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Abstract

This thesis studies the mathematical modeling, simulation, and optimization of an industrial
process called steel ladle stirring. In this process, gas is injected continuously from the bottom of
the bath and rises by buoyancy through the liquid steel, thereby causing a turbulent stirring, i.e.,
a mixing of the bath. The process has been extensively studied in the literature both experimen-
tally and numerically in order to understand the influence of control parameters on the stirring
and to improve the mixing conditions in the industrial practice. Nevertheless, optimal control
problems in mathematical sense have still to be explored in this area. The main contributions
of this thesis can be divided into three parts.

First, multiphase modeling of ladle stirring can become computationally expensive, especially
when used within optimal flow control problems. This is why this thesis focuses on simplified
models based on the single-phase incompressible Navier–Stokes equations. Three variants are
formulated: a 2d Cartesian model, where the effect of the gas is modeled as a vertical boundary
velocity, a 2d axial-symmetrical one with a central nozzle where it is modeled as a buoyancy
force, and a 3d model of a laboratory-scale real ladle with two excentric nozzles, where the gas
also appears as a volume force. The main differences with existing models from the literature
are highlighted, and numerical simulations are compared with experimental measurements.

Second, optimal control problems are investigated. The main difficulties come, on the one
hand, from the formulation of the actual industrial problem, and, on the other hand, on the
mathematical formulation of the control and cost functionals. In practice, the main control pa-
rameter is the volumetric flow rate of the injected gas. In addition, process constraints have
to be taken into account. Due to the complexity of the industrial problem, several overlapping
objectives are involved, such as maximize homogenization, minimize treatment time, minimize
concentrations of inclusions, etc. A mathematical translation of the practical control and con-
straints is given, leading to so-called box constraints, and several cost functionals are proposed to
describe the stirring efficiency. Numerical simulations are performed and conclusions are drawn
for the industrial practice.

Finally, as part of the cooperation project with the industrial partner, the main technolog-
ical solutions for ladle stirring control are reviewed, leading to the choice of vibrations sensors.
Thus, an experimental investigation of the vibrations of ladle stirring is conducted. This al-
lows to formulate some practical recommendations for the industrial practice and improves our
understanding of vibration phenomena for future modeling work.
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1. Introduction

1.1 Industrial context

1.1.1 Advanced high-strength steels

Steel is one of the most used and versatile materials in the world. The alloying of
iron with a small percentage of carbon and other elements can lead to very differ-
ent material properties and can be thus adapted to different application sectors:
buildings, bridges, cars, machines, home equipment, etc. One small but important
family of steels is known as advanced high-strength steels (AHSS). They fulfill,
more specifically, the needs of the mining, building, and automotive markets.

Applications and material properties. For example, companies from the
mining sector can use high performance steels instead of standard ones in order
to increase the lifetime of their hoppers, containers, and excavation equipment
(Figure 1.1), and achieve more cost-efficient operations. Indeed, such steels have
a composition which yields higher strength, hardness, and resistance to surface
damage like abrasion or erosion (also called wear resistance) than standard steels.
Cranes in the building industry are another examples of steel-based products which
need to be as strength and as light as possible to increase their payload. The
vehicle frames in the car industry also illustrate the need for steel-based products
to be crash resistant for the safety of its passengers and to be light to reduce
energy consumption and CO2 emissions. Furthermore, the automotive market
increasingly needed ductile and strong steels as the car producers intensively used
deep drawing to produce more complex and esthetic body panels.

Figure 1.1: Applications of advanced high-strength steels for the mining and au-
tomotive sectors. Left: wear-resistant hoppers. Right: deep drawn car inner door.
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6 1. Introduction

Figure 1.2: Zoom in the iron-iron carbide phase diagram (Callister, 2007). With a
carbon content lower than 0.022 wt% (or 220 ppm), ULC and IF steels are on the
left side of the diagram. They are mainly composed of α-ferrite, like pure iron.

This process is possible only if the metal sheets are highly ductile and do not
crack during the drawing. The ultra-low carbon (ULC) steels and interstitial-free
(IF) steels, which have a carbon content between 60 and 200 ppm, and inferior
to 30 ppm, respectively (Takechi, 1994, Hoile, 2000), match these requirements.
They are used, for instance, for front and rear inner doors (Figure 1.1) or spare
wheel wells.

Microstructure of ULC and IF steels. At such a low level of carbon, the
steel is composed mainly of one phase at room temperature: the α-ferrite phase,
as illustrated in the equilibrium phase diagram of iron-iron carbide system (Fig-
ure 1.2). The α-ferrite is an iron-carbon solid solution and has a Body-Centered
Cubic (BCC) crystal structure in which carbon is an interstitial impurity (Fig-
ure 1.3). In the BCC α-ferrite, only small concentrations of carbon are soluble;
the maximum solubility is 0.022 wt% at 727 ◦C. This limit is explained by the
shape and size of the BCC interstitial positions, which make it difficult to accom-
modate the carbon atoms (Callister, 2007). This crystal structure and the low
level of carbon play an important role in the mechanical performance of the steel.

Figure 1.3: Interstitial impurity in a ferrite BCC unit cell (Callister, 2007).
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A low level of C and N in the interstices of the steel is more beneficial for high
formability. If these particles remain in the liquid steel, they will be imprisoned
during solidification, resulting in a weak point in the steel where cracks are more
likely to appear, provoking early brittle fracture.

1.1.2 Ladle stirring

In order to manage the manufacturing of such high performance steels, the steel-
making companies refine the liquid steel in a process called refinement metallurgy.
The ladle stirring is a central part of this process.

Place of ladle stirring in the steelmaking process. The steelmaking pro-
cess is composed of two main steps: the primary metallurgy and the secondary
metallurgy (Figure 1.4). In the primary metallurgy, the solid material (iron ore or
scrap) is transformed into liquid iron, which is then converted to liquid steel. The
first transformation takes place in Blast Furnaces (BFs), while the second trans-
formation is done in converters, for example in Basic Oxygen Furnaces (BOFs) or
Electric Arc Furnaces (EAFs). The liquid steel obtained in the converter needs
to be refined to reach the quality required by the client in terms of steel grade.
This refinement is done during the secondary metallurgy process in tanks called
ladles (Figure 1.5, left). The secondary metallurgy is thus also called refinement
metallurgy or ladle metallurgy.

Description of the process. The refinement process starts when the liquid
steel obtained in the converter is transfered into the ladle. The bath is stirred by
injecting a gas from the bottom of the ladle through one or several gas nozzles
(Figure 1.5, right). Usually, the gas used for stirring is argon, as it does not re-
act chemically with the liquid steel. Induction stirring is also used in some cases.
The stirring enhances the composition and temperature homogenization, as well
as chemical reactions and removal of impurities. During ladle stirring, a slag phase
floats on the top of the steel. It is a viscous liquid phase which is formed from
added materials and from reaction products during treatments. The slag is neces-
sary for the chemical reactions and it also acts as a thermal insulation layer. The
refractory bricks cover the inner ladle wall and are resistant to high temperatures
and chemical wear. They form the refractory lining. The main objective of ladle
stirring is to obtain the final steel grade required by the customer.

Figure 1.4: Overview of the steelmaking process (World Steel Association).
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Figure 1.5: Photography of a real ladle and scheme of ladle stirring.

Several operations take place during ladle stirring to reach this objective (Kor
and Glaws, 1998):
• addition of alloying elements to reach the right composition,
• temperature adjustment before casting, if needed,
• composition and temperature homogenization of the liquid steel bath, and
• removal of unwanted inclusions such as oxides, sulfurs, and gas elements (O,

H, C, N). These last reactions are equivalently referred to as deoxidation,
dehydrogenation, decarburization, and denitrogenation.

Different types of treatments exist depending on the steel grade required. For
example, in order to obtain ULC and IF steels, it is necessary to reduce significantly
the carbon and nitrogen solutes from the ferrite matrix. An effective suppression
of these elements can be achieved with vacuum degassing.

Vacuum degassing and reduction of interstitial impurities. Vacuum de-
gassing consists of making ladle stirring in vacuum conditions. It allows to reach
a higher purity in the steel. Indeed, the vacuum created in the ladle induces a
lower pressure of gases such as H2, CO, CO2, and N2, which induces an increased
activity of the following degassing reactions (Kor and Glaws, 1998):

2[H] −→ H2(g),

[C] + [O] −→ CO(g),

[C] + 2[O] −→ CO2(g),

2[N] −→ N2(g),

where the index (g) stands for gas and the left-hand sides of the reactions describe
species dissolved in the liquid steel. This process can achieve very low carbon and
nitrogen contents. Typically, the standard Vacuum Tank Degassers (VTD) can
reduce C and N below 30 ppm, while the RH degassing technology can reduce C
to as far as 10 ppm (Kor and Glaws, 1998).

To give an idea of the production rate of high performance steels with VTDs,
we cite the example of the Swedish company SSAB and its plant in Raahe, Finland.
From the 2.5 Mt/year of steel produced, 20% go through the VTD of the plant.
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For information, the VTD has a capacity of 105 tons, i. e., each heat being
processed weighs 105 tons. The typical duration of vacuum processing is 40 to
50 minutes and the operation is performed around 15 times each day. Since this
work is a joint cooperation with SSAB and may have a potential application on
its VTD, we will discuss the vacuum case at several sections of the thesis.

Subsequent production steps. It should be kept in mind that ladle stirring is
only one small part of the complex steel production process. The microstructure
and properties of the final product depend strongly on various process parameters
acting in the following steps, e. g., hot rolling, coiling, cold reduction, and annealing
processes, each of which plays a role on the formation of the precipitates, on the
grain size and on the recrystallization texture. Careful controls of all process steps
are necessary to achieve required AHSS. In the case of deep drawing steels for
example, the hot rolling process should reduce the grain size as much as possible,
while cold rolling and annealing should optimize the grains for formability. Details
on the process parameters can be found in (Hoile, 2000).

1.1.3 Process control in the industrial practice

In practice, the main parameters influencing the refinement process are:
• the flow rate of the stirring gas injected: the higher the flow rate, the more

intense the stirring, and
• the duration of the process: the longer the process, the higher the removal

of impurities.
Other parameters also play a role on the stirring, for instance, the position of the
gas injection nozzles or the vacuum pressure in the case of a VTD. However, in
the industrial practice, they are usually fixed.

Issues in practice. The values of each parameter are determined by a balance
between quality requirements and operational costs. For example, one could op-
erate with the maximum gas flow rate to enhance the removal of impurities, but
this has several drawbacks, e. g.:
• increased consumption of gas,
• splashes of steel on top of the slag, causing material loss, or outside the ladle,

causing safety concerns,
• increased damaging of the refractory lining on the ladle walls (and, conse-

quently, maintenance costs).
On the other hand, operating a too low flow rate could be not enough to obtain
the required purity. Moreover, several known problems make it difficult to manage
the stirring operation properly:
• gas leakage or failure in the gas injection system,
• clogging of a gas injection nozzle, due to solidified steel located on the nozzle

or a too low gas pressure,
• gas flowing preferentially in the porous refractory bricks surrounding the

nozzle: this phenomena is also called gas channeling.
These failures have often several, technical and process-related, causes and are
generally difficult to tackle.
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Process optimization. An a posteriori quality control based on metal samples
checks if the steel grade is correct. If it is not the case, the whole heat which
was treated in the VTD has to be downgraded. It is thus necessary to find the
right parameters to reduce costs (gas consumption, process duration, maintenance
costs) while achieving a given level of steel quality. One way to optimize the
stirring control is to use numerical modeling.

1.2 Experimental ladles and numerical modeling

A relevant numerical modeling of ladle stirring requires to understand the complex
mixing happening inside the ladle and to have precise measurements of physical
quantities in order to validate the computed results. However, in-situ observation
of the stirring is almost unfeasible in the industrial practice due to the extreme
conditions inside ladles. For this reason, laboratory experiments have been devel-
oped since the middle of the XXth century. Thanks to geometrical and physical
similarities, ladle stirring in experimental set-ups can approximately reproduce
real industrial stirring and can be used for the validation of numerical models.
Among other things, numerical modeling allows to:
• compute stirring in industrial conditions,
• better understand the coupling between physical and chemical phenomena (e. g.,

melting of alloying elements or removal of inclusions),
• study the impact of different process parameters on stirring performance, and
• investigate alternative configurations (e. g., new position of gas injection nozzle,

or new shape of ladle) without having to invest in expensive test campaigns.

1.2.1 Laboratory-scale ladle stirring

Most of the ladles in the laboratories use water instead of steel, and air instead
of argon or nitrogen. In the literature, they are sometimes called water models or
physical models (in opposition to numerical models).

Scaling of the ladle and similarity criteria. In order to ensure that the flow
is similar to real-scale steel ladles, the water models are designed and scaled using
a similarity criterion based on the Froude number (Castillejos and Brimacombe,
1989, Sheng and Irons, 1993, Krishnapisharody and Irons, 2015, Haiyan et al.,
2016, Yu et al., 2017). The Froude number is a dimensionless quantity describing
the flow inertia over gravity,

Fr =
U√
gL
,

where U is some fluid characteristic velocity, g the gravity, and L the characteristic
length. It is often used in vessel and tank dynamics to describe the wake of a
submerged body or the free surface waves.
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Table 1.1: Examples for the bath height H and radius R (Castillejos and Brima-
combe, 1989, Mazumdar and Guthrie, 1995a, Yu, 2014).

Laboratory ladles Industrial ladles

Water Mercury Steel

Height H (m) 1 1 0.67 0.465 0.4 0.21 2.5 2.3
Radius R (m) 0.5 0.315 0.33 0.21 0.1 0.1 1.3 1.5
Ratio H/R 2 3.2 2 2.2 4 2.1 1.9 1.5

Ladle geometry and gas plume. The geometry of a laboratory ladle is often
assimilated to a cylinder, although real ladles are rather slightly inclined truncated
cones. To give an idea of the ladle shapes, some values of the bath height H and
the ladle radius R are given in Table 1.1. Usually, the ratio H/R is around 2 in
most industrial and laboratory ladles. The gas nozzles are generally positioned
away from the ladle center in order to avoid so-called dead zones at the periphery
of the bottom diameter, i. e., areas with a low fluid circulation. Figure 1.6 shows
two types of ladles modeled as cylinders in laboratories and numerical simulations.

During stirring, a gas plume forms. It can be divided into three parts (Mazum-
dar and Guthrie, 1995b). In the bottom, the gas injected has a high velocity. In
the bath height, the gas plume has a smaller, nearly constant, velocity of the order
1 m s−1 (Mazumdar and Guthrie, 1995b, Sheng and Irons, 1993); and on the top,
the gas exits to the atmosphere through the slag and induces a locally complex
flow involving steel, slag, and gas. In vacuum, the same pattern is observed, but
with a bigger bubble size and velocity, as well as an exponentially increasing size
near the free surface, (Wichterle, 2010). The local flows at the bottom and the
top of the bath play a negligible role on the global flow pattern, which is mainly
induced by the central part of the rising gas. In fact, the bulk liquid velocity near
the gas plume has the same order of magnitude as the gas velocity (often less than
1 m s−1, because of a possible slip at the interface between gas bubbles and liquid),
and decreases towards the ladle wall (Mazumdar and Guthrie, 1995b).

H

R

Figure 1.6: Cylindrical modeling of industrial or laboratory ladles. Left: with one
centered gas nozzle (blue area). Right: with two gas nozzles.
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1.2.2 Numerical ladle stirring

The equations which describe ladle stirring are based on multiphase flow models
because several phases intervene in the process: one gas phase and two viscous
liquid phases, i. e., the steel and the slag. As described in (Andrianov, 2003,
Table 1.1), multiphase flows can be classified according to two main criteria:
• the physical state of their components (gas, liquid, and solid), and
• the interface between them:

• a separated interface, where the phases are separated by a unique and
clearly defined interface,
• a dispersed interface, where one phase is distributed in another phase, and
• a transitional interface, which is between the two previous types.

More than the number and type of phases, it is mainly the complexity of their
interfaces that has led to several classes of mathematical and numerical models for
multiphase flows. In the case of ladle stirring, the interface between the gas and
steel phases evolves with the gas flow rate, from a dispersed to a nearly separated
interface. For this reason, a wide range of models can be used, e. g., Euler–Euler,
Euler–Lagrange, or mixture models.

Euler–Euler and Euler–Lagrange models. In two-phase flows of immiscible
fluids, two sets of incompressible Navier–Stokes equations intervene. The phases
are treated as a so-called Euler–Euler model, referring to the Eulerian frame used
for both phases. In the case of a dispersed phase with a low phase fraction, it can
be computationally more advantageous and physically more relevant to solve one
ordinary differential equation (ODE) for each individual particle, than considering
it as a continuous phase. This approach is called Euler–Lagrange, referring to the
Lagrangian frame for the dispersed bubbles.

Mixture models. Often, the detailed knowledge of the interface position is
not necessary. This is typically the case with transitional interfaces. Then, the
so-called homogenized or averaged mixture models are a good alternative to the
Euler–Euler and Euler–Lagrange methods. In this approach, introduced in (Ishii,
1975, Ishii and Hibiki, 2010), the equations of the phases are averaged in volume
and in time, such that they are condensed to the equations of the fluids’ mixture.
The averaging process results in additional terms, which describe the interaction
between phases, e. g., drag and lift. Empirical formulas or simplifying assumptions
are often needed to determine these terms and close the system. The material
properties (density, viscosity) and physical variables (velocity, pressure) are shared,
i. e., averaged, among the phases via phase functions. Bubbly flows, which are
typical of gas-stirred processes in steelmaking, are often modeled with the mixture
model. The review (Tryggvason et al., 2006) focuses on bubbly flow models using
the Volume Of Fluid (VOF) or Level-Set (LS) techniques to capture the interface.

Single-phase models. In the above multiphase models, the phase function is
an unknown variable which is solved by a separate equation. However, it is also
possible to use an empirical formula for the phase fraction, as the ones derived in
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the literature from experimental measurements. In other words, the interface is
known a priori, and the mixture model is simplified by suppressing one equation.
This approach, which was the first one used for ladle stirring, is also called “quasi-
single” phase, or, equivalently, single-phase model. Its simplicity and relative cheap
cost make it suitable for low computational resources, as it was the case at the
time of their use, or for repeated computations, as in parametric or optimization
studies. The main single-phase models are reviewed in (Alia et al., 2019a).

1.3 Objective

The main motivation of the thesis is to use mathematical modeling and numer-
ical simulations to optimize the ladle stirring process control, in terms of cost-
effectiveness (reduction of gas consumption, shorter treatment) and steel quality.

Challenges. As described earlier, several physical and chemical phenomena in-
tervene in the stirring process, e. g., fluid dynamics, temperature homogenization,
or degassing reactions. Furthermore, the literature about numerical modeling is
very rich, as seen in Section 1.2.2. It is thus important to limit the scope of the
work by defining the assumptions clearly. This helps to formulate a suitable model
for the optimal control problem.

If optimization of the stirring is the main topic, one other important obstacle is
the process control in practice. So far, the operations are performed manually. The
main information available for the operators is the camera on top of the ladle. One
can monitor the intensity of stirring at the liquid surface. In addition, a gas flow
meter measures the injected gas flow rate but lacks sometimes of reliability, e. g.,
when a gas nozzle is clogged or when a gas leakage occurs. The observation of the
ladle surface, the flow meter, and the operators’ own experience are qualitative and
subjective estimations of the real mixing. A stirring considered as good for one heat
or one operator can turn out to be insufficient for another heat or another operator,
and vice-versa. Consequently, one needs to find an objective, quantitative, and
reliable measurement of stirring to make the optimal control successful.

Assumptions. This dissertation focuses on the fluid dynamics of ladle stirring.
Aspects such as temperature homogenization or mass transfer are not considered.
Since they are implicitly influenced by the flow pattern, this restriction seems to be
acceptable. It will introduce major simplifications in the definition of the stirring
and optimization models. Furthermore, only laboratory water ladles are modeled
because they provide real velocity measurements which are important to validate
the numerical results. As explained in Section 1.2.1, they are designed to describe
satisfyingly the stirring in real steel ladles. We further assume that two-phase
flow models are not suitable for optimal control problems because of their high
computational cost. This seems to be a reasonable assumption, given the fact
that they are described by a larger number of equations. This, in turn, requires
more resources in terms of computational time and memory, which are of critical
importance for solving optimal control problems. Thus, we employ the simplified
single-phase models.
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1.4 Main contributions

Three main topics are addressed in the thesis:
1. model the ladle stirring with a simple single-phase approach,
2. formulate and solve an optimal control problem for the stirring, and
3. study the usage of accelerometers on the ladle wall to measure stirring intensity.
These three parts constitute the main contributions of the dissertation. Although
the single-phase model for ladle stirring has been already defined in the 1980s,
it was studied in this dissertation for mainly three reasons: propose a proper
definition of the model to clear some unclarity found in the literature, review the
main models to choose the best variant among all the research papers, and apply
this approach in the optimal control problem. As mentioned earlier, a “cheap”
forward model is more advantageous in optimal control problems, rather than more
expensive approaches, like multiphase models. Furthermore, the optimization work
focuses on the hydrodynamics of stirring. These are sufficiently well-described with
single-phase models. The main results of this first part are summarized in (Alia
et al., 2019a). Second, the results of the optimal control problem is the main
interest for the industry. However, due to the simplified approaches used in the
dissertation, the second part should be rather considered as a proof-of-concept,
i. e., an exploratory study to verify if optimal controls obtained numerically can
improve the industrial practice. Finally, a separate experimental campaign has
been performed concerning the measurement of stirring efficiency using vibrations
sensors. Its results are available in (Alia et al., 2019b).

1.5 Outline

The thesis is organized in :
• one chapter about the equations studied in this work, i. e., the Navier–Stokes

equations (NSE),
• two chapters related to the ladle stirring, and
• one independent chapter on the vibration.

The structure and the main dependencies between the sections are illustrated in
Figure 1.7. In Chapter 2, the main partial differential equations (PDEs) of the
thesis are presented: the time-dependent incompressible NSE (Section 2.1). The
weak formulation (2.2), the numerical methods (2.3), e. g., the time and space
discretizations, and some solvers (2.4) are then described. Turbulence modeling
to resolve high Reynolds number flows is also discussed (2.5).

The single-phase model for ladle stirring is studied in Chapter 3. First, the
literature and the main formulas for the gas fraction are briefly reviewed (Sec-
tion 3.1). Three variants of the models are presented: a 2d boundary-driven, an
axisymmetrical, and a 3d ladle stirring model (3.2). The numerical results are
discussed in 2d and 3d successively (3.3 and 3.4). They are validated with experi-
mental measurements from the literature. Some comparison between the in-house
code ParMooN and the commercial software Comsol is done with the 3d model
to study the effect of two different turbulent models. In the conclusion (3.5), a
two-phase flow approach is briefly presented as an outlook.
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Figure 1.7: A graph showing the structure of the thesis and the main dependencies
between its sections.

The results obtained in Chapter 3 help to choose the appropriate ladle stirring
model for the optimal control problem (Chapter 4), namely, the 2d boundary-
driven and the 3d models. The axisymmetrical ladle will not be considered for
optimization. In order to formulate the optimization model, the process objec-
tives, control parameter, and constraints from the industrial point of view are
discussed (4.1). They are then formulated mathematically (4.2). Section 4.3 sum-
marizes the optimal control problem and presents the formal derivation of the
optimality system, i. e., the adjoint equations and the optimality conditions. Sec-
tions 4.3.2 and 4.3.3 are mathematically quite technical and may be skipped by
readers who are not familiar with the theory of optimal control of PDEs. They
can continue from Section 4.3.4. Numerical results in 2d and 3d are then pre-
sented (4.4 and 4.5). In particular, two cases are studied in both models: one
with constant-in-time control variables and one with time-dependent variables. In
addition, the optimization of the positions of the two nozzles is investigated in the
3d model. Finally, some limits of the modeling approach are discussed leading to
an alternative and novel optimization problem (4.6).

Chapter 5 can be read independently from the others because it treats another
work direction of the thesis: the vibration of the ladle wall induced by stirring. Af-
ter a brief review (Section 5.1), the context of ladle vibration in the real industrial
case is described (5.2). The results of an experimental campaign on a laboratory
physical model are presented (5.3). Similarly to the two previous chapters, an
outlook is discussed in the conclusion (5.4). It concerns the use of fluid-structure
interaction models for ladle vibration.

Finally, the conclusion 6 summarizes the main achievements of the dissertation
and provides some perspectives about potential extensions of this work and novel
ways to overcome its limits.





2. The time-dependent
incompressible
Navier–Stokes equations

Motivation. The modeling of ladle stirring can be divided into two distinct
aspects: the physics of fluid flow, which are essentially based on the instation-
ary (i. e., time-dependent) incompressible Navier–Stokes equations (NSE), and the
modeling of gas-stirring. It is well-known that the NSE are, for several reasons,
numerically difficult to solve and require special care with respect to discretization
and solver (Ferziger and Peric, 2002, John, 2016). These subjects have been largely
investigated in the literature of applied mathematics and computational science,
leading to important results which should be taken into consideration in the nu-
merical simulations. On the contrary, gas-stirring covers questions which are not
directly related to the theory of the NSE. For these reasons, these two subjects
are split into two different chapters. This chapter intends to introduce the main
results needed in this work concerning the NSE. It describes the difficulties emerg-
ing with these equations and how to deal with them numerically. Furthermore,
we try to keep in mind the practical problem (ladle stirring) all along the chap-
ter, and discuss the necessary modeling assumptions and tools according to our
needs. Correspondingly, the suitable boundary conditions, e. g., free slip condition,
and the modeling of turbulence are discussed. The part concerning gas-stirring is
presented in Chapter 3.

Outline. First, the NSE and appropriate boundary conditions are introduced
and discussed from a physical background. Moving step by step to numerical
aspects, more mathematical background and results are given, e. g., weak formula-
tion, existence and uniqueness of its solution. General time discretization schemes
are briefly presented before focusing on the main scheme used in this work: the
Crank–Nicolson scheme. Similarly, general concepts of space discretization are de-
scribed (Galerkin finite element method), before introducing inf-sup stability and
deriving the discrete equations solved in this work. A short introduction to linear
solvers is then given, before moving to sophisticated solvers specific to the NSE.
Finally, a whole section concerns the modeling of turbulence using similar lines of
development: physical background, mathematical background (weak formulation,
existence, uniqueness), discretization, and numerical aspects.

17
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2.1 Introduction

Whether being water flows, or liquid steel in ladles, the physics of fluid movements
are governed by the so-called Navier–Stokes equations. In a lot of applications, the
fluid is incompressible, leading to the class of incompressible flows. For the sake
of clarity, the equations are presented from the more general to the more specific
case, by detailing the assumptions between each cases.

2.1.1 Partial Differential Equations

Notations. In the rest of this dissertation, d ∈ {2, 3} is the dimension of the
problem, and bold symbols denote vector-valued quantities of dimension d.

Let Ω ⊂ Rd designate an open, bounded Lipschitz domain corresponding to
a fixed volume occupied by the fluid, with the boundary ∂Ω. The length of the
time interval is given by T ∈ R+. Let us define the (unknown) velocity vector field
u : [0, T ]×Ω 7−→ Rd and the (unknown) pressure scalar field p : [0, T ]×Ω 7−→ R of
the fluid. Let f : [0, T ]×Ω 7−→ Rd be a given volume (or body) force. Typically, it
represents the gravitational force, but can also be some other source term causing
the fluid to move (for example, electro-magnetic force in magnetohydrodynamics).
Partial derivatives are denoted by a subscript. In particular, ut designates the
time derivative of u.

The physical units of the three previous fields are, respectively: m s−1, Pa
(Pascal), and N m−3 = kg m−2 s−2. The fluid properties of interest are:
• its density ρ (in kg m−3),
• its dynamic viscosity µ (in kg m−1 s−1), and
• its kinematic viscosity ν = µ/ρ (in m2 s−1).

We also introduce the stress and velocity deformation tensors

S = 2µD(u) + pI, (2.1)

where I is the identity matrix, and

D(u) =
∇u+ (∇u)T

2
, (2.2)

respectively.

Navier–Stokes equations in dimensional form. The general form of the
NSE read

ρ(ut + (u · ∇)u)− 2µ∇ · D(u) +∇p = f in (0, T ]× Ω, (2.3)
ρt +∇ · (ρu) = 0 in (0, T ]× Ω. (2.4)

The vectorial equation (2.3), which is composed of d scalar equations, corresponds
to the momentum equation, and is derived from the principle of conservation of
linear momentum (Newton’s second law of motion applied to a fluid particle).
The second equation derives from the conservation of mass. It is also called the
continuity equation. For a detailed derivation of these equations from the principles
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of continuum mechanics, the reader is referred to (Ferziger and Peric, 2002, John,
2016). Note that, if the volume force represents the gravitational force, it would
be equal to ρg, where the constant gravity vector g is defined as (0,−g)T in 2d,
and (0, 0,−g)T in 3d.

Incompressible Navier–Stokes equations in dimensional form. If the
fluid is incompressible and homogeneous, its density ρ is constant in time and
space. This simplifies the second equation to1 ∇ ·u = 0. The incompressible NSE
thus read

ρ(ut + (u · ∇)u)− 2µ∇ · D(u) +∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω.

The second equation can be interpreted as an incompressibility (or divergence-free)
constraint for the velocity u. This term is often linked with the pressure term,
in the sense that the pressure acts as a Lagrangian multiplier of the continuity
equation, see for example (John, 2016).

In most applications of incompressible fluids, not only ρ, but also µ is constant.
One can therefore reduce the fluid properties to the kinematic viscosity ν, and write
the previous equations, still in dimensional form, as

ut + (u · ∇)u− 2ν∇ · D(u) +∇p = f in (0, T ]× Ω, (2.5)
∇ · u = 0 in (0, T ]× Ω. (2.6)

For the sake of brevity, the same notation for p and f has been used, although
they have been both divided by the constant ρ. Their units are now expressed
as Pa (kg m−3)−1 = m2 s−2 and N kg−1 (body force per unit mass), respectively.
In case of inhomogeneous fluids (in time and/or in space), the simplifications
introduced here do not hold: one has to consider the more general NSE (2.3)
and (2.4).

Incompressible Navier–Stokes equations in dimensionless form. The
concept of dimensionless equations has physical, mathematical, and numerical
foundations, but the experimental, or phenomenological, background is maybe the
most convenient to explain its importance. The development of fluid dynamics is
closely related to that of the experimental settings, especially wind tunnels, which
were exploited to understand the behavior of a car on the road, or the aerodynam-
ics of a wing. One key question is the scaling of the experiment: how to reproduce
on a small scale the same flow structures as on real large-scale problems? Thanks
to the works of (Reynolds, 1895), flow structures can be classified according to one
quantity: the Reynolds number Re, which depends on a characteristic velocity U
and length L of the flow, and on the physical kinematic viscosity of the fluid ν. It
is defined as

Re :=
LU

ν
,

1An equivalent definition of incompressible fluids, is that the material derivative of the density
should be 0: Dρ

Dt = ρt + (u · ∇)ρ = 0. Using this property and the identity ∇ · (ρu) = ρ(∇ ·u) +
(u · ∇)ρ, it remains from the continuity equation that ∇ · u = 0.
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and is the most important (and simple) criterion to answer the previous question.
For example, in order to reproduce the aerodynamics of a one-meter high object
moving at 800 km h−1 in air, one can choose L, U, and ν in such a way that the
Reynolds number is kept constant, i. e., the flow structures are preserved. Note
that it has no dimensions, since the units of L and U cancel out with the one of ν.

Coming to the physical meaning of Re, one can re-write the convection and
viscous terms with respect to the characteristic quantities

(u · ∇)u ∼ U2

L
, ν∇ · D(u) ∼ νU

L2
,

and observe that the Reynolds number consists of the ratio of the convection and
viscous terms

Re ∼ (u · ∇)u

ν∇ · D(u)
∼ U2/L

νU/L2
=
UL

ν
.

One retrieves the classification of the flows. A low Reynolds number, e. g., Re� 1,
indicates a slow flow dominated by viscous forces, while a large Re is a sign of
convection-dominated flows, or, for very high Re, turbulent flows. Mathematically,
the dimensionless form allows the analysis and error estimations based on only one
constant coefficient. From a computational point of view, dimensionless equations
can be advantageously used as a scaling in the order of 1 of numerical solutions.
This avoids rounding precision issues on floating point numbers.

One question remains: how to choose the characteristic length L and velocity
U? In practice, it is usual to compare one’s application with well-understood,
widely spread benchmark problems, e. g., flow around cylinders or channel flows.
For more specific problems, one should consider the order of magnitude of the
domain, or the size of an obstacle, depending on the flow structure of interest.
For example, in ladle stirring, if one is interested in the flow in the immediate
vicinity of the nozzle, one could use its diameter for L and the inlet gas velocity
for U . Alternatively, one could use the ladle height for the bulk flow. Sometimes,
the choice of the one or the other quantity does not change Re considerably, for
instance the ladle radius or its height for L. They differ by a factor of around 2,
which is quite negligible in the scale of the Reynolds number.

The detailed derivation of the dimensionless form of the NSE can be found
in (John, 2016). For completeness, a short version is given here. It consists of
re-writing the equations (2.5) and (2.6) in terms of the dimensionless and charac-
teristic quantities (designated with the asterisk)

u∗(t∗,x∗) =
u(t,x)

U
, x∗ =

x

L
, t∗ =

t

T ∗
, T ∗ =

L

U
.

Additional factors L and T ∗ appear from the time and space derivatives. Multi-
plying the momentum equation by L/U2, one obtains

u∗t∗ + (u∗ · ∇x∗)u∗ − 2
ν

LU
∇x∗ · D(u∗) +∇x∗

p

U2
=

L

U2
f in (0, T ]× Ω,

∇x∗ · u∗ = 0 in (0, T ]× Ω.
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All the terms in these equations are now dimensionless (unit 1). For more clarity,
we drop the asterisks, and re-define the pressure and the volume force, as the
dimensionless pressure and volume force, respectively, keeping the same notation.
One can verify the consistency of the units: in the previous paragraph, the pressure
unit was m2 s−2, now, it is divided by U2, leading to the dimensionless pressure.
Furthermore, we now define the dimensionless (kinematic) viscosity as

ν :=
1

Re
.

All in all, the incompressible Navier–Stokes equations in dimensionless form
can be written similarly to (2.5) and (2.6)

ut + (u · ∇)u− 2ν∇ · D(u) +∇p = f in (0, T ]× Ω, (2.7)
∇ · u = 0 in (0, T ]× Ω. (2.8)

Completed with appropriate boundary and initial conditions (discussed in the
next section), these equations are the main partial differential equations (PDEs)
studied mathematically and numerically for the simulations of fluid flows.

Main difficulties arising with the NSE. Besides of being vectorial equations,
the NSE are well-known for their theoretical and numerical difficulties (John, 2016,
p. 23):

1. The special coupling of velocity and pressure. Indeed, the pressure does
not appear explicitly in the continuity equation. As described earlier, the
pressure field can be considered as a Lagrangian multiplier to enforce the
incompressibility condition for the velocity (i. e., the continuity equation).
This type of coupling is characteristic of so-called saddle-point problems.

2. The nonlinearity introduced in the convective term.
3. The convection-domination, or turbulence, features which occurs when ν is

small (high Re). This situation concerns numerical schemes and analysis.
4. The three-dimensional case, which is an additional source of difficulties, in

theoretical aspects (see Section 2.2.2), and numerical aspects (3d simulations
are much more challenging computationally than 2d ones). These reasons of-
ten favor 2d computations, although real flows are usually three-dimensional.
In some cases, 2d simulations are also grounded physically, e. g., when the
flow is (virtually) independent of one direction. An intermediate case, which
is also very practical, is described by axisymmetrical flows, sometimes called
2.5d flows. The different behaviors between 2d, 2.5d, and 3d flows, will be
discussed in Chapter 3.

Simplified cases of the incompressible NSE. As pointed out by (Bartsch,
2018), Equations (2.7) and (2.8) are called the full NSE for two reasons. First,
they offer a full description of the flow structures, such that details up to the
micro-scale can be resolved with them. Second, they contain all the needed terms,
in opposition to simplified cases where some terms are neglected or modified. The
main purpose of such cases is to reduce the complexity of the NSE and offer,
nevertheless, interesting results for some real-life applications:
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1. If the problem is independent of time (velocity, pressure, volume force,
boundary conditions), the time term ut can be dropped, leading to the sta-
tionary NSE :

(u · ∇)u− 2ν∇ · D(u) +∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω.

Physically, this assumption can be consistent in case of a (very) slow flow,
which can occur obviously only with (very) low Re.

2. Assuming further that the flow is very viscous, the viscous term becomes
dominant, and one can neglect the convection term, ending up with the
(linear) Stokes flow :

−2ν∇ · D(u) +∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω.

This problem is generally well-understood, and describes the so-called creep-
ing flows, which are driven by viscous forces mainly.

3. Replacing, in the stationary NSE, the nonlinear convection term by a lin-
earized version (w · ∇)u with a known wind w, one defines so-called Oseen
equations :

(w · ∇)u− 2ν∇ · D(u) +∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω.

They have the advantage of being linear, but have no physical meaning.
They are rather auxiliary problems appearing in the numerical methods for
solving the full NSE.

Finally, high Reynolds number flows can be tackled using turbulence models,
such as Large Eddy Simulations (LES) or the k − ε model. These approaches can
also be considered as tools to reduce the complexity of the full NSE. Turbulence
modeling is discussed more in detail in Section 2.5.

Different formulations of the viscous term. The convection and the diffu-
sion2 terms can have several equivalent expressions. This is possible thanks to the
divergence-free constraint (2.8), and equalities based on vector calculus. In this
work, we always consider the convective form for the convection term (u · ∇)u,
but we alternate between two forms of the viscous term −2ν∇ · D(u). Using

∇ · (∇u) = ∆u and ∇ · (∇uT) =

(∇ · u)x
(∇ · u)y
(∇ · u)z

 = 0,

the last equality coming from the divergence constraint, the viscous term is equiv-
alent to

−2ν∇ · D(u) = −2ν∇ ·
(∇u+∇uT

2

)
= −ν∆u.

2The viscous term in the NSE can equivalently be called the diffusion term.
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These expressions are always equivalent in the continuous setting, but this does not
necessarily hold in the discrete setting. In fact, the discrete velocity is generally
not exactly divergence-free, so that the simplifications are not possible anymore,
or they introduce an additional error, see (Hannasch and Neda, 2012) for a com-
parison. If the discrete velocity is exactly divergence-free, then one can use these
forms equivalently. The following form of the NSE, based on the last expression
of the viscous term, is the most popular one in the literature:

ut + (u · ∇)u− ν∆u+∇p = f in (0, T ]× Ω, (2.9)
∇ · u = 0 in (0, T ]× Ω. (2.10)

In the rest of the thesis, the choice of the viscous term will be written explicitly.

2.1.2 Boundary and initial conditions

The Navier–Stokes equations are first-order-in-time and second-order-in-space par-
tial differential equations. They have to be equipped with conditions on the “space
and time boundaries”, i. e., boundary conditions on ∂Ω, and initial condition at
t = 0. In this dissertation, we are concerned only with enclosed flows, i. e., there
are no in- and outflows3. We will therefore focus only on two types of boundary
conditions of interest: Dirichlet and free slip with no penetration. For more clarity,
we consider a general case where:
• the domain boundary can be separated in three parts: ∂Ω = ΓD ∪ Γ0 ∪ Γslip,
• the boundaries are pairwise disjoint: ΓD ∩ Γ0 = ∅, ΓD ∩ Γslip = ∅, and

Γslip ∩ Γ0 = ∅,
• only ΓD can be presumably empty, while the others are not: Γ0 6= ∅,Γslip 6= ∅.

Dirichlet boundary conditions. One of the most classical boundary condition
consists in imposing the velocity field on the boundary,

u(t,x) = b(t,x) in (0, T ]× ΓD. (2.11)

They are called Dirichlet boundary conditions. Sometimes, they can be referred to
as essential boundary conditions for a reason related to the weak formulation, see
Section 2.2.1. It is most often used to describe inflows into or outflows out from
Ω. In Eq. (2.11), b can be nonzero, or zero in part of, or on all, the boundary
ΓD. In the case where b = 0, the boundary condition specifies that the velocity is
zero, and can neither penetrate the wall (zero normal component, no inflow and
outflow), neither slip along it (zero tangential component). Indeed, one can write

u = 0⇐⇒ u · n = 0, u · ti = 0, 1 ≤ i ≤ d− 1,

where n and ti are the unit normal and tangential vectors on ΓD, such that
{n, t1, t2} build a local orthonormal system of vectors. This situation is referred
to as homogeneous Dirichlet boundary condition, or no-slip condition.

3This assumption is due to the simplified approach used for ladle stirring, see Chapter 3.
If two-phase flows are considered, the use of inlet and outlet conditions for the gas phase are
necessary. More details on the outlet boundary condition and the two-phase model are given in
the paragraph Three remarks and in Section 3.5, respectively.
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In this work, we choose to distinguish explicitly areas with homogeneous and
non-homogeneous boundary conditions:

u = 0 in (0, T ]× Γ0, (2.12)
u = b in (0, T ]× ΓD, (2.13)
b 6= 0.

This distinction should improve clarity of the models introduced in Chapter 3, since
they have different types of boundary conditions depending on the dimension d of
the problem (2d, axisymmetric, or 3d). In 2d, ΓD 6= ∅ and b will always refer to
a nonzero boundary velocity. In axisymmetric and 3d cases, we will have ΓD = ∅,
i. e., the Dirichlet conditions are homogeneous. Similarly, in Chapter 4, b will play
the role of the control variable in the 2d optimal control model. Therefore, it will
be more convenient that b designates a nonzero velocity, and is independent of the
non-controlled boundaries Γ0 with homogeneous Dirichlet.

When Dirichlet conditions are prescribed on the whole boundary (ΓD = ∂Ω),
one has to take into account two additional constraints. First, the pressure can
only be determined up to one additive constant, since only its gradient appears in
the whole system of equations. The typical constraint to fix it reads∫

Ω

p(t,x) dx = 0 ∀t, (2.14)

i. e., the integral mean value of the pressure should vanish. A more physical con-
straint, often used in commercial softwares, consists of fixing the pressure value
at one point of the domain. Typically, the pressure at the free surface is equal
to the atmospheric pressure (∼ 105 Pa). Second, the prescribed velocity b should
be compatible with the divergence-free condition. Indeed, using the divergence
theorem (Gauss or Ostrogradsky theorem),∫

Ω

∇ · u dx =

∫
ΓD

u · n ds,

and applying the incompressibility condition (2.10) with (2.11), yield the condition∫
ΓD

b · n ds = 0. (2.15)

Free slip with no penetration boundary conditions. We start from the
general slip with friction and penetration with resistance condition (John, 2002):

u · n+ γ1n
TSn = 0 in (0, T ]× Γslip, (2.16)

u · ti + γ−1
2 nTSti = 0 in (0, T ]× Γslip, 1 ≤ i ≤ d− 1, (2.17)

where γ1 and γ2 are the resistance and the friction coefficients, respectively, and S
is the stress tensor (2.1). In a more explicit form, they read

u · n+ γ1n
T(2νD(u)− pI)n = 0 in (0, T ]× Γslip,

γ2u · ti + nT(2νD(u)− pI)ti = 0 in (0, T ]× Γslip, 1 ≤ i ≤ d− 1.
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These conditions state that there can be some penetration (inflow or outflow)
and tangential friction at the boundary Γslip. If γ1 → ∞ (γ−1

1 = 0), one obtains
a free penetration condition. If γ1 = 0, slip with no penetration is modeled.
If, furthermore, γ2 = 0 (γ−1

2 → ∞), one gets the free slip with no penetration
condition, which will be used very often in this work:

u · n = 0 in (0, T ]× Γslip, (2.18)
nTSti = nT(2νD(u)− pI)ti = 0 in (0, T ]× Γslip, 1 ≤ i ≤ d− 1. (2.19)

Free slip allows a non-zero tangential velocity at the boundaries. Physically, this
might be relevant on interfaces between fluids, although some friction is normally
always present. In the models of this dissertation, this condition has to be under-
stood as a simple model of the velocity at the free surface of the liquid: there is no
inflow or outflow, and, at the same time, the velocity is not zero as on the walls
(where no-slip conditions apply). Note also that, when γ2 → ∞ (γ−1

2 = 0), the
no-slip or homogeneous Dirichlet condition is recovered.

Altogether, Equations (2.16) and (2.17) are quite practical, because they can be
used as a general condition, where classical boundary conditions can be retrieved
(in a weak sense) by choosing, for example, arbitrarily high coefficients γ1 and
γ2. This can be convenient from the implementation point of view. On the other
hand, imposing no-slip, no-friction, or no-penetration conditions in a weak sense
can be numerically less stable than strongly imposed conditions, i. e., ones where
the values of the velocity components are exactly prescribed. For example, they
can cause convergence difficulties for linear solvers (John, 2002). One further
difficulty associated with the general conditions (2.16) and (2.17) is how to find
physically-relevant values for γ1 and γ2. These coefficients depend on the material
at the boundary, its geometry, its rugosity, etc. Since we apply the free slip with no
penetration condition (2.18) and (2.19), this will not be a problem in the present
work.

Three remarks. The models used in this dissertation have some specific fea-
tures regarding boundary conditions. First, they are enclosed flows, i. e., there are
neither inflows nor outflows. As described previously, an additional constraint on
the pressure, e. g., Eq. (2.14), should hold. One could notice, at first glance, that
the presence of the pressure in the free slip condition (2.19) could fix naturally the
additional constant, solving the problem of the non-uniqueness of pressure. How-
ever, since n and ti are orthogonal, the pressure does not play any role in (2.19):

nTSti = nT(2νD(u)− pI)ti = nT(2νD(u))ti − pnTti = nT(2νD(u))ti. (2.20)

Hence, the additional constraint on the pressure is still needed. Second, the com-
patibility condition (2.15) holds naturally in this work, because the imposed bound-
ary velocity b (in 2d and in the optimal control applications) will always be tangent
to the boundary: b · n = 0. Finally, for completeness, we should mention a few
words concerning the Neumann, or natural, boundary condition, which plays a role
as central as the Dirichlet condition in the NSE. It reads

S · n = 0⇐⇒ (2νD(u)− pI) · n = 0, (2.21)
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and usually model the outflow from Ω. The term natural has a double meaning.
It can refer to the fact that the Neumann condition, as a balance between phys-
ical quantities, is a better description of natural phenomena, than the Dirichlet
condition, where the imposed velocity is rather artificial than physical. Indeed,
fixing a velocity on the boundary is often the sign of a “human-driven” or a “data-
driven” flow. Artificial has to be understood in this sense. In a more mathematical
sense, the left-hand side of Equation (2.21) appears (and vanishes) naturally in the
weak formulation of the Navier–Stokes equations. The Neumann condition is also
known as do-nothing condition, since the velocity or the pressure are not forced
to prescribed values. If Eq. (2.21) is not to be used in the models employed later,
it is of major importance in two-phase models for ladle stirring. It is indeed used
as an outlet condition for the gas phase. This is briefly discussed in Section 3.5.

Initial conditions. At t = 0, the fluid can be at rest: u(0,x) = 0 in Ω, or can be
already developed. We will consider the general initial condition u(0,x) = u0(x).
It has to be compatible with the divergence constraint and the boundary condi-
tions. Namely, u0 must be divergence-free in some sense: ∇ · u0 = 0 (see (John,
2016, p. 334, Definition 7.6) for more details). Its boundary condition should be
compatible with the limit (for t 7−→ 0, t > 0) of the prescribed boundary condi-
tions, i. e., u|∂Ω 7−→ u0|∂Ω. For completeness, we also introduce an initial pressure
such that: p(0,x) = p0(x) in Ω. The role of the initial pressure in the numerical
method will be described later on. In some cases, the presence of a nonzero p0 can
help solvers to converge. It is for example recommended in commercial softwares.
A popular and physically consistent initial condition is given by the hydrostatic4
pressure:

p0(x, y, z) = ρ(z −H)g · ez,
where H is the liquid height.

2.1.3 Summary

Let us gather all the pieces and restate the whole problem which will be used all
along the thesis:
Problem 2.1 (Strong form of the Navier–Stokes equations):

ut + (u · ∇)u− 2ν∇ · D(u) +∇p = f in (0, T ]× Ω, (2.22)
∇ · u = 0 in (0, T ]× Ω, (2.23)

u = b in (0, T ]× ΓD, (2.24)
u = 0 in (0, T ]× Γ0, (2.25)

u · n = 0 in (0, T ]× Γslip, (2.26)
nTSti = 0, 1 ≤ i ≤ d− 1, in (0, T ]× Γslip, (2.27)∫

Ω

p dx = 0 in [0, T ], (2.28)

u(0, ·) = u0 in Ω, (2.29)

where the boundaries ΓD, Γ0, and Γslip are mutually disjoint.
4The term hydrostatic refers to water. For liquid steel, one uses the term ferrostatic pressure.
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2.2 Theoretical background

The main purpose of this section is to introduce the weak or variational formula-
tion of the Navier–Stokes equations. In fact, they play a central role in theoretical
results concerning the existence and uniqueness of a solution, as well as in numer-
ical methods. Space discretizations following the Galerkin Finite Element Method
are based on the weak formulation of the Navier–Stokes equations.

2.2.1 Weak formulation

Let V and Q be some function spaces, which will be specified later. A weak
formulation consists in multiplying the momentum equation with an arbitrary test
function v ∈ V and the continuity equation with an arbitrary test function q ∈ Q,
and then integrate over Ω. Finally, integration by parts is applied to reduce the
derivative order of some terms. The variational form of the continuity equation
reads directly

−
∫

Ω

(∇ · u)q dx = −(∇ · u, q) = 0,

where the notation (·, ·) indicates the L2-inner product. Note that a minus sign
has been added, allowing to have the symmetry of two blocks in the final problem
(Section 2.3.2). The time derivative, right-hand side and convective terms are also
straightforward:∫

Ω

ut · v dx = (ut,v),

∫
Ω

f · v dx = (f ,v),

∫
Ω

(u · ∇)u · v dx = ((u · ∇)u,v),

respectively. Applying integration by parts (theorem of Gauss), the weak form of
the pressure term is given by∫

Ω

∇p · v dx =

∫
∂Ω

pv · n ds−
∫

Ω

p∇ · v dx

=

∫
ΓD∪Γ0∪Γslip

pv · n ds− (p,∇ · v). (2.30)

Using the similar procedure on the viscous term yields

−2ν

∫
Ω

(∇ · D(u)) · v dx = −2ν

(∫
∂Ω

D(u)n · v ds−
∫

Ω

D(u) · ∇v dx

)
= −2ν

(∫
ΓD∪Γ0

D(u)n · v ds+

∫
Γslip

D(u)n · v ds− (D(u),∇v)

)
.

(2.31)

The last term can be reformulated using the symmetry of D(u):

(D(u),∇v) =

(
D(u),

∇v
2

)
+

(
D(u)T,

∇vT
2

)
=

(
D(u),

∇v
2

)
+

(
D(u),

∇vT
2

)
= (D(u),D(v)).
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By decomposing the test function into normal and tangential components v =
(v · n)n+

∑
i(v · ti)ti, the boundary term on Γslip in (2.31) can be written as∫

Γslip

D(u)n · v ds =

∫
Γslip

nTD(u)n(v · n) ds+

∫
Γslip

∑
i

nTD(u)ti(v · ti) ds,

(2.32)

where the last term vanishes because of the free slip condition (2.19) and (2.20).
Let us now specify the spaces V and Q to take into account the remaining

boundary conditions and constraints:

V = {v ∈
(
H1(Ω)

)d
,v = 0 on ΓD ∪ Γ0,v · n = 0 on Γslip},

Q = L2
0(Ω) = {q ∈ L2(Ω),

∫
Ω

q dx = 0}.

The homogeneous boundary conditions (2.25) have to be incorporated into the
velocity space in order to be used in the weak formulation. This is why they are
also called essential boudary conditions. Note also that the constraint (2.28) for
the additive constant of the pressure is included in the pressure space Q. Using
now v = 0 on ΓD ∪ Γ0 and v · n = 0 on Γslip, three boundary terms vanish from
the weak formulation, namely, the first terms in (2.30), (2.31), and (2.32),∫

ΓD∪Γ0∪Γslip

pv · n ds, 2ν

∫
Γslip

nTD(u)n(v · n) ds, −2ν

∫
ΓD∪Γ0

D(u)n · v ds.

Before putting all the pieces together, there remains the initial condition and the
Dirichlet condition on ΓD. The first one can be either kept in the strong form (2.29)
or added in the momentum equation by noticing that∫

Ω

(u(0)− u0) · v dx =
(
u(0)− u0,v

)
= 0.

Let us define ub ∈ H1(Ω) as an extension of b into Ω for all t in [0, T ]. It is used
to construct the solution with the correct prescribed boundary velocity on ΓD.

Altogether, the weak formulation of equations (2.22) to (2.29) reads:
Problem 2.2 (Weak formulation of the continuous Navier–Stokes equations):

Find (u, p) ∈ H1(Ω)×Q, with u− ub ∈ V and u(0, ·)− ub(0, ·) = u0, such that

(ut,v) + (2νD(u),D(v)) + ((u · ∇)u,v)− (∇ · v, p) = (f ,v), (2.33)
−(∇ · u, q) = 0, (2.34)

for all (v, q) ∈ V ×Q and for all t ∈ (0, T ].

2.2.2 A few words about existence and uniqueness

Before going into the numerical methods to solve Problem 2.2, it should be noted
that the well-posedness of the NSE is a difficult problem. The existence and
uniqueness of its solution have been proved in the 2d case, but not in 3d.
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The questions of the existence of a strong solution in 3d, for a so-called classical
problem with C∞ functions u and p, and the uniqueness of the weak solution in
3d, are both major mathematical challenges of this century (Fefferman, 2006).
These questions should be kept in mind in the context of optimal control problems
(Chapter 4). There, a solution operator S of the NSE, defined as

S(f , b) = (u, p),

intervenes in the derivation of the optimality system. We will have to assume that
it is well defined, such that (u, p) exists and is unique.

In the rest of this thesis, we shall rather focus on the solvability of the dis-
crete equations. In this regard, one important tool is the discrete inf-sup stability
(Section 2.3.2). It guarantees that the discrete velocity and pressure spaces are
chosen in such a way that the problem is well-posed, ensuring in particular the
uniqueness of the pressure. Thanks to the inf-sup condition, linear saddle point
problems, such as the ones obtained after linearizing and fully discretizing the
Navier–Stokes equations, can be solved correctly.

2.3 Numerical methods

The process leading from the continuous form of the NSE (2.22) to (2.29) to a nu-
merically computable solution is composed of several steps, the main ones being:
discretization with respect to the time and space variables, and the linearization of
the nonlinear convective term. Furthermore, pressure and velocity can be treated
either in a coupled way, or split into decoupled equations. All these aspects have
led to a large number of numerical techniques to solve the NSE. In (John, 2016),
the reader can find an overview of these different approaches. To give a short
illustration, let us consider the discretization part. One can discretize time and
space separately: for example, first in time and then in space (horizontal method of
lines), or first in space and then in time (vertical method of lines). The equations
obtained half way of these processes are called semi-discretized equations (in time
or space), and, at the end, the fully discretized equations. A more sophisticated
approach consists in discretizing simultaneously in space and time to get directly
a full discretization, e. g., the space-time discontinuous Galerkin Finite Element
Method (Van der Vegt and Van der Ven, 2002). Concerning space discretizations,
one usually distinguishes between the Finite Element Method (FEM), the Finite
Volume Method (FVM), and the Finite Difference Method (FDM). Real-life appli-
cations of incompressible flows are often solved using FVM. Indeed, two popular
softwares for Computational Fluid Dynamics (CFD) are based on this method: the
commercial software Fluent and the open-source software OpenFOAM. This
method conserves fluxes in each cell (volume) of the mesh, (Ferziger and Peric,
2002). Applied on structured meshes, it offers a comparably easy discretization
with good conservation properties and matrix structures, making it suitable for
engineering applications. On the other hand, FEMs can be more easily applied
on complicated geometries and unstructured meshes, and dispose of an important
background in numerical analysis.
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In this dissertation, we apply a widely used numerical approach for the Navier–
Stokes equations, (John, 2016). It consists first in the time discretization, then in
the linearization of the convective term, and finally, in the space discretization
with the Galerkin Finite Element Method. The pressure and velocity will always
be treated in a coupled way.

2.3.1 Time discretization and linearization

Time discretization. Discretizing in time a first-order-in-time PDE as Equa-
tion (2.22) consists of balancing the time derivative term with an average of the
remaining terms between two time steps. Let k ∈ N, ∆t ∈ R+ be the length of
the time step (∆t = tk − tk−1), θ ∈ [0, 1], and uk−1, pk−1, and fk−1 be known
evaluations of the functions at time step tk−1. We also assume that the initial con-
dition u0 is known. Then, using forward difference for the time term, the unknown
quantities uk and pk at the current time step tk solve the equations

uk − uk−1

∆t
= (1− θ)

(
ν∆uk−1 −

(
uk−1 · ∇

)
uk−1 + fk−1 −∇pk−1

)
+ θ
(
ν∆uk −

(
uk · ∇

)
uk + fk −∇pk

)
, (2.35)

∇ · uk = 0.

Here, it is important to note that the pressure terms −(1 − θ)∇pk−1 and −θ∇pk
do not usually appear as such in the literature. Instead, only one term appears,
namely −∇pk (without the coefficient θ), leading to the more standard formulation

uk − uk−1

∆t
= (1− θ)

(
ν∆uk−1 −

(
uk−1 · ∇

)
uk−1 + fk−1

)
−∇pk

+ θ
(
ν∆uk −

(
uk · ∇

)
uk + fk

)
, (2.36)

∇ · uk = 0.

This formulation, which has the advantage of not requiring the initial pressure
p0, is derived as follows5: one writes the time discretization of Equations (2.9)
and (2.10) with respect to u only, and adds the pressure term ∇pk as the Lagrange
multiplier enforcing the incompressibility condition at time tk: ∇ ·uk = 0. To the
best of the author’s knowledge, only a few papers investigate formulations similar
to (2.35) which use p0, e. g., (Rang, 2008). Their superiority over the more standard
formulation could not be demonstrated. Therefore, we employ the standard form
of semi-discretization (2.36).

By multiplying by ∆t and re-ordering the terms, they can be re-written as

uk + θ∆t
(
−ν∆uk +

(
uk · ∇

)
uk
)

+ ∆t∇pk

= uk−1 + (1− θ)∆t
(
ν∆uk−1 −

(
uk−1 · ∇

)
uk−1

)
+ (1− θ)∆tfk + θ∆tfk,

∆t∇ · uk = 0.

5However, the lack of the term in pk−1 in the Crank–Nicolson method leads to an approxi-
mation of p at an intermediate time, namely: tk−1 + ∆t

2 , (Bartsch, 2018, p. 20).
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Note that the continuity equation has been scaled with the time step ∆t. From
numerical experience, this scaling makes the computations more efficient, (John,
2016, Remark 7.47).

Many time-stepping schemes belong to the family of one-step θ-schemes, which
is itself a subclass of the more general fractional-step θ-schemes, (John, 2016,
Chapter 7). The choices θ = 0 and θ = 1 lead to the first-order forward and
backward Euler methods, respectively. The first type is an explicit method and re-
quires a Courant–Friedrichs–Lewy (CFL) condition to be fulfilled to ensure stabil-
ity, (Courant et al., 1928). This often leads to very small time steps and, therefore,
very high computational time. The backward Euler is implicit: it has no restric-
tion on the time step but is often too dissipative and therefore inaccurate. Using
θ = 1

2
, one obtains the popular Crank–Nicolson method, which is second-order

and A-stable. Although it can suffer from instabilities in certain cases, it will be
the time-stepping scheme of choice in the simulations of the next chapters.

Linearization. The basic idea to numerically solve a nonlinear equation is to
solve linear approximations of the problem iteratively, until one converges to the
actual solution. In the case of the semi-discretized NSE, two common types of
methods (or iterations) are used to linearize the nonlinear part of the equations,
i. e., the convective term

(
uk · ∇

)
uk: the fixed-point or Picard iteration, and the

Newton iteration. The Picard iteration approximates the convective term at time
tk using a previously computed velocity uk as a “wind”:(

uk · ∇
)
uk ≈

(
uk−1 · ∇

)
uk,

while the Newton method uses the following linearization (based on the gradient
of the convective term):(

uk · ∇
)
uk ≈

(
uk−1 · ∇

)
uk +

(
uk · ∇

)
uk−1 −

(
uk−1 · ∇

)
uk−1.

In these equations, one has to iterate and replace, in each iteration, uk−1 by the
newly computed solution, until convergence is reached.

Let n be the index of the nonlinear iterations, ukn the velocity at the n-th
iteration at time step k. At the first iteration, the initial “guess” uk0 is taken as
the solution of the previous time step: uk0 = uk−1. Then, assuming that ukn−1 is
known, the nonlinear term in the n-th Picard iteration can be written as(

ukn · ∇
)
ukn ≈

(
ukn−1 · ∇

)
ukn,

and the Newton iteration as(
ukn · ∇

)
ukn ≈

(
ukn−1 · ∇

)
ukn +

(
ukn · ∇

)
ukn−1 −

(
ukn−1 · ∇

)
ukn−1.

In each nonlinear iteration, the whole problem (2.9) and (2.10) has to be solved,
replacing the convection term by one of these two approximations.



32 2. The time-dependent incompressible NSE

For more clarity, let us re-write Equations (2.9) and (2.10) with the Picard
iteration (and the Crank–Nicolson scheme: θ = 1/2):

ukn +
∆t

2

(
−ν∆ukn +

(
ukn−1 · ∇

)
ukn
)

+ ∆t∇pk

= uk−1 +
∆t

2

(
ν∆uk−1 −

(
uk−1 · ∇

)
uk−1

)
+

∆t

2

(
fk−1 + fk

)
, (2.37)

∆t∇ · ukn = 0. (2.38)

The iterations are said to have converged when the Euclidean norm of the residual
vector of the equations is small enough, i. e., smaller than a fixed tolerance value.
If this value is very small, e. g., 10−10, the solution may be very accurate, but the
number of iterations may be too high for a reasonable computational time. On
the other hand, a coarser tolerance threshold may need a few number of iterations
and be faster to compute, but may lead to poor results. Altogether, the choice of
this tolerance value has to balance accuracy and computational cost, and depends
on the application. Regarding the comparison between the Picard and Newton
iterations for the steady-state NSE, the reader can find more details in (John,
2016, Chapter 6). In some cases, the Newton method converges faster (e. g., in
the time-dependent case given in (John, 2016, Example 7.57)), but the Picard
iteration is generally less dependent on the choice of the initial guess uk0, and is
quite efficient in terms of computational time and memory usage. Furthermore, it
is well adapted for high Re. For example, in Ahmed et al. (2018), the authors have
a positive experience of the Picard iterations. In the rest of this work, we will only
consider the equations linearized with the Picard method, i. e., (2.37) and (2.38).

2.3.2 Space discretization and the Galerkin Finite Element
Method

The space discretization we use is the Galerkin Finite Element Method (FEM). The
main idea of the FEM is to approximate the infinite-dimensional function spaces
V and Q by discrete (i. e., finite-dimensional) spaces V h and Qh, and compute
the discrete approximation (uh, ph) of (u, p).

As explained earlier, the starting point of this method is the weak formulation
(Problem 2.2). The procedures and the results are similar to the ones presented in
Section 2.2.1, except that we now consider the semi-discrete in time and linearized
equations (2.37) and (2.38). Basically, one has to replace u in the weak form (2.33)
and (2.34) by ukn and adjust the terms according to the manipulations performed
in the previous section. Let us recall the spaces of interest, knowing that the
(ukn, p

k) are now functions of the space variables only:

V = {v ∈
(
H1(Ω)

)d
,v = 0 on ΓD ∪ Γ0,v · n = 0 on Γslip}, (2.39)

Q = L2
0(Ω) = {q ∈ L2(Ω),

∫
Ω

q dx = 0}. (2.40)

The variational form of the time-discretized and linearized NSE is given in Prob-
lem 2.3.



2.3. Numerical methods 33

Problem 2.3 (Weak formulation of the semi-discrete in time, linearized Navier–
Stokes equations): Given the nonlinear iteration n ∈ N, the time step k ∈ N, and
given ukn−1 ∈ H1(Ω) (with ukn−1 − ub ∈ V ), find (ukn, p

k) ∈ H1(Ω)×Q, such that
ukn − ub ∈ V and(

ukn,v
)

+
∆t

2

[(
2νD(ukn),D(v)

)
+
((
ukn−1 · ∇

)
ukn,v

)]
−∆t

(
∇ · v, pk

)
=
(
uk−1,v

)
− ∆t

2

[(
2νD(uk−1),D(v)

)
+
((
uk−1 · ∇

)
uk−1,v

)]
+

∆t

2

((
fk−1,v

)
+
(
fk,v

))
,

−∆t
(
∇ · ukn, q

)
= 0,

for all (v, q) ∈ V ×Q.
Note that the initial term u0 is implicitly included in the time discretization.

One can now write the space discretization. Let us assume d = 3; the two-
dimensional case is obtained similarly. Let V h andQh be finite-dimensional spaces.
We consider only conforming finite element spaces, i. e., V h and Qh are subspaces
of the infinite spaces V and Q used in the weak formulation. They are equipped
with the basis

V h = span{φh,i}3Nv
i=1

= span



φh,i
0
0


Nv

i=1

,


0
φh,i
0


Nv

i=1

,


0
0
φh,i


Nv

i=1

 ,

Qh = span{ψh,i}Np

i=1,

where dNv and Np are the dimensions of the vector-valued function spaces V h

and the scalar-valued space Qh, respectively. They are also called the number of
degrees of freedom. We can now define the discrete velocity and pressure (uh, ph) ∈
V h ×Qh, having the unique representation

uh =

(
Nv∑
i=1

u1
iφh,i,

Nv∑
i=1

u2
iφh,i,

Nv∑
i=1

u3
iφh,i

)T

, (2.41)

ph =

Np∑
i=1

piψh,i, (2.42)

and introduce the vectors which collect the unknown coefficients:

uh =

(u1
i )
Nv
i=1

(u2
i )
Nv
i=1

(u3
i )
Nv
i=1

 ∈ R3Nv , ph = (pi)
Np

i=1.

In total, there are 3Nv + Np unknowns. The same number of equations is
provided by choosing, in the weak formulation, test functions equal to each of the
basis function (φh,i)

3Nb

i=1 and (ψh,i)
Np

i=1. First, let us replace the infinite-dimensional
spaces in Problem 2.3 by the finite-dimensional ones, in order to get the fully
discretized, in time and space, and linearized Navier–Stokes equations.
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Problem 2.4 (Fully discretized and linearized NSE, with Crank-Nicolson time
discretization, Galerkin Finite Element Method, and Picard iteration): Let V h

be a finite-dimensional subspace of H1(Ω). Given the nonlinear iteration n ∈ N,
the time step k ∈ N, and given ukh,n−1 ∈ V h (with ukh,n−1 − ug,h ∈ V h), find
(ukh,n, p

k
h) ∈ V h ×Qh, such that ukh,n − ug,h ∈ V h and(
ukh,n,vh

)
+

∆t

2

[(
2νD(ukh,n),D(vh)

)
+
((
ukh,n−1 · ∇

)
ukh,n,vh

)]
−∆t

(
∇ · vh, pkh

)
=
(
uk−1
h ,vh

)
− ∆t

2

[(
2νD(uk−1

h ),D(vh)
)

+
((
uk−1
h · ∇

)
uk−1
h ,vh

)]
+

∆t

2

((
fk−1,vh

)
+
(
fk,vh

))
,

−∆t
(
∇ · ukh,n, qh

)
= 0,

for all (vh, qh) ∈ V h ×Qh.
Note the index h for the test functions vh and qh: they belong also to the dis-

crete spaces. Inserting the representations (2.41) and (2.42) into Problem 2.4, one

can test the momentum equation by the test functions vh =


φh,j
0
0

, vh =


0
φh,j
0

,

vh =


0
0
φh,j

, for j = 1 . . . Nv, and the continuity equation with qh = ψh,j, for

j = 1 . . . Np to obtain the desired 3Nv + Np independent linear equations. We
explicitly write the expressions and matrix form term by term (without the coef-
ficients ∆t and ν) before gathering everything:

(
ukh,n,φh,j

)
=

(
3Nv∑
i=1

uiφh,i, φh,j

)
=

3Nv∑
i=1

ui(φh,i, φh,j), (2.43)

(
D(ukh,n),D(φh,j)

)
=

(
D

(
3Nv∑
i=1

uiφh,i

)
,D(φh,j)

)
=

3Nv∑
i=1

ui(D(φh,i),D(φh,j)),

(2.44)((
ukh,n−1 · ∇

)
ukh,n,φh,j

)
=

3Nv∑
i=1

ui
((
ukh,n−1 · ∇

)
φh,i, φh,j

)
, (2.45)

(
pkh,∇ · φh,j

)
=

Np∑
i=1

pi(ψh,i,∇ · φh,j), (2.46)

(
∇ · ukh,n, ψh,j

)
=

3Nv∑
i=1

ui(∇ · φh,i, ψh,j). (2.47)

The first term (2.43) is nonzero only when j = i, which gives a mass matrix with
the following block structure:

M =

M11 0 0
0 M11 0
0 0 M11

 ∈ R3Nv×3Nv . (2.48)
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By developing the tensor D, the viscous term (2.44) can be written explicitly:

(D(φh,i),D(φh,j)) =

∫
Ω

D(φh,i) : D(φh,j) dx

=

∫
Ω

3∑
k,l=1

1

2

(
∂(φh,i)

k

∂xl
+
∂(φh,i)

l

∂xk

)
1

2

(
∂(φh,j)

k

∂xl
+
∂(φh,j)

l

∂xk

)
dx

=
1

4

∫
Ω

3∑
k,l=1

(
∂(φh,i)

k

∂xl

∂(φh,j)
k

∂xl
+
∂(φh,i)

k

∂xl

∂(φh,j)
l

∂xk

+
∂(φh,i)

l

∂xk

∂(φh,j)
k

∂xl
+
∂(φh,i)

l

∂xk

∂(φh,j)
l

∂xk

)
dx,

which has to be multiplied by 2ν. Thus, the corresponding matrix has the following
matrix structure:

A =

 A11 A12 A13

A12
T A22 A23

A13
T A23

T A33

 ∈ R3Nv×3Nv . (2.49)

The convective term (2.45) reads

((
ukh,n−1 · ∇

)
φh,i, φh,j

)
=

∫
Ω

3∑
l=1

(ukh,n−1)l
(
∂

∂xl
φh,i

)
φh,j dx,

which is zero whenever φh,i and φh,j do not represent the same component. If they
have the same non-vanishing components, the contribution is the same for any of
l = 1 . . . 3. Thus, the matrix structure of the convective term is

C(ukh,n−1) =

C11 0 0
0 C11 0
0 0 C11

 ∈ R3Nv×3Nv . (2.50)

Note also that these contributions are nonsymmetric, and deteriorates thereby the
“quality” of the matrix, in terms of convergence of iterative solvers. Similarly, the
velocity-pressure terms (2.46) and (2.47) are given by

(ψh,i,∇ · φh,j) =

∫
Ω

3∑
l=1

ψh,i
∂φh,j
∂xl

dx, BT =

B1
T

B2
T

B3
T

 ∈ R3Nv×Np (2.51)

(∇ · φh,i, ψh,j) =

∫
Ω

3∑
l=1

ψh,j
∂φh,i
∂xl

dx, B =
(
B1 B2 B3

)
∈ RNp×3Nv . (2.52)

The right-hand side can be written in vector form using the matrices introduced
above:

ru = Muh
k−1 − ∆t

2

(
A+ C(uh

k−1)
)
uh

k−1 +
∆t

2

((
fk, φh,i

)
+
(
fk−1, φh,i

))
.
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Altogether, the linear system of equations can be written in a compact matrix
form, by adding all the terms (2.48), (2.49), (2.50), (2.51), and (2.52):(

M + ∆t
2

(
A+ C(ukh,n−1)

)
−∆t BT

−∆t B 0

)(
uh
ph

)
=

(
ru
0

)
. (2.53)

This form of linear system is called a saddle point problem. The computation of
the matrix entries follows a standard procedure in the FEM. Basis functions are
generally chosen to have non-zero values only locally and such that the integral
expressions can be computed efficiently. Typically, they consist of elementwise
polynomials, i. e., with small support (only a few neighboring mesh cells). The
small support of the basis functions allows the system matrix to be sparse and
the fact that they are polynomials allows the application of quadrature formulas
to evaluate the integrals, up to the machine precision. In the next paragraph, we
focus on the specific finite element spaces used to solve the fully discretized NSE.

Choice of the finite element spaces – The discrete inf-sup condition.
As mentioned earlier, the spaces V h and Qh have to fulfill the discrete inf-sup
condition to ensure that the discrete Problem 2.4 is well-posed, i. e., it has a
unique solution, (John, 2016, p.55):
Definition 2.5 (The discrete inf-sup condition for conforming FE spaces): The

pair of conforming finite element spaces V h and Qh is said to fulfill the discrete
inf-sup condition if there exists γ > 0 such that

inf
qh∈Qh,qh 6=0

sup
vh∈Qh,vh 6=0

−(qh,∇ · vh)
‖vh‖V h

‖qh‖Qh

> γ.

Since polynomial (Taylor-Lagrange) basis functions are the most popular in the
FEM literature, a lot of studies investigated the inf-sup stability of spaces spanned
by such polynomials. It turns out that the Taylor–Hood finite element spaces, given
by Pk/Pk−1, k ≥ 2 (on triangular and tetrahedral grids), and Qk/Qk−1, k ≥ 2 (on
quadrilateral and hexahedral meshes) are inf-sup stable. In particular, the popular
low order finite elements P2/P1 andQ2/Q1 (piecewise quadratic for the velocity and
piecewise linear for the pressure) are inf-sup stable. As it can be seen in different
comparison studies (Ahmed et al., 2018, John, 2016, John and Matthies, 2001), the
performance of the finite elements, in terms of accuracy and computational time,
depends on the mesh and the type of solver and/or preconditioner. In general,
the FE P2/P1 and Q2/Q1 perform quite satisfactorily. Hence, they will be used in
the applications of this thesis. Using lower order (such as P1/P0) or same order
(e. g., P1/P1) elements leads to instabilities in the pressure. It is possible to use
stabilization methods (John et al., 2019), but this would introduce multiple other
difficulties, such as the dependency on further stabilization parameters (John,
2016, Chapter 3). This highlights the importance of inf-sup stable elements in
saddle-point problems. Other classical FE used in the NSE can be found in (John,
2016, Chapter 3), for example: P nc

1 /P0 (non-conforming linear or Crouzeix-Raviart
elements), P bubble

1 /P0 (MINI elements), Qrot
1 /P0, Q2/P

disc
1 , and P bubble

2 /P disc
1 .
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Treatment of the boundary conditions. In Problem 2.4, three types of
boundary conditions are prescribed “strongly”, i. e., they appear in the definition
of the velocity space V (2.39) and not in the terms of the variational formulation:
the homogeneous and non-homogeneous Dirichlet on Γ0 and ΓD, respectively, and
the no-penetration condition on Γslip. They have to be taken into account in the
matrix system (2.53). The typical way of proceeding in the FEM consists of “man-
ually” modifying the equations concerned by a degree of freedom at the domain
boundary, such that the velocity is equal to the prescribed value at that degree of
freedom. To illustrate this, consider a degree of freedom iD on a Dirichlet bound-
ary, where the velocity is b (= 0 or 6= 0). Then, the three rows (i. e., the three
equations) of the system matrix at (iD, i

2
D = iD +Nv, i

3
D = iD + 2Nv) are replaced

by three lines filled with 0 except on the one (diagonal) entry corresponding to
u1
iD
, u2

iD
, u3

iD
, where it has the value 1:



↓ ↓ ↓
...

...
...

iD −→ 0 . . . 0 1 0 . . . . . . . . . . . . . . . 0

...
...

...
iD +Nv −→ 0 . . . . . . . . . 0 1 0 . . . . . . . . . 0

...
...

...
iD + 2Nv −→ 0 . . . . . . . . . . . . . . . 0 1 0 . . . 0

...
...

...





...

u1
iD

u2
iD

u3
iD
...


=



...

b1iD

b2iD

b3iD
...


. (2.54)

These modified equations directly yield

u1
iD

= b1
iD
, u2

iD
= b2

iD
, u3

iD
= b3

iD
,

where bjiD , j = 1 . . . 3, is set to 0 (homogeneous Dirichlet) or to a nonzero prescribed
value if a non-homogeneous condition applies.

The no-penetration condition follows a similar treatment. For simplicity, as-
sume that Γslip is a plane (or a line in 2d) orthogonal to the vertical direction.
This will be the case in the applications of this thesis. Then, the no-penetration
condition reads u · ez = 0, such that only the third component of u should be
forced to 0. The implementation is then simply



...
...

...

. . .
. . . . . . . . . . . . . . . . . .
...

...
...

. . . . . . . . .
. . . . . . . . . . . .

...
...

...
iD + 2Nv −→ 0 . . . . . . . . . . . . . . . 0 1 0 . . . 0

...
...

...





...

...

...
u3
iD
...


=



...

...

...
0
...


. (2.55)
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Note that a weak implementation of the free slip with no-penetration condi-
tion (2.17) and (2.16) would have led to additional entries in the matrix, see (John,
2002), replacing the manipulation (2.55). In this case, the penetration coefficient
is chosen arbitrarily high, e. g., 1012, such that the no-penetration condition reads

1012u3
iD

= b3
iD
,

resulting in a vanishing velocity component. However, as experienced in (John,
2002, Remark 4.2), the weak imposition of no-penetration condition deteriorates
significantly the performance of iterative solvers. On the contrary, applying the
modifications (2.54) and (2.55) improve the convergence of iterative solvers and
delivers the exact value at the boundary.

A final word about the implementation of strong conditions: the pressure field
also needs to be corrected according to the definition of the pressure space Q
in (2.40). Indeed, the constraint on the zero integral mean value does not appear
in the variational formulation. This is done by subtracting the mean value of the
computed p from all ph,i, i = 1 . . . Np.

2.3.3 Axisymmetric formulation

In some applications, as in ladle stirring, flows are assumed to have an axial sym-
metry. They are called axisymmetrical flows, or 2.5d flows, because their behavior
in terms of physical realism is somehow between two- and three-dimensional. The
axisymmetrical equations are best formulated in a cylindrical space frame (r, θ, z).
They are based on two main assumptions: the velocity and pressure are indepen-
dent of the angular coordinate θ:

∂ur
∂θ

= 0,
∂uθ
∂θ

= 0,
∂uz
∂θ

= 0,
∂p

∂θ
= 0,

and there is no angular velocity:

uθ = 0.

The derivation of the strong form of the axisymmetrical NSE can be found in
Annex A. Equation (A.4) can be multiplied by the factor r or r2 for a better
numerical behavior. The case r = 0 is given by a naturally imposed symmetry
condition on the symmetry axis Γaxis (Ganesan and Tobiska, 2008, p.125):

ur = 0,
∂uz
∂r

= 0 on Γaxis. (2.56)

Fore more details on the axisymmetric NSE, the reader is referred to (Bartsch,
2018, p.122-130). Here, we restrict ourselves to the impact of the axisymmetrical
formulation on numerical implementation. The weak formulation of the equations
is given by (Bartsch, 2018, p.128-129):
Problem 2.6 (Weak form of the time-discretized nonlinear axisymmetrical

Navier– Stokes equations): Given the r-weighted space L2(Ω, r), the r-weighted
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Sobolev spaces H1(Ω, r) = W 1,2(Ω, r) and V 1(Ω, r) = H1(Ω, r) ∩ L2(Ω, r−1), find
u = (ur, uz) ∈ H1(Ω, r)× V 1(Ω, r) and p ∈ L2(Ω, r) such that∫

Ω

[
u · v − ∆t

2
ν
(
∇r,zu : ∇r,zv +

urvr
r2

)
+

∆t

2
((u · ∇r,z)u) · v

+∆t(∇r,zp) · v
]
r dr dz −

∫
Ω

(f · v) r dr dz = 0,

∆t

∫
Ω

(
∇r,zu+

ur
r

)
q r dr dz = 0,

for all v = (vr, vz) ∈ H1(Ω, r)× V 1(Ω, r) and q ∈ L2(Ω, r).
Comparing this axisymmetric problem with the Cartesian problem 2.3, one

observes one extra-term in each of the momentum and continuity equations (urvr
r2

and ur
r
, respectively), and the factor r in all the integrals. Thus, as pointed

by (Bartsch, 2018, p.128), a standard 2d flow solver in Cartesian frame can easily
be adapted to the axisymmetrical case: one only needs to add these two terms and
multiply the integrands by the coordinate r. This is the implementation used for
the corresponding simulations in Chapter 3.

2.4 Linear solvers

2.4.1 Introduction

As described earlier, numerical methods for PDEs leads to linear systems of equa-
tions of the form

Ax = r. (2.57)

Depending on the properties of A (symmetry, definiteness, block structure, spar-
sity, size...), one can use different tools from linear algebra to solve the system
efficiently, e. g., direct solvers, iterative solvers, and preconditioners. For a de-
tailed introduction to linear solvers, the reader is referred to (Saad, 2003). In this
section, we briefly describe the specificities of the linear system obtained from the
discretization of the NSE and present the main techniques used in the numerical
simulations of this dissertation.

Saddle point problems. The system (2.53) is a so-called saddle point problem(
A BT

B 0

)(
uh
ph

)
=

(
ru
0

)
, (2.58)

characterized by the lower right 0-block. It comes from the usage of inf-sup stable
spaces: in this case, there is no stabilizing pressure-pressure coupling term. The
difficulties associated with such systems are its indefiniteness, the non-symmetry
of the A-block due to the convection term, and the zero diagonal in the lower right
block, (Bartsch, 2018, Ahmed et al., 2018).
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The solvers for linear systems of equations can be classified in direct and it-
erative solvers. Direct solvers perform an LU factorization of A, leading to a
triangular matrix which can be solved easily and exactly (i. e., up to the ma-
chine precision). Furthermore when the system of equations is fixed, the LU de-
composition does not change, and can be re-used with different right-hand sides,
saving computational time. However, the computation of the LU factorization
itself can be prohibitively expensive for large matrices with “bad” properties, as
in the Navier–Stokes equations, especially in 3d. Therefore, in this work, direct
solvers are mainly used for small to medium 2d problems. The well-known packages
Umfpack for sequential programming, (Davis, 2004), and Mumps for parallel pro-
gramming, (Amestoy et al., 2001), are used. Contrary to direct solvers, iterative
solvers do not try to solve (2.57) exactly, but compute successive approximations
of its solution. One of the most popular iterative methods is FGMRES (Flexible
Generalized Minimal RESidual), which belongs to the class of Krylov subspace
methods, (Saad, 2003), and which can be used for non-symmetric matrices. This
is the main iterative method used in this work. In order to perform the best,
iterative solvers need to be used together with preconditioners. Roughly speaking,
a preconditioner P is an appropriately chosen matrix such that the system

AP−1y = r,

Px = y,

which has the same solution as (2.57), is easier to solve (faster convergence). Note
that there are also left-preconditioners, but, since we are interested here on the
LSC method, we consider only right preconditioners.

In other words, a successful preconditioning modifies A, in such a way that
AP−1 has a smaller condition number thanA, becoming easier to solve for iterative
solvers. Often, preconditioners are tailored specifically for different applications
to exploit the system properties and block structures. For saddle point problems
coming from the Navier–Stokes equations, examples of well-known preconditioners
are the Geometric Multigrid Method and the Least Squares Commutator (LSC).
The latter is often used in this work and will be shortly detailed in the next section.
Combinations of iterative solvers with preconditioners, e. g., FGMRES with LSC
preconditioner, become computationally more efficient for large 2d, or medium to
large 3d problems, than other types of solvers.

2.4.2 FGMRES with LSC preconditioner

This section is based on the work from (Ahmed et al., 2018) and (Bartsch, 2018).
Further details on the LSC preconditioner can also be found in (Elman, 2005).
A good starting point to derive a preconditioner is to write the blockwise LU
decomposition of the system matrix (2.58):

A : =

(
I 0

BA−1 I

)(
A BT

0 SC

)
= LU,

where we have introduced the Schur complement :

SC = −BA−1BT.
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The matrix AU−1 = L having perfectly clustered eigenvalues (triangular matrix
with ones on the diagonal), the matrix U can be considered as a good precondi-
tioner. However, the Schur complement SC is quite difficult to compute: one has
to invert A, and A−1 is not sparse in general. Constructing an approximation of
SC which is easier to compute, is the main purpose of the LSC preconditioner.

Denoting byD the diagonal of the velocity mass matrix, the LSC preconditioner
uses the following approximation of the Schur complement (Bartsch, 2018),

SC,LSC = −(BD−1BT)(BD−1AD−1BT)−1(BD−1BT).

Now, one preconditioning step consists in solving(
A BT

0 SC,LSC

)(
uh
ph

)
=

(
ru
rp

)
.

Two subproblems are computed in a decoupled way: first, the pressure subproblem,
corresponding to the lower part (Schur complement part),

SC,LSC ph = rp.

This subproblem can be efficiently solved with direct solvers. Indeed, first, it is
generally small because of the relatively small size of the pressure space. Further-
more, it is independent of time, such that its inverse needs to be computed only
once and can be re-used at all time steps and all nonlinear steps. Thus, direct
solvers for this subproblem are a good choice. Then, the velocity subproblem

Auh = ru −BTph. (2.59)

can be computed either with direct or iterative solvers: Since this problem is quite
big (almost as big as the whole system) and includes the matrix A, which changes
at every nonlinear step, direct solvers are not efficient here. Iterative solvers are
preferred for this subproblem. (Ahmed et al., 2018) recommend using BiCGStab
with SSOR preconditioner for (2.59). Once the solution (uh, ph) of (2.58) is found,
we can step to the next FGMRES iteration.

In terms of computational performance, (Ahmed et al., 2018) concluded that,
in the time-dependent case, FGMRES+LSC combined with small time steps was
the fastest solver tested, for most of the finite element pairs employed. Using
Taylor-Hood Q2/Q1 elements, the time advantage was the most remarkable. This
is attributed to the better properties of the A-block, which is more influenced by
the mass matrix when the time step ∆t is small. Based on these findings, the
solver FGMRES+LSC will be the solver of choice for the large 3d models studied
in this dissertation.

2.5 Turbulence

In Section 2.1.1, the inherent difficulties of the full NSE were mentioned. One of
them concerns the possible domination of the convective term, occuring at high
Reynolds numbers. In fact, most real-life applications of incompressible flows have
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a high Reynolds number. Given the density and viscosity of, for example, water
(or liquid steel which is physically very similar), the ratio ρ/µ has an order of
magnitude of already 106. One needs therefore very low characteristic velocity U
and length L to keep Re reasonably small, in order to stay in the regime of laminar
flows. Otherwise, one has to consider high Reynolds number and turbulent flows.
This is the case in this dissertation (see Chapter 3).

The numerical simulation of such flows has been largely investigated in the
literature. In this section, we introduce basic notions to understand how to com-
pute numerical solutions of the turbulent flows encountered later on. In particular,
some physical and mathematical background about the theory of turbulent incom-
pressible flows is given, and numerical aspects are presented. Large parts of this
section are based on (John, 2016, Chapter 8).

2.5.1 Physical and mathematical background

As mentioned above, turbulent flows occur at high Reynolds numbers. However,
this is more an observation from the mathematical point of view rather than a
definition of turbulence. In fact, it is difficult to define turbulence. Instead, one
recognizes it thanks to physical characteristics. Typically, turbulent flows possess
flow structures, e. g., eddies, of very different scales: from large structures to very
small eddies up to the microscale, (John, 2016, Chapter 8). They are multiscale
flows, where the smallest eddies play a major role and cannot be simply neglected.
Indeed, they are part of the energy cascade described in (Richardson, 1922). It
states that the largest eddies, being unstable, break up into smaller ones and
transfer kinetic energy, in the mean, to eddies of smaller scale. This process takes
place at all scales δ, such that the local Reynolds number decreases from scale to
scale because of its dependency on δ: Re(δ) := Uδδ/ν. Consequently, the energy
cascade continues until Re(δ) is sufficiently small (e. g., laminar flow, Re = 1),
which happens at sufficiently small eddies of size δK . At this scale, the molecular
viscosity becomes effective, balances or dissipates the kinetic energy, and keeps the
eddy stable. The size of the smallest eddy δK is also called the Kolmogorov length,
or dissipative scale. Based on physical considerations, it can be estimated as

δK = O
(
Re−3/4

)
,

see (John, 2016, Remarks 8.7-8.10) for a derivation of this result.
This quantity is of particular interest for numerical applications, because one

can estimate up to which scale the flow can be resolved for a given Re, or, the
other way round, up to which Re the NSE can be solved on a given mesh. For
example, for Reynolds number of the order 105 as in ladle stirring applications (see
Section 3.1.3), the Kolmogorov scale is in the order of δK = 10−3.75. To resolve
these scales on a unit cubic domain Ω = (0, L)3, with L = 1, one needs a cell

size inferior to δK in each direction, leading to a total number of O
((

L
δK

)3
)

=

O
(
Re−9/4

)
≈ 1011. Numerical simulations on such meshes cannot be afforded

today or in the near future, even on supercomputers. Reciprocally, with more
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feasible (but still very fine) meshes, e. g., 108 cells (∼ 4643), scales up to δK =
1

464
≈ 0.0021 unit can be resolved, corresponding to a Reynolds number of δ−4/3

K =
4644/3 ≈ 3590. This is much lower than in common industrial applications.

In theory, the application of the full NSE without any simplifying assumptions
is capable of resolving the different scales of all flow structures and eddies. This
approach is also called Direct Numerical Simulation (DNS) in the context of tur-
bulent flows. In numerical practice, if the mesh is not fine enough to capture δK ,
the Direct Numerical Simulation typically blows up. This is why alternatives to
DNS have to be used for turbulent flows. The basic idea of alternative approaches
consists to model the small, unresolved, eddies, or model their influence on the
coarser, resolved, scales. This defines what a turbulence model is. In this sense, it
can be considered as a simplification of the full NSE. The reduction of complexity
becomes obvious in theoretical results: existence, uniqueness, and improved error
estimates can be proven in some turbulent models, see (John, 2016, Remark 8.22).

Before presenting the Large Eddy Simulation Smagorinsky turbulence model, it
is important to mention the fundamental differences between 2d and 3d flows with
respect to turbulence, (John, 2016, Remark 8.14). First, the smallest dissipative
length δK is bigger in 2d than in 3d:

δK,2d = O
(
Re−1/2

)
.

Consequently, a mesh size which is too big to resolve the flow in 3d may be small
enough to resolve it in 2d. As a corollary, a flow which is turbulent in 3d is
not necessarily turbulent in 2d. Numerically, it can thus happen that, if a 3d
application requires a turbulence model, the two-dimensional case with the same
Reynolds number may be solved without a turbulence model, i. e., with a Direct
Numerical Simulation. It turns out that ladle stirring simulations are a good
example of this fundamental difference (Chapter 3). The flow is also qualitatively
different in 2d and 3d: vortex stretching is absent from 2d cases, see (John, 2016,
Remark 8.14). Furthermore, in 2d, the small eddies tend to merge into larger more
stable eddies, which is the opposite effect of turbulence observed in 3d, where large
eddies break up to smaller structures, (Schroeder et al., 2019). These aspects will
be illustrated and discussed in Chapter 3.

2.5.2 Large Eddy Simulation (LES) Smagorinsky
turbulence model

Short derivation. The basic idea of Large Eddy Simulations (LES) consists to
resolve numerically the large scales (large eddies) and model the effect of the small
dissipative scales. This can be done by decomposing the velocity and pressure
fields (u, p) into average fields (ū, p̄) and fluctuations (u′, p′):

u = ū+ u′, p = p̄+ p′.

This decomposition, which is used in a process called space averaging, distinguishes
the large eddies where (ū, p̄) live, from small unresolved scales where the fluctu-
ations (u′, p′) live. The latter are also known as the subgrid scales because they
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represent flow structures which are smaller than the grid and which are not cap-
tured by the space discretization. The space-averaged Navier–Stokes equations (or
Reynolds equations) can now be written as, (John, 2016, Eq. 8.28),

ūt − 2ν∇ · D(ū) +∇ ·
(
uuT

)
+∇p̄ = f̄ ,

∇ · ū = 0,

where the nonlinear term has still to be expressed in terms of the unknown variables
(ū, p̄), instead of uuT. For example,

∇ ·
(
uuT

)
= ∇ ·

(
ūūT

)
+∇ ·

(
uuT − ūūT

)
= ∇ ·

(
ūūT

)
+∇ · T.

Thus, the space averaging process introduces an additional tensor T in the NSE:

T = uuT − ūūT,

called subgrid-scale (sgs) stress tensor, or Reynolds stress tensor. The first term of
T contains new unknown quantities that require new equations and assumptions in
order to be solved. Thus, a closure problem arises. It is the role of LES turbulence
models to model the subgrid scale tensor T and close the system.

We give here a brief derivation of the Smagorinsky model. More details can be
found in (John, 2016, Section 8.3). Like the stress tensor S, T can be decomposed
into a deviatoric (trace-free) part and a “pressure part”. The pressure part can
be absorbed by the average pressure term p̄, such that only the deviatoric compo-
nent has to be determined. For simplicity, we refer to it with the same notation
T. The main idea is to apply the Boussinesq hypothesis, stating that “turbulent
fluctuations are dissipative in the mean”. Expressing it in terms of T yields

T = −νTD(ū),

where νT ≥ 0 is the turbulent, or eddy, viscosity. It can be estimated using the
Reynolds number. At small scales δ, Re should be one:

Re(δ) =
Uδδ

νT
= 1. (2.60)

The velocity at these scales is given by assuming that the dissipation of turbulent
energy ε verifies ε ∼ U3

L
, at small and bigger (resolved) scales L, such that

Uδ ∼ U

(
δ

L

)1/3

.

It is then inserted in (2.60) to give: νT ∼ UL−1/3δ4/3. By further assuming that
U ∼ L‖D(ū)‖F , where ‖D(·)‖F is the Frobenius norm of the tensor, that L ∼ δ,
and by introducing a constant to account for all the approximations, one obtains

νT = CSδ
2‖D(ū)‖F , (2.61)
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where CS ≥ 0 is the dimensionless Smagorinsky constant. In numerical practice,
δ is related to the local mesh size. Altogether, the Smagorinsky model introduces
the following extra viscous term in the NSE:

∇ ·
(
CSδ

2‖D(ū)‖FD(ū)
)
.

In practice, ū is approximated by the computed velocity field u. For clarity, we
re-write the equations by dropping the bars over the space-averaged fields:

ut + (u · ∇)u− 2∇ · ((ν + CSδ
2‖D(u)‖F )D(u)) +∇p = f , (2.62)

∇ · u = 0. (2.63)

Since the turbulent viscosity νT depends on u, the new term is nonlinear. Note
that the following equality holds for the Froebenius norm

‖D(u)‖F = (D(u) : D(u))1/2, (2.64)

such that the turbulent viscosity can be expressed more explicitly as

νT = CSδ
2(D(u) : D(u))1/2. (2.65)

One can also find the following notation, often used in engineering literature:
νT = 2(CSδ)

2(2D(u) : D(u))1/2.

Numerical aspects. As pointed out in (John, 2016, Remark 8.70), the Smagorin-
sky model is somewhat less complex than the NSE, despite the additional nonlin-
ear term. Indeed, existence and uniqueness of the weak solution have been proved
in (Ladyzhenskaya, 1967). The weak formulation is similar to the one from the
NSE, but with the new eddy viscosity term. Furthermore, the velocity space in
the Smagorinsky model has a higher regularity than in the NSE, in order to ensure
that the new term is also well-defined:

W 1,3
0 (Ω) = {v ∈

(
W 1,3(Ω)

)d
,v = 0 on ∂Ω},

For the sake of simplicity, we consider only homogeneous Dirichlet conditions and
omit other types of boundary conditions, as well as initial conditions. Then, the
variational form reads:
Problem 2.7 (Weak formulation of the Smagorinsky model): Find (u, p) ∈

W 1,3
0 (Ω)×Q, such that

(ut,v) +
(
2(ν + CSδ

2‖D(u)‖F )D(u),D(v)
)

+ ((u · ∇)u,v)− (∇ · v, p) = (f ,v)

−(∇ · u, q) = 0,

for all (v, q) ∈W 1,3
0 (Ω)×Q, and for all t ∈ [0, T ].

From the computational point of view, the Smagorinsky model is relatively
easy to implement. One basically has to add the contribution of the turbulent
viscosity νT to the viscous term. This is one of its main advantages. Furthermore,
no further unknowns are introduced, and it has proved robustness, i. e., simulations
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do generally not blow up. On the other hand, its results depend on the coefficient
CS. If values between 0.01 and 0.1 are sometimes recommended, there is no general
rule to choose CS appropriately. Often, it has to be chosen on a trial-and-error
basis, depending on the application, mesh size, etc. Eventually, several values of
the Smagorinsky constant with different meshes have to be tested and the best
way to determine the correct value is to compare the computed results with real
measurements. Besides the problem of choosing CS, it is also well-known that the
Smagorinsky model introduces too much viscosity, even in low Reynolds number
regimes (laminar flows). This “overdiffusion” is nothing else but artificial viscosity:
it does not correspond to reality and can lead to bad results. Several improvements
of the Smagorinsky model have been developed to overcome its weaknesses, e. g.,
space-dependent (dynamic) CS, and van Driest damping, (John, 2016, Section
8.3). In this dissertation, the basic model (2.62) and (2.63) has given satisfactory
results, such that it was not necessary to employ more advanced approaches.

2.5.3 Other turbulence models

The previous developments have evidenced a simple interpretation of how turbu-
lence models work: roughly speaking, it consists of adding artificial viscosity to
counterbalance the high convection term. Introducing a too large amount of vis-
cosity tends to “laminarize” the flow, thus losing its turbulent features. If it is too
small, the flow would not be enough stabilized, leading to simulations’ blow-up.
In other words, turbulence models can be understood as stabilization methods for
convection-dominated flows. Reciprocally, standard stabilization methods, e. g.,
SUPG, (Ahmed and Rubino, 2019), might work as well for high Reynolds number
flows, at least in the more simple two-dimensional case.

There are other classes of turbulence models used in engineering applications
and softwares. One of the most popular is the k − ε turbulence model. Here, the
additional turbulent viscosity νT depends on the kinetic turbulent energy k and
the rate of dissipation of turbulent energy ε, such that these three quantities solve
the system of equations:

νT = Cν
k2

ε
, (2.66)

∂k

∂t
+ (u · ∇)k = ∇ ·

((
ν +

νT
σk

)
∇k
)

+G− ε, (2.67)

∂ε

∂t
+ (u · ∇)ε = ∇ ·

((
ν +

νT
σε

)
∇ε
)

+ C1
ε

k
G− C2

ε2

k
, (2.68)

G = νT
(
∇u :

(
∇u+ (∇u)T

))
, (2.69)

where G is the turbulent kinetic energy production rate, and Cν , σk, σε, C1, and
C2 are some model constants. The derivation of this model is based on physi-
cal rather than mathematical arguments. Experimental benchmarks allow to fix
default values for the constants. The turbulent viscosity νT is then added to ν
in the viscous term of the NSE. In this thesis, this model has been applied in a
commercial software for some of the simulations, with the only purpose of com-
paring it with the Smagorinsky model. Thus, it is not presented in detail here.
The reader is referred to (Chacón Rebollo and Lewandowski, 2014, Chapter 4) for
a more thorough introduction to the k − ε model.



3. Single-phase models for ladle
stirring

Motivation. As introduced in Section 1.2.2, two-phase bubbly flows can be ap-
proximated in a single-phase model, where the gas fraction is known. It is given by
empirical formulas, instead of being considered as an unknown and solved by an
additional equation. They are also known as quasi-single phase models in the lit-
erature and are among the first models used for ladle stirring. After the beginning
of the 2000s, multiphase approaches took over the quasi-single phase approach. As
pointed out in (Mazumdar and Guthrie, 1995a, Alia et al., 2019a), single-phase
models have some well-known limits. For example, they are restricted to rough
estimations of the bulk liquid flow. They also result in large discrepancies with
experimentally measured turbulent kinetic energy, and cannot model properly the
wandering effect of the bubbles, the influence of slag on the bulk liquid, the slag
“eye” area, or the emulsification of slag in the steel. Moreover, they have been
validated mainly for cylindrical laboratory ladles with a central nozzle. Only one
paper (Goldschmit and Owen, 2001) applied it for real 3d ladles with two nozzles.

However, they are rather simple and computationally cheaper than two- or
three-phase models. This feature is of importance when dealing with optimal con-
trol problems, since the optimization algorithm requires the repeated simulations
of the forward flow problem. According to the literature, they can also describe
the bulk liquid flow quite satisfactorily. Since the objective functional will focus
on the hydrodynamics of stirring, it is sufficient to have a model which describes
the liquid flow correctly. For these reasons, this work focuses on the single-phase
approach for ladle stirring. The main objectives of this chapter are to compare
the main models and show that they are suitable to describe the flow pattern.

Outline. First, a review of the models is given in Section 3.1. This review re-
veals that there are actually two approaches to imitate the effect of the rising gas:
a 2d model with a non-homogeneous boundary velocity, similar to the lid-driven
benchmark problem, and an axisymmetric (“2.5d”) configuration. In Section 3.2,
those two configurations, as well as a realistic 3d ladle model, are presented. The
results of the numerical simulations are discussed in Section 3.3. For the numeri-
cal application, the geometry and parameters’ values are taken from the literature,
and the computed results are compared with the corresponding experimental mea-
surements. In Section 3.4, the 3d application on the water ladle of the Process
Metallurgy Research Unit of the University of Oulu is performed.

47
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Different aspects are taken into account in these simulations:
• influence of the mesh size,
• influence of the turbulent viscosity constant (in axisymmetrical and 3d cases),
• long-term behavior of the flow (“nearly-periodic” regime),
• comparison with experimental measurements for validation, and
• comparison between the Smagorinsky model (in an in-house code) and the
k − ε model (in a commercial software).

The numerical results presented in this chapter help to better understand the
single-phase approach for ladle stirring and to find an appropriate forward model
for the optimal control problem (which will be treated in Chapter 4), along with
relevant parameters’ values and initial conditions. This will be summarized in
Section 3.5.

3.1 Literature review

In the literature, quasi-single phase models reduce to the incompressible Navier–
Stokes equations with inhomogeneous, sometimes called reduced, density. The
dynamic viscosity is constant, equal to the one of the liquid. The gas fraction and
the density are independent of time. The numerous variants of the gas fraction
found in the literature lead to different single-phase models. However, the papers
do not differ only from the gas fraction, but also on slightly different formulations of
the original models, and on different modeling assumptions regarding the density,
the way it is incorporated in the equations, and the geometry. The main common
features of quasi-single phase models are the followings:
• the geometry is a 2d axisymmetric ladle with one central nozzle, except in

(Zhu et al., 1996) and (Goldschmit and Owen, 2001) where a 3d ladle is
considered, with one excentric and two nozzles, respectively,
• the boundary conditions are all the same, except in (Grevet et al., 1982) and

(Sahai and Guthrie, 1982b), which are based on non-homogeneous boundary
conditions at the nozzle and at the central axis, respectively,
• all models use the k − ε turbulence model.

Before detailing the quasi-single phase models, the next section reviews the existing
formulas for the gas fraction.

3.1.1 Definitions of the gas phase fraction α

(Mazumdar and Guthrie, 1995b) published a survey on ladle stirring, where the
quasi-single phase models are briefly reviewed. Because of the variants introduced
to the models in the different applications, we propose a more comprehensive
review. From the literature, it is possible to distinguish three types of empirical
formulas for the gas fraction α (Table 3.1):
• formulas based on an empirical plume velocity: Eqs. (3.1) to (3.5),
• power law determined by experimental measurements: Eqs. (3.6) and (3.7), and
• laws determined by other experimental results, e. g., (Irons et al., 2015).
Only three papers applied the formulas from (Castillejos and Brimacombe, 1987,
1989), while the others used one of the first five gas fractions written in Table 3.1.
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Table 3.1: Review of the main gas phase fraction α from literature (only those
used in the quasi-single phase numerical models).

α Original ref.

α =
Q

2π
∫ rc

0
uzrdz

(3.1) (Debroy et al., 1978)

α =
Q− πr2

cα(1− α)US
2π
∫ r

0
uzrdz

, uz solved by ODE (3.2) (Grevet et al., 1982)

α =
Q

πr2
avUP

, UP = 4.4
Q1/3H1/4

R1/3
(3.3)

(Sahai and Guthrie,
1982a,b)

α =
Q− πr2

cα(1− α)US
2π
∫ rc

0
UP rdr

, UP = 4.5
Q1/3H1/4

R1/4
(3.4)

(Balaji and Mazumdar,
1991)

α =


1
2

(
UP

US
+ 1
)

if z ≤ zC ,

1
2

((
UP

US
+ 1
)
−
√(

UP

US
+ 1
)2

− 4Q
πr2c(z)US

)
if z ≥ zC .

(3.5) (Alia et al., 2019a)

α = αmax exp

[
−0.7

(
r

rmax/2

)2.4
]

(3.6)

αmax = 100N−0.22 if N < 4,

= 293.77N−1 if N > 4,

N = F−0.269
r

(
ρl − ρg
ρg

)0.269(
z

dnozzle

)0.993

rmax/2 = 0.243

[
F−0.184
r

(
ρl − ρg
ρg

)0.184(
z

dnozzle

)0.48
](

Q2

g

)1/5

Fr =
Q2

gd5
nozzle

(Castillejos and
Brimacombe, 1987)

α = αmax exp

[
−0.7

(
r

rmax/2

)2.4
]

(3.7)

αmax = 81.5N−0.10 if N < 1.35,

= 106.9N−1 if N > 1.35,

N = F−0.26
r

(
ρl
ρg

)0.13(
z

dnozzle

)0.94

rmax/2 = 0.275

[
F−0.155
r

(
ρl
ρg

)0.11(
z

dnozzle

)0.51
](

Q2

g

)1/5

Fr =
Q2

gd5
nozzle

(Castillejos and
Brimacombe, 1989)
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Table 3.2: Review of the references which use the gas fraction α and its variants.

α Original ref. Applied/mentioned in Changes vs original

α = Q
2π
∫ rc
0 uzrdz

(Debroy et al., 1978) (Woo et al., 1990) -

(Mazumdar and Guthrie, 1995b)
∫ rc

0
(u+ US)rdr

α = Q−πr2
cα(1−α)US

2π
∫ r
0 uzrdz

,
uz solved by ODE

(Grevet et al., 1982) (Woo et al., 1990) US = 0.4

(Balaji and Mazumdar, 1991) -
(Mazumdar et al., 1993) -

(Mazumdar and Guthrie, 1995b) -

α = Q
πr2

avUP
,

UP = 4.4Q
1/3H1/4

R1/3

(Sahai and Guthrie,
1982a,b) (Mazumdar and Guthrie, 1985) UP = kβ1/3Q1/3H1/4

R1/3

(Balaji and Mazumdar, 1991) -
(Mazumdar et al., 1993) UP = 4.5Q

1/3H1/4

R1/4

(Mazumdar and Guthrie, 1995b) -
(Ganguly and Chakraborty, 2004) 4.17 instead of 4.4

α = Q−πr2
cα(1−α)US

2π
∫ rc
0 UP rdr

,

UP = 4.5Q
1/3H1/4

R1/4

(Balaji and
Mazumdar, 1991) (Mazumdar et al., 1992) US = 0.6

(Mazumdar et al., 1993) -
(Mazumdar and Guthrie, 1994) 4.4 instead of 4.5

(Mazumdar and Guthrie, 1995a) 4.4 and
∫
z

∫
r
instead

of
∫ rc

0

(Mazumdar and Guthrie, 1995b) R−1/3 instead of
R−1/4

(Goldschmit and Owen, 2001) -

1st formula (water) (Castillejos and
Brimacombe, 1987) (Woo et al., 1990) -

(Zhu et al., 1996) -

2nd formula
(water+mercury)

(Castillejos and
Brimacombe, 1989) (Mazumdar and Guthrie, 1995b) -

(Mukhopadhyay et al., 2001) -

Gas phase fractions based on the plume velocity UP . Using the following
expression for the gas flow rate,

volumetric gas flow rate = gas flow cross-sectional × gas plume velocity,

and assuming that the gas flow cross-sectional is a fraction of the plume cross-
sectional,

gas flow cross-sectional = gas fraction × plume cross-sectional,

it is possible to express the gas fraction α as

gas fraction =
volumetric gas flow rate

plume cross-sectional × gas plume velocity
.

This approach has been used in the first approximations of the gas phase fractions,
see formulas (3.1) to (3.4) in Table 3.1.
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The differences between the formulas appear in:
• the plume velocity UP (for example, solved by an additional ODE (3.2) or

obtained by empirical measurements (3.3)),
• the cross-sectional (for example, constant if a cylindrical plume is assumed (3.3),

or dependent on z if it is conical), and
• the presence of an additional term which includes the slip velocity US between

gas and liquid (referred to as “drift-flux models”).
In all cases, α depends on z only, except in (3.3) where it is constant. More
details on the drift-flux model are given in (Mazumdar and Evans, 2009). Note
that several papers have introduced variants of these formulas in their applications
(Table 3.2).

Two remarks regarding the formulas (3.1) to (3.4). The formulas given in
Table 3.1 are reproduced as in the original references. It is unclear what is meant
by the integrals in the bottom part of the fractions. Assuming they should describe
the cross-sectional of the plume, they should be written as

πr2
c (z)UP (z).

If rc(z) is a constant, say rav (meaning that the plume is cylindrical), and if its
velocity UP is independent of z, one ends up with (3.3). If it is conical, rc(z)
depends linearly on z, and the proposed formula should then describe the same
as (3.4) if UP is a constant, or (3.1) and (3.2) if UP depends on z.

Another remark regards the drift-flux model applied in (3.2) and (3.4). Al-
though the gas fraction can be solved numerically, it is possible, for more clarity,
to derive a closed formula for α by solving a simple second-order polynomial,
see (Alia et al., 2019a). The new explicit and exact formula (3.5) also gives a
correct definition for low heights, i. e., close to the nozzle.

Gas phase fractions based on a power law. Instead of expressing α in
terms of the plume velocity, it is possible to correlate a power-law directly to
measurements of gas fraction. This approach has been applied in (Castillejos and
Brimacombe, 1987) with water and air, and again in (Castillejos and Brimacombe,
1989) with mercury and nitrogen. In the latter, the formulas obtained include the
data from the first experiment and become slightly different, so that the power-law
takes into account several types of fluids. They also included the effect of different
nozzle diameters dnozzle. Their formulas are based on the assumption that the gas
phase fraction follows a Gaussian distribution, see Eqs. (3.6) and (3.7) in Table 3.1.
Again, they have been applied in several numerical models (Table 3.2). In these
models, α depends on both r and z, and is discontinuous in z.

Other formulas. For completeness, let us mention that there are actually other
empirical formulas for α. For example, (Irons et al., 2015) propose a gas fraction
averaged over the plume cross-section: ᾱ = 1.13(Q∗)0.63(z∗)−1.57, whereQ∗ = Q√

gH5

and z∗ = z
H

are the dimensionless flow rate and height, respectively. However, the
“quasi-single phase” models make use only of the first two types of formulas, which
were the only ones available at their time.
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Finally, let us mention that quasi-single phase models were also used in pro-
cesses other than metallurgy, where bubble columns intervene. This is the case,
for example, in (Bernard et al., 2000), where the plume is assumed to be cylindri-
cal instead of conical. The gas fraction applied is similar to (Sahai and Guthrie,
1982b), except that it includes a height correction factor to take into account the
volumetric expansion of the rising gas bubbles.

3.1.2 Boundary conditions

In the beginning of Section 3.1, the difference between some papers regarding the
boundary conditions in single-phase models was mentioned. In particular, the
condition on the central (symmetry) axis Γaxis showed some discrepancy.

In axisymmetrical flows, a free slip condition on the central axis is naturally
imposed by the axial symmetry, as described in Section 2.3.3 (Eq. (2.56)). This is
the case in most of the quasi-single phase models. However, in (Sahai and Guthrie,
1982b), a vertical velocity, equal to the plume velocity UP , is imposed on the axis
to simulate the upward movement of the gas plume. Non-homogeneous Dirichlet
boundary conditions are used in this case (Eq. (2.13) with ΓD = Γaxis):

u = b = (0, UP ) T in (0, T ]× Γaxis. (3.8)

Such a tangent boundary velocity is usual in Cartesian coordinates, e. g., the lid-
driven cavity benchmark problem (Bruneau and Saad, 2006). However, it is quite
unusual to apply it on the symmetry axis in cylindrical frame, as in (Sahai and
Guthrie, 1982b). In addition to this boundary velocity, they apply a volume force
based on the gas fraction α, as in standard single-phase models. In other words,
they apply two mechanisms simultaneously to induce the stirring flow. However,
since their gas fraction α is constant (Eq. (3.3)), the mixture density and the vol-
ume force they apply are also constant. Consequently, these parameters would
only reduce the density of the liquid in the right-hand side of the Navier–Stokes
equations, and, thereby, reduced the pressure gradient without impacting the ve-
locity. In other words, they would not have induced the liquid to flow. This
might explain why the authors have chosen to impose a non-zero boundary veloc-
ity, where it should have normally been a symmetry boundary condition. Only in
later publications, the inhomogeneous density and space-dependent α appeared,
making the boundary velocity assumption (3.8) not necessary anymore to induce
a movement of the fluid.

An alternative modeling possibility consists in imposing a vertical velocity only
at the origin of the domain, i. e., at the gas injection nozzle. This is the ap-
proach used in (Grevet et al., 1982). However, a discontinuity with the rest of
the boundary appears because of the homogeneous Dirichlet conditions on the
bottom boundary. To avoid this discontinuity, one can use some regularization
in the numerical implementation, e. g., the inflow should take place on a small
length of the bottom boundary, and not only at the origin. Still, this might lead
to numerical instability, since a normal inflow at the bottom boundary without
outflow boundaries violates the divergence-free condition. A more proper way to
use this approach would have been to apply a two-phase flow model. Then, inflow
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and outflow conditions can be prescribed for the gas, rather than on the liquid.
These remarks have not been addressed in (Grevet et al., 1982).

To summarize the above discussion, the literature review reveals two types of
models in 2d:
• the standard axisymmetric one (“2.5d”) using different gas fractions α, and
• the one using a boundary velocity to simulate the effect of the rising gas, as

in (Sahai and Guthrie, 1982b).
In 3d, a boundary-driven mechanism would impose a boundary velocity on the
exterior wall of the ladle and cannot realistically model the gas stirring, as in 2d.
Therefore, the 3d ladle stirring is always based on the gas fraction α applied in a
buoyancy force, such as in (Zhu et al., 1996, Goldschmit and Owen, 2001).

The remaining conditions on the top surface of the bath Γtop, on the side walls,
and on the ladle bottom follow standard assumptions in single-phase models. In
industry and laboratories, the liquid bath surface is a free surface covered by a slag
layer, and subject to an unsteady movement, which intensity depends on the gas
flow rate. Although, for small gas flow rates, the slag does not open and the free
surface is relatively flat, this is not true anymore for flow rates of interest, which are
usually high enough to form an open eye in the slag. The single-phase model being
a simplified approach, in comparison to multiphase or free surface models, the slag
is not modeled explicitly. Instead, one has to apply a boundary condition on the
top surface Γtop, e. g., homogeneous Dirichlet or free slip conditions. Usually, it is
a free slip with no penetration (Equations (2.18) and (2.19) with Γslip = Γtop),

u · n = 0 in (0, T ]× Γtop,

nTSti = nT(2νD(u)− pI)ti = 0 in (0, T ]× Γtop, 1 ≤ i ≤ d− 1.

This reduces unphysical flow braking close to the top surface, which would have
been otherwise induced by homogeneous Dirichlet conditions. Moreover, it is ex-
pected to deliver a bulk flow closer to the one with a real free surface.

On the walls and the bottom part of the ladle, the fluid velocity is assumed
to be zero. In terms of boundary conditions, homogeneous Dirichlet conditions
(Eq. (2.12)) are applied, with different Γ0 in 2d and 3d,

u = 0 in (0, T ]× Γ0,

in 2d: Γ0 = ∂Ω \ {Γaxis ∪ Γtop},
in 3d: Γ0 = ∂Ω \ Γtop.

3.1.3 Reynolds number in ladle stirring

The main non-dimensional numbers used in the metallurgy literature to character-
ize the flow is the Froude number, which can be found with different definitions.
However, it is not enough for describing the flow. The Reynolds number is needed
in order to characterize properly the liquid flow (laminar, turbulent) and to choose
suitable numerical methods.

The characteristic velocity and length can be chosen by analogy to a benchmark
flow problem. As mentioned in the previous section, the liquid flow is similar to
the lid-driven cavity benchmark problem (Bruneau and Saad, 2006), in the sense
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Table 3.3: Reynolds number for different characteristic lengths L and velocities U .

Laboratory ladles Industrial ladles

Water Mercury Steel

Density ρ (kg m−3) 103 1.3 .104 7 .103

Viscosity µ (Pa s) 10−3 1.5 .10−3 5 .10−3

L (m) 0.1 0.5 1 0.5 1.3 2.5

U (m s−1)
︷ ︸︸ ︷
0.1 0.5 1

︷ ︸︸ ︷
0.5 1 1 0.5

︷ ︸︸ ︷
0.1 1

︷ ︸︸ ︷
0.1 1

Re = ρUL
µ

(104) 1 5 10 25 50 100 217 18 180 35 350

that it is induced by an imposed parallel velocity at one side. In this benchmark
problem, the characteristic velocity U and length L correspond to the imposed
constant velocity 1 m s−1 on the boundary and to the unit square domain size 1 m,
respectively. By analogy, the characteristic velocity and length of ladle flows are the
gas plume UP or bulk liquid velocity (same order of magnitude) and the height H
or radius R of the ladle (same order of magnitude), respectively. The bulk liquid
velocity depends on the gas flow rate, but its order of magnitude remains less
than 1 m s−1, see (Mazumdar and Guthrie, 1995b).

Possible Reynolds numbers for ladle stirring are listed in Table 3.3, corre-
sponding to different ladle configurations and characteristic values. The smallest
Reynolds number can be reached in small laboratory models with a low gas flow
rate, whereas industrial ladles in operating conditions have a Reynolds number
which can be more than ten times higher. In all cases, the order of magnitude
of Re exceeds 104 for laboratory ladles and 105 for industrial ladles. These high
Reynolds numbers are characteristic of convection-dominated and turbulent flows.
As it will be seen later, a DNS approach with a mesh fine enough is sufficient in
2d, while axisymmetric and 3d flows require a turbulence model.

3.2 Description of the models

Based on the previous review, we study three models in this dissertation. The
first one is a 2d model with a boundary velocity, similarly to the problem of the
lid-driven cavity (Bruneau and Saad, 2006). It is designated as the 2d boundary-
driven ladle. Contrary to (Sahai and Guthrie, 1982b), we do not assume the axial
symmetry, in order to avoid the confusion on the boundary Γaxis, and do not apply
the gas fraction in a buoyancy force to generate the stirring. Thus, we employ a
2d Cartesian frame and a boundary-driven stirring only. The second model is a 2d
axisymmetrical ladle with a buoyancy-driven stirring, i. e., the flow is generated
by the gas fraction α in the volume force. This is the classical model found in the
literature. Finally, a more realistic 3d ladle model is studied, also with a buoyancy
force based on α.
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Table 3.4: Parameters of the 2d and 3d ladle stirring models.

Parameters specific to...
2d ladle ...boundary-driven ...axisymmetric 3d ladle

H = 0.6 m z0 = 0.001 m χ = 10◦ H = 0.65 m
R = 0.3 m t0 = 0.1 s a = 0.08 m Rtop = 0.29 m

Q = 13 l min−1 US = 0.4 m/s Q = 17 l min−1

(2.2 10−4 m3 s−1) ρl = 1000 kg m−3 (2.83 10−4 m3 s−1)
Re = 96000 ρg = 1 kg m−3 Re = 96000
T = 600 s dnozzle = 12.7 mm T = 200 s

UP = 0.32 m s−1 UP = 0.36 m s−1

Rbot = 0.27 m
xn1 = −0.105
yn1 = −0.105
xn2 = −0.105
yn2 = 0.105

The geometry corresponds to a laboratory-scale physical model of the steel-
making ladle, which uses water instead of steel. Argon is described using air, but
this information is not used in the models, except in a particular formula of α
where ρg intervenes. The common notations to all models are: the height H and
the radius R of the experimental ladle, the top boundary Γtop, corresponding to
the free surface of the fluid, and, in 2d, the vertical (symmetry) wall Γaxis. Ta-
ble 3.4 summarizes the geometrical and physical parameters of the models, which
are detailed in the next sections.

3.2.1 The 2d boundary-driven ladle model

As mentioned in the outline of this chapter, the numerical study is performed
on an existing laboratory ladle, whose parameters and experimental results are
available in literature. A review of the different experiments and simulations given
in Table 3.2 has led to the choice of the ladle from (Woo et al., 1990), because the
experimental set-up and measurements, as well as the numerical results of three
models are described in detail. Another reason is that the geometry of the ladle
and the range of the gas flow rate studied in this experiment are close to the ones
of the water ladle of the Process Metallurgy Research Unit of the University of
Oulu, which will be the focus of the 3d model (Section 3.2.3).

Modeling assumptions. The geometry of the 2d boundary-driven ladle, de-
fined in a Cartesian frame (x, z), is given in Figure 3.1 (middle scheme). This
model uses the non-homogeneous boundary condition (3.8). The plume velocity
from (Balaji and Mazumdar, 1991) is applied,

UP = 4.5
Q1/3H1/4

R1/4
, (3.9)

instead of the original one (3.3), because it has proved to yield more accurate
velocities (Mazumdar et al., 1993). A well-known issue of the lid-driven cavity
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problem concerns the irregularity of the boundary conditions due to the jump of
the velocity at the left corners (De Frutos et al., 2016). In order to avoid this
irregularity, the boundary velocity can be regularized by being multiplied by, for
example, the following function, (John, 2016),

reg(z) =


1− 1

4

(
1− cos

(
z0−z
z0
π
))2

for z ∈ [0, z0],

1 for z ∈ [z0, H − z0],

1− 1
4

(
1− cos

(
z−(H−z0)

z0
π
))2

for z ∈ [H − z0, H],

(3.10)

where z0 = H
60
. Furthermore, it is also smoothed in time, using a “ramp-like”

function to facilitate numerical convergence in the first iterations, e. g.,

`(t) =

{
t/t0 for 0 ≤ t ≤ t0,
1 for t ≥ t0,

(3.11)

where t0 = 0.1 s. Since we are interested in the long-term behavior of the flow, the
initial transition between 0 and t0, i. e., from a fluid at rest to a fully developed
boundary velocity UP , does not need to match precisely the physical reality. The
Reynolds number is computed as Re = ρUPR

µ
, where ρ = 1000 and µ = 0.001 are

the fluid density and viscosity, respectively. The values of the parameters which
are specific to the boundary-driven ladle are given in Table 3.4. Finally, contrary
to (Sahai and Guthrie, 1982a), the density in the whole domain is that of the
liquid (water). The only volume force is the gravity, and the gas fraction α is not
considered, as mentioned earlier.

The 2d boundary-driven ladle model can now be formulated, based on Prob-
lem 2.1 and on the assumptions of the current application:
Problem 3.1 (Strong form of the NSE for the 2d boundary-driven ladle stir-

ring):

ut + (u · ∇)u−2ν∇ · (D(u)) +∇p = g in (0, T ]× Ω

∇ · u = 0 in (0, T ]× Ω

u = (0, UP reg(z)`(t)) T in (0, T ]× Γaxis

u = 0 in (0, T ]× ∂Ω \ {Γaxis ∪ Γtop}
u · n = 0 in (0, T ]× Γtop

nTSti = 0, 1 ≤ i ≤ d− 1 in (0, T ]× Γtop

u(0,x) = 0 in Ω∫
Ω

p dx = 0 in (0, T ]

UP = 4.5
Q1/3H1/4

R1/4

reg(z) defined as (3.10),
`(t) defined as (3.11).

In Cartesian frame, the Navier–Stokes equations can be written as shown in
Appendix A (Eqs. (A.2)).
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Figure 3.1: Ladle stirring with a centered nozzle. Left: Schematic illustration.
Center: 2d boundary-driven ladle geometry in Cartesian frame (x, z). Right: 2d
axisymmetric fluid domain in cylindrical frame (r, z).

3.2.2 The 2d axisymmetric ladle model

In addition to the discussion in Section 3.1, (Alia et al., 2019a) also attempted to
unify the mathematical formulation of quasi-single phase models. Some modeling
work and results presented in the following sections are based on the paper. The
geometry of the 2d axisymmetric ladle, defined in cylindrical coordinates (r, z), is
illustrated in Figure 3.1 (right picture).

Modeling assumptions. In this model, the effect of stirring is simulated with
a volume force dependent on space through the gas fraction α(r, z). The up-
wards boundary velocity on the axis is replaced by a free slip condition with no
penetration, similarly to the top boundary. Although it is, again, a variant of
the quasi-single phase models of the literature, its modeling assumptions simplify
somewhat the mathematical formulation and numerical implementation.

Indeed, in the models used in the literature, not only the volume force depends
on space, but also the liquid density ρ is inhomogeneous, i. e., space-dependent. It
is equal to the gas-liquid mixture density inside the gas plume, and to the liquid
density outside the plume: ρ = ρgα+ρl(1−α) if r ≤ rc(z), and ρ = ρl if r ≥ rc(z),
where rc(z) = tan(χ) (z + a) is the radius of the plume at height z, χ and a being
the apex and origin of the conical plume, respectively (Figure 3.1). In these models,
α is either constant or z-dependent. The simplifications introduced in (Alia et al.,
2019a) are the following:
• the density is constant equal to the one of the liquid ρ = ρl,
• the distinction between the gas-liquid mixture and the liquid is moved from

the definition of ρ to α, so that α = α(r, z),
• the volume force is g(1− α(r, z)).

They enable a clearer physical interpretation of the model, since the flow is induced
exclusively by the space-dependent volume force (acting as a buoyancy), and the
possibility to use standard methods and solvers for the incompressible Navier–
Stokes equations rather than treating numerically the variable density.
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Concerning the gas fraction α, the same formulas as in (Alia et al., 2019a) are
studied, namely,

α1(r, z) =

{ Q
πr2

avUP
if r ≤ rc(z),

0 if r > rc(z),
(3.12)

where rav = 1
2

tan(χ)(2a+H),

α2(r, z) =


1
2

(
UP

US
+ 1
)

if z ≤ zC and r ≤ rc(z),

1
2

((
UP

US
+ 1
)
−
√(

UP

US
+ 1
)2

− 4Q
πr2

c (z)US

)
if z ≥ zC and r ≤ rc(z),

0 if r > rc(z),

(3.13)

where zC = 1
tan(χ)

(√
4Q

πUS

(
UP
US

+1
)2

)
− a, and the two variants (3.6) and (3.7) re-

written in a more compact way:

αi(r, z) =


0.01 c0z

c3 exp

[
−0.7

(
r

c1zc5

)2.4
]

if z < zC ,

0.01 c2z
c4 exp

[
−0.7

(
r

c1zc5

)2.4
]

if z > zC ,

(3.14)

where i = 3, 4, and the constants c0, c1, c2, c3, c4, and c5 depend on geometrical
and physical parameters, such as the gas flow rate Q, the nozzle diameter dnozzle,
and the densities of gas and liquid ρg and ρl (Castillejos and Brimacombe, 1987,
1989). Since the original formulas express the gas fraction in percentage, a factor
0.01 is needed for units consistency. Note that the critical height zC is not the
same for α2, α3, and α4. We omit the formulas for α3 and α4 since they will not
be used in the rest of the work. The parameters for the numerical application are
listed in Table 3.4 and the corresponding values for the constants of α3 and α4

are given in Table 3.5. It is already possible to gain some insight on the difference
between the four formulas by comparing their isolines directly, without requiring
numerical simulations. This comparison can be found in (Alia et al., 2019a) and
is illustrated in Figure 3.2. It is shown that the order of magnitude and the shape
of the different gas fraction fields are not fundamentally different and that both
formulas (Castillejos and Brimacombe, 1987, 1989) are very similar. For this rea-
son, one of these two formulas can be ignored in the study, for example α4.

Table 3.5: Constants of Eq. (3.14) (Castillejos and Brimacombe, 1987, 1989).

c0 c1 c2 c3 c4 c5 zC

α3 29.8785 0.0934 1.2114 −0.218 −0.993 0.48 0.016
α4 52.9798 0.0781 1.4405 −0.094 −0.94 0.51 0.0141
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Figure 3.2: Isolines of the four different formulas for α (from (Alia et al., 2019a)).
The colors indicate the gas volume fraction in percentage.

Altogether, the 2d axisymmetric problem reads:
Problem 3.2 (NSE for the 2d axisymmetric (“2.5d”) ladle stirring):

ut + (u · ∇)u−2ν∇ · (D(u)) +∇p = (1− α(r, z))g in (0, T ]× Ω

∇ · u = 0 in (0, T ]× Ω

u = 0 in (0, T ]× ∂Ω \ {Γaxis ∪ Γtop}
u · n = 0 in (0, T ]× {Γaxis ∪ Γtop}
nTSti = 0, 1 ≤ i ≤ d− 1 in (0, T ]× {Γaxis ∪ Γtop}
u(0,x) = 0 in Ω∫
Ω

p dx = 0 in (0, T ].

In cylindrical frame, the Navier–Stokes equations can be written as shown in
Appendix A (Eqs. (A.4)).

3.2.3 The 3d ladle model

In this application, the geometry corresponds to the water ladle of the Process
Metallurgy Research Unit of the University of Oulu. It is a laboratory-scale of the
steel ladles from Outokumpu’s plant in Tornio, Finland, and has two excentric noz-
zles (Figure 3.3). The experimental ladle was designed by (Palovaara et al., 2018),
using physical and geometrical similarity criteria. Although, the main purpose of
the experiment was to measure the mixing time, the authors also measured the
average velocity at the vertical line in the middle of one of the gas plume. These
measurements will serve in this work to check the results of the numerical model.
It is assumed that the measured velocities are the same in both gas plumes.
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Figure 3.3: Sketch of the 3d laboratory-scale water ladle with two excentric nozzles
and a coarse tetrahedral mesh obtained with Gmsh (∼ 71000 cells).

Geometry. The geometrical parameters for this application are listed in Ta-
ble 3.4. The ladle is quite similar to the one of the 2d applications: the ratio H/R
is ∼ 2.32, to compare with 2 in 2d. One important difference is the gas flow rate.
Here, we have Q = 17 l min−1 since the measurements in (Palovaara et al., 2018)
were done under this flow rate, whereas in 2d, the flow rate is similar to (Woo
et al., 1990): Q = 13 l min−1. Note that the values have to be converted to m3 s−1

for the units to be consistent in the numerical applications. Concerning the pa-
rameters needed for the gas fraction, such as χ, a, or US, they are the same as in
the 2d axisymmetrical case, see Table 3.4. The Reynolds number can be computed
as Re = ρUPR

µ
. Depending on the value of R (top, bottom, or average radius), the

Reynolds number is in the range [97000, 103000]. This range is not far from the
value applied in the 2d applications. Thus, for more convenience, the same Re has
been employed (96000). As described in Section 3.1.2, the boundary conditions
are similar to the 2d models, except that there is no axis boundary (Γaxis = ∅).

Modeling of the two gas plumes. The single-phase model applied here is
similar to the axisymmetric model and is detailed in (Alia et al., 2019a). The
main novelty concerns the volume force: because of the two nozzles, it is defined
as the sum of the buoyancy of both gas plumes, i. e., (−ρg + (αn1 + αn2)ρg) ez.
The gas fractions α1, α2 or α3 are all suitable. However, preliminary tests have
shown some convergence difficulty in 3d. They are due, on the one hand, to the
discontinuous plume shape in Eq. (3.12) and (3.13), and, on the other hand, to
the blow-up of Eq. (3.14) at the origin. We therefore define a smoother version of
α2 for 3d applications, which is also more realistic from the physical point of view:

αni(x, y, z) =



1
2

(
UP
US

+ 1
)
exp

(
−2
(

(x−xni)
2+(y−yni)

2

rc(z)2

)2
)
,

if z ≤ zC ,
1
2

((
UP
US

+ 1
)
−
√(

UP
US

+ 1
)2
− 4Q

πr2
c (z)US

)
exp

(
−2
(

(x−xni)
2+(y−yni)

2

rc(z)2

)2
)
,

if z ≥ zC ,
(3.15)
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where (xni, yni) is the center of nozzle i = 1, 2. For simplicity, we also write it as

αni(x, y, z) = α2(z) exp

(
−2

(
(x− xni)2 + (y − yni)2

rc(z)2

)2
)
, (3.16)

where α2 depends now on z, instead of (r, z) as in the 2d axisymmetrical case.
The critical height zC is the same as for α2 in 2d. The factor 2 in the exponential
increases the smoothness of the transition between the gas plume and the liquid.
Finally, the volume force was also smoothed in time during the first time steps
(Eq. (3.11) with t0 = 0.05 s) to facilitate convergence in the first time steps.

Altogether, the 3d model is summarized in Problem 3.3:
Problem 3.3 (Strong form of the NSE for the 3d ladle stirring):

ut + (u · ∇)u−2ν∇ · (D(u)) +∇p = (1− (αn1 + αn2)`(t))g in (0, T ]× Ω

∇ · u = 0 in (0, T ]× Ω

u = 0 in (0, T ]× ∂Ω \ Γtop

u · n = 0 in (0, T ]× Γtop

nTSti = 0, 1 ≤ i ≤ d− 1 in (0, T ]× Γtop

u(0,x) = 0 in Ω∫
Ω

p dx = 0 in (0, T ]

αni given by (3.15), for i = 1, 2.

In 3d and in a Cartesian frame, the Navier–Stokes equations can be written as
shown in Appendix A (Eqs. (A.1)).

3.3 Numerical results in 2d

As introduced in this chapter, the main advantages of the single-phase models over
two-phase flows are their simplicity of implementation and their cheaper computa-
tional cost, which are two important criteria for the coming stirring optimization
problem. Furthermore, their physical relevance has been demonstrated, when it
comes to predict the order of magnitude and flow pattern of the bulk liquid, (Alia
et al., 2019a, Mazumdar and Guthrie, 1995a). However, as shown in Section 3.1,
the models of the literature present many variants and lack of a unified formula-
tion. It is thus difficult to know which one is the most appropriate for an optimal
control problem on a real ladle. After having fixed the modeling assumptions in
the precedent section, the corresponding numerical results are now compared in
this section with the idea behind to apply these models in the context of numerical
optimization of ladle stirring.

In this regard, several aspects are taken into account. First, the influence of
the mesh refinement on the solution needs to be checked. In general, it is indeed
desirable to have a mesh-independent solution. For this, solutions on different grid
refinements are compared qualitatively, with a starting grid which is fine enough
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to resolve the high Reynolds number. If the simulation does not converge, then a
stabilization or turbulence model should be applied.

This is the second aspect. Although many stabilization and turbulence models
exist, they have in common the addition of viscosity in the equations. In this
work, the turbulence models have been chosen among the most popular ones: the
Smagorinsky model, which is implemented in the code ParMooN, and the k − ε
model, which is the privileged model used in the literature for quasi-single phase
models. For more convenience, the commercial software Comsol Multiphysics
has been used for the k − ε turbulence model because it is already implemented
there. The influence of the turbulence model and its parameters, e. g., the turbulent
viscosity constant, on the solution is also investigated.

Third, the evolution of the flow in time should be studied with a focus on
its long-term behavior: does the solution reach a (nearly) periodic regime? It is
known that turbulent flows are time-dependent. However, the flow can show some
periodic structures in time, especially in the case where the Reynolds number is
not too high. Indeed, different numerical studies showed that, for Re ≤ 8000, the
2d lid-driven cavity problem has a stationary solution, and that, around 10000, it
has a stable periodic solution (De Frutos et al., 2016). It is interesting to see if
this is the case in the 2d and axisymmetric applications with Re = 96000. The
main benefit of having a solution with regular pattern in time is that it makes
it easier to define a suitable initial condition for the optimal control problem. In
the industrial practice, the operator adjusts the stirring (i. e., the injected gas flow
rate) until the surface of the liquid shows a vigorous flow mixing. When the surface
is “satisfactory” (often in a subjective sense), the operator leaves the parameters
unchanged and only monitors the stirring at the surface. If, for example, a change
in the regularity and the intensity of the flow pattern occurs, he intervenes and
corrects the flow rate. Otherwise, most of the time, the stirring is considered to be
stable and the gas flow rate Q is generally constant and not changed in time. From
an optimization perspective, it is thus relevant to start the optimal control after
the initial transitional phase, or, in other words, once the flow is established and
becomes relatively “stable”, e. g., “periodic”. The present numerical study checks
whether such a regime is reached. This is also why a high end time (T = 600 s)
has been chosen, with the hope that the initial development of the flow will be
finished long before the end time, and that a regular flow pattern can be observed
over a long time range. Another important reason to study the long-term behavior
of the flow is to compute the average velocity on this long time range, and to be
able to compare it with the models from the literature, which are based on the
stationary NSE 1.

Coming to the comparison with existing results, the fourth aspect of this study
concerns the comparison of the boundary-driven and axisymmetric models with
experimental measurements available in the literature. It is important to find
which model coincides best with the physical reality. Finally, the last aspect
concerns the applicability of the models in industrially-relevant cases, for example,
in real ladles with two gas nozzles. This is discussed in the last part of this section.

1Because the k−ε model is quite diffusive, the flow computed in the usual single-phase models
from literature becomes constant; hence their use of the stationary Naver–Stokes equations.
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3.3.1 Implementation

Two softwares are used to solve the 2d boundary-driven and axisymmetric mod-
els: the in-house and open-source code from the Weierstrass Institute ParMooN
(Wilbrandt et al., 2017) and the commercial software Comsol Multiphysics.

Using an open-source software has several advantages over commercial soft-
wares: it gives more control over the implementation of the models, enables the
use of state-of-the-art numerical models which are not available in commercial
solvers, and the absence of charge is an attractive argument for industrial compa-
nies willing to use the code. A detailed discussion on the reasons of developing and
using an in-house code can be found in (Wilbrandt et al., 2017). In the context of
this project, where an optimal control problem should be implemented and may
be applied in the industry, the use of ParMooN is thus a relevant choice.

On the other hand, the implementation of new models requires a non-negligible
time investment in such codes. This is especially the case with non-trivial models,
involving a set of coupled PDEs or requiring special care in the implementation.
For example, the k−ε turbulence model involves two coupled PDEs with convection
domination. This turbulence model is very popular in the literature for ladle
stirring, and is not available in ParMooN. Using the same turbulence model as in
literature is important because it allows to check the reproducibility of the results,
before applying other turbulence models. As it will be seen in below, they can lead
to very different results. Another example is the two-phase flow models, which
involves the Navier–Stokes equations coupled with a transport equation. Here,
the interface between the two phases needs to be treated correctly (e. g., adaptive
mesh refinement or interface reconstruction). The optimization problem is a last
example of complex problems which cannot be implemented in a straightforward
fashion in in-house codes.

For these reasons, the commercial software Comsol has also been used in this
work. It can handle, among others, the k− ε turbulence model. Furthermore, the
implementation of the 2d boundary-driven, axisymmetric, and 3d ladle models
can be done quite easily. Indeed, commercial softwares are known to provide an
integrated interface which offers the possibility to draw the geometry, mesh it, and
set-up different types of equations and parameters at once and relatively fast.

Implementation in ParMooN. The boundary-driven and axisymmetric
problems are discretized in space with structured and isotropic quadrilaterals. Ini-
tially, the geometry, a simple rectangle of size H ×R with H = 2R, is split in two
quadrilaterals of same size R (squares). One level of refinement then consists of
splitting each quadrilateral in four quadrilaterals of equal size. More information
on the mesh refinement can be found in (John and Matthies, 2004). Two levels of
mesh refinement were applied for both models: levels 5 and 6. The corresponding
grid size and number of cells are given in Table 3.6. The discretization of the PDEs
in space is based on the standard Galerkin method. The implementation of the
axisymmetric case can be practically derived from the Cartesian case: one only
has to multiply each term of the variational equation by the distance to the axis r,
and add one extra-term in both momentum and continuity equations (Section 2.3.3
for more details). As it will be seen, the axisymmetric case required the use of
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Table 3.6: Mesh parameters. The abbreviation “Dof” refers to the number of
degrees of freedom.

Mesh refinement level 5 6

Grid 32 × 64 64 × 128
Number of cells 2 048 8 192

Cell size 0.0133 0.00663
Dof u 16 770 66 306
Dof p 6 144 24 576

Dof total 22 914 90 882

additional turbulent viscosity in order to converge. The Smagorinsky model was
applied (Section 2.5.2), with the turbulent viscosity defined by Equation (2.61).
Different values for the turbulent viscosity constant are applied to study its influ-
ence on the solution: CS = 0.001, 0.005, 0.01, and 0.05. Values which are smaller
than 0.001 are insufficient, i. e., the solution blows up. The maximum value 0.05
ended up with a sufficiently dampened solution, so that it was not necessary to
test higher values. In the boundary-driven configuration, no stabilization or tur-
bulence model were needed. Concerning the choice of the finite elements, the main
constraint is the inf-sup stability (Definition 2.5). A classical pair of inf-sup stable
finite elements is the Taylor–Hood pair Qi/Qi−1, i ≥ 2 (Section 2.3.2). Alterna-
tively, one can use elements with discontinuous pressure such as Qi/Pdisc

i−1, i ≥ 2.
As pointed out in (John, 2016), due to the jump of the boundary condition at
the corners, the solution is not sufficiently regular for the use of conforming finite
elements. However, since a regularization is applied here, this problem does not
occur. Finally, because the Q2/Pdisc

1 proved to perform well in (John and Matthies,
2001), it was used in both boundary-driven and axisymmetric models. The num-
ber of degrees of freedom are given in Table 3.6. The details of the discretization
and linearization can be found in Section 2.3.2. A coarse time step is applied
(∆t = 0.01) in order to avoid excessive computational time due to the long time
range. The residual tolerance was set to 10−10 and was always reached after a few
iterations, before the maximum number of iterations per time step (10).

Finally, a direct solver is used to solve the linear saddle point problem. This
type of solver is indeed sufficient for 2d cases of the size of the present models. The
more sophisticated methods, based on iterative solvers with preconditioning, be-
come interesting mainly for the three-dimensional Navier–Stokes equations. Note
that the performance of direct and iterative solvers can be significantly increased
using parallelization. However, for the present model size, the computational time
is not a problem and parallelization is clearly not needed. Altogether, the sequen-
tial (i. e., non-parallelized) direct solver UMFPACK was used .

The implementation of the models in the commercial software Comsol Mul-
tiphysics will be discussed in Section 3.3.4.
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3.3.2 Numerical solution

The 2d boundary-driven configuration. In this case, the model proved to
be quite stable: the iterations converge easily without the need of additional sta-
bilization, and the solution obtained with the two levels of mesh refinement are
similar qualitatively (Figure 3.4), and quantitatively (see Figure 3.10 which will
be discussed further below). Using different time steps, the solutions were similar
as well, but the results are not shown here. This result was expected because of
the choice of the Crank–Nicolson scheme. Furthermore, one can clearly see three
regimes in the evolution of the flow in time. First, there is a transitional step
where the velocity at the boundary propagates to the top boundary (Figure 3.4,
left snapshots), reaches the right part, goes down into the bulk liquid, and starts
to split the ladle into a large vortex at its upper zone and a smaller vortex at
the bottom zone (Figure 3.4, central snapshots), rotating in opposite directions.
This transitional phase lasts at least 60 s. In the second phase, one sees con-
stantly growing vortices until some “balance” is reached between the top and the
bottom parts (Figure 3.4, right snapshots). After that, the flow stabilizes with a
small perturbation at the contact between them, which comes periodically in the
flow. In order to quantify when the solution reaches a periodic or quasi-stationary
state, the velocity amplitude at several points is computed with respect to time
(Figure 3.5). The points are chosen to cover the main structures of the flow in
the domain, i. e., the top and bottom vortices (Figure 3.6 and Table 3.7). One
observes clearly the transitional phase between 0 and approximately 150 s. While
some areas stabilize around 150 s (lower right and lower center), the velocity grows
slowly in other areas of the domain. The final regime is established between 200
and 300 s. The mean velocity becomes rather constant with small fluctuations,
except in the middle area of the domain (and in the lower left part to a certain
extent). There, at the junction between both vortices around the point (M), the
velocity fluctuations are the highest. This numerical example shows how a high
Reynolds number like Re = 96000 does not necessarily lead to a turbulent flow in
2d “lid-driven-like” configurations.

•LR

•M

•LL

•LC

•UR
•UL

•UC

Figure 3.6: Location of the seven
points of interest (background
flow: mesh 6 at 237 s).

Table 3.7: Coordinates of seven
points covering the main flow struc-
tures.

Location Coordinates (x, y)

LL lower left (0.038, 0.14)
UL upper left (0.038, 0.43)
LR lower right (0.26, 0.14)
UR upper right (0.26, 0.50)
LC lower center (0.15, 0.028)
UC upper center (0.15, 0.57)
M middle (0.15, 0.27)
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Figure 3.4: Snapshots of the velocity field with the 2d boundary-driven ladle model
at t = 1, 57, and 237 s. Top: mesh 6. Bottom: mesh 5.

Figure 3.5: Time evolution of the Euclidean norm of the velocity at seven points
of the domain (the curves are displayed in two different plots for more clarity).
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A mesh fine enough to resolve the smallest flow structures can lead to a periodic
solution without the need of a turbulence model. Furthermore, the fact that the
flow seems to be independent of the mesh refinement and that it is periodic in time
makes it practical for an optimal control problem. Indeed, one does not require
a fine mesh such as the one with 6 refinement levels. The coarser mesh can be
used, sparing a significant amount of time. In addition, the initial condition of the
velocity can be taken from the periodic regime of this model, i. e., after 300 s.

The 2d axisymmetric configuration. The axisymmetric case resulted in very
different numerical behavior and results. First, the computations could not con-
verge without stabilization: the solution blew up. Therefore, the Smagorinsky
turbulent viscosity was added and, as mentioned before, different values of the
Smagorinsky constant CS were tested: CS = 0.001, 0.005, 0.01, and 0.05. As a
consequence, the solution is not expected to be independent of the mesh anymore.
The results depend now on both the mesh and CS. For high turbulent viscos-
ity, namely CS = 0.005, 0.01, and 0.05, the flow results almost in a steady-state
(Figure 3.7) after a few dozens of seconds, whereas for CS = 0.001, the solution
is time-dependent. More precisely, with mesh 5, the flow becomes periodic (Fig-
ure 3.8), and with mesh 6, there are no clear flow structures. In this last case,
Figure 3.9 shows three snapshots of the velocity field for CS = 0.001: when two
or three vortices seem to appear clearly in the flow, they are distorted quickly and
reappear only occasionally.

To illustrate the periodicity in the case of mesh 5, the evolution of the ve-
locity in time is computed at the same seven points as in the boundary-driven
case (Figure 3.8). Here, the periodicity of the flow can be clearly seen in the case
CS = 0.001. One can notice that the periodic flow structures are different from
the boundary-driven case: instead of having two big vortices covering the domain,
there is a small vortex on the top right corner, far from the nozzle, and a low-
velocity vortex in the bottom part of the fluid. The periodic regime starts shortly
before 100 s, faster than in the boundary-driven configuration. When the turbu-
lent viscosity constant is higher (e. g., CS = 0.01), the flow is dampened and a
steady-state regime is reached even quicker: approximately at 50 s (dashed lines).
Altogether, the different Smagorinsky constants lead either to a steady-state or
a periodic regime. For a better qualitative comparison of the flows, the average
velocity fields of the periodic flows are computed, and compared with the ones
from the steady-states.

This further comparison is displayed in Figure 3.7. The three columns refer
to α1, α2, and α3, from left to right, respectively, while the rows correspond to
different meshes and CS. The (average) velocity fields reveal the effect of the
gas through the volume force. A strong upward flow is generated close to the
left boundary. Its intensity close to the nozzle is higher with α2 and α3 than
with α1, which can clearly be assigned to the higher gas fraction in this zone,
see also Figure 3.2. On the contrary, on the top side of the domain, the velocity
is slightly higher with α1 than with α2 and α3. In a similar way, this is due
to the higher gas fraction for α1 (∼ 4.8%) in comparison to the others (< 2%,
Figure 3.2). Far from the left boundary, the velocity fields obtained with the three
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Figure 3.7: Comparison of the time-averaged velocity field between the gas frac-
tions αi, i = 1, 2, 3 of the 2d axisymmetric ladle model. From left to right: α1, α2,
and α3. Top: CS = 0.001 with mesh refinement level 5. Middle: CS = 0.001 with
mesh 6. Bottom: CS = 0.05 with mesh 5.
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Figure 3.8: Left: location of the seven points of interest (background flow: mesh
5 with α3 and CS = 0.001). Right: time evolution of the Euclidean norm of the
velocity at seven points of the domain (the curves are displayed in two different
plots for more clarity). The results correspond to mesh 5 with α3. Solid lines:
CS = 0.001. Dashed lines: CS = 0.01.

Figure 3.9: Snapshots of the velocity field with the 2d axisymmetric ladle model at
t = 500, 550, and 600 s (using mesh refinement 6, CS = 0.001, and gas fraction α2).
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gas fractions are relatively similar, in the sense that they all produce one vortex
located in the upper right region. Comparing the snapshots from left to right in
Figure 3.7, it can be noted that the velocity fields are qualitatively similar from one
α to another, independently of the mesh and CS. The resulting flow is basically
composed of two vortices at the top right and bottom right corners. Only the
velocity magnitude and the size of the vortices are slightly different. This similar
pattern can be attributed to the form of the gas fraction α. They are defined in
a plume cone whose effect is mainly concentrated on the axis and which becomes
larger at the top of the ladle. Concerning the influence of the mesh, one can clearly
see that the velocity amplitude increases between mesh 5 and 6 (top and middle
rows in Figure 3.7). Furthermore, the higher the Smagorinsky constant the more
dampened the flow (bottom snapshots in Figure 3.7 with CS = 0.05).

Altogether, the axisymmetric model is numerically less stable at high Re than
the boundary-driven model and its solution depends on the mesh and on the
Smagorinsky constant. For low CS, e. g., 0.001, it is difficult to recognize any
periodicity in the flow (Figure 3.9). The higher values of CS tested in this work
ended up to a “quasi” steady-state earlier than in the boundary-driven model: too
much viscosity was added. With some fine tuning, it may be possible to reach a
periodic flow, as in the boundary-driven case. However, the flow is likely to have
a different pattern.

As it will be seen in the next section, some of the observations made so far are
reflected in the comparison with experimental measurements.

3.3.3 Comparison with experimental measurements

The results are compared with experimental measurements available in (Woo et al.,
1990). These have been performed at three horizontal lines going from the center
of the ladle to its wall, at z/H = 0.3, 0.68, and 0.98, for two quantities: the mean
velocity and the turbulent kinetic energy. However, a higher discrepancy is ob-
served between the present simulations and the reported measurements at the level
z/H = 0.98 and with the turbulent kinetic energy. The reasons for these discrep-
ancies are still unclear. Since the authors also provide their equations (in particular
with the k − ε turbulence model), we have tried to solve them on the commercial
software Comsol Multiphysics in order to check the reproducibility of their
numerical results and see if their model matches the experimental measurements
better than our model. It turned out that we did not obtain their results using
their model on Comsol Multiphysics. As in our model, high discrepancies were
observed on the level z/H = 0.98 and with the turbulent kinetic energy. There-
fore, in the following results, we consider only the experimental measurements of
the mean velocities at the heights z/H = 0.3 and 0.68.

The 2d boundary-driven configuration. Two post-processing steps have been
performed on the solution u for the comparison with experimental measurements:
the average in time from the 500th to the 600th second (Figure 3.5) and the inter-
polation of the averaged velocity magnitude on the lines. The results are given in
Figure 3.10. One can clearly see that both mesh refinement levels give very close
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Figure 3.10: Euclidean norm of the time-averaged velocity vs. experimental mea-
surements in the 2d boundary-driven configuration.

results. The shape of the curves at z/H = 0.3 agrees better with the measurements
than at the height z/H = 0.68. At this higher level, one recognizes the wide vortex
on the top part of the ladle, visible in Figure 3.4. The profile described by the
experimental points do not cover the whole width of the ladle, suggesting that the
vortex is rather narrower than the computed one. This difference can clearly be
attributed to the modeling of the gas in the boundary-driven model: the boundary
velocity acts only on the very axis and does not rise the liquid in a wider zone on
the top area of the ladle. Therefore, the velocity is equal at the boundary velocity
close to 0, but decreases then rather fast. On the contrary, the real gas plume
induces a higher velocity at radius 0.2 ≤ r/R ≤ 0.5 and induces a smaller vortex
on the top right corner, than in the boundary-driven model. Despite this quali-
tative difference, the order of magnitude between the boundary-driven model and
the experimental measurements agree quite well. At z/H = 0.3, one notices the
sharp decrease close to r = 0, which indicates the presence of a “dead-zone”, i. e.,
a zone of the ladle with no circulation of the liquid. This is the kind of zone that
one would like to avoid during stirring. This aspect will be discussed in Chapter 4.

The 2d axisymmetric configuration. For CS = 0.005, 0.01, and 0.05, the time
average was performed in the period [100, 135], when the steady-state is assumed
to be reached. In this time range, the standard deviation is less than 5% (not
represented). For CS = 0.001, the time average is performed, like the boundary-
driven case, in the period [500, 600], see Figure 3.8. In this case, the standard
deviation of the velocity was found to be high (in the order of 100%). Unfor-
tunately, there are no measurements of the standard deviation available for the
experiment. On Figure 3.11, the velocities along the lines at z/H = 0.3 and 0.68
reflect the dependency of the solution on the mesh refinement and the Smagorin-
sky constant CS. One can clearly see the increase of the velocity magnitude on
the finer mesh (plots on the right side). Furthermore, the lower the Smagorinsky
constant CS, the higher the velocity. Comparing the volume forces, α1 (in red)
clearly overestimates the velocities in comparison to the measurements and to α2

and α3. On the fine mesh, the combination of α2 with CS ≤ 0.005 also gives too
high velocities. Altogether, only some specific choice of numerical parameters gives
a satisfying result. They are given separately in Figure 3.12 for more clarity. For
example, the gas fraction α2 with CS = 0.01 seems to be in good agreement with
the measurements on both meshes.
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Figure 3.11: Comparison of the numerical velocity with experimental measure-
ments. Top: mesh refinement 5. Bottom: mesh refinement 6.

Figure 3.12: Two satisfying solutions in the axisymmetric case: gas fractions α2

or α3, with CS = 0.01, and mesh refinement level 5.
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3.3.4 Comparison with the commercial software Comsol

The main reason which can explain the discrepancies between the results of the
present axisymmetric model and the numerical and experimental results in (Woo
et al., 1990) is the turbulence model. In (Alia et al., 2019a), the same axisymmet-
ric model as in Section 3.2.2 is computed using the k − ε turbulence model (with
Comsol). Thus, we can compare their results with the present model, which uses
the Smagorinsky model (with ParMooN). Comparing the flow pattern in Fig-
ures 3.13 and 3.7, one notices a clear difference: the flow seems to be considerably
dampened in the k− ε model, so that no vortices are formed. The solution is sta-
tionary, as in the literature. Unlike the Smagorinsky model, the solution computed
in Comsol seems to be independent of the mesh. An overall good agreement with
experimental measurements is obtained, as shown in Figure 3.14. All three gas
fractions αi, i = 1, 2, 3 give very similar results, except that α1 slightly overesti-
mates the velocity at height z/H = 0.68. All in all, it can be seen how the choice
of the turbulent model can considerably change the nature of the computed flow.

3.3.5 Summary and outlook to 3d

The results between the boundary-driven and axisymmetric ladle models are qual-
itatively and quantitatively quite different. This can be explained by the difference
of mechanism which induces the flow: boundary velocity and volume force.

The boundary-driven model proved to be satisfying in terms of numerical sta-
bility and its velocity has the same order of magnitude as experimental measure-
ments. However, it does not take into account the width of the gas plume on
the top part of the ladle, resulting in a large vortex instead of a small one at the
right corner. The axisymmetric model requires stabilization. Only a good choice
of numerical parameters can lead to a solution close to measurements.

It should be stressed that the comparison with the experimental measurements
at two heights is clearly insufficient to validate the models. The best way to
know the actual physical solution properly would have been to conduct one’s own
experiment and to measure the velocity at a higher number of points in the ladle.

Figure 3.13: Velocity fields obtained using the k − ε turbulence model in Com-
sol (Alia et al., 2019a). Left to right: α1, α2, and α3.
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Figure 3.14: Results obtained using the k − ε turbulence model in Comsol (Alia
et al., 2019a): comparison of the Euclidean norm of the velocity at two different
heights of the bath.

This can be done with, for example, Particle-Image-Velocimetry, see (Wupper-
mann et al., 2012, Owusu et al., 2019). Such an experiment, not foreseen in this
work and whose equipment is available only in specialized laboratories, would have
led to a more exhaustive comparison of the numerical models with the physical re-
ality, and would have made the correction of the models according to experimental
measurements easier.

The results presented in the previous section (axisymmetrical model with k− ε
made by (Alia et al., 2019a)) seem to be the closest to the experimental measure-
ments. The models using the Smagorinsky turbulent viscosity do not agree so well
with the measurements, at least at the top line z/H = 0.68.

Coming to the applicability to real three-dimensional ladles, the boundary-
driven ladle can not be reasonably extended to 3d: a boundary-driven surface is
for sure not a correct modeling of ladle stirring. Therefore, the 3d ladle has to be
modeled using the volume force. This modeling approach is more realistic and can
also simulate different number and position of gas plumes in the liquid. As shown
in the results of the axisymmetric case and the work from (Alia et al., 2019a),
the gas fraction α2 is physically more relevant than α1. Furthermore, it slightly
improves the convergence of the nonlinear iterations in comparison to α3. This
confirms that this gas fraction, as defined in Eq. (3.15), is a relevant choice for the
3d model.
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3.4 Numerical results in 3d

3.4.1 Implementation

The space and time discretizations are similar to the ones in 2d. The geometry is
meshed with tetrahedra and the conforming pair of FE P2/P1 has been used. The
mesh size and number of degrees of freedom are given in Table 3.8.

Concerning the computational cost, it is well-known that the 3d time-dependent
Navier–Stokes equations are quite expensive. This is due, on the one hand, to the
high number of degrees of freedom, and, on the other hand, to the structure of
the problem to be solved (saddle point problem). The computational time is often
a bottleneck in the simulations of real-life flow problems. The solver and its pa-
rameters have to be chosen with special care in order to optimize its performance
and minimize the computational time. The most interesting solvers for the cur-
rent application are the direct solver Mumps for coarse meshes, and the iterative
solver FGMRES with a LSC preconditioner for finer meshes (Section 2.4). All the
solvers used in the 3d application are run in parallel mode on distributed mem-
ory multiprocessors using MPI (Message Passing Interface). A preliminary study
with several meshes of different sizes (very coarse to very fine) was made to check
starting from which mesh, the iterative solver FGMRES with LSC preconditioning
becomes more efficient than the direct solver Mumps. It was found that, for the
meshes in Table 3.8, FGMRES+LSC performs better.

In order to further reduce the computational cost while keeping a reasonable
numerical precision, the following solver’s parameters have been chosen:
• the nonlinear iterations are stopped when the Euclidean norm of the residual

vector is below 10−5,
• another stopping criteria is also used: 20 nonlinear loops maximum (in fact, the

first criterion was always fulfilled before),
• a damping factor (0.5) is used in the nonlinear iterations to improve convergence,
• the residual tolerance for the iterations of the FGMRES solver is set to 8 · 10−6,

and the maximum number of iterations is 10,
• the velocity subproblem is solved using a Bi-CGStab iterative solver with SSOR

preconditioner (residual tolerance 10−8 and maximum iterations number 100),
• the matrix blocks corresponding to the divergence constraint were scaled with

the time step to improve the matrix conditioning,
• the pressure subproblem is solved with the direct solver Mumps.

Table 3.8: Mesh parameters. The abbreviation “Dof” refers to the number of
degrees of freedom.

Mesh abbreviation 71k 138k 274k

Number of cells 71 042 137 805 273 593
Min/max cell size 0.0147/0.068 0.014/0.053 0.012/0.046

Dof u 314 742 594 216 1 147 554
Dof p 14 182 20 169 49 346

Dof total 328 929 620 385 1 196 900
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In this real-life application, an exact (analytical) solution is not known. Fur-
thermore, the measurements’ errors of the experiment, which we compare our
results with, are not given in (Palovaara et al., 2018). For these reasons, a tol-
erance of 10−5 was considered to be sufficient. This leads to substantial savings
in the computational time in comparison to more precise solutions. Finally, the
solvers are run in parallel on several Intelr Xeonr 2.7 GHz processors: 8 cores
for mesh 71k, 20 for 138k, and 40 for 274k. The average time for one nonlinear
iteration was around 8 s for each case (∼ 2 days for a whole computation).

Concerning the time range, a high final time was chosen to let the initial
development of the flow finish, similarly to the 2d applications. However, since
the computations take much more time, T is fixed to 200 instead of 600 s. As the
results will show later, this is long enough. The time step is ∆t = 0.01s.

3.4.2 Preliminary study with Re = 1

The question of the turbulence model arises again. Indeed, unlike the 2d case,
where the boundary-driven configuration could be resolved at high Reynolds num-
ber without any stabilization, a 3d flow problem shows turbulent features already
at Reynolds number of the order of a few hundreds (John, 2016). One can choose
between the k − ε turbulence model (in Comsol, (Alia et al., 2019a)) or the
Smagorinsky turbulent viscosity (in ParMooN). Before presenting the results of
these models, a test case is performed at low Reynolds number (Re = 1) and
without any turbulence model. This laminar flow can be used to verify that the
results of both softwares are the same without turbulence models.

One obtains a stationary solution after a few time steps (0.39s). The verti-
cal component of the velocity at the middle line of the gas plumes is shown in
Figure 3.15. The perfect agreement between both softwares confirms that the
single-phase models solved in both softwares are the same. Therefore, the differ-
ence which will be observed in the case Re = 96000 can be attributed to the choice
of the turbulence model.

Figure 3.15: Vertical component of the velocity uz along the vertical line at the
middle of the (fictive) gas plumes, obtained with ParMooN and Comsol. Case
Re = 1. Left: uz(xn1, yn1, z) at nozzle 1. Right: uz(xn2, yn2, z) at nozzle 2.
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3.4.3 Numerical results

The real turbulent flow is solved with six different values of the Smagorinsky
constant CS = 0.00025, 0.0005, 0.001, 0.002, 0.005, and 0.01. With smaller CS,
the solution blew up. The velocity field at different time steps is illustrated in
Figure 3.16. As expected, the volume force produces the desired gas plume effect:
an upward flow is generated from the position of the nozzles at the bottom to
the top surface, and its radius expands with z. After a transitional regime, the
flow is fully developed with velocity fluctuations rising from the bottom to the
top around the gas plumes, and spreading down in the domain once they reach
the top boundary. The flow can be compared with the results obtained by (Alia
et al., 2019a) with the k − ε turbulence model, reproduced in Figure 3.17. Here,
the flow evolves slowly without fluctuations until a stationary solution is reached
at around 150 s. In both cases, the order of magnitude of the velocity in the final
regime is between 0.3 and 0.5 m s−1. In the first seconds of the transitional phase,
the velocity can exceed 0.6 m s−1. A more quantitative comparison is performed
in the next paragraphs.

Figure 3.16: Snapshots of the velocity field obtained with ParMooN at t =
1.2, 2.4, 16, and 24 s, with mesh 138k and CS = 0.0005.
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Figure 3.17: Snapshots of the velocity field obtained with Comsol at t = 2s, 25s,
and 200 s, with the k − ε turbulence model (from (Alia et al., 2019a)).

Similarly to the axisymmetric case, the velocity computed with the Smagorin-
sky model in ParMooN needs to be averaged in time for the comparison. First,
the distinction between transitional and stable regime has to be determined in
order to choose a suitable time range for the computation of the mean velocity.
The evolution of the velocity in time at two points of the gas plume is given in
Figure 3.18. The results have been restricted to these two points, the mesh 138k
and two values for CS because the other configurations follow the same tendency
and do not bring any additional information regarding the transitional and final
regime of the flow. One can identify three phases or regimes:
• a first stable phase where the velocity reaches a nominal value very quickly

in the gas plume (∼ 1s), and then remains constant until ∼ 20s,
• a turbulent phase with a decreasing tendency between ∼ 20 and ∼ 80s, and
• a final turbulent regime where it is difficult to observe a clear periodicity.

The first two phases can be considered as the transitional regime, while the last
phase seems to correspond to a final regime. Therefore, the time range [100, 200]
has been chosen to compute the average of the velocity.

Figure 3.19 compares the resulting vertical velocity at the central line of the
gas plumes with the experimental measurements found in (Palovaara et al., 2018)
and with the results of Alia et al. (2019a) (k− ε model on Comsol). The velocity
profile obtained with both models are relatively close to the experimental mea-
surements and to the observations from (Mazumdar and Guthrie, 1995a): starting
at a high value close to the nozzle (jet zone dominated by the kinetic energy of the
gas), it slowly decreases a few decimeters above the nozzle and remains constant
in most of the bath height (plume zone dominated by the buoyancy energy). The
decrease close to the surface is due to the boundary condition and is observed with
all models. In most cases, the Smagorinsky model seems to slightly overestimate
the actual plume velocity measured experimentally, while the k − ε model un-
derestimates it. A small difference can also be observed between the two nozzles,
although the volume force is symmetric and the same gas fractions is applied. This
difference may be attributed to the mesh and/or the velocity fluctuations.
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Figure 3.18: Time evolution of the vertical velocity at different heights above
nozzle 2 (xn2, yn2) with mesh 138k.

Coming to the dependency of the solution on the mesh and on CS, it can be
seen that the difference between the results are not as significant as in the 2d
axisymmetric case (Figure 3.11). If finer meshes sometimes lead to an increase
in the velocity magnitude (CS = 0.00025), in most cases, the solution does not
change very much with respect to the mesh size. A similar observation can be
done regarding the Smagorinsky constant. Increasing CS from 0.00025 to 0.002
or 0.005 (not represented in Figure 3.19) does not change the plume velocity in a
perceptible way. Only with a higher turbulent coefficient (CS = 0.01), a change
in the velocity profile in the height can be noticed. In this case, and using the
coarser meshes, the velocity tends to stay constant all along the bath height, i. e.,
without the small decrease observed experimentally at z ≈ 0.1, or the one which
starts at z ≈ 0.5.

Contrary to the axisymmetric case, the turbulent model does not lead to
large and periodic structures. Increasing CS does not “damp” the flow, as in
the axisymmetric case. The Smagorinsky turbulence model induces indeed a dif-
ferent behavior between the 2d (or more precisely “2.5d”) and 3d ladles. While
in 2d, large eddies (vortices) are built and formed by successive and progressive
merging of smaller eddies, in 3d, there are no large vortices: the big flow struc-
tures are destroyed by turbulence, because the energy goes from large to small
scales (Schroeder et al., 2019). This is the behavior described in Section 2.5.1.

In Figure 3.19, one can identify a few configurations where the numerical results
match the experimental measurements the best, like in the axisymmetric model.
For example, with CS = 0.001 or CS = 0.0005 and mesh 138k. The small turbulent
constant CS = 0.00025 is also a reasonable choice, but seems to be slightly more
sensitive to the mesh size.
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Figure 3.19: Comparison of the time-averaged vertical velocity ūz between Par-
MooN, Comsol (with the k − ε turbulence model), and the experimental mea-
surements, for different meshes and values of CS. Case Re = 96000. Left: nozzle 1,
uz(xn1, yn1, z). Right: nozzle 2, uz(xn2, yn2, z).



3.5. Conclusion 81

Altogether, the solution computed with the Smagorinsky and the k − ε tur-
bulence models agree quite well with experimental observations. If the stationary
solution obtained with the k − ε model in Comsol agrees well with the mean ve-
locity measurements, it still slightly underestimates them and it lacks of physical
realism, because the actual flow is clearly not stationary. From this perspective,
the Smagorinsky model captures better the velocity fluctuations induced by the
turbulence. On the other hand, the choice of an appropriate Smagorinsky constant
CS is not straightforward and is based on trial and error. However, the k−ε model
also has several constants which need to be chosen. Note that, since the default
values gave reasonable results, a fine-tuning of these parameters was not necessary.
Concerning the sensitivity of the solution to the mesh, it was observed that both
turbulence models yield similar results from one mesh to another. In Comsol,
the results obtained with two meshes match almost perfectly (Alia et al., 2019a),
although the k − ε turbulence equations are convection-dominated and require
stabilization. Like most stabilization methods, the solution is likely to depend on
the stabilization parameters and on the mesh. It is unclear how the choice of the
stabilization parameters is done internally in the software, and whether it plays a
role on the fact that the solution seems to be independent of the mesh with the
k − ε turbulence model.

3.5 Conclusion
Summary. Three single-phase models for ladle stirring have been studied:

1. a 2d boundary-driven model in Cartesian frame,
2. a “2.5d” axisymmetric model with three different gas fractions, and
3. a 3d model based on one of the gas fraction α.
The boundary-driven cavity model converges numerically without the need of

any stabilization or turbulence models and leads to a periodic solution. Moreover,
the computed velocity at two horizontal lines across the domain has the same order
of magnitude as experimental measurements. These properties are relevant for an
application in optimal control problems. However, the physical relevance of the
model is questionable, and numerical optimization of the boundary-driven model
may not reflect the actual optimal solution of a real ladle stirring. Furthermore, it
is not possible to use this approach in 3d. It should thus be used in the context of
numerical optimization with restricted perspectives about industrial application.
The present study also delivers useful information for the optimal control problem,
e. g., the initial solution, the time range, and the mesh to employ.

Concerning the axisymmetric models, the gain of physical realism using the
axial-symmetry is lost by the choice of numerical parameters which have a sig-
nificant impact on the solution, for instance, the Smagorinsky constant and the
gas fraction α. This leads to various solutions, which can be, furthermore, mesh-
dependent. If the flow is dampened enough, the results between the meshes and
the volume forces are quite similar, but remain different from the solution of the
boundary-driven ladle. The apparition of dead zones in the axisymmetric model
is dependent on the numerical parameters. Optimizing such a flow can therefore
lead to different conclusions, depending on CS or the mesh. This is not suitable for
the industrial practice. Thus, the main usage of axisymmetric models is to study
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the gas fractions α in order to choose the most suitable one for 3d applications.
Since α2 gives a better order of magnitude than α1 and converges easier than α3,
it was considered as the best choice for the 3d application.

The 3d ladle with the Smagorinsky turbulence model shows that the velocity
over the nozzles can be in good agreement with experimental measurements, almost
independently of CS and the mesh. The present study highlights and validates the
physical realism of the 3d model, although it is a simplified single-phase flow
where the gas bubbles are not taken into account explicitly. It can therefore be a
reasonable model to be used in optimization. Its computational cost is much higher
than the 2d models, but remains cheaper than a multiphase flow model. As in the
boundary-driven case, the present computations also deliver valuable information
for optimization purposes. For example, the mesh 138k is a reasonable choice
because it has led to the best results. If the initial solution can be taken in the
range [100, 200], there is still some discrepancy from one time step to another
(Figure 3.18). Therefore, it is necessary to check the sensitivity of the optimal
solution with respect to the initial state of the flow. Concerning the time range,
one may need a minimum range of 20 s, so that it corresponds to at least one
of the “periods” in Figure 3.18 (most clearly visible for CS = 0.01). Again, it is
recommended to study the sensitivity of the optimal solution with respect to T .

Another important conclusion which comes out of this study is the importance
of having one’s own experimental set-up and exhaustive measurements, e. g., sev-
eral quantities at different points of the ladle. Furthermore, the evolution of the
velocity in time is of particular importance to facilitate the choice of the turbulent
model and parameters.

Outlook to two-phase flows for ladle stirring. Performing a multiphase
simulation of ladle stirring rises anew the question of modeling: there are indeed a
lot of possible multiphase models for gas-liquid bubbly flows. One family of models
is based on fixed, rather than moving, grids. Typical examples are the Volume Of
Fluid (VOF) and the Level-Set (LS) models. In such methods, the phases are
identified by a phase function, which has values between 0 and 1. Ladle stirring
can then be described by the following equations:

ρut + ρ(u · ∇)u−2∇ · (µD(u)) +∇p = f in (0, T ]× Ω

∇ · u = 0 in (0, T ]× Ω

u = 0 in (0, T ]× Γwall

u = b in (0, T ]× Γin

S · n = 0 in (0, T ]× Γout

ρ = ρgϕ+ ρl(1− ϕ)

µ = µgϕ+ µl(1− ϕ),

ϕt + (u · ∇)ϕ = 0 in (0, T ]× Ω

ϕ = 1 in (0, T ]× Γin

∇ϕ · n = 0 in (0, T ]× Γout ∪ Γwall

ϕ(0,x) = ϕ0(x) in Ω

ϕ ∈ [0, 1] in (0, T ]× Ω.
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Figure 3.20: Illustration of a 3d two-phase flow for ladle stirring with one central
nozzle on a coarse grid, based on the VOF method. The fluid properties do not
correspond to the physical ones.

The first part corresponds to the incompressible Navier–Stokes equations with
modified density, modified viscosity, and with inflow and outflow conditions for
the gas phase. The second part is a convection equation which describes the evo-
lution of the phase fraction ϕ and with a boundary condition for the gas injection.
The initial condition is also important because it gives the distribution of the
phases at the beginning of the process. The flow is induced by a normal boundary
velocity b at the porous plug Γin. It represents the velocity of the injected gas
and is related to the physical gas flow rate Q(t). The force f corresponds to the
gravity and the surface tension between gas and liquid. The gas outflow is de-
scribed by a Neumann boundary condition at the top surface Γout. The model has
been implemented and briefly explored during the thesis. The convection equation
was stabilized with the state-of-the-art Algebraic Flux Correction scheme, and the
Smagorinsky turbulence model was applied. One important problem which is still
unsolved concerns the blow-up of the solution when real fluid properties are ap-
plied. In this case, the ratio between gas and liquid properties is of the order 1000.
Further work is required, in particular regarding what happens on the gas-liquid
interface. Figure 3.20 represents a 3d two-phase flow computed with the code
ParMooN with a ratio 100 for the densities of the phases, and viscosity 1.

Modeling ladle stirring with two-phase flows is a natural extension of the work
done with the single-phase approach. In particular, it enables to verify two impor-
tant assumptions:
• if the two-phase models are significantly more expensive than single-phase

ones in terms of computational time and memory,
• if they are more accurate in describing the bulk flow.

As it will be discussed in Section 4.6 and 5.4, a multiphase approach may be a more
appropriate choice for optimal control problems and fluid-structure interactions.

The next chapter focuses on the application of the 2d boundary-driven and 3d
models in the context of optimal flow control.





4. Optimal flow control in the ladle

Motivation. The improvement of ladle stirring control is a well-known need in
the industry. The term “control” can be understood in terms of steel process. It
refers to the physics of stirring, e. g., how to mix the bath to obtain the required
steel quality. It can also be understood in terms of technical solution, i. e., how the
operators can adjust the stirring. While the latter is discussed in the last chapter
(Chapter 5), the optimal process control is the main focus of this chapter.

In the metallurgy literature, optimization studies consist in varying a small
number of parameters (ladle geometry, gas nozzle position, gas flow rate, etc.)
over a small, discrete set of values, computing or measuring the stirring perfor-
mance (e. g., mixing time), and extrapolating the results. However, optimal control
problems in the mathematical sense have not been explored very much yet in this
area. Thus, the modeling approach and numerical results presented in this chapter
can be considered as a new contribution to scientific research.

The following questions are addressed in detail in this chapter: how to for-
mulate, physically speaking, the goals of stirring, along with the process control
and constraints ? how to translate them into mathematics? Besides the modeling
aspect, the numerical results of the optimal control model and their applicability
in the industrial practice are discussed.

Outline. First, the objectives and constraints in the industrial practice have to
be clearly defined. We use the terms industrial, practical, physical, or process
equivalently. It is important to emphasize on the close cooperation with the in-
dustry, which allowed to define the practical objectives and constraints. In the
introductory section (4.1), we discuss the information gathered from the industrial
practice. Second, the mathematical modeling of the control variables and the cost
functionals is presented (Section 4.2). Mathematically, the objective is to minimize
the costs. Thus, we employ the notions cost and objective functionals equivalently.
The formulation of the optimal control problem and the derivation of its adjoint
system is given in Section 4.3. The adjoint equations derived formally can be used
as a basis for future work using gradient-based optimization solvers. In this work,
the numerical results were obtained with a gradient-free method. For more clarity,
the 2d and 3d results are separated in Sections 4.4 and 4.5. The main findings
of this work are summarized in the conclusion (Section 4.6). In addition, the
main limits of the present optimal control model are discussed and an alternative
formulation is proposed for future research.
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4.1 Industrial problem

Objectives. The cooperation with the steel industry reveals that several opti-
mization goals can be defined for the stirring process. They are closely related to,
if not directly repeating, each other:
• maximize temperature and chemical composition homogeneity,
• minimize the quantity and size of inclusions,
• maximize interface areas between phases,
• minimize the treatment time, and
• minimize gas consumption.

Control. Concerning the process control, it is generally agreed that the main
variable parameter which controls the stirring is the gas flow rate Q. One could
think of the nozzles’ position as a further control of stirring . However, this idea
is applicable only to the long-term perspective, since the whole ladle design has
to be changed if the nozzles’ positions are modified. The ladle geometry, e. g.,
radius/height ratio, could also be considered as a control variable for the design of
new ladles. In the context of the present work, the gas flow rate is considered as
the main process control, and the nozzles’ position will be considered in the last
numerical application in 3d.

Constraints. Furthermore, several constraints related to the steel quality and
process safety are well-known:
• reach the prescribed cleanliness, i. e., the amount of inclusions (H, N, C, O)

should be below the limit required by the steel grade,
• form a slag eye to allow alloying in the case of vacuum stirring,
• control the slag emulsification to avoid droplets’ entrapment in the liquid steel,
• limit the erosion of the refractory lining in the ladle, and
• limit steel splashes and prevent overflow.

These are examples of constraints which should be taken into consideration.
In practice, the objectives can be reached using a strong stirring, also called

strong bubbling. However, a too high value of Q can lead to some undesirable
phenomena, such as steel loss due to splashes and accelerated erosion of refractory
material. On the other hand, a too low value of Q, or soft bubbling, can be
insufficient to reach the prescribed steel cleanliness, to homogenize correctly the
composition and the temperature, or to keep an area open in the slag (or open eye)
in the vacuum case. Besides these practical constraints, gas consumption should be
minimized to achieve cost savings in the process. Indeed, it might be unnecessary
to use constantly high flow rates to fulfill the objectives of the treatment. In sum,
the optimal gas flow rate should create a balance between strong and soft bubbling
to avoid the problems raised by these two situations.

Table 4.1 summarizes the main objectives and constraints of ladle stirring from
the point of view of the industry. Next, we discuss them in more details. In par-
ticular, we define the (mathematical) box constraints, i. e., the space of admissible
controls. Then, we formulate the (physical) constraints in form of inequalities
which should be satisfied by the control variable. The space of admissible controls
can then be reduced to physically-relevant values.
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Table 4.1: Main objectives and constraints of stirring.

Process Stirring objectives Stirring constraints

Steel - Maximize homogenization
- Minimize quantity of inclusions
- Minimize treatment time
- Maximize steel-gas interfacial area

- Reach the required steel
cleanliness

- Limit steel splashes
- Avoid bath overflow

Slag - Maximize steel-slag interfacial area - Keep an area open in the
slag (open eye) for alloying

- Control slag emulsification

Gas - Minimize gas consumption - Min. and max. values
- Smoothness

Lining - Minimize wear of refractory
material

4.1.1 Physical control and constraints

The process control Q is a function of time which can have different profiles, e. g.,
constant or oscillating. In all cases, it is bounded. We define the box constraints

Qmin ≤ Q(t) ≤ Qmax ∀ t ∈ [0, T ].

These box constraints can conveniently reflect the technical or economical restric-
tions imposed by the process in practice.

Modeling of the constraints. Indeed, one can now take into account the stir-
ring constraints listed in the last column of Table 4.1. If one of them is directly
related to Q, the others concern general aspects of the stirring process and are of
importance in the industry. For example, they guarantee the steel quality (clean-
liness, open slag eye for alloying, no emulsification), the safety of the operators
(steel splashes, bath overflow), and the maintenance costs (refractory erosion).

It should be noted that some of these aspects have been dealt with in the
literature, leading to empirical formulas to estimate the “critical” gas flow rate
corresponding to these constraints. In particular, we can define:
• the minimal and maximal amounts, Qt

min and Qt
max, which can be technically

injected in the ladle, see Annex B,
• the minimal amount which enables the opening of the slag, Qopen eye,
• the minimal amount which can cause an overflow outside the ladle, Qoverflow,
• and the minimal amount which can provoke slag emulsification, Qemuls.

Consequently, instead of describing the constraints as additional equations in
the optimal control model, it is possible to use the existing empirical formulas from
the literature and include them directly in the box constraints, such that

Qmin = max{Qt
min, Qopen eye}, (4.1)

Qmax = min{Qt
max, Qoverflow, Qemuls}. (4.2)
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Discussion of the four remaining constraints. Before detailing the empirical
formulas for these constraints, we consider the remaining ones. At first glance,
it can be argued that the cleanliness requirement is an objective rather than a
constraint. We should distinguish between the objective of the stirring process and
the one of the optimization problem. In terms of process, reaching the required
cleanliness is the objective of any successful stirring. In terms of optimization, the
required cleanliness has to be reached, and it has to be with the most efficient
stirring, e. g., with the minimum time, energy, or the maximum homogeneity, etc.
This explains why this criterion is considered as a constraint here1. Unlike the
criteria cited in the previous paragraph, it was not possible to find in the literature
a relation between the gas flow rate and the final cleanliness. One can choose either
to model the chemical reactions to include this constraint in the optimal control
problem or ignore the concentration of inclusions and this constraint. As it will be
discussed later, we will consider the flow homogeneity rather than the inclusions’
concentration (Sections 4.2.3 and 4.2.4). In the conclusion, we will sketch an
optimal control problem based on the inclusions’ content (Section 4.6.2).

Steel splashes are a cause of material loss (liquid steel deposits and solidifies
on top of slag) and safety concerns, but are hard to predict. The refractory wear
is also a problem. It is mainly caused by the slag and the velocities at the level
of the steel-slag interface. This is where the refractory material gets the most
eroded and becomes thinner. It cannot continue to withstand high temperature.
Therefore, the lining has to be replaced every few weeks usually. The maintenance
department is responsible for following-up the lifetime of ladle linings and replacing
them according to a schedule or urgent needs. The replacement operation is costly
in time and material. By applying a smoother stirring, it is possible to extend
the lifetime of refractory material and generate cost savings. In practice, those
two criteria are left for the operator’s own experience and decision. Thanks to
the camera, the operator estimates the intensity of the stirring and decides if the
gas flow rate can be reduced to a more gentle stirring in order to reduce steel
splashes and erode the refractory material less aggressively. In the present work,
we simplify the modeling work and neglect these two constraints.

Finally, the smoothness of the gas flow rate is imposed by the gas control
system. If the operators can set a value on their control screens, the system
is responsible for opening and closing the valves according to prescribed rates,
e. g., progressively with a linear slope (ramp). Mathematically, one would assume
that Q(t) is continuous, and that, for example, its time-derivative is bounded.
Additionally, one can prescribe given profiles to Q(t), e. g., a periodic function of
time. Using the Fourier transform, it can then be expressed through its coefficients
(amplitudes and frequencies), which can be chosen as control variables. If such
controls may be more realistic from the physical point of view, it cannot model
easily any functions of time. One could “miss” some optimal control with a more
“original” profile. In this thesis, we have not considered this constraint and allowed
for any type of controls Q within Qmin and Qmax.

1 Furthermore, the goal of optimization models is to minimize a cost functional. This term
describes well the fact that we want to reach the required steel grade with the minimum cost,
e. g., gas consumption or treatment time.
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The following paragraphs present the empirical formulas used in (4.1) and (4.2).

Definition of Qopen eye. Although several publications reported analytical and
experimental results on the size of the open eye, (Yonezawa and Schwerdtfeger,
1996, Mazumdar and Evans, 2003, Subyago and Irons, 2003), the critical gas flow
rate which starts opening the slag was found mainly in (Irons et al., 2015, Krish-
napisharody and Irons, 2015). The following empirical result computes the gas
flow rate below which no open eye forms, in soft bubbling processes:

Qopen eye = 0.135

[(
ρ− ρslag

ρ

)
hslag

]1.57

H0.91. (4.3)

In vacuum conditions, this formula does not hold, since it has been developed for
standard ladles. In that case, it is expected that the critical gas flow rate for slag
opening is much lower than the one given by (4.3).

Definition of Qoverflow. The following results are based on physical considera-
tions. In order to estimate analytically the gas flow rate Qoverflow above which the
bath can overflow, simplifying assumptions are made:
• the free surface of the bath is flat,
• the vertical distance between the free surface and the border of the ladle is hfr,
• a constant gas flow rate Q is injected,
• the pressures at the free surface and at the bottom are pfr and p = pfr + ρgH,
• the rising gas velocity U is constant, so that the injected gas needs H/U sec-

onds to reach the free surface. This assumption holds usually after the initial
penetration region close to the nozzle.

The gas is compressible and follows the perfect gas law: V̇gas = Q p
p−ρgUt (Wichterle,

2010, Eq. (28)). Using the dimensionless parameter p∗ = 1+ pfr
ρgH

, which represents
the ratio of the atmospheric to the hydrostatic (or ferrostatic) pressure, the total
volume of gas in the bath is

Vgas =

∫ H/U

0

V̇gas dt = Q

∫ H/U

0

p∗

p∗ − Ut
H

dt = −H
U
Qp∗ ln

(
1− 1

p∗

)
. (4.4)

The logarithmic term reflects the volume expansion of the compressible gas during
its buoyancy. For example, in a laboratory-scale water model with H = 0.65, the
gas volume in the bath becomes 3% higher than the volume injected. In an indus-
trial ladle with the height of H = 2.25, in STP conditions (see Appendix B), the
expansion of the injected volume reaches 53%. In case of vacuum (pfr = 100 Pa),
the gas volume expands with a factor of 7.3. These small examples illustrate how
critical the gas expansion can be in practice, especially in vacuum ladles. The
reader is referred to (Wichterle, 2010) for a simplified, yet relevant, analytical
modeling of the gas bubbles behavior in a ladle.

The condition to avoid overflow can now be written as

πR2H + Vgas 6 πR2(H + hfr),

⇐⇒ Q 6 Qoverflow = −πR2hfr
H
U

[
p∗ ln

(
1− 1

p∗

)]−1

. (4.5)
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Note that this is only a rough estimate. In practice, the gas velocity is unsteady,
the free surface is not flat and several parameters, such as bubbles merging and
breakup, high temperature, and actual geometry, have to be taken into account
for a more realistic overflow constraint. Although overflowing phenomena happen
more frequently in vacuum conditions than in standard ladles, they are generally
rare in practice.

Definition of Qemuls. Slag emulsification is studied in (Sulasalmi et al., 2009,
2015, Wei and Oeters, 1992, Xiao et al., 1987), among others. (Xiao et al., 1987)
proposes a criteria based on the Weber number for the emulsification threshold,

We =
U2
e ρslag√

τg(ρ− ρslag)
> 12.3,

where τ is the interface tension between steel and slag and Ue the critical liquid
velocity above which slag emulsification occurs. Its formula reads

Ue =

(
12.3

√
τg(ρ− ρslag)
ρslag

)1/2

.

The corresponding gas flow rate Qemuls can be computed from Ue using Eq. (3.9):

Qemuls =

[
Ue
4.5

(
R

H

)1/4
]3

. (4.6)

Note that these formulas have been derived only for standard treatments. The slag
emulsification and entrapment in vacuum conditions needs further investigation.

Summary. The order of magnitude of Qmin and Qmax can now be estimated in
both laboratory and industrial cases. Table 4.2 lists the parameters’ values of the
laboratory and industrial conditions and Table 4.3 summarizes the values of the
possible box constraints. One can observe different orders of magnitude, especially
between Qoverflow and Qemuls. It should be noted that the criteria are theoretical
and their validity is restricted to the specific cases studied in the corresponding
publications. Therefore, these values have to be considered as very rough esti-
mates, whose only purpose is to exclude unrealistic values from the optimization
study.

Table 4.2: Parameters’ values in laboratory and industrial conditions assumed for
the computations of the box constraints Qmin and Qmax (Table 4.3) (note: oil is
used to imitate the slag in laboratories).

H R U hslag hfr ρ ρslag τ
(m) (m) (m s−1) (mm) (m) (kg m−3) (kg m−3) (N m−1)

Laboratory 0.6 0.3 1 40 0.1 1000 880 0.07
Industry 2.25 1.4 1 80 0.5 7000 3000 1.15
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Table 4.3: Values for the box constraints in laboratory and industrial conditions,
given for one nozzle, expressed in l min−1 in STP conditions. Note: the more severe
vacuum case was used for the overflow criterion.

Qt
min Qt

max Qopen eye (4.3) Qoverflow (4.5) Qemuls (4.6)

Laboratory 0 35 1 2700 17
Industry 0 750 49 2500 140

The overflow criteria Qoverflow falls out of the technical range of the gas flow
rate. If the analytical formula (4.5) might be too simplistic, the overflow phe-
nomena occurs nevertheless only extraordinarily, as mentioned earlier. Hence, it
is reasonable to find such a high value and to exclude it from the box constraints.
Only two constraints fall inside the technical range of gas flow rate: the opening of
the slag eye and slag emulsification. The gas flow rate for the eye opening Qopen eye

is relatively close to the technical minimum Qt
min, whereas the one which induces

slag emulsification, Qemuls, is lower than the maximum limit Qt
max in both cases.

However, in industrial ladles, the gas flow rate is most of the time operated at
values higher than Qemuls = 140 l min−1, which makes this estimate unrealistic for
an upper bound, at least in the industrial case.

Therefore, based on this discussion and on the definition of Qmin and Qmax

(Eqs (4.1) and (4.2)), the following box constraints are suggested:

• a box constraint for laboratory ladles, which takes into account the open
eye criteria as a minimum bound (Qmin = Qopen eye = 1 l min−1), and slag
emulsification as an upper bound (Qmax = Qemuls = 17 l min−1):

Qopen eye ≤ Q(t) ≤ Qemuls ∀t ∈ [0, T ] , (4.7)
1 ≤ Q(t) ≤ 17 ∀t ∈ [0, T ] ,

• and a box constraint for industrial ladles, which takes into account the open
eye criteria as a minimum bound (Qmin = Qopen eye = 49 l min−1), and the
technical limit as an upper bound (Qmax = Qt

max = 750 l min−1):

Qopen eye ≤ Q(t) ≤ Qt
max ∀t ∈ [0, T ] ,

49 ≤ Q(t) ≤ 750 ∀t ∈ [0, T ] .

These inequalities are an example of values for the industrial case, but they
are not used in this dissertation.

Thanks to this preliminary work, the control variable is now formulated such
that it should already satisfy some of the process constraints discussed in Sec-
tion 4.1, without needing a detailed multiphase model of the slag and the gas
phases. The control range excludes now undesirable physical phenomena and has
become smaller. This was possible thanks to the existing empirical formulas and
criteria derived in the literature specially for the industrial purpose. The next
section focuses on the objectives of the optimal control problem.
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4.1.2 Physical objectives

The variety of the stirring objectives in Table 4.1 can be explained by the dif-
ferent situations encountered in practice, depending, e. g., on the initial and final
inclusions’ content (sulfur, carbon, oxygen, hydrogen, and/or nitrogen), and the
treatment time. Indeed, these parameters vary sometimes because of different pro-
duction schedules or small variations in the previous steps. Thus, the performance
of stirring has to adapt to these situations, (Nadif et al., 2011, p. 2). For example:
• if the treatment time is fixed, one aims at minimizing the inclusions’ content.
• if there is no constraint on the production schedule, and if the initial and final

contents are in usual ranges, the target would be to reduce the treatment
time. In other words, the stirring should allow to gain some time.

The interfacial areas between steel, slag, and gas also play a role in the chemical
reactions and removal of inclusions. In addition, temperature homogeneity and gas
consumption are underlying objectives of the stirring, which should be optimized.

In the metallurgy community, one often uses an “all-in-one” term to designate
these objectives: the stirring, or mixing, efficiency.

Review of the stirring efficiency. It is defined in (Cloete et al., 2009) as:

“both the quantity and the effective distribution of kinetic energy within
the ladle. [...] Sufficient mixing in all regions of the steel melt ensures
thermal and concentration homogenization, as well as effective inclu-
sion removal.”

This definition reflects the process objectives discussed previously. Indeed, maxi-
mizing the stirring efficiency should maximize the thermal and chemical homoge-
nization, and minimize the inclusions, the treatment time, the gas consumption,
and so on. In practice, the stirring efficiency should also be measurable, if not
in industrial, then at least in experimental conditions. Thus, instead of using di-
rectly the kinetic energy as a measure of stirring efficiency, several publications
have proposed alternative quantities, which are more or less equivalent, e. g.:
• the mixing power,
• the bulk liquid recirculation rate, and
• the mixing time.
(Turkoglu and Farouk, 1991) define the mixing power as the sum of the gas

kinetic and buoyancy energy 1
2
ρgQU

2 +ρgQRgΘ ln(1 + Hρg
pfr

) . The first term is the
rate at which the gas jet transfers kinetic energy to the bath, where ρg is the gas
density, Q the inflow rate, and U the gas velocity at the nozzle exit, respectively.
The second term is the energy input to the system in unit time due to the work
done by the buoyancy force, where Rg, Θ, ρ and pfr are the universal gas constant,
the temperature, the liquid density, and the atmospheric pressure, respectively.
The logarithmic term describes the change in gas density due to the elevation,
similarly to Eq. (4.4). Based on experimental and numerical results, a lot of
papers proposed to express the stirring power in relation to process parameters,
see the review (Mazumdar and Guthrie, 1995b).
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The bulk liquid recirculation rate has been defined by (Turkoglu and Farouk,
1991) as “the total amount of liquid flowing upward (or downward) through the
horizontal mid-plane”. For example, (Balaji and Mazumdar, 1991) apply the fol-

lowing formula:
∫H
0

∫R
0

√
u2
r+u2

z2πrdrdz∫H
0

∫R
0 2πrdrdz

, which corresponds to the normalized L1-norm
of the velocity in cylindrical coordinates.

The mixing time is a practical and measurable way to describe when chemical
homogeneity has been reached in the ladle. (Turkoglu and Farouk, 1991) define it
as “the time taken for the tracer concentration to attain, at every nodal location
in the system, a value within ±5% of the tracer concentration of the well mixed
steady state bath”. In other words, the bath is considered to be homogeneous when,
everywhere in the bath, the tracer concentration is within 5% of its steady-state
concentration. Sometimes, a criteria of 2.5% is applied. In laboratory experiments,
the tracer can be some acid or colorant and its concentration is measured for exam-
ple with a pH-meter. The stirring is considered to be good when the mixing time is
low. It is interesting to note that, in their study, (Turkoglu and Farouk, 1991) ob-
tained a similar behavior between mixing time and liquid recirculation rate. They
conclude that both of them can be equivalently used to describe stirring efficiency.
Similarly to the stirring power, a lot of studies proposed empirical formulas to
express the mixing time in terms of process parameters, e. g., (Patil et al., 2010).
The reader is also referred to (Geng et al., 2010, Irons et al., 2015, Mazumdar
et al., 2017) for some other examples and details. As pointed out in (Mazumdar
and Guthrie, 1995b), the main drawback of the mixing time is that it strongly
depends on the positions of the initial injection and the pH-meter. Furthermore,
mixing time measurements have a high deviation, are not easily reproducible, do
not represent the homogeneity of the whole bath, and cannot be made easily in
industrial conditions. They describe rather a local and experimental mixing time.
In sum, if it is wide-spread to use the mixing time as an indicator of the stirring
efficiency, one has to keep in mind its limits when it is applied to real industrial
conditions.

As a final remark, it is difficult to quantify the stirring efficiency in industrial
practice. Even if it is sometimes possible to do it, for example by estimating
the mixing time using initial and final inclusions’ content, an a priori or live
measurement of the stirring efficiency is not available so far: one has to wait until
the end of the process to take a probe, measure the final content of inclusions in a
small sample of the steel bath, and conclude a posteriori if the stirring was efficient
or not. The problem of the stirring measurement is treated in Chapter 5.

Summary of the industrial problem. This section is a preliminary step to-
wards mathematical modeling and formulation of the optimization problem. The
most straightforward part is the control: the physical variable of interest for in-
dustrial practice is the gas flow rate Q. Thanks to empirical results, some stirring
constraints have led to a reduction of the admissible control values. The less obvi-
ous part consists of defining a relevant objective functional. The stirring efficiency
suffers from a lack of consensus in metallurgy. In the next section, we discuss the
optimal control problem from a modeling point of view.
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4.2 Mathematical modeling of the control and
objective functionals

4.2.1 Control variables

The physical control parameter Q cannot be applied directly as a boundary condi-
tion for the gas inflow in the simplified ladle stirring models studied in Chapter 3,
because there is no gas phase. Instead, Q appears as a factor representing the inten-
sity of the gas. Because of the different modeling approaches in 2d (Section 3.2.1)
and 3d (Section 3.2.3), we distinguish two cases for the control variable.

Control variable in 2d: UP (t) on the boundary. In 2d, we use the “equiva-
lent” to Q(t), i. e., the plume velocity UP (t). The two variables are related through
the empirical formula (3.9). The plume velocity is applied as a tangent boundary
velocity on Γaxis (boundary-driven configuration). It is dependent on time only,

u = b = (0, UP (t)) T in (0, T ]× Γaxis. (4.8)

Note that this is not a boundary control in the common sense of optimal control
theory because it is constant in space. Taking into account the lower and upper
bounds of Q(t) in the laboratory case (4.7), we define the control variable

UP (t) ∈ [UPmin , UPmax ] in [0, T ], (4.9)

where UPmin = 0.14, and UPmax = 0.36 are the lower and upper bounds of the
plume velocity, obtained by applying (3.9) to Qmin and Qmax. It should also be
mentioned that, in the 2d case, there is no volume force (f = 0).

Control variables in 3d: Q(t) and nozzles’ positions in the volume force.
In 3d, ladle stirring occurs through a volume force dependent on Q and on the
nozzles’ positions (xni, yni)i=1,2, see Problem 3.3. In terms of control variables, one
could optionally consider the nozzles’ position in addition to Q, as mentioned in
Section 4.1. Unlike the 2d case, the control variables appear in the volume force

f = (1− (αn1 + αn2))g in (0, T ]× Ω,

through the gas fractions (αni)i=1,2 (3.15) which we re-write now with the time-
dependency:

αni(x, y, z, t) =
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2

(
UP (t)
US

+ 1
)
exp

(
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(

(x−xni)
2+(y−yni)

2

rc(z)2

)2
)
,

if z ≤ zC ,
1
2

((
UP (t)
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+ 1
)
−
√(

UP (t)
US

+ 1
)2

− 4Q(t)
πr2c(z)US

)
exp

(
−2
(

(x−xni)
2+(y−yni)

2

rc(z)2

)2
)
,

if z ≥ zC .
(4.10)

Note that Q(t) implicitly appears in UP (t) through, again, the relation (3.9). Un-
like classical volume controls, the control variables appear as parameters in f .
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While Q(t) is a function of time constrained by (4.7), the positions (xni, yni)i=1,2

of the nozzles are four real numbers, on which we impose:√
x2
ni + y2

ni < Rbot. (4.11)

This simply states that the (fictive) nozzle has to be within the bottom radius of
the ladle. One may apply other restrictions on xni, yni, e. g., to avoid overlapping.
In this work, we do not consider other constraints and we allow for overlapping of
the nozzles. Physically speaking, this would correspond to have only one nozzle in
the ladle with a double gas flow rate. Finally, in the 3d case, there is no boundary
velocity (b = 0).

Remarks in the 3d case. As mentioned in Section 4.1.1, the gas flow rate
cannot be changed erratically in practice. Mathematically, one can prevent sudden
jumps and facilitate smooth changes of the control variableQ(t) by using additional
constraints in the form of bounds on the time derivative of Q(t). Although more
constraints have to be considered, it is physically more realistic. In our work, we
consider a more general case without such constraints on the control.

Another important remark concerns the presence of two nozzles. We assume
that it is possible to have different gas flow rates for each nozzle in Eq. (4.10). In
other words, we define Qi(t) applied in the corresponding αni, i = 1, 2. This leads
to a maximum of six control variables: two flow rates and four nozzles’ coordinates.
Although the current industrial techniques do not allow different values for each
nozzle, it may be nevertheless interesting to investigate numerically if different
flow rates Qi(t) lead to better mixing than using the same one for both nozzles.

Regarding the number of control variables, one can either apply all of them
at once or optimize separate problems. Altogether, five relevant combinations of
control variables can be derived in the 3d case:
• optimization of Q(t) only (same for both nozzles, fixed nozzles’ position),
• optimization of Qi(t), i = 1, 2 (different for each nozzle, fixed nozzles’ position),
• optimization of (xni, yni)i=1,2 only (Q given),
• optimization of Q(t) (same for both nozzles) and (xni, yni)i=1,2 simultaneously,
• optimization ofQi(t) (different for each nozzle) and (xni, yni)i=1,2 simultaneously.
The first case is the closest to the industrial short-term interest but is the one with
the least potential in terms of innovative solutions. Except for the last case, the
configurations are likely to be suboptimal, because not all the possibilities for the
control variables are explored simultaneously. On the contrary, an optimal solution
computed in the last case seems to have the most potential but is also the most
expensive in terms of computational time because of the higher number of control
variables (6). In this work, we consider the second and third intermediate cases
which offer a good balance between computational cost and innovation potential of
the results for the industrial practice. Finally, let us mention the work from (Nadif
et al., 2011), where a pulsed stirring was found to be more efficient in terms of
mixing time, and the one from (Haiyan et al., 2016), where different flow rates
on each nozzle also led to a reduction of the mixing time. Those cases are well-
described in the present optimization problem. It is thus interesting to study
whether similar conclusions can be obtained.
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4.2.2 Objective functionals: review and discussion

As discussed in Section 4.1.2, the industrial objectives are dependent on each other
and can be unified into one global concept called stirring efficiency. However, there
is more than one physical variable describing the stirring efficiency. Furthermore,
they have some drawbacks and represent only partially the stirring efficiency:
• the mixing power takes only into account the energy of the gas and does not

describe the liquid velocity and mixing pattern,
• the bulk liquid recirculation rate, or, more generally, quantities based on some

norm of the velocity (e. g., turbulent kinetic energy), describe a global mixing,
and can miss the “effective distribution” of stirring in the liquid, in reference to
the definition from (Cloete et al., 2009),
• the mixing time, although physically relevant, depends on the properties of the

transported species and its initial concentration in the liquid, and is not an in-
trinsic property of the stirring, but rather a consequence, or an observation of it.

To gain more insight on objective functionals, we shall shortly review optimal
flow control problems from the literature of fluid physics and applied mathematics.

Brief review of optimal flow controls. To the best of the author’s knowledge,
mixing enhancement is a rather rare application of optimal flow control models.
Typically, they are used to reduce turbulence, delaying its awake, or even laminar-
ize a flow as much as possible. An example is to minimize the drag in aerodynamics
applications. The reader is referred to (Gad-el Hak, 1996) for a detailed (and rather
physical than mathematical) review of flow control. Examples of cost functionals
minimizing the drag coefficient in turbulent flows are given in (Bewley et al., 1993,
2001, El Sherif, 2008). It is interesting to note the following observations made
by (Bewley et al., 2001) (see also (El Sherif, 2008, p. 132)):

“[...] minimization of a cost functional representing exactly the quantity
of interest (drag) is not necessarily the most effective means of reducing
the quantity of interest over the long time [...] It is thus reasonable
for the cost functional to target the turbulence (“the cause”) over each
finite optimization horizon rather than the drag increase due to the
turbulence (“the effect”).”

By considering the minimization of the kinetic energy 1
2

∫ T
0

∫
Ω
|u|2 dx dt, the op-

timal control problem could be solved more efficiently than with a cost functional
based only on the drag quantity.

Another approach, more interesting for the present work, consists to describe
turbulence by the vorticity. This is done in (Casas, 1995), where the goal is to
minimize turbulence with volume or boundary control in stationary and time-
dependent cases. Cost functionals such as∫

Ω

|∇ × u|2 dx and
1

6

∫ T

0

(∫
Ω

|∇ × u|2 dx

)3

dt,

provide an estimate of the level of turbulence within the flow (Casas, 1995).
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Using the vorticity or the enstrophy has some mathematical advantages over
the turbulent kinetic energy (TKE) but might be physically less relevant (Bewley
et al., 2001, p. 198-199). The enstrophy is defined as the square of vorticity and
the corresponding cost functional reads

1

2

∫ T

0

∫
Ω

|∇ × u|2 dx dt.

For more details about these and other cost functionals, the reader is referred
to (Bewley et al., 2001) and, for a general introduction to the optimal control of
time-dependent Navier–Stokes equations, to (Hinze, 2002).

Based on the previous discussion and review, we propose two quantities for the
objective functional of the optimal stirring control model:
• one based on the maximization of the vorticity, and
• one based on the regulation of vorticity, which, more precisely, takes into ac-

count its “distribution” in the domain, trying to avoid areas with low vorticity
(dead zones).

In this work, the maximization and regulation of the vorticity have to be under-
stood in the sense of (Bewley et al., 2001):

“a minimization problem [...]: solutions in which [the main term of the
cost functional (i. e., excluding the control term)] are negative, if they
exist, are preferred over those in which this term is zero.”

In the case of maximization, the main quantity of the cost functional is not
bounded, while, in the regulation case, it is bounded from below by 0. It is
also a regulation in the physical sense, as it will be seen in the next section.

4.2.3 First objective: Maximization of vorticity

In this context, we consider that the stirring efficiency is described by the turbu-
lence of the flow. In other words, the higher the turbulence, the better the stirring.
Consequently, the optimal stirring is reached with the maximal turbulence in the
liquid bath. This should ensure thermal and concentration homogeneity, as well
as effective inclusion removal, and thus, fulfill all the objectives at once.

The previous section has shown that the turbulence can be quantified by the
vorticity, i. e., the curl of the velocity,

curl u := ∇× u.

Thus, to maximize turbulence (or homogenization) during stirring, we should
maximize the vorticity in the fluid domain Ω over a fixed period of time [0, T ], or,
equivalently, minimize the cost functional

min
1

2

∫ T

0

−‖curl(u)‖2
L2(Ω) dt. (4.12)

The cost functional (4.12) is global and does not take into account the reparti-
tion of the vorticity in the domain. This could lead to solutions where the vorticity
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has high values only in a local area of the domain, giving a much higher contribu-
tion to the cost functional compared with other areas. Dead zones, i. e., areas with
too low mixing or no fluid circulation, can appear. This is not desired in practice.
In fact, preliminary numerical computations have shown that, in the 2d case at
least, the vorticity magnitude is mainly located at the boundaries of the domain
(remember that the flow is induced by a vertical boundary velocity). Thus, it is
desirable to exclude these misleading areas from the cost functional, such that the
vorticity is maximized somewhere inside the domain, more locally. Denoting a
subdomain by Ω0 ⊂ Ω, we define the following “local variant” of Eq. (4.12)

min
1

2

∫ T

0

−‖curl(u)‖2
L2(Ω0) dt. (4.13)

4.2.4 Second objective: Regulation of vorticity

The previous objective functionals have an important drawback: they do not in-
herently describe the distribution of the vorticity in the domain, only the global
quantity. Using a local domain Ω0 is not a practical solution, since it requires a
priori knowledge to choose it. In order to better describe the repartition of vortic-
ity, and, at the same time, obtain a vorticity field as homogeneous as possible, we
define

min
1

2

∫ T

0

∫
Ω

max(m− | curl(u)|2, 0) dx dt. (4.14)

The integrand acts like a penalization: it has a positive contribution only where
the vorticity is not high enough (namely, < m), and the higher the gap between
the vorticity and the required “threshold” m, the higher the penalty. Physically,
these areas correspond to dead zones. Where the vorticity is high enough (> m), it
is 0, and the only contribution comes from the control cost, forcing a reduction of
the vorticity. In other words, this functional takes into account both the “quantity
and effective distribution” of turbulence in the domain (Cloete et al., 2009) . It
can model a balance between the maximization of the vorticity and its spatial
repartition (homogeneity).

However, this additional flexibility was not made without any cost. The new
formulation introduces a variable m which has now to be defined. It is indeed not
straightforward to fix physically-relevant values form, because there is no practical
measurement or knowledge of how much the vorticity should be. In the context of
numerical simulations, one could test several values of m and study its influence
on the optimal solution. This means additional computational cost and difficulty.

Another problem is that the functional (4.14) is not differentiable, which is
required to derive the optimality conditions. There are several ways to correct
this. In our study, we regularize it by taking the L2-norm of the max term, instead
of the L1-norm. Thus, we will consider the following cost functional in the rest of
this study:

min
1

4

∫ T

0

‖max(m− | curl(u)|2, 0)‖2
L2(Ω) dt. (4.15)
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As in the previous section, it is possible to define a local variant of the objective
functional, to avoid the artificial vorticity along the boundaries induced by the
boundary velocity (in 2d):

min
1

4

∫ T

0

‖max(m− | curl(u)|2, 0)‖2
L2(Ω0) dt.

However, the integrand in Eq. (4.15) is zero where the vorticity is high. Therefore,
it is unnecessary to exclude these areas from the integration. Thus, this local
variant is not studied in the rest of this chapter.

Summary of the objective functionals. For more convenience, we combine
all previous functionals possible and define a general one:

min J0(u) = −β1

2

∫ T

0

‖curl(u)‖2
L2(Ω0) dt

+
β2

4

∫ T

0

‖max(m− | curl(u)|2, 0)‖2
L2(Ω0) dt, (4.16)

where β1 and β2 are the weight of each term. With Ω0, they can be adjusted
depending on the application. The following cases are of particular interest:
• global maximization of vorticity: β1 = 1, β2 = 0, and Ω0 = Ω,
• local maximization of vorticity: β1 = 1, β2 = 0, and Ω0 ( Ω,
• global regulation of vorticity: β1 = 0, β2 = 1, and Ω0 = Ω.

4.2.5 Control cost

Besides the objectives related to the process itself, it is also required in practice to
minimize the process cost, e. g., the energy required to reach the objectives. In the
present case, the cost or the energy of the process control is the gas consumption
(see Table 4.1). It is modeled here by the plume velocity UP in 2d or the gas
flow rate Q in 3d. As described in Section 4.2.1, these control variables appear
either on the boundary or in the volume force, depending on the dimension of the
problem. Thus, the cost term is defined by

Jc(f , b) =
1

2

∫ T

0

λ1‖f‖2
L2(Ω) + λ2‖b‖2

L2(Γaxis)
dt, (4.17)

where λ1 and λ2 are positive parameters corresponding to the weight of the cost
term. Their values usually describe the energy cost and should be given by in-
dustrial practice. In absence of such information, one can test different values
numerically and adjust them later depending on the application. The cost term Jc
is then added to J0, see (4.16), to form the complete functional to be minimized.

Remarks about the cost term. First, the expression of the cost term depends
on the dimension of the problem. In 3d, we have Γaxis = ∅ and b = 0 such that
the cost term reads

Jc(f ,0) =
1

2

∫ T

0

λ1‖f‖2
L2(Ω) dt.
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In 2d, we have f = 0 such that it is

Jc(0, b) =
1

2

∫ T

0

λ2‖b‖2
L2(Γaxis)

dt.

Second, in our application, the controls are not directly f and b but the functions
UP and Q (and the nozzles’ coordinates) which appear implicitly in f and b. They
depend on time only and not on space. Consequently, the main contribution of
the cost term has the order of

∫ T
0
|UP (t)|2 dt or

∫ T
0
|Q(t)|2 dt. In the numerical

implementation, the control cost is computed with these formulas which are more
practical than (4.17). In the following, we keep the notation (4.17) for more clarity.
Finally, in addition to its physical relevance, the cost term Jc acts mathematically
as a regularization and avoids the so-called “bang-bang” effect, (Tröltzsch, 2010).

4.3 Optimal flow control problem

Let us summarize all modeling assumptions for the optimal control problem. First,
there are two configurations for ladle stirring (Chapter 3): a 2d boundary-driven
model and a 3d volume force-driven (or buoyancy-driven) turbulent model. They
will also be referred to as the direct, forward, or state models. As explained in
Section 3.5, the 2d axisymmetric case is not considered for optimization. Corre-
spondingly, two types of optimal control problems are defined depending on the
dimension:
• the 2d boundary-controlled ladle stirring optimal control problem, where the

control is UP (t) and which has the following assumptions:

b = (0, UP (t)) T, f = 0, CS = 0 (νT = 0), λ1 = 0, λ2 = 1,

• the 3d volume-controlled buoyancy-driven ladle stirring optimal control prob-
lem, where the controls are Qi and (xni, yni) for each nozzle i = 1, 2, and
which has the following assumptions:

b = 0, f = (1− (αn1 + αn2))g, CS > 0 (νT > 0) λ1 = 1, λ2 = 0.

Furthermore, depending on its coefficients, several variants for the cost functional
(Eq. (4.16)) will be studied:
• global maximization of vorticity,
• local maximization of vorticity, and
• regulation around a threshold value m.
In the following sections, the model is formulated to express all the above-

mentioned cases at once. Then, the optimality system is derived formally, leading
to the adjoint equations and optimality conditions. The numerical implementation
is briefly described. The results in 2d and 3d are presented in detail followed by a
summary in the conclusion. New perspectives for the optimal control problem of
ladle stirring are also provided at the end of the chapter.
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4.3.1 Definition of the optimal control problem

The cost functional consists of minimizing the terms based on the vorticity (4.16)
and the cost term (4.17). The optimal control problem reads:
Problem 4.1 (Optimal control of the ladle stirring):

min J(u, (f , b)),

with J(u, (f , b)) :=J0(u) + Jc(f , b)

=− β1

2

∫ T

0

‖ curl(u)‖2
L2(Ω0)d dt

+
β2

4

∫ T

0

∥∥max{m− | curl(u)|2, 0}
∥∥2

L2(Ω0)
dt

+
1

2

∫ T

0

λ1‖f‖2
L2(Ω) + λ2‖b‖2

L2(Γaxis)
dt,

subject to:

ut + (u · ∇)u−2∇ · ((ν + νT )D(u)) +∇p = f in (0, T ]× Ω,

∇ · u = 0 in (0, T ]× Ω,

in 3d: f = (1− (αn1 + αn2))g,

in 2d: f = 0,

in 3d: u = 0 (Dirichlet) in (0, T ]× ∂Ω \ {Γtop},
in 2d: u = 0 (Dirichlet) in (0, T ]× ∂Ω \ {Γtop ∪ Γaxis},
in 2d: u = b (control) in (0, T ]× Γaxis,

u · n = 0 (no penetration) in (0, T ]× Γtop,

nTS ti = 0 (free slip), 1 ≤ i ≤ d− 1 in (0, T ]× Γtop,

u(0,x) = u0(x) in Ω,∫
Ω

p dx = 0 in [0, T ],

ν = 1/96000,

in 3d: νT = CSδ
2‖D(u)‖F ,

in 2d: νT = 0,

αni(x, y, z, t) =
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, if z ≥ zC ,

UP (t) ∈ [UPmin
, UPmax ] in (0, T ] ,

Qi(t) ∈ [Qmin, Qmax] in (0, T ] ,√
x2
ni + y2

ni < R, i = 1, 2.
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Remarks. In practice, the stirring is always active. In the VTD for example, it
should be vigorous enough to open a slag eye and allow the alloying in the first
steps of the treatment. After that, the operators adjust the gas flow rate. This
means that the fluid is not at rest at the beginning. Thus, the optimal control
should be used with a fully developed flow as an initial condition. Numerically,
one could start with zero initial conditions (u0 = 0), and replace the bounds of
the time integrals in Eqs. (4.16) and (4.17) to compute the cost functional only
after the flow fully develops. This is an expensive approach because it computes
the solution until T from a fluid at rest, at each optimization iteration. Instead,
we pre-compute a solution corresponding to a fully developed flow u0 6= 0 and use
it as initial condition in the optimal control problem. Note that the solution of
the latter may depend on u0.

For more clarity, we list the assumptions and parameters which may signifi-
cantly influence the solution of the optimal control problem:
• the initial condition u0,
• the time horizon T ,
• the weights of the control cost λi,
• the observation subdomain Ω0,
• the threshold for vorticity regulation m (when β2 6= 0),
• in 3d, the mesh and Smagorinsky constant CS,
• in 3d, the choice of the control variables (among the combinations available).

One way to solve a minimization problem is to use gradient-based solvers.
They can determine which direction to take, i. e., which controls to choose in order
to minimize the objective functional, based on its derivative. The following pages
detail the formal calculations to obtain it, but their results are not used afterwards
in the thesis. Thus, the reader interested in the numerical investigations may skip
sections 4.3.2 and 4.3.3 and move to Section 4.3.4. There, he will find more details
on optimization solvers.

4.3.2 Formal derivation of the optimality system

Notations. For more generality, we introduce the following notations indepen-
dently of the ladle application. Let Γc be the boundary where the control is applied
(corresponds to ΓD in Chapter 2), Γ0 the boundary with homogeneous Dirichlet
condition, and Γslip the boundary with no-penetration condition. In the 2d ap-
plication, we have Γc = Γaxis and Γ0 = ∂Ω \ {Γtop ∪ Γaxis}, while in 3d Γc = ∅
and Γ0 = ∂Ω \ {Γtop}. The slip boundary is the same in 2d and 3d: Γslip = Γtop.
Denoting dual spaces with ·∗ and a subset M ⊂ ∂Ω, we define

V M =
{
v ∈

(
H1(Ω)

)d
, v = 0 on M, v · n = 0 on Γslip

}
,

WM =
{
v ∈ L2(0, T ;V M) : vt ∈ L2(0, T ;V ∗M)

}
,

Q = L2
0(Ω) = {q ∈ L2(Ω),

∫
Ω

q dx = 0}.
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Note that the space V M encodes the no-penetration condition, in addition to the
usual homogeneous Dirichlet on the boundary. The space WM is a Hilbert space
continuously embedded into C([0, T ], (L2(Ω))

d
) (Tröltzsch, 2010, p.144, Theorem

3.10 p.148). We recall the definition of the space (Tröltzsch, 2010, p.143):

L2(0, T ;X) =

{
v(t, ·) ∈ X ∀t ∈ [0, T ],

∫ T

0

‖v(t, ·)‖2
X dt <∞

}
.

Contrary to Problem 2.2 in Chapter 2, we do not write the weak formulation for
a fixed t, but integrate over time. The spaces have to be chosen accordingly. The
state space is given by

X = WΓ0∪Γc × L2(0, T ;Q).

The control space for the volume force f and boundary velocity b is

Y = L2
(

0, T ;
(
L2(Ω)

)d)×H1

(
0, T ;

(
H

1/2
00 (Γc)

)d)
,

where H
1/2
00 (Γc) is a Lions–Magenes space (Wilbrandt, 2019b). Note that the

volume term is likely to be smoother in time because the nozzle injections are
smooth (see discussion in Section 4.1.1). The second part of Y needs to be such
that there exists a continuous extension to WΓ0 . This extension will be denoted
with the same notation. The solution u is decomposed into u0 ∈ WΓ0∪Γc and
b ∈ WΓ0 : u = u0 + b. The cost functional J is defined from X × Y to R by

J((u0, p), (f , b)) =− β1

2

∫ T

0

‖ curl(u)‖2
L2(Ω0)d dt

+
β2

4

∫ T

0

∥∥max{m− | curl(u)|2, 0}
∥∥2

L2(Ω0)
dt

+
1

2

∫ T

0

λ1‖f‖2
L2(Ω) + λ2‖b‖2

L2(Γc) dt.

The equations to be solved for a given control (f , b) ∈ Y are

ut + (u · ∇)u−2∇ · ((ν + νT )D(u)) +∇p = f in (0, T ]× Ω

∇ · u = 0 in (0, T ]× Ω

in 3d: u = 0 (Dirichlet) in (0, T ]× ∂Ω \ {Γtop}
in 2d: u = 0 (Dirichlet) in (0, T ]× ∂Ω \ {Γtop ∪ Γaxis}
in 2d: u = b (control) in (0, T ]× Γaxis

u · n = 0 (no penetration) in (0, T ]× Γtop

nTS ti = 0 (free slip), 1 ≤ i ≤ d− 1 in (0, T ]× Γtop

u(0,x) = u0(x) in Ω∫
Ω

p dx = 0 in [0, T ].
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Approach based on the gradient of the reduced functional. The results
of the following paragraph mostly come from (Wilbrandt, 2019a, unpublished).
We assume that the operators are well-defined and sufficiently smooth to be dif-
ferentiable, in particular the solution operator S (see also Section 2.2.2). Let us
define the residual operator e : X × Y → X∗ describing the momentum and mass
conservation equations satisfied by the state variables (u, p), in weak form,

〈e((u0, p), (f , b)), (v, q)〉X∗×X :=

∫ T

0

(
〈ut,v〉∗× + (2(ν + νT )D(u),D(v))

)
dt

+

∫ T

0

(
((u · ∇)u,v)− (∇ · v, p)− (∇ · u, q)− (f ,v)

)
dt

+
(
u(0)− u0,v(0)

)
, (4.18)

for (v, q) ∈ X. While the control f enters explicitly in the above definition through
an L2 product, the boundary control b appears implicitly in u = u0 + b. The
solution operator S : Y → X is implicitly (and assumingly well) defined as

e(S(f , b), (f , b)) = e((u0, p), (f , b)) = 0. (4.19)

More details about the well-posedness of the Navier–Stokes equations and the solu-
tion operator S have been given in Section 2.2.2. The reduced objective functional
Ĵ : Y → R can now be defined as

Ĵ(f , b) := J(S(f , b), (f , b)).

Since the argument (S(f , b), (f , b)) will appear repeatedly and may reduce the
readability of the equations, it will be written in a smaller size and in gray in the
following. Its derivative Ĵ ′ : Y → Y ∗ is given by the chain rule

Ĵ ′(f , b) = Ju0,p(S(f ,b),(f ,b))S ′(f , b) + Jf ,b(S(f ,b),(f ,b)), (4.20)

using the partial derivatives Ju0,p : X×Y → X∗ and Jf ,b : X×Y → Y ∗ of J . The
derivative S ′ : Y → L(Y,X) of the solution operator S, where L(Y,X) is the space
of linear continuous operators from Y to X, is not known. To find an expression
for S ′(f , b), we define the “reduced” residual ê : Y → X∗ which depends only on
the control variables through the solution operator S

ê(f , b) := e(S(f , b), (f , b)),

which satisfies ê = 0 according to equation (4.19). Consequently, its derivative ê′
also vanishes, leading to an equation for S ′:

ê′(f , b) = eu0,p(S(f ,b),(f ,b))S ′(f , b) + ef ,b(S(f ,b),(f ,b)) = 0, (4.21)

where the partial derivatives are defined in the following spaces: eu0,p : X × Y →
L(X,X∗) and ef ,b : X × Y → L(Y,X∗).

At this point assume that eu0,p(S(f ,b),(f ,b)) is invertible, i. e., (eu0,p(S(f ,b),(f ,b)))−1

in L(X∗, X) exists. We will also write (eu0,p(S(f ,b),(f ,b)))−1 = e−1
u0,p

(S(f ,b),(f ,b)). Then,
the derivative of S at (f , b) can be expressed via equation (4.21) as

S ′(f , b) = −e−1
u0,p

(S(f ,b),(f ,b))ef ,b(S(f ,b),(f ,b)).
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This in turn can be inserted into (4.20) to yield the following equation (in Y ∗):

Ĵ ′(f , b) = −Ju0,p(S(f ,b),(f ,b)) e−1
u0,p

(S(f ,b),(f ,b)) ef ,b(S(f ,b),(f ,b)) + Jf ,b(S(f ,b),(f ,b)).
(4.22)

The first term in Ĵ ′(f , b) can be reformulated: for all (k,h) ∈ Y it holds

− 〈Ju0,p(S(f ,b),(f ,b)) e−1
u0,p

(S(f ,b),(f ,b)) ef (S(f ,b),(f ,b)), (k,h)〉
Y ∗×Y

= −〈Ju0,p(S(f ,b),(f ,b)), e−1
u0,p

(S(f ,b),(f ,b)) ef (S(f ,b),(f ,b))(k,h)〉
X∗×X

= −〈ef (S(f ,b),(f ,b))(k,h), e−∗u0,p
(S(f ,b),(f ,b)) Ju0,p(S(f ,b),(f ,b))〉

X∗×X
= −〈e∗f (S(f ,b),(f ,b)) e−∗u0,p

(S(f ,b),(f ,b)) Ju0,p(S(f ,b),(f ,b)), (k,h)〉
Y ∗×Y . (4.23)

One can define the adjoint state (U , P ) ∈ X∗∗ = X such that

(U , P ) := −e−∗u0,p
(S(f ,b),(f ,b))Ju0,p(S(f ,b),(f ,b)), (4.24)

i. e., (U , P ) solves the adjoint equation

e∗u0,p
(S(f ,b),(f ,b))(U , P ) = −Ju0,p(S(f ,b),(f ,b)) (4.25)

⇐⇒ Ju0,p(S(f ,b),(f ,b)) + e∗u0,p
(S(f ,b),(f ,b))(U , P ) = 0.

Consequently, the adjoint equations are formed using the partial derivative, with
respect to the state variables, of the state equations (left-hand side) and the cost
functional (right-hand side).

Using Equations (4.22), (4.23), and (4.24) leads to the following formulation
for the derivative of Ĵ :

Ĵ ′(f , b) = e∗f ,b(S(f ,b),(f ,b))(U , P ) + Jf ,b(S(f ,b),(f ,b)) ∈ Y ∗.

At this point, all the terms are known and Ĵ ′ can be computed. This equation can
be used to obtain the optimality conditions. Indeed, when the optimal solution
(f opt, bopt) is reached, the cost functional Ĵ reaches a (local) minimum, which gives
the following condition on its gradient:

Ĵ ′(f − f opt, b− bopt) ≥ 0

⇐⇒ Jf ,b
(
S(f − f opt, b− bopt), (f − f opt, b− bopt)

)
+ e∗f ,b

(
S(f − f opt, b− bopt), (f − f opt, b− bopt)

)
(U , P ) ≥ 0,

(4.26)

for all (admissible) (f − f opt, b− bopt) in Y .

Approach based on the Lagrangian formalism. A detailed application of
the Lagrangian formalism to an optimal control problem of the instationary Navier–
Stokes equations can be found in (Hinze, 2002) and (Tröltzsch, 2010, Section
5.10.2.). As pointed out in (Tröltzsch, 2010, p. 318), the formal Lagrange method
allows to determine what kind of first-order necessary conditions can be expected.
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These conditions coincide with those provided by a rigorous analysis. Let us define
the following Lagrangian function L : X × Y ×X → R,

L ((u0, p), (f , b), (U , P )) := J((u0, p), (f , b))−∫
T

∫
Ω

(ut + (u · ∇)u− 2∇ · ((ν + νT )D(u)) +∇p− f) ·U dx dt+∫
T

∫
Ω

(∇ · u)P dx dt+

∫
Ω

(
u(0)− u0,U(0)

)
dx. (4.27)

Using our notation with the residual operator e : X × Y → X∗, it also reads

L ((u0, p), (f , b), (U , P )) = J((u0, p), (f , b))− 〈e((u0, p), (f , b)), (U , P )〉X∗×X .
(4.28)

Unlike the approach proposed by (Hinze, 2002), where an additional integral
on the boundary is introduced as a constraint, the homogeneous Dirichlet, the
no-penetration and the control boundary conditions are encoded in implicit form,
i. e., they are taken into account in the definition of the state space X. Similarly,
the author suggests the addition of a constraint for the pressure when the flow
is enclosed, which we do not need here because of the choice of the space Q. It
would have been possible to do the same for the continuity equation, i. e., con-
sider divergence-free spaces and avoid the second integral in the definition of the
Lagrangian (4.27). We choose the usual procedure, i. e., we include it explicitly.

By virtue of the formal Lagrange method, a locally optimal solution, which we
denote by

(
(uopt, popt), (f opt, bopt), (U , P )

)
, satisfies the relations

Lu0,p

(
(uopt, popt), (f opt, bopt), (U , P )

)
= 0, (4.29)

Lf ,b

(
(uopt, popt), (f − f opt, b− bopt), (U , P )

)
≥ 0, ∀ (f , b) ∈ Y. (4.30)

Using Eq. (4.28), one can compute the derivative of the Lagrangian with respect
to the state variables Lu0,p : X ×Y ×X → X∗, such that Eq. (4.29) becomes (see
also (Hinze, 2002, Eq.(128), p.115))

Lu0,p

(
(uopt, popt), (f opt, bopt), (U , P )

)
= 0

⇐⇒ Ju0,p

(
(uopt, popt), (f opt, bopt)

)
− e∗u0,p

(
(uopt, popt), (f opt, bopt)

)
(U , P ) = 0,

(4.31)

which corresponds to the adjoint equations. Here, it should be noted that the
minus sign introduced in the definition of the adjoint state (4.24) is a notational
convention. It is also possible to ignore it, in which case Eq. (4.31) becomes similar
to (4.25). The optimality conditions can be obtained with the condition (4.30),
which uses the derivative of the Lagrangian with respect to the control Lf ,b :
X × Y ×X → Y ∗ (see also (Hinze, 2002, p.117,119)):

Lf ,b

(
(uopt, popt), (f − f opt, b− bopt), (U , P )

)
≥ 0,

⇐⇒ Jf ,b
(
(uopt, popt), (f − f opt, b− bopt)

)
−

e∗f ,b
(
(uopt, popt), (f − f opt, b− bopt)

)
(U , P ) ≥ 0, (4.32)

for all (admissible) (f − f opt, b − bopt) ∈ Y , which is similar to Eq. (4.26), up to
the minus sign due to the notational convention, as explained earlier.
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4.3.3 Adjoint equations and optimality conditions

Partial derivatives. In total, four partial derivatives have to be computed: the
ones from the cost functional J and the ones from the residual e, once with respect
to the state variables (u0, p) ∈ X and once with respect to the control (f , b) ∈ Y .
The different terms of the functional J are quadratic ((4.16) and (4.17)). While
the first, third and fourth terms are straightforward to differentiate, the second
term

F : X → R

F (u0) =
β2

4

∫ T

0

∥∥max{m− | curl(u0)|2, 0}
∥∥2

dt,

=
β2

4

∫ T

0

∫
Ω0

∣∣max{m− | curl(u0)|2, 0}
∣∣2 dx dt,

involves the max-function and requires more attention. We detail its derivative
here. Let us define

f(u0) = |m− | curl(u0)|2|2.

For (v, ·) ∈ X and η > 0,

f(u0 + ηv)− f(u0)

=
(
m− | curl(u0 + ηv)|2

)2 −
(
m− | curl(u0)|2

)2

=
(
m2 − 2m| curl(u0 + ηv)|2 + | curl(u0 + ηv)|4

)
−
(
m2 − 2m| curl(u0)|2 + | curl(u0)|4

)
.

Next, we expand the terms and keep only the elements of order η:

f(u0 + ηv)− f(u0)

=
(
m2 − 2m| curl(u0)|2 − 4mη(curl(u0), curl(v)) +O(η2)

+ | curl(u0)|4 + 4η| curl(u0)|2(curl(u0), curl(v)) +O(η2)
)

−
(
m2 − 2m| curl(u0)|2 + | curl(u0)|4

)
=
(
−4mη(curl(u0), curl(v))) + 4η| curl(u0)|2(curl(u0), curl(v)) +O(η2)

)
= −4η(curl(u0), curl(v))

(
m− | curl(u0)|2

)
+O(η2).

The derivative of F can then be obtained by the chain rule

lim
η→0

1

η
(F (u0 + ηv)− F (u0))

= −β2

∫ T

0

∫
Ω0

(curl(u0), curl(v))
(
max{m− | curl(u0)|2, 0}

)
dx dt

= −β2

∫ T

0

(
curl(u0)

(
max{m− | curl(u0)|2, 0}

)
, curl(v)

)
L2(Ω0)

dt.

Note that the derivative is 0 when m− | curl(u0)|2 = 0.
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Altogether, the partial derivatives Ju0,p : X × Y → X∗ and Jf ,b : X × Y → Y ∗

are given by

〈Ju0,p((u0, p), (f , b)), (v, q)〉X∗×X (4.33)

= −β1

∫ T

0

(curl(u), curl(v))L2(Ω0) dt (4.34)

+ β2

∫ T

0

(
curl(u)

(
| curl(u)|2 −m

)
, curl(v)

)
L2(Ω0)

dt

=

∫ T

0

(
curl(u)

(
−β1 + β2

(
| curl(u)|2 −m

))
, curl(v)

)
L2(Ω0)

dt, (4.35)

for (v, q) ∈ X, and

〈Jf ,b((u0, p), (f , b)), (k,h)〉Y ∗×Y (4.36)

=

∫ T

0

(
curl(u)

(
−β1 + β2

(
| curl(u)|2 −m

))
, curl(h)

)
L2(Ω0)

dt

+

∫ T

0

λ1(f ,k)L2(Ω) + λ2(b,h)L2(Γaxis)
dt, (4.37)

for (k,h) ∈ Y .
There remain, on the other hand, the partial derivatives eu0,p and ef ,b. Instead

of starting from the weak form of e (Eq. (4.18)), we follow the lines of (Tröltzsch,
2010) and start from the form appearing in (4.27). Let us detail the derivative of
the two nonlinear terms (in u0), F1 : X×X → R and F2 : X×X → R, defined as

F1(u0,U) =

∫ T

0

∫
Ω

((u0 · ∇)u0) ·U dx dt,

F2(u0,U) =

∫ T

0

∫
Ω

(−2∇ · (νT (u0)D(u0))) ·U dx dt,

where we recall the definition of the turbulent viscosity νT (u0) = CSδ
2
√
D(u0) : D(u0)

(Equation (2.65)). The derivative of the convective term reads, for v ∈ X,

F1,u0v =

∫ T

0

∫
Ω

((u0 · ∇)v + (v · ∇)u0) ·U dx dt,

Using the properties of the trilinear form b(u0,v,U) = ((u0 · ∇)v)·U (John, 2016,
Section 6.1.2), for the first term,

b(u0,v,U) = −b(u0,U ,v),

and the second term,

b(v,u0,U ) =
d∑

i,j=1

(
vi
∂uj
∂xi

Uj

)
=

d∑
i,j=1

(
∂uj
∂xi

Ujvi

)
=

d∑
i=1

(
(∇u0)TU

)
i
vi

=
(
(∇u0)TU

)
· v,
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the derivative of the convective term can be rearranged in order to collect the test
function v, such that

F1,u0v =

∫ T

0

∫
Ω

(
−(u0 · ∇)U + (∇u0)TU

)
· v dx dt, (4.38)

where ∇u0 = (∇u1 ∇u2 ∇u3)T is the same as the term appearing in the deforma-
tion tensor (2.2).

Next, we compute the derivative of the turbulent viscosity term F2. A similar
derivation can also be found in (El Sherif, 2008, Annex J.1.5 and J.1.6) in the
more general case of a dynamic CS. First, let us re-write F2 in weak form (see
Section 2.2.1 and Problem 2.7):

F2(u0,U ) =

∫ T

0

∫
Ω

2νT (u0)D(u0) : D(U) dx dt =

∫ T

0

(2νT (u0)D(u0),D(U )) dt.

For v ∈ X and η > 0 small enough,

F2(u0 + ηv,U)− F2(u0,U)

=

∫ T

0

(2νT (u0 + ηv)D(u0 + ηv),D(U)) dt−
∫ T

0

(2νT (u0)D(u0),D(U)) dt

=

∫ T

0

2 (νT (u0 + ηv)− νT (u0)︸ ︷︷ ︸
D

)D(u0),D(U)

 dt+ η

∫ T

0

(2νT (u0 + ηv)D(v),D(U)) dt.

By dividing by η and in the limit η → 0, the second term converges to∫ T

0

(2νT (u0)D(v),D(U)) dt =

∫ T

0

(2νT (u0)D(U),D(v)) dt.

As it will be seen later, this term, which uses the turbulent viscosity of the state
variable u0, is in some sense the adjoint equivalent of the Smagorinsky term of the
state equations.

In the first term, the derivativeD of the turbulent viscosity νT at u0 in direction
v appears. It can be computed using the explicit definition of νT (u0), and assuming
that D(u0) 6= 0 almost everywhere,

D = νT (u0 + ηv)− νT (u0)

= CSδ
2
(√

D(u0 + ηv) : D(u0 + ηv)−
√
D(u0) : D(u0)

)
= CSδ

2

(
D(u0 + ηv) : D(u0 + ηv)− D(u0) : D(u0)√
D(u0 + ηv) : D(u0 + ηv) +

√
D(u0) : D(u0)

)

= ηCSδ
2

(
2D(u0) : D(v)√

D(u0 + ηv) : D(u0 + ηv) +
√
D(u0) : D(u0)

)
+O(η2),

such that

lim
η→0

D

η
=
CSδ

2D(u0) : D(v)

‖D(u0)‖F
,

where we have used the Frobenius norm (2.64).
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It is important to take into account the case D(u0) = 0 in the numerical
implementation. Since D(u0) appears also as an ansatz function in the previous
limit, fixing D to 0, and, consequently, the derivative F2,u0 also, when D(u0) = 0
seems to be a reasonable assumption.

Using the following equality to write the test function on the right-hand side:

((D(u0) : D(v))D(u0),D(U)) = ((D(u0) : D(U))D(u0),D(v)),

the derivative of F2 can finally be summarized as

F2,u0v =

∫ T

0

(
2CSδ

2D(u0) : D(U)

‖D(u0)‖F
D(u0),D(v)

)
+ (2νT (u0)D(U),D(v)) dt.

(4.39)

Integrating by parts, one retrieves the strong form of the nonlinear terms:

F2,u0v =

∫ T

0

∫
Ω

−2∇ ·
(
CSδ

2D(u0) : D(U)

‖D(u0)‖F
D(u0) + νT (u0)D(U)

)
· v dx dt.

(4.40)

Before putting all the terms together, let us integrate by parts the first term of
eu0,p with respect to t to avoid a time derivative on the test function:∫ T

0

(vt,U) dt = −
∫ T

0

(U t,v) dt+ (U(T ),v(T ))− (U(0),v(0)). (4.41)

Differentiating the initial term (u(0)− u0,v(0)) from Eq. (4.18) and adding it
to 4.41 yields:∫ T

0

(vt,U) dt+ (U(0),v(0)) = −
∫ T

0

(U t,v) dt+ (U (T ),v(T )). (4.42)

Gathering (4.38), (4.40), and (4.42), the partial derivative eu0,p : X × Y →
L(X,X∗) with respect to the state variables can be written as

〈eu0,p((u, p), (f , b))(U , P ), (v, q)〉X∗×X =∫ T

0

∫
Ω

(
−U t − 2∇ ·

(
(ν + νT (u))D(U) +

CSδ
2D(u) : D(U)

‖D(u)‖F
D(u)

)
− (u · ∇)U

(4.43)

+ (∇u)TU +∇P
)
· v dx dt+

∫
Ω

U(T )v(T ).+

∫ T

0

∫
Ω

−(∇ ·U)q dx dt.

This form, which is not exactly the weak form, allows to see more easily how
the strong adjoint equations look like. Before getting to this point, let us write
the weak form for completeness. The main differences are the use of (4.39) instead
of (4.40), and the integration by parts of the pressure term:

〈eu0,p((u0, p), (f , b))(U , P ), (v, q)〉X∗×X =∫ T

0

(
(−U t,v) + (2(ν + νT (u))D(U),D(v)) +

(
2CSδ

2D(u) : D(U)

‖D(u)‖F
D(u),D(v)

)
− ((u · ∇)U ,v) +

(
(∇u)TU ,v

)
− (P,∇ · v)− (∇ ·U , q)

)
dt+ (U(T ),v(T )).
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The fourth and last partial derivative ef ,b : X × Y → L(Y,X∗) is then given by

〈ef ,b((u0, p), (f , b))(U , P ), (h,k)〉Y ∗×Y =∫ T

0

(
(−U t,h) + (2(ν + νT (u))D(U),D(h)) +

(
2CSδ

2D(u) : D(U)

‖D(u)‖F
D(u),D(h)

)
− ((u · ∇)U ,h) +

(
(∇u)TU ,h

)
− (P,∇ · h)− (U ,k)

)
dt+ (U(T ),h(T )).

(4.44)

Adjoint equations. We can now write the adjoint equations. According to
Equation (4.31) (or, equivalently, (4.25)) derived in the previous section, one has
to set e(u0,p) (4.43) equal to J(u0,p) (4.35), for all test functions (v, q) ∈ X. By
applying specific test functions (Hinze, 2002), one retrieves the strong form of the
adjoint equations:
• using q = 0 and v with compact support on Ω leads to the momentum

equation for the adjoint variables,
• applying v = 0 and q with compact support on Ω leads to the mass conser-

vation of the adjoint variable,
• the “initial condition” for U is obtained by applying ∇v · n = 0 on ∂Ω and
v(T, ·) with compact support Ω.

Furthermore, given the definition of the space X, the adjoint variable U satisfies
similar boundary conditions as the state variable u0 (in particular, homogeneous
Dirichlet and free slip), and the constraint on the pressure to fix the additive
constant is satisfied by P , just as p does. All in all, the strong form of the adjoint
problem reads:
Problem 4.2 (Adjoint problem of the 2d boundary-controlled and 3d volume–

controlled turbulent Navier–Stokes equations for ladle stirring):

−U t − 2∇ ·
(

(ν + νT (u))D(U) +

(
CSδ

2D(u) : D(U)

‖D(u)‖F
D(u)

))
− (u · ∇)U

+(∇u)TU +∇P = −
(
curl(u)

(
−β1 + β2

(
m− | curl(u)|2

))
, curl ·

)
in (0, T ]× Ω

∇ ·U = 0 in (0, T ]× Ω

in 3d: U = 0 (Dirichlet) in (0, T ]× ∂Ω \ Γtop

in 2d: U = 0 (Dirichlet) in (0, T ]× ∂Ω \ {Γaxis ∪ Γtop}
in 2d: U = 0 in (0, T ]× Γaxis

U · n = 0 (no penetration) in (0, T ]× Γtop

nTS(U)ti = 0 (free slip), 1 ≤ i ≤ d− 1 in (0, T ]× Γtop

U (T, ·) = 0 in Ω∫
Ω

P dx = 0 in [0, T ].

In other words, the adjoint variables (U , P ) solve a linear equation, backward
in time with “initial” value U(·, T ) = 0.
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Optimality conditions. Similarly, the optimality conditions (4.32) can now be
written based on ef ,b (4.44) and Jf ,b (4.37). For simplicity, we consider only the 3d
case with volume control. The case with boundary control can be found in (Hinze,
2002, Tröltzsch, 2010), and the references therein. One tests with h = 0 and k
arbitrary on Ω (see also (Hinze, 2002, p.118,119)), such that there remains only
the term

∫ T
0
λ1(f ,k)L2(Ω) in Jf ,b and the term

∫ T
0
−(U ,k)L2(Ω) dt in ef ,b. Thus,

the optimality condition for the volume-controlled 3d problem gives the following
variational inequality (Tröltzsch, 2010, p. 320):

∫ T

0

∫
Ω

(λ1f
opt +U) · (f − f opt) dx dt ≥ 0, ∀ (admissible) f .

Arrived to this point, the formal derivation of the optimality system and op-
timality conditions is finished. These equations can serve as a basis for future
numerical simulations of optimal control problems using gradient-based solvers.

4.3.4 Numerical aspects: gradient-based vs. gradient-free
solvers

It is usual to distinguish two classes of solvers to compute solutions of optimal
control problems: gradient-based and gradient-free solvers. The key difference
between those is the way they search for the solution of the minimization prob-
lem. While gradient-based solvers use the property that the derivative of a function
should be zero when a (local) minimum is reached, gradient-free solvers use approx-
imation or interpolation approaches to move in the correct direction, i. e., to min-
imize the cost functional, iteration after iteration. This procedure often requires a
high, sometimes prohibitive, number of iterations in comparison to gradient-based
solvers. This is especially true when the number of control variables, e. g., the
number of degrees of freedom of f or b, is big. Its main advantage lies on its ca-
pability to solve optimal problems with smooth, as well as, non-smooth objective
functionals. Furthermore, their simple implementation offers a practical start for
optimization studies: one basically just needs to solve the direct (state) problem
and compute the cost functional several times iteratively. To deduce the control
variable in the next iteration, gradient-free solver packages can be used. They
often consist of a “black box”, where operations are done internally, and can be
coupled to existing flow solvers and enrich them. On the other hand, when the
objective functional is differentiable, gradient-based solvers apply a Newton-like
algorithm to find a zero of the gradient. These algorithms converge often faster
to the optimal solution than gradient-free methods, but require the additional
computation of the gradient of the cost functional and of the adjoint equations,
as described in the previous sections. In the following, results obtained with a
gradient-free solver are presented. The computations were performed with the
software ParMooN (Wilbrandt et al., 2017) combined with the optimization li-
brary NLOPT (Johnson, 2019).



4.4. Numerical results for the 2d boundary-driven ladle 113

4.4 Numerical results for the 2d boundary-driven
ladle

4.4.1 Description of the numerical studies

This section describes the numerical parameters of the 2d boundary-controlled
ladle stirring optimal control problem. The control variable UP (t) can freely vary
in time within the box constraints (4.9). In a discrete setting, the number of
degrees of freedom Nc of the control variable, i. e., the dimension of the control
space, is equal to the number of time steps, Nc = T/∆t. We consider two cases:

1. a case where UP is constant in time (Nc = 1), and
2. the case where UP is time-dependent.

In order to avoid too expensive computations in the second case, a large time step
is chosen, e. g., ∆t = 0.1. There are several reasons for studying the case of a
constant control separately:
• the results can be implemented directly in the industrial practice. Fixing

the value of the gas flow rate to a constant value is indeed the most simple
control for the process.
• the optimal solution can be computed relatively fast because of the reduced

number of control variables (Nc = 1). This allows to study the effect of
different numerical parameters on the optimal solution.
• the optimal constant control can be used as a relevant initial guess for the

more complex case with time-dependent control. This may facilitate the
convergence of the optimization in the second case.
• the solution can be compared with the optimal time-dependent control. De-

pending on the improvement or deterioration of the cost functional, one can
decide if it is worth making an investment for a time-dependent gas injection.

The end time T is fixed to 10 s (such that Nc = 100 in the second case). The
initial condition u0 is taken from a previously computed flow (Figure 3.6).

0

z

x

Ω0

Figure 4.1: Definition of the subdomain Ω0: {(x, y) ∈ [0.05, 0.025]× [0.05, 0.55]}.
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Regarding the cost functional J , the parameters β1, β2, Ω0, and m are fixed
according to the relevant cases mentioned earlier in the chapter:

1. global maximization of the vorticity: β1 = 1, β2 = 0, Ω0 = Ω

J1 := −1

2

∫ T

0

‖ curl(u)‖2
L2(Ω) dt+

λ2

2

∫ T

0

‖b‖2
L2(Γaxis)

dt.

2. local maximization: β1 = 1, β2 = 0, Ω0  Ω

J2 := −1

2

∫ T

0

‖ curl(u)‖2
L2(Ω0) dt+

λ2

2

∫ T

0

‖b‖2
L2(Γaxis)

dt.

More precisely, the subdomain Ω0 is chosen as a rectangle which excludes
a small area close to the boundaries: {(x, y) ∈ [0.05, 0.025] × [0.05, 0.55]}
(Figure 4.1). This choice is motivated by preliminary computations showing
that, in the boundary-driven configuration, the vorticity is much higher close
to the boundaries than inside the domain, because of the imposed (non-
physical) boundary velocity on Γaxis.

3. regulation with a low threshold: β1 = 0, β2 = 1, Ω0 = Ω, m = 10

J3(10) :=
1

4

∫ T

0

∥∥max{10− | curl(u)|2, 0}
∥∥2

L2(Ω)
dt+

λ2

2

∫ T

0

‖b‖2
L2(Γaxis)

dt.

4. regulation with a higher threshold: β1 = 0, β2 = 1, Ω0 = Ω, m = 100

J3(100) :=
1

4

∫ T

0

∥∥max{100− | curl(u)|2, 0}
∥∥2

L2(Ω)
dt+

λ2

2

∫ T

0

‖b‖2
L2(Γaxis)

dt.

In the last two cases, a small and a high threshold value m are chosen in order
to favor more or less the distribution of vorticity, to the detriment of local peaks.
Three values for the cost’s weight are chosen: λ2 = 1, 10, and 100 (λ1 = 0 in 2d).

Concerning the parameters of the optimization solvers, the so-called COBYLA
(Constraint Optimization BY Linear Approximation) algorithm is applied (Powell,
1994). The maximum number of iterations is set to 500. Other stopping criteria
based on the convergence of the cost functional and of the control variable are also
used: the value of J (criteria fixed to −1010 for J1 and J2, to 10−8 for J3(10) and
J3(100)), the absolute value of the difference |Jk − Jk−1| between two iterations
(fixed to 10−5), and the absolute value of the difference |‖bk‖−‖bk−1‖| of the control
variable between two iterations (fixed to 10−4). In each case, the computations
were started with three different initial “guesses” of the control variable for the first
optimization iteration: UPmin = 0.14, an intermediate value 0.25, and the upper
bound UPmax = 0.36. This means that the first iteration is computed either with
UP (t) = UPmin , or UP (t) = 0.25, or UP (t) = UPmax , for all t ∈ [0, T ].

Altogether, there are two types of control, four cost functionals, three control
costs, and three initial guesses, leading to a total of 72 cases (Table 4.4). Next,
we present the results with constant and time-dependent controls in two separate
sections.
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Table 4.4: Numerical campaign for the optimal control problem in 2d.

Type of control First guess λ2 Number of cases (per J)

Constant U0
P = 0.14, 0.25, 0.36 1, 10, 100 9

Time-dependent U0
P = 0.14, 0.25, 0.36 1, 10, 100 9

4.4.2 Results with constant control

Convergence and cost functional. The optimization solver converges in all
36 cases with constant control (Table 4.5) and required only a few number of
iterations (7 to 19). The evolution of the cost functionals during the optimization
procedure is given in Figure 4.2. It can be seen that J decreases in all cases, and,
in each case, the minimum is the same for all the initial guesses. For more clarity,
the optimum values are summarized in Table 4.6.

The optimal values, obtained with a constant control, will be used as a reference
in the case with time-dependent control: one can then conclude if some time
variation of the control UP can improve the optimum reached with a constant UP .

One can also observe in Figure 4.2 that, in some cases, J increases in the first
optimization iteration before decreasing. This trial-and-error behavior is typical
of a gradient-free solver: several points are needed to construct an approximation
of the cost functional, such that it is impossible for this type of solver to know a
relevant control already after the first iteration.

Optimal control. As expected, when the cost λ2 is low enough, the optimal
control is UPmax . When it becomes dominant, this is UPmin . However, the results
depend on the cost functional and, in the case J3(10) with λ2 = 1, on the initial
guess (Table 4.6). As described earlier, the case with a constant UP is quite prac-
tical, because one can rapidly verify if there are “obvious” minima, identify what
is a good starting guess, and obtain an order of magnitude of the cost functional
for comparison with the case using a time-dependent control.

Table 4.5: Convergence of the optimization solver in the different configurations,
where |∆UP | = |UP ki −UP k−1

i | and |∆J | = |Jk−Jk−1| (case with constant control).

Stopping criteria reached
Configurations |∆UP | ≤ 10−4 |∆J | ≤ 10−5

J1 all 9 cases X -
J2 all 9 cases X -

J3(10) λ2 = 1, U0
P = 0.14, 0.25, 0.36 - X

all other cases X -
J3(100) λ2 = 10, U0

P = 0.14, 0.25, 0.36 - X
all other cases X -
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Figure 4.2: Evolution of the cost functionals during the optimization algorithm in
2d. From top to bottom: J1, J2, J3(10), and J3(100). From left to right: λ2 = 1,
10, and 100 (case with constant control).

Table 4.6: Optimum value Jopt of the cost functionals and corresponding optimal
control Uopt

P in 2d (case with constant control).

Jopt/Uopt
P λ2 = 1 λ2 = 10 λ2 = 100

J1 -801.7 / 0.36 -766.6 / 0.36 -415.8 / 0.36
J2 -48 / 0.36 -29.9 / 0.14 23.3 / 0.14

J3(10) 41.5 / 0.26, 0.35 50.2 / 0.14 103.4 / 0.14
J3(100) 739.8 / 0.36 774.8 / 0.36 859.8 / 0.14
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4.4.3 Results with time-dependent control

Next, we look at the results of the time-dependent case. We are in particular
interested in knowing if some time variations of UP can further reduce the minimum
obtained with the constant control.

Convergence and cost functional. The convergence of J is illustrated in Fig-
ure 4.3. The corresponding values coming from the case with constant control
(Table 4.6) are also displayed in dashed lines for comparison. The algorithm stops
after having reached the maximum number of iterations, 500. This is due to the
relatively high number of controls (Nc = 100) and the use of gradient-free solvers.
A higher number of iterations may be needed here. However, in most cases, the
cost functional stagnates, such that this might not necessarily improve the results.
Sometimes, the solver returned an invalid value after approximately 100 loops but
continued the optimization until 500. As described later, a similar behavior occurs
in 3d and one reason to explain this failure is the bad initial guess. Here, this ex-
planation does not hold because at low cost, e. g., λ1 = 1, the high plume velocity
U0
P = 0.36 fails for J2 and J3(10), while it is expected to be a good initial guess.

In sum, the reasons for such a behavior could not be found in 2d. One could test
alternative optimization solvers to further investigate this point.

In any case, initial guesses which are far from the optimal constant control
obtained in the previous section make the convergence of J slower, as expected.
On the contrary, in the cases where U0

P (t) = Uopt. const
P , ∀ t ∈ [0, T ], the first

iteration gives already a small value for J . In some cases, e. g., J1 with λ = 100
and initial control 0.14, the computations “lock” quite far from the minimum value
obtained so far. For such cases, a higher number of iterations is required to check
if the cost functional is further reduced, or if there is a local minimum.

By focusing on the cases computed with the initial guess of interest, one ob-
serves that the objective functional is very close to its equivalent with constant-
in-time control (dashed lines). It means that a time-dependent control does not
improve significantly a constant control. Table 4.7 gives the reduction, in percent,
of the cost functional. The only cases where the reduction becomes clear are J3(10)
and λ2 = 1 (1.25%), and, to some extent, J2 and λ2 = 1 (0.7%). In all other cases,
the decrease of the cost functional with a time-dependent control is negligible.

Optimal control. The time profiles of UP (t) leading to the optimal J are given
in Figure 4.4. If there is no clear pattern to be identified in the plots, one can
notice that UP remains close, if not equal, to the optimum constant control, in
the whole time range. For example, in the cases J2, J3(10) and J3(100) with
λ2 = 100, the optimal solution is equal to the optimum constant-in-time control2 ,
UP (t) ' UPmin , ∀t ∈ [0, T ]. With J1, some peaks appear but they are less “effective”
than a constant maximum value, in terms of minimization of the cost functional.
The two cases which improve the most the cost functional are: J3(10) and J2 with
λ2 = 1. They are characterized by irregular (non-periodic) oscillations or peaks of
different amplitudes.

2 There is actually an imperceptible difference, leading to the reduction of the cost functional
found in Table 4.7: -0.29, -0.01, and -0.06% which are negligible.
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Figure 4.3: Evolution of the cost functionals during the optimization algorithm
in the different configurations: From top to bottom: J1, J2, J3(10), and J3(100).
From left to right: λ2 = 1, 10, and 100 (case with time-dependent control).

Table 4.7: Reduction, in %, of the cost functional in comparison to Jopt. cst from
the constant control. The value of Jopt can be read in Figure 4.3 (last iteration of
the smallest cost functional). The value of Jopt. cst corresponds to the dashed lines
(see also Table 4.6).

Jopt−Jopt. cst

Jopt. cst (in %) λ2 = 1 λ2 = 10 λ2 = 100

Jopt
1 -0.1 -0.12 -0.23
Jopt

2 -0.7 -0.02 -0.29
Jopt

3 (10) -1.25 -0.09 -0.06
Jopt

3 (100) -0.02 -0.24 -0.01
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Figure 4.4: Time profile of UP corresponding to the “optimized” stirring. From top
to bottom: J1, J2, J3(10), and J3(100). From left to right: λ2 = 1, 10, and 100.

These oscillations are presumably dependent on the instantaneous flow struc-
tures and on the initial condition u0. Furthermore, the mean value of the con-
trol tends to decrease in the last seconds of the time range. Since the objective
functional is integrated over the whole time period, it can happen that the main
contribution to the vorticity is generated only in a part of the time range, e. g.,
up to a few seconds before T . Then, in the last few seconds, only the cost of the
control Jc contributes to the cost functional. Thus, the cost can be reduced by
reducing UP at the end of the simulation, without losing vorticity, thanks to the
contribution from previously generated vorticity. This might explain the decrease
of UP at the last seconds in the two cases. It is not clear yet if the reduction of
the cost functional can be obtained by one of these two features (the oscillations
of UP or its decrease at the end), or, if one has to do both in order to reduce the
cost functional.
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4.4.4 Summary and outlook to 3d

The results obtained in 2d show how the optimal solution depends on the choice
of the cost functional and the cost coefficient. Other parameters which may in-
fluence it, but which have not been investigated in this work, are, e. g., the initial
condition u0, the time step ∆t, and the end time T . The comparison between
the constant and time-dependent cases suggests that the constant-in-time optimal
solutions are generally better than time-dependent solutions. This is practical for
the industry, since there is no need to make further investments on the process
control. A constant control can be implemented immediately in the plant. In one
case, an improvement of 1.25% of the cost functional was achieved using a non-
periodic oscillating UP (t). In practice however, it may be difficult to impose such
an irregular profile. First, it might be optimal for one but not all stirrings and,
second, there are sometimes sharp peaks, which may be technically infeasible. The
only feature which can be realistically implemented is the drop of UP at the end of
the stirring process to save some gas cost. It consists then only in turning-off the
gas at the end of the operation. In all cases, the 2d optimization model needs to be
investigated more extensively in order to propose robust solutions to the industry.
These preliminary results illustrate the kind of optimal solutions (constants, or, to
some extent, oscillating and decreasing at the end), and the order of magnitude of
the improvement brought by these optimized solutions (∼ 1%).

The proof-of-concept cannot be meaningful for the industrial practice with the
2d boundary-driven ladle stirring. Indeed, the flow does not take into account
the real geometry with two excentric nozzles. The 3d model is more relevant to
deliver realistic results. It can reproduce the same configurations as in 2d, namely,
constant and time-dependent controls, with more physically-relevant flows. In
addition, it allows to explore other optimization possibilities, for example, applying
different gas flow rates for each nozzle or changing the nozzles’ positions. These
aspects have been investigated in the 3d optimization application and the results
are presented in the next section.
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4.5 Numerical results for the 3d ladle

4.5.1 Description of the numerical studies

In the 3d optimal control problem, the control variable is not the plume velocity
UP (t), but directly the gas flow rate Q(t), because it appears explicitly in the
right-hand side f , (Eq. (3.15)), and not only implicitly in UP as in 2d (Eq. (3.9)).
The 3d ladle is fundamentally different from the 2d case:
• the control is in the volume force,
• there are two nozzles which can have different flow rates, Q1(t) and Q2(t),
• the position of the nozzles can be changed, and
• the results depend on the mesh size and on the Smagorinsky constant CS.

In the rest of this study, the computations are performed on a coarse mesh (∼ 10000
cells) for faster computations. The constant CS is fixed to 0.005, which is, accord-
ing to the results of Section 3.4.3, a reasonable choice. The influence of the mesh
and CS on the optimal solutions can be investigated in future studies. Three
optimization cases are studied:

1. a case where Q1 and Q2 are constant in time (Nc = 2), as in 2d,
2. the case where they are time-dependent (Nc = 2T/∆t), as in 2d, and
3. a case where the nozzles’ positions (xn1, yn1, xn2, yn2) are optimized, at fixed
Q1 and Q2 (Nc = 4).

The first two cases are particularly interesting to compare with the results from
(Haiyan et al., 2016) and (Nadif et al., 2011), where a constant flow rate with
different values per nozzle and a pulsed stirring are applied, respectively.

Four cost functionals are defined similarly to the 2d case. The only differences
are the cost term, which is based on Q1 and Q2, instead of b, the subdomain Ω0,
and the order of magnitudes of λ1:

1. global maximization of the vorticity: β1 = 1, β2 = 0, Ω0 = Ω,

J1 := −1

2

∫ T

0

‖ curl(u)‖2
L2(Ω) dt+

λ1

2

∫ T

0

2∑
i=1

|Qi(t)|2 dt.

2. local maximization: β1 = 1, β2 = 0, Ω0  Ω,

J2 := −1

2

∫ T

0

‖ curl(u)‖2
L2(Ω0) dt+

λ1

2

∫ T

0

2∑
i=1

|Qi(t)|2 dt.

Here, Ω0 corresponds to the lower half of the ladle: {(x, y, z) ∈ Ω, z ≤ H/2}
(Figure 4.5). This is the region where we expect the most dead zones, and
therefore, where it is more desirable to increase the vorticity.

3. regulation with a low threshold: β1 = 0, β2 = 1, Ω0 = Ω, m = 10,

J3(10) :=
1

4

∫ T

0

∥∥max{10− | curl(u)|2, 0}
∥∥2

L2(Ω)
dt+

λ1

2

∫ T

0

2∑
i=1

|Qi(t)|2 dt.

4. regulation with a higher threshold: β1 = 0, β2 = 1, Ω0 = Ω, m = 100,

J3(100) :=
1

4

∫ T

0

∥∥max{100− | curl(u)|2, 0}
∥∥2

L2(Ω)
dt+

λ1

2

∫ T

0

2∑
i=1

|Qi(t)|2 dt.
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Ω0

Figure 4.5: Subdomain Ω0 in 3d: {(x, y, z) ∈ Ω, z ≤ H/2}.

Table 4.8: Numerical campaign for the optimal control problem in 3d.

Study case/
Type of control

Max.
iter. T

Init.
cond. First guess λ1

1/ Constant gas 100 10 200s Q0
1, Q

0
2 = 1, 6, 17 0.001, 0.01, 1

2/ Time-dependent gas 500 10 200s Q0
1, Q

0
2 = 1, 6, 17 0.001, 0.01, 1

3/ Nozzles’ position 200 20 0s (x0
n1, y

0
n1, x

0
n2, y

0
n2) 0

The weight of the cost are chosen as: λ1 = 0.001, 0.01, and 1 (λ2 = 0 in 3d).
The time parameters are different between the study cases. In the first two cases,
the end time T is equal to 10 s (Nc = 200 control variables when Q1 and Q2 are
time-dependent), as in 2d. The initial condition u0 is also taken from a previously
computed flow (200 s). In the last study case, since the position of the nozzles
changes, we consider a fluid at rest at the beginning and compute over a longer
time range: u0 = 0 and T = 20. Preliminary computations showed that the flow
can be considered as developed after 20 s. The fact that this value is lower than the
ones found in Section 3.4.3 is due to the choice of the mesh and CS. In all cases,
a large time step as in 2d is chosen to reduce computational time: ∆t = 0.1. The
derivative-free COBYLA solver is applied, with a maximum number of iterations
equal to 100, 500, and 200, for the first, second, and third study respectively. The
other stopping criteria are the same as in 2d. In the studies 1 and 2, two initial
guesses of the control variables are taken as the bounds Qmin = 1 and Qmax = 17 of
the box constraints (4.7). Note that these values correspond to the plume velocities
used in the 2d model, UPmin = 0.14 and UPmax = 0.36, through the formula (3.9).
The third initial guess is an intermediate value in the box constraints. One could
use the mean value 9 l min−1, but this would not end up in an average control
because the volume force is not proportional to Q, but to Q1/3. Indeed, it is of
the order of the plume velocity UP , see (4.10), which scales with Q1/3. Thus, an
intermediate value of UP is more appropriate to have an average volume control,
for example, 0.25 m s−1 as in 2d. Consequently, we choose the gas flow rate which
is equivalent to UP = 0.25, namely, 6 l min−1, see Equation (3.9).
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Table 4.9: Convergence of the optimization solver, where |∆Q| =√∑
i

|Qk
i −Qk−1

i |2 and |∆J | = |Jk − Jk−1| (case with constant control).

Stopping criteria reached
Configurations |∆Q| ≤ 10−4 |∆J | ≤ 10−5 nb. iter. ≥ 100

J1 λ1 = 0.001, Q0 = 1 - - X
all other cases X - -

J2 λ1 = 0.001, Q0 = 1 - - X
λ1 = 0.01, Q0 = 6 - X -
all other cases X - -

J3(10) λ1 = 1, Q0 = 17 - - X
all other cases X - -

J3(100) λ1 = 0.001, Q0 = 1 - - X
all other cases X - -

Since we always use the same initial guess for both nozzles, the notation
Q0 will be sometimes used instead of Q0

i , i = 1, 2. In sum, we have: Q0(t) =
1, 6, or 17 l min−1, for all t ∈ [0, T ]. In the last study case, the initial po-
sition of the nozzles is the same as in the default case: (x0

n1, y
0
n1, x

0
n2, y

0
n2) =

(−0.105,−0.105,−0.105, 0.105) (Table 3.4). Altogether, 73 configurations are com-
puted (Table 4.8).

4.5.2 Results with constant control

In the study case 1 (Table 4.8), the effect of two parameters are varied for each
cost functional: the control cost factor λ1 and the initial guesses Q0

1 and Q0
2.

Convergence and cost functional. The stopping criteria reached by the solver
in each case is given in Table 4.9. The optimization has converged in almost all
cases. In most configurations, the solver stops when the variation of the control is
small enough, and in four cases, the maximum number of iterations is reached. As
it will be described in the next paragraph, it appeared from the results that it is not
necessary to increase the maximum number of iterations for these configurations.

Looking now at the cost functionals (Figure 4.6), one can make several obser-
vations. First, it can be seen that, in most cases, all three initial guesses lead to
the same minimum J . Second, in the case λ1 = 1 (high cost), the initial guess
Q0 = 1 converges the fastest to the minimum, while, in the case λ1 = 0.001, it is
Q0 = 17 which converges the fastest to the minimum. The two values 1 and 0.001
seem to be extreme cases: the control cost is either too high or too low. An order
of magnitude in between may lead to a better balance between the cost term and
the main term of the cost functional, i. e., the vorticity term in J1 and J2, and
the “max-”term in J3(10) and J3(100). For example, values of λ1 between 0.001
and 0.01 seem to result in the same order of magnitude between the two terms.
Looking at the cases where the maximum number of iterations is reached, one
observes that the cost functional stagnates quite close to the minimum.
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Figure 4.6: Evolution of the cost functionals during the optimization algorithm
in the different configurations. From top to bottom: J1, J2, J3(10), and J3(100).
From left to right: λ1 = 0.001, 0.01, and 1 (case with constant control).

Table 4.10: Optimum value Jopt of the cost functionals and corresponding optimal
control Qopt in 3d. There holds Qopt = Qopt

1 = Qopt
2 (case with constant control).

Jopt/Qopt λ1 = 0.001 λ1 = 0.01 λ1 = 1

J1 -79.1 / 17 -63.7 / 17 67.8 / 1
J2 -20.7 / 17 -7 / 1 93 / 1

J3(10) 28.24 /17 32.4 / 1 132 / 1
J3(100) 366 / 17 379 / 1 479 / 1
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Figure 4.7: Evolution of the controls Q1 and Q2 during the optimization algorithm.

Thus, we do not expect other minima if more iterations are performed. In any
case, a slightly higher number of iterations seems to be enough for the solver to
reach one of the two other stopping criteria. For more clarity, the minimum values
of the cost functionals are summarized in Table 4.10. As in 2d, these values will be
compared to those of the case with time-dependent control. One can then conclude
if some time variation of the controls Q1 and Q2 can improve the optimum reached
with constant Q1 and Q2.

Optimal control. Figure 4.7 shows the evolution of Q1 and Q2. The optimal
(constant) solution is either Qopt

i = Qmin or Qmax, i = 1, 2, depending on λ1 and J .
Furthermore, no solution with Q1 6= Q2 was obtained, meaning that both nozzles
with the same flow rate give a better result than with different flow rates. For a
high coefficient λ1, the control is minimized: Qopt = Qmin, while for a low one, it
is maximized: Qopt = Qmax. As in the 2d case, these results were expected. The
optimal control values are summarized in Table 4.10.
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4.5.3 Results with time-dependent control

In study case 2 (Table 4.8), λ1 and the initial guess Q0 are also varied.

Convergence and cost functional. Because the number of control variables is
relatively high (Nc = 200) and we are using a gradient-free solver, a high number
of iterations is expected. In fact, in most cases, the maximum number of iterations
500 was reached, while in the remaining cases, the solver failed after around 200
iterations and returned invalid values, see Table 4.11. This behavior can be at-
tributed to a bad initial guess. Indeed, from the results established earlier, starting
from, for instance, Q0 = 17 with λ1 = 1, is far from the optimum. Alternative
gradient-free solvers, such as the Nelder-Mead method (Powell, 2007), could be
tested, but this was not investigated in the present work. Nevertheless, by taking
the cost functional J at the last computed iteration, a small reduction of the cost
functional, in the order of 1% in comparison to the constant case, was found in
some of the cases which reached 500 iterations. The most noticeable improvements
are obtained with:
• J2 and λ1 = 0.01: ∼ −4.3%,
• J1 and λ1 = 0.01: ∼ −1%, and
• J3(10) and λ1 = 0.001: ∼ −0.3%.

The values are detailed in Table 4.12 and can be compared with the previous study
with constant controls (Table 4.10). Figure 4.8 shows the evolution of the three
cost functionals listed above.

Table 4.11: Convergence of the optimization solver in the different configurations
(case with time-dependent control).

Stopping criteria
Configurations nb. iter. ≥ 500 Solver failure

J1 λ1 = 1, 0.01, 0.001, Q0 = 1 X -
λ1 = 1, 0.01, Q0 = 6 X -
λ1 = 0.01, Q0 = 17 X -
three other cases - X

J2 λ1 = 1, 0.01, Q0 = 1 X -
λ1 = 1, 0.01, Q0 = 6 X -

five other cases - X

J3(10) λ1 = 1, 0.01, 0.001, Q0 = 1 X -
λ1 = 1, 0.01, 0.001, Q0 = 6 X -
λ1 = 0.01, 0.001, Q0 = 17 X -

λ1 = 1, Q0 = 17 - X

J3(100) λ1 = 1, 0.01, Q0 = 1 X -
λ1 = 1, 0.01, Q0 = 6 X -

five other cases - X
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Table 4.12: Value of the cost functionals computed at the last iteration (case with
time-dependent control). Between parenthesis, the reduction, in %, of the cost
functional in comparison to the optimal constant case: Jopt−Jopt. cst

|Jopt. cst| .

λ1 = 0.001 λ1 = 0.01 λ1 = 1

Jopt
1 -79.1 (0%) -64.3 (−1%) 67.8 (0%)
Jopt

2 -20.7 (0%) -7.3 (−4.3%) 93 (0%)
Jopt

3 (10) 28.14 (−0.3%) 32.3 (−0.08%) 132.3 (0%)
Jopt

3 (100) 366 (0%) 379 (−0.09%) 479 (0%)

Figure 4.8: Evolution of the cost functionals during the optimization algorithm in
the configurations J1 and λ1 = 0.01, J2 and λ1 = 0.01, and J3(10) and λ1 = 0.001.

As in 2d, the closer the initial guess to the constant optimum, the lower the
cost functional. After around 200 iterations, the lowest cost functionals stagnate
and no further reduction is visible. It can be seen that the difference between the
time-dependent and the constant optima is relatively small. In the next paragraph,
the control corresponding to the “optimized” solution is illustrated and may give
an explanation for the (small) decrease of the cost functional.
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Optimal control. Figure 4.9 illustrates the time profile of Q1 and Q2 corre-
sponding to the three configurations discussed in the previous paragraph. In the
first and third cases, the slight decrease of the cost functional is obtained by turning
off the control in the last seconds. This result is similar to the 2d boundary-driven
optimization: the savings in the cost compensate the reduction of the stirring effi-
ciency. Figure 4.10 illustrates the flow at the first and last time steps. The velocity
magnitude (red vectors) is smaller at the last step, because of the decrease of the
volume force (through Q1 and Q2).

The interpretation of the optimal control in the case J2 with λ1 = 0.01 is
more delicate. In fact, two optimal controls are displayed: the one where the
optimization solver started with an initial guess equal to 1, and the other with
the initial guess 6. As it can be seen in the second plot of Figure 4.8, these initial
guesses (blue and red lines) give very close values of J . However, the optimal
controls leading to these values of J are quite different from each other: in the
caseQ0 = 1, the controls remain close to 1 before being “turned-off” after 5 seconds,
while in the case Q0 = 6, the controls vary irregularly with a high amplitude, and
decrease at the end of time range. This may indicate that there is not a unique
optimal solution for the time-dependent case with J2 and λ1 = 0.01.

Originally, the idea behind using a time-dependent control consisted to check
if a variation of the flow rate can induce a better stirring. In some cases, the
optimization solver tested indeed some original profiles, more or less smooth (Fig-
ure 4.11). It is possible to recognize a “bang-bang-like” effect and different values
for Q1(t) and Q2(t) on the left plot.

Figure 4.9: Time profile of Q1 and Q2 corresponding to the “optimized” solutions
(see the corresponding configurations in Figure 4.8).
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Figure 4.10: Flow at t = 0 and t = 10 with the “optimized” solution obtained with
J1 and λ1 = 0.01. In the last steps, the velocities decrease because the flow rates
Q1 and Q2, which appear in the volume force, are reduced to Qmin.

Figure 4.11: Examples of time profiles obtained during the optimization algorithm
with time-dependent control. They correspond to suboptimal cost functionals.

However, in these cases, the cost functional is higher than constant-in-time
results, i. e., these time profiles are less efficient than constant controls. Further
investigations with some adjustment of the parameters (e. g., λ1 andm) are needed
to settle the question of whether a constant or pulsed flow rate is better for the
mixing.
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4.5.4 Optimization of the nozzles’ positions

The objective of the third case study (Table 4.8) is to optimize the position of the
nozzles at a fixed flow rate. In the industrial practice, the ladles are designed with
given nozzles’ positions. They cannot be moved. Usually, ladles with a unique
nozzle are designed such that it is excentric. Ladles with two nozzles are similar
to the experimental one studied in this work: the nozzles are approximately at the
mid-radius and form a central angle of around 90◦. The aim of this numerical study
is to provide new ideas for the design of ladles for the long-term industrial practice,
based on the optimal control theory and numerical investigations. The re-design
of ladles being a very expensive investment, a solution obtained numerically has
to be robust in terms of sensitiveness to numerical parameters (e. g., mesh size or
modeling parameters such as CS) and should be tested experimentally on a small
laboratory-scale water ladle before having a chance to be adopted by the industry.

In the following, one configuration is considered. The gas flow rate is Q =
17 l min−1. We recall that the initial condition is zero and the flow is computed
until T = 20. Furthermore, since the cost is independent of the nozzles’ positions,
any value of λ1 leads to the same optimal configuration. We thus assume λ1 = 0.

The nozzles can be located anywhere in the bottom without any penalty. In
fact, since the only constraint on the nozzles’ positions is Eq. (4.11), there is an
infinite number of optimal solutions because of the central symmetry of the ladle.
The solutions are obtained by rotations around the ladle center. To avoid this,
one could fix the angular position of, e. g., nozzle 1. In this case, the number of
solutions is reduced to two: one solution and its symmetry with the axis passing
through nozzle 1 and the origin. The main benefit of using the constraint is that
the optimization space is smaller. Since the optimization solver did not have
convergence difficulties with the current controls, it was not necessary to add a
constraint on the nozzles’ position.

Convergence and cost functional. Convergence is reached with all four cost
functionals (Table 4.13). Figure 4.12 shows the decrease of the Euclidean norm
of the vector ∆x. One can notice that the solver continues to iterate for J1 (blue
line) and J3(10) (yellow) although |∆x| got smaller than 10−4 (at the 70th and 42th

iteration, respectively). It is still unclear why the solver did not stop immediately
when the stopping criteria was reached. The decrease of the cost functional is
given in Figure 4.13. The value of the initial guess J0 (first iteration in the plots)
corresponds to the default nozzles’ position. The optimal value Jopt (last iteration)
corresponds to the optimized one. Comparing the reduction Jopt−J0

J0 of the cost
functional, one observes that the most remarkable improvements, in comparison
to the default position, are obtained with J1, J2, and J3(10):
• J1: ∼ −33%,
• J2: ∼ −16%,
• J3(10): ∼ −10%, and
• J3(100): ∼ −1%.
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Table 4.13: Convergence of the solver, where |∆x| =
√∑

i |xki − xk−1
i |2 and |∆J | =

|Jk − Jk−1| (optimization of the nozzles’ positions).

Stopping criteria reached
|∆x| ≤ 10−4 |∆J | ≤ 10−5 nb. iter. ≥ 200

J1 X (98 iter.) - -
J2 X (48 iter.) - -

J3(10) X (49 iter.) - -
J3(100) - X (58 iter.) -

Figure 4.12: Convergence of |∆x| (optimization of the nozzles’ positions).

Figure 4.13: Cost functionals (optimization of the nozzles’ position).
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Optimal control. The computed optimal positions of the nozzles are given in
Figure 4.14. The default one (top left) corresponds to the real positions of the water
ladle of University of Oulu. As mentioned before, it is also chosen as the initial
guess. With the cost functional J1 (global maximization of vorticity), one obtains
the following optimal solution: the two nozzles are superimposed at an excentric
position, as if there were only one nozzle with the double amount of flow rate,
leading to a reduction of 33% of the cost functional. The new position is closer to
the wall than the default initial position. This configuration seems to correspond
to the usual design of ladles with one eccentered nozzle. It is interesting to see
that this position can be retrieved in the optimization study. In other words, the
design of ladles with one excentric nozzle (at a distance 0.14 from the center) can
be justified as being the one which maximizes the vorticity globally, i. e., on average
in the ladle. In practice, this type of solution may be implemented immediately
without designing a new ladle: one could close the gas valve of one of the nozzles,
such that the total flow rate goes only through the other one. The current position
is however a bit closer to the center (0.105 < 0.14), but the difference is not very
high. Note that there is also some similarity between this solution and the 2d
boundary-driven ladle: positioning the nozzles close to the wall with a high flow
rate produces a high velocity along the walls, as it is done in the 2d case. The
high vorticity generated locally suffices to increase the average in the ladle.

With J2 (local maximization in the lower half of the ladle), the nozzles are
more distanced from each other, and slightly closer to the wall than in the default
case. The cost functional is improved by around 16%. With J3(10) (vorticity
regulation over the threshold value 10), one nozzle is almost at the center, while
the other one remains unchanged. The central nozzle perturbs the downward
movement of the flow coming from the excentric nozzle, causing higher values on
the sides of the ladle than in other solutions. Finally, the solution obtained with
J3(100) is close to the default case, up to a central rotation of around 45◦ counter-
clockwise. Consequently, the reduction of the cost functional is negligible (< 1%)
in comparison to the default positions.
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Default position (J0) Optimal solution with J1 Optimal solution with J2

N1

N2 N1 N2
N2

N1

Default position:
(xn1, yn1) = (−0.105,−0.105)
(xn2, yn2) = (−0.105, 0.105)

Position with Jopt
1 :

(xn1, yn1) = (−0.14,−0.14)
(xn2, yn2) = (−0.14,−0.14)

Position with Jopt
2 :

(xn1, yn1) = (−0.12,−0.11)
(xn2, yn2) = (−0.01, 0.2)

Position with Jopt
3 (10):

(xn1, yn1) = (−0.14, 0.13)
(xn2, yn2) = (0.03, 0.03)

Position with Jopt
3 (100):

(xn1, yn1) = (−0.18,−0.02)
(xn2, yn2) = (0.003,−0.18)

Optimal solution with J3(10) Optimal solution with J3(100)

N2

N1

N2

N1

Figure 4.14: Optimal nozzles’ positions for each of the four cost functionals and
snapshot of the velocity field at the last time step.
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4.5.5 Summary

The 3d model confirms somewhat the outcome of the 2d results. Indeed, sev-
eral conclusions obtained in the boundary-driven model have been retrieved, for
example:
• depending on the cost of the control λ1, a constant gas flow rate is generally

a good solution, let it be UPmax or UPmin ,
• the optimal time-dependent control does not improve very much the constant

control (order of magnitude ∼ 1%),
• the optimal control is also turned-off at the end of the time range,
• the profile of the control does not show periodic or regular oscillations but

is rather irregular and may be technically difficult to implement.
Furthermore, the 3d model offers the possibility to optimize the nozzles’ positions.
The results show that there might be some room for improvement. In fact, the
nozzles’ position has more impact on the stirring pattern than the gas flow rate.
Depending on the criteria, i. e., the cost functional, the optimal nozzle’s position
and the resulting stirring flow are quite different from one situation to the other.
The case J3(100) seems to be the closest to the default case.

It may be interesting to test other values for the coefficients in the cost func-
tional to check if one can obtain less obvious or intuitive solutions, in terms of
gas flow rate, as well as nozzles’ position. For example, by combining the two
main terms using β1 6= 0 and β2 6= 0, applying other subdomains Ω0, and testing
more values for λ1 and m. It should also be kept in mind that the mesh, the time
step ∆t, the time range [0, T ], the Smagorinsky constant CS, and the initial con-
dition u0 can influence the resulting flow. Because all these aspects have not been
investigated yet, the present work should be considered as a preliminary study or
a proof-of-concept. It gives an idea of what one can obtain with the optimization
of the Navier–Stokes equations applied to an industrial application. It also gives
new orientations for future work, from the mathematical and numerical point of
view, as well as the industrial perspective.

From the mathematical perspective, besides the aforementioned needed inves-
tigations, one should consider a more realistic description of the control Q rather
than a freely evolving control. One can assume that the derivative of Q(t) is
bounded for example, in order to smooth the gas flow rate, or that Q(t) has a
given periodic profile, which is physically feasible. Only its shape, amplitude and
frequency would be then optimized (see Section 4.1.1).

Regarding the industrial practice, it is important to compare the gas cost and
the objectives of stirring process, in order to estimate λ1 realistically. Based on
this estimation, the presented results can provide some recommendation about the
optimal control.
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4.6 Conclusion

In an attempt to formulate the industrial ladle stirring problem within the frame-
work of optimal flow control, several optimization models and numerical investi-
gations were presented in this chapter. The variety of the models finds its origin,
on the one hand, in the variety of state models described in Chapter 3, and on
the other hand, in the different possibilities for the cost functional. Several config-
urations were set up for the numerical investigation. For example, one objective
was to study if constant but different gas flow rates for each nozzle could improve
the stirring. In (Haiyan et al., 2016), it was found, indeed, that this can reduce
the mixing time. Similarly, by allowing a time-dependency for the control, the ob-
jective was to study whether a constant or a varying one is better for stirring, as
in (Nadif et al., 2011). Even though the type of stirring is different, the authors
found experimentally and industrially that a pulsed stirring reduces the mixing
time and/or gas consumption. The last study case focused on the optimization of
the nozzles’ position.

The results obtained so far, using a gradient-free optimization solver, show
a tendency of the control variables towards their minimum or maximum bounds,
depending on the weight of the control cost. As summarized earlier, a constant gas
flow rate for both nozzles is already equal or close to the optimum. An oscillating
or pulsed control was not found to be better than a constant control. In comparison
to literature, our preliminary results could not reproduce numerically the findings
from (Nadif et al., 2011, Haiyan et al., 2016). The study also evidenced that,
by turning-off the control at the end of stirring, one could spare some gas cost
without deteriorating the stirring efficiency. Altogether, the gain of cost is around
or smaller than 1%.

If the numerical results obtained here were to be translated to the industrial
practice, one would suggest, first, to determine the order of magnitude of the ratio
βi/λi. Indeed, it is still not clear how important the control cost is in relation to
the cost of a loss in stirring efficiency. If the cost of the control is negligible, then
one can apply a constant gas flow rate as high as possible and just turn it off in
the last seconds or dozens of seconds of the stirring process. Although simple and
not innovative, this result has the merit of not contradicting intuition.

Second, the study showed that there is room for optimization concerning the
nozzles’ position. Significant improvements seem to be feasible. This could be
taken into account in the long-term industrial perspective, when designing new
ladles for example. In order to provide robust recommendations, a more detailed
numerical study is currently under investigation.

4.6.1 Limits and outlook

It is important to stress the limits of the model before drawing any definitive
conclusion for the industrial practice. First of all, it is not straightforward to
define an appropriate cost functional. One ends up either in the ambiguities of the
stirring efficiency concept or in the intangibility of the vorticity. The current cost
functionals, based on the vorticity, suffer indeed from the lack of measurability,
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i. e., there is currently no way to relate the vorticity to a measurable quantity,
and to know what a “good vorticity” is. To overcome this difficulty, it is possible
to use an alternative definition of stirring efficiency: the mixing time. This offers
a balance between the modeling aspect and the reality: the cost functional can
be easily expressed in mathematical terms and its physical interpretation is clear
and measurable. However, if the problem becomes more realistic, it ends up in a
difficult time optimal control, which is addressed only rarely in literature. In the
next section, we sketch this innovative approach and present some aspects of it.
The idea can be investigated in future works.

The second serious limit of the present models concerns the description of gas
stirring. The modeling of gas in the single-phase model has intrinsically a local
effect in space. In 2d, it is incorporated as a boundary velocity (4.8) while in 3d,
it is a volume force localized in a form of two truncated cones (4.10). The control
variable UP and Q acts like a factor in these models. Therefore, its effects apply
rather on the flow magnitude than on the flow structure. Thus, it is difficult to
improve, or even influence, the flow globally in space using optimization on the
too simplistic single-phase models. One could think of using multiphase models
to overcome this difficulty. The optimization problem may be more complex, but
it describes more realistically the flow structures because it can take into account
bubbles’ wandering, merging, breakups, and expansion, which are all absent from
the single-phase model. The mixing pattern might be better described with multi-
phase models than with single-phase models. However, there is some doubt about
a significant change of the results with multiphase models: the control is still
focused on the gas quantity Q and does not impact directly the flow structures.

In order to induce a significant change in the flow pattern, modifying the noz-
zles’ position is an interesting control variable. If it is rather difficult to change on
real ladles, it is not the case in BOF converters. In these converters, up to eight
gas injection devices can be positioned almost freely in the bottom because they
are mounted into the refractory bricks. Thus, the question of the optimal location
of the nozzles becomes more interesting for this application. They can be treated
with an optimization model similar to the present work.

In all cases, the particular control mechanism of gas stirring, i. e., bottom in-
jection, might be the fundamental limit for the results obtained so far. In order to
control the stirring precisely in space, a volume control is the most suitable. Here,
we can stress on the existence of electromagnetic ladle stirring, where inductors
are placed around the ladle and generate a magnetic field. Because the steel is fer-
romagnetic, it can flow according to the amplitude and frequency of the magnetic
field. Such magnetohydrodynamic (MHD) processes are studied, e. g., in (Marioni
et al., 2017), where the authors compute a magnetically-driven two-phase tur-
bulent flow. In terms of optimal control problem, the control is a volume force
appearing in the Navier–Stokes equations, see (Tröltzsch, 2010, Section 5.10.2).

The electromagnetic stirring is, with the multiphase models, the mixing time
optimal control problem, and the optimization of BOF converters, one of four
research directions which can be explored to overcome some of the limits of this
work, or to extend its scope, with potentially interesting results for both applied
mathematics and metallurgy research communities.
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4.6.2 Towards new approaches for the optimal stirring
control

In Section 4.2.2, one of the definitions of stirring efficiency pointed out was the
mixing time. Using this definition in the context of optimal control of ladle stirring
leads to an interesting alternative to the models considered so far. Therefore, we
propose to discuss it in the next paragraphs and develop some ideas.

The mixing time can be considered as a good indicator of the stirring efficiency:
a short mixing time means that the stirring was efficient. Consequently, the stirring
is optimal when the mixing time is minimized. This is physically easier to interpret
than the ones based on the vorticity, because mixing times can be measured in
laboratory conditions, for example by using a tracer in water models.

Mathematically, the model has to compute the evolution of the species’ concen-
tration c being mixed in the fluid. This is typically a convection-diffusion equation
of the form (Zhu et al., 1996, Geng et al., 2010, Li et al., 2015):

∂

∂t
(ρc) + u · ∇(ρc) = ∇ · (µ∇c) . (4.45)

Equation (4.45) is coupled to the flow equations through u and depends therefore
on the control variables. The mixing time Tmix is defined as the minimum time
needed for the concentration to reach its steady-state value c∞ up to, e. g., ±5%,

Tmix := inf{t ∈ [0, T ], ‖c(x, t)− c∞‖2
L2
≤ 0.05} (4.46)

⇐⇒ ∀t ≥ Tmix ‖c(x, t)− c∞‖2
L2
≤ 0.05.

It depends implicitly on the controls. Using these notations, the objective is to
minimize the mixing time, regularized by the cost of the controls:

min
1

2
T 2
mix +

1

2

∫ T

0

λ1‖f‖2
L2(Ω) + λ2‖b‖2

L2(Γaxis)
dt,

subject to the flow equations, to (4.45), to the mixing time constraint (4.46), and
to the initial and boundary conditions, namely,

Tmix = inf{t ∈ [0, T ], ‖c(x, t)− c∞‖2
L2
≤ 0.05},

∂

∂t
(ρc) + u · ∇(ρc) = ∇ · (µ∇c) ,

∇c · n = 0 in (0, T ]× ∂Ω,

c(x, 0) = c0.

Such an optimization problem which minimizes the time needed to reach some
desired state is called a time optimal control problem. The formulation above is
inspired by (Nguyet et al., 2019), where Navier–Stokes–Voigt equations are studied.
The main difference in our model is that the “desired state” is not based on u, like
in their paper, but on c, which intervenes in an additional equation coupled to the
Navier–Stokes equations. The initial condition c0 models the initial concentration
of the tracer in the bath: it is often zero everywhere except in a small area, where
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the tracer is injected at the beginning of the measurement of the mixing time. The
end concentration c∞ is given by

∫
Ω c

0(x) dx

|
∫
Ω dx| . We restrict ourselves here with the

formulation of the optimization problem. The reader is referred to (Nguyet et al.,
2019), and (Fernàndez-Cara, E., 2012) for more details on time optimal control
problems based on the Navier–Stokes equations.

In the problem above, one minimizes the treatment time given initial and end
concentrations of a species. One can move a step backward and consider a closely
related but more classical tracking-type optimal control problem, by modeling the
removal of inclusion using the species’ concentration c. In this case, the efficiency
of the stirring is described by the end value of inclusions after a given time of
treatment. The lower the level of inclusions, the better the stirring. The optimal
stirring delivers the minimum value of inclusions at the end of the treatment.

The computation of the species’ concentration is widely spread in the metal-
lurgy literature. For example, (Yu, 2014) models the removal of hydrogen (dehy-
drogenation) and nitrogen (denitrogenation) using species transport equations of
the form (4.45) with an additional source term S. The author considers a two-
phase flow (gas-liquid) where the phase fraction of phase q is given by ϕq. Defining
the concentration cX,q of species X = Hydrogen or X = Nitrogen, in the phase
q = steel or q = gas, one has

∂

∂t
(ϕqρqcX,q) + uq · ∇(ϕqρqcX,q) = ∇ · (µq∇ϕqcX,q) + SX,q. (4.47)

Equation (4.47) is coupled to the flow equations through uq, and depends therefore
on the control variables. Using these notations, the objective is to minimize the
final content of the dissolved species c[X],steel(t = T ) in the liquid steel, for both
X = Hydrogen and X = Nitrogen, at the end time of the treatment T :

min
1

2
‖c[X],steel(x, T )‖2

L2(Ω),

subject to the flow equations and to (4.47). Such an optimization problem is
studied in, e. g., (Abergel and Temam, 1990, Section 3.). There, the authors
minimize the turbulence induced by the temperature gradient by controlling the
boundary velocity in a lid-driven square unit. The reader is referred to this article
for more details on the optimization of coupled systems of PDEs.

One can see how these approaches, which have an easier physical interpreta-
tion than the vorticity, are more complex and more difficult to solve in terms of
optimization problems. A set of coupled PDEs has to be taken into account, and
the time optimal control introduces new theoretical and algorithmic difficulties.
From the perspective of computational numerics, these approaches require more
resources than the models computed in this work. This is, finally, one major rea-
son for choosing, in this thesis, a simplified model based on the single-phase model
and the vorticity in the cost functional.



5. Ladle vibrations induced by gas
stirring: a first step towards an
operational stirring control

Motivation. One important aspect of the thesis is the application of the results
in the industrial practice. If one can compute the optimal stirring parameters
mathematically, implementing it in practice introduces new challenges related to
the process control (Section 1.3). Currently, the most common way to control the
stirring process consists to monitor the image of the bath surface captured by a
video camera placed above the tank. Operators can observe how the steel and the
slag behave under gas stirring. Furthermore, a gas flow-meter displays the quantity
of gas injected in the ladle. Depending on the desired steel grade, on the initial
quantity of inclusions measured before stirring, and on other practical constraints
(temperature, alloying, etc...), the operators adjust the flow rate manually. The
main problem of this kind of control is that it depends on the operators’ experience
and “feelings”, which are quite subjective. Although the flow-meter might provide
a more objective, quantitative, and reproducible way of controlling the process, it
is known, from experience, to be sometimes unreliable. For example, the operators
can observe a calm bath surface whereas the flow-meter displays a strong stirring.
This overestimation of the actual flow rate can happen when there is a gas leakage
or when a nozzle is clogged. Thus, the question of finding a reliable measurement of
the real stirring is still of interest for the industry. Only with such a measurement,
it is possible to control precisely and automatically the stirring process in an
optimal way.

Outline. There are mainly two techniques to measure the actual stirring: the
open eye area measurement and the ladle vibrations. They are presented and com-
pared in Section 5.1. It turns out that, in general, the open eye area measurement
is appropriate in standard ladles, while vibration measurements are considered to
be more suitable for vacuum treatments. Then, the vacuum degassing process of
the industrial partner is described in Section 5.2, as well as the existing results
concerning vibration measurements. Since this work focuses on the vacuum tank
degassing process, the vibrations measurements are studied. Due to the com-
plexity of the industrial reality, an experimental campaign on a physical model
of a steelmaking ladle has been performed, with the objective of quantifying the
link between ladle vibrations and stirring intensity. The laboratory experiment is
described in Section 5.3.
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5.1 Literature review of stirring control
techniques

The two research subjects focused on the problem of stirring control gained atten-
tion quite recently:
• open eye area: (Burty et al., 2006, 2007, Valentin et al., 2008, Alexis et al.,

2011, Dannert et al., 2012, Nadif et al., 2012, Rödl et al., 2016, Ramasetti
et al., 2019a,b),
• vibration: (Burty et al., 2007, Nadif et al., 2012, Behera et al., 2014, Yenus

et al., 2016, Fischer et al., 2017, Alia et al., 2019b).
Most of the papers focus on standard ladles. Vacuum stirring is treated in (Koehle
et al., 2001, Burty et al., 2006, Nadif et al., 2012).

Process control based on the open eye. The first technique is based on the
measurement of the open eye by a camera. The open eye, also called slag eye, is
the name of the area of liquid steel which is in contact with the atmosphere at the
bath surface. When the stirring is strong enough, the rising gas breaks through
the slag and pushes it away, letting an area of liquid steel be not covered by slag
(Figure 5.1). It was found that this area is a good indicator of the internal stirring
in the bath. It can be used as an on-line measurement of the actual stirring in the
following way:
1) a video-camera captures the open eye continuously and in real time,
2) an image-treatment software estimates its area A (Figure 5.1),
3) using preliminary numerical simulations, the relation between stirring intensity

and slag eye area is computed, e. g., A = f(Q),
4) using the measured area, one can estimate the actual stirring: Q = f−1(A ).
The gas flow rate can then be increased or decreased to obtain the desired stirring
intensity. This technique was successfully used in, e. g., (Burty et al., 2007, Nadif
et al., 2012, Rödl et al., 2016). However, it has several drawbacks. At high gas
flow rate (strong stirring), the area of the open eye is often big and irregular, and
therefore, difficult to measure. This is in particular true in vacuum tank degassers,
where the gas stirring is so intense, and the slag eye so big, that its border is beyond
the perspective of the camera. At low flow rates (soft stirring), the open eye is
usually too small to be clearly detected by the camera. It was also mentioned that
the image treatment is difficult to implement in the industrial practice and that
it can sometimes give unreliable measurements of A . Finally, the area depends
on the slag properties, e. g., thickness, density, and viscosity (Ramasetti et al.,
2019b). These are not always known accurately and can vary from a batch to
another (Burty et al., 2007). If the same numerical model is used for all heats, it
can give incorrect estimations of the gas flow. One possibility is to use stochastic
models to take into account the variability of the slag properties. To the best
of the author’s knowledge, no model of this kind has been proposed so far in
the literature. In sum, the measurements of the open eye area require favorable
stirring conditions, which are difficult to find in vacuum tank degassers. If this
technique proved to work in standard ladles, its application for vacuum stirring is
more challenging.
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Figure 5.1: Evolution of the open eye area during the stirring (Rödl et al., 2016).

Process control based on the ladle vibrations. The second possibility is
based on the measurements of the ladle wall vibrations. Preliminary studies have
shown that the vibration increase with the stirring intensity. Unlike the slag
eye technique, which uses numerical simulations, the vibration models are em-
pirical: the relation between the vibration and the stirring intensity is based on
statistical regression of a large amount of process and quality data, (Nadif et al.,
2012). Then, following the same principle as the open eye, it is possible to retrieve
the actual stirring efficiency from the vibration measurements. This solution has
been successfully implemented in industrial conditions, (Nadif et al., 2012, Behera
et al., 2014). Its main advantage in comparison to the slag eye measurement is
its relatively cheap cost: the vibration sensors and the signal treatment can usu-
ally be found on-the-shelf, which is less expensive than designing a specific image
treatment software. Another advantage is that it is applicable on vacuum tank
degassers (Nadif et al., 2012), e. g., the vibrations intensity increases with the
gas flow rate also in vacuum conditions. In addition, it works when the sensors
are not directly placed on the ladle, but on the outside tank. However, its main
drawback is the sensitivity of the vibrations to noise disturbances (Rödl et al.,
2016): the signal needs to be filtered and treated correctly to eliminate pertur-
bation noise coming from, e. g., surrounding equipments. Also the age and shape
of the refractory lining inside the ladle might influence the vibration level. All
in all, interpreting the measurements is a delicate task and requires proper signal
analysis techniques.

In the context of the present joint work with the industry, we focus on the need
of the partner company, SSAB: vacuum tank degassing. It was observed that the
open eye could not be measured reliably in vacuum conditions either because it
covers the whole image or because of the dust and splashes during the process.
Furthermore, internal studies with one vibration sensor on the outside tank were
undertaken with promising results. For these reasons, the rest of this chapter
considers the vibration measurements technique.
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5.2 Description of the industrial process

5.2.1 Vacuum tank degasser (VTD)

A schematic vacuum tank degasser (VTD) is illustrated in Figure 5.2.The whole
structure comprises different solid components, but the main ones are: the ladle,
the housing, and the cover. The different steps of the process and the role of each
part are briefly explained here:
1. The ladle 5 is the vessel containing the liquid steel. Once filled, it is moved

from one process station to another in the plant, via a crane. The interior of the
ladle is built with layers of different refractory materials (called lining) which
can resist to very high temperatures and chemical wear. For more clarity, they
are not represented in Figure 5.2.

2. When it arrives to the VTD, it is put in the housing 6 with the crane (the
VTD station is first uncovered). Two supporting arms on the left and the right
in the interior of the housing hold the ladle, i. e., the ladle is hanging.

3. When the ladle is installed inside the VTD, the plugs for gas injection 2 are
connected to gas pipes in the housing through a spring mechanism, without
any direct intervention of the operators. Thanks to the crane, the positioning
of the ladle is very precise, thus allowing the connection to be done correctly.
The gas pipes are not represented in Figure 5.2.

4. Once the ladle is put and connected, the whole housing, which is actually on
a moving platform, moves to the vacuum station, below the cover 7 . Two
rails guide the wheels of the platform.

5. The cover goes down and is sealed into the housing. The interior of the cover
is composed of refractory material to withstand the very high temperatures.
It also has several openings to allow alloying, temperature measurements and
steel sampling. A camera is placed in the cover and enables to see the steel
surface in live conditions through a hole in the refractory materials. These de-
tails are not represented in Figure 5.2. The previous steps take approximately
10 minutes.

Figure 5.2: Cut plane view of a schematic vacuum tank degasser.
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6. Vacuum pumping 4 starts (∼ 5 minutes). The stirring process in vacuum
conditions begins (15 to 25 minutes).

7. Once the process is finished, temperature measurements and steel sampling
are performed (∼ 10 minutes). Then, the opposite steps are done: return to
atmospheric pressure, opening of the cover, movement of the station to its
initial position, and uplift of the ladle with the crane, towards the casting
station. In total, the treatment takes 40 to 50 minutes.

5.2.2 Vibrations of the VTD

The objective of this subsection is to give a brief overview on the existing work
done on the vibrations of the VTD at SSAB Europe Oy in Raahe, Finland.

Position of the accelerometers. As in other industrial cases (Nadif et al.,
2012, Fischer et al., 2017), a sensor has been placed on the exterior wall of the
housing. Since the ladle itself is at very high temperature and because it moves in
the plant, it is not practical to place the sensor on the ladle wall. The housing is
more suitable for a process control: vibrations of all the batches can be measured,
the temperature is not too high for the sensor, and maintenance of the sensor
can be done easily. Furthermore, preliminary internal studies have shown that a
correlation between stirring and vibration intensity exists, even when the vibration
is not measured directly on the ladle wall, but on the outside tank. The exact
position of the sensor then depends mainly on ease of access and mounting. To
give a rough idea of the position of the sensor on the VTD, it is represented in
Figure 5.2 (number 8 ).

Preliminary vibrations study. The main existing results regarding vibrations
measurements in SSAB are reported in (Pylvänäinen et al., 2016). The study con-
sisted in gathering and analyzing a large amount of data to quantify the correlation
between vibrations and stirring intensity. The vibrations in horizontal and vertical
directions of roughly 220 heats were collected. It was shown that the relationship
between the gas flow rate and the vibration velocity is linear, but the slope of
the regression line can vary by a factor of up to 2 from one heat to another. This
slope coefficient can be understood as an indicator for the efficiency of gas-stirring.
For example, a significant change in the slope may indicate clogging of a gas noz-
zle. Another study focuses on the use of vibrations data to model desulfurization,
i. e., to predict the final content of sulfur given the initial content and the vibra-
tions during stirring (Pylvänäinen et al., 2018, unpublished). It was shown that
the uncertainty of some kinetic parameter is unsatisfactorily high, which makes
the model not suitable for prediction. The necessity of vibrations filtering and
treatment are also stressed. Altogether, although the vibrations measurements
are relatively easy to perform, the data treatment and its application for stirring
control are not straightforward.

5.2.3 From industrial to laboratory measurements

A better understanding of the vibrations is necessary for a successful industrial
application. Ideally, a proof-of-concept should be performed to demonstrate how
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the vibrations technique can work. In this regard, the laboratory-scale water ladles
are again of interest. Some justifications in favor of a laboratory campaign are: the
absence of noise perturbations and simplified assumptions for numerical modeling.

The industrial environment is full of vibrating machines around the VTD. They
can perturb the measured ladle vibration. In laboratory, the noise perturbations
are more likely to be negligible, so that the vibrations measured are only due to
gas stirring. This leads to clearer measurements and a better correlation between
vibrations and gas flow rate. From the point of view of numerical modeling, one
could be interested in computing the “optimal vibration level”, e. g., the one induced
by some optimal stirring, as the ones obtained in Chapter 4. This, in turn, can
be used as target values, to be reached by on-line vibration measurements, and
to control the stirring treatment automatically. Such a modeling process requires
not only a fluid-structure model, but also a proper (sub-)model for the structure
alone. Modeling the real ladle geometry is a difficult task:

• Because it contains several materials (refractory material inside the ladle and
steel frame of the ladle and housing), the structure is heterogeneous. In other
words, the material properties, e. g., the density and the Lamé coefficients,
are not constant in the structure domain. They might even be discontinuous.
• Since the vibration sensor is located at the exterior of the housing, the prop-

agation of the vibrations from the ladle to the housing has to be taken into
account. In other words, the contact between the ladle and the housing has
to be carefully modeled (one solid or two solids with contact friction).
• Finally, another difficulty comes from the refractory materials. Because of

intense erosion, their thickness varies a lot between ladles, and even inside
the same ladle. After several treatments, the ladle goes to maintenance and
the vessel is relined. Some information can be found about the nominal
thickness but there is a lack of information on the on-line lining thickness.

Given the complexity of the structure and its interfaces, a simplified geometry
might be interesting to overcome these obstacles. Since the geometry is much sim-
plified in the laboratory case, it is worthwhile to start modeling the laboratory-scale
ladle instead of treating directly the industrial problem. This strategy offers several
other advantages. First, a fluid model has already been computed and validated
by comparing the numerical results with experimental measurements (Chapter 3).
Second, the fluid-structure model can be validated more easily when it is compared
with the vibration of the laboratory-scale ladle, than with industrial measurements
Finally, the cost for performing vibration measurements in laboratory is relatively
reduced: one just needs to mount accelerometers at the wall of an existing water
tank and acquire the vibration with different air flow rates. Since the water ladle
was available in the laboratory of the Process Metallurgy Research Unit in the
University of Oulu, an experimental campaign could be conducted quickly and
at reduced costs. For all these reasons, a laboratory-scale ladle was considered.
The objectives of the experimental campaign were to investigate the vibrations,
collect data, and give new insights for the industrial applications with respect to
the number and position of sensors.



5.3. Laboratory-scale ladle experiment with multiple sensors 145

5.3 Laboratory-scale ladle experiment with
multiple sensors

A detailed literature review concerning vibrations measurements in ladle metal-
lurgy is given in (Alia et al., 2019b). It has been shown that most of the stud-
ies use only one sensor, whose position is chosen after preliminary trials or with
maintenance-related criteria (ease of access and mounting). An alternative ap-
proach consists in using multiple sensors. They allow simultaneous measurements
at different radial and axial positions, and may improve the interpretation of vi-
brations signals, especially in the case of excentric gas injection nozzles. Indeed,
such nozzles generate plumes which are not axial-symmetrical and whose effect on
the ladle walls is therefore expected to be not symmetrical as well. In this regard,
the use of multiple sensors at different locations of the ladle wall combined with
excentric nozzles appears relevant.

The main objective of the experimental campaign is to provide new recom-
mendations concerning the optimal number and position of vibrations sensors for
industrial stirring monitoring. More specifically, the study focuses on a laboratory-
scale ladle with two excentric nozzles and eight accelerometers covering the ladle
wall. A side benefit of the experiment is to collect experimental data, at several
points of the ladle surface, which can be later used for the validation of fluid-
structure interaction models. For comparison, the industrial data with only one
sensor might be insufficient for evaluating the relevance of a numerical model.
Most of the results presented in this section can be found in (Alia et al., 2019b).

5.3.1 Experimental set-up

The water ladle, illustrated in Figure 5.3, is the same modeled numerically in the
previous chapters. The influence of four process parameters on the vibration are
studied, with a total of 108 configurations (Table 5.1). Concerning the vibrations
measurements, eight mono-axial accelerometers of type MMF KS80D have been
used. Existing results from literature have shown that the vibrations have the
highest amplitude when the sensors are perpendicular to the ladle wall, i. e., on
the horizontal axis (Nadif et al., 2012, Yenus et al., 2017). PVC blocks were
specially manufactured with an appropriate shape to fit on the outside tank wall.
The vibration sensors are then screwed on these blocks. The total mass of one
accelerometer with its mounting PVC block is 99 g and is negligible in comparison
to the ladle mass. Therefore, it is assumed that the eight mounted sensors do not
impact the mechanical and vibrational behavior of the ladle to a significant extent.

Table 5.1: Configurations of the experimental campaign (Alia et al., 2019b).

Water height Q for each nozzle Oil level Nozzles

H1 = 32.5 cm 5, 10, 15, 0 cm (without oil) Nozzle NW only
H2 = 54 cm 20, 25, 30 l min−1 3 cm (with oil) Nozzle SW only
H3 = 65 cm Both nozzles
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Figure 5.3: Water tank vibration experiment. Left: Position and designation of
accelerometers (h1 = 25 cm and h2 = 54 cm). Right: Real water tank model with
oil layer. Two sensors at h1 can be seen clearly and two sensors at h2 are behind
the cables (Alia et al., 2019b).

In each of the 108 tested cases, five minutes of stirring are recorded simul-
taneously for the eight sensors using a data acquisition module (sampling fre-
quency 25.6 kHz).

The recording process is as follows:
(1) initially, the ladle is at rest during 30 s.,
(2) at the 30th second, the gas valves are opened to the target flow rate value,
(3) the stirring runs at a constant gas flow rate during 180 s.,
(4) at the 210th second, the gas valves are closed, and the bath returns to rest

until the end of the recording (300th second).
A suitable quantity to represent the vibration amplitude or intensity is the root
mean square (RMS) value of the acceleration signals, in m s−2, (Norton, 2003).
The root mean square values are computed between the 40th and 200th s in order
to avoid transitional phases and to capture a stirring as constant as possible.

5.3.2 Experimental results

Figure 5.4 shows the vibration signal and the corresponding frequency spectrum
with increasing gas flow rates, in one of the configurations. If there is no clear
pattern in the vibration signals, one can nevertheless observe the increasing am-
plitudes when the gas flow rate increases. Among all configurations, we focus here
on the nominal case, i. e., the one which is physically similar to the industrial ladle:
water height H3, presence of oil, two nozzles operating.

The evolution of the vibration RMS of the eight sensors with respect to the
gas flow rate is illustrated in Figure 5.5. As reported in, e. g., (Nadif et al., 2012,
Yenus et al., 2017), the vibration amplitude increases with the gas flow rate.
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Figure 5.4: Vibration and frequency spectrum at two gas flow rates. The line
colors correspond to the different accelerometers.

The relationship between the vibration level and the gas flow rate seems to
be nonlinear. This shape is similar to the ones obtained in (Yenus et al., 2017),
although different geometries and materials are used in the physical model. Fur-
thermore, it can be clearly seen in Figure 5.5 that the vibration RMS of the four
accelerometers close to the nozzles (sensors 3, 4, 7, and 8) are significantly higher
than the sensors which are diametrically opposed to them (1, 2, 5, and 6). They
also increase faster with the gas flow rate than the other sensors. This indicates
that the radial position of the sensors plays a major role in the measured vibration
intensity. Staying close to the nozzles, the comparison between the top sensors
(i. e., at height h2) and bottom sensors (at h1) shows that the vibration amplitude
in the top tends to be slightly stronger than the ones in the bottom (compare
accelerometers 3 and 4 with 7 and 8).

The level of water height also plays a role on the vibrations (Alia et al., 2019b,
Fig. 5). The vibration tend to increase with higher baths. By choosing a correct
vertical position for the sensors, one can capture the stirring-induced vibration
reliably. The authors thus recommend to place the sensors between the ladle
bottom and the open eyes, or, in other words, along the gas plumes.

Another aspect of the experiment concerns the detection of nozzle clogging.
Figure 5.6 shows the difference between three operating conditions: both noz-
zles SW and NW, nozzle SW only, and nozzle NW only. One can notice that
the vibration of the sensors SW (respectively NW) in the case where only nozzle
SW (respectively NW) operates are very similar to their level when both nozzles
operate simultaneously.
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Figure 5.5: RMS of the acceleration signals versus total gas flow rate in the con-
figuration: H3, oil layer and two nozzles operating (Alia et al., 2019b).

In other words, the vibrations close to one nozzle (e. g., SW) seem to be rel-
atively independent of the operating condition of the other nozzle (e. g., NW).
This is an important result, since it makes it easier to distinguish the operating
conditions of the two nozzles. One can indeed use (at least) one sensor close to
each nozzle. By computing the differences of RMS amplitudes between the three
operating configurations, it can be shown that the nozzle clogging results in a sig-
nificant drop of the RMS value (−36 to −59%) of the sensors located close to the
clogged nozzle, in comparison to its value where both nozzles work normally (Alia
et al., 2019b, Table 4). If only one sensor was used to detect the clogging of one of
the two nozzles, it would have been difficult to identify the reason for a vibration
drop, e. g., gas leakage of the one nozzle or the clogging of the other. Using several
sensors can be, in this regard, more advantageous.

These are the main outcome of the experimental campaign. The reader is
referred to (Alia et al., 2019b) for more details.

5.4 Conclusion

Summary. After a brief description of state-of-the-art stirring control techniques
in the industry, this chapter described the vacuum degassing process of the partner
company. It was stressed how it is delicate to implement a vibrations-based control,
and how several reasons led to conduct an experimental campaign. Although it
might be far from numerical considerations at first glance, the experimental results
obtained can be on the contrary beneficial for future mathematical modeling. First,
the measurements of the frequency range during stirring helps to identify which
phenomenon is dominant: hydroelasticity at low frequencies, or vibroacoustics at
high frequencies, see (Morand and Ohayon, 1995). In the case of hydroelasticity
for example, the fluid can be considered as incompressible. The main parameter
inducing the sloshing is gravity.
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Figure 5.6: RMS values of sensors close to nozzles versus total gas flow rate. a)
Two nozzles operating. b) Nozzle SW only. c) Nozzle NW only (Alia et al., 2019b).

On the other hand, if vibroacoustics phenomena are dominant, one has to
take into account the compressibility of the fluid in the model and the gravity is
likely to be negligible (Morand and Ohayon, 1995). Using the frequency spectrum
in Figure 5.4, it is actually not clear if one phenomenon dominates. In fact,
both play an important role: the liquid water sloshes strongly and the rising gas
generates pressure (acoustic) waves in the liquid. For a realistic modeling, both
phases should be modeled in a two-phase model with compressible gas. In a second
step, the fluid-structure interaction model should be compared with experimental
measurements for a numerical validation. For this purpose, the data collected at
the eight points of the ladle are useful. These aspects were partially studied during
the doctoral work and are mentioned in the last paragraph.

Besides the importance of experimental data for numerical modeling, the cam-
paign may be useful from the industrial perspective as well. Indeed, it can provide
guidelines for optimizing the position and the number of accelerometers in order
to better identify the operating conditions of gas stirring. The results show that
the vibration RMS values are strongly dependent on the radial and axial location
of the accelerometers. The results suggest that the sensors located close to the gas
nozzles are able to capture higher intensity levels, than the ones which are dia-
metrically opposed. The recommended positions for each sensor seem to be along
the gas plume, between the ladle bottom and the open eye of the corresponding
operating nozzle. This leads to the strongest vibration levels and helps to estimate
more precisely the stirring conditions. Concerning the number of accelerometers,
using at least one close to each nozzle can facilitate the measurement of the stir-
ring intensity of the corresponding gas plume, the quantification of a drop in the
stirring efficiency (due to gas leakage for example), and the detection of nozzle
clogging. Moreover, the stirring intensity and condition of each nozzle can be es-
timated separately and independently. This knowledge could be used to design a
reliable control, detect nozzle clogging, and improve maintenance planning.
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Outlook to fluid-structure interaction for process control There are sev-
eral approaches for computing the ladle vibrations induced by the stirring. In an
exploratory work, we have considered the time-dependent approach and computed
the surface force of the liquid on the areas corresponding to the actual sensors
(Figure 5.7).

The surface force intervenes as a coupling condition between the liquid and the
structure in fluid-structure interaction models. If the structure is assumed to be
a linear material, the acceleration at the wall is proportional to the surface force.
This is quite practical because it allows to compare the computed surface force
and the measured acceleration without needing a full fluid-structure interaction
model. However, the preliminary results have pointed out that the surface force is
quite sensitive to the mesh size and the Smagorinsky constant, and that a one-way
coupling is likely to be insufficient to obtain correct results.

Furthermore, its time evolution is difficult to compare to real measurements
because of the absence of clear pattern. One should rather consider the frequency
spectrum, as in (Wuppermann et al., 2013). In sum, the correct modeling of the
ladle vibrations remains a challenging problem.
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Figure 5.7: Preliminary investigation of the ladle vibration. Left: Mesh of the
ladle and the accelerometers’ surfaces (grey areas). Right: Time evolution of the
surface force applied by the liquid on four sensors.



6. Conclusion

With the objective of improving a complex industrial process using mathemat-
ical tools, the present thesis focused on the mathematical modeling, numerical
simulation, and optimization of steel ladle stirring. As the reader may have no-
ticed, a large part of the work deals with the question of modeling, let it be
about the single-phase models, or the definition of stirring efficiency and the cost
functional. Because of the variety of aspects to take into account (gas and slag
phases, inclusions’ content, wear of the refractory, open eye, alloying, etc.), mod-
eling assumptions are necessary to be able to focus on one specific question, like
the optimization of the stirring pattern.

If the single-phase model may appear oversimplifying at first glance, the present
work showed that they are quite satisfactory when it comes to describing the stir-
ring pattern (see Chapter 3 and (Alia et al., 2019a)). This point is the first main
contribution of the thesis. Furthermore, the single-phase model has the advantage
of being relatively cheap in comparison to models with several phases, a free sur-
face, or moving interfaces. Thus, it is quite convenient for iterative computations,
as in optimal control problems. Coming to this subject, it has to be stressed here
that, to the best of the author’s knowledge, the application of optimal flow control
for steel ladle stirring could not be found in the literature. Usual optimization
studies consist rather to test different values of control parameters and conclude
which one is the best. Our approach, based on the optimal control theory, seems
to be innovative. This is the second main contribution of the thesis (Chapter 4).
Although the 2d boundary-driven stirring model is far from being realistic, it has
been studied for completeness. For the industrial practice, the 3d model should
be used as a reference. It appears that the 2d and 3d optimization solutions have
some similarities, as far as the gas plume intensity is concerned (UP in 2d and Q
in 3d). Furthermore, some findings of the numerical investigation correspond to
intuition. For example, at low gas cost, it is optimal to maximize the gas inflow
to improve the stirring, or, turning-off the gas inflow shortly before the end of the
process spares some gas cost without deteriorating the overall stirring performance.
An additional novelty concerns the optimization of the nozzles’ position. For more
robust recommendations to the industry, the numerical investigation should be
extended to finer meshes and different sets of parameters. For example, several
values of the time step ∆t, the end time T , the Smagorinsky constant CS, and the
threshold m should be tested. This is the subject of coming work. Concerning the
limits of our optimal control problem, the reader is referred to Section 4.6.1.
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We recall the research directions concerning optimization of ladle stirring: op-
timal nozzles’ positions in a BOF converter, application of multiphase flows, use of
“mixing time optimal control”, and electromagnetic stirring for a volume control.
Since we have encountered the multiphase models in our work, we have briefly
presented preliminary results in Section 3.5. The mixing time optimization has
been described in Section 4.6.2, Finally, in the third and last contribution of this
thesis, we explored the possibility of using ladle vibrations for the industrial pro-
cess control (see Chapter 5 and (Alia et al., 2019b)). There, we also proposed a
new approach in comparison to the literature and to usual practice. Using several
sensors located close to the gas nozzles, one can better describe how intense the
stirring is, and identify more easily if the nozzles need maintenance. From the
point of view of modeling, one could be interesting in computing the vibration of
the ladle. This approach and preliminary results obtained during the thesis have
been briefly discussed in Sections 5.2.3 and 5.4. Although there are already some
research papers on this subject (e. g., (Wuppermann et al., 2013)), there is still a
long path ahead.

In conclusion, the optimization of steel ladle stirring is a subject rich from
the complexity and variety of physical phenomena involved. It therefore leaves a
lot of room for improvement. The use of mathematical modeling and numerical
simulation has proved to be an appropriate way to exploit this potential and to
solve industrial problems.



A. Detailed form of the Navier–Stokes
equations

The Navier–Stokes equations (2.9) and (2.10) are written in vector notations, in-
dependently of the system of coordinates. Coming to computations, let it be ana-
lytical or numerical, one has to explicit the scalar equations, and requires therefore
to fix a coordinate system, e. g., Cartesian, cylindrical, or spherical.

In this appendix, the explicit form of the NSE are given in the Cartesian and
cylindrical space frame. In particular, the assumptions needed to derive the 2d
Cartesian and axisymmetrical formulations out of the 3d expressions are given.

A.1 In Cartesian coordinates (x, y, z)

In 3d, the Navier–Stokes equations in Cartesian coordinates are as follows:
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(A.1)

If we assume that u depends only on two directions, e. g., x and y (y can also be
equivalently replaced by z):
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then the flow can be reduced to 2d:
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154 A. Detailed form of the NSE

This model represents the flow in an infinitely long rectangular box, see the picture
on the left of Figure A.1.

A.2 In cylindrical coordinates (r, θ, z)

The 3d Navier–Stokes equations can also be written in cylindrical coordinates:
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In axisymmetrical flows, the three velocity components and the pressure are as-
sumed to be independent of the angular coordinate θ:
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The 3d axisymmetric equations are given by:
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(A.3)

If, furthermore, the ortho-radial component of u is assumed to be zero, these
equations can reduce to a two-dimensional problem:
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Figure A.1: View of simplified 2d flows for different space frames. Left: Cartesian
space frame. Right: cylindrical space frame.

This last assumption corresponds to applications such as the picture on the right
of Figure A.1.





B. Unit convention for gas flow rates

This small note describes the unit convention Nm3(STP) min−1 for gas flow rates
and the difference between industrial and laboratory conditions.

The flow rate of any gas depends on its operating temperature and pressure.
Therefore, it is necessary to have a reference unit to be able to compare flow
rates. The unit Nm3 stands for “normal m3”, which refers to a cubic meter in
“normal conditions”, defined by the Standard Temperature and Pressure (STP)
conditions. In Europe, they are ΘSTP = 273.15 K (0◦C) and pSTP = 1.105 Pa,
respectively, (McNaught and Wilkinson, 1997).

In the steelmaking practice, the typical range of the gas flow rate is be-
tween 0 and 0.015 Nm3(STP) min−1 tons−1, where tons refers to the steel mass
in the ladle. Using the standard unit of the industry, the inflow of gas ranges
between 0 and 1575 l min−1 for a steel heat of 105 tons. Note that they corre-
spond to the total amount of injected gas. In cases where multiple nozzles are
used, the total flow rate has to be divided by the number of nozzles (often 2). In
Section 4.1.1, we have assumed Qt

min = 0 and Qt
max = 750 for the industrial case.

In operating conditions, the real flow rate entering a ladle is computed with
the perfect gas law (see also (Mukhopadhyay et al., 2001)),

Qp

Θ
=
QSTPpSTP

ΘSTP
⇐⇒ Q = QSTP

(
pSTP
p

Θ

ΘSTP

)
. (B.1)

This relation is used in numerical two-phase models to calculate a suitable bound-
ary condition for the gas. Replacing p by the hydrostatic pressure pfr + ρg(H− z),
where pfr is the pressure at the free surface (atmospheric or vacuum) and ρ is the
steel density, one can rewrite (B.1) as (see also (Goldschmit and Owen, 2001))

Q = QSTP ·
(

pSTP
ρgH

pfr
ρgH

+ 1− z
H

Θ

ΘSTP

)
.

In real conditions, for example Θ = 1273.15 K, pfr = pSTP, H = 2.25 m, and
ρ = 7000 kg m−3, the effective gas flow rate injected at the nozzle (z = 0) is
almost twice its value in STP conditions: Q ≈ 1.8 QSTP. In vacuum conditions
(pfr = 100 Pa), it is three times higher.

In laboratory conditions, one has Θ = 298.15 K, pfr = pSTP, H = 0.65 m, and
ρ = 1000 kg m−3, such that Q ≈ 1.03 QSTP. Thus, it can be assumed that the flow
rate is constant in the bath and is equal to the injected gas flow rate:

Q ≈ QSTP.
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List of notations

Symbol Meaning Section

A generic system matrix 2.4
A open eye area 5.1
A stiffness matrix (with blocks or elements Aij) 2.3.1
a “artificial” origin of the conical gas plume shape rc 2.3.3
α gas phase fraction 3.1
α1, α2, α3, α4 gas phase fraction formulas 3.1
αn1, αn2 gas phase fraction for nozzles 1 and 2 in 3d 3.1
α-ferrite name of a ferrite phase 1.1

B pressure-velocity rectangular matrix 2.3.1
b(u,v,U) trilinear form b(u,v,U) = ((u · ∇)v) ·U 4.3.2
b boundary velocity on ΓD or Γaxis 2.1, 4.2.3
β1, β2 parameters in the cost functional 4.2.3

C convection matrix (with blocks or elements Cij) 2.3.1
CS Smagorinsky (turbulence) constant 2.5.1
Cν , C1, C2 constants of the k − ε turbulence model 2.5.1
ci constants in α3 and α4 (i = 0, ..., 5) 3.2.2

D(·) fluid deformation tensor of vector field · 2.1
D diagonal matrix 2.4
d dimension (2d or 3d) 2.1
dnozzle nozzle or porous plug diameter 3.1
δ small length scale, filter width in the LES model 2.5.1
δK , δK,2d Kolmogorov length in 3d and 2d 2.5.1

e residual operator 4.3.2
ê reduced residual operator 4.3.2
(ex, ey, ez) unit vector basis of the Cartesian space frame 2.1
ε rate of dissipation of turbulent energy 2.5.1, 3

F, F1, F2 terms of J and e whose differentiation is detailed 4.3.2
Fr Froude number 1.2
f volume force 2.1 4.2.3
ϕ phase fraction scalar field 3.5
φh,i component of i−th basis function of V h 2.3.1
φh,i i−th basis function of V h 2.3.1

G turbulent kinetic energy production rate 2.5.1
g gravity constant 1.2
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160 List of notations

g gravity vector field 2.1
Γaxis central (symmetry) axis boundary 3.1.2
Γc boundary where the control applies 4.3.2
ΓD Dirichlet boundary 2.1
Γin inflow boundary 3.5
Γout outflow boundary 3.5
Γslip free slip boundary 2.1
Γtop top surface boundary 3.1.2
Γwall wall boundary 3.5
Γ0 no-slip boundary 2.1
γ inf-sup constant 2.3.1
γ1, γ2 penetration resistance and frictions coefficients 2.1

H cylinder height 1.2
H1, H2, H3 water heights in the ladle vibration experiment 5.3
H1(Ω) Sobolev space W 1,2(Ω) (also a Hilbert space) 2.2.1
H

1/2
00 (Γc) Lions-Maganes space (Wilbrandt, 2019b) 4.3.2

hfr distance between bath free surface and border of
the ladle

4.1.1

hslag slag thickness 4.1
h1, h2 sensors’ heights in the ladle vibration experiment 5.3
h test function from the space Y (boundary control) 4.3.2
η arbitrarily small constant 4.3.2

I identity matrix 2.1

J cost functional 4.3.2
Ĵ reduced cost functional 4.3.2
Jc part of the cost functional describing the cost of

the control
4.2.3

J0 part of the cost functional describing the maxi-
mization and/or regulation of vorticity

4.2.3

J1, J2, J3(m) cost functionals in the numerical application 4.4, 4.5

k turbulent kinetic energy 2.5.1, 3
k test function from the space Y (volume control) 4.3.2

L Lagrangian function 4.3.2
L characteristic length 1.2
L2(Ω) Lebesgue space 2.2.1
`(t) “ramp-like” function to smooth initial time steps 3.2.1
λ1, λ2 weights of the control cost in Jc 4.2.3

M mass matrix (with blocks or elements Mij) 2.3.1
m threshold parameter used for the vorticity in the

cost functional (stands for “mixing”)
4.2.3

µ fluid dynamic viscosity 2.1
µg gas dynamic viscosity 3.5
µl liquid dynamic viscosity 3.5
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Nc dimension of the control space (or number of de-
grees of freedom of the control variables)

4.4

Np dimension of pressure space Qh 2.3.1
Nv number of Dofs for one velocity component (dNv

is the dimension of space V h)
2.3.1

n unit normal vector 2.1
ν fluid kinematic viscosity or dimensionless viscosity 2.1, 3, 4
νT turbulent (or eddy) viscosity 2.5.1, 3, 4

Ω fluid domain 2.1
Ω0 subdomain used in the optimal control problems 4.2.3

P preconditioner 2.4
P adjoint pressure 4.3.2
Pk/Pk−1 pair of finite elements , k ≥ 2 2.3.1
p pressure field 2.1
pfr pressure at the free surface (e. g., atmospheric or

vacuum)
4.1.1

ph discrete pressure field 2.3.1
ph discrete pressure vector 2.3.1
pSTP pressure of the STP conditions Annex B
ψh,i i−th basis function of Qh 2.3.1

Q pressure function space 2.2.1,
2.5.1, 4.3

Qh finite element space 2.3.1
Q gas volumetric flow rate 3.1
Qemuls gas flow rate from which slag starts to emulsify in

steel
4.1

Qk/Qk−1 pair of finite elements , k ≥ 2 2.3.1
Qmax maximum gas flow rate 4.1
Qmin minimum gas flow rate 4.1
Qopen eye gas flow rate from which open eye starts 4.1
Qoverflow gas flow rate from which bath may overflow 4.1
Qt

max maximum gas flow rate technically allowed 4.1
Qt

min minimum gas flow rate technically allowed 4.1
QSTP gas flow rate in STP conditions Annex B
Q1, Q2 gas volumetric flow rate for nozzles 1 and 2 4.2.1, 4.5
q test function from Q 2.2.1
qh test function from Qh 2.3.1

R radius of cylinder 1.2
Re Reynolds number 2.1
Rg universal gas constant (used only once) 4.1.2
Rtop, Rbot top and bottom radius of the 3d ladle model 3.2.3
(r, θ, z) radial, angular, and axial coordinates in cylindrical

frame
2.3.1

rav average radius of plume 3.1



162 List of notations

rc radius of plume cylinder or cone 3.1
reg(z) regularization function used in lid-driven models 3.2.1
r, ru, rp right-hand sides 2.3.1, 2.4
ρ fluid density 2.1
ρg gas density 3.1, 3.5
ρl liquid density (e. g., water or steel) 3.1, 3.5
ρslag slag density 4.1

S(·) fluid stress tensor of vector field · 2.1
S solution operator 2.2.1
SC , SC,LSC Schur complements 2.4
σk, σε constants of the k − ε turbulence model 2.5.1

T Reynolds (or subgrid-scale) stress tensor 2.5.1
T end time 2.1
t time variable 2.1
t0 time parameter used in a smoothing function 3.2.1
ti unit tangential vector, i = 1, . . . , d− 1 2.1
Θ temperature Annex B
ΘSTP temperature of the STP conditions Annex B
θ coefficient in the time discretization θ-scheme

in 2.3.1, angular coordinate elsewhere
2.3.1, 2.3.3

τ surface tension 4.1.1

U characteristic velocity 1.2
Ue critical liquid velocity where emulsification of slag

in steel starts
4.1.1

UP plume velocity 3.1
UPmax upper bound for UP in the optimal control problem 4.2.1
UPmin lower bound for UP in the optimal control problem 4.2.1
US slip velocity between gas and liquid 3.1
Uδ characteristic velocity at scale δ 2.5.1
U adjoint velocity 4.3.2
(ur, uθ, uz) components of the velocity in cylindrical frame Annex A
(ux, uy, uz) components of the velocity in Cartesian frame Annex A
u velocity vector field 2.1
ub extension of b into Ω 2.2.1
uh discrete velocity vector field 2.3.1
uh discrete velocity vector 2.3.1
u0 velocity with zero value at prescribed boundaries 4.3.2

Vgas gas volume in the bath (the volumetric flow rate
is given by the time derivative V̇gas)

4.1.1

V velocity function space 2.2.1
V h finite element space 2.3.1
V M velocity function space with homogeneous Dirich-

let on M (and no penetration on Γslip)
4.3.2

v test function from V 2.2.1
vh test function from V h 2.3.1
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W k,p(Ω) Sobolev space, k ∈ N, 1 ≤ p ≤ ∞ 2.3.1
WM velocity function space with homogeneous Dirich-

let on M (and no penetration on Γslip)
4.3.2

w wind vector 2.1

X state space in the optimal control problem 4.3.2
(x, y, z) coordinates in Cartesian frame 2, 3, 4
xi coordinates with numbered indices, i = 1, . . . , d
(xn1, yn1),
(xn2, yn2)

coordinates of the two nozzles in 3d 3.2.3, 4.5

x coordinates vector 2.1
χ apex angle of the conical gas plume shape rc 2.3.3

Y control space in the optimal control problem 4.3.2

zC critical height for the gas fraction α 3.2.2
z0 arbitrary fraction of the height H used in the reg-

ularization function reg(z)
3.2.1

∂Ω boundary of the fluid domain 2.1
(·, ·) L2-inner product 2.2.1
〈·, ·〉X∗×X dual product 4.3.2
·∗ dimensionless change of variable if · is a variable 2.1.1, 4.1.1

dual space if · is a space 4.3.2
·̄ average of (vector or scalar) field · 2.5.1, 3.4
·′ fluctuations of (vector or scalar) field · 2.5.1
·h subscript to designate finite-dimensional spaces

and discrete variables
2.3.2

·k superscript index in, e. g., time or optimization it-
erations

2.3.1

·opt superscript to designate optimal variables 4.3.2, 4.4,
4.5

·0 superscript to designate initial conditions or initial
guesses in optimization

2.1, 3, 4

‖D(·)‖F Frobenius norm of deformation tensor 2.5.1





List of abbreviations

Abbreviation Meaning

AHSS Advanced High-Strength Steels
BCC Body-Centered Cubic
BF Blast Furnace
Bi-CGStab Bi-Conjugate Gradient Stabilized (iterative solver)
BOF Basic Oxygen Furnace
C Carbon
CFD Computational Fluid Dynamics
CFL Courant–Friedrich–Lewy (condition)
COBYLA Constraint Optimization BY Linear Approximation
DNS Direct Numerical Simulation
Dof Degree of freedom
EAF Electric Arc Furnace
FDM Finite Difference Method
FE Finite Element
FEM Finite Element Method
FGMRES Flexible Generalized Minimal RESidual (iterative solver)
FVM Finite Volume Method
H Hydrogen
IF Interstitial-Free steels
LES Large Eddy Simulation
LS Level-Set method
LSC Least Square Commutator (preconditioner)
MHD Magnetohydrodynamics
MPI Message Passing Interface
N Nitrogen
NSE Navier–Stokes Equations
NW North-West (refers to the accelerometers’ position)
O Oxygen
ODE Ordinary Differential Equation
PDE Partial Differential Equation
RH Ruhrstahl Heraeus degasser
RMS Root Mean Square
SI Système International (d’unité) - International units system
SSAB A specialized Nordic and US-based steel company
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166 List of abbreviations

SSOR Symmetric Successive Over-Relaxation (preconditioner)
STP Standard Temperature and Pressure conditions
SUPG Streamline Upwind Petrov–Galerkin (stabilization method)
SW South-West (refers to the accelerometers’ position)
TKE Turbulent Kinetic Energy
ULC Ultra-Low Carbon steels
VOF Volume Of Fluid method
VTD Vacuum Tank Degasser



List of units

Name Meaning
◦C degree Celsius (temperature)
cm centimeter
K Kelvin (temperature)
kg m−3 mass per cubic meter (density)
kHz kiloHertz (frequency)
km h−1 kilometer per hour (velocity)
l min−1 liter per minute (volumetric flow rate)
m meter
m3 cubic meter (volume)
mm millimeter
m s−1 meter per second (velocity)
m s−2 meter per squared second (acceleration)
m2 s−1 squared meter per second (kinematic viscosity)
m3 s−1 cubic meter per second (volumetric flow rate)
Mt millions of tons
N Newton (body force)
N kg−1 Newton per unit mass (body force per unit mass)
N m−1 Newton per unit length (surface tension)
N m−3 Newton per cubic meter (volumetric force)
Nm3, Nm3(STP) normal cubic meter, cubic meter in STP conditions
Nm3 min−1 normal cubic meter per minute (volumetric flow rate)
Nm3 min−1 tons−1 normal cubic meter per minute per ton (volumetric flow

rate)
Pa Pascal (pressure)
Pa s Pascal second (dynamic viscosity)
ppm parts per million (=0.001%�)
s second
wt% percentage in weight
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Zusammenfassung der Dissertation

Diese Dissertation beschäftigt sich mit der mathematischen Modellierung, Simulation, und
Optimierung eines wichtigen Prozesses der Stahlindustrie, nämlich dem Rühren der Stahlschmelze.
In diesem Prozess wird Gas vom Boden des Rührkessels kontinuierlich eingespritzt. Durch den
Auftrieb wird die Schmelze intensiv gerührt. Dieser Prozess wurde in der Literatur numerisch
und experimentell eingehend studiert, sodass der Einfluss von Prozessparametern auf das Rühren
besser verstanden ist und ein Fortschritt der industriellen Praxis erzielt werden konnte. Jedoch
wurden optimale Steuerungsprobleme in diesem Bereich bisher nicht betrachtet. Der Beitrag der
vorliegenden Dissertation besteht aus drei Teilen.

Erstens kann die Simulation mehrphasiger Strömungsmodelle numerisch aufwändig werden,
sodass die optimale Steuerung solcher Strömungen numerisch nicht praktikabel ist. Deshalb
beschränkt sich diese Dissertation auf vereinfachte einphasige Navier–Stokes Modelle. Drei Kon-
figurationen werden untersucht: eine 2d kartesische Konfiguration, wo der Effekt des Gasauftriebs
durch eine inhomogene Dirichlet Randbedingung modelliert wird, eine 2d axialsymmetrische
Konfiguration und eine 3d Konfiguration, bei der das Gas als Volumenkraft nachgebildet wird.
Die numerischen Simulationen und der Vergleich mit experimentellen Daten der Literatur zeigen,
dass alle drei Konfigurationen geeignete Ergebnisse liefern.

Zweitens werden optimale Steuerungsprobleme diskutiert. Hauptsächliche Schwierigkeiten
sind zum einen die Formulierung des industriellen Problems und zum anderen die mathema-
tische Formulierung der Kontroll- und Kostenfunktionale. Der Prozesskontrollparameter in der
Praxis ist der Gasdurchfluss in der Schmelze. Dazu müssen noch einige Nebenbedingungen
beachtet werden. Da der betrachtete Prozess physikalisch komplex ist, gibt es verschiedene, sich
überlappende Ziele, etwa die Maximierung der Homogenität des Fluids, die Minimierung der
Prozesszeit oder auch der Konzentration von Einschlüssen (Defekten). Die Kontrollvariablen,
ihre Nebenbedingungen und die Ziele des Steuerungsproblems werden mathematisch übersetzt,
was zu sogenannten “Box”-Nebenbedingungen führt, wobei verschiedene Kostenfunktionale für
die Beschreibung der Mischungseffizienz vorgeschlagen werden. Numerische Simulationen werden
durchgeführt, aus denen Schlussfolgerungen für die industrielle Praxis gezogen werden.

Der letzte Teil beschreibt eine im Rahmen der Zusammenarbeit mit dem industriellen Partner
des Projektes durchgeführte Arbeit. Es wird ein Überblick über die hauptsächlichen technolo-
gischen Lösungen für die Steuerung des Rührens gegeben, von welchen die Nutzung von Vibra-
tionssensoren ausgewählt wird. Ein experimentelle Untersuchung von Vibrationen beim Mischen
im Rührkessel wird durchgeführt. Die Ergebnisse erlauben es, einige praktische Empfehlungen für
die industrielle Praxis zu geben und sie verbessern unser Verständnis von Vibrationsphänomenen
für zukünftige Modellierungsarbeiten.
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