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Introduction

Over the past 50 years, reproductive physiology in dairy industry has significantly
changed to adapt to high milk production, [123, B3]. A few weeks after calving,
modern high-yielding dairy cattle in intensive production systems give around 40
liters of milk per day. This is a high amount that comes at a cost. High-producing
cows are highly susceptible to disease, show metabolic disorders and fertility prob-
lems [33] 39, 123], see Fig|l] Early culling and smaller lifetime milk production are
the consequences [22I]. Countermeasures have already been taken, and the trend
of breeding cows with ever increasing peak milk yield — prevalent for decades — may
have come to an end. Optimizing lifetime milk production has proven to be more
beneficial for both economic as well as environmental reasons [35].
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Figure 1: Milk production and fertility in dairy cows. The inverse relationship
between conception rate (CR%) and annual milk production of Holstein dairy cows
in New York. Data from Butler et. al, [33].

The most critical time period for a cow’s health and her future performance is the
periparturient period and the period of early lactation [217, 218]. During that time,
the cow mobilizes body reserves because of her inability to meet energy demands
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4 Introduction

solely from the feed energy consumed. This state is referred to as negative energy
balance (NEB) [155], see Fig[2]
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Figure 2: Relationship between energy intake and requirements for a lac-
tation in high producing dairy cows. This figure shows that during the first
weeks of lactation, cows are in a negative energy balance and are using body energy
reserves to meet their needs. A zero net energy balance (i.e., intake sufficient to
meet requirements) was not achieved until a point in lactation where milk produc-
tion decreases. Figure from Baumann et. al, [9].

For ruminants, the energy content in feed cannot be increased without limits due
to the fermentative character of the digestive system [44]. High energetic feed with
little fiber leads to an imbalance of microbes, rumen acidosis, and may even cause
severe illness and death. Nevertheless, targeted feeding strategies are able to exten-
uate the NEB and to ensure animal health and welfare [218] [I73], [96].

A number of experimental and clinical studies were performed to examine the re-
lationship between the metabolic status and the fertility of cows, both in quali-
tative and in quantitative manners, e.g., [57, [167]. Reduced nutrition intake was
observed to delay the onset of puberty in beef heifers [I88, 50, 229], to change
the growth pattern of the dominant follicles (maximal diameter, persistence, num-
ber of follicular waves) [146], and to increase the period to conception postpartum
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[227, [171) [182]. Studies in the postpartum period of dairy cows showed that the
NEB is strongly correlated with low concentrations of glucose, insulin and IGF-1
in the blood [11], 130, 124]. Changes in the secretion of gonadotropins, caused by low
glucose levels, lead to low FSH and LH concentrations [57, [33], whereby missing
LH peaks cause anovulation [217], see Fig

negative energy balance

’ plasma glucose, insulin, IGF-1 H

N

pulsatile LH secretion }| |ovarian LH sensitivity {

\/

selection of dominant follicle, ovulation ’

Figure 3: Schematic illustration of the possible effect of NEB on the fate
of dominant follicle. NEB is characterised by reduced concentrations of glucose,
insulin and IGF-1 in the blood. This in turn reduces the pulsatile LH secretion as
well as the ovarian LH sensitivity, which results ultimately in ovulation failure.

On the other hand, it was reported that good feed management, e.g., nutritional
manipulation that causes increased insulin [77], reduces the incidence of non-regular
estrous cycles, often being associated with low average concentrations of insulin in

the blood [75].

In general, the mechanisms that result in a reduced fertility are not completely un-
derstood, although a close relationship to the glucose-insulin metabolism is widely
supported. Therefore, to improve practical reproduction such as pregnancy rate
along with milk production simultaneously, a systems biology approach can be
adopted to seek better understanding of the mechanisms linking nutrition to fer-
tility and milk production. Thus, as an attempt to contribute to the efforts per-
formed for the improvement of fertility in dairy cows, this thesis focuses on the role
of nutritional impacts in improving the reproductive performance in dairy cows.
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Particularly, this thesis focuses on the investigation of the impact of glucose, as
part of the feed and as one of the main energy sources of the body, on the estrous
cycle dynamics in dairy cows. Thus, to be able to explore various feeding scenarios,
the aim is to develop a mathematical model that represents metabolic processes as
well as reproductive regulation. This model can allow us to analyse the impact of
glucose originating from the feed on the reproductive hormones and the follicular
development. In addition, the model can be used to simulate and design feeding
and therapeutic strategies that may aid in reducing animal experiments.

Outline

In Chapter 1, a short overview of mathematical modelling in general is provided.
Moreover, some basics of modelling approaches and numerical modelling techniques
that are employed for developing and simulating a mathematical model in system
biology are also introduced. The second part of Chapter 1 focuses on present-
ing some technical tools borrowed from Bayesian inference and information theory.
These tools are used for the simulation and application of the mathematical model
of metabolic and reproductive regulation in Chapters 4 and 5.

In Chapter 2, the development of a mathematical model, called the MetRep model
throughout this thesis, which combines reproductive hormones and glucose-insulin
dynamics within the body of the cow is described. The model is based on ordinary
differential equations and relies on previously introduced models of the bovine es-
trous cycle and the glucose-insulin dynamics. Necessary modifications and coupling
mechanisms are thoroughly discussed.

In Chapter 3, model simulation results for different nutritional regimes in lactat-
ing and non-lactating dairy cows are examined and compared with experimental
studies. In particular, depending on the amount of the dry matter and its glucose
content, the model quantifies reproductive hormones and follicular development
over time.

In Chapter 4, an attempt to link the MetRep model to a pharmacokinetic model is
performed. The coupling is based on mechanisms underlying homeostasis regulation
by dexamethasone. In particular, the coupling takes into account the predominant
role of dexamethasone in stimulating glucagon secretion, glycogenolysis and lipoly-
sis and impairing the sensitivity of cells to insulin. The resulting pharmacokinetic-
pharmacodynamic model simulates the effect of one single dose of dexamethasone
on the physiological behaviour of the system, especially glucose metabolism.

In Chapter 5, the MetRep model is used for simulating the design of experiments.
Particularly, we make use of the model, together with Bayesian inference and in-
formation theory to select the optimal design. The latter is expected to inform us
about when to measure, i.e. select the optimal sampling times of measurement,
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and what to measure, i.e. specify observed species. These information allow us
to reduce the uncertainty in the model parameters for non-lactating cows and the
uncertainty in predicting the ovulation time during postpartum for lactating cows.






Chapter 1

General Background

This chapter briefly reviews some basic concepts of mathematical modelling in sys-
tems biology as well as some numerical techniques that can be employed for devel-
oping and simulating the mathematical model throughout the next chapters of this
thesis. We begin by presenting a general overview of mathematical modelling and
give an example of how to translate a biological problem to a mathematical model.
Then, we review some numerical tools such as the numerical integration of ordinary
differential equations, sensitivity analysis, and criteria that can be used to simulate
and analyse the output of a mathematical model. Subsequently, we present some
technical tools of Bayesian inference and information theory that are needed for
developing Chapter 5.

1.1 Some Concepts of Mathematical Modelling in Sys-
tems Biology

The word model can be defined differently in many ways. In this paragraph, the
following thoughts about what is a model are inspired from [12],[62]. A model can be
a simplified description or miniature conception of a real object, particular system,
phenomena, etc. For instance, it may be as simple as a drawing of house plans,
assembling and gluing together some materials to form an aeroplane kit, or it can
be also an example for emulation or analogy used to help visualize something (e.g.,
an atom) that cannot be directly observed. This definition means that modelling is
an activity in which we think about, lay out a detailed plan and then create mod-
els to describe how systems or objects of interest behave. There are several ways
these behaviours can be described. For example, we can use words, sketches, phys-
ical models, computer programs, mathematical formulas, or often simultaneously
a combination of these things. In particular, the practice of using the language of
mathematics to create models is called mathematical modelling.

Mathematical modelling can be viewed as an interdisciplinary subject, where one
may use whatever knowledge from mathematics and of the system of interest. Math-

9



10 1 General Background

ematical modelling can also be described as the art of translating real life problems
from an application area into tractable mathematical formulations whose theoret-
ical and numerical analysis provides insight, answers, and useful guidance for the
originating application [101]. As described by C. Dym in his book [62], the process
of constructing a mathematical model can be viewed as having three stages: obser-
vation, modelling, and prediction, see Fig In the observation part we observe
and measure what is happening in the real world. Afterwards, we gather empiri-
cal evidence, i.e. collecting data which may provide substantial information about
the system of interest. Observations may be direct, as when we use our senses,
or indirect, in which case some measurements are taken to indicate through some
other reading that an event has taken place. Once enough information has been
collected, modelling activities start here. The modelling part focus on analysing
these observations and shaping them into mathematical formulas. These formulas
can be expressed in terms of a set of numbers or system of equations. Typically, a
mathematical model is composed of variables that describes the state of the system,
parameters that can be varied under experimental conditions, and forcing functions
which are external influences acting upon the system. A mathematical model can
take many forms, continuous versus discrete (some models regard time as a discrete
quantity while others treat it as a continuous variable), linear versus non-linear,
static versus dynamic, and deterministic versus stochastic [I2]. A common class of
mathematical models that fall under the umbrella of deterministic dynamical sys-
tems are ordinary differential equations (ODEs). These equations describe how a
quantity of interest, denoted x, changes over time. ODEs tend to contain derivatives
(rates of change) of dependent variables with respect to time. Here, the initial state
of the system, denoted xg, completely determines all future states. Mathematically,
an ODE is written as

dx(t)
dt

= f(0,z(t)), =(0) = xo € R", (1.1)

where = (z1,...,2,) € R" is called the state variable, and 6 = (1,...,0;) € R?
is the model input parameter vector.

In the prediction part, we exercise our models to tell what will happen in a yet-to-
be-conducted experiment or in an anticipated set of events in the real world. These
predictions are then followed by observations that serve either to validate the model
or to suggest reasons that the model is inadequate [62].

In fact, the use of mathematical modelling is not a new subject. Rather, it has
been there since a long time ago, where scientists have been studying a variety of
problems through mathematical models, such as the fundamental laws of force and
motion published by Issac Newton in his fundamental work ”Mathematical Princi-
ples of Natural Philosophy” in 1687 [I50]. Nowadays, there is hardly any area of
study and research, which escapes from mathematical modelling. For instance, both
mathematics and computer programs are commonly used nowadays by scientists to
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Figure 1.1: An illustration of possible paths through the stages of mod-
elling. A mathematical model can be formulated and improved through the typ-
ical repeated iterations, observation, modelling, and prediction. This process of
repeated iterations is one of the most useful aspects of modelling in terms of im-
proving our understanding about how the system works (inspired from [43, [62]).

construct mathematical models for biological, social, economical, or whatever sys-
tem. In addition, due to the rapid development of computers during the last 50
years, it becomes now possible to solve and simulate these mathematical models
that could hardly be imagined a couple of decades ago.

It is very important to point out that since every person has different scientific
knowledge and a subjective manner of looking at problems, some persons may for-
mulate different models for the same system. Here, it is worthwhile to mention
that models should be constructed in a simple manner, yet reproducing the true
process behaviour. This idea was also attributed to A. Einstein: A model should
be as simple as possible, but not simpler. In addition, models should be
easy to use and reveal everything about the internal cause and effect relationships
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within the process [12]. Unfortunately, there is no accurate or perfect model that
would represent a system of interest. This is also pointed out by G. Box [20]:
Essentially, all models are wrong, but some are useful. As a matter of
fact, one is always faced with the trade-off between accuracy, flexibility and cost.
Since each model would be formulated for a specific task to a prescribed accuracy,
unfortunately there is no definite ”algorithm” to construct a mathematical model
that will work in all situations, rather an adaptive alteration of the model is always
considered. For this reason, increasing the accuracy of a model generally increases
cost and decreases flexibility. Usually, the ultimate goal in constructing a model is
to obtain a ”sufficiently accurate” and flexible model at a lower cost [12]. In the
end, mathematical models can be limited in predictions due to possible shortage
of knowledge about the system. However, it is clear that their ability to simulate,
and to some extent predict real-world systems provides a distinct advantage. Espe-
cially, as computing power becomes cheaper, mathematical modelling becomes an
increasingly cost-effective to direct experimentation.

The mathematical modelling in systems biology is relatively new discipline. The
end of 20th century was known for tremendous technological and scientific break-
throughs. These discoveries advanced new developed experimental techniques in
systems biology, which prompted the emergence of many mathematical models.
These mathematical models have been constructed within newly created subdisci-
plines such as computational biology and bioinformatics, which are at the cross-
roads of biology, physics, chemistry, informatics and mathematics. These models
have been used for testing hypotheses about the underlying processes of complex
biological systems.

Complex biological systems consist of several components which interact to con-
trol the functioning of building blocks of life. In human and animal, for example,
the metabolic system is comprised of several organs, hormones and enzymes that
interact together to digest, absorb, process, transport, and excrete the nutrients
that are essential to life [48]. The endocrine system particularly consists of glands
that produce hormones regulating metabolism, reproduction, and growth-decay of
organisms. To model, simulate and predict the dynamical changes of these interact-
ing components over time, mathematical skills can play a crucial role in elucidating
and understanding the biological mechanisms behind these complex interactions
within the system.

As mentioned earlier, observing and measuring what is happening in the system
of interest is the first step to perform before constructing a model. For biological
phenomena, a common starting point in constructing a model is to make use of col-
lected observations, measurements, as well as existing scientific knowledge to come
up with a graphical representation (also called conceptual model or flowchart) that
roughly reflects the biological mechanisms one aims to model. In fact, this prelim-
inary step is probably one of the most challenging task in modelling. It requires
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the collaboration from mathematicians and biologists, yet they all use the same
approach, or language, housed within the scientific method they share. The aim of
this highly interdisciplinary task is to formulate a clear description of the complex
biological system. In other words, the task is to define the prevailing processes
controlling the system, and also to discuss and decide about the level of model
complexity to consider. The chosen graphical representation should be reliable and
computationally plausible. Usually, this graphical representation is iteratively up-
dated throughout the modelling process.

After formulating a comprehensive graphical representation of the problem, the
translation of biological processes to mathematical formulas can be done in different
ways. This depends on the dynamical behaviour of the system, e.g. deterministic or
stochastic. For instance, if we assume that every substance in the system, denoted
x, is a continuous variable and no randomness is taking place, the evolution of the
system from one state to another can be represented by a system of differential
equations.

Typically x is a concentration, but x could also represent a density or the num-
ber of molecules. The change of x, Ax, per time interval At depends on the gain
rate ry at which x is generated. In this case, the rate of generation reflects all pro-
cesses that lead to an increase in x, i.e. synthesis, production. It depends also on
the loss rate r_ at which x is removed. The loss rate includes all processes that lead
to a decrease in the value of z, i.e. clearance, release, and decay. Additional rates,
denoted g, that may describe for example possible complex formation or chemical
modification can be considered. The rate of gain, loss and g are a non-negative
functions that need to be specified. More formally we can model the change of x
by the following,

Ax(t)
At
Instead of considering finite time intervals At, we will consider the change in an
infinitesimal small time interval dt, such that,

dx(t)
dt

=ry—r_=4g. (1.2)

=ry—r_=+g. (1.3)

When dz(t)/dt = 0, then we say that the system reaches an equilibrium point, also
referred to as steady state. The mathematical expression of each rate depends on
its dynamical change over time. For instance, sometimes the gain term is simply
a zero-order rate, i.e. the rate is apparently independent of the change of the con-
centration of x, e.g. a constant input into the system. It can also be expressed in
terms of first-order rate, that is, a linear term which depends only on a synthesis
rate constant and the current concentration of x. In other situations, the gain term
can be expressed as a non-linear rate, which still depends on the current concen-
tration of z. Some commonly used non-linear rates are the Hill functions which are
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an extension of the Michaelis-Menten equation. The so called Hill functions were
introduced by A. V. Hill in 1910 to describe the equilibrium relationship between
oxygen tension and the saturation of haemoglobin [90]. Thereafter, they have been
widely used in biochemistry, physiology, and pharmacology to analyse the binding
equilibria in ligand-receptor interactions [225]. The Hill functions are often used to
model some processes when quantitative biological mechanisms are unknown, but
information about qualitative regulation such as stimulations or inhibitions between
substances are available. The derivation of the Hill functions is introduced in the
following.

In chemical kinetics, the law of mass action kinetics states that the rate of the
reaction is proportional to the product of reactant concentrations [65]. For a simple
reaction as the following,

k
S —2» p (1.4)

where a substance P is produced from a substance S with a reaction rate constant

ko > 0, the two ODEs that describe the kinetics are,

dzg dzp
7 ko -zg and pr +ko - xg, (1.5)

where xg and zp are quantities, e.g. concentrations or number of molecules, of the
substances S and P, respectively.

Now let us consider the following reversible reaction,

A+nB A,B, (1.6)

+
k_
where k4 and k_ are the rate constants and n is the order of reaction with respect to
B, which for example describes the binding of n ligand molecules B simultaneously

to the receptor A. The ODE that describes the dynamical change of the quantity
x A, 5 over time would be as,

dzy,,
dt

where x4 and xp are quantities, e.g. concentrations or number of molecules, of
the substances A and B, respectively. In equilibrium, the reaction rate is zero, i.e.
dxa, ,/dt = 0, which gives

=ki xa-25 — k- 24,,, (1.7)

n
k,_xA-xB

Kp (1.8)

k+ zA nB

where Kp is called the dissociation constant. Furthermore, assume now that the
total quantity of binding sites exists within a steady state. Thus, the total receptors
of a binding sites, bound or unbound, is constant, that is,

TA+ TA,p = TAg,,- (1.9)
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It follows then from the eq.(1.8) and eq.(1.9) that the fractions of bound and free
molecules A are respectively given by

T4, s _ TA T
Ht(zp) = B — - B — and H (zp) = = = —
xATot T + (EB xATot T + :EB

(1.10)

with T = Kp. The functions H* and H~, defined in the eq.([1.10]), are both known
as Hill functions. H* and H~ are monotonic increasing and decreasing functions,
respectively, that satisfy the following properties,

0 if §=0, 1 if $=0,
HY(S)={1/2 i S=T, H (S)=11/2 ifS=T, (1.11)
1 if § — oo. 0 if §— o0.

As it can be seen from the eq., the Hill functions are sigmoidal functions
between zero and one that switch at the threshold S = T from one level to the
other with a slope specified by n > 0. This number controls the steepness of the
curve, see Fig If n = 1, the Hill function is reduced to its simpler form known
as the Michaelis-Menten equation [140]. We introduce the unscaled Hill functions
as
+ : S” - : ™ +

H™(S,T,n):= G H™(S,T,n) = G 1—-H"(S,T,n). (1.12)
These mathematical notations, H+ and H~ will be used throughout the modelling
process in this thesis.

Whenever a Hill function is used, it is provided with another parameter o, which
controls the height of the switch, or in other words, it can serves as the maximum
effect. Sometimes, the available biological knowledge about the dynamic of sub-
stances comprised in a model such as in usually consists of only qualitative
information, i.e. stimulations or inhibitions between the involved substances. Thus,
when necessary, the rates appearing on the right hand side of the eq. can be
modelled in terms of scaled Hill functions,

Ht=a-HY(S,T,n) H =a-H (5,T,n). (1.13)

where H+ model the maximum stimulatory effects and H~ model the maximum
inhibitory effects. These effects describe the regulation of mechanisms between the
involved substances.

1.2 Numerical Simulations of Mathematical Models

In this section, we introduce some basic numerical tools used for the simulation of
the mathematical model in this thesis. We first start by presenting the solver used
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Figure 1.2: Hill functions. Unscaled positive and negative Hill functions with
different steepness coefficients. A higher coefficient n leads to a steeper switch of
the regulation.

for the simulation of the system of differential equations, and then explain the sen-
sitivity analysis approach used for determining the model input parameters, which
mostly contribute to a quantity of interest depending on the model output. Finally,
we introduce a parameter identification algorithm used for searching model param-
eter values leading to time evolution of species concentrations that are biologically
meaningful.

1.2.1 Numerical Integration of ODEs

For simple differential equations, it is possible to find closed form solutions. If the
equation is of the form as eq.(1.1)), the general solution would be

o(t) :/f(é’,a:(s))ds—l—a:g. (1.14)

In fact, many biological mechanisms are shaped into a high dimensional non-linear
models. In this case, the problem has no analytical solution, thus the numerical
approach is essential here to solve the problem. There are many sophisticated
algorithms for doing this, but almost all are built from discretizing the differential
equation and step forward in time with small steps. The simplest variant of this
stepping is the Euler scheme. An equation of the form can be converted to

lim z(t + At) — z(t)
At—0 At

= f(0,z(1)), (1.15)

where At is a finite time interval. Suppose At is fixed to a particular value h.
Doing this is called discretising the continuous ODE model and h is called the
discretisation step. Thus, choosing a value h for the size of every step, and set
t, = tg + nh, one step of the Euler method from ¢, to t,+1 =%, + h is,

T(tnt1) — 2(tn)

- ~ f(6,z(t,)), (1.16)
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which can rewritten as
T(tpt1) = x(ty) + h-f(0,2(t)). (1.17)

The value of x,, is an approximation of the solution to the ODE at time t,: x, =
z(ty). The Euler method is explicit, i.e. the solution x,1 is an explicit function
of x; for i < n. Unfortunately, the explicit Euler method is an unstable numerical
method when the system is stiff, therefore, a solver for stiff differential equations
is needed. This ensures an appropriate approximation of the solution in any case.
For this purpose, MATLAB solver ode15s [I] is used in this thesis, which is a
variable-step, variable-order (VSVO) solver for stiff differential equations based on
the numerical differentiation formulas (NDFs) of order 1 to 5. Optionally, it can
use the backward differentiation formulas (BDFs).

1.2.2 Sensitivity Analysis

Sensitivity analysis aims at determining the model input parameters which mostly
contribute to a quantity of interest depending on the model output. Let us denote
the model input parameter vector as 6 = (61,...,04) € R?. The model here is an
ordinary differential equation as described by of the form,

dx(t)
dt

= f(0,z(t)), =(0) =z € R", (1.18)

where z = (z1,...,2,) € R" is the state variable. Let us also consider a quantity
of interest, y, which can be any observable depending on the model output =z,

y =y(x(t,0)). (1.19)

This quantity can be for instance the value of a specific output variable z; at a
specific time point ¢, or the variance of x; over a specific time interval. These are
examples for scalar outputs. For the sake of simplicity, the study here is restricted
to a scalar output y. The sensitivity of y with respect to input parameter p; is given
by

6

Y06,

To account for differences in physical units among variables and parameters, often
relative sensitivities are used,
s Oy 6]

Slﬁ@i@i ly|

If the exact derivative is difficult to compute, the sensitivity can be approximated
by a finite difference scheme,

gi o YE(E 0+ Aci)) —y(a(t,0))
y A ’
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where A is the size of the perturbation and e; is a vector of the canonical base.
Often, A is a relative perturbation, i.e., A = € - 6; for some small number ¢ (e.g.
€ = 0.1 corresponds to a perturbation by 10%). In this case, the relative sensitivity
is approximated by

i o VL0 + Bc) —y(a(t,0) (1.20)
€ |y(z(t,0))|

This is a local sensitivity in the sense that it describes the influence of a specific

local perturbation of parameter 6; on the model output. Sampling A or sampling

pairs of input and output variables would allow for a global sensitivity analysis, but

this is computationally much more demanding and the results are often difficult to

interpret. For details on global sensitivity analysis, the reader is referred to [54]

1.2.3 Biological Admissibility

Mathematical models describing biological systems strive to provide quantitative
information about dynamical behaviour of biological species. Typically, models
such as depend on many parameters that shape the mathematical structure of
the model. In a deterministic setting, the assigned default values of the parameters
0*, along with the initial value xg, control the time evolution z(6*,t) of quantities
of interest, e.g., species, hormones. However, sometime these models require some
flexibility that allows them to simulate specific personalized model behaviours, yet
the resulting dynamic should be biologically meaningful. For instance, in a health-
care context the aim is to individualise models in order to compute patient-specific
predictions, [I14]. This can be performed by assigning suitable parameter values
sampled from the parameter space to the model parameters. To decide whether the
assigned parameters lead to a biologically meaningful time evolution of species, we
need criteria to filter out most of the parameter values leading to time evolutions
that are not biologically meaningful. In this thesis, we present an approach adopted
from [I30]. This approach provides criteria for defining biologically admissible pa-
rameter values those ensuring a time evolution of species to be close enough to that
of the model default parameter values. In other words, given a value 6 for the model
parameters, the task is to check that the time evolution of z(0,t) is similar enough
(modulo time-shifts) to that of z(6*,t). In particular, check if for each species z; in
the model, the time evolution x;(f,t) is biologically meaningful. For this purpose,
we first start by introducing the following definition.

Definition. Given two functions f and g from R to R, the cross-correlation [211),
denoted < f,g > (1), between f and g is defined as,

+o0o

<fig>(r)= / F()glt+ 7)dt, (1.21)

—00
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where 7 € R is the time lag. In addition, the normalised cross-correlation function,
denoted pgq(T), is defined as,

< f,g> (1)
P1alT) = A Tl (1.22)

where || f|| and ||g| are the standard L? norms of f and g.

The function py, measures the degree to which the function f and g are corre-
lated. In other words, it measures the similarity between the function f and shifted
(or lagged) function of g with the lag 7. This allows us to compare qualitatively the
dynamical behaviour of the shifted function g with the function f. Here, the higher
pf,g the more similar are the function f and g, e.g., f and g have the same peaks. In
particular, for a given 7, if ps4(7) = 1, then f is equal to g up to an amplification
factor. When no lag time exists, i.e. 7 =0, ps4(0) is called the normalised zero-lag
cross-correlation.

By analogy, we denote by pg+ ¢ ;(7) the normalised cross-correlation measuring the
similarity between the trajectory of state variables z;(6*) and x;(#), when z;(0) is
subject to time-shift 7. In order to select the biological admissible parameter values,
we consider three measures of how similar two trajectories are,

< 2;(0%),2:(0) > (1)
(EICIlIRN EACH

S04, 1) — 24(0,1))dt
Iz (0%, t)dt

1 normalised cross-correlation: pg- g ;(7) =

2 normalised average absolute difference: dg g ;(h) =

_ @)1 = e @)1* ]

3 normalised squared norm difference: kg« g; = 5
[EACL

The normalised average differences dgp+ g ; and the normalised squared norm differ-
ences Kg- g,; are two measures of the average distance between x;(6*,t) and x;(6, 1),
when z;(0,t) is subject to time-shift 7.

In the following definition, we use these functions to formalise the notion of bi-
ologically admissible parameter values 6 with respect to a default parameter 6*.
Intuitively, 6 is biologically admissible if the three measures above are all above or
below certain thresholds.

Definition. Let 0* and 6 be two parameters. Let A C R;Zo , B C R be two sets
of real numbers such that 0 € B. Given a tuple ¢ = (e1,e2,£3) of positive real
numbers, we say that 0 is e-biologically admissible with respect to 0%, if there exist
h € A and 7 € B such that, for all i € {1,--- ,n} : (po=0:(7) > €1) A (6p0,i(h) <
€2) A (kg9 < €3).
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1.3 Some Concepts of Bayesian Inference and Informa-
tion Theory

In this section, we introduce some tools needed to produce the results in Chapter
5 based on Bayesian experimental design. First, we briefly present the concept of
Kernel Density Estimation, which is a non-parametric method for the estimation
of the probability density function of a random variable from independent and
identically distributed samples. Subsequently, we review the fundamental concept
of the Bayesian approach and Monte Carlo integration. Finally, we combine tools
from information theory and Bayesian inference to assess the information content
of experimental data.

1.3.1 Kernel Density Estimation

The probability density function px(z) describes how the probability P(X) of a
random variable X is distributed. In other words, it shows how dense the probability
is for various regions of the random variable using the relation,

b
Pla < X <b) :/ px (z)dz, (1.23)

a
where X is drawn from the probability density function px(z) defined over the
region [a,b]. The estimation of probability density functions is common in applied
data analysis, where the density estimation is usually based on observed data. The
observed data are usually thought of as a random sample that can be drawn from
an unobservable probability density function. In practice, these samples are used
to reconstruct or estimate the probability density function using either parametric

or non-parametric estimators.

A parametric estimator assumes in advance the functional form of the underlying
probability density function. In addition, it makes use of samples or observations
to get estimates of the parameters that define the shape of the probability density
function. For instance, a parametric estimator would be to assume that the shape of
the probability density function being estimated is Gaussian. Then, it uses samples
to obtain estimates of the mean and standard deviation of the Gaussian distribu-
tion. Some tools for parametric density estimators are Bayes estimator, maximum
likelihood estimator, and least square estimator.

In contrast, a non-parametric estimation is a statistical method which does not
use a priori assumptions about the shape of the underlying distribution. The term
non-parametric is not meant to imply that such methods completely lack parame-
ters, but that the number and nature of the parameters are flexible and not fixed in
advance. Thus, non-parametric estimators are more flexible tools for capturing dis-
tributions where insufficient information is known a priori. Typical non-parametric
density estimators include the histogram and kernel density estimators, which are
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also termed as Parzen-Rosenblatt estimators [I58, [I74]. The first multivariate ker-
nel density estimator was introduced by Cacoullos [36] in 1966. Since then, Kernel
Density Estimators have been widely used as statistical tools to estimate unknown
distributions in numerous fields with recent applications to exploratory data anal-
ysis and data visualisation [198] 148 38, [179].

The general form of the d-dimensional multivariate kernel density estimator, de-
noted p, for a sample of d-variate random vectors {z;},.,;.,, drawn from a density
function px is,

px(z) = px(z ZKH T — i), (1.24)

where z € R? and z; € R% From here on, a hat, i.e. p, will always indicate an
approximation. Ky is the scaled kernel function, where H is the bandwidth (or
smoothing) d x d-matrix which is symmetric and positive definite. K is the unscaled
kernel function, which is a symmetric multivariate density and integrates to one.
The scaled and unscaled kernels are related by

Ky(z)=|H| Y2 KH? . 2). (1.25)

Usually, the kernel K is chosen as a product of a one-dimensional kernel smoothing
function k such that,

d
=TT k(x;). (1.26)
j=1
In this case, eq.(1.24) becomes,
~ D = k 1.27
pelo) % x() = = 3] (25) (1.27)
i=17j5=1

where the matrix H~1/2 is a diagonal matrix with the elements of vector (hy, ha, - - - , hq)

on the main diagonal. A common one-dimensional kernel which is widely used is
the Gaussian kernel,

E S i e
k(m)_\/ﬂ exp Pl (1.28)

The performance of kernel density estimators depends crucially on the bandwidth
selection. In the multivariate case, the bandwidth matrix H controls both the degree
and direction of smoothing, so its selection is more difficult. On the other hand,
bandwidth selection in the univariate case involves selecting a scalar parameter
which determines the smoothing properties of the kernel: a large bandwidth heavily
smooths the sampled data while a small one provides less smoothing, see Fig
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Figure 1.3: Kernel density estimation applied to an illustrative example for
three different values of the bandwidth parameter. The red dots represent
six samples from an unknown probability density function, the red lines represent
the individual kernel Gaussian functions, and the full line represents the estimated
probability density function that is calculated as the sum of the individual kernel
functions.
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1.3.2 Bayesian Formalism

In many situations, we want to know the probability of an event X occurring given
that another event Z has occurred. In this case, the probability of an event X given
that another event Z has occurred is called conditional probability. We define the
conditional probability for continuous random variables as follows.

Definition. Let X : Q — X and Z : Q — Z be two continuous random variables
with the joint probability density function px z(x,z). The conditional probability
density function of X given the occurrence of the value z of Z such that pz(z) > 0
can be written as,

px(z|Z = 2) = vaZi(I’Z)7 (1.29)

pz(2)

where pz(z) gives the marginal density for Z, that is, the joint density px z(z, z)
marginalized over all possible x,

PZ(Z)Z/)(px,z(:c,z)dx. (1.30)

For notational simplicity, we omit the subscript of the probability density function
(i.e. px(x) =p(x)) and we denote px(x|Z = z) as p(x|z) throughout the rest of the
thesis.

Prior Knowledge

The prior distribution or prior density function is a key part of Bayesian analysis.
The information contained in the prior distribution essentially reflects the knowl-
edge or belief about uncertain quantities of interest (e.g, parameters, prediction of
future responses) before some evidence is taken into account. Such knowledge could
represent, for example, the order of magnitude or physiological meaningful ranges
that could be taken from previous studies or experiments. Generally, the prior dis-
tribution can be based on two forms of knowledge: a subjective knowledge, which
expresses the experimenter’s personal belief, and an objective knowledge, where the
experimenter may have information, historical data or data from experiments done
prior to the one being undertaken that can be used to help formulate a prior. The
use of prior knowledge in inferring a quantity of interest is formulated according to
Bayes’ theorem.

For two continuous random variables X and Z defined as above, Bayes’ theorem is
derived from the definition of conditional probability density function:

Theorem. Let X and Z be as above. For all z € Z, such that p(z) > 0 holds,

(el p(a)
P2 = TGl - p(s)ds

(1.31)
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Proof. The formula ([1.31)) can be derived immediately by inserting eq.(|1.30) in the
dominator of eq.([1.29) and by using the fact that p(z, z) = p(z|z) - p(z) (by analogy
to (T.29)). O

This theorem, which is attributed to Bayes (1744-1809), tells us how to revise
probability of events in light of new data. In other words, it shows us how to con-
struct the posterior distribution p(z|z) of a quantity of interest x given the observed
data z, by using the so-called likelihood function p(z|x) of z given x as well as the
prior density function p(x). Here we want to point out that for fixed z, the posterior
p(z|z) and prior p(x) both are probability densities in X, whereas the likelihood on
the other hand is not a probability density in X.

Typically, the posterior distribution, p(z|z), is a complex and multidimensional
functions whose computation is usually performed numerically by means of powerful
(if costly) computational algorithms such as Markov chain Monte Carlo (MCMC).
Moreover, in many cases, it is not possible to provide a model likelihood or it may
be too slow to compute. Approximate Bayesian Computation (ABC) methods have
been developed to deal with this difficulty by prescribing a surrogate measure for
how plausible, for example, a particular parameter set 6 is, see [209} 204, 203] 132,
190].

The computation of p(z|z) can also be achieved using the KDE approach as ex-
plained in Section [1.3.1] The straightforward way is to estimate the joint and
marginal densities and divide one by the other. In other words, if x is a [-dimensional
variable of interest and z represents m-dimensional data, then the posterior distri-
bution p(z|z) can be approximated by

p(z, 2)
plx|z) = — . (1.32)
p(z)
To be concrete, let us suppose that we are using a product kernel as explained

in Subsection to estimate the joint density, and that the marginal density is
consistent with it:

Blx,2) =~ az,Bl o ZH’“( w“) ﬁ ( z”), (1.33)

=1 j=1 7=1

B(z) = Bm Z]_[k < Z”), (1.34)

=1 j=1

where k, and k, are one-dimensional kernels, and (z;, z;)1<i<n are n-random vectors
drawn from the density functions px z. Thus one needs to define the bandwidths,
a; and f3;, for each kernel.
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1.3.3 Monte Carlo Integration

The solution of many problems in applied sciences can be expressed in terms of an

integral function such as,
I= / f(@)de, (1.35)
0

where f is a high-dimensional function defined on the domain, €. In practice, it is
often very difficult to evaluate this integral due to the problem of high dimension-
ality, or because there is no closed-form expression available using calculus. Here,
numerical methods and approximations have to be employed to approximate the
integral to a given degree of accuracy. Classical numerical integration methods such
as the quadrature method require that the approximation of the integral is done by
partitioning the integration domain into a set of discrete volumes. Thus, obtain the
integral by summing the values of the weighted function. Though such a method
estimates well (to a certain degree of accuracy) the integral for example in one
dimension, the magnitude of the error, however, increases when the calculation is
performed in a higher dimension. Instead, Monte Carlo integration can be another
alternative to approximate the integral.

For the sake of simplicity, let us consider a d-dimensional function f defined on
Q = [a,b]?. Notice that the integral can be interpreted as the expectation
E(f(X)) of the random variable f(X), where X is an R%valued random variable
with a uniform distribution over [a, b]d, meaning that its components are indepen-
dent and identically uniformly distributed over [a, b]. The Monte Carlo approxima-
tion of the integral is then given by

I f), (1.36)
1=1

where {z;},.,., are independent observations of X, i.e., independent random ob-
servations of a R?%valued random variable, the components of which are random
numbers. This approximation converges, by the law of large numbers, as n — oo, to
the real value I of the integral. The convergence is in the probabilistic sense, that
there is never a guarantee that the approximation is close to the real value I, but it
converges almost surely by the law of large numbers, as n — co. In a more general
context, let us consider a function g(x) that can be decomposed as a product of
a probability density function p(x) and another function f(x) defined on 2. Now
suppose we want to evaluate,

J:/Qg(:v)dx. (1.37)

Similarly to the above approximation, the integral J can be defined as the expec-
tation of f(x) with respect to the density p(z

J =E,( / flz (1.38)
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By drawing a large set of independent observations {z;};" ; from p(z), we can then
approximate J by

J =~ %Zf(xi). (1.39)
=1

This quantity is referred to as Monte Carlo integration [76]. This method is often
used in the Bayesian analysis to estimate posteriors or marginal distributions.

1.3.4 Information Content of Experimental Data

The role of experimental data is very essential in modelling complex biological
systems. For example, experimental data may provide substantial information that
help modellers in developing, testing and refining models that simulate the system of
interest. However, a lack of sufficient informative data may limit the predictive per-
formance of models and efficient statistical inference. A common task in statistical
inference is the estimation of uncertainty in model parameters and model predic-
tions using different probabilistic methods. In general, this is mainly performed via
two major approaches: the frequentist and the Bayesian approach [170, 220} 215].

A commonly known drawback of the frequentist approach is that it lacks a for-
mal framework for incorporating knowledge not represented by data. Furthermore,
it has limitations in providing a proper measure of the confidence of parameters
inferred from data. In contrast, the Bayesian approach which is our focus in the
following discussion offers us tools to assess how well model parameters and pre-
dicted quantities are constrained by experimental data. Moreover, it makes use of
newly extracted information from experimental data to update knowledge of model
parameters. When data are sufficiently informative, this results in reducing the un-
certainty of the model parameters and predictions. Although the main advantage
of this approach is the use of available prior information, this approach, however,
is prone to some limitations. For instance, it does not tell you how to select a prior
distribution. In addition, it can produce posterior distributions that are heavily
influenced by the prior. Moreover, it often comes with a high computational cost,
especially in models with a large number of parameters.

In the Bayesian approach, the learning process, based on experimental data, is
performed using Bayes’ rule. If an experiment is conducted according to a design
9, and an observation of data z € Z C R” is obtained, then the prior information
of a continuous random variable z € X C R™ is combined with the data z to form
a posterior distribution p(x|z, D) according to Bayes’ rule:

p(zlz,D) - p(=|D)
p(2[D)

where p(z|®) is the prior density function, p(z|z,®) is the likelihood function,
p(z|z,D) is the posterior density function, and p(z|®) is the evidence. It is reason-

p(z|z,9D) = , (1.40)
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able to assume that the prior knowledge on = does not vary with the experimental
design, leading to the simplification p(z|®) = p(z).

The posterior distribution contains all relevant information about the random vari-
able X. Ideally, the data should lead to a narrow posterior such that, with high
probability, the random variable X can only take on a small range of values. How-
ever, when it comes to learning about the additional amount of valuable information
provided by new data, the experimenter is not only interested in the statistical con-
fidence of the random variable X at a specific point in time, but also to measure
the information gain provided by the new data. Let us assume we have two new
experimental data sets, z; and z, where the content of information in data z9 is
high, whereas it is low in data z;. If the information gain is high, the new data
zo yield a substantial decrease in uncertainty, whereas no significant improvement
would be observed if we update the prior distribution with data z1, see Fig

Prior Posterior

update using
data z1

—

low gain

pdf
pdf

update using
data Z2

—

high gain

pdf
pdf

Figure 1.4: This example compares updates of probability densities. The updates
are induced by two different data sets z; and zo. On the top, both prior and posterior
densities are similarly informative: the update yields a low information gain. This
is in contrast to the bottom plot, which shows a highly informative update.

A natural question is how to evaluate the gain in information after collecting data z.
Several works have been performed to deal with this question within the Bayesian
and information theoretical framework [I18| [194], 52, 16]. After updating the prior
distribution p(z) to the posterior distribution p(z|z,®), the amount of information
gain about X provided by a single observed data Z = z is given by
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Ix., = /X p(s]2) - llog(p(z]2)) — log(p(=))] da. (1.41)

Here, it is worthwhile to point out that this amount depends on one observed data z.
Since the outcome of an experiment is unknown before it is performed the observed
data is then random with distribution p(z). This means that another observed data
2 # z can be more or less informative than data z. Therefore, a natural procedure
to account for all possible experimental outputs is to take the average over p(z).
The average information gain or the expected information gain, is then called the
mutual information between X and Z, and we denote it by

I(X;2) =E, (Ix..). (1.42)

Mutual information, also known as transinformation, was first introduced in classi-
cal information theory by Shannon in 1948 [185]. The mutual information can be
written in a manifestly symmetric form,

oy p(z, z)

I(X;7) = //p(a;,z) log <p(:c) ~p(z)> dxdz, (1.43)
where p(z, z) is the joint probability density function of X and Z, and p(z) and p(z)
are the marginal probability density functions of X and Z, respectively. Mutual
information, I(X; Z), describes the expected reduction of the uncertainty about X
after data Z are collected in an experiment. It can be seen as a measure of the mu-
tual dependence of two variables, both linear and non linear. We can think about
the mutual information as a measure of dependency. Clearly, we have I(X;Z) =0
if the variables X and Z are independent, so that p(x,z) = p(z) - p(z) for every z
and z, which means that no knowledge is gained about the variable X when Z is
measured and vice versa.

As discussed earlier, the quality of data (in the sense of information content) in
reducing uncertainty is of high importance. Thus, a natural way to collect the most
informative data is to design experiments for a specific purpose to save time and
cost. The approach introduced above from information theory allows to select ex-
periments that maximize the value of the resulting data. These data can be used
to reduce uncertainty in parameters and predictions. Consequently, in order to
decrease this uncertainty, one should maximize the mutual information over the de-
sign space D of all considered experimental designs to find the optimal experimental
design, ©*, that is,

D* € argmax I (X; Zp). (1.44)
DCD

1.3.5 Estimation of Mutual Information

In this section, we focus on estimating the mutual information (i.e. eq.(1.43))
shared between two random variables X and Z. In many cases, it is possible to
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provide a conditional probability density function, e.g p(z|z), which represents the
model likelihood. In this case, the computation of eq. becomes possible by
reformulating it in terms of the prior distribution p(z), the model likelihood p(z|x)
and the evidence p(z). For this, we employ Bayes’ theorem which gives rise to the

following,
I(X;Z):/Z/Xp(x,z)-log <m> drdz, (1.45)

/ / ) - log <pz(j‘;;) ) ddz. (1.46)

Typically, this integral equation has no closed analytical solution. Therefore, it
must be approximated numerically. To do so, one approach is to use Monte Carlo
approximation, see Section m The equation can be estimated by drawing
samples {:13('“)}1<k<]\,1 from the prior distribution p(x) and samples {,z(k)}1<k<N1

from the conditional distribution p(z|z(¥)). This gives rise to the following approx-
imation,

Ny

I(X;7) =~ Ni : Z ( log {p(z(k”x(k))} — log [p(z(k))] ), (1.47)

T =1

where Nj is a large number of samples in this Monte Carlo estimate.

The evidence p(z*)) evaluated at z(*), usually does not have an analytical form,
but it can be approximated using yet another Monte Carlo estimate,

p(z") = [ p(zWe) - p(a)dr, (1.48)

S~

Q

= \

No
Z 2(B) | (R0, (1.49)

where {m( He< <q<N, are large number of samples, i.e. Ng, drawn independently from
the prior distribution p(z). Thus, by combining eq. and eq. -, we obtain
the following estimate of the mutual information between the random variables X
and Z,

N1 N2

1 1
I(X;7) ~ N Z log [p(z(k)|x(k))} — log 7 Zp(z(k)\x(k’q)) . (1.50)

1 k=1 q=1
In contrast, when it is not possible to provide a model likelihood p(z|z), then it
is not straightforward to estimate the mutual information as in the previous case.
For this purpose, we use the non-parametric KDFE approach as explained in Section
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1.3.1L Let us assume that (x(k), z(k))lgkgn are n-random vectors drawn from the
density functions px z. Then by choosing an adequate kernel and bandwidths, the
joint and marginal probability density functions of the two random variables X
and Z can be approximated by px z, px, and pz. Thus, eq. can be approxi-
mated via Monte-Carlo estimation by using a large number N of independent and
identically distributed samples,

N
1%:2) % % 37 (g, 2o, 209)) g (s e) = Iog(32(=) ) (1.51)
k=1



Chapter 2

Model Development - MetRep
Model

In the last few years, mathematical models dealing with reproductive performance
in dairy cows have received relatively more attention. Previous modeling efforts
mainly focused on either the bovine estrous cycle [18| 195l 162] 212, 139] or the
nutritional strategies [134] [8, [46], yet there are a few approaches that combine the
two topics. The most recent one is by McNamara and Shields [138] who connect
the reproductive cycle (given by differential equations [I8, 195]) and nutrition (im-
plemented by a rather sophisticated model called Molly [§]) via the ATP to ADP
reduction reaction. Martin et al. [I33] introduced an empirical model that in-
cludes nutritional effects on the reproduction. Pring et al. [162] modeled different
nutritional scenarios by varying parameters in an estrous cycle model. A more con-
ceptual model was suggested by Scaramuzzi et al. [I77], where the coupling between
nutrition and reproduction is realized by IGF-1, the glucose-insulin system, and
leptin.

None of these models, however, captures the dynamics between nutrition, hor-
monal regulation, and milk yield, which are of particular interest in cows. The
model introduced here aims at better understanding the involved interactions and
time evolution. It includes compartments for the nutrient intake, the glucose-insulin
system [I4], the milk production, and the reproductive hormones [195]. Based on
that model, it is analyzed how changes in dietary intake, which usually happen on
the time-scale of days, affect the behavior of the estrous cycle on the scale of weeks
and months.

The model that is developed in this Chapter, i.e. the MetRep model, is built
on two major pillars. The one is the glucose-insulin dynamics in dairy cows, which
was modeled in [I4] by utilizing the Systems Biology Markup Language [95] and
CellDesigneI{H The other is the bovine estrous cycle, modeled by a system of dif-

"http://www.celldesigner.org
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ferential equations (BovCycle) that quantifies reproductive hormones and other
relevant compartments, representing follicles and corpora lutea [I8], [195], see Fig

2.1

The MetRep model here consists entirely of ordinary differential equations (ODEs),
which are solved for problem-specific initial conditions and parameter values. The
metabolic model implements the mechanisms explained in [14], which allow for
simulating the time-evolution of glucose and insulin for different dietary inputs in
lactating as well as non-lactating cows. The reprodcutive model (BovCycle) imple-
ments the biological feedback mechanisms between hypothalamus, pituitary gland
and ovaries, which produce periodic estrous cycles of constant duration, similar to
[195]. However, modifications needed to be implemented as the mechanisms sug-
gested in [195] are not tailored to cows during pregnancy, calving and lactation. In
these stages the interaction between hormones is somewhat different. To simulate
the onset of lactation, oxytocin is included in the model; this hormone peaks during
delivery [112], and it is required for milk ejection [79] [149] 23].

This Chapter is organized as follows. The metabolic model is described in Section
Section [2.2] presents the coupling of the metabolic model to the estrous cycle
model. Necessary modifications and coupling mechanisms are thoroughly discussed.

2.1 Bovine Metabolic Model

The metabolic model to be developed in this section is based on an improved ver-
sion of the glucose-insulin model in [14]. It involves six components: Glupood,
Glujiver, Glugiore, Fat, Ins, Gluca; see Tab and, as formulated here in terms
of ODEs, their explicit interaction over time. Initial conditions are chosen based
on the following calculation. For a cow of weight 600 kg and body condition score
3.5, the total body fat can be estimated by 25% of the total body weight [178], 44].
That is, 150 kg is taken as initial value for Fat. Typical physiological ranges for
Glupipod, Ins and Gluca are listed in Tab 2] As long as the initial values are within
these ranges, the simulation results are not sensitive with respect to the exact value.

The model only involves the most basic mechanisms that regulate the flow of glucose
through the body. It starts with the feed, continues with the digestive system and
the blood, and ends up with glucose usage. Glucose and glucogenic substances are
ingested with the dry matter intake (DMI). In the liver, the glucogenic substances
are converted to glucose via gluconeogenesis. Glucose is used for maintanance and
milk production, it is stored as glycogen or, after conversion, as fat. A detailed
description of these mechanisms are presented in the following.
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Figure 2.1: Flowchart for the model of the bovine estrous cycle (BovCy-
cle), [195]. The compartments are expressed in terms of ODEs which simulates the
biological feedback mechanisms between hypothalamus, pituitary gland and ovaries.
The model produces periodic estrous cycles which lasts 21 days per cycle.

2.1.1 Feed Intake

The first step involves the quantification of the amount of substances in the DMI
that are either available for gluconeogenesis in the liver or directly absorbable as glu-
cose into the blood. There exist empirical formulas that estimate the DMI needed
to meet the energy requirements; these formulas are based on the cow’s body weight
(BW) and the net energy (NE) of the diet; see, e.g., [44]. Throughout the thesis, a
standard cow with body weight 600 kg is considered, and the value for DMI of 11700
gram per day (g/d) is adopted from [I4]. This value also results from a formula in
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[44], assuming a diet’s net energy of 1.32 Mcal/ kgE|

Ruminants digestion involves fermentation, which makes consumption of a high-
fiber diet possible and necessary [115, b5]. In the default setting, the fraction of
glucose and glucogenic substances in the DMI, gluyoo, is assumed to be 8% of the
total DMI,

Glupoor = co - DMI (2.1)

where ¢j is a mass-fraction parameter (with default value ¢o = 0.08) that allows for
varying the total amount of glucose and glucogenic substances that can be extracted
from DMI. This fraction combines glucose precursor substances such as short chain
fatty acids, which are converted to glucose in the liver by gluconeogenesis, as well
as glucose that can directly be absorbed from the digestive tract into the blood
[106, 128 [55]. In the cow, only very little glucose is available for direct absorption
from the digestive tract [22]. From the total amount of glucose and glucogenic sub-
stances in the DMI (glupoor), the portion of glucose was estimated to be less than
10% [147, 15), 230], whereas up to 90% of glup.e are glucogenic substances.

The flow of absorbable glucose that goes directly to the systemic circulation is
incorporated into the model via the rate

Glufeed—p1 = €1+ gltipool - (2.2)

The flow of glucose precursor substances that are converted to glucose by gluconeo-
genesis in the liver is incorporated into the model via the rate

glufeed—gng = (1 - Cl) : glupool . (2'3)

The default parameter value is ¢; = 0.08 (see Tab . It is assumed here that there
is no loss from the glucose pool (the flows sum up to 1 - glupee), i-€., the processes
take place with 100% efficiency. If some loss was included here, the simulation
results presented further below would be the same but correspond to higher values
of ¢y (the amount of glucose and glucose precurser substances in the feed). These
processes are illustrated in Fig

2.1.2 Insulin and Glucagon

The blood glucose concentration is maintained at normal levels primarily through
the action of two hormones, namely insulin and glucagon. Any elevation in the blood

In [44], the following formula was proposed for growing, non-lactating Holstein heifers.

BW0.75

DMI = (= 0.1128 + 0.2435 - NEas — 0.0466 - NE3;) - "NEw

where DMI is in (kg/d), BW is the body weight (kg) and NEy; is net energy of diet for maintenance.
NE recommendations are stated in the range between 1.24 and 1.55 Mcal/kg.
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Figure 2.2: Feed intake process in dairy cows. This figure illustrates glucose
input provided by DMI. The amount glu,., is the fraction of glucose contained
in the DMI as glucose and glucogenic substances. This amount of glucose can be
transported to the blood circulation via the digestive tract (rate glufeeq—p) and
gluconeogenesis process (rate glu feed—gng)-

glucose concentration leads to the production of insulin in the pancreatic beta cells.
Insulin promotes glucose uptake in target cells, e.g., those in the liver, muscles and
fat tissue, and it promotes the conversion of glucose to glycogen (glycogenesis) in
the liver [2I]. When the glucose blood concentration is low, the pancreatic alpha-
cells produce glucagon. Glucagon increases the plasma glucose concentration by
stimulating the generation of glucose from non-carbohydrate substrates (gluconeo-
genesis) and the breakdown of glycogen to glucose (glycogenolysis) in the liver [21].
The mechanisms describing the change of insulin and glucagon concentrations are
illustrated in Fig

In the model here, the dynamics of the blood insulin and glucagon concentrations
are determined by their secretion rates (inssec, glucase.) and their degradation rates

(insdeg ) glucadeg) )

d
%Ins = INMSsec — 1MSdeg, p Gluca = glucasee — glucageg, (2.4)

with linear degradation rates

iNSdeg = €3 - Ins,  glucagey = c5 - Gluca. (2.5)
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Figure 2.3: Insulin and Glucagon processes. The change of insulin and glucagon
concentrations are glucose-dependent. When the glucose blood concentration is
high, the pancreatic beta-cells produce insulin. When the glucose blood concentra-
tion is low, the pancreatic alpha-cells produce glucagon. The stars describes the
degradation process of insulin and glucagon.

It is assumed that the insulin secretion rate increases when the glucose concentration
in the blood is above a certain threshold value (77 = 0.5 g/L = 2,77 mmol/L),
whereas the glucagon secretion rate decreases whenever the glucose concentration
in the blood is above that threshold value (7% = 0.5 g/L = 2,77 mmol/L),

MNSgec = C2 H* (Glublood7 Ty, 10)7 glucasee = c4 - H™ (Glublooda Ty, 2) (26)

Threshold kinetics were selected to account for rapid adaptivity, which is an im-
portant mechanism to keep the plasma glucose concentration within the physiolog-
ical range. There are no reference values for the individual rate constants ca3 45,
but their values were chosen such that a constant glucose blood concentration of
Glupioog = T1 = To = 0.5 g/L (resulting in a Hill function value of 0.5) would give
rise to constant insulin and glucagon concentrations that are within the physiolog-
ical range, namely 0.5 - ca/c3 = 20 mU/L and 0.5 - ¢4/c5 = 100 ng/L, respectively,
compare Tab [2}

2.1.3 Glucose Production and Storage in the Liver

When the glucose blood level rises above a certain threshold (73 = 0.45 g/L = 2,77
mmol/L), insulin promotes the absorption of glucose from the blood into liver cells
(rate glup—1y). This mechanism is illustrated in Fig

The rate gluy_;, is mathematically described by

gluy_1, = c6 - H (Glupiooq, T3, 10) - Ins . (2.7)
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Figure 2.4: The absorption of glucose blood into the liver. When nutritional
supply with glucose is high, insulin promotes the absorption of glucose from the
blood into liver cells.

Insulin also stimulates the conversion of glucose available in the liver (Gluyyer) to
glycogen (glycogenesis rate gluy,—g). It is assumed here that this rate decreases
when the cow produces more than a certain amount of milk (threshold Ty = 10 L)
per day in order to make more glucose available for milk production. In addition, the
rate gluy, g is switched off when the glycogen store, Glusiore, reaches the maximal
carrying capacity K = 10009ﬂ The equation that describes this process is given by

Glustore

glugy—st = ¢y - H™ (Milk, Ty, 2) - <1 - %

) - Glugper - Ins . (2.8)
In addition, insulin promotes the absorption of glucose into fat cells and its con-
version into triglycerides via lipogenesis. It is assumed here that this process is
enhanced once the glycogen storage Glugiore is full (threshold T = 1000g). Again,
similar to the glycogenesis rate gluy,_s, the rate is assumed to decrease when the
cow produces more than a certain amount of milk (threshold 75 = 10 L) per day,

glugy—ar = cg - H™ (Milk, T5,1) - HT (Glugtore, T, 10) - Glugper - Ins . (2.9)

When nutritional supply with glucose is insufficient, the glucagon concentration in-
creases and stimulates the breakdown of glycogen to glucose in the liver (glycogenol-
ysis) to maintain blood glucose homeostasis [84]. This process is assumed to slow
down when the glycogen store is below a certain threshold (77 = 10g),

glust 1y = cg - H* (Glustorea T, 10) - Gluca . (210)

In this case, i.e., when the glycogen store falls below a threshold (T = 10g),
glucagon additionally stimulates the breakdown of lipids into glycerol and free fatty
acids (lipolysis) in adipose tissue and the conversion of glycerol into glucose via

3Berg et al. [I3] estimated that 2% of the weight of the muscle tissue is formed by glycogen,
and 10% of the liver weight. Is was also estimated that for a cow with 600 kg body-weight the
mass of muscle, liver and kidney is around 280 kg, whereof 9 kg is liver weight [I59]. According to
these numbers, the liver stores about 900 g glycogen.
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gluconeogenesis in the liver. This rate is assumed to slowly decrease whenever the
total body fat becomes smaller than a certain threshold (79 = 150 kg),

gluget—1y = c10 - H™ (Glugtore, T, 10) - H™T (Fat, Tg, 1) - Gluca . (2.11)
These processes are illustrated in Fig

Fat
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Figure 2.5: A schematic illustration of the interaction between glucose
in the liver, glucose in the store and fat. When nutritional supply with
glucose is high, insulin stimulates the conversion of glucose available in the liver
(Glugiyer) to glycogen (glycogenesis rate gluj,—s:). Insulin also stimulates the ab-
sorption of glucose into fat cells and its conversion into triglycerides via lipogenesis
(rate glujy—fqr). When nutritional supply with glucose is insufficient, the glucagon
concentration increases and stimulates the breakdown of glycogen to glucose in the
liver (glycogenolysis, rate glusi—i,). In addition, glucagon stimulates the break-
down of lipids into glycerol and free fatty acids (lipolysis) in adipose tissue and the
conversion of glycerol into glucose via gluconeogenesis (rate glufq¢—,,) in the liver.

Finally, glucagon stimulates the release of glucose synthesized in the liver (Glug;yer)
into the blood, see Fig This can be modelled by the following equation,

Giproa = c11 - Glugiper - Gluca. (2.12)
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Figure 2.6: Glucose production. When nutritional supply with glucose is insuf-
ficient, the glucagon concentration stimulates the glucose production in the liver.

In the equations above, threshold kinetics were selected for Glugiore to differen-
tiate between full end empty store, without modifying the rates in dependence on
the actual amount of glycogen in the store.

There are no reference values for the rate constants cg to c11. They were fitted
manually such that the simulation results qualitatively agree with the results re-
ported in literature.

2.1.4 Glucose Utilization

All organs and tissues of dairy cows use glucose [55]. Glucose provides energy for
maintenance and production. In the milk producing dairy cow, glucose utilization
is dominated by the requirements of the mammary gland for milk synthesis [16§].
These requirements increase rapidly right after parturition[6]. The process of glu-
cose utilization is illustrated in Fig

Glucose utilization is modelled here in terms of two different sink terms, one from
Gluliverv

glulv—usage =C14 Glulivem (213)
and one from Glupped,
glubl,usage =cC19- H* (Glubloody Tho, 10) + c13 - Milk. (2.14)

The sink term from Gluypoq accounts for maintenance (1st term) and milk produc-
tion (2nd term). Maintenance refers to glucose utilization by non-mammary tissues
including brain and skeletal muscle, but excluding liver. For example, glucose that
is stored in skeletal muscle as glycogen cannot be released back into the bloodstream
due to the absence of glucose-6-phosphatase. It is assumed here that the glucose
consumption for maintenance decreases when the glucose blood level drops below
a certain threshold (719 = 0.5 g/L = 2,77 mmol/L). The second term accounts for
glucose utilized for milk production, including substance and energy. The variable
Milk quantifies the daily milk yield in kg/day, whereas the parameter ¢13 = 72 g/kg
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Figure 2.7: Glucose Utilization. Glucose utilization is described by two terms,
9lupi—usages 9l —ysage- The first one accounts for maintenance of brain and skeletal
muscle, but excluding liver. The rate gluy_ysqge also increases when cows produce
milk (milk production). The second term, gluj,—ysage, accounts for glucose utilized
for the liver maintenance.

[107] quantifies the amount of glucose (in gram) per kg of milk. Hence, the mam-
mary glucose requirement in a cow with a daily milk yield of 40 kg would be about 3
kg per day. There is no reference value for the non-mammary glucose requirement,
but according to the literature [168] this value should be significantly lower (here,
c12 = 1 kg/day was chosen).

2.1.5 The System of Differential Equations

The interactions of the metabolic processes we have discussed above are combined
into a compartmental model and illustrated in Fig Flows and regulatory mech-
anisms are summarized in Tab The final set of ordinary differential equations
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Figure 2.8: Schematic representation of the metabolic model. The pink
boxes indicate the state variables of the model, gray ellipses indicate sources and
sinks. The five compartments of the underlying ODE model are denoted by upper
case letters; they have units of concentration or mass (see also Tab . Rates are
denoted by lower case letters; they have units of gram per day (see also Tab .

modelling the dynamics of the glucose exchange (Fig reads

V. %Glubzood =glugeed—v1 + gluproa — glupi—1w — glup—usage, (2.15)
%Gluliver =glufeed—gng — Jlprod + glupi—1 — gl —st
+ glugi—1 — gl —far + gltgar—1w — gl —usages (2.16)
%Glustore =glup —st — glusi—, (2.17)
%F@t =gl —fat — gltifat—10, (2-18)
alns =iNSsec — MSdeg,

d
. Gluca =glucase:. — glucageg,
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where V' = 22.8 L is the extracellular volume of blood [14].

2.2 Metabolic Reproductive Bovine Model (MetRep)

Several studies have shown that the metabolic status has a large influence on grow-
ing cattle and on reproductive performance in dairy cows. During negative energy
balance, which can be caused, e.g., by dietary restrictions or high milk yield, a re-
markable change occurs in the levels of the metabolic components IGF-1, insulin,
and glucose in the systemic circulation, which in turn influences the levels of repro-
ductive hormones and follicular development [11, [30}, [124]. The aim is to reproduce
these observations by coupling the metabolic model and the reproductive model
BovCycle introduced in [18, [195]. The initial values for the species in the BovCycle
model are listed in Tab [6] Detailed explanations of the coupling mechanisms are
given in the three sections below.

2.2.1 IGF-1 and Insulin

Kawashima et al. [I03] reported that IGF-1 is positively correlated with the level
of feed intake. The authors argue that the plasma IGF-1 concentration increases
transiently during the follicular phase and decreases during the luteal phase of the
estrous cycle, i.e., IGF-1 levels decrease when progesterone (P4) increases. On the
other hand, IGF-1 is lowest during early lactation when there is no P4 in circu-
lation, and highest in late lactation [89]. In particular, a decrease in blood insulin
and glucose concentrations in postpartum cattle is associated with the decrease in
IGF-1 [124]. In addition, acute dietary restrictions reduce both insulin and IGF-1
concentrations in the blood [201), 217]. Even if these are only empirical observa-
tions and evidence for mechanistic relationships is missing, these observations are
incorporated into the equation for IGF-1 as follows,

Progesterone I IGF-I Blood < Insulin

Figure 2.9: Effects of P4 and insulin on IGF-1. Insulin positively stimulates
the synthesis of IGF-1, while P4 negatively affects the synthesis of IGF-1.

d
alGF =ci7+cg- H (P4, Ti1,4) - H' (Ins, Ti2,10) — c19 - IGF,  (2.19)
where c¢17 accounts for the basal /G F-1 synthesis rate. The rate constants ci71s19
were determined such that the simulated IG F-1 concentrations match with the ex-
perimental data from 13 Holstein cows [103], see Fig B. Moreover, in order to
fit the simulated progesterone concentrations to the data (Fig A), the basal
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P4 production rate had to be increased from c¢py = 0 in the original model [195] to
cpg = 0.1. This is consistent with reports about baseline progesterone levels [19].
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Figure 2.10: Changes in P4 and IGF-1 levels during the estrous cycle.
Growth of P4 (A) is correlated to the decay of IGF-1 (B). Data of IGF-1 and
P4 from 13 Holstein dairy cows (red dots) were collected and kindly provided by
Kawashima et al. [103].

A change in plasma IGF-1 has an impact on follicular cell development and re-
sponsiveness to hormonal signals. In particular, experimental studies demonstrated
that reduced IGF-1 reduces ovarian responsiveness to LH stimulation [193], [124].
To include this mechanism in the model, the term in [I195] that models the follicular
cell responsiveness to LH,

HT(LHpyq) = co0- HY (LH, T}3,2),

was improved as follows. The LH blood concentration that is required for an ovarian
response (threshold Ti3) is made dependent on IGF-1,

Tig == hmigr =co1 - H™ (IGF, T4, 2) . (220)

Such a dependency was chosen because it allows for LH concentrations to increase
in response to IGF-1 being below a certain threshold, T74. This mechanism is es-
sential to ensure appropriate ovarian responses to IGF-1.
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Follicles - LH Blood

IGF-I Blood

Figure 2.11: Effect of IGF-1 on the follicular stimulation by LH. An increase
in IGF-1 concentration results in increased follicular responsiveness to LH.

Insulin serves as a metabolic signal influencing the release of LH and FSH from
the anterior pituitary into the blood [143, [124]. This mechanisms is included in the
model by a stimulatory effect of insulin on the synthesis rates of LH and FSH. The
equations for LH and FSH in [195] are changed to

d
&LHPit = LHsyn : hpﬂg — LH;¢, (2'21)
d
aFSHpit = FSHgy, - hptSH — FSH,, (2.22)
where LHy,,,, F'SHyp, LH,., and F'SH, are the synthesis and release rates of LH

and FSH, respectively, as described in [195]. The Hill functions hp%H and hpfi,H

describe the influence of insulin on LH and FSH pituitary levels, respectively,

—__p»  LHPituitary EE— LH Blood

Insulin

____»  FSHPituitary ——p FSH Blood

Figure 2.12: Effect of insulin on LH and FSH. Insulin stimulates the release of
LH and FSH from the anterior pituitary. This results in increased concentrations
of LH and FSH in the blood.

hpfas = coz - H (Ins, Tig, 10) (2.23)
hpfll = cop - H* (Ins, Tis, 10) . (2.24)

Hence, if insulin levels drop below a certain threshold (715 = T16 = 21 mU/L), the
synthesis of LH and FSH halts.
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Finally, the flowchart that describes the MetRep model is presented in Fig[2.13]
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Figure 2.13: Schematic representation of the coupled metabolic-reproductive model (the MetRep model). The
coupled model links the metabolic model (right hand side) to the bovine estrous cycle model [195] (left hand side).
arrows depict the sites where both models are coupled. Insulin acts on the site of anterior pituitary influencing LH and FSH
release to the blood circulation. Insulin stimulates IGF-1 levels in the blood. Progesterone inhibits IGF-1 secretion which
in turn decreases the responsiveness of follicular cells to LH.
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2.2.2 Lactation

Pregnancy and calving are characterized by a complex interplay of hormones. One
of these hormones is oxytocin. The release of this hormone and milk yield are
positively correlated [149]. Overall as well as peak concentrations of oxytocin de-
crease over one ongoing lactation [78]; earlier studies reported similar dynamics
[147), 142] 165, 166]. According to measurements in those studies, peak concentra-
tions of oxytocin during early lactation are more than twice the magnitude of those
during late lactation.

The BovCycle model [195] does not capture changes in oxytocin concentrations
during pregnancy and calving. To this end, the model was extended by introducing
an additional term Ozy,. into the equation of oxytocin,

d
%Oazy = OzYiac + OxYsyn — OxYcie, (2.25)

with
Oxyiae = C2a - exp(—cas - 7). (2.26)

This is the simplest form of a non-negative decreasing function, namely a Gaussian
function, see Fig The parameter value co5 = 0.0007 determines the width
of the curve and was adopted to the approximate length of the early lactation
period, whereas the parameter value cpy = 1.5 was fitted so that Oxy(t) during
early lactation is about twice as high as Oxy(t) during late lactation.

Relative level of
Oxytocin input

0 50 100 150 200 250
days

Figure 2.14: Modelled additional oxytocin during lactation. Plot of the addi-
tional time-dependent oxytocin source term during lactation as defined by eq.(2.26)).

2.2.3 Reparametrization of the BovCycle Model

The changes in the equations of the original BovCycle model [195] required changes
of some of the original parameter values in order to be able to recover regular estrous
cycles. In addition, the original BovCycle model [195] was challenged with the
scenario of adding exogenous oxytocin early in the cycle. In a study by Donaldson
et. al [59], it was shown that daily oxytocin injections to eight non-lactating cows
starting on day two of the cycle reduced the estrous cycle length to nine days. The
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slow increase in plasma P/ concentration during the first five days of the cycle
was not altered significantly, but plasma P/ concentrations decreased again to low
values after day five. These results confirmed earlier studies [60, [58]. However, the
original BovCycle model [195] did not reproduce these results. Hence, changes were
made on parameters that describe the interaction of oxytocin and enzymes with
prostaglandin F'2, and the interovarian factor such that the recalibrated model
correctly reflects the effects of oxytocin administration on the length of the estrus
cycle and plasma P4 concentrations. Parameters that required changes are listed
in Tab [1



Chapter 3

Model Simulation - Feeding
Strategies

The aim of this study is to analyze the impact of glucose availability in the feed,
represented by the parameter cg, on the estrous cycle dynamics in both lactating
and non-lactating cows. For a cow of 600 kg BW, DMI at maintenance is set to its
default value of 11.7 kg/d [I4]. This is the reference value corresponding to 100%
DMI throughout the following, and variations to this value are stated accordingly.

This Chapter is organized as follows. Section deals with the simulation for
non-lactating cows. In this section, we simulate different feeding scenarios, includ-
ing short and long time dietary restrictions. The results are compared with data
from literature. Section presents the simulation results for lactating cows and
compares the outcome with data from literature. Finally, the results are summa-
rized again and limitations of the model are presented in the The ordinary
differential equations of the MetRep model were implemented and solved using the
software MATLAB (release 2014b). The parameters and the initial values are listed

in Tabs [1] [, [5] [ and [7]

3.1 Non-Lactating Cows

To model these cows, the value of Milk in eq. is set to zero. The numerical
experiments for acute and chronic dietary restrictions are designed according to
three experimental feeding studies from Mackey et al. [127], Murphy et al. [140]
and Richards et al. [I72]. Since these are studies in beef heifers and anestrus
beef cows, respectively, the results are expected to agree only qualitatively, not
necessarily quantitatively.

49
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3.1.1 Varying the Glucose Content in the DMI

The effect of varying glucose content in the DMI on the glucose-insulin dynamics is
analyzed by changing the value of the parameter ¢y (glucose content in the DMI)
between 4%, 8% and 16%. Simulation results are presented in Figs and

At maintenance intake, i.e. ¢y = 0.08, the model calculates the non-mammary
usage to be slightly less then 400 gram per day (see Fig|3.2(D)). This number is in
qualitative agreement with Danfeer et al [47], who estimated the amount of glucose
required for maintenance in a non-lactating cow with a slightly lower body weight
of 500 kg to be 290-380 gram per day. The amount of glucose absorbed from the
digestive tract directly into the blood is calculated to be 75 g/d (see Fig[3.2(A)).
The calculated amount of glucose released from the liver into the blood is about
800 g/d (see Fig(3.2[C)). This means that the total amount of glucose available in
the blood is around 875 g/d, whereas the glucose uptake into liver cells (see Fig
3.2(F)) and the non-mammary usage (see Fig[3.2D)) sum up to the same amount.
This balance between input and consumption of glucose leads to stable glucose
and insulin levels in the blood (see Fig|3.1(A)(D)). In addition, this leads to sta-
ble glycogen and fat levels in the respective storage components (see Fig|3.1{(B)(E)).

With increasing glucose content in the DMI (¢p = 0.16), more glucogenic substances
are available and lead to an increased gluconeogenesis [55]. This increases glucose
and insulin concentrations in the blood, but they are still within their physiological
range (see Fig [3.1(A)(D)). Excess glucose in the system is stored as glycogen or
fat reserves (Fig 3.1 B)(E)). When the glucose content in the DMI is decreased
to 4%, blood glucose and insulin levels decrease towards their lower physiological
bounds within two days (see Fig|3.1(A)(D)), compare Tab[2l As a result, the stored
glycogen and the fat reserves (see Fig|3.1{B)(E)) are reduced as well.

3.1.2 Acute Nutritional Restriction

To simulate the effect of acute nutritional restriction on the estrous cycle, a nu-
merical experiment was designed according to the study of Mackey et al. [127],
who reported about the effect of nutritional deprivation for a period of 13-15 days.
Heifers with 406 + 5 kg body weight were allocated to a diet with a DMI of 1.2% of
body weight for maintenance and then reduced to a diet with a DMI of 0.4% of body
weight. In the model here, this reduction to 1/3 of the default diet corresponds to
a reduction in the DMI from 11.7 kg/d to 3.84 kg/d.

This acute nutritional restriction is applied immediately after ovulation. The sim-
ulation results show increased levels of FSH (Fig|3.3(D)), indicating a failure of
luteolysis. Anovulation can be attributed to the absence of LH pulses (Fig|3.3(A))
and lower FSH levels (Fig[3.3(B)), as a result of decreased insulin levels (Fig|3.3{F)).
In addition, IGF-1 is decreased during the dietary restriction (Fig|3.3(E)), which
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Figure 3.1: Simulated glucose and insulin dynamics in non-lactating cows
for different values of glucose content in the DMI. The glucose content in
the DMI is varied with ¢g = {0.04,0.08,0.16}, corresponding to 4, 8, and 16%,
whereby 8 % represents the amount required for maintenance. With higher/lower
glucose content in the DMI, blood levels of glucose (A), insulin (D), stored glucose
(B) and fat (E), and glucose production (F) increase/decrease over time. Glucagon
(C) behaves inversely to the glucose blood level (A).

negatively influences the responsiveness of follicular cells to LH [30].

3.1.3 Chronic Nutritional Restriction

To simulate the effect of chronic nutritional restriction on the estrous cycle, numer-
ical experiments were designed according to the studies of Murphy et al. [146] and
Richards et al. [I72]. Murphy et al. [146] examined the effect of chronic dietary
restriction on the estrous cycle over 10 weeks. In this study, heifers with 375 £+
5 kg body weight were allocated to a maintenance diet with an amount of DMI
corresponding to 1.2% of the body weight and a reduced diet with 0.7% of the
body weight. In the model here, this reduction to 58% of the maintenance diet
corresponds to a reduction in the DMI from 11.7 kg/d to 6.79 kg/d. In the experi-
ment by Richards et al. [I72], multiparous non-lactating Hereford cows underwent
a chronic nutritional restriction for 30 weeks. They were fed to lose 1% of their
bodyweight weekly. After the restriction period, the diet was increased to 160% of
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Figure 3.2: Simulated metabolic rates in non-lactating cows at mainte-
nance. Glucose content in the DMI was fixed at 8%. The figure illustrates glucose
input, storage, and usage in terms of the amount of glucose absorbed via the diges-
tive tract (A), glucose generated from glucogenic substances in the feed (B), glucose
released from the liver into the blood (C), glucose absorbed into liver cells (F), and
glucose used for body maintenance (D) and for metabolic processes in the liver (E).
At maintenance intake, the cow is able to cover the daily glucose requirement, which
results in stable levels of glucose in the different compartments.

the maintenance diet.

The simulation was adapted to these two scenarios as follows. The nutritional
restriction starts after ovulation. From then on, the model was simulated with 58%
of the maintenance DMI within a time interval of 30 weeks. Simulation results (Fig
show that the cow exhibits normal estrous cycles over a period of 15 weeks.
During the chronic restriction period, the glycogen store (Fig[3.4(G)) and the in-
sulin in blood (Fig[3.4(F)) decrease. LH (Fig[3.4(A)), FSH (Fig[3.4(B)) and IGF-1
(Fig E)) pulses decrease in frequency and amplitude, resulting in cessation of
cyclicity after 15 weeks of feed restriction. The fat compartment loses around 10%.
After 15 weeks, P4 decreases to a low level for the remaining 15 weeks, indicating
the onset of anestrus. F'SH and E2 exhibit changes in their wave patterns, that is,
the number of waves per cycle increases. A similar tendency was observed in [146].

Murphy et al. [146] examined ultrasound data and serum P4 between week 6 and 9.
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Figure 3.3: Effect of acute dietary restriction on the bovine estrous cycle
in non-lactating dairy cows. On day 43, DMI is reduced from 100% (11.7 kg/d)
to 33% (3.84 kg/d) for 15 days (the time period bounded by the two red lines).
During the restriction period, one can observe a decrease of glucose in the store
(G), insulin in the blood (F) and IGF-1 (E), an absence of LH pulses (A), and
a decrease of amplitude in the F'SH waves (B), leading to anovulation and failure
in luteolysis with increasing P4 (D). The cycle re-starts soon after the end of the
restriction period.

They found no alteration in CL growth, whereas P4 in restricted cows was numeri-
cally higher than in cows on maintenance diet. No anestrus was observed in the first
10 weeks of the restriction period, which is in agreement with the simulation results.

During the first weeks of restriction in the experiment by Richards et al. [172],
P/ concentration increased as well. After losing 24.0 4+ 0.9% of their initial body
weight, cows had decreased luteal activity measured via P/, and cessation of the
estrous cycle was observed in 54% of the cows after 26 weeks. The authors reported
that estrous cycles were re-initiated by week 40 in 64% of the restricted cows, feed-
ing 160% of maintenance diet. The model predicts re-initiation of cyclicity by week
32, feeding 160% of DMI at maintenance.
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Figure 3.4: Effect of chronic dietary restriction on the bovine estrous
cycles in non-lactating cows. DMI is reduced to 58% for 30 weeks (period
between the red lines) and increased to 160% afterwards. During the restriction
period, the glycogen store (G) and insulin in blood (F) decrease. LH (A), FSH (B)
and IGF-1 (E) pulses decrease in frequency and amplitude, resulting in cessation
of cyclicity after 15 weeks of feed restriction.

3.2 Lactating Cows

To investigate the effect of lactational metabolism and NEB on fertility hormones,
different scenarios were simulated with the MetRep model. As model input, inter-
polated time series data of DMI and milk yield from a study by Friggens et al. [71]
were used, see Fig[3.5l Each kilogram of milk produced requires around 72 gram
glucose (parameter c;3 in eq. [107]. Hence, the production of 41 kg milk per
day requires about 3 kg of glucose per day. This was confirmed by Reynolds et
al. [169], who predicted the glucose usage for milk to be between 2500 g/d and 3000
g/d. Milk production and the provided DMI in this study were 41 kg/d and 21
kg/d, respectively, averaged over 5 Holstein cows with an average body weight of
647 kg.

Energy balance is usually calculated as energy input minus output, requiring
measurements of feed intake and energy output sources (milk, maintenance, activity,
growth, and pregnancy)[202]. Alternatively, the energy balance can be calculated
based on changes in the body reserves, using body weight and body condition score
[202), 121]. Since the model presented here does not explicitly calculate the body
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Figure 3.5: Model input data of DMI and milk. In this data, the highest milk
yield (about 41 kg/d) can be observed 8 weeks postpartum. It coincides with the
peak in the DMI (22 kg/d).

weight, the change in body fat is considered as an indicator of the energy balance,

Apgs = glulvffat - glufatflv- (31>

This approach was also used in [222].

3.2.1 Varying the Glucose Content in the DMI

To explore the metabolic processes during lactation, simulations were performed
for different values of glucose content in the DMI (parameter ¢p). The results are
compared qualitatively with the studies by Elliot [64] and Reynolds et al. [I69]. The
changes in the glucose-insulin dynamics, body fat reserves, and metabolic rates are

illustrated in Figs and respectively.

The simulation results clearly show a non-linear relationship between glucose con-
tent in the DMI and the values of glucose in blood and storage as well as insulin
in blood at peak milk. Decreasing the glucose content in the DMI, starting from
co = 0.3, first leads to a slow decrease in glucose and insulin levels, followed by a
rapid decrease if ¢y approaches the value 0.2.

For a high amount of glucose in the DMI (30%, ¢y = 0.3), glucose and insulin
levels in the blood are maintained within their physiological range (Fig (3.6 (A),
(D)). After the peak milk phase, the cow is even able to store glucose and fat (Fig
(B), (E)). Consequently, the overall energy balance is positive throughout the
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lactation period (Fig(3.7/(D)). The model calculates the amount of glucose available
in the circulation by direct absorption from the digestive tract (rate glufeeq—p) to
be between 500 and 600 g/d (see Fig[3.8(A)). This is in agreement with Elliot [64],
who estimated that for a cow with 600 kg BW and a milk yield of 40 kg/d, the
amount of glucose absorbed from the digestive tract is around 600 g glucose per day.

For medium amounts of glucose in the DMI (22.5% or 25%), glucose and insulin
levels are still kept within their physiological range (Fig 3.6/ (A), (D)), but the pe-
riod of negative energy balance is prolonged (Fig (B),(C)).

If the amount of glucose in the DMI is decreased even further (20%, ¢y = 0.2),
one can observe an extended phase of negative energy balance with glucose and
insulin dropping towards their lower physiological limits around peak milk (Fig|3.6
(A),(D)). High demand and low input trigger the mobilization of body reserves,
represented in the model by glycogen and fat in the store (Fig|3.6| (B),(E)).

When ¢ is varied between 0.2 and 0.3, the calculated amount of glucose released
from the liver (gluproq) within the first 83 days post partum is 2500-4400 g/d
(see Fig [3.8(C)). These numbers are in qualitative agreement with Reynolds et
al. [169], who estimated the daily glucose production in the liver within the first
83 days post partum to be between 2700 and 3600 g/d. On can also observe that
the mammary glucose usage gets prioritized compared to the non-mammary usage
(see Fig [3.8(F,D)), and that this effect becomes more pronounced for low glucose
diets.

3.2.2 The Effect of Changing Glucose in the DMI on the Estrous
Cycle

The glucose content in the DMI (parameter ) has an effect on the estrous cycle.
In the previous subsection, it was shown that decreasing cg from 0.3 to 0.2 prolongs
the phase of negative energy balance. A decrease in blood glucose and insulin con-
centrations is associated with a decrease in IGF-1 [81] 213, 122]. As a consequence,
elongated postpartum anestrus periods occur [32), 31, 37, 192]. Similarly, Walsh et
al. [218] resumed that NEB leads to low insulin concentrations in blood, which in
turn prevents an increase in IGF-1 secretion, resulting in delayed resumption of
ovarian cyclicity [83].

The simulation results (see Fig agree with those observations. Increasing the
relative amount of glucose in the DMI from ¢y = 0.2 to 0.3 increases the IGF'-1 con-
centration. This stimulates the responsiveness of follicles to LH, thereby shortening
the postpartum anestrus interval from about 150 to 40 days (see Fig. Accord-
ingly, the oxytocin level becomes cyclic again at the end of the anestrus interval,
after having significantly decreased over the postpartum period (see Fig[3.11]).
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Figure 3.6: Simulated glucose and insulin levels in lactating dairy cows
for different values of glucose content in the DMI. Time series data of
milk yield and DMI from Holstein cows [71] are used as input for the model (C).
Glucose and insulin dynamics were simulated with different glucose content in the
DMI (¢p = {0.2,0.225,0.25,0.30}). When ¢y = 0.2 (corresponding to 20% glucose
content), glucose levels during peak milk drop towards the physiological limit (0.39
g/L) (A). In general, low amounts of glucose lead to a rapid depletion of the store
(B), accompanied by a decrease in body fat (E), indicating a negative energy balance
due to high milk production.

The length of the postpartum anestrus in the simulations agrees with the liter-
ature. In studies based on postpartum progesterone profiles, it was demonstrated
that 90 to 95% of post partum dairy cows have resumed ovarian cycles by day 50
after calving [156, 27, 28]. Hence, a postpartum dairy cow is considered ‘normal’
if it has resumed ovarian cyclicity by day 50 post partum and continues cycling at
regular intervals of approximately 21 days [I11].

The simulations also show that estradiol levels at the beginning of the lactation
period are within their normal range. This was confirmed by several studies. The
authors in [172] found that restricted nutrition leads to anovulation but does not
alter estradiol blood concentrations. Although ovulation and luteal development do
not occur in anestrus cows, follicular growth is not totally impaired by restricted
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Figure 3.7: Simulated change in body fat as an indicator of energy balance
in lactating dairy cows for different values of glucose content in the DIMI.
When ¢y = 0.2, energy balance is negative throughout the lactation period (A).
When ¢y = 0.225 or higher, the period of negative energy balance becomes shorter
(B,C). When ¢g = 0.3, energy balance is positive throughout the lactation period
(D).

nutrient intake. In a review, Diskin et al. [57] suggested that NEB in early lac-
tation does not affect the follicle population but does affect the ovulatory fate of
the first dominant follicle. The authors summarized that low /GF-1 and insulin cu-
mulatively reduce follicular responsiveness to LH and ultimately suppress follicular
oestradiol production.

There is evidence that a good management of the diet can reduce the incidence
of abnormal estrous cycles [77, [75], [162]. Improving postpartum nutrition increases
the blood concentration of insulin and I/GF-1, which ultimately enhance LH pul-
satility [122 [I1]. Higher IGF-1 levels during the first two weeks postpartum lead
to an earlier re-start of the estrous cycle [218]. It was demonstrated in a study
that providing a diet high in starch promotes an increased insulin release with a
subsequent rise from 55% to 90% in the number of cows that ovulated within 50
days postpartum [77], a time interval that is considered to be an indicator for good
reproductive performance [156]. In sum, resumption of cyclicity during lactation is
crucial for good fertility in dairy farming. It can be influenced by feed intake, but
also depends on many other factors such as uterine health, metabolic status, milk
yield and overall condition.
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Figure 3.8: Simulated metabolic rates in a lactating cow for different values
of glucose content in the DMI. Glucose content in the DMI was fixed at 20%
(red line) or 30% (black line). During lactation, mammary glucose usage (F) gets
prioritized compared to the non-mammary usage (D).

3.2.3 The Effect of Changing Model Parameters on the Estrous
Cycle

A local sensitivity analysis as described in eq. , was performed to assess the
influence of all model parameters on the time of first ovulation after calving, charac-
terized by the onset of luteal activity (increased P/ levels). For this, the observable
y is chosen as the earliest time point at which the (relative) P/-level is larger than
a threshold Tpy = 1,

y((t,0)) = min(PA(t) > Tpy).
Throughout the calculations, glucose content in the DMI was fixed at cg = 0.25,
which resulted in an onset of luteal activity at day 50 post partum. The parame-
ters’ impact on the timepoint of ovulation is illustrated in Fig [3.12] Fig|3.12[ (A)
shows the change in the timepoint of first ovulation after perturbation of single pa-
rameters by +10%, whereas Fig[3.12| (B) shows the change in the timepoint of first
ovulation after perturbation by -10%. Note that in the two subplots (A) and (B)
only the numerator of 5’; is plotted, since the denominator is independent of the
parameter index 7. The two most influential parameters are T} (parameter num-
ber 91) and TE% (parameter 33, described in [195]). The first one describes the
threshold of glucose in the blood to stimulate insulin secretion, while the second
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Figure 3.9: Simulated levels of P4, IGF-1, LH and estradiol during lac-
tation for different values of glucose content in the DMI. Hormonal cycles
were simulated over the lactation period for different fractions of glucose in DMI
(parameter c¢p). A lower glucose content results in negative energy balance (see Fig
, thereby prolonging the anestrus period. A higher glucose content results in an
improved energy balance, which leads to increased insulin and IGF-1 levels and an
earlier re-start of the estrous cycle.

one is the threshold of P/ to stimulate decrease of follicular function. A change
of the parameters 91 and 33 by +10% and -10%, respectively, results in a later
occurrence of ovulation (see Fig|3.12| (C)). Indeed, an increase in the value of 77 by
10% limits the secretion rate of insulin. As insulin influences the release of LH, LH
pulses are suppressed, which delays the ovulation to day ~ 90. On the other hand,
a decrease in the value of Tﬁf” by -10% stimulates the decay of follicular function,
which causes a prolongation of the anovulatory period to day ~ 120.

3.3 Discussion

In the previous sections, the relationship between fertility and metabolism was ex-
plored based on two validated models [195] [14]. These models were slightly modified
and coupled to simulate the interplay of follicular development and its hormonal
regulation with the glucose-insulin system. Information about the mechanistic in-
teractions between fertility and metabolism, if taken straight from the literature,
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Figure 3.10: Effect of changing the glucose content in the DMI on the time
of first ovulation after calving. Hormonal cycles were simulated over the lacta-
tion period for different fractions of glucose in DMI (parameter ¢y). Simulated data
(red dots), which represents the estimated incidence of first ovulation, is determined
by the time of first LH peak followed by an increase in progesterone production
above baseline. The blue line represents the fitted curve f(z) = a-exp(—b-x)+c to
the data with a = 45581, b = 0.30317, ¢ = 35.644. A lower glucose content results
in a late ovulation, whereas a higher glucose content results in an early ovulation.

is sometimes contradictory and/or redundant. Therefore, only a small number of
mechanisms was included, sufficient to realize the coupling of the two models.

With the coupled model, acute and chronic dietary restriction scenarios were sim-
ulated, intending to reproduce clinical study findings for non-lactating cows [127,
126, 172]. Furthermore, numerical experiments were run by varying the amount of
DMI and the glucose content in the DMI for both lactating and non-lactating cows,
and the effect of dietary restrictions on the estrous cycle was analyzed in lactating
cows. The simulation results agree with the findings from the clinical studies, at
least on a qualitative level.

Of course, the model has some limitations. Increasing (decreasing) the glucose
content in the DMI, given by the parameter cg, results in the same simulation out-
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Figure 3.11: Simulated levels of oxytocin during lactation for different
values of glucose content in the DMI. Levels of oxytocin, which are very high
in early lactation, decrease with ongoing lactation and become cyclic again at the
end of the anestrus period.

put as increasing (decreasing) total DMI, because only the product ¢y - DMI is
contained in the model equations but not the individual factors. In reality, this is
certainly not true. A way out would be to relate DMI directly or indirectly (e.g.,
via metabolic activity as in [I4]) to one of the other variables. However, this would
have complicated the model structure which, from the authors’ point of view, is not
necessary for the modeling purpose in this thesis.

Furthermore, the model presented here only describes processes in a single rep-
resentative cow. In its current form, the model is not able to display inter- or intra-
individual variability. However, since the implemented mechanisms are universal,
variability could easily be included by adapting parameter values to individual mea-
surements, once such measurements are available.

One could also criticize the model for its restriction to glucose as the only feed
component. Hence, the protein content should be included in addition to glucose
and fat to complete energetic composition of DMI. This would provide one with a
more realistic nutrient supply, change of body composition and body weight as well
as milk production and composition.

In addition, experimental research is gaining more and more insights into the effect
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Figure 3.12: Sensitivity analysis results for the time of first ovulation post
partum. A sensitivity analysis was performed to assess the influence of all model
parameters on the time of first ovulation after calving as described by eq. .
(A) shows the change in the timepoint of first ovulation after perturbation of sin-
gle parameters by +10%, whereas (B) shows the change in the timepoint of first
ovulation after perturbation by -10%. Note that in the two subplots (A) and (B)
only the numerator of S’; is plotted since the denominator is independent of the
parameter index i. The two most influential parameters are T} (parameter 91) and
TEAU (parameter 33). A change of the parameter 77 by +10% results in a later
occurrence of ovulation (see Fig|3.12| (C)). On the other hand, a decrease in the
value of Tgf“ by -10% stimulats the decay of follicular function, which causes a
prolongation of the anovulatory period to day ~ 120.

of nutrition on follicular development. With an improved follicle model, similar to
the one introduced in [I13], further simulations can be conducted to explore the
effect of nutrition on multiple follicles in more detail.






Chapter 4

Model Application -
Administration of
Dexamethasone

4.1 Background

Glucose requirement in dairy cows early in lactation is dominated by the require-
ments of the mammary gland for milk synthesis [I68]. Due to increased glucose re-
quirements caused by milk production, high yielding dairy cows usually go through
a period of negative energy balance that predisposes them at risk of developing hy-
poglycemia and ketosis. Hypoglycemia, which is often observed in early lactation,
stimulates glycogenolysis in skeletal muscles and lipolysis in adipose tissues as an
adaptation to manage the energy deficit. An increased rate of lipolysis often results
in increased levels of non-esterified fatty acids in the blood, which causes an increase
in its uptake by the liver. The liver can exceed its capacity to oxidize mobilized
non-esterified fatty acids. Therefore, excess fatty acids are accumulated in the liver,
which may impair hepatic function. This gives rise to an increase in susceptibility
to disease and several health problems such as ketosis, fertility disorders, impair-
ment of immune function [51], [61], 85 186]. Ketosis in dairy cows is very common
during the postpartum period. From a large sample size of population study (1717
cows), it was reported that the average of ketosis incidence was 43% and the peak
incidence occurred at 5 days in milk [135].

Improved feeding management of cows during dry and early lactating periods has
been shown to mitigate the degree and duration of negative energy balance and
reduce accumulation of fatty acids in the liver [214] [I7]. But if the increase of feed
intake lags behind the demands for energy requirements, therapeutic intervention
may be required to improve the energy balance of the cows. This treatment should
regulate blood glucose and insulin concentrations in order to reduce fat mobilisation,
thereby diminishing the risk of ketosis. Glucocorticoids such as dexamethasone are

65
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commonly known to treat and regulate mammalian glucose homeostasis. In other
words, they play a protective role against glucose deprivation, especially under stress
and starvation [10} 67, 98], 105]. Glucocorticoids have been shown to be beneficial
in the treatment of cows with clinical ketosis and fatty liver syndrome postpartum
[108, [5, 189] [5 163], 199, 226]. In particular, they are known to improve the energy
balance of cows by decreasing the uptake of glucose in body tissues and by sup-
pressing milk production [108|, 226, 88|, [183]. Because of their ability to promote
muscle and fat catabolism, glucocorticoids also stimulate gluconeogenesis during an
energy deficit [108], 136, 208]. However, the use of glucocorticoids in these animals
is still controversial. This is because in addition to these beneficial effects, they
may adversely result in even increased lipolysis and suppression of components of
the immune system [153] [I51], 191].

In the literature, there exists several pharmacokinetic-pharmacodynamic models
developed for investigating the effect of glucocorticoids on rats [98, 116, [7, 197,
119]. For instance, the model in [98] quantitatively describes the induction of
hyperglycemia as a result of methylprednisolone drug administration. In bovine,
there are only a few studies focussing on the pharmacokinetics of glucocorticoids,
e.g., dexamethasone [205] [74]. Moreover, no combined mathematical model de-
scribing the coupling of pharmacokinetic and pharmacodynamic was introduced
for dairy cows. Therefore, the aim of this Chapter is to develop a mechanistic
pharmacokinetic-pharmacodynamic model for dairy cows. This model simulates
the effect of dexamethasone on the physiological behaviour of the system, espe-
cially glucose metabolism. ”In-silico simulations” could play an important role in
designing therapeutic strategies for ketosis and diseases related to the metabolic
system. This can be done by varying drug and physiological parameters without
performing animal experiments.

4.2 Pharmacokinetic-Pharmacodynamic Model

Dexamethasone is the main glucocorticoid drug which is used for the treatment of
fatty liver syndrome or ketosis in postpartum dairy cows [51],[199]. In the following,
we introduce a pharmacokinetic model for dexamethasone in dairy cows. This model
is based on the existing developed pharmacokinetic models. Then, we link the
pharmacokinetic model to the MetRep model to investigate the pharmacodynamic
characteristics of the drug.

4.2.1 Pharmacokinetic Model

The pharmacokinetics of dexamethasone in bovine have been reported in two pub-
lished experimental studies [205] [74]. In the experiment of Toutain et al. [205],
four cows received dexamethasone alcohol and dexamethasone 21 isonicotinate as a
solution by intravenous and intramuscular routes of 0.1 mg/kg (0.1 mg of the drug
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per kg body weight). Following intravenous administration, the disposition kinet-
ics of both formulations were described by a two-compartment open model. The
half times of elimination were almost similar, 335 and 291 min, for dexamethasone
alcohol and dexamethasone 21 isonicotinate. No statistically significant difference
was found for all other parameters. Following intramuscular administration, no sig-
nificant difference in parameters was observed between the two formulations. Peak
plasma concentrations were reached at 3 to 4 hours post injection. The bioavailabil-
ity, denoted by F', which is the fraction of dose that reaches the systemic circulation,
was estimated to be around F = 72%. Following intramuscular administration,
Toutain et al. [205] described the pharmacokinetics of dexamethasone by a two-
compartment model. In this model, one compartment described the distribution
phase after intramuscular dosing, and the second compartment was considered to
model the absorption phase into the central compartment.

In this work, we also consider an intramuscular administration of dexamethasone
21 isonicotinate, which we call in the followig dexamethasone only for the sake
of simplicity. In this regard, we use the pharmacokinetic parameters reported by
Toutain et al. [205] for the construction of our pharmacokinetic model. A graphical
representation of this model is depicted in Fig The figure illustrates the change
of dexamethasone concentration, denoted by C, in the central compartment with
the volume of distribution V;. This change is controlled by two rate constants, k,
and C'L. The first rate, k,, describes the absorption phase, that is, the movement
of the drug from its site of administration to the bloodstream. The second rate,
CL, describes the volume of plasma from which the drug is totally removed per
unit time. This rate can also be expressed in terms of the elimination rate and
the volume of distribution, CL = ke - V3. The mathematical model describing the
change in dexamethasone concentration is given by the following equation:

d
Va- EC =dose - F-ky-e ™' —CL-C, with C(t=0)=0, (4.1)

where dose is the total amount of dexamethasone given per kg body weight (mg/kg)
following an intramuscular administration.

4.2.2 Integrating the Pharmacokinetic Model into MetRep Model

To couple the pharmacokinetic model to the MetRep model, a description of gluco-
corticoids’ mechanisms of action on the system is presented in the following along
with the coupling hypotheses.

Delayed Drug Effects

To observe the effect of a drug on the system, one has to wait the time it takes for
the drug to induce an effect at the site of action. This can be ascribed to several
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Figure 4.1: Illustration of pharmacokinetic model. This figure illustrates the
absorption phase described by first order rate k, of dexamethasone following intra-
muscular administration into the central compartment from which dexamethasone
is cleared by an elimination rate of first order.

mechanisms which explain delayed effects. For instance, after administrating a
dose of drug, it takes time for the drug to reach the site of action (distibution)
and then to bind to its receptor, which again takes time, thus contributing to a
delay in response. Moreover, it may take time for the drug to change physiological
intermediate substances before the drug response is observed. Commonly, these
time lags can be seen as only one delay process. When the delay is short (minutes)
then the mechanism is probably a distribution process, whereas if the delay is
long (hours or longer) then the mechanism is more likely to be physiological [92].
When administering dexamethasone, it is not sufficient to directly model the effect
as a function of systemic concentrations in the pharmacokinetic model, rather we
assume that there exists a delayed effect as it can be seen in Fig This is
because the maximum effect observed from the data is delayed compared to the
maximum concentration of the drug in the plasma. To account for this delay,
an additional compartment called ”the effect compartment” is considered linking
the blood concentration in the central compartment to the systemic effect [3, 93]
187]. The equilibrium concentration in the effect compartment, Ce, is achieved by
the flow of dexamethasone concentration, Cy,,,, from the central compartment to
the effect compartment with a rate constant k.; and a dissipation from the effect
compartment with a rate constant k.,. Here we assume that k., is equal to k.
This parametrization of the model assumes that the average concentration in the
effect compartment at steady state is the same as in the central compartment. If the
value of ke, is large, this means that the effect compartment is rapidly equilibrating
and the concentration in this compartment closely follows the plasma concentration,
whereas a small value of k., means that the effect compartment equilibrates slowly
and hence effects are delayed relative to plasma concentrations. The temporal
change of C, is given by the following equation,

%ce i C kg Co = hey- (C— o), with Cu(t=0)=0.  (4.2)
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Figure 4.2: Combined pharmacokinetic and effect compartment. This figure
shows the link of pharmacokinetic model with effect compartment to describe the
indirect effect of drug at the site of action caused by the time lag. The central
compartment is linked to the effect compartment with a rate constant k.;. The
elimination term from the effect compartment with a rate constant k., is assumed
to be equal to k.
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Glucocorticoid Effects

Several studies have analyzed the role of glucocorticoids in regulating glucose metabolism.
In both human and animals, a common findings is that increased glucocorticoids in-
duce peripheral insulin resistance by increasing hepatic glucose output and reducing
the peripheral glucose uptake [56], 98|, 108, 144], 224]. One mechanism by which glu-
cocorticoids reduce glucose uptake is the inhibition of the insulin signalling cascade
[108, 144, 161, 200], 208]. In contrast, reduced glucocorticoids signalling improves
insulin-stimulated glucose uptake in peripheral tissues. At the level of alpha cells,
this decrease would be regarded as glucose shortage in the system, which augments
the responsiveness of alpha cells, thereby triggering glucagon secretion [I31]. Stud-
ies in man and rats [131], (136 [164] 228] have reported that glucocorticoids increase
glucagon secretion from alpha cells.

A second major effect of glucocorticoids on glucose metabolism is that glucocorti-
coid excess can increase glucose production by stimulating proteolysis, lipolysis and
hepatic gluconeogenesis. In particular, glucocorticoids increase the release of amino
acids by decreasing protein synthesis and increasing the breakdown of proteins in
several tissues. This leads to an increased update of hepatic amino acids uptake,
which serve as gluconeogenic precursors. In addition, glucocorticoids also increase
the availability of gluconeogenic substrates by stimulating glycerol release from fat
cells. The abundance of gluconeogenic precursors enhances hepatic gluconeogenesis,
which results in an increase in glucose production particulary in case of an energy
deficit [136} 208]. Glucocorticoid-stimulated proteolysis, lipolysis and hepatic gluco-
neogenesis can be mediated by glucagon. The major target for glucagon is the liver
where glucagon stimulates gluconeogenesis, but it also stimulates proteolysis and
lipolysis. Exton et al [68] reported that glucocorticoids stimulate gluconeogenesis
by glucagon. The authors showed that subcutaneous injection of dexamethasone 30
min prior to perfusion restored glucagon activation of gluconeogenesis as revealed
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by increased glucose production and synthesis of glucose and glycogen from lactate.
On the other hand, glucocorticoid deficiency showed to markedly impair the ability
of glucagon to stimulate gluconeogenesis or glycogenolysis [136].

While the effect of glucocorticoids on alpha cells is to increase plasma glucagon lev-
els, their effects on beta cells, on the other hand, are conflicting [I08|, [110]. Different
results have been reported by in vitro studies in rats, mice and man treated with
glucocorticoids, where insulin secretion was measured afterwards. These studies re-
ported either increased [24 102, 129, 219], unchanged [42} 45. [69], 110}, 184, 100, 207],
or decreased [120, 25| 49} 63, [80} 104}, 110, [152] insulin secretion. These discrepancies
cannot easily be explained and it seems that effects of glucocorticoids on beta cells
function are highly dependent on the dosage and duration of administration, the
experimental animal model and susceptibility of the population under investigation
[07, 110]. However, some studies speculated that glucocorticoid treatment acutely
(within less than one day) inhibits insulin secretion [120, 53|, [104], 110} 152} 208],
whereas, pancreatic islets isolated from healthy rats after more prolonged treatment
(several days) with dexamethasone or hydrocortisone showed either unchanged or
increased glucose-stimulated insulin secretion [152, 219, 208]. Chronic exposure
likely results in beta-cell dysfunction in susceptible individuals [208, [196].

In dairy cows, results from some studies indicate that treatment with dexametha-
sone has the ability to enhance the metabolism of glucose and insulin. For instance,
a single dexamethasone injection of 20 mg induced a sharp increase in blood glucose
concentration and then a quick return to normal level [I54]. Results from Kusenda
et al. [109] reported that the mean plasma glucose and insulin concentrations in-
creased one day after treatment and were significantly even higher the second day
in cows treated with a single dexamethasone injection of 0.04 mg/kg compared with
control cows. In addition, the authors added that dexamethasone administration
induced peripheral insulin resistance. Hammon et al. [86] reported an increase in
both plasma glucose and insulin concentrations observed in calves treated with a
single dexamethasone injection of 0.03 mg/kg. Jorritsma et al. [99] [199], observed
in their studies a significant increase in the mean plasma glucose and insulin levels
on the second day after treatment with a single dexamethasone injection of 0.02
mg/kg in cows fifteen days after calving versus the controls. This findings sup-
ported early work of Wierda et al. [226]. The same finding has been reported by
van der Drift et al. [206] in a study where healthy Holstein-Friesian dairy cows in
late pregnancy received a single dexamethasone injection of 0.02 mg/kg.

The effect of dexamethasone on reducing milk in dairy cows is well documented
in the literature [226] [88], [183]. For example, in an experiment by Shamay et al.
[183], a single intramuscular dose of 40 mg dexamethasone in multiparous cows at
mid-late lactation caused a 45% reduction in milk yield after 24 hours. Milk yield
then started to rise, but it took additional five days to return to the initial level.
The decrease in milk yield was ascribed the ability of dexamethasone to reduce
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glucose uptake in body tissues as well as the mammary gland, which leads to an
insulin resistance state [88].

Coupling Hypotheses

Based on the aforementioned mechanisms, we couple the pharmacokinetic model
described above to the MetRep model, which incorporates glucose-insulin inter-
regulations. From the above discussion, it is clear that glucocorticoids act on the
alpha and beta cells, body tissues, mammary gland as well as the liver. However,
the results from different studies about the action of glucocorticoids on insulin se-
cretion in rodents and man are still contentious. As discussed previously, studies
in dairy cows indicated an elevation in insulin level following a single dexametha-
sone injection. In addition, it is known that the effects of glucocorticoids counteract
those of insulin, which enhances glucose uptake in peripheral tissues. Thus, to allow
glucocorticoids to exert their responses, glucocorticoids need to antagonize insulin
actions. Because of this, we rule out the possibility of glucocorticoids acting on
insulin secretion in this work. Thus, we couple the two models according to the
following hypothesis.

We assume that a rise in dexamethasone concentration stimulates glucagon secre-
tion from pancreatic alpha cells, see Fig The stimulation of glucagon secretion
in turn will augment the availability of gluconeogenic precursors and enhance hep-
atic gluconeogenesis. On the other hand, glucocorticoids reduce insulin-stimulated
glucose uptake in body tissues. In lactating cows, we assume that dexamethasone
induces milk reduction by impairing glucose uptake in the mammary gland, see Fig
All these effects are mathematically expressed by altering the secretion term
of glucagon represented by glucase. in eq., glucose uptake in body tissues rep-

resented by gluj,—g (eq.(2.8) and glug,— e (eq.(2.9)), and the sink term of milk
production in eq.(4.6|), respectively to:

glucasec—dem = glucase. - effect gom—giucas (4.3)
glug—st—dem = glup—st - effectapm—pe - (4.4)
gl — fat—dem = gtz —fat - effectiem—pt , (4.5)
Itk —usage = c13 - Milk - effectizm vt (4.6)

where

ClO
eﬁeCtdmm—glum = <1 + Enag - ClOiC’lO) ) (47)
e a
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and

c7
€ﬂectdmm_bt == (1 - CMZ> . (48)

Here FE,,.. is the parameter representing the maximum possible stimulation of
glucagon secretion glucase.. The constant C, is the drug-specific parameter repre-
senting the concentration required for half-maximal stimulation of glucagon secre-
tion. The constant C} is the drug-specific parameter representing the concentration
required for half-maximal inhibition of glu;,_st, glug,— o and glucose uptake in the
mammary gland. A full description of the combined pharmacokinetic and pharma-
codynamic model of the system is depicted in Fig 4.4

Fat
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Figure 4.3: Representation of possible drug effects on pancreatic cells
and body tissues and mammary gland. A rise in drug concentration stim-
ulates glucagon secretion from pancreatic alpha cells and reduces glucose uptake
into peripheral tissues, represented by glu;,_s and glug,—fq¢, as well as uptake
into mammary gland. The green arrow with a star represents the decay term of
glucagon.
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4.3 Simulation Results

In this section, we present the simulation results of the combined pharmacokinetic
and pharmacodynamic model. We start by presenting the simulation results of the
pharmacokinetic model for intramuscular administration of one single dose of dex-
amethasone of 0.02 mg/kg. Particularly, we explore the effect of administration on
the dynamical behaviour of the model components in non-lactating cows. Subse-
quently, we examine the effect of administrating one single dose of dexamethasone
on the resumption of cyclicity of the estrous cycle during the postpartum period in
lactating cows. Simulation results in non-lactating cows are compared with data
of glucose and insulin concentration from 6 non-lactating cows that received 0.02
mg/kg dexamethasone 21 isonicotinate by the intramuscular routes, see Fig It
can be seen from Fig that concentrations stay steady post drug administration
until around 12 hours after which a trend of increase is observed and a peak is
achieved at around 20 hours thereafter. However, we assume that the peak con-
centrations are already reached at around 18 hours since there are measurements
missing for a time period of almost 5 hours. In addition, we assume that concen-
trations continue to decrease after 22 hours until return to the baseline.

4.3.1 Pharmacokinetics of Dexamethasone

As mentioned earlier, following intramuscular administration, the dexamethasone
pharmacokinetics were described by a two-compartment model. The change in
concentration C' of dexamethasone in the central compartment as well as C, in
the effect compartment are expressed by eq. and eq., respectively. For a
cow of weight 600 kg and a dose rate of 0.02 mg/kg, we consider an intramuscular
administration of 12 mg dexamethasone. Only a fraction, F = 72%, of the dose
reaches the systemic circulation. The parameter values used to simulate eq.
and eq. are shown in table Simulation results are depicted in Fig As
we can see, the plasma concentration of dexamethasone in the central compartment,
C, increases up until around 3 hours post injection. At approximately 4 hours, the
concentration reaches its maximal value of Cyq, &~ 8.7 ng/ml and then subsequently
decreases. The concentration of dexamethasone in the hypothetical compartment,
C., slowly increases up until around 17 hours post injection. At around 18 hours, the
concentration reaches steady-state with maximal concentration of C' ~ 2.1 ng/ml
and then subsequently decreases.

4.3.2 Effects of Administrating a Single Dose of Dexamethasone
in Non-Lactating Cows

The effects of administration of a single dose on the dynamic of metabolic ele-
ments in non-lactating cows are shown in Fig[4.7] Simulation results show that the
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Figure 4.5: Measured data of glucose and insulin concentrations. This
figure illustrates observed data of glucose and insulin concentrations collected from
a clinical study in the Clinic for Ruminants of Freie Universitat Berlin. These data
were used for parameter estimation of the potassium balance model [I4]. The data
describe the change of glucose and insulin concentrations on an hourly basis of 6
non-lactating cows that received 0.02 mg/kg dexamethasone 21 isonicotinate by the
intramuscular route. The time of administration is depicted by the red line. It can
be seen strong inter-individual variations in insulin measurements between the 6
study cows.

stimulatory effect of dexamethasone on alpha cells, eq. and eq., result in
increased glucagon concentration from around 100 ng/ml to around 280 ng/ml, Fig
4.7(E). Hammon et al. [86] reported an increase in glucagon concentration from
around 125 ng/L to 175 ng/L in calves treated with dexamethasone administra-
tion of 0.03 mg/kg. In [228], the glucagon concentration increased from 150 ng/L
to 350 ng/L following dexamethasone administration of 2 mg. As glucagon is a
catabolic hormone that regulates glucose levels in the bloodstream, a rise in plasma
glucagon concentration increases the supply of gluconeogenic precursors in the liver
by stimulating the degradation and mobilization of glycogen and fat. This result is
visible in Fig [4.7(D) and Fig [4.7(G), whereby the glucose production is enhanced
by hepatic gluconeogenesis process, see Fig [4.7(H). As a result, the plasma glu-
cose concentration temporarily increases from approximately 0.48 g/L to 0.72 g/L
and quickly returns to the baseline on the second day, see Fig[4.7(C). The glucose
concentration peaks at around 18 hours post drug administration. This time delay
that dexamethasone takes until acting at the site of pancreatic alpha cells was mod-
elled by the effect compartment, in which the time of the maximal concentration
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Figure 4.6: Pharmacokinetics of dexamethasone upon administration of
a single dose of 0.02 mg/kg intramuscular injection. Sub-figure (A) de-
picts the plasma concentration C of dexamethasone in the central compartment.
Sub-figure (B) depicts the concentration C, of dexamethasone in the hypothetical
compartment.

C. is also around 18 hours post dexamethasone administration, see Fig[4.6(B). The
glucose concentration fits to the measurement data as shown in Fig 4.7[(A). Here,
we scaled down the data of glucose concentration with factor of 0.7 so that they
match the baseline of the simulated glucose concentration. The discrepancy in the
baseline levels of glucose in the blood between the modelled cow and the cows from
the experimental study can be ascribed to several factors such as weight, age, diet,
etc.

While insulin primarily stimulates glucose uptake into peripheral tissues, the an-
tagonistic effect of dexamethasone onto this process, eq., eq.(4.5)) and eq.,
leads to more available glucose in the systemic blood circulation as it can be seen in
Fig [4.7(C). Biologically, this occurs through the mechanism by which dexametha-
sone directly interferes with the insulin signalling cascade in peripheral tissues [208],
thereby inducing insulin resistance. The acute elevation in glucose concentration in
the blood results in increased insulin concentration. This increase in insulin level is
regarded as an adaptation of pancreatic beta cell function to insulin resistance by
forcing beta cells to produce a compensatory increase in insulin secretion to main-
tain glucose homeostasis. In this case, the simulated insulin concentration follows
the trend of increasing insulin data as shown in Fig F) From this figure, we
observe an increase in insulin concentration up to around 40 mU/L on the first day
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Table 4.1: Values of rate and effect parameters in the pharmacokinetic-
pharmacodynamic model.

Name Description Value  Unit

kq Absorption rate constant from the central compart- 13.4352 1/d
ment

ke Elimination rate constant from the central compart- 2.7086 1/d
ment

keo  Rate constant describing the rate of change of drug 0.7 1/d
concentration in the effect compartment

Va  Volume of distribution 1.106 L/kg
C,  Concentration required for half-maximal stimulation 1.8 ng/mL
of glucagon secretion
Cyp Concentration required for half-maximal inhibition of 1.8 ng/mL
glucose uptake
Erae Maximum stimulatory effect of drug on glucagon se- 3 -
cretion

post dexamethasone administration, and a subsequent return to the baseline on the
second day.

As it is evident from Fig[4.7[C) and (F), data of glucose and insulin concentrations
resulting from a single dexamethasone administration of 0.02 mg/kg peak almost
at the end of the first day post administration. Regardless of the day and the
magnitude of this increase, the elevation in both concentrations following a single
dexamethasone administration in dairy cows was also observed in early studies. For
instance, Jorritsma et al. [99, [199] observed in their studies a significant increase
in the mean plasma levels of glucose (3.55 mmol/L = 0.639 g/L) and insulin (13.14
mU/L) on the second day after treatment with a single dexamethasone injection
of 0.02 mg/kg 15 days after calving. In another study of healthy Holstein-Friesian
dairy cows in late pregnancy treated with a single dexamethasone injection of 0.02
mg/kg, Van der Drift et al. [206] observed a significant increase in the plasma
glucose level (median was 4.2 mmol/L = 0.756 g/L) on the second day and insulin
level (median was 15 mU/L) on the third day. These discrepancies in the magni-
tude of increase as well as the day of the peak seem to be dependent on the design
of experiment and susceptibility as well as the metabolic condition of the animal
under investigation.
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Figure 4.7: Glucose and insulin changes in non-lactating cows following
a single dexamethasone administration of 0.02 mg/kg. Glucose (C) and
insulin (F) concentrations peak almost at the end of the first day post adminis-
tration. A stimulatory effect of dexamethasone on alpha cells increases glucagon
concentration (E), which in turn increases the supply of gluconeogenic precursors
in the liver by stimulating the degradation and mobilization of glycogen (D) and
fat (G) from the depots, thereby increasing glucose production (H). An inhibitory
effect of dexamethasone on body tissues impairs insulin-stimulated glucose uptake,
thus allows more glucose in the systemic circulation.

4.3.3 Effects of Administrating a Single Dose of Dexamethasone
in Lactating Cows

In this section, we explore the dynamical behaviour over time of the metabolic and
the reproductive status in postpartum lactating cows after administrating a single
dose of dexamethasone of 0.02 mg/kg.

Effects on the Metabolic Status

We assume that a cow of weight 600 kg gets an amount of DMI and produces an
amount of milk as given in Fig|[3.5] In addition, we assume that glucose content
in DMI is ¢g =20%. Performed simulations clearly show that for a low amount of
glucose in DMI (¢y =20%), glucose and insulin concentrations in the blood drop
towards their lower physiological limits around peak milk (Fig|3.6{(A),(D)). In order
to compensate for the increase in milk production, the cow mobilizes her body re-
serves as represented in the model by glycogen and fat in the store (Fig|3.6/(B),(E)).
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The mobilisation of fat, however, is often associated with negative energy balance.
The therapeutic treatment with dexamethasone is expected to up-regulate blood
glucose and insulin concentrations in order to decrease the rate of lipolysis. As it is
shown in Fig|4.8(A) and (D), the administration of a single dose of dexamethasone
of 12 mg on the day 50 postpartum induces a temporary hyperglycemia with a sig-
nificant increase in glucose concentration over 1 g/L. In their experiment, Shamay
et al. [I83] reported that a single intramuscular dose of 40 mg dexamethasone in
multiparous cows at mid to late lactation caused a 45% reduction in milk yield
after 24 hours. This resulted in elevated glucose concentrations in the treated cows
to around 1 g/L one day after dexamethasone injection. Glucose was back in the
normal range after the second day. Our model-simulated glucose is accompanied by
a sharp spike in insulin concentration to around 40 mU/L. Hyperglycemia occurs
due to increased glucose production (Fig F)), which is stimulated by a rise in
dexamethasone-stimulated glucagon secretion. Glucagon concentration sharply in-
creased due to the stimulatory effect of dexamethasone, and subsequently decreased
as a response to the significant increase in glucose level, see Fig[4.8{C). Interestingly,
although dexamethasone stimulates the mobilization of glycogen and fat from the
store, it is evident from Fig [4.8(E) that the rate of lipolysis was decreased. This
originates from the fact that milk production is reduced through the mechanism by
which dexamethasone impairs the glucose uptake into the mammary tissues. There
is only a limited number of studies on the effect of a single dose of dexamethasone
on the metabolic status during the postpartum period. All of them, however, report
an improvement of the metabolic status in early lactation period. However, all the
effects were observed in short terms and there was no long time improvement of the
negative energy balance [176].

There are only few conducted studies on the effects of glucocorticoids in combi-
nation with or without other drugs on lipolysis in dairy cows, and the findings are
inconsistent. In cows treated with dexamethasone on day seven and day eleven post-
partum [72 [73], it was shown that in parallel with a significant increase in plasma
glucose and insulin concentration, a significant decreases in the plasma concentra-
tions of non-esterified fatty acids and beta-hydroxybutyrate occurs. This decrease
can be used as markers of excessive negative energy balance in dairy cows [I57].
In other experiments, dexamethasone decreased blood ketone concentrations in ke-
totic and healthy fresh cows [226] [176]. On the other hand, the administration of
a corticosteroid with or without insulin showed to have no therapeutic and preven-
tive effects on ketosis one or two weeks after treatment in early lactation [I81]. In
other experiments, glucocorticoids did not lead to changes in non-esterified fatty
acids concentrations in the blood [206], [99]. These aforementioned findings are dis-
crepant, perhaps due to the difference in dosage, duration of treatment as well as
the susceptibility of the cows under investigation. We think that increased lipoly-
sis might occur only when the cow undergoes a consecutive multiple-day dosing of
dexamethasone, where the accumulated concentration induces more fat degradation
than glucose uptake into the mammary gland. This, however, should be supported
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by performing further in vivo and in silico experiments (simulating the model with
multiple doses).

Effects on Reproductive Performance

It was shown that an elevated concentration of beta-hydroxybutyric acid is asso-
ciated with negative enery balance and poor fertility [30, 216]. During negative
energy balance phase, fat mobilization increases non-esterified fatty acids and beta-
hydroxybutyrate concentrations. These elevations result in impaired FSH and LH
secretion [IT), 30], resulting in a negative effect on follicle growth and ovulation. To
assess the performance of our model, we administrate a single dose of dexametha-
sone at two different time points, e.g. days 50 and 52, and compare the two results.
Simulation results before drug administration show that for a low glucose content
(co =20%) in DMI the postpartum anestrus interval lasts until day 150, see Fig
(blue-solid line). After the administration of a single dose of dexamethasone
on day 50, simulations show that dexamethasone induces estrous cyclicity with an
elongated first cycle and normal cycles thereafter, see Fig m (red-dotted line). In
contrast, administrating a single dose of dexamethasone only two days later fails to
reinduce the cyclicity of hormones, see Fig (black-dotted line). This discrepancy
can be ascribed to the time of administration. In other words, the dexamethasone
dose results in a short term increase in glucose and insulin concentrations at days 50
and 52. Based on the linking mechanism of our model, a high insulin concentration
stimulates F'SH, LH and IGF-1 hormones, see eq. and eq.. It turns out
that the sharp increase in insulin temporarily stimulates LH and IGF-1 around day
52, but in contrast to day 50, the LH magnitude does not surpass the threshold
that allows follicles to ovulate.

To the best of our knowledge, there are only a few conducted studies about the
effects of a single dose of dexamethasone or other glucocorticoids on reproductive
performance in dairy cows in early lactation. For instance, Seifi et al. [I8I] re-
ported that administration of a single dose of isoflupredone alone or in combination
with insulin within the first 8 days after calving had no impact on reproductive
performance. In other studies, it was reported that excess in glucocorticoid did
not affect LH concentration of cows [91]. It was also shown in ewe that dexam-
ethasone did not significantly modify reproductive function, in particular, it did
not have any effect on LH [160]. Maciel et al. showed that dexamethasone did
not affect FSH and LH concentrations, but the total number of follicles (> 5 mm)
and plasma estradiol concentrations were lower in the treatment group compared
to control group [125]. However, in a recent study, Sami et al. [I75] were the first
to report an improving effect of a single injection of dexamethasone on pregnancy
rate and reproductive performance. They concluded from their study that cows
treated with an intramuscular injection of 20 mg at day three or ten of lactation
had a shorter time to pregnancy than controls. In addition, dexamethasone-treated
cows had a better pregnancy rate throughout the lactation period. In particular,
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the probability to develop pregnancy on day 120 postpartum was 2 times higher
in cows that received dexamethasone in comparison to controls. This study was
the first to suggest that a single dose of dexamethasone injection in early lactation
might improve reproductive performance.

In general, the effects of glucocorticoids on fertility in dairy cows are not well
understood. Future studies should explore mechanisms through which either dex-
ametasone concentration or its signalling pathways in the reproductive system can
be changed to improve the reproductive performance.

4.4 Discussion

In this chapter, a pharmacokinetic-pharmacodynamic model was introduced, based
on mechanisms underlying homeostasis regulation by dexamethasone. The coupled
model takes into account the predominant role of dexamethasone in stimulating
glucagon secretion, glycogenolysis and lipolysis and impairing the sensitivity of
cells to insulin. Whether the stimulation of endogenous glucose production via glu-
coneogenesis is a primary dexamethasone effect or a secondary system change via
dexamethasone-stimulated glucagon secretion remains unclear. An additional term
which accounts for glucagon stimulation, was linked to gluy,.q to avoid redundancy
and overparameterization.

We have shown that the adopted mechanisms are able to induce a temporary hyper-
glycemia and hyperinsulinemia, which captures the observed data in non-lactating
cows. In lactating cows, we have shown that a single dose of dexamethasone reduces
the lipolytic effect, owing to the reduction of glucose uptake by mammary gland.

Although our model successfully simulates the acute effect of dexamethasone on
the dynamics of metabolic hormones, the simulation of chronic dosing is infeasible
due to the lack of mechanisms that describe the long-term effect of dexamethasone
treatment on system homeostasis (such as insulin resistance caused via chronic hy-
perglycemia).

In summary, hyperglycemia and hyperinsulinemia can be simulated following treat-
ment with a single dose of dexamethasone. However, while it is evident that gluco-
corticoids may acutely decrease or chronically increase insulin secretion in rodents
and humans, available studies in dairy cows do not mention any acute decrease in
insulin concentration. Since marked differences exist in digestion of carbohydrates
and regulation of glucose homeostasis between monogastric animals and ruminating
cattle, acute effects of dexamethasone on insulin secretion as well as possible dys-
function of beta cells in chronic treatment regimes should be further investigated
in dairy cows.
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Figure 4.8: Effects of administrating a single dose of dexamethasone of
0.02 mg/kg on glucose-insulin dynamics in lactating cows. This figure
illustrates the changes in the metabolic components before (blue-solid line) and
after (red-dashed line) dexamethasone administration. A sharp increase in glucose
(A) and insulin (D) concentrations can be seen after administrating a single dose
of dexamethasone of 0.02 mg/kg on day 50. A stimulatory effect of dexamethasone
on alpha cells increases glucagon concentration. Glucagon subsequently decreases
as a response to the significant increase in the glucose level (C). The increase in
glucagon concentration increases the supply of gluconeogenic precursors in the liver
by stimulating the degradation and mobilization of glycogen (B) and fat (E) from
the depots, thereby increasing glucose production (F). However, it can be seen that
the magnitude of decrease in fat is reduced compared to the decrease observed
before the administration dexamethasone (G). This originates from the fact that
milk production is reduced through the mechanism by which dexamethasone impairs
the glucose uptake into the mammary tissues, thus leading to more glucose in the
systemic circulation.

Mechanistic pharmacokinetic-pharmacodynamic modeling not only permits assess-
ment of drug effects but also gives additional insights into the interacting compo-
nents of the model. Improving our biological knowledge about the long term effect
of glucocorticoids in dairy cows could entitle the proposed model to be further de-
veloped and used as a tool for exploring treatment strategies against ketosis and
other diseases related to the metabolic system.
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Figure 4.9: Effects of a single dose of dexamethasone of 0.02 mg/kg on the
estrous cycle in lactating cows. This figure illustrates the dynamic behaviour
of P4, IGF-1, LH and E2 before and after dexamethasone administration. Simula-
tion results before drug administration (blue-solid line) show that the postpartum
anestrus interval last until day 150. Administrating a single dose of dexamethasone
on day 50 (red-dotted line) induces the cyclicity of E2, LH and IGF-1, thereby
reinducing estrous cyclicity with an elongated first cycle and normal cycles there-
after. In contrast, administrating a single dose of dexamethasone only two days
later (black-dotted line) fails to reinduce cyclicity of hormones.






Chapter 5

Model Application - Optimal
Bayesian Experimental Design

The mechanisms by which the MetRep model is formulated are based on biological
assumptions from literature knowledge. These mechanisms are expressed via a large
number of unknown parameters one needs to infer from experimental data. But,
sometimes experimental data are qualitatively and quantitatively limited, i.e. the
available data are not sufficient and do not provide much information about the
system. As a result, the model is possibly prone to a certain level of inaccuracy in
both parameters and predictions. In contrast, sufficient informative data can play
a key role in optimizing and refining the model.

Our aim in this work is to make use of the MetRep model and Bayesian and infor-
mation theory to systematically analyse and develop hypotheses to guide the design
of experiments. This will allow us to define what and when to measure in order
to obtain maximum information of the resulting data, and thereby reducing uncer-
tainty in the model parameters and predictions. To this end, we first present an
overview of experimental design within the Bayesian framework. Subsequently, we
design experiments for non-lactating cows to reduce the uncertainty in the model
parameters. Thereafter, we design experiments for lactating cows to reduce the
uncertainty in predicting the ovulation time during the postpartum period.

5.1 Background

An experiment is a study or process that results in the collection of data. The
results of experiments are not known in advance. Designing an experiment is the
process of laying out a detailed experimental plan before performing the experi-
ment. Experimental design is very essential in order to ensure that the right type
of data and a sufficient sample size are available to support, refute, or validate a hy-
pothesis as clearly and efficiently as possible. Experimental design has very broad
applications across the natural, medical and social sciences, as well as engineer-

85
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ing, business and finance. In recent years, the growing interest in systems biology
prompted the emergence of many dynamic computational models, which are de-
veloped to test hypotheses about complex biological systems. However, a major
challenge with such models is that most of them lack sufficient informative data
that limit their predictive power and efficient statistical inference. Recent stud-
ies have demonstrated that generally less than half of the parameters are tightly
confined by experimental data [82] [66]. This is because the collection of sufficient
experimental data can sometimes be a difficult task to conduct, especially in situa-
tions where multiple experiments might be difficult, expensive or time-consuming to
perform. To overcome this challenge, experimental design emerged as an important
approach that can be performed before collecting the data. Hence, the performance
of this approach is based on simulated data generated by the model at hand. The
ultimate aim of experimental design is the selection of an optimal design from all
practically applicable designs. Conducting the experiment based on the selected
optimal design is expected to maximize the value of data. The resulting data can
be used to better estimate model parameters and predictions. Thus, experimental
design answers questions such as, what (i.e. which species) and when to measure,
which variables to interrogate, and what experimental conditions to employ.

The design of an experiment involves specifying the purpose of the experiment
and defining the variables that can be controlled by the experimenter for the study
before the experiment starts. Here variables might include: choosing which species
to study and how these species will be measured (e.g., amount, timing, frequency),
specifying a length of time for the experiment to be performed [41]. When designing
an experiment sometimes experimenters are confronted with some constraints such
as a fixed total cost and time. These should be taken into account when choosing
the appropriate values of the control variables, especially for situations in which
experiments are costly and/or time consuming to conduct. Hence, experimental
design can be viewed as an optimisation problem where the resulting optimal de-
sign may fulfil the experimental goals more rapidly and hence reduce experimental
costs. Therefore, the design of an experiment requires the definition of the design
space D, which defines the set of all practically applicable designs, ®, within the
limit of available resources. For example, if experimenters are restricted to a limited
budget, e.g. J, then the design space D is given by

D:{@gﬁm;nguga}, (5.1)

i=1

where {U;},.,,, are the subdomains representing the constraints of the design.

Some common constraints that experimenters often encounter when planning an
experiment for sampling species are time and cost budget. Usually, only a limited
number of individuals (e.g., n individuals) can be measured. In addition, only a
limited number of sampling times (e.g., s times) is allowed. Let us assume that the



5.1 Background 87

experimental measurements consist of readouts,
Z(tl) = [Zl(ti)> T ,Zj(ti), t >Zn(ti)] S Rn: (52)

obtained through sampling species, which can be performed at arbitrary time points
ty, -+ ,ti,- -+ ,ts. We denote the range of indices for time points as,

Ux :{17 77;a"' 73}7
and the range of indices for readout variables as,
UQ:{L"' 7j7"' an}a

such that the index pair (i,7) € U; x Uy refers to the individual measurement.
Hence, individual measurements represented by the design ® can be grouped into
datasets,

7" = {2;(t;) : (i,5) €D € D}. (5.3)

Before conducting an experiment, experimenters usually have access to some pieces
of information called prior knowledge, which are based on previous studies, domain
knowledge or subjective beliefs. In this regards, the Bayesian approach offers an
ideal tool to contribute to the design of experiment. It has found its application
in experimental design because of the use of the available prior knowledge about
a quantity of interest. For instance, the aim of experimental design is to precisely
estimate model parameters. Here the prior knowledge about the unknown param-
eters in the model is combined with the likelihood. The later reflects the amount
of information that the data carry about the unknown parameters to estimate the
posterior distribution, from which inferences on further quantities of interest can be
made. The newly estimated posterior distribution serves as new prior knowledge
for the design of the subsequent experiment, see Fig [5.1]

Several works have been developed in both theory and practice to advance the
field of experimental design within the Bayesian framework [4, 29] [40] 87, 94] 117,
118, 145], 180, 210]. Early theoretical development of Bayesian experimental de-
sign was suggested by Lindley [I18], who noted that the design of an experiment
should depend on the experimental objectives, e.g., precise estimation of certain
parameters, prediction of future responses. In addition, Lindley melded concepts
from Bayesian inference and information theory where he measured the initial un-
certainty of parameters in terms of the Shannon entropy, which can be updated to
the posterior uncertainty after new observations have been collected. Other contri-
butions to Bayesian experimental design were made by Chaloner [40], who further
developed Bayesian optimal design theory in a linear regression context and explic-
itly described how the prior makes a difference between the classical and Bayesian
optimal designs. In other words, he noted that optimal Bayesian designs are close
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Figure 5.1: The iterative process for improving the design of experiment.
First, an initial prior knowledge (e.g. about parameters) is used for experimental
planning. After carrying out and analysing the output of the experiment, posterior
probability is estimated. This serves as new prior knowledge for the design of the
subsequent experiment.

to the classical ones when a noninformative prior distribution is used. The appli-
cations of Bayesian methodologies to optimal experimental design have been used
in several works. For instance, Bussito et. al [29] introduced an efficient method to
design informative experiments for selecting biological dynamical models. Vanlier
et. al [210], developed a method based on the posterior predictive distribution to
asses the predictive power of experiments for models that cope with large param-
eter uncertainty. Huan et. al [04] employed a Bayesian statistical setting to find
optimal experiments via Monte Carlo approximation. Liepe et. al [I17] used similar
approach as in [94] but improved it in that it is global and not constrained to some
local neighbourhood in parameter space and used to assess parameter inference and
prediction of system behavior.

5.2 Reducing Uncertainty in Model Parameters

In this section, we formulate an experimental design that aims at reducing uncer-
tainty in the model parameters. First, we formulate the design space, then we
present and discuss the calculation results of the mutual information shared be-
tween the parameters and measurements. Here we make use of the MetRep model
in non-lactating cows to generate the measurements. Finally, we use the experi-
mental outcome to update the prior distribution of one selected parameter of the
model.
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5.2.1 Formulation of the Experimental Design

To increase our ability to reduce uncertainty in the model parameters, we need
to select an optimal design from the design space. If we are concerned with the
cost and time to obtain informative measurements, then the design space should
take into account two aspects: time points and observed species. Specifically, the
selected optimal design should inform us about when to measure, i.e. select the
optimal sampling times, and what to measure, i.e. specify the observed species that
provide more information about the model parameters.

For the optimization of the sampling times, we first define the design space with
respect to the time period, e.g., from ¢; to t; during which the experiment is per-
formed. Here ¢; and t; are the initial time and the final time of observation, re-
spectively. The MetRep model simulates a periodic estrous cycle which averages
21 days in duration. For the sake of verification and confirmation, we perform
the experiment over a period of 36 days. This period captures both the follic-
ular and the luteal phase. Sampling can be performed at arbitrary time points,
t1, -+ ,ti,tix1 -+ ts. However, in our case we choose to take daily measurements
during the period of the observation. This means that ¢;11 — t; = 1 day and the
number of time points s = 37. In this case the range of indices for time points is
U =A{1,---,4,i+1,---37}.

The second part of the design space includes the observed species we want to in-
clude in our experimental setup. We note that the MetRep model simulates 22
components, some of which are not practically measurable. For this reason, we
measure only species that are practically measurable. For example, amongst the 22
components of the model we assume that FSH, PGF, P4, E2, INH, IGF, insulin,
glucose and glucagon are the only measurable species. Thus, the list of measurable
species consists of 9 species, which are

{FSH,PGF,P4,E2,INH,IGF, Ins, Gluppoq, Gluca} . (5.4)

In this case, the range of indices for measurements is Uy = {1,---,7,7+1,---9}.
These species are time-dependent variables. More generally, the change of these
species over time is represented by the initial value problem:

dy(t

M) fu(1).0). u(0) = . (55
where the values of species at a specific time point ¢; is represented by

y(ti) = [y (ti) - - - yo(ti)] € RY, (5.6)

and 6 is a vector containing the parameters of the model and yy denotes the initial
values of the species. If we assume that f is the true deterministic model simulating
the species, then the measurements are represented by

z(ti) = y(ti) + &, 1 € Un, (5.7)
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and the individual measurement is represented by
zj(t:) = y;(ti) + €45, (4,7) € Ur x Uy, (5.8)

where ¢; and €;; are uncorrelated random vectors of measurement errors that follow
the Gaussian distribution of zero mean and the covariance ¥,, = o7 - Idy (i.e.
ei ~ N(0,%,,)), where Idy is the identity matrix and the variance a?j (i.e. g5 ~
N(0, a?j)), respectively. Hence, the measurements of all species can be grouped into

datasets,
Z% = {z(t;) eR?:i € U}, (5.9)

and the individual measurements represented by the design © can be grouped into
datasets,

7 = {z;(t;) €R: (4,5) € D € D}, (5.10)

where D is a vector of indices that specify the design point of time and species, and
D is the space of admissible designs.

5.2.2 Results and Discussion

To draw information from all species about the optimal sampling time of measure-
ments, we compute the mutual information, I(0; Z%), shared between the model
parameters, ©, and the measurements of all species, Z*!. For models of type ,
z € Z% follows the Gaussian distribution of mean y and covariance ¥, i.e. the
model likelihood is provided such that 2|60 ~ N(y,%,). In this case, we estimate

1(©; Z) via eq.(T.50).

In order to simulate a set of measurements, {Z(Q)}1<q< ~,» that are biologically

meaningful, we first draw N1+ Nz € N samples of the parameters {60}, g<(N1+N2)
such that N; < Ny from the uniform distribution centred at the nominal value 6, ¥
with 10% standard deviation. Simulating the model with the parameters 6(9)
and the initial value y(0) = yo leads to the solution y. However, some of the so-
lutions are not biologically meaningful. Thus, to filter out the set of parameters
{9(‘1)} Ny +1<q<No that are not biologically meaningful, we apply the approach pre-
sented in Section [I.2.3 The accepted parameters are used for the approximation
of the prior distribution p(#). To graphically illustrate the result of this approach,
we plot, as an example, the accepted and rejected solutions of P4, see Fig
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Figure 5.2: Graphical illustration of the accepted and rejected concentra-
tions of P4 in non-lactating cows. This figure compares the dynamic of P4
concentrations that are biologically meaningful (blue) with concentrations that are
not biologically meaningful (red). It can be seen that P4 concentrations in blue
color are slightly deviated from the standard dynamic of P4 concentration in green
color, while P/ concentrations in red color diverge. These simulation outputs are
generated using the approach discussed in Section [1.2.3

Simulating the model (5.5) using the accepted parameters {#(9)}, <q<N, (as sam-
ples from p(0)), and choosing 10% as the standard deviation, we generate a set of
artificial measurements {z(q)}1S g<N, using eq.(5.7). Thus, this set of measurements

can be used to approximate the mutual information I(©; 2 “”) in eq.([1.50]).

The calculation result of I(©; Z%) is presented in Fig[5.3, The figure shows the
daily score of the mutual information shared between the model parameters and the
measurements collected for all species. In addition, Fig[5.4] shows the daily score of
the information gained Ig ., see eq., by collecting data z. For the calculation
of I ., we used two random data sets, 21 e zall and 2?) € Z9 to compare the
result. Interestingly, we can clearly see that the values of Ig . are higher or less
than the values of mutual information, I(0; Z%!). This variation is ascribed to the
fact that the mutual information measures the amount of information contained
on average over all the possible behaviours of the system, whereas the information
gain, Ig ., represents the amount of information gain about © provided by a single
observed data, e.g., 21 or z(2). Moreover, we can clearly see from the daily scores
of the mutual information, Fig that the measurements carry more information
about the model parameters during the follicular phase than the luteal one. In par-
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ticular, the highest and lowest mutual information is recorded on the day 83 (red
bar) and 68 (black bar), respectively. This means that collecting data on the day 83
can be expected to significantly decrease the uncertainty in the model parameters
compared to data collected on the day 68.

After having determined the optimal time for sampling the measurements, it is
beneficial to investigate which species carries high information about the model
parameters. In practice, this gives more information to experimenters on how to
deal with some restrictions such as a limited budget. For this purpose, we compute
the mutual information, 1(0; Z"%), shared between the model parameters, ©, and
the measurements collected for every species, Z*?. This mutual information is cal-
culated on the day 83 on which the sampling time is optimal. Fig[5.5| (A) shows
the scores of the mutual information every species carries about the model param-
eters. It can be seen that PGF and E2 carry more information about the model
parameters than the other species. In addition, species such as FSH and INH have
less information than PGF and E2 but higher than IGF-1 and P4. Moreover, Ins,
Gluca and Glu contain low information about the model parameters. Fig 5.5 (B)
shows the scores of the mutual information every species carries about the model
parameters on the day 68. Comparing with the day 83, the information content of
species such as FSH, PGF, P4, E2 and IGF-1 is reduced. In particular, this time
PGF does not provide much information about the model parameters. In contrast,
the information content of INH remains nearly unchanged. This is also the case for
Ins, Gluca and Glu but with low information content.

We expect that species carrying high information can reduce the uncertainty of
the parameters more than the ones carrying less information. To illustrate how the
information content of species can reduce the uncertainty of the model parameters,
we compute the posterior distribution p(€|z) for one selected parameter of the model

according to eqs.(|1.32)), (1.33)), and (1.34). For the computation, we use the family

.3

of samples (0(‘1), z\4 )1 <q<N: comprising the accepted set of parameters and its cor-
responding set of measurements. In particular, the joint density p(0, 2) is estimated
by choosing the Gaussian kernel, G [(6, z), X, where ¥ = diag(bj, b2 ,--- ,b2) is the
diagonal bandwidth matrix such that by, b, --b,, are the bandwidth smoothing
parameters. However, in order to avoid the smoothing effect of the KDE, we take
the Gaussian kernel at (0,y), i.e. G[(0,y), 20,5 (since z ~ N(y,E,), see eq.(5.7)
for better smoothing, where Xy, = diag(b, o, ,03) is the diagonal bandwidth
matrix such that {o;}, <j<g are the standard deviations of measurements. The
choice of the smoothing parameter by is provided by MATLAB’s commmand ks-
density, which returns the bandwidth of the kernel smoothing window that is the

optimal for normal densities.

For the illustration purpose, all visualizations of the prior and posteriors and their
uncertainties were done for just one parameter, e.g. the growth rate E2, but the
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calculation of the mutual information was performed for all parameters. Fig [5.6
depicts the prior distribution (blue line) of the parameter and the corresponding
posterior distributions computed using random data collected on the day 68 and
day 83. When we update the prior distribution using data containing all species
collected on the day 68 (red curve), we observe a negligible decrease in the parame-
ter uncertainty. In contrast, updating the prior distribution using data collected on
the day 83 shows a gradual decrease in the parameter uncertainty. Specifically, the
more we update the prior distribution using additional species, the more the un-
certainty decreases. This gives an idea to what extent experimenters could control
the uncertainty of the parameter in line with a limited budget. It is important to
mention that the output of an experiment is random, i.e. two collected data, z(1)
and z(® may contain different information content (e.g. see Fig 5.4). To illustrate
how the decrease in parameter uncertainty changes according to the amount of in-
formation content of data, we update the prior distribution using three different
sets of data, see Appendix, Fig[10]
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Figure 5.3: Experiment choice for parameter inference in the MetRep
model. Top: the subfigure illustrates the dynamic of the Follicle and P/ during
one cycle period. Bottom: the subfigure depicts the mutual information, I(0©; Z*!),
shared between the model parameters, ©, and the measurements collected for all
species, Z%. High and low mutual information are scored on the day 83 (black
barplot) and 68 (red barplot), respectively. The error bars on the mutual infor-
mation barplots show the variance of the mutual information estimations over 3
independent simulations. It can be observed that the highest mutual information
is scored during the follicular phase, while the lowest mutual information is scored
at the beginning of the luteal phase.
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Figure 5.4: Computed information gain. This figure compares two computed
information gain, Ig ,) and Ig ,2). We observe that for different realizations z)
and z(® of Z% the information gain Ig . for j € {1,2} can be higher or lower

than I(0;Z%) (e.g. on days 68 and 83), which is the expected information gain,
i.e. averaged over all possible outcomes of Z.
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Figure 5.5: The mutual information between the model parameters and
the measurements of the individual species. The figure compares the indi-
vidual information content on the day 83 (A) and 68 (B). From both subfigures, we
can observe that Ins, Glu and Gluca do not provide much information about the
model parameters. This is also the case for PGF on the day 68.
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Figure 5.6: The prior and posterior distributions of the parameter. This
figure shows the prior distribution of the growth rate of E2 (in blue) and the
estimated posterior distributions. The posterior distributions in red and black are
estimated based on data containing all species collected, respectively, on the day 68
and 83. The other posterior distributions are estimated based on data containing
some selected species collected on the day 83. It can be seen that the more we update
the prior distribution using additional species, the more we observe a decrease in
the uncertainty. This is also the case for Fig
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5.3 Reducing Uncertainty in Model Prediction

In the third chapter of this thesis, we discussed the effect of NEB on the repro-
ductive performance of dairy cows. In particular, we showed that minimising the
interval of NEB after calving induces the re-initiation of ovarian cyclicity in a short
period. In addition, early studies reported that a shorter postpartum anestrus in-
terval to first ovulation is positively associated with conception rate later during the
breeding period [30]. Moreover, minimizing the interval to first ovulation provides
more time for completion of multiple ovarian cycles prior to insemination, which in
turn improves the conception rate [32]. In addition, we also presented a nutritional
strategy to mitigate the effects and the extension of NEB. In particular, we showed
that a higher glucose content in the diet results in an improved energy balance
during the postpartum period.

The focus of the experimental design in the section is somewhat different to the one
in the previous section, since our aim is no longer to reduce the uncertainty of model
parameters but of the model prediction. In this case, the time of first ovulation T,
during lactation period. Consequently, we will no longer attempt to maximize the
mutual information I(0; Z*!), which represents the experimental information gain
on the parameter from the measurements, but the mutual information I(7,,; Z“”),
which measures the experimental information gain on the ovulation time T, from
the measurements.

In the following, we make use of the MetRep model to design an experiment that
provides a criterion for predicting the time of first ovulation during lactation period.
In this regards, we simulate the model for lactating cows with a fraction of glucose
content in the DMI, ¢y = 25%, to generate the measurements. In this case, the
model predicts the first ovulation on day 45 postpartum, (see Fig . To start,
we first formulate the design space, we then present and discuss the results of the
experimental outcome.

5.3.1 Formulation of the Experimental Design

In this section, the formulation of the design space includes the same components as
that of the previous section, i.e. time points of sampling and species to be measured.
As in the previous section, we also assume that only 9 species are measurable which
are FSH, PGF, P4, E2, INH, IGF, insulin, glucose and glucagon. Thus, the range
of indices for measurements is Uy = {1,---, 7,7+ 1,---9}. But in this section, we
consider a slight change in the sampling times of measurements. First, we perform
the experiment from the second week postpartum, i.e. the day ¢; = 7 until the day
t, = 68. This interval includes the time of first ovulation (i.e. day 45) which is
predicted by the model. In addition, we perform the sampling of measurements on
a weekly basis during the period of the observation. In this case, the total points
of sampling time is 8, which is represented by Uy = {1, -+ ,i,i+ 1,---8}.
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Analogously to the previous section, the measurements of all species can be grouped
into datasets,

7% ={2(t;) eR? :i € Uy}, (5.11)

and the individual measurements represented by the design ® can be grouped into
datasets,

7 = {z;(t;) €R: (i,7) €D € D}, (5.12)

where ® is a vector of indices that specify the design point of time and species, D
is the space of admissible designs.

5.3.2 Results and Discussion

Now that we have formulated the design space, we turn to the computation of the
mutual information, I(7,,; Z%), shared between the random variable T,,, describing
the time of first ovulation and the measurements of all species Z%. In this case, it
is not evident how to provide the likelihood function, p(z|t,,). Thus, the estimation
of the mutual information, I(7T,,; Z*!), can only be achieved following eq.. In
this regards, we need to generate a family of samples (tg’f,), z(k))lgkg N representing
the time of first ovulation and the measurements. To do so, we consider the model:

0:0 xRT — Rt xR
(evy()) — (tovvy)a

where 60 is the model parameters, yo is the initial condition of the model, y is the
simulated species via the model , and t,, is the simulated time of the first
ovulation. The time t,, is chosen as the earliest time point at which the (relative)
P4-level is larger than a threshold Tpy = 1,

tm) = Itrlzlél(P4(t) Z Tp4).

We follow the same procedure as in the previous section, see where we first
filter out the species’ concentrations, y, that are not biologically meaningful and
their corresponding time of ovulation, t,,. Fig shows the accepted and rejected
solutions of PJ concentration. By considering 10% as the standard deviation, the
accepted simulated species, y, are utilized to generate measurements, z € Z%
according to eq.. Thus, repeating the same procedure for a large number of

times, e.g., N times, we can generate the family of samples, (t(()]f,), z(k))lngN.

It should be noted that for the purpose of predicting the time of first ovulation, we
are interested only in the ovulation times {t(()]f,) } <p<n Occurring after collecting the
measurements during the postpartum period. This constraint should be embedded
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Relative level of P4
w

0 20 40 60 80 100
Days postpartum

Figure 5.7: Graphical illustration of the accepted and rejected concentra-
tions of P4 during postpartum for lactating cows. This figure compares
the dynamic of P4 concentrations that are biologically meaningful (blue) with con-
centrations that are not biologically meaningful (red). It can be seen the cyclicity
of P4 concentrations in blue color are are similar to the standard dynamic of P/
concentration in green color, while P4 concentrations in red color strongly diverge.
These simulation outputs are generated using the approach discussed in Section
1.2.0
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Figure 5.8: Graphical illustration of the approximated prior distribution
via the KDE approach. The subfigure (A) presents the approximated prior
distribution, p(t,,), based on the set {t(()]f,)}K p<n of the ovulation times occurring
between the day 0 to 80. This approximation is performed using the Gaussian kernel
function. The subfigure (B), shows the approximated prior distributions based on
the set {tgf,)}1<k<N such that t,, > t;, where t; € {7,21,28,35,42,49,56}. It can
be seen that the density of the time of ovulation when measuring at t; is more
informative than when measuring at ¢;, where t; < ¢;.

into the density p(t,,) when computing the mutual information. In other words, the
density p(tsy) used for the computation of mutual information should be formulated

as follows,
0 if to, < ty,
p(tov) — X . ov 1
p(tov) if tov = Ui,

where t; is the day of collecting measurements and p(t,,) is the approximated dis-

tribution of p(ty) using the KDE approach based on samples {t((,’f,)}lgkg ~ such
that t; < tgf)). Fig shows the result of the approximation of p(t,,) using the
Gaussian kernel. It can be seen that the prior density of the time of ovulation when
measuring at t; is more informative than when measuring at ¢;, for t; < t;, which
is meaningful since we gathered information about the ovulation time by simply

waiting longer, the ovulation time did not occur in the interval [t;,t;].
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Fig[5.9/ (A) depicts the weekly score of mutual information shared between Ty, and
Z¥ The result shows that the highest mutual information value is recorded on the
day 49, whereas the lowest score is on the day 7. In addition, Fig|5.9| (B) shows the
calculation of mutual information shared between T,, and the individual species
represented by Z"¢ on the day 49 (for the day 7 see Appendix, Fig . This
result indicates that P4 carries high information about the time of first ovulation
comparing to the other species. This result supports previous studies [26] [34] 130, [70],
which suggest the potential value of monitoring P4 levels in postpartum dairy cows
as an aid to the assessment of reproductive activity. During the first weeks of
postpartum period, the dynamical change in P/ profile can indicate the time at
which the estrous cycle resumes. In other words, the anestrus postpartum period is
characterized by a low level of P4 concentration. As the metabolic status improves,
the PJ concentration relatively increases until reaching the normal profile. This
profile is characterized by P4 levels greater than 5 ng/ml during the luteal phase
that lasts for 10-14 days, [26], 34]. It can be also seen from Fig|5.9| (B) that species
such IGF-1, INH, E2 and FSH carry almost equal information (but less than P/)
about the first time of ovulation. In contrast, the other species such as PGF, Ins,
Glu and Gluca provide less information about the time of first ovulation.

We learned from Fig[5.9 (A) that sampling species on the day 49 can be expected
to provide high information for predicting the time of first ovulation. To illustrate
how the information content of species can reduce the uncertainty of prediction, we
estimate the posterior distributions, p(t.|z), based on data z collected on the day
49. The posterior distributions are estimated similarly as in the previous section
by choosing the Gaussian kernel. Fig shows the prior distribution (in blue) of
the possible ovulation times after collecting data z on the day 49 (grey line), i.e.
tov = 49. The model prediction of the ovulation time is indicated by the brown line.
In addition, the figure shows the estimated posterior distributions based on data
z containing one or more species. For instance, when updating the prior distribu-
tion using data z containing only the information content of P4, the uncertainty
of prediction is reduced (red dotted curve). Naturally, the more we include addi-
tional information from other species into the data z, the more the uncertainty is
reduced. In other words, the posterior distribution based on data containing high
information of P4, IGF-1, INH, E2, FSH indicates that it is highly probable that
the ovulation occurs around the day 56-57. This is also what the model predicts
(brown line). On the other hand, we observe no significant decrease in the uncer-
tainty when adding low information from species such as PGF, Ins, Glu, Gluca. To
explore how the magnitude of uncertainty can be reduced by other random data,
we update the prior distribution based on two random data collected on the day
49, see Appendix, Fig From this figure, the information content embedded into
the two data resulted in different predictions and magnitude of uncertainties.

Comparing to the day 49, the mutual information is low on the day 7, see Fig[5.9
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Figure 5.9: The mutual information shared between the time of ovulation
and the species. The subfigure (A) presents the weekly mutual information shared
between the time of ovulation and all species. High and low mutual information are
scored on the day 49 (red barplot) and 7, respectively. The error bars on the mutual
information barplots show the variance of the mutual information estimations over
3 independent simulations. The subfigure (B) presents the mutual information
shared between the time of ovulation and each species. The information content of

P suggests that high information about the time of ovulation can be provided by
measuring Pj.

(A). This means that collecting species on this day will unlikely reduce the uncer-
tainty. To verify this, we estimate the posterior distribution based on data collected
on the day 7. Fig[13| (a) and (b) show the prior distribution (in blue) of the possi-
ble ovulation times after collecting data on the day 7 (grey line), i.e. to, > 7. The
model prediction of the ovulation time is indicated by the brown line. Moreover,
the figure shows the estimated posterior distributions based on data containing one

or more species. Clearly, it can be seen that the resulting posterior distributions
show a little decrease in the uncertainty.
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Figure 5.10: The prior and posterior distributions of the time of first ovu-
lation. This figure shows the prior distribution (in blue) of the possible ovulation
times occurring after the day 49. The time of measurement and the model predic-
tion of the ovulation time are represented by the grey and brown lines, respectively.
The estimated posterior distributions are based on data containing one or more
species. Updating the prior distribution using data containing only P4 results in
decreased uncertainty (red dotted curve). It can be seen that the more we include
additional information from other species into the data, the more the uncertainty
is reduced. In addition, we observe no significant decrease in the uncertainty when
including low information from species such as PGF, Ins, Glu, Gluca.



Conclusion

To understand the interaction between nutrition, metabolism and reproduction, a
unified approach was followed, similar to [137, [138], where these fields of interest
are integrated into one mathematical framework. Following this approach, a mathe-
matical model of bovine metabolism and reproduction has been developed based on
previously published and validated ODE models [195], [14]. Literature information
about mechanistic interactions of fertility and metabolism is contradictory and re-
dundant. Therefore, we decided to include as few mechanisms as possible to realize
the coupling of the two models.

The developed model simulates the interplay of follicular development and its hor-
monal regulation with the glucose-insulin system. By conducting numerical sim-
ulations relying on it, it was confirmed that an appropriate nutritional intake is
fundamental in mitigating the effects and the extension of NEB in order to reduce
the incidence of metabolic disorders in high producing cows and to avoid subsequent
fertility problems.

The present model enables the user to explore the relationship between nutrition
and reproduction by performing related parameter studies. The local sensitivity
analysis with respect to the onset of luteal activity after calving is just one exam-
ple for such an analysis, which can easily be extended to other quantities of interest.

To explore the effect of drug therapy on glucose metabolism in dairy cows, the
model has been linked to a pharmacokinetic model. Based on mechanisms underly-
ing homeostasis regulation by dexamethasone, the model successfully captures the
effect of one single dose of dexamethasone on the physiological behaviour of the
system. Although this model has been formulated to deal with only one single dose
of dexamethasone, this model can be further improved for the simulation of multi-
doses of dexamethasone.

Assuming that the current model simulates the ”true” dynamical behaviour of the
system, the model enables the user to select the optimal design of experiments.
In this thesis, we focused on designing experiments that lead us to reduce the un-
certainty in the model parameters for non-lactating cows and the uncertainty in
predicting the first ovulation time during postpartum for lactating cows.
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106 Conclusion

So far, it is fair to say that the model presented here is only a starting point.
In other words, it can be considered as an early attempt towards developing in sil-
ico feeding and therapeutic strategies for diseases related to the metabolic system.
It will certainly be modified and improved in the future for further application.
For example, the current version of the model can be improved to become a risk
assessment tool for the quantification of the flow rate of contaminant from the DMI
to milk. Ultimately, improving the current version of the model in the future will
promote the principle of the 3Rs (Replacement, Reduction and Refinement of ani-
mal testing). This principle allows to address important scientific questions without
the use of animal experiments.



Appendix

Table 1: Species in the metabolic model. The initial values are used to solve
the differential equations.

Name Description Initial value  Unit
Glupiood Glucose concentration in the blood 0.48 g/L
Glujjper Glucose generated in the liver 110 g
Glugtore Glucose stored as glycogen 535 g
Fat Body fat 150 kg
Ins Insulin concentration in the blood 15.5 mU/L
Gluca Glucagon concentration in the blood 105 ng/L

Table 2: Physiological ranges of blood plasma glucose, insulin and
glucagon levels.

Species  Range Reference
Glupiooa  0.39-0.59 g/L (2.22-3.30 mmol/L) [2]

Ins 2-50 mU/L [223, 222]
Gluca  50-120 ng/L [223], 222]
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Table 3: Rates in the metabolic model.

Name Description Unit

9l feed—bi Glucose in the DMI available for direct absorption g/d
glufeed—gng Glucose generated from glucogenic substances in the DMI  g/d
glup_ Glucose absorbed from the blood into liver cells g/d
glug_1y Glucose generated from glycogen (glycogenolysis) g/d
glug, s Glucose stored as glycogen (glycogenesis) g/d
glugy—fat Glucose converted to triglycerides (lipogenesis) g/d

gl far—10 Glucose synthesized from glycerol g/d
9lUprod Glucose released from the liver to the blood g/d
glupi—ysage  Glucose usage for maintenance and milk production g/d
glupy—ysage  Glucose usage for liver metabolism g/d
iNSsec Insulin secretion mU/(L-d)
iNSdeg Insulin degradation mU/(L-d)
glucasec Glucagon secretion ng/(L-d)

glucageg Glucagon degradation ng/(L-d)
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Table 4: Values of rate and effect parameters.

Symbol  Value  Unit Explanation

Co 0.08 - Relative glucose content in the DMI

c1 0.08 - Fraction of directly absorbable glucose

C2 84211 mU/(L-d) Rate constant for insulin secretion

c3 2105 1/d Rate constant for insulin degradation

Cq 70182  ng/(L-d) Rate constant for glucagon secretion

cs 350.87 1/d Rate constant for glucagon degradation

C6 50 (g-L)/(mU-d) Rate constant for glucose absorption from
blood into liver cells

c7 180 L/(mU-d) Rate constant for glycogenesis

cg 0.22683 L/(mU-d) Rate constant for lipogenesis

Co 1350  (g'L)/(ng-d)  Rate constant for glycogenolysis

C10 3.5272  (g'L)/(ng-d) Rate constant for gluconeogenesis

c11 0.0684 L/(ngd) Rate constant for glucose release from the
liver to the blood

C12 1000 g/d Glucose usage for maintenance

C13 72 g/kg Glucose usage for milk production

C14 5 1/d Glucose usage for liver metabolism

17 0.4 [IGF]/d Basal IGF-1 synthesis rate in the blood

c18 1 [IGF]/d P4- and insulin-regulated IGF-1 synthesis
rate

C19 1.7 1/d IGF-1 clearance rate

C20 3.49 1/d Maximum effect of LH on follicular function

Co1 1 [LH] Maximum threshold of LH to stimulate fol-
licular function

Co9 3 - Maximum effect of insulin on FSH synthesis
in the pituitary

Co3 1.05 - Maximum effect of insulin on LH synthesis
in the pituitary

C24 1.5 [Oxy]/d Maximum rate of additional oxytocin syn-
thesis during lactation

C25 0.0007 1/d? Clearance of additional oxytocin during lac-
tation

Vv 22.8 L Extracellular volume of blood
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Table 5: Values of threshold parameters

Symbol Value Unit Explanation

T 0.5 g/L Threshold of glucose in the blood to stimulate insulin
secretion

Ty 0.5 g/L Threshold of glucose in the blood to inhibit glucagon
secretion

T3 045 g/L Threshold of glucose in the blood to stimulate the ab-
sorption of glucose into liver cells

Ty 10 L Threshold of milk to inhibit glycogenesis

Ts 10 L Threshold of milk to inhibit lipogenesis

Tg 1000 g Threshold of glygogen store to stimulate lipogenesis

Ty 10 g Threshold of glycogen store to stimulate glycogenoly-
sis

Ts 10 g Threshold of glycogen store to stimulate gluconeoge-
nesis

Ty 150 kg Threshold of fat to stimulate gluconeogenesis

T10 0.5 g/L Threshold of glucose in the blood to stimulate non-
mammary utilization

T11 0.3 [P4] Threshold of P4 to inhibit IGF-1 synthesis

T1o 15 mU/L  Threshold of insulin to stimulate IGF-1 synthesis

T4 0.5 [IGF] Threshold of IGF-1 to stimulate the responsiveness of
follicles to LH

T1s 15 mU/L Threshold of insulin to stimulate FSH synthesis

T16 16 ~ mU/L Threshold of insulin to stimulate LH synthesis
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Table 6: Initial values for species in the BovCycle model.

No Component Initial value Unit

1 GnRH in the hypothalamus 0.667 [GnRH]
2 GnRH in the pituitary 0.551 [GnRH]
3 FSH in the pituitary 0.316 [FSH]
4 FSH in the blood 0.395 [FSH]
5  LH in the pituitary 1 [LH]

6  LH in the blood 0.642 [LH]

7 Follicle 1 [Follicle]
8 PGF2, 0.00506  [PGF2,]
9  Corpus luteum 0 [CL]
10 Progesterone 0.004 [P4]
11 Estradiol 0.89 [E2]
12 Inhibin 0.826 [Inhibin]
13 Enzyme 0 [Enzyme]
14 Oxytocin (non-lactating case) 0.0183 [Oxy]
—  Oxytocin (lactating case) 2.5 [Oxy]
15  Insulin-like growth factor 1 (IGF-1) 0.48 [IGF]
16  Intra ovarian factor (IOF) 0.35 [IOF]
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Table 7: Values of parameters that have been changed compared to [195].

Symbol Value in [I95] New value  Unit  Explanation

CLH 12 2 1/d LH clearance rate constant
Cpa 0 0.1 [P4]/d P4 baseline concentration in
the blood
exg% 2 30 - Exponent of CL to stimulate
self-growth
exgng 5 1 - Exponent of enzyme to stim-
ulate prostaglandin F2, syn-
thesis
exlogéyp 2 10 — Exponent of oxytocin to stim-
ulate prostaglandin F2, syn-
thesis
eng‘w 5 1 - Exponent of P4 to stimulate
enzyme synthesis
eXfOGIf 5 10 - Exponent of prostaglandin
F2, to stimulate interovarian
factor synthesis
ex?OLF 10 1 - Exponent of CL to stimulate
interovarian factor synthesis
TEglicle 0.57 1.497 [FSH]  Threshold of FSH to stimulate
follicular function
TESH 0.22 0.322 [Follicle] Threshold of follicular func-
tion to downscale FSH thresh-
old
TSR 0.1 0.2807 [CL]  Threshold of CL to stimulate
self-growth
G 0.0334 0.0335 [CL]/d  Maximum increase of CL sim-
ulated by itself.
cfL 0.334 0.4 [CL]/d  Maximum increase of CL sim-

ulated by LH.
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Figure 10: The prior and posterior distributions of the parameter. This
figure shows the prior distribution of the growth rate of E2 (in blue) and the es-
timated posterior distributions based on three different data (subfigures (a), (b)
and (c)). The posterior distributions in red and black are estimated based on data
containing all species collected, respectively, on the day 68 and 83. The other pos-
terior distributions are estimated based on data containing some selected species
collected on the day 83. The information content of the three data resulted in dif-
ferent estimated posterior distribution. For example, the subfigure (a) shows that
the updated prior distribution using data containing all species collected on the
day 68 (red curve), results in a slight decrease in the parameter uncertainty. In
contrast, the subfigures (b) and (c) show no decrease in the parameter uncertainty
when using data containing all species collected on the day 68 (red curve). On the
other hand, it can be seen from the subfigures (a), (b) and (c) a decrease in the
parameter uncertainty when using data containing all species collected on the day
83 (red curve).
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Figure 11: The mutual information shared between the time of ovulation and each
species on the day 7.
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Figure 12: The prior and posterior distributions of the time of first ovu-
lation. This figure shows the prior distribution (in blue) of the possible ovulation
times occurring after the day 49. The estimated posterior distributions are based
on two different data containing one or more species (subfigure (a) and (b)). The
information content embedded into the two data resulted in different prediction and
different magnitude of the uncertainty. The time of measurement and the model
prediction of the ovulation time are represented by the grey and brown lines, re-
spectively. It can be seen that the more we include additional information from
other species into the data, the more the uncertainty is reduced.
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Figure 13: The prior and posterior distributions of the time of first ovu-
lation. This figure shows the prior distribution (in blue) of the possible ovulation
times occurring after the day 7. The time of measurement and the model predic-
tion of the ovulation time are represented by the grey and brown lines, respectively.
The estimated posterior distributions are based on two different data containing
one or more species (subfigure (a) and (b)). Since measuring species on the day 7
resulted in less information about the the ovulation time, it can be seen clearly that
updating the prior distribution with the two different data set did not decrease the
uncertainty of the ovulation time.
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Zusammenfassung

Experimentelle Studien haben gezeigt, dass die Erndhrung von Kiihen eine wichtige
Rolle bei der Regulation der Reproduktionshormone sowie bei der Follikelreifung
spielt. Bei Milchkiihen fiihrt eine negative Energiebilanz zu Beginn der Lakta-
tionsperiode zu einer verzogerten Aufnahme des Reproduktionszyklus. Niedrige
Glukose- und Insulinkonzentrationen im Blut resultieren in Hormonungleichgewichten
und fiithren infolge dessen zu einer verzogerten Aufnahme der zyklischen Aktivitét
nach dem Kalben.

In dieser Arbeit werden mathematische Modelle auf der Basis von Differential-
gleichungen verwendet, um die Glukose-Insulin-Dynamik und den Ostruszyklus
zu simulieren. In Kombination beschreiben diese Modelle, wie sich die Futter-
menge und deren Glukosegehalt auf die Reproduktionshormone und die Follikel-
reifung auswirken. Die Simulationsergebnisse fiir verschiedene Glukosegehalte im
Futter bei laktierenden und nichtlaktierenden Kiihen werden mit Ergebnissen ex-
perimenteller Studien verglichen. Weiterhin werden akute und chronische Futterre-
duktionen bei nichtlaktierenden Kiihen untersucht. Fiir laktierende Kiihe, welche
nach der Kalbung unter Energiemangel leiden, werden die Futtermenge und der
Glukosegehalt variiert und es wird gezeigt, dass die resultierenden Hormonzyklen in
Abhéngigkeit von Glukoseaufnahme und Korpergewicht stark variieren. Insgesamt
zeigen die Berechnungen, dass ein Futtermanagement einen Einfluss auf metabolis-
che Funktionen hat und die Fruchtbarkeit in Milchkiihen beeinflusst.

Um die Anwendbarkeit des mathematischen Modells zu belegen, wird der Effekt
einer Finzeldosis Dexamethason auf das Glukose-Insulin-System simuliert. Hier-
zu wird das mathematische Modell mit einem Pharmakokinetik-Modell gekoppelt,
welches die Wirkung von Dexamethason auf das modellierte System beschreibt.
Als weitere praktisch wichtige Anwendung wird das mathematische Modell fiir das
Design von Experimenten eingesetzt. Bayessche Inferenz und informationstheoretis-
che Konzepte geben Auskunft dariiber, wann gemessen werden sollte, also iiber die
Auswahl optimaler Messzeitpunkte, sowie dariiber, was gemessen werden soll, also
welche Modellspezies. Diese Information gestattet es, flir nichtlaktierende Kiihe
die Unsicherheit in den Modellparametern zu reduzieren und fiir laktierende Kiihe
die Unsicherheit in der Vorhersage des frithesten Ovulationszeitpunktes nach der
Kalbung zu minimieren.

Zusammengefasst reprasentiert diese Arbeit einen wichtigen Schritt in Richtung

der Entwicklung von Fiitterungsstrategien und Behandlungsoptionen in silico und
leistet somit einen Beitrag zur Reduzierung von Tierversuchen.

139






Summary

Experimental studies have reported that nutrition plays a crucial role in regulating
reproductive hormones and follicular development in cattle. In lactating cows, a
negative energy balance at the onset of milk production after calving has been as-
sociated with similar problems. Here, elongated periods of anovulation have been
observed resulting from an attenuation of the pulse frequency of the luteinizing
hormone caused by lower concentrations of blood glucose and insulin.

In this thesis, differential equation models are used to simulate the glucose-insulin
dynamics and the bovine estrous cycle. Combined, these models describe how the
amount and the composition of food, in particular its glucose content, affect the
reproductive hormones and the follicular development. Simulation results for dif-
ferent nutritional regimes in lactating and non-lactating dairy cows are examined
and compared with experimental studies. For example, we study acute and chronic
dietary restrictions; this is done for non-lactating cows. For lactating cows, which
postpartum suffer from energetic deficiencies, we vary the amount of food and its
glucose content. The resulting versions of the estrous cycle differ distinctly depend-
ing on the nutritional glucose and the body weight. The computations show that
an improved food management that reduces incidences of metabolic disorder can
increase the fertility of dairy cows.

Regarding the applicability of the resulting mathematical model, we simulate the
effect of one single dose of dexamethasone on the physiological behaviour of the
system, especially glucose metabolism. This is realized by linking the mathematical
model to a pharmacokinetic model which describes the fate of dexamethasone in
the system. Another application is the use of the mathematical model in designing
experiments. In particular, we make use of the model, together with Bayesian in-
ference and information theory to select the optimal design. The latter is expected
to inform us about when to measure, i.e. select the optimal sampling times of mea-
surement, and what to measure, i.e. specify observed species. These information
allow us to reduce the uncertainty in the model parameters for non-lactating cows
and the uncertainty in predicting the ovulation time during postpartum for lactat-
ing cows.

In summary, this work represents an important step towards the development of

nutritional strategies and treatment options in silico and thus contributes to the
reduction of animal testing.
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