was then repeated using the same search
terms, plus the following additional soil-specific search
terms: ((‘soil” OR ‘belowground’ OR ‘below —ground’) AND
(‘biota’ OR ‘“fauna’ OR ‘microfauna’ OR ‘macrofauna’
OR ‘mesofauna’ OR ‘arthropod® OR ‘rotifer®” OR
‘nematod®* OR ‘hypha* OR ‘oligochaet*” OR ‘protozoa™
OR ‘protist®” OR ‘microb®* OR ‘bacteria’ OR ‘fung®
OR ‘mite®* OR ‘acari’ OR ‘amocba® OR ‘flagellate™
OR ‘archae® OR ‘annelid®) OR (‘collembol® OR
‘springtail®* OR ‘earthworm® OR ‘micro—arthropod® OR
‘microarthropod*” OR ‘mycorrhiza*’ OR ‘enchytrac* OR
‘ciliate® OR ‘lumbricid®”)).

The total number of results from these searches was then
used as an indication of how many papers discussed each
specific biodiversity theory in relation to soil biodiversity.
However, because papers identified in our search may have
mentioned soil but not have included an actual test of the
biodiversity theories with soil organisms, we also screened
all soil-specific papers in detail. Papers were excluded if they
did not test the biodiversity theories using a soil organism.

Where papers tested a biodiversity theory with a soil
organism, we assessed whether the results supported the
biodiversity theory or rejected it, based on the main
predictions outlined in Table 1. Our assessment was based on
information given within graphs, tables or results/discussion
text in these papers.

For each of the papers testing biodiversity theories
with a soil organism, we recorded the taxon studied. For
the analysis, these taxa were placed into four categories
commonly used in soil ecology (Decaéns, 2010;Briones,
2014 ; Veresoglou et al., 2015): microorganisms (e.g. fungi,
bacteria), microfauna (e.g. nematodes, amoebae), mesofauna
(e.g. springtails, mites), and macrofauna (earthworms,

Biological Reviews (2019) 000—000 © 2019 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
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Table 3. Number of studies providing support (Yes or No) for each of the five biodiversity theories (see Appendix S1 for a list of
the studies included). N is the total number of cases. Support is also listed for the four categories of body size (microorganisms,
microfauna, mesofauna and macrofauna, see Section III). The minimum and maximum grain and extent investigated for each
theory are shown. The data presented in this table include all cases (note that there is some overlap of studies between niche and
neutral theories) including those where the grain or extent was not provided, and thus these data differ from those plotted in Fig. 1

Species—energy Theory of island Metacommunity

relationships biogeography theory Niche theory Neutral theory
Theory support Yes No Yes No Yes No Yes No Yes No
N 5 4 16 7 17 1 16 8 12 13
Microorganisms 4 3 7 0 6 1 8 8 9 7
Microfauna 0 0 1 2 1 0 0 0 1 0
Mesofauna 0 0 7 5 9 0 3 0 2 3
Macrofauna 2 0 1 0 1 0 5 0 0 3
Minimum extent 100 m 1 km 1 km 1 km 10 m 100 km 10 m 10 m Im 10 m
Maximum extent 1000 km 1000 km 100 km 100 km 100 km 100 km global  global global  global
Minimum grain 10 cm 10 cm 1 cm 1 cm 1 cm 10 cm I cm 10 cm 1 cm 1 cm
Maximum grain 10 m 10 cm 10 cm 10 cm 10 cm 10 cm 10 m 10 m 10 m 10 m

arthropods) (Briones, 2014; Veresoglou et al., 2015). We also
recorded the spatial scale of each study, including the grain
size which was defined as the size of the smallest sampling
unit, and the extent which was defined as the total area of
the study encompassed by all sampling units (Turner et al.,
1989). The grain and extent size were assigned to categories
closest to their actual value (1 cm, 10 cm, 1 m, 10 m, 100 m,
1 km, 10 km, 100 km, 1000 km).

We further recorded the temporal scale (ranging from
one time point to 5years of sampling), the ecosystem type,
the country, and whether the study was experimental (i.e.
included manipulations or treatments) or observational (i.e.
using naturally occurring contrasts) (see online Supporting
Information, Appendix S1). A single paper often contained
more than one test of a biodiversity theory, for example, with
different taxon groups, or at different spatial extents. Addi-
tionally, some papers tested multiple biodiversity theories.
Every test was recorded separately, so a single paper could
provide more than one case of support and/or no support.

IV. RESULTS

Our literature search showed that soil biodiversity was
mentioned in a minority of articles for each theory. Only
3.2% of articles on theory of island biogeography mentioned
soil organisms, 0.2% of articles investigating niche and
neutral theories tested soil organisms, while 5.8% of articles
on species—energy relationships mentioned soil organisms.
In total, we found 99 explicit tests of the predictions
of the five biodiversity theories that used soil organisms
from 56 published articles (Table 3, identified with asterisks
in the reference list, Appendix S1). Species—energy
relationships, theory of island biogeography, niche theory,
and metacommunity theory received support in over 50%
of studies (56, 70, 67, and 91%, respectively). Neutral
theory was the least-supported biodiversity theory (48%)

(Table 1). Given the low number of tests with soil organisms
for some of the biodiversity theories (e.g. species—energy
relationships), it is not possible yet to conclude which of these
theories best predicts patterns of soil biodiversity. Further,
we advocate pluralistic approaches rather than using a single
biodiversity theory in future studies investigating patterns of
soil biodiversity. Below, we extend these ideas in a proposed
conceptual framework.

Soil microorganisms and soil macrofauna were the
best-represented groups in studies involving the five
biodiversity theories (Fig. 1). The reasonable level of support
for these theories with a wide range of soil organisms indicates
that both interaction- and movement-based mechanisms
apply to soil organisms. However, the spatial scale at which
these theories were applied successfully to soil organisms is
central to an integrative understanding of soil biodiversity.
The spatial extent (the distance over which the entire
study was conducted) (Turner etal., 1989) of the study
arcas ranged from 1m to global, whereas the spatial
grain of the studies (the smallest sampling unit) (Turner
etal., 1989) varied from 1cm to 10 m, with the range
in these values broadly consistent among tests of the five
theories (Fig. 1). Most studies used a spatial grain range of
1-10 cm, as expected given standard protocols for sampling
soil organisms, although the spatial grain range was higher
(10 cm—1 m) in tests of species—energy relationships (Fig. 1).
Spatial extents were also consistent among studies of the five
theories across soil organism groups (Table 1, Fig. 1).

V. AN INTEGRATIVE FRAMEWORK FOR SOIL
BIODIVERSITY

As outlined in Table 1, soil as a system presents several
challenges with the application of any biodiversity theory. An
emerging consensus among soil ecologists is to acknowledge
that patterns of soil biodiversity vary at different spatial

Biological Reviews (2019) 000—-000 © 2019 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.
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Fig. 1. Pie charts (top row) documenting the representation of different groups of soil organisms in studies of the five biodiversity
theories considered herein. Soil organism categories are based on Decaéns (2010) and Veresoglou et al. (2015). N is the number of
studies testing each theory. Below the pie charts, the range of grain and extent sizes reported in the studies are shown, with the size
of the point indicating the number of cases. Studies were omitted from this figure if they did not report either the grain or the extent
size. Studies on niche and neutral theory are combined as both theories were tested together in some studies, with the rejection of
diversity patterns proposed by neutral theory (null hypothesis) considered as support for an alternative pattern proposed by niche
theory. MCT, metacommunity theory; SER, species—energy relationships; TIB, theory of island biogeography.

scales within the soil (Ettema & Wardle, 2002; Berg,
2012). Accordingly, previous authors have advocated the
integration of spatial hierarchies of different soil habitats to
allow a better understanding of the (spatial) scale-sensitive
diversity patterns of soil organisms (Giller, 1995; Ettema
& Wardle, 2002; Decaéns, 2010; Berg, 2012). We here
build upon these previous ideas and propose an integrative
framework for understanding soil biodiversity at multiple
spatial scales.

Our conceptual framework is based on dividing soil (S) into
two spatial compartments (Fig. 2): soil hotspots (S') and soil
microsites (S”). Soil microsites are nested in soil hotspots and
soll hotspots are nested in the soil (S). These compartments
represent the grain size at which soil biodiversity can be
studied. The extent of these three different spatial scales can
vary from local (e.g. a few 100 m) to global.

Soil (S) is the coarsest scale in our framework and the most
commonly used in soil biodiversity studies (Table 3). At this
spatial scale, both bulk and rhizosphere soil are present, and
all size groups of soil organisms can be sampled.

Soil can be divided into soil hotspots (§'), or functional
domains, which could be the rhizosphere, drilosphere or

even the litter layer (Fig. 2). Within this compartment, the
biodiversity of intermediate-sized soil organisms, such as soil
meso- and microfauna are mainly studied. Often the study
of soil microarthropods and their resources are carried out
at this spatial scale.

Within soil hotspots, soil microsites (S”) represent another
spatial compartment, and this is the finest spatial scale at
which biodiversity can be studied in the soil. Soil microsites
could range from a tip of a plant root to even a single
aggregate (Wm to mm) in the soil (Bailey etal, 2013).
The study of soil biodiversity at this spatial scale focuses
primarily on the diversity of microorganisms and their
primary predators (Fig. 2).

The key drivers of biodiversity patterns at each of these
spatial compartments (within which temporal scales will
also differ, Fig. 2) vary significantly (e.g. Bach et al., 2018)
and it is thus important that they are considered when
testing empirically the predictions of any biodiversity theory.
In addition, spatial compartmentalization allows better
integration of the variability in body size of soil organisms.
For instance, the S compartment contains the highest range
in body size of soil organisms, and biodiversity at this scale
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Soil properties (S),,= f(Climate,
vegetation, parent material,....)

Soil hotspot properties(S'),,= S +
f(Resource availability, abiotic factors)

Soil microsite properties(S"),,= S'+
f (Biotic and abiotic neighbourhood)

i >

Theory

Species—energy relationships
Theory of island biogeography
Metacommunity theory

Niche theory

Neutral theory

&, > iy

Applicability of theory

Fig. 2. Ilustration of spatial compartments in the soil for studying soil biodiversity from micro- to macroorganisms. The properties
of each compartment that potentially affect the respective biodiversity pattern are listed below the compartments. As we begin to
zoom in from soil (S) to soil microsites (S”), the applicability of some biodiversity theories may also change (indicated by thickness of
grey bars below the figure). Soil micro-aggregates are coloured light brown in the S” compartment; all organisms in S” are either
microorganisms or their predators (e.g. nematodes and protists). Note that microorganisms also can colonize micro-aggregates as
illustrated in S”. Since the temporal scale (¢) also co-varies with spatial scale (Wolkovich et al., 2014), the figure presents three different
temporal scales (¢1 -¢3) corresponding to the three spatial scales. f, function.

is more likely to be explained by factors such as climate and
vegetation of a site. On the other hand, when we attempt to
understand soil biodiversity at finer spatial scales, such as at
S" and S”, we require information on additional factors such
as resource availability and soil abiotic properties (Fig. 2).

VI. APPLICABILITY OF BIODIVERSITY
THEORIES ACROSS THE THREE
COMPARTMENTS

Violation of the assumptions of some of the five biodiversity
theories considered herein are most likely at the microsite
compartment (S”) in our conceptual scheme (Fig. 2). For

instance, in the application of theory of island biogeography
at the S” scale, issues will arise relating to the definition
of a true mainland (or an external source) from which soil
microorganisms and their primary consumers (e.g. protists
and nematodes) can colonize a S” island (Fig. 2). Such issues
of habitat definition at the S” scale could be resolved using
the framework of metacommunity theory. While the theory
of island biogeography only considers colonization from a
mainland to an island, metacommunity theory incorporates
colonization of organisms both between and within a
mainland and islands (Hanski & Gilpin, 1991; Mouquet &
Loreau, 2002; Leibold ez al., 2004). Further, metacommunity
theory allows the incorporation of both interaction- and
movement-based mechanisms, both of which might be
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relevant at this scale. For example, microorganisms can move
in soil wa processes involving diffusion or water transport
(Dechesne, Pallaud, & Grundmann, 2007), which may
determine their rate of encounters with potential competitors
or predators. A recent conceptual study highlighted that
soil aggregate formation at the microsite scale could affect
the evolutionary trajectories of microorganisms, such as
bacteria, by causing isolation (Rillig, Muller, & Lehmann,
2017). Hence, the S” compartment in our framework could
be suited to the study of eco-evolutionary dynamics of soil
microorganisms and their primary predators with subsequent
effects on biodiversity at this scale.

The assumptions of species—energy relationship models
are also prone to violation at the microsite scale. A positive
species—energy relationship (e.g.  productivity—diversity
relationship) has been shown to be susceptible to fluctuations
in resource availability (Rosenzweig, 1995; Waide et al.,
1999; Chase & Leibold, 2002). For the S” compartment,
the temporal variability of resource availability is likely to
be much more dynamic than at the spatial scales of the
S and S’ compartments, which will undermine predictions
of species—energy relationship models (Wright, Currie, &
Maurer, 1993). For example, plant root exudates are one
of the major determinants of biotic and abiotic conditions
at the microsite scale (Bais et al., 2006; Bardgett, Mommer,
& De Vries, 2014; Reinhold-Hurek et al., 2015). Temporal
variability in root exudation profiles is usually very high
(due to root growth) and thus resource quality and quantity
of soil microsites are likely to be highly dynamic (Badri
& Vivanco, 2009; York et al., 2016). Temporal variability
of resources in the S and S’ compartments can also be
high, but this will take place over longer time scales
compared to the S” compartment, making the assumptions
of species—energy relationships relatively robust at coarser
scales (Fig. 2).

The inapplicability of theories of island biogeography and
species—energy relationships to the microsite scale does not
mean that microorganisms and their primary consumers
could not be used in tests of these theories. Our systematic
literature search showed that such tests have been made
with soil microorganisms but at coarser scales. For instance,
Vannette, Leopold, & Fukami (2016) applied the theory of
island biogeography to root-associated fungi of a single plant
present in 18 different forest patches isolated by volcanic
lava to estimate the effects of isolation on fungal diversity.
Although this study was carried out on a single oceanic
island, the isolation of forest fragments by old volcanic lava
made them a proxy for islands (Vannette ¢ al., 2016). Studies
on other island-like habitats (e.g. epiphytes on treetops) have
confirmed that larger islands usually support greater numbers
of soil organisms like microarthropods (Wardle ez al., 2003).
The quality of resources in islands also affects the diversity
of microarthropods irrespective of island size, as shown by
post-fire chronosequence studies in islands in Swedish lakes
(Bokhorst, Berg, & Wardle, 2017). The spatial compartments
used in these studies resemble the coarser scales (e.g. S or §)
of our framework.

We suggest that neutral theory, niche theory and
metacommunity theory apply to all three spatial
compartments of our conceptual framework. Neutral theory
of biodiversity assumes ecological drift in communities, i.c.
that populations of member species within a community
fluctuate at random due to their equal probabilities of
reproduction and/or mortality independent of their identity
(Rosindell, Hubbell, & Etienne, 2011) (Table 1). Although
this assumption has several ecological limitations and has
been criticised (Purves & Turnbull, 2010; Clark, 2012),
the neutral theory of biodiversity remains a powerful test of
biodiversity patterns, mainly due to this simplistic assumption
of species equivalence (McGill ez al., 2006; Missa, Dytham,
& Morlon, 2016). Accordingly, several studies have used the
neutral theory of biodiversity as a useful null model (McGill
et al., 2006; Rosindell et al., 2012). When species abundance
distribution patterns fit a zero-sum multinomial distribution
as opposed to a log-normal distribution, biodiversity
patterns are assumed to be driven by neutral processes
(McGill etal, 2006; Caruso etal, 2012a). The species
abundance distribution can be analysed for all three spatial
compartments of our framework. This allows a test of the
relative importance of niche versus neutral-based mechanisms
operating at different spatial scales. However, the shape of
the species abundance distribution may not be an adequate
test for niche versus neutral processes given its aggregated
nature, inherent to which is a loss of information on whether
communities are driven by deterministic (niche) or stochastic
(neutral) processes (Clark, 2012; Matthews & Whittaker,
2014). Several recent studies have called for an integrative
framework, combining niche and neutral perspectives, to
explain biodiversity patterns, suggesting that this will improve
our ability to test the relative importance of deterministic and
stochastic processes in communities (Tilman, 2004; Adler,
HilleRisLambers & Levine, 2007; Vellend, 2010; Haegeman
& Loreau, 2011; Scheffer, van Nes, & Vergnon, 2018).

Metacommunity theory allows the incorporation of both
niche and neutral perspectives by incorporating processes
at local and regional scales simultaneously (Mouquet &
Loreau, 2002). According to metacommunity theory, the
key determinant of biodiversity is the ability of species
to move from one patch to another, which may differ
according to environmental conditions. Metacommunity
theory could thus be applied to all three proposed spatial
compartments in our conceptual framework. Moreover,
Leibold et al. (2004) emphasized four perspectives upon
which movement and interaction-based mechanisms operate
within a metacommunity. Predominantly homogeneous
environments are characterized by patch dynamics
and by the neutral perspective, whereas heterogeneous
environments exhibit source—sink dynamics (or mass
effects) and a species-sorting perspective (Mittelbach, 2012).
However, neutral processes may not be restricted only
to homogeneous environments (Leibold & Chase, 2018).
For instance, one study carried out in temperate forest
soils at a coarse soil scale (equivalent to the S scale in
our framework) reported that variations in fungal diversity
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were explained marginally by environmental selection and
dispersal limitation despite the presence of environmental
heterogeneity in the study soils (Bahram ez al., 2016).

There are other theoretical frameworks that attempt
to combine both niche and neutral perspectives to
explain biodiversity patterns. Chesson (2000) and Adler,
Hillerislambers, & Levine (2007) proposed a combination
of equalizing mechanisms (neutral-based assumptions),
such as those related to fitness similarity among the
interacting species, and stabilizing mechanisms (niche-based
assumptions), which relate to interspecific relative to
intraspecific competition, as the major driving force
behind the coexistence of interacting species. Although
this integrative niche-neutral framework (also referred as
modern coexistence theory) has been tested mostly using
annual plants (Kraft, Godoy, & Levine, 2015), there is
potential to test this framework using a range of soil
organisms, particularly those with relatively short generation
times. Importantly, this framework also makes assumptions
regarding low levels of environmental fluctuations and
a lower number of resources than that of consumer
species (Barabas, D’Andrea, & Stump, 2018). Application
of any theoretical framework to the understanding and
prediction of soil biodiversity pattern thus requires a
meticulous examination of the underlying assumptions

(Table 1).

VII. CURRENT CHALLENGES AND FUTURE
DIRECTIONS

A long tradition in soil biodiversity research has been
to consider interaction-based mechanisms to be the main
driving forces of soil biodiversity (Anderson, 1975; Bardgett,
2002; Nielsen etal, 2010). For example, Wardle (2006)
highlighted biotic interactions in the form of competition,
facilitation and predation as the key determinants of soil
biodiversity at finer spatial scales. Recent soil food web
studies based on gut content and fatty acid analyses of
soil invertebrates have further highlighted that soil food
webs usually lack trophic specialization due to a greater
number of omnivorous and cannibalistic interactions (Brose

& Scheu, 2014; Thakur & Geisen, 2019) and systematically

Table 4. Ten open questions in soil biodiversity research

Madhav P. Thakur and others

lower predator—prey body mass ratios (Brose et al., 2019).
While these recent findings concur with the classical soil
biodiversity paradigm that complex soil structures prevent
trophic specialization in the soil by constraining movements
(Anderson, 1975), it remains unclear how this may vary
spatially and temporally in the soil (Ettema & Wardle, 2002;
Quist et al., 2017). For instance, interaction strengths among
soll organisms were recently shown to increase progressively
from early to mid- and late-successional stages of restored
semi-natural grasslands on former arable land, indicating
that biotic interactions in the soil varied on a temporal
scale while affecting, and being affected by, ecosystem
development (Morrien el al., 2017). We may also expect
greater trophic specialization at the microsite scale due to
specialized interactions between plant and soil pathogens
(e.g. pathogenic fungi and oomycetes) (Mommer ez al., 2018),
and mutualistic interactions are also likely to be stronger
in microsites (Werner & Kiers, 2015). Whether the number
and strengths of interactions differ in our proposed spatial
compartments remains an important challenge for future
studies aimed at understanding the scale-variant nature of
soil biodiversity (Table 4).

Niche-based explanations further relate to how plant
diversity relates to soil biodiversity by providing a variety of
plant-derived resources, upon which soil organisms primarily
depend (Lavelle ez al., 1995; Hooper et al., 2000; Zak et al.,
2003). A higher diversity of resources from plants increases
niche dimensionality, thus enhancing the probability that
soil organisms can partition resources and coexist (Hooper
et al., 2000). However, this relationship depends on the extent
to which plant diversity contributes to heterogeneity in soil
physical conditions (Wardle, 2006). Accordingly, positive
relationships between plant diversity and soil biodiversity
are not always found. One cross-continental study showed
that plant diversity was not related to alpha diversity
of soil microorganisms but instead was associated closely
with microbial beta diversity (Prober etal., 2015). The
authors reported that compositional differences between
microbial communities increased with increasing plant
diversity (Prober efal, 2015). The influence of plant
biodiversity on soil biodiversity is likely to vary in our
proposed spatial compartments and future investigations
should attempt to understand context-dependent plant—soil
biodiversity relationships.

,
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What biotic and abiotic factors link spatial compartments in soils?

How do interactions among spatial compartments depend on time?

How does specialization in symbiotic relationships among soil organisms and plants change with spatial compartments?

How do disturbances like land use change and climate change affect soil biodiversity in different spatial compartments?

How does climate change such as drought affect soil biodiversity via its effects on the passive dispersal of soil organisms?

How do stabilizing and equalizing processes work in soils and how does their relative importance change with spatial compartments?
0) Can spatial compartment approaches be applied to other habitats than soils to embrace the scale-dependent nature of biodiversity?

Why are soils a hyperdiverse habitat and how is this biodiversity spatially and temporally organized in soils?
How does movement of soil organisms play a role in maintaining soil biodiversity?
How do active and passive dispersal of soil organisms differ among spatial compartments?
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Movement-related processes in the soil are relatively
poorly studied compared with interaction-based processes.
This may reflect the limited (active) dispersal capacity of soil
organisms compared with organisms living aboveground or
in aquatic systems (Anderson, 1975; Van der Putten et al.,
2001; Wardle, 2002; Decaéns, 2010). With a limited capacity
to disperse actively (larger soil organisms being an exception),
passive dispersal is common in soil organisms (Nemergut
et al., 2013; Schuppenhauer, Lehmitz, & Xylander, 2019;
Zinger etal., 2019). For example, meso-fauna living in
the S’ compartment, including collembolans and soil
micro-arthropods are poor active dispersers but are often
passively dispersed in the soil (Ettema & Wardle, 2002;
Turke, Lange, & Eisenhauer, 2018; Schuppenhauer ¢t al.,
2019). Long-term studies with better temporal resolution
could unravel the importance of passive dispersal of
slow-moving soil organisms for predicting their biodiversity
patterns (Dirilgen et al., 2018).

Soil microorganisms and their primary consumers in the
S” compartment can move within the water microfilm (via
passive dispersal), but narrower windows of aqueous phases
and higher viscosity may impose formidable challenges to
movement in the S” compartment (Tecon & Or, 2017).
Nevertheless, large-scale dispersal (from m to km) of soil
microorganisms is a common phenomenon regulated mostly
via rainfall and wind events and also by human-mediated
dispersal (Vos etal., 2013; Thakur et al., 2019). Although
the dispersal ability of soil organisms will vary among
different spatial compartments, it is important to note that
species traits and soil structure will both impose challenges
on the dispersal of soil organisms. The diversity of larger
soil organisms may be related to active dispersal potential,
whereas that of smaller organisms may be more affected
by passive dispersal (Bahram etal, 2016; Zinger et al.,
2019).

Future studies using newer technologies (e.g. molecular
techniques and visual tracking techniques) to measure
movement of soil animals may help to quantify constraints
on the movement of soil organisms that affect the relative
importance of niche- and neutral-based processes at the
microsite scale (Nunan efal,, 2003; Aleklett efal, 2018).
Hovatter etal. (2011) showed that dispersal limitation
(independent of soil environmental factors) in soil bacterial
communities (i.e. neutral processes) was the main factor
driving their diversity but only in the presence of host
plants. In the absence of host plants, soil bacterial diversity
was explained mainly by environmental factors (Hovatter
etal., 2011). Soil animal movement around the plant root
zones (S’ compartment) can also affect fitness. A study on
cyst nematodes demonstrated that individuals performed
better when they were able to move towards newer root
zones of their host plants compared to those that were
unable to migrate (Van der Stoel & Van der Putten,
2006). Larger soil organisms such as earthworms can
contribute to the passive dispersal of soil microorganisms
which is likely to affect microbial biodiversity patterns
across spatial compartments (Lavelle ef al., 2016; Yang &
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van Elsas, 2018). Our understanding of soil biodiversity will
improve once we begin to understand what factors limit
such movement and thus dispersal in soil across the spatial
compartments.

A key challenge to the development of an integrative
understanding of soil biodiversity is how biodiversity in the
three spatial compartments affect ecach other’s dynamics.
Predators could link these compartments (Fig. 2) by feeding
on prey from other compartments, hence linking energy
flow across spatial compartments, as has been shown in
soil food web studies (Digel etal., 2014; Morrien et al.,
2017). Past research has shown that connectance in soil
food web networks via feeding interactions is critical for
the maintenance of soil biodiversity (de Ruiter, Neutel, &
Moore, 1995; Neutel ¢t al., 2007) and its stability (Neutel ez al.,
2007; Rooney & McCann, 2012). For example, increasing
frequency of omnivory links in soil food webs over time,
such as along successional gradients, acts as a source of
weak interactions in food webs that contribute to soil
food web stability (McCann, 2000; Neutel et al., 2007). In
addition, understanding factors facilitating or constraining
predator—prey interactions in the soil will be crucial for
understanding soil biodiversity patterns at multiple scales.
For example, plant root and microbial volatiles acting as
chemical cues may facilitate movement of predators from
coarser scale S to 8" and S”, in turn regulating the microbial
population in the S” compartment (Schulz-Bohm ez al., 2017;
Turlings & Erb, 2018).

In addition to trophic interactions across compartments,
non-trophic interactions also occur in soil, mainly due to
ecosystem engineers increasing soil structural complexity and
thereby constraining direct encounters between predators
and prey (Wardle, 2006; Schwarzmiiller, Eisenhauer, &
Brose, 2015). These ecosystem engineers (e.g. earthworms,
ants, termites) also create resource patches for soil organisms,
whilst potentially both facilitating and constraining the
interactions and movements of soil animals (Jouquet et al.,
2006). Soil organisms contribute to the formation of soil
aggregates via a variety of biological activities (Lehmann,
Zheng, & Rillig, 2017). Hence, the physical complexity of
soils 18 an emerging property that results partly from the
biological activity of soil organisms, which is likely to feed
back to soil biodiversity as well as to plant diversity patterns.
Life in soil is likely to follow the principles of self-organization
at multiple organismic scales ranging from soil micro- to
macroorganisms mainly ua engineering activities of soil
organisms (Lavelle et al., 2016). Self-organization in the soil
operates via organismic interactions at discrete scales, nested
within each other in a hierarchical design, from scales of a
few microns (e.g. S”), to tens of microns (S” and §'), and from
millimetres to centimetres (S and S). This may eventually
result in the emergence of patterns ranging from physical
structures in the soil to spatially structured soil biodiversity.
Research programs to quantify the nature of feedbacks
among spatial compartments will no doubt provide newer

msights into the causes underlying the enormous diversity
of soil.
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VIII. CONCLUSIONS

(1) Advances in the understanding of biodiversity patterns
depend on our ability to accurately predict biodiversity
in space and time. This review evaluates the extent to
which common biodiversity theories, originally developed
for aboveground biodiversity, may apply to soils. While these
theories appear to be able to predict some aspects of soil
biodiversity (Fig. 1, Table 3), we highlight the importance of
a greater awareness of scale-related biodiversity variations in
soils (Fig. 2) echoing recent recommendations for increasing
scale awareness in ecology (Chase et al., 2018; Estes et al.,
2018; Galiana et al., 2018).

(2) Scale awareness is further important for systems where
community structure is characterized by a steep body-size
gradient of organisms at a very small spatial scale. Soil
represents a system with an unparalleled fine-scale structural
complexity. We believe that a better understanding of drivers
of soil biodiversity at multiple scales will be gained by explicit
recognition of the three spatial compartments present in soils
(Fig. 1), within each of which different factors may be crucial
for maintaining biodiversity.

(3) Soil biodiversity research should also aim to
investigate ecological feedbacks among the proposed
spatial compartments to allow us to develop an
integrative understanding of soil biodiversity, which will
be key to embracing the scale-dependent nature of soil
biodiversity. Moreover, we advocate frameworks that
incorporate multiple biodiversity theories, as exemplified
by metacommunity theory. The roles of movement of soil
organisms by both active and passive dispersal also need
greater attention in order to understand soil biodiversity
patterns (Hirt ¢t al., 2018; Mathieu, Caro, & Dupont, 2018).

(4) We advocate the extension of a spatial compartmen-
talization approach to other systems, particularly when
multi-scale understanding of biodiversity is necessary. For
instance, in aboveground systems, a compartmental frame-
work could be applied to scale biodiversity from phyllosphere
microorganisms to larger invertebrates and on to vertebrates.
Indeed, the challenge to the use of such spatial approaches
1s whether the assumptions of any given biodiversity theory
remain robust across multiple spatial scales.
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