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Abstract

Microplastic particles are ubiquitous not only in marine but also in freshwater ecosystems.

However, the impacts of microplastics, consisting of a large variety of synthetic polymers,

on freshwater organisms remains poorly understood. We examined the effects of two poly-

mer mixtures on the morphology, life history and on the molecular level of the waterflea

Daphnia magna (three different clones). Microplastic particles of ~40 μm were supplied at a

low concentration (1% of the food particles) leading to an average of ~30 particles in the

digestive tract which reflects a high microplastic contamination but still resembles a natural

situation. Neither increased mortality nor changes on the morphological (body length, width

and tail spine length) or reproductive parameters were observed for adult Daphnia. The

analyses of juvenile Daphnia revealed a variety of small and rather subtle responses of mor-

phological traits (body length, width and tail spine length). For adult Daphnia, alterations in

expression of genes related to stress responses (i.e. HSP60, HSP70 & GST) as well as of

other genes involved in body function and body composition (i.e. SERCA) were observed

already 48h after exposure. We anticipate that the adverse effects of microplastic might be

influenced by many additional factors like size, shape, type and even age of the particles

and that the rather weak effects, as detected in a laboratory, may lead to reduced fitness in

a natural multi-stressor environment.

Introduction

Microplastic particles, most often defined as particles of less than 5 mm in size, are ubiquitous

in the marine environment [1–3], and contamination of the ocean with plastic debris has been

characterized as one of the top emerging global issues [4, 5]. The greatest proportion of marine

plastic waste originates from continental sources [6, 7] with rivers acting as major pathways [8,

9]. Lakes and streams have come more recently under focus as being similarly polluted with
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both macroplastic (>5 mm) and microplastic (<5 mm) particles (reviewed in [10]). For

streams crossing urban and industrial zones, high loads of microplastic particles have been

detected (e.g., [11, 12]). Microplastic particles can be observed in lake surface waters and

beach sediments, independent of lake size, remoteness and adjacent city population or level of

industrialization (e.g., [13–15]). In freshwater systems, the most commonly detected micro-

plastic particle size class in surface waters is 5 mm down to 300 μm [16, 17], while for sedi-

ments, particles down to a few microns were identified (e.g., [11, 13, 18]). Potential

introduction pathways of microplastics into lakes and streams include direct disposal, wind

drift and sewage treatment plants [19, 20]. In marine ecosystems, the ingestion of microplastic

particles has been demonstrated in a wide range of organisms covering different trophic levels

(reviewed in [21–23]). Ingestion of microplastics by freshwater organisms is similarly likely.

Evidence comes from field studies showing the presence of ingested microplastic particles and

fibers in freshwater fish [24, 25], and laboratory studies proving the uptake of microplastic par-

ticles by fish and freshwater invertebrates from different feeding guilds (e.g., [13, 26, 27]).

To date several potential harms of microplastic particles were described. The release of

harmful substances from microplastic particles into the digestive tract is postulated to be one

of the major threats [28]. The origin of these substances can be the manufacturing process

where potential toxic or endocrine disrupting additives such as Bisphenol A, are incorporated

in the plastic blend. Additionally, less obvious threats may derive indirectly from plastic parti-

cles. Environmental contaminates (e.g. hydrophobic persistent organic pollutants or toxic

metals) may adsorb to the surface of the particles and can be transferred to the respective

organisms [29–31]. Nevertheless, the recent work of Koelmans, Bakir [32] reevaluated the

potential contribution of microplastic to the transport of such substances and suggest that

microplastic is of limited importance compared to other environmental media (e.g. air, soil,

water). Additionally, potentially harmful microorganisms may attach to the surface or live in

the biofilm covering microplastic particles [33, 34]. The biological hazard of ingested micro-

plastic particles is enhanced due to their translocation into organs [35] and tissues [36]. This

leads to a high potential for bioaccumulation, as shown in marine [37, 38] and freshwater

foodwebs [39, 40]. In summary, although there is a high potential for adverse effects of micro-

plastic particles to aquatic ecosystems, the knowledge about the impacts of microplastics, espe-

cially on freshwater organisms, is still poor [17].

The aim of this study was to establish baseline knowledge on the effects posed by environ-

mentally relevant concentrations of microplastics on the freshwater cladoceran waterflea

Daphnia magna at the morphological, life history and molecular level. Three clonal lines were

used to further test if possible responses differ among clones. These D. magna clones were

exposed to a large range of polymers commonly detected in freshwater ecosystems [10–13, 18]

by supplying those in two different mixtures. Waterfleas constitute a major component of

freshwater foodwebs, being not only the main food item for fish but also the main herbivore of

algae, and are a well-established model organism for ecotoxicology [41]. Since only very few

years, the Daphnia genome is available [42] and functional genomic studies are now possible.

Although D. magna is primarily a filter feeder, they also graze on sedimentary algae. The latter

feeding mode is used especially in the littoral zone of lakes or small ponds [43] where high

accumulations of non-buoyant microplastic particles have been found [18]. Benthic feeding

on microplastic particles by D. magna was already shown in laboratory experiments [13, 44].

Until now, most laboratory feeding-experiments applied high concentrations of microplastic

particles (reviewed in [45]) or performed experiments with non-environmentally relevant con-

ditions (regarding size, shape and composition of microplastics, etc. [32]). Currently published

microplastic particle concentrations in freshwater environments suggest that animals will

ingest microplastic particles in much lower amounts (e.g., lake surface waters: average
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0.07 ± 0.08 micro- and macroplastic particles/m2, max: 0.22 micro- and macroplastic particles/

m2, median: 0.04 micro- and macroplastic particles/m2, reviewed in [10]). In this study, Daph-
nia were exposed to a considerable low concentration of microplastic particles to food particles

(1% microplastic particles in the food). This led to an ingestion rate which reflects a high

microplastic contamination but might still resemble a natural situation and therefore allows

for a realistic assessment of the effects of microplastics.

Materials and methods

Daphnia clones

Three different clones of D. magna were chosen from an available large collection of laboratory

clones. No ethical approval is required for invertebrate use in toxicity testing. The clones origi-

nated from three different sites in Europe but all clones are established laboratory clones

which have been raised in the lab during the last 6–20 years. K34J was isolated in 1998 from a

former fishpond north of Munich, Germany. These fishponds were used as organic waste

water treatment by a waste water treatment plant since 1929. BL2.2 originated from a small

pond (Oud Meren) within a small park in Leuven, Belgium and is in culture since 1997. BL2.2

coexisted with backswimmers (Notonecta sp.) and fish. Max4 was hatched in 2010 from resting

eggs originating from sediments from the Camargue/Tour de Valat Nature reserve, France).

Predatory tadpole shrimps (Triops cancriformis) hatched from the same sediment. For none of

the three locations data about potential plastic contamination is available. However, the high-

est probability for a contamination with plastic particles might exist for the fishponds near

Munich which received waste water treatment plant effluent. The clones were cultured in an

artificial medium based on ultrapure water, phosphate buffer, salts and trace elements [46] at

20˚C ± 0.5˚C and a 16h:8h light:dark regime. Daphnia were fed with the green algae Scenedes-
mus obliquus ad libitum.

Tested polymers, generation of microplastic particles and stock

suspensions

The three D. magna clones (BL2.2, K34J, Max4) were exposed to two different mixtures of

microplastic particles, each consisting of four polymers. The tested polymers were an assort-

ment of commonly used, non-buoyant plastic types, which are ranked among the 40 most

toxic polymers [47]. All tested polymers have been detected in sediments of a subalpine lake

[13, 18] and are known contaminants of freshwater ecosystems [10–12]. The polymers were

assigned to two groups. Plastic mix A consisted of four polymers commonly found in freshwa-

ter ecosystems: Polyamide, polycarbonate, polyethylene terephthalate and polyvinylchloride.

In contrast, plastic mix B contained polymers which, although they have a high market share,

their to date detected abundance in the environment remains low: Acrylonitrile-burtdiene-sty-

rene terpolymer, plasticized polyvinyl chloride, polyoxymethylene homopolymer and styrene-

acrylonitrile copolymer [13, 18]. A detailed list of the polymers, their hazardous rank and their

chemical composition are given in S1 Table. Microplastic particles were generated from raw

pellets which contained a minimum number of additives necessary to produce these pellets,

but without specialized additives such as pigments or plasticizers. Grinding resulted in irregu-

lar shaped particles of an average size of ~40 μm (precise size information for each polymer is

provided in S1 File). The ground particles were suspended in artificial Daphnia medium and

their concentrations were quantified as described in the S1 File.

Do Daphnia respond to microplastics?

PLOS ONE | https://doi.org/10.1371/journal.pone.0187590 November 16, 2017 3 / 20

https://doi.org/10.1371/journal.pone.0187590


Daphnia exposure to microplastic particles

Studies assessing the abundance of microplastic plastic particles (<100 μm) in the water col-

umn using sound analytical methods are rare [10, 17]. The same is true for information about

microplastic ingestion by freshwater organisms, especially zooplankton [21]. In order to

expose Daphnia to an amount of microplastic particles resembling environmental conditions

we quantified the number of algae particles during standardized feeding (S1 File) as well as

performed a preliminary ingestion experiment with red fluorescent microplastic particles (S2

File). In contrast to the polymers used in plastic mix A and B, these red fluorescent particles

can be easily visualized under a fluorescent microscope. The red fluorescent microplastic parti-

cles were generated from larger polymethyl methacrylate (PMMA) pellets, likewise to the par-

ticles of plastic mix A and B. Therefore, the created particles had a comparable irregular shape

(S1 File) and a size of 29.5 ± 26 µm, which is similar to the size of the particles used in both

plastic mixtures (~40 μm, detailed size information are available in the S1 File). The prelimi-

nary ingestion experiment revealed that a plastic particle concentration of 1% of the food parti-

cles resulted in a particle abundance of 33 ± 22 particles (mean ± SD, min: 6, max: 68) in the

Daphnia digestive tract after 48h. This was assumed to represent a high plastic contamination

but still being environmentally relevant, in contrast to previous studies using very high plastic

concentrations (up to 1,000,000 particles/ml, reviewed in [45]). Nevertheless, these ingested

particles numbers are higher than microplastic numbers detected in marine mussels (0.26–1.7

microplastic particles/mussel [21]), in fish from the North Sea and Baltic Sea (1–3 plastic parti-

cles/individual [48]), from the English channel (1.90 ± 0.10 particles/individual [49]), from

estuarine drums (0.83 ± 0.16 particles/individual [50]). However, the assessed particle sizes in

the above-mentioned studies were much larger than the particles fed in this study.

Experimental design

Effects of microplastic particles were assessed through two approaches (Fig 1): (I) Evaluation

of gene expression after 48h exposure to microplastic particles (here, gene expression related

to general stress responses, oxidative stress responses, as well as to processes such as metal

detoxification, endocytosis, toxin uptake, oogenesis and juvenile development) were studied.

(II) Assessment of morphological and life history parameters for adults under chronic expo-

sure from primiparity (i.e. visible freshly deposited eggs) through the 5th brood, as well as

number of juveniles produced and their morphological parameters.

For evaluation of gene expression, 20 age-synchronized neonates were kept in 1.8 L of artifi-

cial medium at 20˚C ± 0.5˚C and a 16h:8h light:dark regime (Fig 1, step 1). To prevent micro-

plastic contamination from the air, all experimental containers were covered with glass plates.

Daphnia were fed with the green algae S. obliquus at a concentration of 1 mg Carbon/L every

second day. A full water exchange was performed on the third day. On the sixth day, when ani-

mals were observed to have reached primiparity, plastic exposure was started. Primiparity is a

well-defined and easy to observe time point which enables a standardized experiment by using

age synchronized animals. The start of the plastic exposure was initiated by transferring the

Daphnia into a jar prepared 24h prior the transfer with fresh artificial medium, food and the

corresponding plastic mixtures (Fig 1, step 2), in order to allow algae and plastic particles to

sink to the bottom of the experimental glasses. The sedimentation of the non-buoyant poly-

mers and the algae ensured an equal uptake of the polymer particles by Daphnia from the bot-

tom of the experimental glasses and consistent experimental conditions throughout the

experiment. This feeding from the ground was already shown in a laboratory experiment [13]

and in the preliminary experiment (S2 File). The plastic mixtures were supplied in a concen-

tration which corresponds to 1% of the algae particles (290 particles/ml). This resulted in three
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treatments: Plastic mix A, plastic mix B and the control which did not contain any plastic par-

ticles. Each treatment of the three clones consisted of six replicates, resulting in 54 experimen-

tal units (3 clones × 3 treatments × 6 replicates; Fig 1, step 3). After 48h (i.e. 48h after

primiparity, Fig 1, step 4), 15 animals from each experimental unit were preserved for gene

expression analysis with Trizol (Invitrogen, USA) as described below.

For assessment of morphological and life history parameters, three of the remaining five

Daphnia from each experimental unit were transferred individually to new 250 ml glasses.

These were filled with 200 ml of artificial medium S. obliquus (2 mg Carbon/L), and stock sus-

pensions of microplastic particles 24h prior the transfer (580 particles/ml, Fig 1, step 5). This

led to 18 replicates for each treatment (plastic mix A, plastic mix B and control), which resulted

in 162 experimental units (3 clones × 3 treatments × 18 replicates; Fig 1). Every other day,

Daphnia were transferred to a new glass likewise prepared 24h prior the transfer. Animals

were monitored until they produced their 5th brood (Fig 1).

Evaluation of gene expression after a 48h exposure to microplastic

particles

RNA isolation. Fifteen animals from each replicate were transferred to a 1.5 ml Eppen-

dorf tube, the medium was removed using a Pasteur pipette and 500 μl Trizol (Invitrogen,

USA) was added. The animals were homogenized using a plastic pistil, which was thereafter

rinsed with an additional 500 μl of Trizol. Samples were stored at -80˚C until further process-

ing. RNA was isolated from Trizol-preserved samples according to the manufacturer’s proto-

col (Isolate II RNA Mini Kit, Bioline GmbH, Germany) with the following modifications: (i)

the DNase step was omitted (presence of DNA was excluded), (ii) introduction of a second

Fig 1. Experimental set-up for each of the three D. magna clones. 1) Initially, 20 primiparous Daphnia (6 replicates per clone and treatment) were cultured

without any plastic particles. 2) When the animals reached primiparity, they were transferred to a glass jar prepared 24h prior with fresh artificial medium, food

and the corresponding plastic mixtures. 3) They were exposed to their respective treatments for over 48 hours. 4) After the exposure, 15 of the Daphnia of

each replicate were preserved for (I) gene expression analyses (6 replicates per treatment). 5) From the remaining five animals, three were transferred

individually into small glass jars (18 replicates per treatment). These were cultured until they produced the 5th brood for assessing (II) morphology and life-

history parameters.

https://doi.org/10.1371/journal.pone.0187590.g001
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drying step, (iii) elution step performed twice using half amounts of RNase-free water at the

end. Extracted RNA was aliquoted in 3 tubes and stored at -80˚C. Total RNA concentration

and quality of the isolated RNA were assessed using a NanoDrop ND-1000 spectrophotometer

(Peqlab Biotechnologie GmbH, Germany).

Reverse transcription of RNA and DNA contamination control. 2 μg of RNA was used

for reverse transcription with Tetro cDNA Synthesis Kit (Bioline GmbH, Germany) according

to manufacturer instructions. In order to exclude contamination of samples with genomic

DNA, a TATA-box fragment was amplified for each sample using an additional DNA positive

control originating from three adult Daphnia (DNA isolated according to protocol described

in [51]). Resulting amplicon length was checked on agarose gel, where the presence of DNA

contamination could be verified based on different band length due to the presence of introns.

Selection of candidate and reference genes. Difference in expression level was measured

based on seven candidate genes: Two genes involved in general stress response (heat shock

protein, HSP 70 & 90 [52]); one gene involved in oxidative stress response (Glutathionin-S-

transferase, GST [53]); two genes that are part of metal detoxification processes (Metallothio-

nin A & B, MetA & MetB [53]); Flotilin (Flot) which has a key role in endocytosis and toxin

uptake [54]; and Juvenile Hormone Esterase (JHE), which plays an important role in inverte-

brate oogenesis and is a key regulator of insect juvenile hormone, being responsible for con-

trolling vitellogenesis in Daphnia and co-regulating the production of male offspring [55].

Increased production of male offspring is a reaction of D. magna to environmental stress [56].

Eight putative housekeeping genes were included as possible reference genes: Glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH), succinate dehydrogenase (SDH), Syntaxin 16

(Stx16), TATA box binding protein (TBP), ubiquitin conjugating enzyme (UBC), alpha Tubu-

lin (aTub), Actin (Act) and Sarco(endo)plasmic reticulum calcium ATPase (SERCA). SERCA

is a Ca2+ transporter, thus playing an important role in cell calcium signaling pathways [57,

58], and is related to inducible responses in Daphnia to the presence of predators [59]. All

these genes, with the exception of SERCA, have been previously evaluated as reference genes

for D. magna qPCR assays [55, 60–62]. Reference gene stability was tested based on proven

geNorm [63] and qBase technology [64]. Similar to candidate genes, genes with low stability

were tested for differences in expression.

Primer design and validation. Primers for Act, aTub, Flot, GAPDH, GST, HSP60, JHE,

MetA, MetB, SDH, UBC were obtained from [52, 53, 55, 60, 65]. For the other genes primer

sequences were designed using PerlPrimer [66]. If possible, at least one primer spanned the

exon/intron junction (additional control for DNA contamination). Primer pairs were tested

for the presence of dimers and then optimized by end-point PCR and subsequent gel electro-

phoreses. A complete list of primers used in this study, the corresponding primer sequences

and parameters are given in S2 Table.

Efficiency and specificity screening. Standard curves were produced for each of the

genes to examine the efficiency of the primers and their dynamic range. For each gene, a stan-

dard curve with a fivefold dilution series from a cDNA mixture (from each clone and each

treatment) was performed in three technical replicates. Standard curves were run in a Thermo-

cycler (CFX Connect, Bio-Rad, Germany) using the following protocol: 98˚C for 2 min, 98˚C

for 2 s, 58˚C or 60˚C (according to the primer temperature) for 7 s, all repeated 45 times. After

every run, a melting curve analysis was performed in order to test specificity of the amplified

products. The specificity of the amplicons was obtained by heating from 65˚C to 95˚C, in steps

of 5˚C. Standard curves were produced for all genes using qbase+ 2.6 (Biogazelle NV, Bel-

gium). Single technical replicates were removed when the value varied more than one cycle

from the other two. Best amplification rates were yielded at a dilution of the cDNA stock of

1:100. Primer temperature and primer concentration were optimized to R2�0.993 and an
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efficiency between 92–106%, except the primers of aTub and MetA for which the efficiencies

were 88.4 ± 1.5% and 87.1 ± 3%, respectively.

Real time–quantitative PCR analysis (RT-qPCR). The qPCR reactions were run in tech-

nical duplicates, including a non-template control on the CFX Connect Real Time System (Bio

Rad, Germany). For the qPCR reactions, 10 μl of the SensiFAST SYBR NO-Rox Kit (Bioline,

Germany) was mixed with 8.4 μl of diluted cDNA (equivalent to approximately 1 μg cDNA),

the corresponding amount of forward (F) and reverse (R) Primer (400 nM), and sterile water

to obtain a final volume of 20 μl. The same conditions were applied in the thermal cycling pro-

gram as for the efficiency screening. After every run a melting curve analysis was performed

by heating from 65˚C to 95˚C, in steps of 5˚C.

Statistical analyses of RT-qPCR data. All raw data were exported from the software

(CFX Manager, Bio Rad, Germany) and further processed with the software qbase+ 2.6 (Bioga-

zelle NV, Belgium). All statistical analyses were performed using qbase+ 2.6. Gene expression

data were analyzed for each clone individually given clonal differences in the expression stabil-

ity of reference genes. Differences of quantitation cycle (Cq) values were normalized to the ref-

erence genes and log10 transformed [67]. This in combination with the central limit theorem

allows the use of parametric statistical tests and calculations [68]. Each gene was, tested using

univariate ANOVA and pairwise comparisons by Tukey-Kramer for each candidate gene. The

ANOVA results of each clone were corrected for multiple testing by the false discovery rate

method [69]. No tests on differences between the clones were performed and therefore no fur-

ther corrections for multiple testing were necessary.

Morphological and life history parameters

The morphological parameters of the adults were recorded 48h after primiparity (prior to

transfer into 250 ml glasses, Fig 1, step 5) and when Daphnia were carrying the 3rd and 5th

brood. This resulted in a time of exposure of 20–22 days, depending on the duration necessary

to produce the 5th brood. Measurements were made using an image analyzing system (Leica

MS5, Leica Mikrosysteme Vertrieb GmbH, Germany and Cell^P, Olympus GmbH, Germany).

Recorded parameters were body length (distance between the upper edge of the eye and base

of the tail spine), body width (longest distance between the dorsal and ventral carapace edge,

perpendicular to body length) and tail spine length (distance from tip of the tail spine to its

base, S1 Fig). The number of produced neonates was recorded from the 1st to the 5th brood.

Neonates were removed from the glasses. Sex of neonates was determined under a stereo

microscope for the 1st, 3rd and 5th brood. The morphological parameters of the neonates (i.e.

body length, body width, tail spine length) were recorded from five randomly chosen neonates

of each replicate from the 1st, 3rd and 5th brood, similar to the adults.

Statistical analyses of morphological and life history parameters. Statistical analyses

were performed for each clone separately. Due to lacking homogeneity of variance, permuta-

tional multivariate analyses (PERMANOVA) were performed [70–72]. PERMANOVA is suit-

able for any multifactorial ANOVA design, allowing for all pairwise multi comparisons by

permutation with nested designs and covariance analyses as well as for test designs including

multiple nesting [73]. All PERMANOVA analyses were performed using Primer 6 Version

6.1.12 (Primer-E Ltd., United Kingdom) with the PERMANOVA+ package Version 1.0.2. The

following settings were applied: Sums of squares type I (sequential); fixed effects sum to zero

for mixed terms; permutation of residuals under a reduced model; 9999 permutations. Resem-

blance matrices were generated using Euclidian distances. Monte Carlo correction with 9999

permutations was used for every test. Subsequent homogeneity of dispersion was tested by sep-

arate PERMDISP tests including pair-wise comparisons in order to determine if differences
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between any pair of groups were due to location, spread, or a combination of the two accord-

ing to the PERMANOVA user notes [71]. Resemblance matrices were generated using Euclid-

ian distances and PERMDISP was performed with 9999 permutations on the centroid.

Difference in multivariate spread were only observed for 8 out of 69 comparisons. Among the

significant PERMANOVA results between the control and Treatment A or Treatment B no

differences of multivariate spread were found. Detailed PERMDISD results are available in the

S3 File.

The body length, body width and tail spine length of adult Daphnia and the neonates pro-

duced in the 1st, 3rd and 5th clutch as well as the number of produced offspring were tested for

differences between the control group and animals fed with plastic mix A or plastic mix B,

respectively. For the adults, PERMANOVA tests were conducted over the entire experimental

period, using three different time points (48h after primiparity, carrying the 3rd clutch & carry-

ing the 5th clutch) as an additional fixed factor. For the neonates as well as the number of pro-

duced offspring, PERMANOVA tests were conducted over the entire experimental period

using PERMANOVA with the three different time points (1st, 3rd & 5th clutch) as an additional

fixed factor and by nesting the neonates of each replicate. To compensate for size-dependent

differences, analyses of body width and tail spine length of both adults and juveniles were per-

formed using body length as a covariate. The effect of the covariate was always significant. The

homogeneity of regression slopes was checked by the interaction term of the fixed factor and

the covariate and was non-significant for all tests. Figures showing the body width and tail

spine length of the neonates were prepared using the ratio of the body width and the tail spine

length to body length in percent to compensate size-dependent differences. For figures visual-

izing nested data, the five individuals of each replicate were averaged to represent the nested

individuals in the figures. The error bars give the 95% confidence interval which was calculated

by SPSS (IBM Corp., USA).

Results

Evaluation of gene expression after 48h

The reference gene stability tests showed a varying gene expression among the potential refer-

ence genes between the three clones and no common reference genes could be identified due

to the high interclonal differences. Therefore, normalization of gene expression was performed

for each clone separately (detailed results are given in the S3 File). Three reference genes were

chosen for clone BL2.2 (TBP, UBC and SDH) and Max4 (GAPDH, STX16 and UBC), and two

reference genes for K34J (GAPDH and UBC).

Differences in gene expression pattern after 48h exposure to plastic mixtures were detected

for clone BL2.2 and Max4, but not for K34J (Fig 2). Differentially expressed genes were

involved in general stress or oxidative stress responses. However, involved were also other

putative reference genes. Overall, HSP60 was up-regulated while four other genes (HSP70,

Act, aTub, SERCA) were down-regulated when clone BL2.2 was exposed to plastic mix A.

Exposure to plastic mix B resulted in five genes being down-regulated (GST, Act, aTub,

GAPDH, STX16). The exposure of clone Max4 to plastic mix A and B led to the up-regulation

of two genes in each treatment group (plastic mix A: SDH and SERCA; and plastic mix B:

HSP60 and SDH). Detailed output from the statistical analysis of differential gene expression

after normalization is provided in the S3 File.

Morphological and life history parameters

During the entire experiment, mortality was negligible (in total, 6 out of 162 animals died, two

of them were killed due to a handling error). Differences in body length were not detected
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between the control and plastic mix treatment groups (Fig 3, S4 File). Body width of clone

BL2.2 decreased in the 3rd clutch, when exposed to plastic mix B (Fig 3 & S4 File). Tail spine

length was larger for two clones in plastic mix A: clone BL2.2 at the 5th clutch and clone Max4

48h after primiparity (Fig 3, S4 File). Number of produced neonates did not differ between the

control and plastic mix treatments (Fig 4, S4 File). Some males were produced by all three

clones (0.6% of checked juveniles) but their proportion did not differ between the control and

plastic mix treatments (S4 File).

There were some significant, but rather inconsistent, differences in body length, body

width and tail spine length within juveniles born from control and treatment mothers. For

example, juvenile body length was smaller in the plastic mix A treatment for clone K34J (3rd

clutch) and clone Max4 (1st clutch), but larger for clone K34J (5th clutch) and clone Max4 (3rd

clutch) in the plastic mix B treatment (Fig 5, S4 File). Thinner juveniles only occurred in the

1st clutch of Bl2.2 in the plastic mix A treatment group (Fig 5, S4 File). Tail spines of Max4 neo-

nates exposed to plastic mix A in the 5th clutch were longer than the tail spines of the control

group (Fig 5, S4 File). Similarly, neonates of K34J exposed to plastic mix B had longer tail

spines than the control group in both the 1st and 5th clutch (Fig 5, S4 File).

Discussion

Ingestion of microplastic particles from both plastic mixtures, at an adopted concentration

resembling a realistic ingestion rate, did not increase mortality of Daphnia. This is in concor-

dance with described reaction of D. magna to 1-μm polyethylene beads, but these 1-μm parti-

cles caused increasing immobility with time and dose (EC50 57.43 mg/L after 96h [44]).

However, immobility was not observed in our study. Likewise, experiments on marine species

evoked little or no mortality, when organisms were exposed to plastic polymers consisting of a

single substance (reviewed in [23, 74]). For example, no acute toxicity was observed in the

marine isopod Idotea emarginata or the marine copepod Tigriopus japonicus when exposed to

polystyrene microparticles [75, 76]. Additionally, almost no changes in body size of the adult

D. magna were observed here. Likewise, growth and intermolt duration of the marine isopod

I. emarginata did not change after exposure to microplastic particles and fibers [75]. Contrary

to the copepod T. japonicus, which showed a significant decrease in fecundity [76], the number

of produced juveniles did not change for D. magna. Decreased fecundity in T. japonicus might

have resulted from the higher concentrations used in the exposure experiments compared to

the adopted concentrations in this study. Nevertheless, it cannot be ruled out that other

parameters such as lipid content of the eggs might be affected by microplastic exposure.

Although neither morphology nor life history of D. magna adults were affected by micro-

plastics, offspring showed a variety of significant but small differences in body length, body

width and tail spine length. Strong responses, such as increased mortality or malformations

after exposure of D. magna to nano-polystyrene [40], were not observed. Depending on the

clone, the juveniles in some clutches were smaller and in others larger compared to the control

group. A comparison of both, life-history and morphological traits of adult and juvenile D.

magna among the clones showed inconsistent results. However, this cannot be regarded as

influence of the microplastic particles, as the reaction of the control treatments of the corre-

sponding clones showed a comparable high variation. The above mentioned observations

Fig 2. Expression profile of D. magna clone BL2.2, K34J and Max4 after 48h exposure to plastic mix A

and B. Reference genes used for normalization of gene expression were for BL2.2: SDH, TBP and UBC; for

K34J: GAPDH and UBC and for Max4: STX16, UBC and GAPDH. Error bars indicate 95% confidence interval.

Confidence intervals are not affected by the correction for multiple testing by the false discovery rate method. *
p<0.05, ** p<0.01.

https://doi.org/10.1371/journal.pone.0187590.g002
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correspond to frequently described results from Daphnia ecotoxicity tests of pharmaceuticals

with low acute toxicity, where only subtle effects occur after chronic exposure or the effects are

only observed in future generations [77, 78].

Changes in offspring body size but also the elongation of tail spines are a common pheno-

typic plastic defenses of Daphnia. [46, 79, 80]. Both were observed in a present study, at differ-

ent time points and in different clones after exposure to both plastic mixes whereas such

defences should normally only be expressed if predators are present. Displaying the wrong

defensive strategy against the actual predator spectrum might lead to predator induced

Fig 3. Morphological parameters of adult D. magna. Body length, body width and tail spine length of the clones Bl2.2, K34J and Max 4; measured 48h

after primiparity and upon carrying the 3rd and 5th clutch. Statistical analyses of body width and tail spine length were performed using body length as a

covariate in order to compensate for size-dependent differences. Likewise, for the figures body width and tail spine length were drawn as relative values of the

body length in percent. Error bars indicate the 95% confidence intervals. Significance level against the control treatment is indicated by * p<0.05, ** p<0.01.

https://doi.org/10.1371/journal.pone.0187590.g003

Do Daphnia respond to microplastics?

PLOS ONE | https://doi.org/10.1371/journal.pone.0187590 November 16, 2017 11 / 20

https://doi.org/10.1371/journal.pone.0187590.g003
https://doi.org/10.1371/journal.pone.0187590


mortality [81]. Hence, even if changes in body size as well as alteration in tail spine length

could be regarded as subtle effects, they may have an impact on Daphnia survival if considered

in an ecological context.

The morphological data of both adult and juvenile Daphnia suggest that only some of the

assessed parameters were affected and that occurring effects are small and subtle. The gene

expression data indicate an increased stress level of adult Daphnia of some clones after only

48h exposure to both plastic mixtures, although also here the observed changes were rather

small. In addition, similar to the morphological data, the interclonal variation in gene expres-

sion between the three clones was high, as likewise described in other Daphnia studies evaluat-

ing differences in gene or protein expression [82–84]. The strongest reactions to microplastic

particle exposure were observed for the clone BL2.2. However, high variability in gene expres-

sion between replicates may have obscured weak effects in the other clones. Common stress

genes from the HSP family were differentially expressed under microplastic exposure, com-

pared to the control treatment, in the clones BL2.2 and Max4. Both HSP60 and HSP70 are part

of the intracellular alarm and repair system which protects protein integrity against negative

effects induced by environmental stressors like heat or toxicants [84]. The upregulation of

HSP60 has been documented in D. magna after 24h exposure to NO3 coated silver nanoparti-

cles at a concentration of 1/4 LC25 [53]. Some studies observed a return of HSP60 to base levels

within 24 hours, probably due to the energetic costs of maintaining high HSP levels over long

periods [82, 85]. In combination with the fact that maximum expression levels can be reached

after only 6h of exposure [82, 85], this could indicate that assessment of expression for this par-

ticular gene after 48 hours was too late and some individuals may have already returned to

base levels. This could have led to the high variability in HSP60 levels observed between repli-

cates in the present study. In contrast to HSP60, HSP70 is regarded as a chronic stress marker

which maintains high levels even after long-term exposure [86]. Despite this, the only detected

response of HSP70 was a downregulation in clone BL2.2, in the plastic mix A treatment. A

similar downregulation of HSP70 was observed after exposing T. japonicus to environmental

toxicants (4-nonylphenol and 4-t-octylphenol), indicating that the downregulation of HSP70

can be utilized as a sign of stress [86]. Nevertheless, the limited HSP70 reaction to both plastic

mixtures, as observed in our experiment, could be due to the recently suggested ability of

Daphnia to rapid microevolution, leading to the acquisition of toxicant resistance. This was

suggested in another study [84], which found a correlation between cadmium sensitivity in dif-

ferent clones of D. magna, cadmium accumulation and expression of HSP70 in these clones.

Fig 4. Number of offspring from D. magna produced during the entire experimental period. Error bars indicate the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0187590.g004
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Varying susceptibility to plastic exposure within the three clones could be due to increasing

persistence of microplastic particles in the environment over the last few decades and resulting

adaptation to related compounds. However, no record of microplastic particles exists for the

field sites where clones were isolated from. Only for the origin of K34J, a fishpond used for

organic treatment of waste water by a nearby waste water treatment plant, a contact with

microplastic particles can be anticipated. Nevertheless, genes from the HSP family could

remain a proxy for stress responses in D. magna. In addition to general stress genes, the gene

Fig 5. Morphological parameters of juvenile D. magna. Body length, body width and tail spine length clones Bl2.2, K34J and Max 4. The statistical

analyses of body width and tail spine length were performed using body length as a covariate in order to compensate for size-dependent differences and by

nesting the five individuals of each replicate. Likewise for the figures body width and tail spine length were drawn as relative values of the body length in

percent. The five individuals of each replicate were averaged to represent the nested individuals in the graphs. Error bars indicate the 95% confidence

intervals. Significance level against the control treatment is indicated by * p<0.05, ** p<0.01.

https://doi.org/10.1371/journal.pone.0187590.g005
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GST was downregulated in BL2.2. As GST is an enzyme which removes reactive oxygen spe-

cies from cells [87], this indicates that microplastic particles may also interact with pathways

related to oxidative stress responses. Exposure of mussels (Mytilus galloprovincialis) to virgin

as well as pyrene treated polyethylene and polystyrene microparticles revealed an inhibition of

anti-oxidant responses [88]. Though, the GST family is quite large and not all GST genes show

the same strong reaction to oxidative reagents like H2O2 or trace metals (e.g., [89]), it remains

worthwhile to include genes from the GST family in gene expression bioassays. Interestingly,

MetA and MetB genes showed no differential expression in any of the studied clones, despite

the fact that both genes are known to respond to metal exposure [90]. Metals might be a com-

pound of plastic blends or they can be transported by plastic particles as an adsorbed environ-

mental contaminant [18, 30]. The downregulation of the gene SERCA for the clone BL2.2 and

the upregulation in Max4 after exposure to plastic mix A is intriguing. SERCA was initially

intended as a reference gene, given that it plays a role in cell calcium signaling during Daphnia
response in the vicinity of a predator presence [57, 59]. Therefore, SERCA was expected to be

equally expressed across all treatments as no predators were present during the experiments.

The observed upregulation of SERCA in clone Max4, in combination with elongated tail spines

in adult Daphnia, might indicate an interference in the signaling pathway responsible for

inducing anti-predation responses. SERCA is known to influence cuticle composition during

expression of inducible defenses like carapace fortification [57, 59, 91]. This is further sup-

ported by observed changes in juvenile body size and elongation of tail spines, both common

anti-predation responses [46, 79, 80]. A similar interaction of nano-polystyrene chemical cues

inducing phenotypic plastic defenses in D. magna has already been suggested [40]. Neverthe-

less, it is not clear if microplastic particles interact with anti-predation responses and what the

mechanisms are. They might act directly on morphological traits or leaching additives might

interact with the signaling pathway responsible for inducing phenotypic plastic responses in

defensive traits. Such an influence of polystyrene microplastic particles on anti-predation

responses was shown in fish larvae; small behavioral changes resulted in an altered predator

avoidance and a reduced survival rate [92]. However, the mechanism behind this interference

remained unclear.

Conclusion

To the best of our knowledge, this is to date the first study exposing Daphnia to irregular

shaped microplastic particles which contained a minimum number of additives necessary to

produce them, but without specialized additives (e.g. pigments, plasticizers) or environmental

pollutants. In contrast to many other studies microplastic particles were supplied in amounts

resulting in low ingestion rates. While low, these rates are more realistic considering currently

published contamination levels in freshwater systems.

None of the three D. magna clones tested here were severely affected by microplastic expo-

sure; neither an increased mortality nor malformations of the adults or the juveniles were

detected. Nevertheless, several small and subtle but also inconsistent effects were detected on

both the morphological and the molecular level. It is possible that these subtle effects might be

due to natural variation or random effects and therefore D. magna species does not respond to

the used microplastic particles. Nevertheless, we cannot exclude that environmental concen-

trations of microplastics will pose a threat to Daphnia, as the toxicity might be influenced by

many additional factors like size, shape, type and even age of the particles.

Our study sets a baseline for future studies of microplastic particles examining more com-

plex scenarios; concerning the shape, size, additive content or adsorbed chemical compounds

in an environmental multi-stress context, with natural stress on one hand (predation pressure,
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interspecific and intraspecific competition, etc.) and the joint effect of anthropogenic stress

(pollutants, rising CO2 levels and temperature, etc.) on the other hand. To conclude, further

research (e.g. long-term experiments, multi-generation studies, multi-stressor experiments)

are necessary to assess the effects of microplastic particles, as superficially weak effects, as

observed in this laboratory environment, could have an impact at both the individual or popu-

lation level in nature.
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Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res. 2016;

120:1–8. https://doi.org/10.1016/j.marenvres.2016.07.004 PMID: 27411093

34. Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “Plastisphere”: Microbial communities on plastic

marine debris. Environ Sci Technol. 2013; 47(13):7137–46. https://doi.org/10.1021/es401288x PMID:

23745679

Do Daphnia respond to microplastics?

PLOS ONE | https://doi.org/10.1371/journal.pone.0187590 November 16, 2017 17 / 20

https://doi.org/10.1016/j.marpolbul.2014.06.001
https://doi.org/10.1016/j.marpolbul.2014.06.001
http://www.ncbi.nlm.nih.gov/pubmed/24973278
https://doi.org/10.1186/s12302-015-0069-y
https://doi.org/10.1186/s12302-015-0069-y
http://www.ncbi.nlm.nih.gov/pubmed/27752437
https://doi.org/10.1016/j.watres.2015.02.012
http://www.ncbi.nlm.nih.gov/pubmed/25746963
https://doi.org/10.1016/j.watres.2016.03.015
http://www.ncbi.nlm.nih.gov/pubmed/27082693
https://doi.org/10.1016/j.watres.2016.11.015
http://www.ncbi.nlm.nih.gov/pubmed/27838027
https://doi.org/10.1021/es201811s
https://doi.org/10.1021/es201811s
http://www.ncbi.nlm.nih.gov/pubmed/21894925
https://doi.org/10.1016/j.envres.2015.07.016
https://doi.org/10.1016/j.envres.2015.07.016
http://www.ncbi.nlm.nih.gov/pubmed/26249746
https://doi.org/10.1016/j.envpol.2013.02.031
http://www.ncbi.nlm.nih.gov/pubmed/23545014
https://doi.org/10.1016/j.marpolbul.2014.12.041
http://www.ncbi.nlm.nih.gov/pubmed/25680883
https://doi.org/10.1016/j.jglr.2015.10.012
https://doi.org/10.1016/j.envres.2013.11.004
https://doi.org/10.1016/j.envres.2013.11.004
http://www.ncbi.nlm.nih.gov/pubmed/24295902
https://doi.org/10.1897/08-559.1
https://doi.org/10.1897/08-559.1
http://www.ncbi.nlm.nih.gov/pubmed/19588999
https://doi.org/10.1016/j.ecolind.2013.06.019
https://doi.org/10.1016/j.cub.2013.10.012
http://www.ncbi.nlm.nih.gov/pubmed/24309271
https://doi.org/10.1016/j.marpolbul.2012.09.010
https://doi.org/10.1016/j.marpolbul.2012.09.010
http://www.ncbi.nlm.nih.gov/pubmed/23044032
https://doi.org/10.1071/EN14143
https://doi.org/10.1038/srep03263
http://www.ncbi.nlm.nih.gov/pubmed/24263561
https://doi.org/10.1021/acs.est.5b06069
http://www.ncbi.nlm.nih.gov/pubmed/26946978
https://doi.org/10.1016/j.marenvres.2016.07.004
http://www.ncbi.nlm.nih.gov/pubmed/27411093
https://doi.org/10.1021/es401288x
http://www.ncbi.nlm.nih.gov/pubmed/23745679
https://doi.org/10.1371/journal.pone.0187590


35. Brennecke D, Ferreira EC, Costa TMM, Appel D, da Gama BAP, Lenz M. Ingested microplastics

(>100 μm) are translocated to organs of the tropical fiddler crab Uca rapax. Mar Pollut Bull. 2015; 96(1–

2):491–5. https://doi.org/10.1016/j.marpolbul.2015.05.001 PMID: 26013589

36. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC. Ingested microscopic plastic

translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol. 2008; 42

(13):5026–31. https://doi.org/10.1021/es800249a PMID: 18678044

37. Farrell P, Nelson K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.).

Environ Pollut. 2013; 177:1–3. https://doi.org/10.1016/j.envpol.2013.01.046 PMID: 23434827

38. Watts AJR, Lewis C, Goodhead RM, Beckett SJ, Moger J, Tyler CR, et al. Uptake and retention of

microplastics by the shore crab Carcinus maenas. Environ Sci Technol. 2014; 48(15):8823–30. https://

doi.org/10.1021/es501090e PMID: 24972075

39. Cedervall T, Hansson L-A, Lard M, Frohm B, Linse S. Food chain transport of nanoparticles affects

behaviour and fat metabolism in fish. PLoS ONE. 2012; 7(2):e32254. https://doi.org/10.1371/journal.

pone.0032254 PMID: 22384193

40. Besseling E, Wang B, Lürling M, Koelmans AA. Nanoplastic affects growth of S. obliquus and reproduc-

tion of D. magna. Environ Sci Technol. 2014; 48(20):12336–43. https://doi.org/10.1021/es503001d

PMID: 25268330

41. Lampert W. Daphnia: development of a model organism in ecology and evolution. Oldendorf/Luhe:

International Ecology Institute; 2011.

42. Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, et al. The Ecoresponsive

Genome of Daphnia pulex. Science. 2011; 331(6017):555–61. https://doi.org/10.1126/science.

1197761 PMID: 21292972

43. Peters RH, De Bernardi R, editors. Daphnia: Consiglio Nazionale delle ricerche Verbania Pallanza;

1987.

44. Rehse S, Kloas W, Zarfl C. Short-term exposure with high concentrations of pristine microplastic parti-

cles leads to immobilisation of Daphnia magna. Chemosphere. 2016; 153:91–9. https://doi.org/10.

1016/j.chemosphere.2016.02.133 PMID: 27010171.

45. Phuong NN, Zalouk-Vergnoux A, Poirier L, Kamari A, Châtel A, Mouneyrac C, et al. Is there any consis-

tency between the microplastics found in the field and those used in laboratory experiments? Environ

Pollut. 2016; 211:111–23. https://doi.org/10.1016/j.envpol.2015.12.035 PMID: 26745396

46. Rabus M, Laforsch C. Growing large and bulky in the presence of the enemy: Daphnia magna gradually

switches the mode of inducible morphological defences. Funct Ecol. 2011; 25(5):1137–43.

47. Lithner D, Larsson Å, Dave G. Environmental and health hazard ranking and assessment of plastic

polymers based on chemical composition. Sci Total Environ. 2011; 409(18):3309–24. https://doi.org/

10.1016/j.scitotenv.2011.04.038 PMID: 21663944
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