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1.! Abbreviations (Abkürzungen) 

!
activation-induced cytidine deaminase (AID)!!
!
B-cell activating factor belonging to the tumor 

necrosis family (BAFF)!!
!
chimeric antigen receptor (CAR)!!
committed lymphoid progenitors (CLP)!!
complementarity determining region (CDR)!!
Cytometry by Time-of-Flight (CyTOF)!!
cytotoxic T-lymphocyte-associated antigen 4 

(CTLA-4)!!
!
diversity region (D)!!
double negative (DN)!!
!
epidermal growth factor receptor (EGFR)!!
!
forkhead box P3 (FOXP3)!!
!
graft versus host disease (GvHD)!!
!
human epidermal growth factor receptor 2 

(HER2)!!
human leukocyte antigen (HLA)!
!
induced regulatory T cell (iTreg)!
interferon (IFN)!!
interleukin (IL)!!
!
joining region (J)!!
!
killer cell lectin-linke receptor subfamily G 

member 1 (KLRG1)!!
!
lymphocyte activation gene 3 (LAG-3)!!
!
major histocompatibility complex (MHC)!!

monoclonal gammopathy of undetermined 
significance (MGUS)!!

!
naturally occurring regulatory T cell (nTreg)!!
nuclear factor of activated T cells (NFAT)!!
!
pathogen-associated molecular pattern 

(PAMP)!!
peripheral blood mononuclear cells (PBMCs)!!
Phorbol Myristate Acetate (PMA)!!
plasmacytoid dentritic cells (pDCs)!!
programmed cell death protein 1 (PD-1)!!
!
recombination activating gene (RAG)!!
regulatory T cell (Treg)!!
RNA sequencing (RNAseq)!!
!
Src homology region 2-containing protein 

tyrosine phosphatase 2 (SHP2)!!
!
T cell immunoglobulin domain and mucin 

domain-containing protein 3 (TIM-3)!!
T cell receptor (TCR)!!
T helper 1 (Th1)!!
toll-like receptor (TLR)!!
transforming growth factor (TGF)!!
Treg-specific demethylated region (TSDR)!!
tumor necrosis factor (TNF)!!
tumor necrosis factor receptor associated 

factor 1 (TRAF1)!!
tumor node metastasis (TNM)!!
tumor-infiltrating T cell (TIL)!!
!
Union for International Cancer Control 

(UICC)!!
!
variable region (V)!!
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2.! Introduction (Einleitung) 

This work is focused on human immunology in solid and hematopoietic malignancies. In the 

beginning of the 21st century, tumor immunology was a relatively small field often confronted 

with the dogmatic opinion that the immune system was made for protection from exogenous 

antigens and therefore would not be capable of controlling cancer. However, the development 

of monoclonal antibodies targeting cancer-associated antigens, immune checkpoint blockade, 

and clinical application of genetically engineered immune cell products have improved clinical 

outcomes of patients, won Nobel prizes, and attracted profound medical, scientific, and 

economic interest to the now rapidly expanding field of tumor immunology. Despite enormous 

success, cancer immunotherapy has only been effective in subsets of patients and the 

underlying mechanisms are incompletely understood.  

This work presents the development of novel methodologies in human T and B cell 

immunology leading to the identification of mechanisms of tolerance induction and tumor-

directed immune responses in rectal cancer and multiple myeloma as disease models for solid 

and hematopoietic malignancies. 

Tumor immune infiltrates have critical impact on prognosis and survival of rectal cancer 

patients whereas in multiple myeloma, the immune system, especially the B lineage, gives rise 

to the malignant cells. Understanding the roles of immune cells in the context of cancer requires 

knowledge of basic principles of T and B cell development, differentiation, and induction of 

immunity and tolerance. Tolerogenic cells, such as regulatory T cells, in the tumor 

microenvironment are generally perceived as predictors of negative outcome possibly 

interfering with tumor-directed immune responses. Therefore, it is critical to understand 

mechanisms that lead to the induction of inflammation and immunity as much as tolerance to 
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identify characteristics of immune cells that can potentially be re-programmed and support 

processes leading to cancer control or eradication. 

Human tumor immunology can only be reliably studied in primary human specimens. To 

account for substantial heterogeneity inherently connected with human subjects, high-

dimensional technologies and analysis strategies at the single cell level are required. The 

introduction will give an overview of T and B cell maturation and differentiation, which is 

critical to understand the developed methodologies and conclusions drawn from our data. The 

following selected publications (chapter 3) will introduce methodologies for i) the isolation of 

intact nucleic acids after intranuclear staining [1], and ii) definition of specificity, phenotype, 

and function of lymphocytes at the single cell level by fluorescence activated single cell index 

sorting and deep sequencing [2-4]. The technological spectrum is completed with mass 

cytometry (or Cytometry by Time-of-Flight, CyTOF), which allows the definition of the 

expression of more than 30 markers on single cells in a high-throughput fashion. These 

technologies build the foundation for in-depth interrogation of the tumor microenvironment 

and interrelatedness of single lymphocytes in rectal cancer and multiple myeloma in the second 

part of this work [4-6].  

2.1! T cell maturation  

Mature T cells are characterized by the expression of !" or #$ T cell receptors (TCR) in 

combination with either CD4 or CD8 co-receptors.  

T cells arise from committed lymphoid progenitors (CLP) in the bone marrow and migrate to 

the thymus for major parts of their maturation. CLP enter the thymus and, after losing potential 

to differentiate into B or NK cells, define the pool of double negative (DN, CD4-CD8-) 

committed T cell precursors [7-9]. DN T cells pass through four different stages of 

development (DN1-4) and can still differentiate into either !" or #$ T cells [10]. !" T cells 

express TCR consisting of ! and " chains that determine specificity and recognize antigen in 
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complex with major histocompatibility complex (MHC, or human leukocyte antigen, HLA) 

class I or II. TCRs of #$ T cells are heterodimers of # and $ chains and can recognize antigen 

independent from MHC. This work is focused on !" T cells, in the following called T cells 

unless otherwise stated.  

The TCR is one of the most diverse structures in the human body, unique for each T cell clone, 

and determines specificity. Diversity is encoded in the TCR!" genes and created by a 

specialized DNA editing process, V(D)J recombination (see chapters 2.2 and 2.8), which leads 

to TCR sequences unique for each individual T cell clone. In DN3 and DN4 stages, 

recombination activating gene (RAG)1 and 2 are required for rearrangement of first the TCR" 

and subsequently the TCR! locus (see chapter 2.8) [11, 12]. Intermittent expression of a pre-

TCR [13] prevents successful rearrangement of the second TCR" allele (allelic exclusion) [14-

16]. Once fully rearranged TCR!"/CD3 complexes have been formed, T cells start to express 

co-receptors, such as CD8 and CD4 (usually CD8 followed by CD4) resulting in a population 

of double positive CD4+CD8+ immature T cells that can take up to 90 % of the thymic lymphoid 

compartment in young individuals [10]. The mechanisms determining whether T cells develop 

into CD4+CD8- T helper or CD8+CD4- cytotoxic T cells have been under debate [17-22]. The 

CD4/CD8 decision is critical as a particular TCR can only recognize its antigen in complex 

with the compatible MHC and co-receptors. While recognition of antigen in complex with 

MHC class I requires CD8 expression, CD4+ T cells can only recognize antigen in complex 

with MHC class II. This MHC-tropism does not only reduce the number of potential partners 

for interaction through the TCR but also restricts the type of target antigens. A T cell’s 

CD4/CD8 choice is not entirely stochastic but assumed to be influenced by strength and 

duration of signaling through the TCR in the thymus, cytokine composition in the 

microenvironment, and expression of nuclear factors [23]. 
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2.2! Creation of the T cell receptor 

The immune system is constantly challenged by an almost infinite variety of pathogens asking 

for equally flexible mechanisms to generate a pool of highly diverse T cell specificities. 

Specificity is encoded in the T cell receptor ! and " gene sequences [24-27]. The TCR 

recognizes antigen in form of short peptides bound to MHC class I or class II [18] and contains 

three complementarity determining regions (CDR). The third hypervariable region (CDR3) 

forms the TCR antigen binding site. To ensure availability of T cells with almost any 

specificity, diversity in the CDR3 of TCR! and TCR" genes is introduced by irreversible DNA 

recombination of variable (V), diversity (D), and joining (J) regions. 

The process of V(D)J recombination was first discovered in B cells in the 1970-ies [28-32] 

before similar sets of genes and mechanisms of recombination were identified to account for 

variability of T cell receptor genes [33]. The elements of the TCR genes (V, D, J segments) 

include 50 V and 70 J segments for the ! chain located on chromosome 14 and 57 V, 2 D, and 

13 J segments for the " chain on chromosome 7. While recombination of the TCR" locus 

involves V, D, and J segments, the TCR! locus only comprises of V and J segments [34]. Each 

V, D, and J segment is flanked by DNA-encoded recombination signals recognized by RAG-1 

and 2 – the key enzymes in VDJ recombination for both the TCR and B cell receptor genes 

[35]. At the TCR" and the immunoglobulin heavy chain locus, D to J recombination precedes 

V to DJ recombination. Since each cell contains two alleles for the TCR! and " loci, reliable 

mechanisms are required to prevent VDJ recombination of the second allele once a productive 

TCR! or " rearrangement has been formed to ensure each T cell expresses exactly one TCR 

(allelic exclusion). Regarding the TCR" gene, D and J segments are usually rearranged on both 

alleles, however, productive VDJ recombination only occurs on one allele. The fully 

rearranged TCR" forms the pre-TCR in complex with CD3 and a germline encoded pre-TCR! 

[36]. It is generally accepted that signaling through the pre-TCR leads to downregulation of 
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RAG-1/2 gene expression, transition to the double-positive stage of T cell development, and 

inhibition of the second V to DJ rearrangement enabling allelic exclusion [37]. 

Combinatorial joining of V, (D), and J segments results in theoretically approx. 1000 possible 

variants for TCR! and more than 2500 for TCR" [38]. Besides the theoretically possible 

combinations, V, (D), and J segments are enzymatically modified during rearrangement (N 

region variability) [38, 39] leading to an almost unlimited diversity of the TCR repertoire and 

providing unique molecular identifiers for each individual T cell clone – the TCR!" CDR3 

sequences.  

2.3! Positive and negative T cell selection 

The almost infinite variety of possible TCRs resulting from V(D)J recombination requires 

mechanisms that warrant elimination or silencing of T cells with relevant self-reactivity to 

prevent autoimmunity. These mechanisms ensure that i) T cells can bind antigen in complex 

with autologous MHC class I or II, ii) self-antigens are sufficiently presented during thymic 

selection not only by MHC class I but also class II, and iii) potentially autoreactive T cells are 

being eliminated or sustainably programmed towards tolerance. 

Major parts of these critical processes take place in the thymus and include “positive selection”, 

“negative selection”, and “death by neglect”. Positive selection refers to stimulation of 

immature double-positive thymocytes through intermediate-affinity TCR-peptide-MHC 

interactions resulting in proliferation and differentiation into mature single-positive T cells. 

Negative selection, also known as clonal deletion, is the process of elimination of thymocytes 

expressing TCRs with high affinity for self-antigens. Thymic deletion of high-affinity self-

reactive T cells is considered critical in the maintenance of tolerance and, due to thymic 

localization, called “central tolerance”. Death by neglect refers to induction of apoptosis within 

thymocytes that fail to engage in positively selecting interactions due to multiple reasons, e.g. 

inability to bind to MHC.  
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Positive and negative selection of T cells and their functional programming result from 

complex interactions of T cells with antigen-presenting cortical thymic epithelial cells, 

medullary thymic epithelial cells, dendritic cells, and B cells, among others [40, 41]. The 

majority of immature T cells does not undergo successful positive selection; negative selection 

and death by neglect account for the loss of approx. 90 % of T cell precursors.  

Thymic T cell selection processes appear to follow spatially restricted patterns. While cortical 

thymic epithelial cells are mostly involved in positive selection, presentation of endogenous 

antigens by medullary thymic epithelial cells is critical for negative selection of CD8+ T cells 

and induction of CD4+ T cell tolerance [42, 43]. The presentation of endogenous antigens to 

CD4+ T cells is especially challenging as CD4+ T cells recognize antigen bound to MHC class 

II, however, MHC class II usually presents exogenous, e.g. phagocytosis-derived antigens. 

Although autophagy is assumed to have a major role in MHC class II presentation of 

autoantigens, especially membrane proteins seem to access MHC class II independently of 

autophagy [44, 45]. Most antigen presentation in the thymus takes place on cortical or 

medullary epithelial cells. Dendritic cells – the major professional antigen-presenting cells in 

the periphery – account for approx. 0.3 % of thymic cells and are predominantly located in the 

medullary part of the thymus. Plasmacytoid dentritic cells (pDCs) account for 1/3 of thymic 

DCs and, while having a minor role for antigen presentation in the periphery, have been shown 

to efficiently present antigen to thymocytes and promote differentiation into regulatory T 

(Treg) cells [46, 47].  

Interestingly, activation of toll-like receptors (TLRs) prevents all subsets of DCs from 

migrating into the thymus. TLRs are involved in sensing and subsequently responding to 

pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS), double-

stranded DNA (dsDNA), and others. This mechanism is supposed to prevent the induction of 

central tolerance to pathogens under inflammatory conditions [48, 49].  
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B cells account for approx. the same proportion of thymic cells as DCs (0.3 %). Although they 

have been shown to effectively induce negative selection of CD4+ T cells [50], they are not 

assumed to negatively select CD8+ thymocytes [51]. Besides their ability to present self and 

foreign antigens, the presence of B cells in the thymus may be critical for maintaining tolerance 

towards variable regions of the B cell receptor genes, a unique class of self-antigens [52].  

Between positive and negative selection remains a stochastic overlap resulting in the survival 

of T cells with relatively high affinity self-reactive TCRs, which, at least in parts, differentiate 

into natural regulatory T cells. However, central tolerance cannot completely eradicate self-

reactive T cell clones suggesting mechanisms other than positive and negative selection to 

maintain tolerance in the periphery.  

2.4! Determination of T cell function 

While T cell antigen specificity is defined by the TCR, T cell function is determined by immune 

phenotype, cytokine, and transcription factor profiles. A variety of surface markers have been 

identified for the definition of T cell subsets with more or less well defined functional 

properties. It is generally accepted that by determining the expression of CD4, CD8, CCR7, 

and CD45RA, T cells can be categorized into naïve, central memory, effector, and effector 

memory T cells [53]. Naïve T cells are assumed to have not yet encountered target antigen in 

the periphery, whereas memory T cells represent the pool of T cells that remain after 

contraction from antigen-driven expansion ready to proliferate again upon antigen re-exposure 

[54, 55].  

Initially, T cell function and differentiation had been defined by surface molecule expression 

and cytokine production leading to the categorization of T cells into different lineages. For 

example, T helper 1 (Th1) cells were defined by the production of interferon (IFN)-#, 

interleukin (IL)-2, and tumor necrosis factor (TNF)-" whereas IL-4 and IL-13 represent key 

cytokines of Th2 differentiation [56, 57]. However, cytokine profiles of individual populations 
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were almost never homogenous. With the availability of high-dimensional gene expression 

technologies, it has been well established that especially CD4+ Th1, Th2, Th17, and Treg 

(among others) express and can additionally be defined by lineage-defining transcription 

factors [58-61].  

Initially, it was assumed that a T cell, once committed to a certain lineage (Th1, Th2, …), was 

functionally defined and maintained its differentiation state [62]. The concept of stable T cell 

differentiation was supported by consistent cytokine expression patterns maintained across 

multiple passages of selected T cell subsets. It also provided reasonable explanations why T 

cell responses leading to pathogen eradication would elicit similar memory responses upon 

antigen re-exposition. However, although theoretically intriguing, it became clear that T cell 

differentiation is a dynamic process with a high degree of plasticity between different T cell 

subsets [63, 64]. For example, Th1 cells, in certain conditions, could express cytokine profiles 

characteristic for Th2 cells, and Treg cells could differentiate into Th1 cells. Rather than 

assuming an independent intrinsic program, the microenvironment is supposed to have a major 

influence on T cell differentiation and function. Accordingly, pro-inflammatory T cells could 

be programmed tolerogenic upon entering a microenvironment that supports tolerance. With 

respect to the research presented in chapter 3.1, Treg differentiation will be discussed in more 

detail. 

2.5! Regulatory T cell differentiation and function 

Treg have immunosuppressive (also known as regulatory) properties and are critical for the 

maintenance of peripheral tolerance. They are defined CD4+ in combination with high 

expression of the IL-2 receptor ! chain (CD25). Regulatory T cell function is closely associated 

with expression of the transcription factor forkhead box P3 (FOXP3), as mutations in this gene 

result in severe autoimmunity in mice and humans [58, 65-68]. Depending on their presumed 

developmental origin, Treg can be classified into naturally occurring (nTreg) or induced 
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(iTreg). nTreg are assumed to be programmed tolerogenic upon antigen encounter in the 

thymus (chapter 2.3), maintain their differentiation state mostly independent from the 

microenvironment, and play a major role in the prevention of autoimmunity [69]. iTreg on the 

other hand are assumed to reduce T cell function against environmental antigens [70]. 

However, the functional separation of nTreg and iTreg has not been completely resolved and 

there is evidence that suggests overlapping roles for tolerance to both self and foreign antigens 

[71, 72]. Independent from their individual roles, it has been shown that nTreg, which most 

likely correspond to CD45RA+ naïve Treg with consistent demethylation at the Treg-specific 

demethylated region (TSDR) [73-75], in contrast to CD45RA- Treg, stably express FOXP3 and 

maintain suppressive functions mostly irrespective of exogenous cues [76]. The expression 

status of the IL-7 receptor (CD127) on Treg has also been shown to identify Treg with higher 

FOXP3 expression and possibly indicate developmental origin (nTreg vs. iTreg) [77, 78]. The 

exact mechanisms by which Treg induce tolerance are not entirely understood and probably 

diverse [79, 80]. 

Stable FOXP3 expression and reliable regulatory functions are critical, especially if it comes 

to adoptive Treg transfer. In pre-clinical and clinical settings, Treg have been expanded in vitro 

and transferred to treat autoimmune diseases [81], prevent transplant organ rejection [82], and 

attenuate or prevent graft versus host disease (GvHD) after allogeneic stem cell transplantation 

[83-85]. The exact influences of Treg phenotypes on the success of adoptive transfer have yet 

to be determined and are subjects of ongoing clinical trials. 

2.6! T cell activation, exhaustion, and immune checkpoints 

While effective T cell responses can lead to elimination of target antigens, mechanisms are 

required to counteract physiologic immune responses i) because the response is no longer 

required in case the antigen has been cleared, or ii) to prevent chronic inflammation in case the 

antigen cannot be cleared. 
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T cell-mediated immune responses include a variety of sequential processes: i) clonal selection 

of antigen-specific T cells by activation and proliferation in secondary lymphoid tissues, ii) 

trafficking to the sites of target antigen presentation, and iii) execution of inflammation and 

antigen elimination.  

Successful T cell activation requires at least three different signals: stimulation through the 

TCR, amplification of TCR signaling by co-stimulatory molecules, and cytokine-mediated 

modulation of T cell activation and expansion. The antigen-specific part of T cell activation is 

mediated through TCR-peptide-MHC binding. Upon TCR activation, the interaction of co-

stimulatory molecules, e.g. CD28 with CD80/CD86, strongly amplifies TCR signaling [86-

90]. Cytokine secretion and signaling through cytokine receptors modulate T cell responses 

and support expansion [91, 92]. To counteract “over-activation”, T cells start upregulating 

inhibitory receptors such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and/or 

programmed cell death protein 1 (PD-1), among others, upon activation. Although the exact 

mechanisms of T cell inhibition by CTLA-4 are under debate, it has been proposed that CTLA-

4 outcompetes CD80 and CD86 in binding to CD28 resulting in inhibitory signaling [93-98]. 

Furthermore, CTLA-4 has been shown to promote Treg functions [99, 100].  

PD-1, another inhibitory molecule, physiologically limits T cell activation in the context of 

inflammation and autoimmunity [101-107]. Upon binding to its ligands, PD-L1 or PD-L2, PD-

1 inhibits kinases that mediate T cell activation through Src homology region 2-containing 

protein tyrosine phosphatase 2 (SHP2) [107]. On Treg, PD-1 has been shown to enhance their 

proliferation [108, 109].  

The transient expression of inhibitory receptors such as CTLA-4 or PD-1 is a physiologic 

process necessary to limit inflammation. Immune responses that lead to successful antigen 

eradication result in the creation of a pool of antigen-experienced memory cells that are ready 

to expand upon antigen re-exposure (see chapter 2.4). A key feature of the development of 
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functional memory compartments is that it occurs in the absence of continuing antigen 

stimulation [110]. In case target antigens cannot be eliminated, processes of chronic T cell 

activation may occur, and, in combination with lack of CD4+ T cell help and signals from 

inhibitory receptors, lead to a state called “exhaustion” [111, 112]. T cell exhaustion is 

characterized by loss of effector functions, upregulation and co-expression of multiple 

inhibitory receptors, altered expression of key transcription factors, and inability to acquire 

memory T cell responsiveness upon re-stimulation [113-115]. One of the critical factors for the 

acquisition of an exhausted T cell phenotype is chronic antigen stimulation. The longer 

(approx. > 1 week) the antigen stimulation the less likely is the creation of a responsive memory 

T cell pool [116]. Chronic antigen stimulation leads to sustained PD-1 expression via nuclear 

factor of activated T cells (NFAT) cytoplasmic 1 (NFATc1) providing a direct link between 

chronic TCR stimulation and expression of key molecules in T cell exhaustion [117]. Besides 

PD-1 and CTLA-4, T cells can express a variety of inhibitory receptors, such as lymphocyte 

activation gene 3 (LAG-3), 2B4, CD160, T cell immunoglobulin domain and mucin domain-

containing protein 3 (TIM-3), among others, with presumably non-redundant functions [118].  

In addition to sustained expression of inhibitory receptors, downregulation of co-stimulatory 

receptors such as tumor necrosis factor receptor associated factor 1 (TRAF1) contributes to 

exhaustion. TRAF1 has been shown to be downregulated in chronic viral infections and 

adoptive transfer of TRAF1+ cells could re-establish virus control in animal models [119]. 

Furthermore, CD8+ T cells express selected molecules that are highly associated with effector 

T cell function and only expressed at low levels on exhausted T cells. These markers include 

CD44, LY6C, killer cell lectin-like receptor subfamily G member 1 (KLRG1), and the 

transcription factors T-bet and EOMES [120]. 

Cytokines, such as IL-10, transforming growth factor (TGF)-", and type 1 interferons (IFN-! 

and ") can contribute to or prevent exhaustion. It has been shown that blockade of IL-10 can, 
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at least in parts, restore T cell function. Type 1 interferons are critical for early virus control 

while chronic exposure can lead to cell death or dysfunction [121]. 

Of note, exhausted T cells are not considered inert but retain suboptimal functions that may or 

may not allow pathogen or tumor control but not elimination. Exhaustion is considered 

reversible as demonstrated by the clinical success of immune checkpoint blockade in re-

instating immune functions especially in the field of tumor immunology [122]. 

Besides “exhaustion”, “anergy” and “senescence” have been defined as additional 

dysfunctional T cell states that cannot always be completely separated from each other. Anergy 

refers to an induced non-responsiveness with possible implications for peripheral tolerance. It 

is assumed to result from suboptimal stimulation and is characterized by low IL-2 production, 

low proliferative capacity, and none to low effector functions. Anergic T cells are characterized 

by co-expression of a variety of inhibitory receptors including LAG-3, PD-1, and CTLA-4 

[110, 123]. Senescent T cells have been shown to arise from repetitive stimulation and are 

characterized by shortened telomeres, low telomerase activity, low proliferative capacity but 

high effector function. Typical phenotypic markers of senescent T cells include CD57, 

KLRG1, CD160, and absence of CD28 [123].  

Taken together, an individual T cell’s function is defined by TCR!" sequences and 

characteristic expression patterns of immune phenotype, cytokine, and transcription factor 

genes. 

2.7! Tumor-infiltrating T cells 

The prognostic impact of tumor immune cell infiltration is beyond question [124-129]. Human 

solid and hematopoietic tumors show variable degrees of T cell infiltration and colorectal 

cancer was one of the first malignancies in which tumor T cell infiltration has been shown to 

influence prognosis independent from classical tumor node metastasis (TNM) staging [125, 

128]. Tumor-infiltrating T cells can present all features of effector, memory, exhausted, 
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anergic, or senescent differentiation (chapter 2.6), however, particular functions and clinical 

implications of individual T cell populations, especially in the tumor microenvironment, are 

not completely understood. T cell exhaustion seems to be critically involved in tumor-

directed/induced immune tolerance, at least in selected malignancies. Interference with T cell 

exhaustion by immune checkpoint blockade has been pioneered in malignant melanoma [99, 

130-133] and resulted in impressive clinical responses in a variety of hematopoietic, e.g. 

Hodgkin lymphoma [134], and solid malignancies [135-138]. However, a variety of 

malignancies including multiple myeloma have not shown significant responses to immune 

checkpoint blockade alone [139].  

Given our current understanding of T cell development, thymic elimination of self-reactive T 

cell clones, and mechanisms of peripheral tolerance (chapters 2.3-2.5), the recognition and 

effective elimination of tumors would require their presentation of non-self-antigens or the 

availability of substantial amounts of T cells that recognize self-antigens for cancer eradication. 

In fact, solid and hematopoietic malignancies have been shown to harbor variable frequencies 

of mutation-derived neo-antigens [140], which can, at least in parts, be detected by the immune 

system and mount effective immune responses. Nevertheless, it is not easily predictable which 

possible neo-antigens are effectively presented by tumor cells and are accessible for immune 

responses. Moreover, there is increasing evidence that the majority of tumor-infiltrating T cells, 

although clonally expanded, are not neo-antigen-specific [5, 141, 142].  

While the clinical success of pharmacological interference with immune checkpoints is beyond 

question, the underlying mechanisms are incompletely understood. Not only the relatively long 

timespan from the beginning of checkpoint blockade to possible clinical response, phenomena 

like tumor pseudo-progression [143], and expression of checkpoint molecules and their ligands 

by a variety of cell types other than tumor and T cells suggest mechanisms of action that are 

more sophisticated than “simple” dis-inhibition of tumor-specific tumor-infiltrating T cell 
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clones. These mechanisms have to be defined in humans where malignancies have their own 

immunologic and genetic context resulting in a unique microenvironment that currently cannot 

be reliably recapitulated in animal models.  

2.8! B cell maturation and determination of specificity 

The immune system relies on B and plasma cells as major sources of antibodies. The critical 

structure that defines a B cell, determines its developmental fate and specificity is the B cell 

receptor, which is unique for each B cell clone.  

B cell development is a continuous process beginning in primary lymphoid organs (fetal liver, 

bone marrow) followed by functional maturation in secondary lymphoid organs (lymph nodes, 

spleen) leading to immunologic memory and antibody-producing terminally differentiated 

plasma cells.  

The initial formation of the B cell receptor genes by V(D)J rearrangement occurs in the bone 

marrow. The process of somatic recombination is similar to V(D)J rearrangement in T cells 

(chapter 2.2) but was discovered first in B cells in 1978 [144]. Diversity of the B cell receptor 

genes can be introduced by three different processes: i) V(D)J recombination, ii) affinity 

maturation and somatic hypermutation, and iii) class switch recombination. Somatic 

hypermutation and class switch recombination are processes unique to B cell development and 

do not occur in T cells or any other cell type. 

Similar to rearrangement of the TCR ! and " genes, recombination of the immunoglobulin (Ig) 

light chain genes involves V and J segments whereas heavy chains consist of V, D, and J 

segments. After rearrangement of DH to JH (immunoglobulin heavy diversity and joining 

segment), variable (VH) segments recombine with the already rearranged DJ segments. The 

surrogate light chain together with the rearranged heavy chain forms the pre-B cell receptor in 

pre-B cells to enable immediate signaling once the heavy chain locus has completed 

rearrangement [145]. It is assumed that immediate signaling through the pre-B cell receptor 
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prevents the second heavy chain allele from completing rearrangement resulting in only one 

productive B cell receptor heavy chain rearrangement per cell (allelic exclusion). Immediate 

signaling requires the presence of pre-BCR ligands. It has been shown, that pre-BCR signaling 

is initiated independent from VH domains [146] and bone marrow stroma cells provide ligands, 

such as galectin-1 or heparan sulfate [147, 148], for successful pre-BCR crosslinking. Although 

the concept of allelic exclusion by BCR signaling is intriguing, there is evidence that surrogate 

light chain expression may not be critical for allelic exclusion [149]. Recombination of the 

light chain segments follows after recombination of the heavy chains [150]. Signaling through 

the pre-BCR leads to downregulation of surrogate light chain expression giving way for a 

complete BCR consisting of rearranged VH and VL chains on immature B cells. 

Immature B cells migrate into secondary lymphoid organs (spleen, lymph nodes) for further 

maturation in germinal centers. Germinal centers are formed by antigen presenting, activated 

B cells interclonally competing for stimulating interactions with T follicular helper cells [151]. 

They can be formed by highly proliferative B cell clones with strong antigen affinity and/or B 

cell clones with lower affinity in the absence of competition [152]. Germinal centers contain 

dark and light zones that can be identified by morphology. The dark zone is dominated by B 

cells at the centroblast stage, characterized by rapid proliferation and hypermutation (see 

below), whereas antigen presentation and affinity-dependent selection occur with the help of 

T follicular helper cells and follicular dendritic cells in the light zone [153-155]. Within lymph 

nodes, B cells can take multiple “rounds” circulating between dark and light zone of their 

germinal centers resulting in the selection of maximum antigen affinity B cell clones and 

antibody repertoire. 

B cell maturation in germinal centers is fundamentally different from T cell maturation and 

includes antigen-dependent clonal expansion, somatic hypermutation of V genes, affinity-

driven selection, and class switch recombination. While diversity of the TCR repertoire is 
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mainly determined by V(D)J recombination, germinal center reactions of B cells lead to 

additional “tuning” of specificities after completed V(D)J recombination. Somatic 

hypermutation in germinal centers is a critical process that introduces mostly single nucleotide 

exchanges in the immunoglobulin genes with a rate approx. one million-fold higher than the 

spontaneous mutation rates in other genes, eventually leading to the composition of higher 

affinity BCR genes that result in proliferation advantage [156].  

The process of an activated naïve B cell expressing IgM and IgD to switch immunoglobulin 

expression to IgG, IgE, or IgA is called class switching. Class switching is a deletional DNA 

recombination process, ensures optimal effector functions of the respective antibody, and 

increases the chance of antigen elimination [157]. The process critically involves B cell-

specific activation-induced cytidine deaminase (AID) and is initiated in secondary lymphoid 

organs upon antigen encounter and co-stimulatory (cytokine) signaling [158, 159]. 

Different stages of B cell maturation can be identified by more or less characteristic phenotypic 

and molecular markers. One of the most specific and earliest phenotypic markers associated 

with B lineage differentiation is CD19. CD20 is expressed on mature B cells and CD79a/b is 

present on surface immunoglobulin positive B cells whereas CD10 is relatively selectively 

expressed on the surface of germinal center B cells [160]. At the molecular level, a 

characteristic feature acquired in germinal centers is somatic hypermutation, which, if present 

in sufficient amounts, confirms an individual B cell clone has gone through affinity maturation 

in germinal centers, and can act as molecular barcode for individual B cell clones. 

2.9! Plasma cells 

Plasma cells are terminally differentiated B cells and the major source of circulating soluble 

antibodies. Upon appropriate stimulation, B cells can increase in size and start proliferation (B 

cell blast). Some B cell blasts may secrete antibody (usually at a frequency < 1 % of peripheral 

blood leukocytes) and are referred to as plasmablasts. A plasmablast without proliferation is 
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called plasma cell [161]. While plasmablasts circulate in peripheral blood, plasma cells can 

only be detected at low frequencies (< 0.1 % of leukocytes) in peripheral blood of healthy 

individuals. Depending on their developmental path, plasma cells can be categorized into at 

least two different types: i) so-called short-lived plasma cells that are assumed to develop 

independent from germinal centers and T cell help and show (almost) no somatic 

hypermutations, and ii) long-lived plasma cells that have gone through germinal center 

reactions. In healthy individuals, more than 90 % of plasma cells arise from germinal centers.  

The decision of a B cell to differentiate into a plasma cell is thought to be an affinity-driven 

event involving T cell help [153, 162]. Whether plasma cell differentiation occurs outside or 

inside the germinal center has been shown, at least in parts, to be determined by the nature of 

the stimulating antigen [163, 164]. T cell independent antigens such as Toll-like receptor 

ligands (LPS, TLR4 agonist) including polysaccharides from bacterial cell walls can stimulate 

B cells in addition to BCR aggregation and induce the development of short-lived plasma cells. 

Their survival has been shown to be dependent on B-cell activating factor belonging to the 

tumor necrosis family (BAFF) [165].  

Plasma cells are phenotypically and morphologically distinct from B cells and plasmablasts 

allowing their reliable detection by microscopy and flow cytometry. In contrast to mature B 

cells, plasma cells are usually negative for CD20 and surface immunoglobulin. They can be 

identified by the uniquely high expression of CD38 and CD138. Long- and short-lived plasma 

cells cannot be reliably distinguished by phenotype but by numbers of somatic hypermutations 

determined with sequencing. As long-lived plasma cells originate from germinal centers, they 

usually harbor substantial amounts of somatic hypermutations.   

2.10!Multiple Myeloma 

Multiple myeloma is characterized by the accumulation of monoclonal plasma cells in the bone 

marrow and most if not all cases develop from a non-malignant pre-cancer called monoclonal 
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gammopathy of undetermined significance (MGUS). MGUS is defined by the presence of 

monoclonal immunoglobulin and lack of symptoms in often undiagnosed patients. As outlined 

in chapter 2.9, non-malignant plasma cells usually show no or at most very low proliferative 

activity. In multiple myeloma, (epi-)genetic aberrations are assumed to restore proliferative 

capacity in variable proportions of plasma cells, which correlates with prognosis and enables 

malignant clonal expansion [166]. 

Clinically, multiple myeloma frequently presents with secondary organ damage such as renal 

failure, anemia, thrombocytopenia, increased frequencies of infections, insufficiency fractures, 

pain due to lytic bone lesions and/or tissue mass, and thrombotic/thromboembolic events 

among others. Multiple myeloma is diagnosed by histology, flow cytometry, and (molecular) 

genetics of a bone marrow sample in the context of clinical features. While thrombocytopenia 

and anemia can be due to high degrees of bone marrow plasma cell infiltration displacing 

erythropoiesis, many manifestations are not directly related to the malignant plasma cells.  

Multiple myeloma is unique in programming its microenvironment to support tumor growth 

[167], protect from tumor-directed T cell responses [168] and chemotherapeutics [169-171]. 

Almost all sorts of immune cells including T-, B-, NK-, and dendritic cell compartments show 

diseases-associated features [172, 173]. Bone destruction can be mediated by direct 

interactions of myeloma cells with osteocytes, which support myeloma cell survival and 

promote the activation of osteoclasts, leading to continuous bone destruction [174]. 

Microenvironmental features in combination with (epi-)genetic aberrations [175-179] within 

the multiple myeloma cells themselves result in intra- and interclonal heterogeneity of the 

malignant plasma cells. Heterogeneity can be detected by morphology, expression of surface 

markers, (epi-)genetics, and gene expression, among others. Despite phenotypic heterogeneity, 

all malignant cells share identical immunoglobulin light and heavy chain gene sequences, 

which can act as molecular barcodes to track multiple myeloma cells at the single cell level. 
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The substantial number of somatic hypermutations and completed class switch recombination 

suggest that the disease originates from the (post) germinal center stage of B cell development 

[180-182]. 

 

The phenotypic range of multiple myeloma cells and whether the malignant clones include 

normal-phenotype (memory) B lineage cells have been matters of debate [183-195]. However, 

as outlined above, immune phenotypes of molecularly defined clones can only be accurately 

studied at the single cell level. To contribute to the definition of the phenotypic range that 

individual multiple myeloma clones can occupy, this work introduces technologies to track 

clone-associated immune phenotypes at the single cell level. 

Considering the broad effects on the bone marrow microenvironment, the compartment where 

hematopoiesis takes place, changes in immune cell phenotypes detectable with high-

dimensional technologies could be assumed, possibly allowing the distinction of multiple 

myeloma, MGUS, and healthy individuals based on peripheral blood immune signatures. 

Previous studies on peripheral blood immune phenotypes of multiple myeloma patients were 

limited with regard to analysis depth, which could be substantially increased by the application 

of CyTOF that uses metal-labeled antibodies for immune phenotyping in the presented 

research. Allowing the simultaneous detection of more than 30 markers on millions of single 

cells, CyTOF outcompetes FACS in analysis depth suggesting that with this technology 

immune phenotype differences between disease groups might be detectable in high-

dimensional space. 

2.11!Rectal cancer 

Colorectal cancer ranks among the four most frequent cancer entities and the five year survival 

rate is approximately 64 % for all stages combined [196]. In 95 % of all cases, colorectal cancer 

histologically presents as adenocarcinoma, rare cases are carcinoids or sarcomas. The disease 
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is classified according to the TNM system and staged according to the Union for International 

Cancer Control (UICC) [197]. Similar to multiple myeloma, which develops from a pre-cancer 

stage, colorectal cancer is a prime example for cancer developing from non-cancerous pre-

malignant lesions. It is generally accepted that most cases of colorectal cancer are preceded by 

adenoma. The adenoma-carcinoma sequence is a longstanding process (except in selected 

genetically driven, possibly inherited cases) associated with accumulating acquisition of 

genetic aberrations [198]. Along with the (usually slow) progression from adenoma to 

carcinoma, (pre-)cancerous lesions are assumed to induce specialized microenvironments 

including attraction and re-programming of immune cells. Colorectal cancer was one of the 

first malignancies in which the pivotal role of immune cell infiltration for cancer control could 

be demonstrated. Especially type and density of tumor-infiltrating T cells have been shown to 

influence survival independent from classical TNM staging [124, 127-129, 199, 200]. 

However, functions and targets of tumor-infiltrating immune cells remain largely unknown. 

An attractive concept of T cell tumor control is that tumor-infiltrating T cells (TILs) recognize 

and kill tumor cells based on their presentation of mutation-derived neo-antigens. In fact, TILs 

have been shown to recognize neo-antigens [201] and tumors with high mutational load were 

especially responsive to presumably T cell-dependent therapeutics (immune checkpoint 

blockade) [202, 203].  

Prognosis and clinical course in colorectal cancer do not only depend on immune cell 

infiltration but also on the location of the tumor. Carcinomas located at the proximal or distal 

part of the colon differ significantly with regard to histology and genetic features. While 

proximal carcinomas are more frequently mucinous and microsatellite instable, distal 

carcinomas are more often epidermal growth factor receptor (EGFR) or human epidermal 

growth factor receptor 2 (HER2) amplified, associated with poor survival after relapse [204, 

205].  
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The work presented in chapter 3.4 is particularly focused on TIL immune phenotypes and 

functions associated with clonal – possibly tumor-specific – expansion in comparison with T 

cells from unaffected mucosa and peripheral blood.  

 

The following selected publications introduce methodologies for in-depth determination of 

phenotypes, differentiation states, functions, and clonal relatedness of T and B cells in bulk 

and at the single cell level. These technologies were applied to  

i)! identify differentiation fate of regulatory T cells upon loss of FOXP3 expression 

during in vitro expansion in the setting of allogeneic stem cell transplantation,  

ii)! identify clonal expansion, functions, and distribution of target antigens of clonally 

expanded rectal cancer-infiltrating T cells at the single cell level, and  

iii)! phenotypically track selected B lineage clones in multiple myeloma bone marrow 

at the single cell level 

Major innovations include (1) the development of highly efficient high-throughput single cell 

methodologies for detailed phenotyping, functional assessment, and molecular tracking of 

individual cells, (2) the focus on human malignancies and human tumor immunology entirely 

studied in human subjects, leading to (3) insights into rectal cancer and multiple myeloma 

immunology that have impact on our understanding of disease pathogenesis and T cell 

infiltration with possible consequences for novel (immuno-)therapies. 

2.12!Scientific questions 

The presented studies are focused on human T and B cell biology in rectal cancer and multiple 

myeloma. Both malignancies represent prime examples of tumor-microenvironment 

interactions and tumor-infiltrating lymphocytes have been shown to influence prognosis 

independent form classical staging.  
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Chapter 3 presents the development of novel high-dimensional single cell methodologies that 

were applied to answer the following research questions: 

-! Are malignancy-associated immune phenotypes as measures of disease activity 

detectable in peripheral blood and within the tumor microenvironment? 

-! What is the phenotypic range of multiple myeloma?  

-! Is clonal expansion of tumor-infiltrating T cells restricted to certain immune 

phenotypes, compartments, and target peptide specificities? 

The studies aim at a better understanding of human disease biology, possible definition of 

cellular therapeutic targets, and identification of biological specimens most likely containing 

malignancy-targeting immune cells.  
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3.! Own original research (Eigene Arbeiten)  

This work is focused on regulation of tolerance and tumor-directed immune responses in solid 

and hematopoietic malignancies. The following research will 

i)! provide methodologies for gene expression analysis of regulatory T cells leading to 

the definition of their developmental fate upon loss of regulatory functions. 

ii)! introduce high-throughput methodologies for the determination of T cell 

specificity, immune phenotype, cytokine, and transcription factor expression at the 

single cell level. 

iii)! determine the spatial distribution, functional profile, and accessibility of clonally 

expanded tumor-infiltrating T cells in rectal cancer. 

iv)! apply CyTOF – one of the most powerful technologies for high-throughput immune 

phenotyping at the protein and single cell level – to identify a novel, expanded B 

cell phenotype in peripheral blood of patients with active multiple myeloma. 

v)! determine the phenotypic range of multiple myeloma B lineage cells applying a 

combination of multi-parameter FACS single cell index sorting and 

immunoglobulin light chain sequencing. 

3.1! Transcription factor-specific cell sorting for gene expression analyses 

T cell differentiation states have been defined by characteristic patterns of surface molecule, 

cytokine and transcription factor expression. They can be affected by various cues resulting in 

T cell plasticity. As an example, Treg, which are T helper cells characterized by high 

expression of the IL-2 receptor ! chain, the transcription factor FOXP3, and cytokine profiles 

associated with immune tolerance, can lose regulatory properties and drive inflammation. T 

cell plasticity is especially important in the setting of adoptive cell transfer where cell products 

with precisely defined specificities and functions are required. Treg can be adoptively 
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transferred in various clinical settings including prevention of GvHD after allogeneic stem cell 

transplantation. Due to their low abundance, Treg have to be in vitro expanded before adoptive 

transfer and subsets of Treg lose characteristic FOXP3 expression during this process. The 

following publication determines the fate of Treg that lose regulatory properties by specifically 

sorting Treg that maintained or downregulated FOXP3 expression after in vitro expansion for 

subsequent RNA extraction and whole genome microarray analysis. This approach is 

particularly challenging as intranuclear FOXP3 staining requires fixation and permeabilization, 

which makes DNA and RNA inaccessible after conventional staining procedures. 

Publication 1 

Hansmann L, Schmidl C, Kett J, Steger L, Andreesen R, Hoffmann P, Rehli M, Edinger M. 

Dominant Th2 differentiation of human regulatory T cells upon loss of FOXP3 expression. J 

Immunol. 2012; 188:1275-82. DOI: https://doi.org/10.4049/jimmunol.1102288  

Abstract 

“CD4+CD25+FOXP3+ regulatory T cells (Treg) are pivotal for peripheral self-

tolerance. They prevent immune responses to auto- and alloantigens and are thus under 

close scrutiny as cellular therapeutics for autoimmune diseases and the prevention or 

treatment of alloresponses after organ or stem cell transplantation. We previously 

showed that human Treg with a memory cell phenotype, but not those with a naive 

phenotype, rapidly downregulate expression of the lineage-defining transcription factor 

FOXP3 upon in vitro expansion. We now compared the transcriptomes of stable 

FOXP3+ Treg and converted FOXP3- ex-Treg by applying a newly developed 

intranuclear staining protocol that permits the isolation of intact mRNA from fixed, 

permeabilized, and FACS-purified cell populations. Whole-genome microarray 

analysis revealed strong and selective upregulation of Th2 signature genes, including 

GATA-3, IL-4, IL-5, and IL-13, upon downregulation of FOXP3. Th2 differentiation 
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of converted FOXP3- ex-Treg occurred even under nonpolarizing conditions and could 

not be prevented by IL-4 signaling blockade. Thus, our studies identify Th2 

differentiation as the default developmental program of human Treg after 

downregulation of FOXP3.” 

 

!  
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Publication 1 

Hansmann L, Schmidl C, Kett J, Steger L, Andreesen R, Hoffmann P, Rehli M, Edinger M. 

Dominant Th2 differentiation of human regulatory T cells upon loss of FOXP3 expression. J 

Immunol. 2012; 188:1275-82. DOI: https://doi.org/10.4049/jimmunol.1102288  
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3.2! Determination of T cell differentiation and specificity at the single cell level 

Although intranuclear staining and FACS sorting of bulk populations with subsequent RNA 

extraction allowed the identification of Th2 differentiation as the default differentiation of Treg 

upon loss of FOXP3 expression during in vitro expansion, the approach had substantial 

shortcomings: i) Th2 could be identified as dominant differentiation pathway, however, the 

data suggested a mixture of various differentiation states, which could not be clearly assigned 

to individual cells or populations. ii) Due to technical reasons, our protocol did not allow FACS 

sorting based on cytokine expression, which is key for the accurate determination of T cell 

function. iii) T cell specificity (TCR sequence) along with cytokine and transcription factor 

profiles cannot be determined in bulk populations and require single cell resolution.  

The following publication presents a deep sequencing-based methodology for high-throughput 

determination of paired TCR!" sequences, cytokine, and transcription factor expression in 

single cells. Paired TCR!" sequencing allows reconstruction and expression of single TCRs 

of choice for functional assays and determination of specificity (chapter 3.4). 

Publication 2 

Han A, Glanville J, Hansmann L, Davis MM. Linking T-cell receptor sequence to functional 

phenotype at the single-cell level. Nat Biotechnol. 2014; 32:684-92. DOI: 

https://doi.org/10.1038/nbt.2938  

Abstract 

“Although each T lymphocyte expresses a T-cell receptor (TCR) that recognizes 

cognate antigen and controls T-cell activation, different T cells bearing the same TCR 

can be functionally distinct. Each TCR is a heterodimer, and both alpha- and beta-

chains contribute to determining TCR antigen specificity. Here we present a 

methodology enabling integration of information about TCR specificity with 

information about T cell function. This method involves sequencing of TCRalpha and 
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TCRbeta genes, and amplifying functional genes characteristic of different T cell 

subsets, in single T cells. Because this approach retains information about individual 

TCRalpha-TCRbeta pairs, TCRs of interest can be expressed and used in functional 

studies, for antigen discovery, or in therapeutic applications. We apply this approach to 

study the clonal ancestry and differentiation of T lymphocytes infiltrating a human 

colorectal carcinoma.” 
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Publication 2 

Han A, Glanville J, Hansmann L, Davis MM. Linking T-cell receptor sequence to functional 

phenotype at the single-cell level. Nat Biotechnol. 2014; 32:684-92. DOI: 

https://doi.org/10.1038/nbt.2938  
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3.3! Combination single cell sequencing with high-dimensional FACS index sorting 

Single cell TCR!" and phenotype sequencing enables accurate determination of phenotypes 

by gene expression analysis with a gene-targeted sequencing panel resulting in binary 

(expressed/not expressed) data for each particular cell and gene of interest. Some markers, 

especially those associated with activation, exhaustion, senescence, and other functional states, 

show function-associated continuous expression and may be affected by post-transcriptional 

regulation, requiring determination at the protein level. E.g. high CD25 expression on CD4+ T 

cells is associated with suppressive functions of Treg while intermediate CD25 expression can 

result from activation and is associated with a variety of different functions.  

In the following study, the single cell sequencing protocol presented in chapter 3.2 was 

expanded with multi-parameter FACS index-sorting. Index-sorting records fluorescence and 

scatter characteristics for each single sorted cell so they can be read out retrospectively 

combining the analytical power and accuracy of flow cytometry at the protein level with 

downstream single cell sequencing.  

Publication 3 

Penter L, Dietze K, Bullinger L, Westermann J, Rahn HP, Hansmann L. FACS single cell index 

sorting is highly reliable and determines immune phenotypes of clonally expanded T cells. Eur 

J Immunol. 2018; 48:1248-50. DOI: https://doi.org/10.1002/eji.201847507  

 Abstract 

“FACS index sorting allows the isolation of single cells with retrospective 

identification of each single cell's high-dimensional immune phenotype. We 

experimentally determine the error rate of index sorting and combine the technology 

with T cell receptor sequencing to identify clonal T cell expansion in aplastic anemia 

bone marrow as an example.”  
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Publication 3 

Penter L, Dietze K, Bullinger L, Westermann J, Rahn HP, Hansmann L. FACS single cell index 

sorting is highly reliable and determines immune phenotypes of clonally expanded T cells. Eur 

J Immunol. 2018; 48:1248-50. DOI: https://doi.org/10.1002/eji.201847507  
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3.4! Definition of immune phenotypes and target antigen distribution of clonally 

expanded, selectively rectal cancer-infiltrating T cells 

The work presented in chapters 3.1-3.3 built the methodological foundation to determine T cell 

differentiation, functions and specificities at the single cell level in rectal cancer in the 

following study.  

Publication 4 

Penter L, Dietze K, Ritter J, Lammoglia-Cobo MF, Garmshausen J, Aigner F, Bullinger L, 

Hackstein H, Wienzek-Lischka S, Blankenstein T, Hummel M, Dornmair K, Hansmann L. 

Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells 

and distribution of their target antigens in rectal cancer. OncoImmunology 2019. DOI: 

https://doi.org/10.1080/2162402X.2019.1586409  

 Abstract 

“The degree and type of T cell infiltration influence rectal cancer prognosis regardless 

of classical tumor staging. We asked whether clonal expansion and tumor infiltration 

are restricted to selected-phenotype T cells; which clones are accessible in peripheral 

blood; and what the spatial distribution of their target antigens is.  

From five rectal cancer patients, we isolated paired tumor-infiltrating T cells (TILs) and 

T cells from unaffected rectum mucosa (TUM) using 13-parameter FACS single cell 

index sorting. TCR!" sequences, cytokine, and transcription factor expression were 

determined with single cell sequencing. 

TILs and TUM occupied distinct phenotype compartments and clonal expansion 

predominantly occurred within CD8+ T cells. Expanded TIL clones identified by paired 

TCR!" sequencing and exclusively detectable in the tumor showed characteristic PD-

1 and TIM-3 expression. TCR" repertoire sequencing identified 49 out of 149 expanded 

TIL clones circulating in peripheral blood and 41 (84 %) of these were PD-1- TIM-3-. 
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To determine whether clonal expansion of predominantly tumor-infiltrating T cell 

clones was driven by antigens uniquely presented in tumor tissue, selected TCRs were 

reconstructed and incubated with cells isolated from corresponding tumor or unaffected 

mucosa. The majority of clones exclusively detected in the tumor recognized antigen 

at both sites. 

In summary, rectal cancer is infiltrated with expanded distinct-phenotype T cell clones 

that either i) predominantly infiltrate the tumor, ii) predominantly infiltrate the 

unaffected mucosa, or iii) overlap between tumor, unaffected mucosa, and peripheral 

blood. However, the target antigens of predominantly tumor-infiltrating TIL clones do 

not appear to be restricted to tumor tissue.” 
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Publication 4 

Penter L, Dietze K, Ritter J, Lammoglia-Cobo MF, Garmshausen J, Aigner F, Bullinger L, 

Hackstein H, Wienzek-Lischka S, Blankenstein T, Hummel M, Dornmair K, Hansmann L. 

Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells 

and distribution of their target antigens in rectal cancer. OncoImmunology 2019. DOI: 

https://doi.org/10.1080/2162402X.2019.1586409  
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3.5! Mass cytometry and single cell immunoglobulin sequencing identify a novel 

memory B cell subset in patients with active multiple myeloma 

FACS single cell index sorting and targeted gene expression sequencing are limited with 

respect to numbers of parameters analyzed in parallel. A particular challenge relied in applying 

high-dimensional phenotyping approaches to hematopoietic malignancies aiming at the 

identification of disease-associated immune patterns in peripheral blood. In the following 

study, multiple myeloma, which is defined by the accumulation of monoclonal plasma cells in 

the bone marrow, was chosen as an example. The disease develops from a non-malignant 

precursor called monoclonal gammopathy of undetermined significance (MGUS) and the study 

hypothesized to identify immune phenotypes that distinguished healthy individuals, MGUS 

patients, and multiple myeloma patients. Multiple myeloma plasma cells are almost exclusively 

located in the bone marrow, however, bone marrow samples, especially from MGUS patients 

or healthy individuals, are not easily accessible. The disease is known for its substantial effects 

on the bone marrow microenvironment – the compartment where hematopoiesis takes place. 

Therefore, the identification of disease state-associated phenotypes even in the peripheral blood 

- if determined at sufficient depth – could be assumed. Disease-associated phenotypes were not 

expected to be restricted to T cell compartments but the study proposed a broad view at the 

entire cellular immune system. Therefore, one particular challenge was the most accurate 

determination of immune phenotypes in highest possible depth at the single cell level. Single 

cell phenotyping with conventional flow cytometry is usually focused on particular immune 

cell compartments and limited to approximately 12-15 markers due to spectral overlap of 

fluorochrome-labeled antibodies. Peripheral blood contains numerous cellular and non-cellular 

components with hundreds to thousands of individual phenotypes limiting the chances of 

success to detect multiple myeloma-associated immune phenotypes by conventional flow 

cytometry. 
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In the following work, CyTOF, which allows simultaneous detection of more than 30 metal-

labeled antibodies at the single cell level, identified a novel CD20+CD38+CD24loCD27+ 

peripheral blood B cell subset that was specifically expanded in patients with active multiple 

myeloma. 

Publication 5 

Hansmann L, Blum L, Hsin-Ju C, Liedtke M, Robinson W, Davis MM. Mass cytometry 

analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma. Cancer 

Immunol Res. 2015; 3:650-60. DOI: https://doi.org/10.1158/2326-6066.CIR-14-0236-T  

Abstract 

“It would be very beneficial if the status of cancers could be determined from a blood 

specimen. But peripheral blood leukocytes are very heterogeneous between individuals 

and thus high resolution technologies are likely required. We used Cytometry by Time 

of Flight (CyTOF) and next generation sequencing to ask whether a plasma cell cancer 

(multiple myeloma) and related pre-cancerous states had any consistent effect on the 

peripheral blood mononuclear cell phenotypes of patients. The analysis of 13 cancer 

patients, 9 pre-cancer patients, and 9 healthy individuals revealed significant 

differences in the frequencies of the T, B, and natural killer cell compartments. Most 

strikingly, we identified a novel B cell population that normally accounts for 4.0+/-

0.7% (mean+/-SD) of total B cells and is up to 13-fold expanded in multiple myeloma 

patients with active disease. This population expressed markers previously associated 

with both memory (CD27+) and naive (CD24loCD38+) phenotypes. Single cell 

immunoglobulin gene sequencing showed polyclonality, indicating that these cells are 

not precursors to the myeloma, and somatic mutations, a characteristic of memory cells. 

SYK, ERK, and p38 phosphorylation responses, and the fact that most of these cells 
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expressed isotypes other than IgM or IgD, confirmed the memory character of this 

population, defining it as a novel type of memory B cells.” 
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Publication 5 

Hansmann L, Blum L, Hsin-Ju C, Liedtke M, Robinson W, Davis MM. Mass cytometry 

analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma. Cancer 

Immunol Res. 2015; 3:650-60. DOI: https://doi.org/10.1158/2326-6066.CIR-14-0236-T  

  

66-76 of 137



Habilitationsschrift – Leo Alexander Hansmann 

77 of 137!

3.6! Definition of the phenotypic range of multiple myeloma B lineage cells 

Although CD38+CD24loCD27+ expanded memory B cells in multiple myeloma were unlikely 

to be part of malignant B lineage expansion, the phenotypic range an individual multiple 

myeloma clone can occupy remained as an unanswered question. As already demonstrated in 

T cells, phenotypes and clonal relationships can only be reliably determined at the single cell 

level.  

The following publication presents a methodology that combined multi-parameter FACS index 

sorting with high-throughput single cell immunoglobulin light chain sequencing to determine 

the phenotypic range which individual B cell clones can occupy in multiple myeloma bone 

marrow. 

Publication 6 

Hansmann L, Han A, Penter L, Liedtke M, Davis MM. Clonal Expansion and Interrelatedness 

of Distinct B-Lineage Compartments in Multiple Myeloma Bone Marrow. Cancer Immunol 

Res. 2017; 5:744-54. DOI: https://doi.org/10.1158/2326-6066.CIR-17-0012  

 Abstract 

“Multiple myeloma is characterized by the clonal expansion of malignant plasma cells 

in the bone marrow. But the phenotypic diversity and the contribution of less 

predominant B-lineage clones to the biology of this disease have been controversial. 

Here, we asked whether cells bearing the dominant multiple myeloma immunoglobulin 

rearrangement occupy phenotypic compartments other than that of plasma cells. To 

accomplish this, we combined 13-parameter FACS index sorting and t-Stochastic 

Neighbor Embedding (t-SNE) visualization with high-throughput single-cell 

immunoglobulin sequencing to track selected B-lineage clones across different stages 

of human B-cell development. As expected, the predominant clones preferentially 

mapped to aberrant plasma cell compartments, albeit phenotypically altered from wild 
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type. Interestingly, up to 1.2% of cells of the predominant clones colocalized with B-

lineage cells of a normal phenotype. In addition, minor clones with distinct 

immunoglobulin sequences were detected in up to 9% of sequenced cells, but only 2 

out of 12 of these clones showed aberrant immune phenotypes. The majority of these 

minor clones showed intraclonal silent nucleotide differences within the CDR3s and 

varying frequencies of somatic mutations in the immunoglobulin genes. Therefore, the 

phenotypic range of multiple myeloma cells in the bone marrow is not confined to 

aberrant-phenotype plasma cells but extends to low frequencies of normal-phenotype 

B cells, in line with the recently reported success of B cell-targeting cellular therapies 

in some patients. The majority of minor clones result from parallel nonmalignant 

expansion.” 
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Publication 6 

Hansmann L, Han A, Penter L, Liedtke M, Davis MM. Clonal Expansion and Interrelatedness 

of Distinct B-Lineage Compartments in Multiple Myeloma Bone Marrow. Cancer Immunol 

Res. 2017; 5:744-54. DOI: https://doi.org/10.1158/2326-6066.CIR-17-0012  
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4.! Discussion (Diskussion) 

This work presents an approach to human immunology in hematopoietic and solid 

malignancies. A major challenge relies in the heterogeneity of human study populations. 

“Heterogeneity” refers to the fact that diversity in age and gender, genetic variation, history of 

other diseases, medications, accumulating exposure to mutagens and/or toxins, previous 

immune challenges possibly associated with infectious diseases, vaccination, and many others 

lead to an almost infinite diversity of immune patterns, which, in their entire complexity, we 

are currently unable to understand. Several attempts have been made to reduce heterogeneity 

by studying cancer immunology in more or less homogenous animal models. While animal 

models represent the environments of choice to study basic gene and protein function in vivo, 

there is substantial evidence from the last decades that human immunology in the context of 

cancer can be most reliably studied in humans [206-209]. Novel technologies such as deep 

sequencing and a variety of multi-dimensional high-throughput single cell technologies have 

revolutionized the (human) immunology field allowing analyses in unprecedented depth at the 

single cell level. 

This work (chapter 3) presents methodologies for the determination of lymphocyte specificity 

in combination with high-dimensional surface and intracellular marker, transcription factor, 

and cytokine expression of bulk cells and at the single cell level. These methodologies were 

combined with CyTOF phenotyping and TCR reconstruction in reporter cell lines to determine 

Treg plasticity during in vitro expansion and track individual T and B lineage clones in rectal 

cancer and multiple myeloma. The identification of a novel, expanded B cell subset in multiple 

myeloma, a disease that has already been extensively studied during the last decades, 

underlines the power of these high-dimensional approaches. The presented findings have 

significant impact on cellular and cancer immunology therapeutics and, entirely derived from 

human subjects, have high and immediate translational potential. 
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4.1! Regulatory T cell plasticity and cellular therapy 

Treg have been in high demand for adoptive therapy of autoimmune diseases and in the setting 

of solid organ or stem cell transplantation to prevent organ rejection and GvHD. The bottleneck 

for adoptive Treg transfer is their low abundance (1 % - 10 % of T helper cells) in peripheral 

blood requiring in vitro expansion.  

T helper cell subsets, especially Treg, have been defined by their expression of lineage-defining 

transcription factors [58-61] and Treg function has been shown to be critically dependent on 

FOXP3 expression [210]. Currently, a variety of different protocols for in vitro expansion of 

regulatory T cells find application in (pre-)clinical trials and animal models in transplantation 

and treatment/prophylaxis of autoimmunity [83-85, 211-215]. Depending on Treg population 

characteristics and expansion conditions (supplements of cytokines or 

antibiotics/immunosuppressants), substantial proportions of Treg have been shown to lose 

FOXP3 expression during the expansion process.  

Methodologies presented in chapter 3.1 [1] enable the isolation of intact RNA after fixation 

and permeabilization of plasma and nuclear membranes, which is critical for transcription 

factor staining beyond FOXP3 and makes transcription factor-sorted cell populations 

accessible for reliable RNA-based downstream analyses. Possibly due to different mechanisms 

of fixation (ethanol vs. paraformaldehyde), the protocol does not allow intracellular cytokine 

staining, which seems to require paraformaldehyde fixation.  

It has been shown that especially the CD45RA- subpopulation of Treg loses FOXP3 expression 

during in vitro expansion [76, 216] accompanied by epigenetic modifications involving the 

FOXP3 promoter and TSDR [75, 217-219]. Nevertheless, this population has not been 

excluded from cell products in a variety of clinical trials. The data in chapter 3.1 demonstrate 

that under non-polarizing conditions FOXP3- ex-Treg predominantly acquire Th2 phenotypes 

[1]. This finding is critical in the setting of adoptive T cell transfer where cell products are 
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required to maintain defined differentiation states and functions. The results do not allow 

prediction which differentiation paths will be followed in vivo but suggest and confirm that 

plasticity among T helper cells does include almost all T helper differentiation states and is 

more pronounced than was initially assumed.  

The determination and definition of T cell differentiation is further complicated by (potentially 

stimulation-induced) changes of individual cells’ cytokine and transcription factor profiles 

over time. It has been shown that the magnitude and type of cytokines secreted by T cells 

follow distinct patterns after stimulation [220-222]. The analysis of cells after fixation can only 

capture single time points, however, strategies profiling thousands of single cells in parallel in 

multi-dimensional space have proven T cell differentiation is a dynamic process including 

phenotypic changes and overlapping transitional states [223]. 

To which extent T cell plasticity impacts the desired effects of adoptively transferred T cell 

preparations can eventually be deduced from ongoing clinical trials. In case of adoptive transfer 

of tumor antigen-specific T cells for cancer treatment, it has already been shown that immune 

phenotype changes occurring in vivo after cell transfer can interfere with anti-tumor effects 

[224, 225]. 

4.2! Lymphocyte function and specificity at single cell resolution 

Antigen specificity of T or B cells is encoded in the TCR!" or immunoglobulin heavy and 

light chain genes respectively (chapters 2.2 and 2.8). As almost unlimited diversity of TCR and 

immunoglobulin genes in combination with a variety of cellular functions can be expected, the 

accurate parallel determination of specificity and function requires single cell resolution. This 

work presents the development of methodologies that combine FACS single cell index sorting 

with gene-targeted PCR amplification of TCR, immunoglobulin light chain, and selected 

phenotype genes for subsequent single cell sequencing. Index sorting is a modification of 

conventional FACS sorting, which records high-dimensional fluorescence and scatter 
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information for each single sorted cell so they can be read out retrospectively. This approach 

can link phenotype data at the protein level to downstream, in this case single cell sequencing, 

information.  

The protocols presented in chapter 3.2 were published at a time when other laboratories 

established approaches for high throughput single cell RNA sequencing (RNAseq), which 

promise quantitative accessibility of the whole transcriptome in single cells [226-228]. Both 

technologies have their advantages and disadvantages. Our methodologies allow the 

determination of paired TCR!" sequences in > 90 % and immunoglobulin light chain 

sequences in > 70 % of sorted cells. The combination with FACS index sorting results in an 

accuracy of the assigned immune phenotypes in > 99 % of all sorted cells [3], albeit with a 

previously defined, limited panel of parameters. Single cell RNAseq approaches result in a 

gene coverage of 10-30 % per cell [227] and are limited regarding the reconstruction of entire 

TCR!" and immunoglobulin sequences. The strength of high-throughput single cell RNAseq 

relies in the analysis of thousands of cells and markers in parallel possibly leading to the 

discovery of novel cell populations and population characteristics. However, our technologies 

presented in chapters 3.2 and 3.3 outperform all currently available single cell RNAseq 

technologies with regard to sequencing efficiency, phenotype accuracy, and represent the 

approach of choice if reconstruction of TCR or immunoglobulin genes is desired. The unique 

power is confirmed by other groups adapting and developing these methodologies in particular 

for TCR sequence determination and reconstruction in times when single cell RNAseq 

approaches have become commercially available at affordable cost [229]. In conclusion, the 

presented methodologies and single cell RNAseq have to be considered complementary and 

should be carefully chosen depending on the research questions. 
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4.3! Identification of ligands of TCRs with unknown specificities 

Although technologies for sequencing TCR and immunoglobulin genes have become 

increasingly available, there is currently no straight forward methodology for the identification 

of unknown TCR ligands. T cells recognize their target peptides in complex with MHC class I 

or II (chapter 2.1). In the 1990-ies, John Altman and Mark Davis developed peptide-MHC 

tetramers to label T cells with common specificities for a selected target peptide [230]. This 

landmark technology allows the identification of T cells specific for virtually any peptide, 

however, the exact peptide sequence and MHC-restriction have to be known. For example, 

peptide-MHC tetramers can identify T cells that recognize selected Epstein-Barr virus antigens 

with high sensitivity and specificity. Vice versa, the identification of the target peptide of an 

individual TCR is more complex. Even if a particular TCR sequence is known, the exact 

structure and interaction with the target peptide-MHC are almost impossible to predict. 

Bioinformatically, sophisticated algorithms for grouping TCRs by presumed common 

specificities and attempts to read potential ligands from TCR sequences have only been 

partially successful and rely on the inclusion of reference TCRs with known specificities [231, 

232].  

Experimentally, there have been a few approaches for the unbiased identification of unknown 

TCR ligands that rely on recombinant expression of the TCR of interest and presentation of 

plasmid-encoded highly diverse peptide libraries on HLA-recombinant antigen presenting cells 

[233, 234]. These technologies are labor-intense and lead in the best-case scenario to a selection 

of candidate peptides. The identification of the target protein requires further time-consuming 

experimentation and is limited by methodologies that require processing and antigen 

presentation of the presumed target proteins, which can be substantially different in vitro 

compared to in vivo situations.  
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The presented research (chapter 3.4) determined whether particular TCRs recognized target 

antigen in leftover cells from rectal cancer tissues [5]. The application of TCR recombinant 

reporter cell lines [234] demonstrated that target antigens of T cell clones uniquely expanded 

in the rectal cancer microenvironment were not restricted to tumor tissue [5]. These findings 

support recent studies suggesting that the majority of tumor-infiltrating T cells are not specific 

for mutation-derived neo-antigens but maybe not directly tumor-related so-called bystander T 

cells [142, 235]. The presented data on distribution of target antigens of clonally expanded 

TILs and their accessibility in peripheral blood question our current understanding of the roles 

of TILs and mechanistic effects of immune checkpoint blockade. 

4.4! Technologies for high-dimensional phenotyping – CyTOF and beyond 

In the study presented in chapter 3.5, CyTOF could identify multiple myeloma-associated 

immune phenotypes in peripheral blood [6]. Multiple myeloma is a prime example for tumor-

microenvironment interactions [170], leading to various effects on the bone marrow – the 

compartment where hematopoiesis takes place. Besides conventional somatic mutations in 

genes such as KRAS, NRAS, among others, mutated immunoglobulin genes can be presented 

as neo-antigens possibly leading to measurable differences in the immune cell compartments 

of multiple myeloma, MGUS patients, and healthy individuals. The presented approach 

(chapter 3.5) was particularly focused on differences in T and B cell compartments but did not 

exclude NK cells, monocytes, and dendritic cells. With respect to monocytes, dendritic cells 

and their responses to TLR ligand or Phorbol Myristate Acetate (PMA)/Ionomycin stimulation, 

availability of freshly isolated peripheral blood mononuclear cells (PBMCs) without prior 

cryopreservation was critical. The B cell compartment, in case of multiple myeloma and 

MGUS, is part of the malignancy and therefore the detection of differences between patients 

and healthy individuals could be expected. Given the complexity of possible variation of 

immune phenotypes and functions between multiple myeloma, MGUS, and healthy individuals 
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in an inherently heterogeneous human population, a systems immunology approach was likely 

required. Conventional flow cytometry, which is limited to 12-15 markers depending on 

cytometer setup and researcher experience, cannot resolve changes in various immune cell 

compartments simultaneously at sufficient depth; CyTOF can measure 38 and more parameters 

in parallel [6]. The identification of a novel B cell subset in a malignancy that has been 

extensively characterized by conventional flow cytometry in the last decades underlines the 

analytical power of this approach.  

Although substantially expanding the analytical depth, CyTOF is limited by the accessibility 

of commercially available metals for antibody labeling, lack of straight-forward data analysis 

tools, restricted accessibility of the technology, and relatively time-consuming training 

compared to conventional flow cytometry. Furthermore, mass cytometry ultimately destroys 

the cells making them inaccessible for downstream analyses such as TCR or immunoglobulin 

sequencing.  

Recent developments including nucleic acid oligo-tagged antibodies in combination with 

single cell next generation sequencing for antibody detection promise phenotypic and genetic 

characterization of single cells in virtually unlimited depth [236, 237]. Currently, these 

technologies are limited with regard to intracellular staining and sequencing efficiency but can 

be expected to substantially improve.  

In conclusion, FACS is the technology of choice for high-dimensional phenotyping at the 

single cell and protein level if cells need to be available for downstream applications. CyTOF 

outperforms conventional flow cytometry in analysis depth and ultimately destroys the cells. 

Nucleic acid oligo-labeled antibodies promise a substantial increase in analysis depth in 

combination with single cell transcriptomics. If the technology can live up to its promises will 

become clear in the next years. 
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4.5! Implications of the presented findings in rectal cancer 

Colorectal cancer is a prime example for the prognostic significance of tumor-infiltrating T 

cells. The disease biology is heterogeneous depending on the (epi-)genetic background but also 

on the location of the tumor within the colo-rectum [204, 205]. To minimize location-

associated immune phenotype differences, the study population in chapter 3.4 was restricted to 

rectal cancer patients. 

The tumor microenvironment contributes to disease biology and is expected tolerogenic in 

rectal cancer. Data in chapter 3.4 support the induction of T cell tolerance by i) expression of 

checkpoint molecules on clonally expanded, and ii) expression of FOXP3 in non-expanded 

TILs. Furthermore, the data suggest, at least for the included checkpoint molecules, that 

tolerance in clonally expanded T cells is most likely not dependent on one single checkpoint 

molecule (e.g. PD-1) but sustained by complex expression patterns of various checkpoint 

molecules including PD-1, TIM-3, CTLA4, and BTLA. Infiltration with FOXP3+ T cells has 

already been shown to support unfavorable prognosis in a variety of malignancies [238]. The 

majority of FOXP3+ TILs in the presented study (chapter 3.4) are not clonally expanded and 

therefore probably not expanding in response to one or a few specific antigens but rather 

infiltrate the tumor due to microenvironment-driven cues or are the result of 

microenvironment-induced differentiation. 

Our findings are in accordance with other studies reporting that the majority of rectal cancer 

patients do not respond to single immune checkpoint inhibition except cases with high 

mutational load [239, 240]. Whether the mutational load itself, antigen specificity of the T cell 

clones, or susceptibility to treatment with selected checkpoint inhibitors are responsible for this 

observation, cannot be concluded from our data. However, we and others have shown that 

regardless of absolute numbers of mutations, the majority of clonally expanded TILs cannot be 

assumed to be neo-antigen-specific [5, 142, 235]. The presented data suggest the impressive 
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effects of immune checkpoint blockade in cancer therapy not to be mediated by direct 

interference with functional inhibition of tumor-specific T cells but rather result from 

secondary effects mediated by inflammation, among others. This suggestion is supported by 

the timeframe of several weeks after beginning of checkpoint blockade until clinical responses 

become apparent or phenomena like tumor pseudo-progression occur [241]. Independent from 

target antigens, our data suggest that expanded T cell clones predominantly infiltrating rectal 

cancer can only in parts be detected in peripheral blood, which should be considered when 

relying on peripheral blood as a source for T cells potentially targeting rectal cancer. Future 

studies will help identifying target antigens of clonally expanded TILs and elucidate the 

mechanisms underlying effective immune checkpoint blockade.  

4.6! Implications of the presented findings on multiple myeloma 

A memory B cell subset that shares phenotypic characteristics of naïve (CD24loCD38+) and 

memory (CD27+) B cells was expanded in patients with active multiple myeloma [6]. The 

subset appeared to be phenotypically stable as frequencies did not change after 

PMA/Ionomycin or TLR stimulation. Furthermore, this subset was not detected expanded in a 

single patient with regular immunoglobulin light chain ratio or in patients with colorectal 

cancer. Therefore, the CD24loCD38+CD27+ phenotype can be assumed to result from long-

lasting microenvironmental cues such as cytokines predominantly secreted during active 

disease. With respect to clinical significance, we do not expect B cell immune phenotyping to 

replace other established measures for multiple myeloma activity such as serum 

immunoglobulin light chain levels or bone marrow histology. Moreover, additional work is 

needed to further characterize and possibly detect this B cell population in other malignant or 

autoimmune diseases.  

CD24loCD38+CD27+ memory B cells were not clonally expanded and most likely not related 

to the corresponding multiple myeloma cells. However, they prompted us to study the 



Habilitationsschrift – Leo Alexander Hansmann 

99 of 137!

phenotypic range particular multiple myeloma clones can occupy at the single cell level. The 

methodologies presented in chapter 3.6 identified even normal phenotype B cells to be part of 

the malignant multiple myeloma clone [4]. The existence of clonotypic B cells in multiple 

myeloma has been under debate since the early 1990-ies [184-195, 242]. Notably, most of the 

previous studies have analyzed PBMCs instead of bone marrow B cells, may be subject to PCR 

and/or sampling bias, and none reach single cell resolution. By specifically sorting single bone 

marrow B lineage cells, we significantly lowered the detection limit compared to previous 

studies and exclude bias introduced by phenotype contamination when analyzing bulk 

populations. Notably, the error rate of index sorting can be expected below 1 % of sorted cells, 

which is lower than the frequency of clonotypic B cells identified in the presented studies [3, 

4]. However, sequencing destroys the cells and aberrant immune phenotypes associated with 

clonotypic B lineage cells could not be identified, which makes their isolation for downstream 

analyses impossible. At this point, we cannot draw conclusions regarding the biological 

significance of these rare clonotypic B cells in our experiments, however, the therapeutic 

success of CD19-targeting chimeric antigen receptor (CAR) T cells even in presumably CD19- 

multiple myeloma [185] suggests these cells can be clinically relevant in subsets of patients.
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5.! Conclusions (Zusammenfassung) 

This work is focused on human T and B cell immunology in solid and hematopoietic 

malignancies. Human immunology has been suffering from insufficiencies to experimentally 

resolve the virtually unlimited richness of phenotypes and functional states within humans. To 

at least partially overcome technical limitations, this work presents methodologies for high-

dimensional high-throughput determination of lymphocyte differentiation and specificities at 

the single cell level. The methodologies were applied to rectal cancer and multiple myeloma, 

which are prime examples for the prognostic impact of tumor-infiltrating T cells or in which 

the immune system (B cell compartment in multiple myeloma) is part of the malignancy. 

The included publications present the identification of characteristic-phenotype rectal cancer-

infiltrating T cells and, with help of individually created TCR-recombinant reporter cell lines, 

define the spatial distribution of T cell target antigens within the colo-rectum. In multiple 

myeloma, the developed methodologies lead to the identification of a novel-phenotype non-

plasma cell B lineage subset that is polyclonally expanded in active disease. Furthermore, the 

phenotypic range of malignant B lineage clones in multiple myeloma was not restricted to 

plasma cells but included rare normal-phenotype (memory) B cells. 

This work is novel and of high impact for the (human) immunology field as it 

•! provides the technical basis to study human lymphocyte biology at the single cell level 

in high-dimensional space, which is relevant beyond the presented studies on regulatory 

T cells, rectal cancer, and multiple myeloma. 

•! determines accessibility of rectal cancer-infiltrating T cells in peripheral blood. 

•! determines the spatial distribution of target antigens of rectal cancer-infiltrating T cells. 

•! defines the phenotypic range of multiple myeloma at the single cell level providing a 

potential rationale for the therapeutic effect of CD19-targeting therapies in a 

presumably CD19- disease. 
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•! determines the default differentiation pathway of the CD45RA- regulatory T cell subset 

during in vitro expansion, which is relevant for the design and adoptive transfer of 

functionally defined cell products. 
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