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Electron Dynamics of Interatomic Coulombic
Electron Capture in Artificial and Real Atoms

Axel Molle

Abstract

Interatomic coulombic electron capture is a non-local process involving
the environment-assisted attachment of a free electron with implied con-
sequences for various systems. Starting from the established numerical model
of quantum confinements in a nanowire, this dissertation sets out to deduce
model-independent hypotheses for future investigations of theoretical or ex-
perimental nature and develops a generalised adaptation of the model to test
whether the effective-two-electron treatment suffices to successfully capture a
free electron in the experimentally motivated system of a barium (II) cation
engulfed in a Bose-Einstein-condensate of neutral rubidium atoms.

Appearing associated to differing electronic states of the confinement re-
gion, two subprocesses can contrast in spatial preferences and resonant en-
ergies. For the investigated range of parameters, the energy levels of these
associated states suggest to provide a starting point for a more comprehensive
description beyond the particular parameters of an individual model. A rather
simple electric dipole-dipole coupled adaptation of the model is then able to
successfully show environment assisted electron attachment to a barium (II)
cation aided by a surrounding cloud of ultracold rubidium atoms in typical
experimental conditions.

Zusammenfassung

Der interatomare Coulombische Elektroneneinfang ist ein nicht-lokaler
Prozess die umweltgestützte Anlagerung eines freien Elektrons mit implizi-
ten Konsequenzen für verschiedene Systeme. Von einem etablierten Modell
für Quantenpunktpaare in Nanodrähten ausgehend, entwickelt diese Disserta-
tion modellunabhängige Hypothesen für zukünftige Untersuchungen theore-
tischer oder experimenteller Natur und entwickelt eine verallgemeinerte Ab-
wandlung des Modells zum Test der Limitationen einer Beschreibung durch ef-
fektive zwei-Elektronen-Näherung im experimentell motivierten System eines
Barium-II-Kations in ein Bose-Einstein-Kondensat neutraler Rubidiumatome.
Zwei Unterprozesse treten in Verbindung mit unterschiedlichen elektronischen
Zuständen des einfangenden Potenzialtopfes auf und können sich voneinander
abgrenzende räumliche Präferenzen und Resonanzenergien zeigen. Für den un-
tersuchten Parameterbereich erscheinen die assoziierten Energieniveaus einen
vielversprechenden Ausgangspunkt für eine aufschlussreichere Beschreibung
jenseits der spezifischen Parameter des einzelnen Modells darzustellen. Eine
eher vereinfachte elektrische Dipol-Dipol-gekoppelte Anpassung des etablier-
ten Modells ist dann erfolgreich in der Lage eine Elektronenanlagerung an
ein Barium (II) Kation durch interatomare Coulombwechselwirkung zu Elek-
tronen einer umgebende Wolke ultrakalter Rubidiumatome unter typischen
experimentelle Bedingungen zu durchlaufen.
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Part I

Motivation

This Inaugural Dissertation investigates whether the dynamics of electrons undergo-
ing interatomic coulombic electron capture (ICEC) in real and in artificial atoms can
be sufficiently numerically modelled by a two-electron description and whether these
computations propose model-independent hypotheses for future investigations may
they be of theoretical or experimental nature. Interatomic coulombic electron cap-
ture is a non-local process that has been theoretically proposed by various methods
to be involved to some extent in the biologically relevant system of a magnesium (II)
cation in water,1 in the commercially important system of nanowire-embedded re-
gions of quantum confinement,2,3 and will be shown here to possibly play a role
in the experimentally important system of trapped ions in ultracold atom clouds.4,5

Therefore suggesting to be a universal process triggered by a free electron in a nearly
arbitrary environment of atoms, this work reviews the established dynamical model
for a nanowire-contained pair of quantum dots also known as artificial atoms,6 and
presents the first numerical model to investigate ICEC dynamics of a barium (II)
cation in a surrounding cloud of ultracold rubidium atoms at typical experimental
conditions.

Toward the central goal of deriving educated directives from numerical model-
ling of interatomic coulombic electron capture to guide future investigations and
to strengthen the footing for a broader field of applications, this dissertation is
composed in four parts: the motivation for this study arising from the fundamental
nature of ICEC, the mathematical and physical background of the established model
and suggestive concepts guiding the following numerical analysis and leading to the
proposed generalised model for ultracold atoms, the numerical applications to ar-
tificial confinements in nanowires as well as to a barium (II) cation in a cloud
of ultracold rubidium atoms at typical experimental conditions, and eventually the
conclusion of the findings from the analysis of the conducted electron dynamics com-
putations. In order to motivate the undertaking of further investigations employing
interatomic coulombic electron capture, particularly in view that experimental con-
firmation is yet lacking, this part will focus on the variety of contexts in which the
process is bound to occur and to affect the physics and chemistry therein. In chrono-
logical order of their predictions, the potential role of ICEC will briefly described for
biologically relevant metal-water clusters as consequence of the initial prediction of
the process, for current development of gradually smaller electronic devices of nano-
metre scale which is the field of the established dynamical model to be used and
generalised thereafter, and for trapped ions in clouds of cold atoms which represent
an active experimental research setup and provide an alternative field of applica-
tions beyond the solid-state systems currently considered by the available model for
ICEC dynamics.
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1 Relevance of the Interatomic Electron Capture

Free electrons can attach to atoms, ions and molecules if they achieve to transfer
some of their energy to their surrounding. This usually happens by emission of light,
instigation of vibration and rotation or by excitation of other electrons within the
encountered systems. This energy transfer is usually expected to occur over a short
range which made the prediction of long-ranged interatomic coulombic electron cap-
ture in 2009 particularly puzzling.1 It proved under the perturbative assumptions
of scattering theory that under certain conditions, the electrons bound to atoms
in the environment can significantly assist electron attachment despite their relat-
ively large separation on an atomic scale. So-called non-local processes have won
considerable attention over the last decades,7 and ICEC has been shown to be a
fundamental energy transfer process also expected to affect systems from modern
nano-electronic devices,2,8,9 to biological systems.10 Nevertheless, ICEC has mostly
eluded investigations by experiment or time-resolved theory so far.

Processes allowing to capture electrons on molecules usually involve the break-
ing of chemical bonds known as dissociative electron attachment, and consequently
destroy molecules and as a particular example even destroy DNA. Particularly slow
electrons which are the result of propagating irradiation damage in biological or-
ganisms are harmful and genotoxic.10–12 To prove that ICEC is competitive with
respect to usual electron attachment mechanisms, the noble gas ions He+ and Ne+

were theoretically investigated in proximity of the relatively small organic molecule
benzene in 2010.13 By asymptotic approximations common within the perturbative
treatment of scattering theory, it was then possible to show that especially in the
case of reaction partners allowing an interatomic transfer of a small amount of en-
ergy, ICEC will be efficient.13 It has been established since then that ICEC can also
be prevalent in solid-state systems,3,9 and has been recently discussed to become of
concern for modern electronic applications in the constant race for more minute com-
ponents in integrated circuits.2 As electronic components gradually shrink smaller
and smaller, few-electron processes become obstacle and potential solution operat-
ing at the smallest possible energies. At this stage, quantum mechanics dictate the
operational rules of modern applications as we play with single photons and single
electrons.14,15

We redefine our surroundings in terms of tiniest units and count time, length,
mass, and energy in quanta.16 Modern experiments allow time-resolved investigation
of matter interacting with light or with matter at quanta of energies. One immerses
atoms and molecules in droplets of superfluid helium,17 creates droplets of liquids
thousand times more dilute than common gases,18,19 and suspends clouds of atoms
at close to absolute zero temperature in the laboratory equivalent of free space.4

Despite their sparsity, theoretical studies on interatomic coulombic electron capture
have particularly targeted systems of relevance within already available experimental
techniques: atom-atom collisions of noble gases13,20, biologically relevant magnesium
ions in water,1 atoms immersed in helium clusters,21 and local quantum-confinements
embedded in nanowires.3 With this dissertation, I intend to add ions in ultracold
atom clouds to this collection which are typically prepared in modern hybrid traps to
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investigate state-to-state chemistry.22–24 Although each publication predicted ICEC
at various degrees of theory for experimentally relevant systems, observations of
ICEC have not yet been reported and experimental efforts are yet to come.

Compared to other non-local processes which have gained considerable attention
experimentally and theoretically, ICEC remains a novelty.7,20,25 Challenging avail-
able theoretical approaches, it was shown only last year, however, that it might even
prove to be more efficient than originally estimated.21 At the same time, reaction
processes as interatomic coulombic decay (ICD) and electron-transfer mediated de-
cay (ETMD) which belong to the same family as ICEC, embody blooming research
fields in their own right involving many top-level theoretical and experimental groups
worldwide. In conjunction with the potential importance of ICEC in consequence
of radiation damage, in context of current electronic research & development, as
well as in ultracold gas experiments, it is expected to gain attention in the coming
years. In light of the recently found amplification of the reaction cross section for
proximities below the original long-distance approximations,21 on the one hand, and
in light of the possible increased range within a macroscopic assisting environment
as is shown in this dissertation, ICEC is going to become more significant. This pro-
ject is therefore at the forefront of a significant field of research and represents an
original and essential step to advance our understanding of this important process.

1.1 Dissociative Electron Attachment in Biological Systems

One of the major research fields of importance to society is the field of life science.
While interatomic coulombic electron capture was initially considered for a mag-
nesium (II) cation in a water cluster which is of essential role in the human body,1

it gained more relevance in context with recent findings on radiation-induced free
electrons in biological systems. This shall be briefly explained here. Radiation from
the Sun, radioactive substances, or X-rays can cause damage in the body. While
Solar irradiation is mostly superficial, ingested radioactive substances and penetrat-
ing X-rays can affect internal body cells and organs. It has been found recently that
afflicted radiation damage can spread exponentially through the human body by a
cascade of decay processes of chemical compounds which release numerous slow elec-
trons. Decay processes related to radiation damage include Auger decay, interatomic
coulombic decay (ICD), superexchange ICD, and electron-transfer mediated decay
(ETMD), which have attracted considerable attention over the last decade.7 Free
electrons can break up other chemical bonds by attaching themselves to encountered
atoms and have thus been found to be genotoxic. This is called dissociative electron
attachment.10,11,26 A strong enhancement of electron attachment was predicted in
2009 for several systems thanks to interatomic coulombic electron capture (ICEC)
which is an environment-assisted process in which a free electron can efficiently at-
tach to an ion, atom or molecule.1,13 The excess energy of the electron attachment
is transferred to an ion, atom or molecule in proximity which is thus ionised. This
process has been proven to be efficient even over long distances between reaction
partners. Moreover, the energy of the emitted electron changes if the two involved
species have different ionisation potentials. This suggests therefore that ICEC might
be a general process which controls damage of living cells under ionising irradiation
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and has a central impact on radiation damage in biological systems.

Particularly metal cations are biologically abundant and expected to be strongly
ICEC-active owing to their large electron affinity. Overall, up to 60% of the adult
human body consists of water and even the bones contain 31% water.27 About 2%
in total are composed of metals.28 Dissolved in water, an individual metal ion is
surrounded by numerous water molecules which each provide a potential reaction
partner for interatomic coulombic electron capture by the metal ion. As they are
all subject to the same electromagnetic field which transfers the excess energy from
the captured electron, one would expect coherence and correlation to arise and lead
to superradiance29–32 and superabsorption,33–35 a pair of fundamental phenomena
resulting in increased intensity and reaction rates depending on the number of re-
action partners. Particularly alkali metals and alkaline earth metals regulate fluid
flow into and out of body cells, blood pressure, muscle contractions, nerve signals
and heart activity. More importantly, metals are the key ingredient to complex
chemical structures called coordination compounds in which a central metal atom
is surrounded by groups of non-metal atoms, the ligands. Coordination compounds
are vital to living organisms as the central metallic atom enables and determines
their functionality in regulating biological processes. An important example for such
complexes is haemoglobin which contains a central iron atom, gives blood its red
colour and carries the vital oxygen through our body to the organs.

1.2 Commercial Electronics on the Scale of Human DNA

In modern technology, a very different aspect of society, phenomena summoned by
artificially modified materials and control on the scale of a few nanometres are the
centre of attention for research & development and provide the central ingredient
to more efficiency.36,37 Integrated electronic circuits and their components shrink
continuously whereas electronic displays and mobile phones expand with each con-
secutive generation. As electronic components reduce to smaller and smaller size
in order to allow for ever-increasing performance, quantum-mechanical phenomena
complicate traditional working principles but offer interesting novel opportunities.38

Relying inherently on the manipulation and transport of electric charges, interatomic
coulombic electron capture may pose a potential complication as well as a possible
solution to quantum-controlled charge transfer in future generations of commercial
electronic devices.

Even before the 1960s, electronic technology relied increasingly on semiconducting
materials which allowed to annually double the number of hosted transistors per in-
tegrated circuit.39 Toward the end of 1989, computer companies raced to be the first
to release the then revolutionary 486 personal computer incorporating commercial
transistors of 800 nm size.40,41 Since then, the electronics industry has continued
to strive for continuously refined manufacturing techniques to increase the perform-
ance by increasing the electronic component density. Three times the size of the
human DNA, fin-shaped structures nearing 7 nm thickness are etched into semicon-
ducting materials in mass production to form the transistors integrated in today’s
mobile-phone processors.42–44 As hundred millions of capacitors, diodes, resistors and
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transistors occupy less than a square centimetre,45 quantum-mechanical phenomena
become integral constituents in current electronic devices.46

When any bulk of material is reduced in size, its quasi-continuous band structure
splits into discrete increasingly separated energy levels.47,48 This phenomenon has
been termed quantum size effect,49–51 and also implies that within one material, any
impurities, crystal defects or atoms contrasting with their environment can produce
quantum-mechanical phenomena which modify electrical and optical properties. The
development of electronic elements for data storage,52 displays,53 lasers,54 sensors55

and solar cells56 thus incorporate this realisation and consequent quantum effects
into innovative nanostructured technology.

Striving toward the next milestone of yet more compact electronic device com-
ponents which is known as the 5-nm node, nanowire structures run among the pro-
spective solutions.57–59 Controlled manipulations can create local regions of quantum
confinement within such a nanowire. These are known as quantum dots.60–63 The
established model to describe the electron dynamics induced by ICEC thus con-
siders a nanowire holding two such regions, A and B, which are able to quantum-
mechanically confine otherwise transmitted electrons.2,8,9,64 An electron transported
through the nanowire to enter the confinement region A can exert momentum pres-
sure by Coulomb interaction on an initially bound electron within the nearby charged
region B−. The long-distanced energy transfer between both electrons captures the
incident electron to form a charged region A− while its neighbour is ionised according
to

e−
in

+ A+B− −→ A−+B + e−
out
. (1)

On the one hand, the choice of ingredient materials determines the optical and
electrical properties of device. On the other hand, current production techniques
allow to control the material composition and carefully selected concentrations of
foreign elements, known as doping, are essential techniques to improve the per-
formance of electronic devices. In commercial electronics, this choice is weighed,
however, against the availability or natural abundance of a candidate material and
by its robustness in a large-scale production process which is why selected com-
ponents demanding higher performance are made of rarer but better performing
materials whereas other less deciding parts will readily be made of more available
thus less expensive standard materials if overall performance remains comparable.
In a component of nanometre scale like the considered pair of quantum confine-
ments embedded in a nanowire, the quantum size effect offers a complementary
cost-effective way to optimise key properties which is readily portable to industrial
scale. It was thus proposed to investigate the change in efficiency and working of the
interatomic coulombic electron capture induced by variation of size of the capturing
confinement region.2

The electron dynamics of ICEC in quantum-dots indicated a reaction pathway
that selectively worked at a particular energy determined by the decay of a col-
lective resonance state (A−B−)∗.2,8 Also carried by Coulomb interaction between
electrons localised at different partner sites at long distances, this decay is known as



1.3 Individual Ions in Clouds of Ultracold Atoms 15

interatomic coulombic decay (ICD). Equally fundamental as ICEC, it was found to
be active in any combination of two nearby electron-binding subsystems beyond be-
ing limited to individual atoms. It has thus been observed in atomic and molecular
systems,20,65,66 as well as more exotic hollow atoms,67 within helium droplets,68 bio-
logical systems,69,70 as well as quantum confined solid-state systems like fullerenes71,
quantum-dots,72–74 or quantum films.75,76 Honouring the universal nature of ICEC
and ICD which can present an inter-atomic, inter-molecular, inter-quantum-dot or
otherwise interactive nature between two spatially separated units depending on the
involved subsystems, it has therefore been suggested to speak of an inter-coulombic
electron capture and inter-coulombic decay generally. Consequently, this reaction
pathway within the considered nanowire would follow2

e−
in

+ A+B− ICEC−→ (A−+B−)∗ ICD−→ A−+B + e−
out
. (2)

Within the established model for pairs of charged quantum dots, it had been
known from previous studies that meeting the conditions for a resonant decay via
ICD can improve the probability of a successful interatomic electron capture.3,8,9 In
addition, a recent investigation in relation to this dissertation was able to report
distinct energy signatures identifying two reaction pathways.2 These suggested that
a portion of the electron capture occurred due to a direct coulombic transfer of
energy which echoed the energetically broad distribution of the incoming electron
but another portion presented the features of the energy-selecting resonance criteria
characteristic for ICD. Previously shown for ICD,77,78 ICEC was bound to be tied
to the implications of the quantum size effect. In collocation with an empirical
high-throughput study on the maximal ICEC probability in quantum dots which
was able to suggest limiting energetic conditions for the successful capture,64 the
electron flux associated with ICEC has provided the main quantity to study the
particular interplay with ICD.2

Representing the primary system of investigated electron dynamics in context of
interatomic coulombic electron capture, this dissertation will revisit the preceding
increasingly multivariate numerical studies to complement previous observations by
additional considerations. Although it has not yet found a realisation by experi-
ment, this covers the range of available control over the capturing confinement from
adapting the confinement’s size, via varying and manipulating the capturing mater-
ial, to optimising the distance to the partner confinement. Thereby providing an
extended set of numerical findings gathered in a consistent manner, this will point to
probable more generally applicable relations beyond the restrictions of the particular
model. This will provide the foundation to compare this model with other systems
and potentially help guiding future investigations and alternative realisations. Alas,
the methodological analysis will provide a starting point for the generalisation and
first application to study the electron dynamics of ICEC in ultracold atoms.

1.3 Individual Ions in Clouds of Ultracold Atoms

Physical experiments with ultracold atoms and ions are currently most promising
to investigate time-resolved state-to-state chemical processes and interactions.79,80
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Experimentally, entrapment of cold atoms and ions has been undertaken for some
time. On the one hand, ions as well as individual charged particles can be contained
and their properties as well as natural constants be measured to the highest precision
by Paul traps and by Penning traps which merited the Nobel prize in 1989.5 On
the other hand, entire clouds of neutral atoms can be cooled down collectively to
accumulate and then be held in their energetically lowest atomic state which is
known as a Bose-Einstein condensate awarded for its scientific importance by the
Nobel prize in 2001.4 Building on these working principles, hybrid traps employ
two different traps simultaneously. They represent the current state of the art and
allow to investigate interactions of captured ions within ultracold atom clouds at
real-time.22–24

Working at low temperatures, such experiments admit to study numerous phe-
nomena and fundamental interactions with minimal thermal intervention. Concepts
and questions of astrophysics, astrochemistry and selective state-to-state chemistry
come into reach at laboratory conditions with time resolution. The need for dynam-
ical descriptions and models of phenomena thus rises as time-resolved investigations
are becoming the experimental standard where estimates of asymptotic quantities
and behaviour do not suffice any longer. With respect to interatomic coulombic
electron capture, the essential ingredient necessary missing from current ultracold
atom-ion experiments is a source of electron. Although a directed electron source is
in fact the oldest of the three components necessary for such a proposed ICEC exper-
iment, it has so far been omitted from the experiments because hybrid-trap vacuum
chambers are sensitive to disturbances. Assembling all experimental components to
achieve a stable ultra-high vacuum (< 10−6 Pa)1 at low temperatures is a challenge
in itself. It requires multi-stage pumping, ion gauge measurement, and particular
procedures like the baking of the vacuum chamber to remove remaining traces of
gases. Nevertheless, electron sources in the form of cathode rays have been known
for nearly two centuries since Michael Faraday.81 These streams of electrons within
vacuum tubes have even been the central component in commercial screens for oscil-
loscopes and televisions. They are therefore conceptually simple enough to add onto
modern experiments which follow a modular design.22 As such, it can be considered
a mere matter of time until the first realisation of such an ICEC experiment is being
reported and a suitable dynamical model is inevitably being required.

Within the context of atomic systems, interatomic coulombic electron capture
can bind a free electron spontaneously to an atom if an atom is present in its en-
vironment whose electrons can consume part of the free electron’s energy. For this
dissertation, ICEC shall be considered in the prototypical system of a barium (II)
cation suspended in a cloud of ultracold neutral rubidium atoms at typical exper-
imental hybrid-trap conditions. When a barium (II) cation Ba2+ is capturing an
electron e− with assistance from a nearby rubidium atom Rb, the atom can either
be excited to Rb∗ as

e−
in

+Ba2+ +Rb −→
(

Ba1+
)∗

+Rb∗ , (3)

1DIN 28400: Vakuumtechnik Bennenungen und Definitionen, 1972.



17

or can be ionised directly

e−
in

+Ba2+ +Rb −→
(

Ba1+
)∗

+Rb1+ + e−
out

, (4)

depending on the amount of energy transferred to rubidium’s electrons.
According to the experimentally known spectral lines of both reaction part-

ners,82–84 the incident electron can attach to an excited energy level in either case
or can attach directly to the barium ground state which ionises rubidium as

e−
in

+Ba2+ +Rb −→ Ba1+ +Rb1+ + e−
out

. (5)

Moreover, the interatomic coulombic electron capture into an excited state of the
barium (II) offers the possibility of consecutive decay reactions towards the ground
state. Denoting this Coulomb-coupled intermediate resonance state by (Ba++Rb)∗

in analogy to the previously described decaying macroscopic two-electron resonance
state (A−B−)∗ in a pair of interacting charged quantum confinements, this reaction
can then follow the path

e−
in

+Ba2+ +Rb
ICEC−→

(

Ba1++Rb
)∗ ICD−→ Ba1+ +Rb1+ + e−

out
. (6)

Although to some extent analogous to the established model system of quantum-
dot pairs in nanowires, the numerous electronic energy levels available within the
involved atoms open up a myriad of possible reaction pathways but lack a control
parameter equivalent to the variation of the confinement size. In addition with
the multiplication in degrees of freedom, the electron dynamics are expected to
become more nuanced, and an appropriate model to become more complicated and
demanding.

2 Available Investigative Methods

Treating interatomic coulombic electron capture is methodologically difficult. First
predictions have been made under strong perturbative assumptions within the ap-
proximative framework of scattering theory.1 While sufficient to prove ICEC to
be competitive, it provided a lower limit estimate and fails to evaluate the pro-
cess accurately for reaction partners in closer proximity. After the original asymp-
totic predictions of ICEC, its electron dynamics were investigated successfully us-
ing multi-configurational time-dependent Hartree(-Fock) (MCTDH) computations
for quantum-dots in nanowires.3 The approach proved to be successful to establish
ICEC as fundamental process beyond atomic or molecular systems and argued that
it will play a role in modern nano-electronic applications.2 Within atomic contexts,
the MCTDH approach was also able to investigate the dependence on cluster size for
its sister process ICD.85 However, an atomistic description if ICEC with MCTDH
remains challenging and numerically demanding. The modelling of a free electron
asks simultaneously for an extended real-space in order to contain a region of de-
cidedly low binding potential, and for a high number of basis-functions to simulate
free states by a satisfyingly well resolved quasi-continuum. Attempts to increase
the degrees of freedom by explicit treatment of further electrons are consecutively
hindered by the requirements of satisfactory spatial and energetic resolution.
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Prominent alternative approaches to many physical and chemical problems like
Density Functional Theory which are able to deal with large numbers of electrons,86

struggle however with the concept of particles entering and leaving the system and
can fail in systems of strong correlation.87,88 Eventually, the method of R-matrix
theory generally divides a physical problem into two regions: an outer one where
only the scattered particle – here the ICEC electron – is explicitly considered and an
inner region of close distances where all particles are described with their more com-
plex interactions and reactions.89 The R-matrix approach, however, also struggles
with systems of very large extension, particularly Rydberg states, and assumes a
restricted interaction region.89 Nevertheless, it was recently shown to allow some
insight into ICEC for atoms at close distance.21

Calculating the full electron dynamics of the ICEC process in a charged quantum-
dot-pair model of two Gaussian binding potentials is thus best established.2,3,8,9,64

At a high level of numerical accuracy in electron-electron correlation, the multi-
configurational time-dependent Hartree (MCTDH) approach90,91 has been applied
to this comparably small system with fermionic antisymmetrisation of a discrete-
variable-represented (DVR) wavefunction as implemented in the Heidelberg software
suite.92,93 Offering access to the full electron dynamics by solving the time-dependent
Schrödinger equation, this grid-like approach addresses bound and continuum states
on the same footing. Since this is not usually accomplished with many other the-
oretical methods and interatomic coulombic electron capture has been considered
for atomic and molecular systems only in the original two articles by Gokhberg and
Cederbaum,1,13 and the recent study by Sisourat et al.,21 an adaptation of the af-
firmed approach for quantum dots to venture into electron dynamics of ICEC in
atomic systems appears intriguing. It will thus be tested in this dissertation not
least for its methodological consistence with the preceding investigations of ICEC
dynamics, whether the quantum-dot-pair model may be expanded to an atomistic
model of frozen-core pseudopotentials with effectively two electrons which will allow
to retain the MCTDH approach to solve the time-dependent Schrödinger equation.



19

Part II

Theory

3 Theoretical Background

3.1 General Concepts and Notation

Throughout this work, the Dirac bra-ket notation shall be used. Considerations
shall be limited to dynamics of few electrons. Such an electron can be found in an
arbitrary quantum state

∣
∣
∣α
〉

while another occupies arbitrary quantum state
∣
∣
∣β
〉

.
In contrast to some contexts, they shall not denote particular spin states here. An
individual electron will be acted upon by a Hamiltonian operator ĥ which governs its
kinetic energy T and an external binding potential V induced by atoms or a collective
cluster of atoms in the form of an effective binding potential. This (effective) single-
electron Hamiltonian gives rise to a sequence of eigenstates which shall be labelled
by a quantum number n and have an associated eigenenergy En according to the
stationary Schrödinger equation

ĥ
∣
∣
∣n
〉

= En

∣
∣
∣n
〉

. (7)

If the electron is not bound and localised within the potential such that the ei-
genenergies become a continuous band rather than discrete values then counting
the eigenstates by the quantum number n becomes a poor description. This is thus
called a continuum state where ε shall denote its energy and shall serve as substitute
quantum label in the stationary Schrödinger equation

ĥ
∣
∣
∣ε
〉

= ε
∣
∣
∣ε
〉

. (8)

Furthermore, a wavepacket of a free electron with spatial uncertainty ∆ and group
momentum p0 shall be denoted by

∣
∣
∣φ
〉

such that unbound states are generally re-
ferred to by Greek and bound states by Roman labels. Considering two electrons in
the same system, they will each be acted upon by a respective Hamiltonian ĥk and
feel an additional interaction V12 between each other such that the overall Hamilto-
nian of the system is

Ĥ = ĥ1 + ĥ2 + V12 . (9)

The overall quantum state of the system
∣
∣
∣Ψ
〉

is governed by the equation of motion
known as the time-dependent Schrödinger equation

i~
∣
∣
∣Ψ̇
〉

= Ĥ
∣
∣
∣Ψ
〉

(10)

where i denotes the imaginary unit, ~ is the reduced Planck constant and
∣
∣
∣Ψ̇
〉

denotes

the partial derivative with respect to time of state
∣
∣
∣Ψ
〉

. Defining the exponential

operator acting on an arbitrary operator Ô as

exp(Ô) :=
∞∑

k=0

(k!)−1Ôk (11)
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where k! denotes the factorial 1·2·3·. . .·k, the formal solution to the time-dependent
Schrödinger equation for a time-independent Hamiltonian is a state vector

∣
∣
∣Ψ
〉

= exp(− i
~
Ĥt)

∣
∣
∣Ψ0

〉

=: Ût

∣
∣
∣Ψ0

〉

(12)

at time t which is produced by action of the time-evolution operator Ût on an initial
state vector

∣
∣
∣Ψ0

〉

.

The bra-ket notation is independent of a particular representation of the state
vector. However, the choice of a basis is usually necessary to analytically and nu-
merically evaluate quantum operators and quantum states. One can for instance
choose the continuous position basis {

∣
∣
∣~r1, ~r2

〉

}(~r1,~r1)∈R6 which is in this example gen-
erally consisting of three degrees of freedom per electron such that one arrives at a
wavefunction

Ψ(~r1, ~r2) =
〈

~r1, ~r2

∣
∣
∣ Ψ
〉

(13)

which is called a probability amplitude of the position.94 It is generally a complex
number and its absolute value is related to the probability density

P (~r1, ~r2) := |Ψ(~r1, ~r2)|2 d3~r1 d
3~r2 (14)

of simultaneously finding one electron in the infinitesimal volume d3~r1 at position
~r1 while also finding the other electron in the infinitesimal volume d3~r1 at position
~r1.

94

The action of an operator on the quantum state is interpreted as measurement of
a physically observable quantity represented by the operator. The physics are thus
given by the expectation value

〈O〉 :=
〈

Ψ
∣
∣
∣ Ô

∣
∣
∣ Ψ
〉

(15)

of observable Ô and the time-dependent Schrödinger equation is thus equivalent to
operator equation

i~
d

dt
Ô(t) =

[

Ô(t), Ĥ
]

+ i~

(

∂Ô

∂t

)

(t) (16)

known as the Heisenberg equation of motion where the time-dependent interpreta-
tion of the operator is given by

Ô(t) := Û †
t ÔÛt , where further (17)

[

Â, B̂
]

:= ÂB̂ − B̂Â (18)

is the commutator of two operators and U †
t is the adjoint of the time-evolution

operator such that 〈

ÛtΨ0

∣
∣
∣ Ψ0

〉

=:
〈

Ψ0

∣
∣
∣ Û †

t Ψ0

〉

. (19)

The operator Û †
t is also called the Hermitian adjoint operator of Ût.

94 Moreover, if
an operator and its adjoint are equal

Â† = Â , (20)

it is called self-adjoint or Hermitian. This property is consequently the Hermiticity.



3.1 General Concepts and Notation 21

Under closer inspection of the Hamiltonian for two electrons in Eq. (9), one notices

the first two terms ĥ1+ĥ2 together are describing the electrons in their respective en-
vironment as if they were independent whereas the last term represents the changing
conditions as they interact with each other. Assuming they would not be interacting
at all, the time evolution of observables would be entirely governed by95

ÔI(t) := Û0

†
t Ô Û0t (21)

where Û0t is the time-evolution operator related by Eq. (12) to the non-interactive
Hamiltonian

Ĥ0 := ĥ1 + ĥ2 (22)

which also implies an evolution of the electron interaction itself as

ĤI(t) := Û0

†
t V12 Û0t . (23)

Further, let the adjoint time evolution operator of the non-interactive Hamiltonian
act on the overall wavefunction be designated by95

∣
∣
∣ΨI

〉

:= Û0

†
t

∣
∣
∣Ψ
〉

, (24)

then the time evolution of the quantum system including the interaction can be
expressed by the set of equations of motion

i~
∣
∣
∣Ψ̇I

〉

= ĤI(t)
∣
∣
∣ΨI

〉

and (25)

i~
d

dt
ÔI =

[

ÔI(t), Ĥ0

]

+ i~

(

∂Ô

∂t

)

I

(t) (26)

proposed by Dirac. It appears in the form of the Schrödinger equation of motion
from Eq. (10) for an evolution of the quantum state induced by the interaction part
of the Hamiltonian and in the form of its Heisenberg equivalent of Eq. (16) for an
evolution of the operators by the interaction-free part of the Hamiltonian.95

3.1.1 Scattering Quantum States

Let
∣
∣
∣i
〉

represent a quantum state of interest to an investigation of a particular
process involving two electrons, let it be characterised by a set of criteria on the
initial conditions of the individual electrons and let

∣
∣
∣f
〉

represent a quantum state
characterised by a set of criteria on the final conditions of the individual electrons
after they successfully underwent the investigated process. This process is called
a scattering process if the full description of the initial state reduces to a simpler
non-interactive time-evolution in the past

lim
t→−∞

Û
∣
∣
∣i
〉

= lim
t→−∞

Û0

∣
∣
∣i
〉

(27)

and if this holds analogously for the final state at a time in the future

lim
t→+∞

Û
∣
∣
∣f
〉

= lim
t→+∞

Û0

∣
∣
∣f
〉

. (28)
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In the case of a two-electron scattering, this means that the two electrons were
separated over a very large distance at some point in the past where the electron-
electron interaction was negligible such that they were initially acting as independ-
ent particles in state

∣
∣
∣i
〉

. As they approach each other, the interaction potential
increases, they interact in some way, and they separate again with increasing time.
As they grow gradually further apart, the interaction strength diminishes until they
appear as independent particles in the final state

∣
∣
∣f
〉

.96 Because the time evolution

operator is unitary which means that the product with its adjoint Û †Û = 1 = Û Û †

commutes and provides the identity operator, the above equations are equivalent to

∣
∣
∣i
〉

= lim
t→−∞

Û †Û0

∣
∣
∣i
〉

=: Ω̂+

∣
∣
∣i
〉

, and (29)
∣
∣
∣f
〉

= lim
t→+∞

Û †Û0

∣
∣
∣f
〉

=: Ω̂−
∣
∣
∣f
〉

(30)

which introduces the so-called Møller operators Ω±.95–97 The quantity of interest
in such a scattering is the probability amplitude of a transition from the initial
quantum state

∣
∣
∣i
〉

to the final quantum
∣
∣
∣f
〉

which are equivalent to the unpropagated

interaction states
∣
∣
∣iI(0)

〉

and
∣
∣
∣fI(0)

〉

and relates similarly to the defining equations
of the Møller operators as

〈

fI(0)
∣
∣
∣ iI(0)

〉

=
〈

f
∣
∣
∣ i
〉

=
〈

f
∣
∣
∣ lim

t→+∞
Û0

†
Û lim

t→−∞
Û †Û0

∣
∣
∣ i
〉

. (31)

Here, the right hand side can be attributed to the interaction time evolution propag-
ator ÛI t employing the unitarity of Ût such that one arrives at

〈

f
∣
∣
∣ i
〉

= lim
t→+∞

〈

fI(+t)
∣
∣
∣ ÛI +t ÛI -t

∣
∣
∣ iI(−t)

〉

=
〈

fI(∞)
∣
∣
∣ Ŝ

∣
∣
∣ iI(−∞)

〉

(32)

which relates the transition probability amplitude between the two states to the
asymptotic large time limit of the interaction propagated states. At this limit,
the two representations

∣
∣
∣iI(−∞)

〉

and
∣
∣
∣fI(+∞)

〉

are simplest and for the example
of the two-electron scattering, they represent independent electrons long before,
respectively long after a collision. It therefore suffices to work with these simpler
descriptions at the respective limit if an operator Ŝ can be found which transports
the aspects of the multi-faceted real-world scattering to this simple-world asymptotic
picture which is why the operator is called the scattering operator.95,96

Since the system Hamiltonian is a superposition of operator V12 describing the
interaction between the electrons of interest and operators ĥ1/2 describing the simpler
aspects of the system acting only on each electron individually, the latter is often
denoted as the free part Ĥ0 in literature while the additional interaction between
the described particles is considered an interaction Hamiltonian Ĥ ′.95

When evaluating energy exchange processes like the interatomic coulombic elec-
tron capture, it is thus of interest to study the interaction-free Hamiltonians, their
eigenstates and the evolution of initial quantum states in order to evaluate the contri-
butions arisen from the specific interaction under investigation. Of particular value
are the well-known solutions of the quantum harmonic oscillator and the hydrogen
problem which shall be summarised for completeness.
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3.2 The Quantum Harmonic Oscillator

The quantum harmonic oscillator is a central concept of quantum mechanics thanks
to its numerous applications. A potential of the form

VHO = 1
2
mω2x2 (33)

shall be given where ω denotes the system parameter of angular frequency related
to the oscillator strength, m denotes the oscillator mass and x denotes an inde-
pendent variable of position. The harmonic oscillator Hamiltonian in position basis
representation in one dimension then reads

ĤHO =
p̂2

2m
+
mω2x̂2

2
(34)

where p̂ is the momentum operator and x̂ is the position operator. The canonical
momentum operator in position basis representation is given by p̂ = −i~∂x where
∂x is abbreviating ∂/(∂x) denoting the partial derivative with respect to x.

Introducing the so-called annihilation operator

âHO :=

√
mω

2~
x̂+

ip̂√
2m~ω

(35)

and its adjoint the creation operator

â†
HO :=

√
mω

2~
x̂− ip̂√

2m~ω
, (36)

the Hamiltonian can be expressed as98

Ĥ = ~ω(â†â+ 1
2
) . (37)

Known as the number operator, â†â produces dimensionless integer number eigen-
values

N̂HOψ
HO
n := â†

HOâHO ψHO
n = n ψHO

n (38)

for an eigenfunction ψHO
n and is interpreted as the amount of stored quanta of ~ω

in the oscillator system. While the amount of stored quanta can be zero, the energy
eigenvalue remains a finite value which is thus called the zero-point energy as

ĤHO ψHO
0 = ~ω

2
ψHO

0 . (39)

The eigenfunction ψHO
0 corresponding to the zero-point energy is called the ground

state function, the lowest energy state. Furthermore the creation operator raises the
eigenfunction to the next higher one such that any nth eigenfunction can be created
from the ground state by n consecutive operations of the creation operator

√
n! ψHO

n = (â†
HO)n ψHO

0 (40)

which is the reason why the creation and annihilation operator are also called raising
and lowering operator or ladder operators. The ground state function is given by98

ψHO
0 =

(
mω
π~

) 1

4 exp
[

−mω
2~

x2
]

(41)

which is a Gaussian function.
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3.2.1 Gaussian Functions

Known as normal distribution, Gaussian functions of the form

G(x) = (2π∆2)− 1

2 exp
[

−1
2
(x−xm

∆
)2
]

(42)

with mean position xm and standard deviation ∆ are important classical probability
distributions.99,100 They are also of central value for numerous numerical applications
because they offer a well-defined integral

∞∫

−∞
dx exp

[

−(x/∆)2
]

=
√
π∆2 . (43)

Moreover, its cumulative distribution function is given by the error function100

erf z := 2√
π

z∫

0

dx exp
[

−x2
]

(44)

and the complementary error function

erfc z = 2√
π

∞∫

z

exp
[

−x2
]

dx = 1 − erf z (45)

which has no analytical representation itself but in turn gives rise to the Hermite
polynomials Hn as100

Hn(z) :=
√

π
2

(−1)n exp[z2]
dn+1

dzn+1
erf z =

√
π

2
(−1)n+1 exp[z2]

dn+1

dzn+1
erfc z . (46)

Eventually, these polynomials form an orthogonal set of functions with respect to
the Gaussian function as weight

∞∫

−∞
dx exp[−x2] Hm(x)Hn(x) =

√
π 2nn! δnm (47)

which makes the eigenfunctions of the quantum harmonic oscillator an orthonormal
basis with elements of the form98

ψHO
n =

(
mω

π~

) 1

4 Hn

(√
mω
~
x
)

√
2nn!

exp
[

−mω
2~
x2
]

. (48)

Gaussian functions as well as the error functions and Hermite polynomials play an
important role in numerous problems in probability theory, statistics, combinatorics,
economics, physics, numerical modelling and analysis in form of Gaussian quadrature
and electrical engineering as Gaussian noise and random matrix theory. Eventually,
the complex version of the -1st Hermite polynomial is nowadays known as Faddeeva
function100

w(z) := exp((iz)2)) erfc(−iz) = H−1(−iz) (49)

and has the important integral relation100

w(z) = − i

π

∞∫

−∞
dt

exp[−t2]
t− z

= −2iz

π

∞∫

−∞
dt

exp[−t2]
t2 − z2

(50)

and is also related to Voigt functions which play an important role in spectral
analysis and spectral line broadening.
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3.2.2 Characteristic Scales of Length, Momentum and Energy

In each quantum-mechanical problem, operators represent measurements of ob-
servable quantities through their expectation value although the solution of the
Schrödinger equation itself usually depends on dimensionless quantities. Owing to
this aspect, characteristic scales arise from fundamental constants and system para-
meters for each observable and form a characteristic set of units. As the system
energy of stationary states of the harmonic oscillator is given in half-integer values
of ~ω and represented by the Hamiltonian operator, its energetic contributions from
kinetic and potential energy operator must also each be scaling with this character-
istic energy. Identifying ~ω

2
as factor in the potential energy operator thus implies

the remaining factors to form a dimensionless factor

VHO =
~ω

2

(√
mω

~
x̂
)2

(51)

which sets the characteristic length

d =

√

~

mω
(52)

Factorising the kinetic energy operator equally

T̂HO =
~ω

2

(

p̂√
m~ω

)2

, (53)

suggests the characteristic momentum

p̌ =
√
m~ω . (54)

The wavefunction in position basis representation is thereby only a function of the
ratio x/d, not the position itself while annihilation, creation and number operator
consistently prove to be dimensionless.

3.3 The Gaussian Potential Well

Gaussian potential wells and potential barriers are commonly used to model smooth
local changes in a potential usually due to some average cumulative many-body
interaction. While step functions tend to be more appealing from a qualitative
perspective describing an encountered surface of some kind, they fail to account
for the fact that surfaces affect close-by regions on either side of the surface thus
leading to a smoothing out of the effective potential over space. Gaussian potentials
on the other hand are analytically challenging but numerically fast. They are thus
more common in numerical investigations and modelling than in analytical ones. As
such, they are commonly used to model atomic wavefunctions and effective atomistic
binding potentials on valence electrons, assuming that the core electrons tend to stay
in the ground state while the valence electrons are actively participating in physical
and chemical processes.
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While there are a few numerical investigations of the eigenvalues and eigenfunc-
tions of the Schrödinger equation for a Gaussian potential well on the one hand and
entire fields of Gaussian variate dynamics including an expansion mechanism of a
multivariate Gaussian function into sums of products of single-variate Gaussians on
the other hand, a simple and clear expression of the stationary Schrödinger prob-
lem appears to be missing so far. This section shall therefore outline concepts and
stationary solution of the Gaussian well which will be shown to have the Quantum
Harmonic Oscillator solution as limit on the one side and the free particle solution
as limit on the other side.

Generally speaking, a Gaussian potential has a pair of parameters defining it’s po-
tential strength and it’s spatial extent. Commonly numerically given as a pair (D, b)
in units of energy and reciprocal area. In analogy with the probability function also
sometimes given as an equivalent pair (D,∆) in units of energy and length directly,
referring to the maximal potential depth and spatial standard deviation of the po-
tential. It can further be shifted on the energy axis by a constant value to either
define the continuum threshold as E = 0 or the potential’s extremal point. These
definitions are equivalent, as is the following definition seeking maximal analogy
with the quantum harmonic oscillator description.

Let κ be a positive real number here to be called harmonic parameter and let the
one-dimensional Gaussian potential in position basis representation be given by

VG(x) :=
~ω

2
κ
(

1 − exp
[

−mω
κ~

x2
])

, (55)

where m is a mass and ω is an angular frequency, both system parameter known
from the harmonic oscillator.

This definition can also be expressed in the infinite polynomial series of the
exponential function as

VG(x) =
mω2

2
x̂2 − m2ω3

2κ~

x̂4

2!
+
m3ω4

2κ2~2

x̂6

3!
− . . .+ . . . . (56)

The first summand is independent of the harmonic parameter κ such that the Gaus-
sian potential tends to the harmonic oscillator potential if κ becomes very large

lim
κ→∞VG(x) = VHO(x) . (57)

At the same time, the characteristic length scale is given by the standard deviation
of the potential

∆G =

√

κ~

2mω
(58)

which is proportional to the square root of the harmonic parameter and implies that
it becomes narrower and simultaneously loses potential strength as κ tends to vanish

lim
κ→0

VG(x) = 0 . (59)
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Figure 1: The Gaussian potential well for varying harmonic parameters κ.
For κ → ∞, the harmonic potential is recovered, whereas for κ = 1 the
potential is limited by (~ω)/2. For decreasing κ, the potential shrinks and
flattens to zero, while retaining the harmonic behaviour around zero.

The Gaussian potential well thus vanishes with the harmonic parameter κ where
bound states must reduce in number and eventually disappear such that the eigen-
value problem goes over to that of a free-particle. It is thus essential that a solution
to the stationary Schrödinger equation tends to the discrete harmonic oscillator
solution for large κ and to the continuous spectrum of free-particle eigenfunctions
if κ vanishes. At a finite non-vanishing harmonic parameters κ, however, bound
solutions of discrete eigenenergies EG

n can only occur in the energy interval

0 < EG
n <

~ω

2
κ (60)

between the potential minimum at zero and the continuum threshold which is
thereby proportional to κ.

Let A((mω/~)
1

2 x) be a polynomial in the dimensionless equivalent of x known
from the harmonic oscillator,

A((mω/~)
1

2 x) :=
∞∑

k=0

ak

(√
mω
~
x
)k

. (61)

The Hamiltonian operator is of units (~ω)/2 which can thus be factored out to arrive
at the following expression in position basis representation

ĤG :=
~ω

2

(

p̂2

m~ω
+
mω

~
x̂2 +

∞∑

k=2

(−κ)1−k

k!

(
mω
~
x̂2
)k
)

. (62)

Assuming a function of the form equivalent to the harmonic oscillator ground state

ψ :=
(
mω

π~

) 1

4

exp
[

A((mω/~)
1

2x)
]

, (63)
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is a solution to the stationary Schrödinger equation with canonical momentum p̂ =
−i~∂x and eigenvalue ~ωλ/2, the eigenvalue problem is given by

~ω

2

(

−A′′ − A′2 + mω
~
x̂2 +

∞∑

k=2

(−κ)1−k

k!

(
mω
~
x̂2
)k
)

ψ =
~ω

2
λψ (64)

where A′ and A′′ denote the first and second derivative of the polynomial A(x/d).
Since a non-trivial solution is not vanishing for all x values, the polynomial A has
to fulfil

A′′ + A′2 + λδ0,k − mω
~
x̂2 −

∞∑

k=2

(−κ)1−k

k!

(
mω
~
x̂2
)k

= 0 (65)

where δ0,k shall be the Kronecker delta. As the powers of x are linearly independent,
this becomes a system of quadratic equations in ak



(2k+2)(2k+1)a(2k+2) +
2k+1∑

j=0

j(2k+2−j)aja(2k+2−j)+

+ (λ− κ) δ0,k − (−κ)1−k

k!

)
(

mω
~
x̂2
)k

= 0

(66)



(2k+3)(2k+2)a(2k+3) +
2k+2∑

j=0

j(2k+3−j)aja(2k+3−j)





(
mω
~
x̂2k

)k+ 1

2 = 0 (67)

for each power where the potential itself only contributes to the even powers and
one arrives at a recursive definition for even and another for odd powers. Explicitly,
these are

(2k+2)(2k+1)a(2k+2) := −
2k+1∑

j=0

j(2k+2−j)aja(2k+2−j)+(κ− λ)δ0,k+
(−κ)1−k

(k!)
(68)

for even coefficients, and

(2k+3)(2k+2)a(2k+3) := −
2k+2∑

j=0

j(2k+3−j)aja(2k+3−j) for odd ones. (69)

Although the index k is an integer number from zero to infinity, a0 and a1 are not
defined by these recursion relations. Moreover, the sequence of ak will be alternating
polynomials of a1 which can be seen in the first 5 terms

2 · 1 a2 = −λ− a2
1 , (70)

3 · 2 a3 = 2λa1 + 2a3
1 , (71)

4 · 3 a4 = −
(

λ2 − 1
)

− 4λa2
1 − 3a4

1 , (72)

5 · 4 a5 =
(

4

3
λ2 − 2

3

)

a1 +
14

3
λa3

1 + 3a5
1 , and (73)

6 · 5 a6 = −
(

2

3
λ3 − 2

3
λ+

1

2κ

)

−
(

5λ2 − 1
)

a2
1 − λa4

1 − 9

2
a6

1 . (74)
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Notably, odd-numbered coefficients a2k+1 are functions of only odd powers of a1

up to order 2k+1 whereas even-numbered coefficients a2k are functions of only even
powers of a1 up to order 2k. Furthermore, a6 is the first coefficient to explicitly
include an order of the harmonic parameter κ. Demanding that in the large limit,
the harmonic oscillator ground state is recovered, λ must tend to unity and the
sequence elements ak 6=1 vanish. This implies a1 and all odd-numbered coefficients
vanish at least in the harmonic oscillator limit.

lim
κ→∞

λ = 1 =⇒ lim
κ→∞

ak =

{

−λ
2
, for k = 2

0, for k 6= 2
(75)

Since real non-zero coefficients a1 do not allow the norm of the wavefunction to
remain finite, they are generally not a physical solution to the eigenvalue problem
even outside the harmonic oscillator limit and a formal solution is found for the
ground state. Then there is an operator â†

G that raises the ground state up to the
first excited state and which can be used with its adjoint operator â to create the
Hamiltonian up to a constant. Let â†

G be given in analogy to the harmonic oscillator
solution by

â†
G :=

1√
2
B((mω/~)

1

2 x̂) − ip̂√
2m~ω

(76)

where B is a real polynomial in the dimensionless position operator, then its adjoint
operator is

âG =
1√
2
B((mω/~)

1

2 x̂) +
ip̂√

2m~ω
. (77)

The operator product which produced the number operator for the harmonic os-
cillator â†â is supposed to make up the Hamiltonian operator up to the zero-point
energy of the ground state

Ĥ

~ω
− λ

2
= â†â =

p̂2

2m~ω
+
B2

2
−
[

ip̂√
2m~ω

,
B√

2

]

=
p̂2

2m~ω
+
B2

2
+
B′

2
. (78)

Connecting this with the definition of the Hamiltonian leads to the first order quad-
ratic differential equation in B

0 = B′ +B2 − 2VG

~ω
+ λ (79)

which has already been solved above in terms of the polynomial A if one identifies
B = A′. This implies the solution to the Schrödinger equation has indeed given
rise to a raising operator and a lowering operator which produce a polynomial se-
quence cn(x) from the ground state solution equivalent to the Hermite polynomials
in the harmonic oscillator which will be the asymptotic limit for infinitely large κ
by construction

cn(x) := exp(−A(x)) [A′ + ∂x]
n

exp(A(x)) . (80)

Although the Schrödinger equation is thereby formally solved with appropriate
boundary conditions determining a0 and a1 which fixes the formal solution of the
wavefunction

ψG
n (x) =

(
mω

π~

) 1

4

cn((mω/~)
1

2x) exp(A(mω/~)
1

2x) , (81)
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Figure 2: The relation between Gaussian well parameters. a) Contour lines
against the description by threshold energy D and exponential coefficient
b. Lines of equidistant constant harmonic oscillator energy ~ω show 1/b
behaviour, lines of equidistant constant harmonic parameter κ show linear
behaviour in b but their slope grows quadratically with κ, equidistant lines
of constant standard deviations ∆ represent lines of constant D but grow
quadratically in distance. b) Respective contour lines in the Gaussian well
description through harmonic oscillator energy ~ω and harmonicity para-
meter κ. Lines of constant equidistant threshold energy D show a 1/κ be-
haviour proportional to D, lines of constant equidistant Gaussian standard
deviation ∆ are linear in κ but quadratically grow in their ascent.

the zero-point and excitation energies have to depend to some extent on the har-
monic parameter κ which indicates how strongly the potential resembles a harmonic
oscillator. This dependence has not been determined at this point, nor do we know
here how many eigenvalues we would expect to find below the continuum threshold.

It is further noteworthy, that while derived here with respect to parameter pair
(~ω, κ) representing the harmonic oscillator energy the resemblance factor of the
Gaussian potential well with the harmonic oscillator, it is often numerically more
straightforward to consider a tuple of continuum threshold energy and exponential
coefficient (D, b). From a statistical viewpoint on Gaussian functions, one may also
specify the same potential in terms of threshold energy and length scale of standard
deviation (D,∆). While they are all equivalent

VG(x) =
~ωκ

2
(1−exp(−(mω/(κ~))x2)) = D(1−exp(−bx2)) = D(1−exp(−1

2
(x/∆)2))

(82)
and the pair (D, b) is numerically most straightforward, they form curvilinear para-
meter systems with respect to each other. These relations are depicted in Figure 2
where the parameter systems (~ω, κ) and (D,∆) are drawn in the coordinate system
of (D, b) and vice versa. If one of the two describing parameters is kept constant
while the other is varied, this results in a motion along the depicted lines in para-
meter space. Any analysis of processes in dependence of Gaussian well parameters
depends thereby strongly on the choice of parameter which means in turn that in-
vestigating a phenomenon with respect to one description might complicate its un-
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derstanding, while the same phenomenon might show a straightforward behaviour in
another representation. This will show the case in the analysis of numerical applic-
ations in Part III, where an alternative interpretation of the results is presented in
terms of single-electron eigenfunctions which will then appear to primarily determ-
ine the efficiency of interatomic coulombic electron capture in a pair of quantum
dots.

As it has just been shown, the Gaussian potential well is at least for large har-
monic parameters κ closely resembling a harmonic oscillator potential and remains
harmonic around the origin even for finite κ. The number of eigenlevels for a specific
realisation of such a potential may thus be approximated quasi-classically to some
reasonable extent by the so-called Wentzel-Kramers-Brillouin approximation which
was named after the contributions of Wentzel,101 Kramers,102 and Brillouin,103,
sometimes also referencing Jeffreys who had studied a general approximation method
two years earlier before the advent of the Schrödinger equation.104 The approxim-
ation is, however, mathematically also known after the classical mathematicians
Liouville and Green.105,106 It reasons that a stationary solution to the Schrödinger
equation needs to represent a standing wave of the form sin(px/~) between the clas-
sical turning points x1 and x2 defined by the intersection of its eigenenergy with the
potential

En − V (x1/2) := 0 , (83)

such that the closed integral over the momentum needs to be an integer multiple of
2π apart from a zero-point correction107

√
2m
~2

∮

x1,x2

dx
√

En − V (x) = 2π
(

n+ λ
2

)

. (84)

This is known as the corrected Born-Sommerfeld condition, where λ
2

is the correction
term arising from the purely quantum-mechanical phenomenon of the zero-point
energy. Even though the system has not stored any quantum of energy, the quantum-
mechanical limit to energetic and temporal resolution

∆E∆t ≥ ~

2
(85)

known as Heisenberg’s uncertainty relation dictates that the system energy is non-
vanishing. The harmonic oscillator solution of λ = 1 in particular, is known as
Maslov correction.107

For a Gaussian potential well, the turning points must be within (−∞,+∞) and
the eigenenergy is limited by the continuum threshold D. The maximal number
nmax of bound eigenstates is thus estimated by the Gaussian integral

nmax +
λ

2
≤
√

2m
π~2

∞∫

−∞
dx
√

D exp[−bx2] =
√

2mD
~2b

= κ (86)

which recovers the previously introduced harmonic parameter κ and offers an al-
ternative interpretation as upper limit to the number of bound solutions ψn where

{

n ∈ N | n ≤ κ− λ
2

}

. (87)
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3.4 Asymmetric Pairs of Gaussian Wells

In non-local phenomena like interatomic coulombic electron capture, energy is trans-
ferred between particles over a certain distance. It is therefore of interest to consider
a pair of Gaussian potential wells as host to such an exchange. While Gaussian func-
tions find many numerical applications particularly due to their relatively fast decay
in magnitude compared with a simple exponential function, they are analytically not
vanishing for any finite distances from their centre. This implies that two Gaussian
potential wells

V2G(x) := −~ωLκL

2
exp



−mωL

κL~

(

x+
R

2

)2


− ~ωRκR

2
exp



−mωR

κR~

(

x− R

2

)2




(88)
with threshold energies ~ωLκL/2 and ~ωRκR/2 at finite centre-to-centre distance
R will have a potential barrier between each which is energetically lower than the
respective continuum threshold energy.

Generally, the potential barrier is not situated at the centre of both wells. Moreover,
it can be shown that in the harmonic limit, the barrier vanishes and the potential
will asymptotically tend to the behaviour of a harmonic oscillator

V2HO(x) =
m

2

(

ω2
L + ω2

R

)
(

x+
ω2

L − ω2
R

ω2
L + ω2

R

R

2

)2

(89)

with modified oscillator frequency

ω2HO =
√

ω2
L + ω2

R (90)

and its central position shifted along the x axis to

x0 =
ω2

R − ω2
L

ω2
R + ω2

L

R

2
. (91)

Avoiding the analytically challenging treatment of the pair of Gaussians wells,
it is possible, however, to identify two competing length scales in the exponential
function. On the one hand, there is the characteristic distance from the centre of a
Gaussian function over which it reduces to approximately 61% (e−1/2) of it’s maximal
value at the centre, the standard deviation ∆. In a distance of 2∆ from the Gaussian
centre, the exponential has decayed to 14% (e−1/8), and at 3∆ to a remaining 1.1%
(e−1/18) of continuum threshold energy. The distance R, on the other hand, sets
the two potential wells apart from each other. It is thus straightforward to study
the ratio between the distance over which the potentials reach continuum and the
distance over which a particle must travel from one potential to the other. Going
over to the equivalent description by threshold energy DL/R and standard deviation
∆ and factoring out the centre-centre distance, the double potential becomes a
function of the rescaled position x/R

V2G(x) = −DL exp
(

−1
2

(
R

∆L

)2 (
x
R

+ 1
2

)2
)

−DR exp
(

−1
2

(
R

∆R

)2 (
x
R

− 1
2

)2
)

. (92)
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The distance R can then be partitioned equally in both standard deviations ∆L and
∆R such that

R = η(∆L + ∆R) (93)

where η is a positive real number. Let ∆± denote the sum and difference

∆± := ∆L ± ∆R (94)

between both standard deviations respectively and the potential at that position of
equal partition in both deviations is given by

V2G

(
R
2

∆−

∆+

)

= −(DL +DR) exp[−η2/2] . (95)
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Figure 3: Asymmetric pairs of Gaussian wells and their potential barrier
height in dependence on the ratio η between well-to-well distance R and
sum of individual standard deviations ∆L and ∆R. The approximated bar-
rier height according to the description in the main text is indicated by
horisontal coloured lines. The estimates for barrier position and height
improve with increasing η.

As depicted in Figure 3 for one example of varying η at increasing separation, the
barrier position and its difference with respect to the continuum threshold can be
well estimated by Eq. (95). It appears obvious that one can only talk of well separ-
ated potentials if η > 2 which still corresponds to 14% remaining difference between
barrier and continuum. One might therefore even consider 3∆+ to be a suitable lower
bound in centre-to-centre distance, corresponding to a remaining barrier-continuum
difference of about 2.2% of the average threshold energy of 0.5 (DL+DR).

3.5 The Hydrogen Problem in Various Coordinate Systems

The second fundamental problem of quantum mechanics lying at the heart of a
dynamical description of interatomic coulombic electron capture is the hydrogen
problem. Known in classical mechanics and electrodynamics as a centrally symmet-
ric potential field, the Coulomb potential108

VC(r) = − Ze2

4πεr
(96)



34 3 THEORETICAL BACKGROUND

describes the potential energy of an elementary charge e at distance r from a central
charge −Ze where Z is the charge number, and ǫ is the electric permittivity in
medium usually given by the product of ǫ0, the electric permittivity in vacuum and
ǫr, the relative permittivity of a medium.

The radial distance r is given in three-dimensional Cartesian space by the vector
length of the position vector ~r = (x, y, z) as r =

√
x2 + y2 + z2 but is a vector

component itself in spherical polar coordinates where ~r = (r, ϑ, ϕ) is given by the
vector length r and its direction via polar angle ϑ and azimuthal angle ϕ. The kinetic
energy operator in position basis representation of spherical polar coordinates is
written as109,98

− 2m

~2
T̂ =

1

r
∂2

r r − r−2ℓ̂2 (97)

where the angular momentum operator is109

ℓ̂2 = − 1

sinϑ
∂ϑ sinϑ ∂ϑ − 1

sin2 ϑ
∂2

ϕ . (98)

3.5.1 Atomic Hartree and Rydberg units

In analogy to the characteristic units of the harmonic oscillator, the energy of the
system is expected to be some multiple of ~ω for some appropriate angular frequency.
Then the potential energy is

VC(r) = −~ω

(

Ze2

4πǫ~ωr

)

(99)

where the ratio within the brackets is dimensionless and according to Eq. (52) equi-
valent to

(

Ze2

4πǫ~ωr

)2

=

(

~

mω

1

r2

)

(100)

which implies a characteristic mass m and a characteristic energy of

EH := ~ω = m

(

Ze2

4πǫ~

)2

. (101)

This reintroduced into the Coulomb potential

VC(r) = −~ω

(

4πǫ~2

mZe2
r−1

)

=: −~ω
(
aB

r

)

(102)

leads to the characteristic length

aB =
4πǫ~2

mZe2
. (103)

In the case of hydrogen, the nuclear charge number is Z = 1, the electric permittivity
is that of the vacuum ǫ0 and the mass relates to the electron rest mass me. The
characteristic length aB is then called the Bohr radius. However, for various systems,
an analogue to the Bohr radius remains a suitable unit of length which incorporates
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a modified mass, charge number or permittivity giving rise to an effective Bohr
radius. As a result, this redefines the characteristic energy as

EH =
~

2

m aB
2
. (104)

which is known as the Hartree energy. Together, they make up the natural units
of the hydrogen problem and are thus often abbreviated by ‘a.u.’ for atomic units
of time, energy, length or other quantities. The quantum mechanical equations are
often transformed into atomic units by formally setting the four constants ~ = me =
(4πǫ)−2 = e = 1 to unity. This gravely simplifies the physical equations but demands
care in interpretation of the respective quantities. For example, the canonical kinetic
energy-momentum relation T̂ = p̂2/(2m) implies a characteristic momentum scale
of

p̌ =

√
2~2

aB

=
√

2mEH (105)

while the full kinetic energy operator in spherical polar position basis representation
is

T̂ = ~ω





(

aB√
2~2

p̂r

)2

+
(
aB

r

)2 ℓ̂2

2



 . (106)

This is expressed in atomic (Hartree) units with omitted unit constants as

T̂ =
p̂2

r

2
+

ℓ̂2

2r2
. (107)

However, there is a second system of atomic units, both of which have developed
from historical reasons. While the above are the atomic Hartree units, one can
alternatively use half-integers of energy quanta ~ω as reference in analogy to the
harmonic oscillator zero-point energy. This defines a Rydberg energy as

Ry =
~ω

2
=
m

2

(

Z(2e2)

8πǫ~

)2

. (108)

The potential Coulomb potential is then given in terms of the Rydberg energy as

VC(r) = −2Ry
(
aB

r

)

. (109)

This gives rise to the system of atomic Rydberg units which arise formally by as-
signing the units of reference ~ = me/2 = (4πǫ)−2 = 2e2 = 1 If the kinetic energy
operator in spherical polar position representation is given in atomic Rydberg units,

T̂ = p̂2
r + ℓ̂2r2 (110)

it differs from the expression in the atomic Hartree units by a factor of one half.
This explains why care has to be taken when dealing with equations in atomic units.
Although they allow to omit most natural constants which simplifies equations, the
physical interpretation of an entity can be complicated when its units cannot be
sufficiently deduced from the surrounding constants in an equation. Furthermore,
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both unit systems are a special case of Coulomb units where mass, length and time
are respectively set to units of m, ~2/(mα) and ~

3/(mα2) for appropriate constants
α.109 To make use of the atomic units particularly during the numerical applications
in Part III while retaining the clarity in interpretation, the atomic units of length,
energy and action shall be presented in scales of by the (effective) Bohr radius aB,
the Hartree energy EH and the reduced Planck constant ~ rather than using the
common but nondescript ‘a.u.’ for all entities.

3.5.2 Normalised Wavefunctions

Since the Coulomb potential does not depend on the angular components of the
position vector, a stationary solution of the angular momentum operator is a free-
particle solution of the angular coordinates

ℓ̂2 Y mℓ

ℓ (ϑ, ϕ) = ℓ(ℓ+ 1)Y mℓ

ℓ (ϑ, ϕ) (111)

with eigenvalue ℓ(ℓ + 1) and gives rise to the spherical harmonic functions with
angular-momentum quantum number ℓ and magnetic quantum number mℓ. The
stationary wavefunction of the Coulomb potential in position basis representation
of spherical polar coordinates is thereby a product of a radial function Rn,l(r) de-
pending only on the radial distance r for a given angular momentum ℓ and an
angular function Y mℓ

ℓ (ϑ, ϕ) independent of r

ψC
n,ℓ,mℓ

(r, ϑ, ϕ) = Rn,ℓ(r)Y
mℓ

ℓ (ϑ, ϕ) . (112)

Spherical polar coordinates are an example of an orthogonal non-Cartesian co-
ordinate system. This means the Jacobian determinant

|Js|2 := det

(

∂(x, y, z)

∂(r, ϑ, ϕ)

)

= r2 sinϑ (113)

is not a constant but rather depends on the position itself. As the differential volume
element

d3~r = dx dy dz = |J |2dx1 dx2 dx3 , (114)

in any three-dimensional system of general coordinates ~r = (x1, x2, x3) dependent
on the Jacobian

|J |2 := det

(

∂(x, y, z)

∂(x1, x2, x3)

)

, (115)

the norm of a wavefunction in that coordinate representation
〈

ψ
∣
∣
∣ ψ
〉

=
y

d3~r ψ∗ψ =
y

dx1 dx2 dx3 (ψJ )∗ (J ψ) (116)

suggests a substitution

uJ (x1, x2, x3) := J (x1, x2, x3)ψ(x1, x2, x3) (117)

which incorporates the non-Cartesian aspect of the volume element into the new
wavefunction uJ as

〈

ψ
∣
∣
∣ ψ
〉

=
y

dx dy dz |ψ(x, y, z)|2 =
y

dx1 dx2 dx3 |uJ (x1, x2, x3)|2 . (118)
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The wavefunction uJ (x1, x2, x3) is often called the normalised wavefunction of
the problem. At the same time, the expectation values of operators must remain
conserved under this transformation. This necessitates an associated transformation
of an operators Ô. Their action on a normalised wavefunction

J (Ôψ) =: ÔJ (J ψ) = ÔJ uJ (119)

thereby defines a normalised operator

ÔJ := J ÔJ −1 (120)

which conserves the expectation values

〈

ψ
∣
∣
∣ Ô

∣
∣
∣ ψ
〉

=
y

dx dy dz ψ∗ Ôψ =
y

dx1 dx2 dx3 u
∗
J ÔJ uJ (121)

and more generally conserves the matrix elements. For spherical polar coordinates,
the normalised kinetic energy operator is therefore

− 2m

~
T̂s = ∂2

r + r−2
(

∂2
ϑ + tanϑ ∂ϑ +

1

sin2 ϑ
∂2

ϕ

)

︸ ︷︷ ︸

=−ℓ̂2
s

. (122)

The radial Schrödinger equation for the Coulomb potential is then109

d2un,ℓ(r)

dr2
+

2m

~2

(

En +
κ

r
− ℓ(ℓ+ 1)

r2

)

un,ℓ(r) = 0 (123)

which is related to the associated Laguerre differential equation109,110

0 = xu′′ + (x+ 1)u′ +

(

n+ ℓ
2

+ 1 − ℓ2

4x

)

u , with solutions of the form (124)

u = Lℓ
n(x)x

ℓ
2 exp[−x] (125)

where Lℓ
n(x) are the associated Laguerre polynomials

Lℓ
n(x) =

1

n!

n∑

i=0

n!

i!

(

ℓ+ n

n− i

)

(−x)i (126)

for different boundary conditions given by quantum number ℓ. The associated
Laguerre polynomials and the functions u provide essential ingredients to the nu-
merical implementation in spherical and cylindrical coordinates which is used later
in Part III.

The alternative normalised wavefunction for a spherical polar description is thus
composed as

ψs(r, θ, ϕ) = un,ℓ(r)Y
mℓ

ℓ (θ, ϕ) , with (127)

un,ℓ(r) = r Rn,ℓ(r) and (128)

Y mℓ

ℓ (θ, ϕ) =
√

sin θ Y mℓ

ℓ (θ, ϕ) (129)

which swallows the spherical volume element r2 sin θ.
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As opposed to the harmonic oscillator in one Cartesian coordinate, the hydrogen
problem offers three degrees of freedom and stationary states are thus characterised
by three quantum numbers. Furthermore, the stationary states of the Coulomb
field are (2ℓ+1)-fold degenerate, which means linearly independent solutions of same
eigenvalue arise. This generally indicates the presence of an additional conserved
quantity of which the representing operator does not commute with those defining
the stationary solutions of the problem.109

4 Non-Interactive Dynamics

It has been shown briefly that a scattering process like interatomic coulombic elec-
tron capture is partly governed by the independent dynamics of the involved particles
giving rise to free Hamiltonian and partly by the interaction between those particles
which gives rise to an interaction Hamiltonian. It was further shown, that Gaussian
functions arise naturally from the harmonic oscillator problem and may describe a
normal distributed probability distribution in space. Similarly, they may present
a many-body averaged potential acting on a remaining particle which in the case
of the established quantum-dot system describes a cumulative effective confinement
potential exerted from the multiatomic region of varying material composition onto
an incident electron.8 Eventually, the normalisation of wavefunctions and operators
with respect to chosen coordinate systems has been discussed in order to account
for the appearing volume elements and has been applied to sketch the separation
of variables and the solution of the hydrogen problem which also introduced the
Coulomb potential.

In light of these concepts, the independent dynamics of a free electron wavepacket
shall be considered here in a single dimension and then later be generalized to de-
scribe the dynamics of a cylindrical electron distribution moving along the cylinder
axis. It will be derived how a wavepacket is distributed in momentum and energy
space and how it evolves in time time. This will provide the foundation to the ana-
lysis of flux density spectra associated with interatomic coulombic electron capture
in quantum dot systems and ultracold atoms which will be discussed in Part III.

4.1 A Free Electron (Gaussian Wavepacket)

Assuming a motion along a single axis which shall be denoted by z, a free electron
may generally be found at time t = 0 with some uncertainty spatial ∆z around
a position z0 moving at a group velocity p0/m. Then the wavefunction may be
estimated by a Gaussian function

φ0(z) := Nφ exp

[

−(z − z0)
2

4∆2
z

+ ik0(z − z0)

]

(130)

where Nφ is a normalisation factor and k0 is the wavenumber related to the group
velocity by ~k0/m = p0/m. The Fourier transformation with respect to position of

the initial state in position basis representation that is the wavefunction
〈

z
∣
∣
∣ φ0

〉

=

φ0(z) transforms the expression into the momentum basis representation of the free
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electron state which shall be denoted by
〈

p/~
∣
∣
∣ φ0

〉

=: A(k) and expressed in terms

of the wavenumber k = p/~. As the wave packet is initially centered at z0, we may
shift the axis linearly by +z0 such that the Fourier transform into k-space may be
written as

A(k) :=
NA

Nφ

∞∫

−∞
dz φ(z) exp[−ik(z − z0)] , (131)

such that we can then identify z′ := z − z0 and substitute dz = dz′.

A(k) = NA

∞∫

−∞
dz exp

[

−(z − z0)
2

4∆2
z

+ i(k − k0)(z − z0)

]

(132)

= NA

∞∫

−∞
dz′ exp

[

−(z′)2

4∆2
z

+ i(k − k0)(z
′)

]

(133)

As we complete the square in the form of −a(x+b)2 +c = −ax2 −2abx−ab2 +c with

− 1

4∆2
z

z′2 − i(k − k0)z
′ = − 1

4∆2
z

(

z′ + i2∆2
z(k − k0)

)2 − ∆2
z(k − k0)

2, (134)

we find

A(k) = NA exp
[

−∆2
z(k − k0)

2
]

∞∫

−∞
dz′ exp

[

− 1

4∆2
z

(

z′ + i2∆2
z(k − k0)

)2
]

(135)

and substitute z′ 7→ z′′ := z′ + i2∆2
z(k − k0), and consequently dz′′ = dz′.

A(k) = NA exp [−∆2
z(k − k0)

2]

∞∫

−∞
dz′′ exp

[

− 1

4∆2
z

(z′′)
2

]

︸ ︷︷ ︸

= NA exp [−∆2
z(k − k0)

2] ·
√

4π∆2
z

(136)

In consequence, the wavefunction in the so-called k-space can be written as

A(k) = N ′
A exp

[

−∆2
z(k − k0)

2
]

=
(

2∆2
z

π

)1

4 exp
[

−∆2
z(k − k0)

2
]

(137)

where we identify the normalisation factor

N ′
A =

(

2∆2
z

π

) 1

4

(138)

from the normalisation condition of

1
!

=

∞∫

−∞
dk |A(k)|2 = |N ′

A|2
∞∫

−∞
dk exp

[

−2∆2
z(k − k0)

2
]

= |N ′
A|2
√

π
2∆2

z
. (139)
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4.1.1 Energy Distribution Density

In the following, the energy distribution of the free electron wavepacket shall be
found. Relating energy E = ~ω with momentum p = ~k by the dispersion rela-
tion E = p2

2m
for a massive particle, a second order Taylor expansion leads to the

expression,

ω(k) = ω|k0
+
dω

dk

∣
∣
∣
∣
∣
k0

(k − k0) +
1

2

d2ω

dk2

∣
∣
∣
∣
∣
k0

(k − k0)
2 which equates to (140a)

ω(k) =
~k2

0

2m
+

~k0

m
(k − k0) +

~

2m
(k − k0)

2 and transforms into (140b)

(k − k0) = ±
√

2m
~
ω − k0 . (140c)

Assuming wavenumbers k, k0 ∈ R to be real numbers, ω = k2/(2m) implies the angu-
lar frequency is positive ω > 0. Identifying the infinitesimal change in wavenumber
by

dk = ±1

2

√

2m

~ω
dω, for k ≷ 0 , (141)

the normalisation condition of the momentum distribution A(k) can be expressed
in terms of angular frequency via

1 =

∞∫

−∞
dk

∣
∣
∣A(k)

∣
∣
∣

2
(142)

=

∞∫

0

dω√
ω

√

2m

~

1

2

∣
∣
∣
∣A
(

−
√

2mω/~
)
∣
∣
∣
∣

2

+

∞∫

0

dω√
ω

√

2m

~

1

2

∣
∣
∣
∣A
(

+
√

2mω/~
)
∣
∣
∣
∣

2

(143)

=

∞∫

0

dω

√

2m

~ω

(

1
2

∣
∣
∣
∣A
(

−
√

2mω/~
)
∣
∣
∣
∣

2

+ 1
2

∣
∣
∣
∣A
(

+
√

2mω/~
)
∣
∣
∣
∣

2
)

︸ ︷︷ ︸
∣
∣
∣D(ω)

∣
∣
∣

2

(144)

=

∞∫

0

dω

︷ ︸︸ ︷

√

2m

~ω

(

2∆2
z

π

)1

2







1
2

exp
[

−2∆2
z

(

k0 +
√

2mω/~
)2
]

+1
2

exp
[

−2∆2
z

(

k0 −
√

2mω/~
)2
]







(145)

Consequently, the normalised energy distribution D(ω) is given by

∣
∣
∣D(ω)

∣
∣
∣

2
=

√

m∆2
z

π~ω

(

exp

[

−2∆2
z

(

k0 +
√

2mω/~
)2
]

+ exp

[

−2∆2
z

(

k0 −
√

2mω/~
)2
])

(146)

4.1.2 Time Evolution in one Dimension

Eventually, the evolving wavefunction in space and time φ(z, t) represents the Fourier
transform of the wavefunction A(k) in k-space with the approach

φ(z, t) =
Nφ

NA

∞∫

−∞
A(k) exp

[

i(k(z − z0) − ω(k)t)
]

dk . (147)
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Using the Taylor expansion of ω(k) according to Eq. (140), it follows that

φ(z, t) = Nφ

∞∫

−∞
dk exp

[

−∆2
z(k−k0)

2 + ik(z−z0) − i
(

ω0 + ~k0

m
(k−k0) + ~

2m
(k−k0)

2
)

t
]

(148)

where a first substitution of k′ := k − k0 and dk′ = dk leads to

f(z, t) = Nφ exp [i(k0(z−z0) − ωot)]

∞∫

−∞
dk′ exp

[

−
(

∆2
z+ i~

2m
t
)

k′2 + i
(

z−z0−~k0

m
t
)

k′
]

.

(149)
From where further substitution with

∆zα := ∆2
z +

i~

2m
t (150)

x := z − z0 − ~k0

m
t (151)

k′′ := k′ − ix

2∆zα
(152)

introduces a complex time-dependent quantity α, a time-dependent position x and
a time-dependent wavenumber k′′ such that the wavefunction is expressed in

f(z, t) = Nφ exp

[

i(k0x+ ω0t) − x2

4∆zα

] ∞∫

−∞
dk′′ exp

[

−∆zαk
′′2
]

(153)

which involves a Gaussian integral in k′′ and thereby reduces to

= Nφ exp

[

i(k0x+ ω0t) − x2α∗

4∆z|α|2
]√

πα∗

∆z|α|2 . (154)

It is noteworthy that α(t) is a complex number growing with time and its real
part ℜ(α) = ∆z represents the initial standard deviation in the electron’s spatial
probability density. Deducing at last the factor Nφ from the normalisation condition.

1
!

=

∞∫

−∞
dz |f(z, t)|2 =

∞∫

−∞
dz f ∗f(z, t) (155)

=
∣
∣
∣Nφ

∣
∣
∣

2
√

π2

∆2
z |α|2

∞∫

x=−∞
dx exp

[

− ∆zx2

2∆z |α|2
]

=
∣
∣
∣Nφ

∣
∣
∣

2
√

π2

∆2
z |α|2

√

2π|α|2 (156)

yields a time-independent normalisation factor which depends solely on the initial
spatial uncertainty by

∣
∣
∣Nφ

∣
∣
∣

2
=

√

∆2
z

2π3
. (157)
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Summarising, the Gaussian wavepacket describing a free electron moving in one
direction increases monotonously with time in its spatial uncertainty given by |α(t)| ≥
∆z and in its central position Z(t) which is moving with group velocity ~k0/m
through space from its initial position z0 at time t = 0:

α(t) = ∆z + i
~t

2m
(158a)

Z(t) = z0 +
~k0

m
t (158b)

f(z, t) =
1

(2π)
1

4α(t)
exp

[

−(z − Z(t))2

4∆zα(t)
+ i

(

k0(z − Z(t)) +
~k2

0

2m
t
)
]

(158c)

∣
∣
∣f(z, t)

∣
∣
∣

2
=

exp
[

− (z−Z(t))2

2|α(t)|2
]

√

2π|α(t)|2
(158d)

At initial time t = 0 the uncertainty is thus at a minimum which is why it is known
as a minimum-uncertainty wavepacket such that the Heisenberg uncertainty relation
∆z∆k ≥ 1

2
is fulfilled for all time.

4.2 Free Electrons in three Dimensions

In the following, the free electron shall be able to move in three directions but remain
described by a Gaussian wavepacket at time t = 0. This generalizes the previous
considerations and will allow to move from the established quasi-one-dimensional
model for ICEC in quantum dots to a higher dimensional description of a free elec-
tron heading for an ion in a cloud of ultracold atoms. Primary quantities of interest
are the independent evolution of the wavepacket and its energy distribution. For de-
termining the momentum an energy distribution attached to a free three-dimensional
wavepacket representing a freely moving electron in space, three-dimensional vectors
need to be Fourier transformed as

A(~k) :=
NA

Nφ

y

R3

d3~x φ(~x) exp
[

−i~k · (~x−~x0)
]

. (159)

The volume element d3~x in Euclidean space is dependent on the chosen coordinate
system which was discussed in context of the hydrogen problem. The initial wave-
function φ(~x) of position vector ~x shall now be assumed to compose from a Hartree
product of functions with single degrees of freedom

φ(~x) = fx1
(x1)fx2

(x2)fx3
(x3) . (160)

Under this assumption of separability of the initial wavefunction, the momentum
distribution density A(~k) is also a Hartree product from functions with single degrees
of freedom. In Cartesian coordinates ~x = (x, y, z), the wavefunction in k-space
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constitutes of

A(~k) =
∞∫

−∞
dx fx(x) exp[−ikx(x−x0)]

︸ ︷︷ ︸

∞∫

−∞
dy fy(y) exp[−iky(y−y0)]

︸ ︷︷ ︸

∞∫

−∞
dz fz(z) exp[−ikz(z−z0)]

︸ ︷︷ ︸

.

Ax(kx) Ay(ky) Az(kz)

(161)

For which a spherical initial wavepacket with group velocity along the z-axis is
described by

fx(x) := N
− 1

3

f exp
[

− (x−0)2

4∆2
z

]

, (162a)

fy(y) := N
− 1

3

φ exp
[

− (y−0)2

4∆2
z

]

and (162b)

fz(z) := N
− 1

3

φ exp
[

− (z−z0)2

4∆2
z

+ ik0(z − z0)
]

. (162c)

This implies a momentum distribution density as product of component-wise con-
tributions according to Eq. (137).

A(~k) =
(

2∆2
z

π

)3

4 exp
[

−∆2
z

(

k2
x + k2

y + (kz−k0)
2
)]

(163)

This solution is symmetric in x and y direction. In other words, it has cylindrical
symmetry with respect to the z axis. In cylindrical coordinates ~x = (ρ, ϕ, z), then
momentum distribution has two degrees of freedom and is independent of the angular

component. Moreover for vanishing group velocity k0 = 0, this
∣
∣
∣A(~k)

∣
∣
∣

2
corresponds

to a Maxwell-Boltzmann momentum distribution of temperature T = ~
2/(4mkB∆2

z).

A(~k) =

(

2∆2
z

π

)3

4

exp
[

−∆2
z

(

k2
ρ + (kz−k0)

2
)]

(164)

4.2.1 Energy Distribution Density

The analogous many-dimensional approach to derive the energy distribution density
is formally given by the simple equation

d3~k
∣
∣
∣A(~k)

∣
∣
∣

2
= dω |D(ω)|2 , (165)

such that the normalisation is conserved as over the transformation between wavevector
~k and angular frequency ω

1
!

=
∫

R3

d3~k
∣
∣
∣A(~k)

∣
∣
∣

2
=

∞∫

0

dω
∣
∣
∣D(ω)

∣
∣
∣

2
, (166)

where the generalised wavevector ~k has the magnitude k =
√

k2
ρ + k2

z in cylinder co-

ordinates of reciprocal space. Assuming an angular vector component kϕ pointing in
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azimuthal direction, one can translate the wavevector from a cylindrical coordinate
system where ~k = (kz, kρ, kϕ) into a spherical coordinate system ~k = (k, kϑ, kϕ) such
that

kz = k cos kϑ (167a)

kρ = k sin kϑ (167b)

kϕ = kϕ (167c)

Then the momentum distribution density A(~k) from Eq. (164) can be expressed as

A(k, kϑ, kϕ) =
(

2∆2
z

π

)3

4 exp
[

−∆2
z

(

k2 − 2k0k cos kϑ + k2
0

)]

(168)

where the aim is to replace the magnitude k of the wavevector by a function of the
angular frequency ω using the dispersion relation

2mω = ~k2 (169)

2m dω = 2~k dk = 2
√

2m~ω dk (170)

dk =
1

2

√

2m

~ω
dω (171)

and one arrives at

A(ω, kϑ, kϕ) =
(

2∆2
z

π

)3

4 exp
[

−∆2
z

~2

(

2m~ω − 2~k0

√
2m~ω cos kϑ + ~

2k2
0

)]

(172)

At the same time, the infinitesimal volume element d3~k in spherical coordinates is

d3~k = dkx dky dkz (173)

= det

(

∂(kx, ky, kz)

∂(k, kϑ, kϕ)

)

dk dkϑ dkϕ (174)

= k2 sin kϑ dk dkϑ dkϕ (175)

= 2m
~
ω 1

2

√
2m
~ω
dω sin kϑ dkϑ dkϕ . (176)

Hence, the energy distribution arising from the normailsation condition becomes

1
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ω=0

dω
∣
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∣D(ω)

∣
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2
=

y

R3

d3~k
∣
∣
∣A(~k)

∣
∣
∣

2
(177)
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dkϑ
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= π
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)]
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z

~2

√
2m~ω cos kϑ

]

.

(179)
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It remains to integrate over the polar component kϑ of the wavevector. Where a
substitution by cos kϑ =: t appears suitable for that aim which implies d(cos kϑ) =
− sin kϑ dkϑ = dt.

π∫

kϑ=0

sin kϑ dkϑ exp

[

4~k0∆
2
z

~2

√
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]

= −
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2
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=
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√
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)

2∆2
z

√
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(180)

And an expression for the absolute squared energy distribution is found as

|D(ω)|2 = 2

(

4m∆2
z

~

) 3

2
√
ω

π
exp

(
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z
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2mω/~ + k2
0

)
)
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4∆2
z k0

√

2mω/~
)

4∆2
z k0

√

2mω/~

(181)
If k0 = 0, Eq. (180) reduces to

∫

sin kϑ dkϑ = 2 and

∣
∣
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2
∣
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= 2
(
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~

)3

2

√
ω

π
exp

[

−4m∆2
z

~
ω
]

. (182)

This corresponds to a Maxwell-Boltzmann energy distribution of temperature T =
~

2/(4mkB∆2
z) in three dimensions, while Eq. (146) reduces to the Maxwell-Boltzmann

energy distribution for a single degree of freedom. They are thus consistent.

The time evolution of the three-dimensional wavepacket follows directly from the
solution of the one-dimensional one. The coordinates are separable according to
Eqs. (162) and the solution of Eq. (158) holds for each individual component. This
means the wavefunction will spread equally in time into all directions, while its
centre will move with group velocity ~k0

m
along the z direction:

f(z, ρ, ϕ, t) =
exp

[

−ρ2+(z−Z(t))2

4∆zα(t)
+ i

(

k0(z−Z(t)) +
~k2

0

2m
t
)]

(2π)
3

4α3(t)
, (183a)

with complex standard deviation α(t) = ∆z +
i~t

2m∆z

, (183b)

centre position Z(t) = z0 +
~k0

2m
t , (183c)

and absolute value squared f ∗f =
exp

[

−ρ2+(z−Z(t))2

2 |α(t)|2
]

(

2π |α(t)|2
) 3

2

. (183d)
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5 A Model of Ions in Ultracold Atoms

While all ingredients where layed out to understand and analyse the established
quasi-one-dimensional model of interatomic coulombic electron capture in nanowire-
embedded quantum dots, the generalisation to cover ICEC by a trapped cation
in a Bose-Einstein condensate of neutral atoms needs slightly more consideration.
Particularly the numerous many-body interactions and subsystems involved in heavy
metals typically trapped to the millions within a typical diameter of about 20 µm,22

need some further approximation in order to arrive at a computable system of only
a few degrees of freedom. A typical density for ultracold clouds of atoms is ̺m =
1013cm−3 = 10µm−3.

Under the assumption of a Gaussian density distribution ̺x(x) of atoms in spher-
ical symmetry, the distribution can be expressed as

̺(r) = ̺m exp

[

−1

2

(
r

∆

)2
]

(184)

where ̺m is the maximal atom density and Delta is the standard deviation of the
distribution. In the interval up to ∆, 68% of the total distribution are contained
whereas 95% of atoms are contained within 2∆. Therefore the spatial standard
deviation can be estimated as 5 µm such that the typical diameter covers about

20 µm =̂ 4∆ (95%) . (185)

Let the electron capturing cation to be at the centre of the spherical atomic
distribution. Then, the average atom number N(r) can be determined in the ball of
radius r and the average atom number n(r) in the infinitesimal shell between radius
r and r+dr. For that purpose, the infinitesimal change in atom number shall be
identified in dependence on the volume element d3~r = dr dϑ dϕ r2 sinϑ by

dN(r) = d3~r ̺(r) = dr dϑ dϕ ̺(r) r2 sinϑ (186)

which directly implies an average radial atom density

n(r) =

(π,2π)x

(ϑ,ϕ)=(0,0)

dN

dr
= 4πr2̺me

− 1

2( r
∆)

2

. (187)

As result, the average cumulative atom number in a ball of radius r will be given by

N(r) =

r∫

r′=0

dr n(r′) which is (188)

N(r) = 4π∆3̺m

(√
π
2

erf
(

r√
2∆2

)

− r
∆
e− 1

2( r
∆)

2
)

. (189)

Similarly, one can estimate the average radial distance R̄(r) from the central ion to
the surrounding atoms in a ball of radius r with

R̄(r) =

r∫

r′=0
dr′ r′n(r′)

r∫

r′=0
dr′ n(r′)

=
√

2∆2
1 −

(

1+1
2

(
r
∆
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)

e− 1

2( r
∆)

2

√
π

2
erf
(

r√
2∆2

)

− r√
2∆2

e− 1

2( r
∆)

2 . (190)
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The maximum radial atom density is given by the extremum condition of dn/dr =
0. Since this implies

0 = 4π̺mr
(

2 − r2

∆2

)

e− r2

2∆2 , (191)

the maximal atom density is n|max = 8π∆2̺m exp[−1] and is situated at a radius

of r|n=max =
√

2∆2 ≈ 9.25 ∆2̺m which is about 2.31 nm−1. The absolute atom
number of the entire distribution is

N(∞) = lim
r→∞

N(r) = 4π∆3
√

π
2
̺m (192)

with average distance to the electron capturing ion of

R̄(∞) = lim
r→∞ R̄(r) =

√
8
π

∆ . (193)

One can then identify the typical atom density ¯̺ = 3
√

π
2
̺m such that the overall

atom numberN∞ = 4π
3

∆3 ¯̺. Last but not least, one can estimate typical volume radii
and average distances of exactly 1,2 or 3 reaction partners. The volume containing
exactly one neighbouring atom is given by the radius r|N=1 ≈ 289 nm with average
distance of R̄(r|N=1) ≈ 217 nm. A volume containing exactly two neighbouring
atoms will have to radius of r|N=2 ≈ 363 nm with an average radial distance of
R̄(r|N=2) ≈ 272 nm to the central ion.

5.1 A long-range Interaction

The Coulomb potential governing the interaction between two charged particles of
respective charges q1 and q2 at positions ~r1 and ~r2 in space

VC(r) = −q1q2

4πε
|~r1 − ~r2|−1 (194)

was already introduced in the form of a central potential for the hydrogen problem.
It can be expanded into a Taylor series known as multipole expansion. In the
considered setup, a free electron approaches a cation while at some distance, a
neutral atom can interact with the electron and the cation. The Coulomb attraction
which the incident electron feels from the direction of the neighbouring atom is
counteracted over large distances by the repulsion from the atom’s electrons. The
neutral atom and its electron does not have a net charge to interact with the incident
electron on the cation. Let the atom be an alkali metal, then it offers a single
electron in the outermost valence shell. In an effective treatment, the remaining
inner electrons may be approximated to be frozen in place to form an effective
binding potential together with the attraction by the nucleus. The effective binding
potential for the remaining outer-valence electron may then be expressed as111

4πǫ

e2
V (r) = −Z

r
+
αD

2r4

(

1 − exp
[

−
(

r
δD

)2
])2

+
∑

ℓ

Bℓ exp
[

−
(

r
bℓ

)2
]

(195)

which is a sum of a Coulomb attraction term stemming from the remaining effective
net charge Ze, an effective polarisation potential with dipole polarisability αD and
additional potential terms to correct for relativistic effects in dependence on the
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angular momentum ℓ. This approach relies thereby on Gaussian functions with
respective radial extension δD and bℓ to model the net effect of the multi-electronic
nature of the atom by a pseudopotential of frozen a inner valence and core charge
distribution. Applying this to both the neighbouring atom as well as the electron
capturing cation, it is possible to reduce the number of involved bodies significantly.

In this effective frozen-core treatment, the incident electron on the capturing ion
and the outer-valence electron bound to the assisting atom form two electric dipoles.
Let the atom be a rubidium atom due to its prominence in ultracold atom experi-
ments.22–24 Let the capturing species be a barium (II) cation for the moment which
admits to neglect an additional outer valence electron present in the barium (I)
cation which is usually used for trap experiments.22 Then one can express the po-
sition of the incident electron with respect to the barium (II) ion as ~xBa+ and the
position of the treated rubidium electron with respect to the rubidium core as ~xRb.
As a particular result of the multipole expansion of the Coulomb potential, the
interaction energy between two electric dipoles qi ~xi is given by108

R3V12 =
q1q2

4πǫ

(

~x1 · ~x2 − 3
(

~x1 · ~R
R

) (
~R
R

· ~x2

))

. (196)

where R is the distance between the dipoles. For large distances between the two
nuclei in comparison with their distance to the respective electron, the dipole dis-
tance is approximating to the distance between the nuclei. This allows to treat the
two electrons in local coordinates with respect to their nucleus of reference. A graph-
ical representation of the system coordinates thus introduced is given by Figure 4.

ζ

ρ

ϕBa+

ε

~xBa+

V

Ba
2+
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+

z

~xRb

ϑ
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Figure 4: The coordinate system of an electron beam incident on a
barium (II) cation with a rubidium atom at distance R and angle α between
incident electron beam and interatomic axis.

It arises from the initial conditions of a longitudinally approaching electron wave-
packet that the incident electron on the barium (II) cation might be expressed
advantageously in local cylindrical coordinates whereas the outer-valence electron
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on rubidium shows the spherical polar probability density of the 5s orbital. This
results in the normalised spherical polar kinetic energy operator

T̂Rb = − ~
2

2m

(

∂r
2 + r−2ℓ̂2

(θ,ϕRb)

)

(197)

for the rubidium electron which was already given in equation (122). The incident
electron in the barium reference frame, on the other hand, is to be expressed in terms
of cylindrical coordinates of position ζ along the cylinder axis, transverse distance
ρ from the axis and azimuthal angle ϕBa+ with respect to the plane spanned by the
cylinder axis and the atom-atom axis. The normalised kinetic energy operator for
the incident electron in the cylindrical local coordinates is then

T̂Ba+ = − ~
2

2m

(

∂ζ
2 + ∂ρ

2 + ρ−2(∂ϕ
Ba+

2 + 1
4
)
)

(198)

whereas the binding potential is not separable

4πǫ

e2
VBa+ = − 2

ζ2+ρ2
+

αD

2(ζ2+ρ2)2

(

1 − exp
[

− ζ2+ρ2

δ2
D

])2

+
∑

ℓ

Bℓ exp
[

− ζ2+ρ2

bℓ

]

.

(199)

At this point, all ingredients have been introduced to model the dynamics of
interatomic coulombic electron capture by a trapped cation in an ultracold cloud
of neutral atoms. It is noteworthy, however, that the model has so far not taken
much heed of the spatial distribution of the assisting atom cloud nor of the large
number of reaction partners available. Simultaneously, the average distance to the
first atom is typically orders of magnitude larger than the atomic scale dipole-dipole
interaction which is inverse proportional to the cube of the distance between the
electron-capturing ion and the assisting atom. It shall thus be proposed to intro-
duce the multi-atomic distribution of reaction partners into an effective interaction
description in order to counteract the available distances between ion and atom in
the order of 105 aB by the available number of reaction partners in the order of 106

atoms.

Toward this goal, the experimentally-induced potential preparing and holding the
macroscopic atomic distribution shall be given by a harmonic potential acting on a
rubidium atom. The simple Hamiltonian

ĥR = − ~

2MRb

∂2
R +

~

4MRb∆2
R

R2 (200)

shall be introduced where MRb is the mass of a rubidium atom, ∆R is the standard
deviation of the spatial distribution of the atom cloud determined by the experi-
mental conditions and R has become an additional degree of freedom, describing
the distance of the rubidium atom with respect to the central barium (II) cation.
This gives rise to the normalised probability density of the ground state function for
the effective rubidium position as

∣
∣
∣ψ

(0)
R

∣
∣
∣

2
= (2π∆2

R)−1/2 exp

[

− R2

2∆2
R

]

(201)

which correlates to the assumed spatial density distribution from (184) up to the
normalisation factor.
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The spatial atom density is then scaled as

̺(R) := NRb

∣
∣
∣ψ

(0)
R

∣
∣
∣

2
(202)

where NRb is the total amount of trapped rubidium atoms. Similarly, taking the
many-partner interaction into account, the barium (II) cation feels at a given dis-
tance R and angle α to the incident electron axis the effective potential

V
eff

= NRb

∣
∣
∣ψ

(0)
R

∣
∣
∣

2
V12 . (203)

By integrating over the polar angle α between incident electron axis and atom-
atom axis under the assumption of a constant distribution of rubidium atoms, one
thus arrives at the effective potential

4πǫ

e2

R3

NRb

V
eff

= ρ cosϕBa+ r sinϑ cosϕRb −4ρ sinϕBa+ r cosϑ−2ζ r sinϑ sinϕRb (204)

where it is apparent that the number of atoms NRb can successfully compensate
the large distances between electron capturing ion and the assisting electron on a
neutral atom at distance R in this effective description. Consequently, an effective
model of seven spatial degrees of freedom has been derived here in order to study the
electron dynamics of interatomic coulombic electron capture at near experimental
conditions for ions in ultracold assisting clouds of atoms. Apparent from the onset,
the range of the dipole-dipole interaction proposed to admit the introduction of two
local subsystems would be numerically restricted to closer ranges than the expected
200 nm typical for the distance between the central ion and the next atom. The
introduction of the large number of available atoms in the surrounding, however,
enabled to stabilise this in an effective treatment accounting for a net interaction
with the distributed large number of assisting atoms.

Within this chapter, a model was thereby derived for the description of interatomic
coulombic electron capture by a barium (II) cation assisted by a surrounding ul-
tracold cloud of neutral rubidium atoms which had been motivated and inspired by
available experimenting techniques. On the one hand, a theoretical simulation of
electron dynamics is quickly challenging computational resources such that numer-
ical implementations need to employ simplifications by appropriate approximations
and exploitation of available symmetries. The fewer interacting bodies involved
in a particular system, the easier it is to handle and to simulate. On the other
hand, investigations by experiment approach the same process always from a mac-
roscopic perspective of feasibility. While aiming to study the smallest possible en-
tities, they have to realise the experiment in a macroscopic sometimes large-scale
apparatus. Realising a setup with fewer interacting bodies increases the necessary
efforts which is perhaps one of the reasons why ICEC has not yet been reported by
experiments. Nevertheless, both systems discussed theoretically within this disser-
tation, nanowire-embedded quantum dots and ultracold atoms, may eventually find
experimental application to which the provided insight gathered from the performed
numerical simulations can assist.
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Part III

Applications
The previous part has introduced the necessary mathematical concepts to model
and analyse the electron dynamics involved in an interatomic coulombic electron
capture. An essential ingredient in the established model of nanowire-embedded
quantum confinements and in its generalisation to Bose-Einstein-condensate em-
bedded ultracold ions are Gaussian functions. They come into play as many-body
averaged potentials and as spatial probability distributions for various degrees of
freedom contributing to the overall wavefunction. As such, they have been used
to approximate the multi-atomic nature of solid-state quantum confinements such
that the effective longitudinal potential in the quantum dots is modelled by Gaus-
sian wells whereas a harmonic lateral confinement from the nanowire itself induces
a transversally Gaussian probability density in the ground state. Owing to this
transverse restriction, a modified effective Coulomb potential allows a description of
electronic motion along a single spatial dimension, the axis of the nanowire.8

On the same footing, the multi-electronic nature of atoms and ions was approxim-
ated by effective Gaussian potential wells to account for the closed electronic shells
of core and inner-valence electrons which partially shield and modify the attraction
toward the multiply charged nucleus experienced by an additional external or outer-
valence electron.111 In either case, the effective potential in the form of a Gaussian
well allowed to reduce the number of treated degrees of freedom. The generalisation
to ultracold atoms followed thereby naturally and smoothly from the established
dynamic model and its concepts for quantum dots. Moreover, the macroscopic con-
finement of a multi-atomic Bose-Einstein condensate was introduced as spherically
harmonic nuclear potential which induces an effective radial probability density of
surrounding atoms able to assist in an interatomic coulombic electron capture by
the central ion. The approximation by an effective radial distribution allows to sta-
bilise the model against the numerical difficulty arising from the difference in orders
of magnitude between electronic interaction potentials of a few bohr radii and an
average distance between capturing ion and assisting atom at orders above 100 nm
in a typical experiment.22

Introducing the incident electron by an initial Gaussian wavepacket of one or more
dimensions, the dynamical and kinematic implications were discussed such that this
part will present numerical applications in two steps to test the portability of the
model. First, the application to quantum confinements in nanowires is going to
revisit different aspects of electronic dynamics in a methodological and consistent
manner. Then, the generalized model is applied to compute the electron dynamics
of interatomic coulombic electron capture by a barium (II) cation assisted by an
ultracold cloud of neutral rubidium atoms which will test efficacy and impediments of
the adapted model and its numerical implementation with respect to ICEC. To help
the reader by providing a self-consistent discussion within the respective chapter,
central equations and parameters necessary for the computational implementation
shall be briefly paraphrased where spoken of although mainly subject of Part II and
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covered therein. The used parameters employed in the individual application are
summarized for clarity in Table 1 and Table 2.

6 Artificial Atoms in Nanoelectronics

The numerical investigations of interatomic coulombic electron capture have been
successfully tackling the question of electronic dynamics already very shortly after
the first prediction of the process in general and were able to simultaneously expand
the scope of interatomic coulombic electron capture by its introduction into solid-
state systems. Nevertheless, these studies shed spotlights onto particular setups of
the model and were to some extent not yet able to enlighten a broader conceptual
understanding. This difficulty was not least arising from the amount of parameters
available to be chosen freely although electronic motion was described to occur along
a single axis. Mostly predetermined by the partaking species for ICEC in atoms,
a solid-state system can in fact be adapted freely and quasi-continuously in size,
and within intervals, it can be varied in its material composition or doping. The
quantum dot binding potential alone provides thus more control parameters than
actual electronic degrees of freedom.

Although Gaussian potential wells had already been used beforehand to describe
quantum dots,112 employing the MCTDH approach for an efficient electron-dynamical
treatment of quantum dot pairs was proposed in (2011) in order to study interatomic
coulombic decay, which proved adaptable to cover a larger spatial domain in order
to present the first electron scattering with interatomic coulombic electron capture
by (2013).3 Describing the same physical systems by the same methodological ap-
proach, the numerical studies of both processes were able to synergise their efforts
and research questions such that the investigation in (2013) was already indicating
that met conditions for an interatomic coulombic decay could enable an increase
in efficiency for the interatomic coulombic electron capture.3 As they had initially
been implemented for electronic triplet configurations, the singlet analogon was soon
presented for ICD which proved equivalent in its electron dynamics for singlet as for
triplet configuration and additionally made use of the effective quasi-one-dimensional
approximation of the Coulomb interaction.74 Eventually, this reduction in degrees
of freedom admitted to reduce computational resources for studies of ICEC which
in turn afforded an increase in the longitudinal numerical grid.8

Although piecewise ventures into the unknown had succeeded, it was yet unclear
from these attained glimpses how these pieces would fit into a bigger picture. Partic-
ularly the question of well-suited descriptors for what determined ICEC dynamics
alluded the investigators where the quasi-one-dimensional model appears overde-
termined by its amount of parameters in contrast to the time-resolved Schrödinger
equation which provides only two independent spatial degrees of freedom. There
must be a smaller set of quantities that act as parameters and determine key fea-
tures of the electron dynamics. To alleviate the gaps between the individual studies,
recent investigations attacked the system parameters and the resulting dynamical
quantities of ICEC methodically over a broader domain.2,64
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Building upon its predecessors, this work revisits key quantities of ICEC dynamics
in quantum dot pairs in a systematic approach and adds previously unconsidered
aspects. In particular, it will advance in four logical steps: At first, it will revisit a
singular setup which stood out during a recent investigation,2 to which it will add
the consideration of directionality in electron dynamics of ICEC. It will therefore
investigate and compare the ICEC-associated spectrum of electron flux density in
both available directions, those of reflection and transmission. Moreover, this shall
be compared with a computation of non-interactive electron dynamics to determine
the proportions of directional dependence arising from the quantum dot potential
itself and those proportions which emerge from the interatomic coulombic electron
capture. In a next step, the capturing confinement size will be varied at constant
parameters for material and centre-to-centre distance. This study will add insight
into the directionality of ICEC in its key entities where it is going to validate whether
the transmission direction is in fact dominating over the previously unpublished
ICEC associated flux density into reflection direction. Furthermore, an upper limit
in ICEC flux density as function of energy will be found in the form of an envelope
function which will also relate to the variation in capture size and shall reflect
the evolution of the flux density into both emission directions which is necessary
to potentially understand how to optimise a hypothetical ICEC applying device.
Then a simultaneous variation of material composition with capture size revisiting a
related recent study,64 shall generalize the findings induced from the investigation of
the quantum size effect. It will be suggested that while both parameters modify the
single-electron eigenenergies of the quantum-dot potential, the actual eigenenergies
describe and modify the electron dynamics if ICEC qualitatively simpler than the
parameters themselves.

While previously successful in ascribing limiting kinematic conditions restricting
the parameter domain of ICEC,64 the observation that trends in ICEC probability
appear to follow trends in single-electronic eigenenergies has not been yet expressed
but will provide a practical guideline for future studies. It will thus eventually
be tested here for several quantum-dot distances over which it will be presented
to remain valid for each distance individually, but will be modified in the range of
covered eigenenergies from one inter-quantum-dot distance to the next. Incidentally,
two energy levels appear to dominate the trends in ICEC probability while two
subprocesses will have been consistently found in the individual flux density spectra.
It will thus suggest the final hypothesis for the system that prospective investigations
might describe ICEC dynamics better if resolved by these two energy levels. Using
these as descriptive parameters appears at currently available resolution to simplify
the behaviour of interatomic coulombic electron capture. This description would also
be portable to other systems, other potentials, and eventually also to experimental
investigations.

6.1 Computational Details

In line with the preceding studies, the multi-configurational time-dependent Hartree
(MCTDH) approach was applied here to compute the interatomic coulombic electron
capture dynamics by propagating the quantum-mechanical two-electron wavefunc-
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tion composed by90,91

Ψ(z1, z2, t) :=
N1,N2∑

j1,j2=1

Aj1j2
(t)χj1

(z1, t)χj2
(z2, t) (205)

which constitutes superposed Hartree products of time-dependent functions χj(z, t)
of position z along the axis of motion. These lower-dimensional but flexible functions
known as single-particle functions (SPFs)

χj(z, t) :=
M∑

m=1

c
(m)
j (t)bm(z). (206)

are themselves formed from a set of functions {bm(z)}M
m=1, the primitive basis which

is given for this application by a discrete variable representation of 431 grid points
in sine (Chebyshev) form. Each electronic z coordinate is thereby governed from
z = −270.0 aB to +270.0 aB. Initiated on a configuration space N1×N2 of 14×14
single-particle functions, enforcing the identical nature of both electrons in spatial
antisymmetrisation of triplet states by persistently antisymmetric coefficients

Aj2j1
(t) := −Aj1j2

(t) ∀t. (207)

allows to reduce the configuration space and computational resources. See Table 1
for a concise summary of the employed numerical parameters.

The initial wavefunction is prepared by a one-dimensional Gaussian wavepacket
in the form

φ0(z) =
(

2π∆2
z

)− 1

4 exp
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+
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~
p0 (z − z0)

]

(208)

introduced in Section 4.1, Eq. (130) representing the free electron which is approach-
ing the quantum-dot potential from the left in antisymmetric superposition with the
single-electron eigenfunction of the quantum-dot binding potential localized on the
right and represented by state

∣
∣
∣R0

〉

. The binding potential itself is modelled by an

asymmetric pair of Gaussian wells in the established form of2,72,113
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(209)

which was analogously introduced in Section 3.4, Eq. (92). The energetic parameters
DL/R represent the energy threshold from the minimum of the respective left or
right potential well to continuum. The length scale LL/R represents a characteristic
diametric confinement size amounting to twice the root-mean-square (rms) width
∆L/R of the respective Gaussian well.

The incident electronic wavepacket is initially centred along the z-axis at z0 =
−125 aB and moves with group momentum p0 = 355 × 10−3 EH and is spread along
the axis with an rms width of ∆z = 10.0 aB. At first separated by a large distance,
the electron interaction is negligible and the wavefunction is well-described by a
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single configuration. With the evolution in time, the electrons approach each other
and their increasing interaction will induce a wider population over the configura-
tion space. One of the advantages of this model is here the material-independent
description by effective atomic units which can be scaled according to the effective
electron mass of the particular nanowire material as described in Section 3.5.1.

The radial width of the nanowire is introduced into the model by interpretation
as a transversal binding of both electrons by a general harmonic potential of charac-
teristic length l (cf. Section 3.2.1, (52)) which is set to l = 1.0 aB for the presented
investigations. Under the assumption of a transversally occupied ground state, this
implies an effective interaction potential between the electrons according to8,74,114

V12(z1, z2) =
√

2EH
a
B

l
H−1

(
|z1−z2|√

2l

)

(210)

as introduced with Section 3.2.1 where H−1(x) is the -1st Hermite polynomial of an
independent variable x according to Eq. (46).

To enforce a constant initial wavefunction for the sake of consistent comparability
throughout the steps of this study, the right quantum dot remains unchanged in its
parameters DR and LR which dominantly determines the properties of the quantum-
dot eigenstate

∣
∣
∣R0

〉

localized on the right. It remains set at a continuum threshold of
DR = 0.60 EH and a longitudinal length of LR = 1.41 aB. This chosen in agreement
with previous investigations.8,9 The remaining quantum-dot system parameter are
addressed step-wise over this chapter.

Computational results will first be presented for a constant distance of R =
10.0aB between the two quantum-confinement centres and a constant left continuum
threshold of DL = 0.71. As instructing configuration ICEC dynamics will first be
analysed in detail for a capture length of LL = 2.83 aB before investigating the
variation in quantum-dot eigenenergies and in the spectrum of ICEC-associated
electron flux density and probability density within a range of confinement lengths
from LL = 1.83 aB to 4.71 aB. This view is then expanded to a concerted variation
in the two independent parameters LL and DL. In addition to the variation of
confinement length over the same interval, the continuum threshold is also varied
within a range from DL = 0.40 EH up to 1.10 EH . Eventually, an additional variation
of the distance R between the two confinement centres is added where the same
domain of (LL, DL) is analysed over seven different distances from R = 6.0 aB up
to R = 12.0 aB.

Reflections of the eletron wavefunction occuring at the edges of the numerical grid
would not represent an open system with entering and leaving electron probability
density meaningfully and would even interfere with the remaining portions of the
wavefunction. To prevent this non-physical behaviour, complex absorbing potentials
Ŵ with

− iŴ := −iη
(

|z − zcap|
aB

)n

× Θ

[

−k
(

z − zcap

aB

)]

(211)
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Table 1: Collection of computational parameters of the system.

Incident electron parameters, see Eqs. (52) and (130)
p0 = 0.335 ~/aB z0 = −125 aB ∆z = 10.0 aB l = 1.0 aB

Quantum-dot-pair parameters, see Eq. (92)
LL ∈ {1.83 aB, . . . , 4.71 aB} LR = 0.707 aB

DL ∈ {0.40EH , . . . , 1.10EH} DR = 0.60 EH

R ∈ {6.0 aB, . . . , 12.0 aB}
DVR type grid points z range
Sine 431 −270.0 aB +270.0 aB

SPF configurations 14 × 14, id

CAP n k zcap η
2 ±1 ±168.75 aB 5.79 · 10−6 EH

of quadratic order, n = 2, have been employed where Θ(z) represents the Heaviside
function which is positioned at zcap = ±168.75 aB in order to collect the outgoing
fractions of the wavefunction.115–118 The absorption strength η has been computed
to absorb maximally and respectively reflect as little as possible from the grid’s
edges. See Table 1 for details.

6.2 Results

6.2.1 Electrodynamic Impulse and Interatomic Coulombic Decay

The two-electron probability densities related to the eigenfunctions of the numerical
model system as depicted in Figure 5 offer a ground state and three bands of excited
states before energy E = 0. In the background of the figure, the quantum confine-
ment potential is indicated in black dotted lines, showing a centre-to-centre distance
of R = 10 aB with the origin of the coordinate system centred equally between them.
The left quantum dot in this figure has a potential depth of DL = 0.71 EH while the
right reference dot has a potential depth of DR = 0.6 EH . These are the potential
depth parameters of highest probability in the six configurations reported in8. The
right quantum well has a characteristic length of ∆R = 1/

√
2 aB and the left quantum

well a characteristic length of ∆L =
√

2 aB. The ground state of the two electrons
is characterised by electron probability maxima in both potential wells speaking
for both electrons being bound simultaneously to lowest states of the left and right
quantum dot, L0 and R0 respectively. Its eigenenergy is EL0R0

= −604.57×10−3 EH .
The first band of excited states is formed by an electron bound to the lowest

bound state offered by the double well, L0 in this case, and an electron in the
free continuum. It starts at EL0

= −454.67 × 10−3 EH . The close energetic spacing
between free electron states in their numerical representation forms the band of two-
electron wavefunctions. The width of the band is determined by the included amount
of continuum states within the computational model and would analytically be a
continuous spectrum all the way from the first excited two-electron wavefunction
through E = 0 which characterises both electrons to be free, to higher energies.
The second band of excited two-electron states is consequently a combination of an
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Figure 5: Two-electron probability densities |Ψn(z)|2 of the wavefunctions
in Gaussian binding potentials of a pair of quantum confinements in a
nanowire. The binding potential is indicated in black dashed line, the grey
solid lines indicate the first 150 eigenstates in the numerical representation
of the system. The coloured eigenfunctions from the lowest energy up show
the system’s ground state with two captured electrons in red, the first band
of excitations with one electron bound in the ground state of the left po-
tential in dark orange, the second band of excited states with one electron
bound in the right potential’s ground state in orange, and a third band of
excited states with an electron bound to the left confinement in an excited
state in green, close to the two-electron continuum in blue. Within the
second band of excited states, a state with two bound electrons one in the
ground state of the right and one in the excited state of the left is indicated
in yellow.

electron bound to state R0 indicated by electron probability localised in the right
potential well, and the other electron unbound. It begins at ER0

= −241.42 ×
10−3 EH . The energetic order of single-bound states is generally not fixed but
a consequence of the combination of the five parameters (DL,∆L,R, DR,∆R) of
the asymmetric quantum double well. Incidentally, the combination of two bound-
electrons in the left-excited state L1 and in the right R0 lies energetically within
the second band of excited states at EL1R0

= −214.79 × 10−3 EH . This makes a
transition from the double-bound L1R0 to a single bound state of similar energy
likely which would indicate decay by ionisation. The third band of excited states
is already positioned energetically close to the double-ionisation threshold of E = 0
and indicates an electron bound in the left excited state L1 recognisable by the
two maxima in probability density located within the left quantum well and by
a free electron. Its lower bound eigenenergy is EL1

= −72.34 × 10−3 EH . The
first fully unbound eigenenergy for two free electrons is numerically positioned at
E = +2.92 × 10−3 EH due to electron-electron repulsion on a finite grid of points in
space.



58 6 ARTIFICIAL ATOMS IN NANOELECTRONICS

Sending a free electron wavepacket onto a right bound electron in R0 will thus be
the initial condition of a numerical investigation of interatomic coulombic electron
capture in a such system. This electron probability density in space and time and
the electron flux density in time related to this study is graphically depicted in Fig-
ure 6. The left panel shows the full electron dynamics in the ICEC simulation, the
centre panel shows the difference with respect to a simulation without electron inter-
action which is presented as reference in the right panel. Each bottom panel depicts
the electron probability density |Ψ(t, z)|2 to find an electron at time t in position z.
Initially at t = 0, an electron is bound to the quantum-dot eigenstate R0 with high
electron probability indicated by yellow colouring at z = 5 aB. Another electron is
initially normal-distributed with standard deviation of ∆ = 10 aB resulting in an
orange colouring of approximately 40 aB diameter on the negative z-axis centred at
z = −125 aB. The wavepacket has an initial momentum depicted by positive slope
∆z/∆t of p0 = 0.335 ~aB/EH . The simulation in Figure 6 (c) shows that without
electron-electron interaction, a part of the free electron wavepacket is moving with
constant momentum through the quantum dot potential which is apparent from the
persistent slope ∆z/∆t in the graph. An equal part is reflected at the quantum
dot potential and travelling back with equal but opposite momentum. The forward
travelling wavefronts interfere with the already reflected wavefronts and form inter-
ference ridges particularly visible at negative z around t = 400 ~/EH . Moreover, the
wavepacket broadens with time.

Since the reflected part of the wavepacket interferes with itself and gets distorted
through the quantum confining potential, it broadens significantly more on negative
z where its tail leaves the quantum dot system approximately 200 ~/EH after the
transmitted portion and it shows a very low velocity which results in it having barely
separated from the bound electron at t = 1 400 ~/EH . Throughout the entire exper-
iment, the bound electron in R0 is visible by a bright electron probability density
at z = 5 aB and remains unperturbed by the motion of the free wavepacket. From
about 1 000 ~/EH onwards, the probability density diminishes gradually which is a
numerical phenomenon due to the wavepacket leaving the observation volume and
being absorbed by the complex absorbing potential at the boundaries thus reducing
the norm of the two-electron wavefunction within the volume which numerically af-
fects the probability density of the bound electron but leaves it qualitatively intact.

The upper graphs in Figure 6 show the electron flux measured at z±
F = ±200 aB

that correlates with an electron bound to the quantum confinement levels L0, R0

and L1. This relates directly to the colour-coded electron probability density at zF

in the lower graphs of |Ψ(t, z)|2. Therefore, the different contributions of electron
flux density F (t) for the reference case in Figure 6 (c) set on after t = 500~/EH .
The largest flux contributions correspond to transmitted and reflected electron flux
in correlation with an occupied quantum-dot state R0 respectively denoted by F±

R0
.

These two contributions are 17 orders of magnitude bigger than electron flux density
corresponding to an occupied energy level L0/1 in the left quantum dot which can
thus be considered numerical noise and appear to be in fact an echo at the computa-
tional accuracy limit of the flux density in channels F±

R0
. The maximal flux density

transmitted through the double well is measured with maxF+
R0

= 8.23 × 10−4 EH/~
at t = 901 ~/EH . The flux density maximum reflected by the potential is measured
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Figure 6: Dynamics of interatomic coulombic electron capture in a pair of
quantum confinements within a nanowire. Lower panels: the evolution of
electron probability density |Ψ(t, z)|2 in position z and time t. Upper pan-
els: the quantum flux density F±(t) measured at z±

F = ±200aB as function
of time t and in correlation to an occupied state L0, R0 or L1. (a) Full elec-
tron dynamics governed by electron-electron interaction with a large portion
of reflected electron wavepacket and some transmitted flux correlating to
electron capture into state L0. (b) The difference to a non-interactive sim-
ulation. (c) The reference simulation of electrons at same initial conditions
without electron interaction transmits and reflects comparable amounts of
incident electron.

to be maxF−
R0

= 8.82 × 10−4 EH/~ at t = 1 025 ~/EH . The full width at half max-
imum (FWHM) of F+

R0
(t) is 258 ~/EH , the full width at half maximum of F−

R0
(t)

is 269 EH/~ but both distributions are asymmetrical with an extended tail towards
larger times and the full widths at tenth maximum (FWTM) read 478 ~/EH and
549 ~/EH , respectively.

The full electron dynamics including electron-electron interaction is graphically
presented analogously in Figure 6 (a). This is the actual interatomic coulombic
electron capture simulation and shows considerable differences to the reference com-
putation in Figure 6 (c). The initial conditions remain unchanged. An electron is
bound in the state R0 narrowly distributed around z = 5 aB and a broader free elec-
tron wavepacket is moving towards it from z = −125 aB and reaches the interaction
region around t = 200 ~/EH . On impact, electron density is leaving the quantum
confinement region with slightly higher momentum than the incoming wave packet
indicated by an increase in slope ∆z/∆t. At the same time, electron probability
density becomes pronounced in the left quantum confinement around z = −5 aB

which shows two density maxima by two orange coloured ridges suggesting a partial
occupation of eigenstate L1. At approximately t = 600 ~/EH , major portions of
the electron probability density separate again. The tail of the reflected part of the
incoming wave packet leaves the quantum confinement region and gradually gains
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momentum. The consistent stream of outgoing electron density towards positive z
stops. Some weaker contributions appear to leave the confinement region in short
spurts throughout the remaining time towards both sides. The electron probab-
ility density within the confinement region diminishes gradually from 1 000 ~/EH

onwards.

In the upper panel of Figure 6 (a), the contributions of electron flux density
at z±

F = ±200 aB are depicted as functions of time t in correlation with respective
occupation of the states L0, R0 or L1 within the confinement region. Electron flux
measured at z−

F is dominated by correlation with occupation ofR0 which is consistent
with the interpretation of the electron probability density graph and suggests a
strong reflectivity of the incoming wave packet due to the electron-electron repulsion.
The maximum of reflected density is measured at t = 971 ~/EH with F−

R0
= 11.75 ×

10−4 EH/~ and a full width at half maximum of 391 ~/EH with trailing flux density
at larger times. Nevertheless, a significant portion is observed to correlate with an
occupied L0 state in the left quantum confinement. This is masked in the probability
density plot due to the convolution with the reflected incident wavepacket but shows
a clear maximum in electron flux density of F−

L0
= 9.18×10−7 EH/~ at t = 686~/EH

with full width at half maximum of 177 ~/EH . It is further showing two revivals with
a temporary maximum flux density of F−

L0
= 8.26 × 10−9 EH/~ at t = 1306 ~/EH

and outside the depicted time frame at t = 1632 ~/EH with a temporary maximum
flux density of F−

L0
= 6.59 × 10−9 EH/~.

Electron flux density correlating with an occupied excited state L1 does not con-
tribute significantly and is only measured as numerical noise at peak flux density
of F±

L1
≤ 7.20 × 10−10 EH/~ on either side. In the direction of transmission, the

difference between the full electron dynamics in Figure 6 (a) and that without inter-
electronic interaction in Figure 6 (c) is most apparent. Where a large portion of in-
coming wave packet was transmitted through the quantum confinement region in cor-
relation with initially occupied state R0, the electronic interaction obstructs nearly
any electron transmission in correlation with R0. The transmitted flux density has
thus a maximum of F+

R0
= 1.11 × 10−7 EH/~ at time t = 144 ~/EH and shows a pro-

nounced revival with peak at 272 ~/EH and flux density of F+
R0

= 4.92×10−8 EH/~.
Identifying these density flows in the lower panel points to jets of comparably high
velocity emitted symmetrically to transmission and reflection direction from the oc-
cupied state R0 itself. Those first two emissions correspond temporally with the
instant of activation of the complex absorbing potential and with the impact of the
incident wavefront on the right quantum confinement at z = 0 aB. Particular search
for jets of equal slope ∆z/∆t ≈ 2.9aBEH/~ shows another emission at t ≈ 728~/EH

which corresponds approximately with the instant when the tail of the reflected
electron wavepacket is leaving the quantum confinement region. From there on, a
gradually diminishing background of electron flux density in the order of 10−8 EH/~
is measured with correlation to an occupied state R0. Instead of electron flux in
correlation with the initial state R0, the dominant contribution in transmission dir-
ection is thus correlated to the energetically lower state L0. This indicates a portion
of a successful interatomic coulombic electron capture. The difference in energy
between the bound states R0 and L0 adds to the kinetic energy of the incident elec-
tron such that the transmitted ICEC flux is indicated by a slightly increased slope
∆z/∆t with comparison to the incident wavepacket in the lower panel of Figure 6
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(a). The maximum electron flux density is reached at t = 661 ~/EH and amounts to
F+

L0
= 4.88 × 10−7 EH/~ with a full width at half maximum of 156 ~/EH . Similarly

to the reflected flux in correlation with L0, the transmitted ICEC flux undergoes two
revivals, the first of which climaxes at t = 1 211 ~/EH at F+

L0
= 1.24 × 10−8 EH/~,

while the second revival peaks at a flux density of only F+
L0

= 4.95 × 10−9 at time
t = 1 546~/EH outside the depicted time interval.

To expose the effect of electron interaction on the dynamics, Figure 6 (b) illus-
trates the difference between the computed full dynamics in a) and the reference
simulation without interaction in c) for both the electron probability density in
space and time (lower panel) and the correlated flux density at z±

F = ±200 aB

(upper panel). The electron probability density is dominated by the contribu-
tions arising from the increased reflectivity and reduced transmittivity in the or-
der of 10−3 to 10−2 a−1

B . Already at t = 54~/EH , the repulsive force between
both electrons has delayed the incident wavepacket enough to display a lack of
∆I |Ψ|2 = −1.07 × 10−4 a−1

B at z = −95 aB which has fallen behind by 21 aB. This is
recognisable in the lower panel of Figure 6 (b) by the early onset of magenta coloured
density difference above z = −100 aB indicating a deficiency of probability density
in the full dynamics with respect to the reference computation in Figure 6 (c), and
by the simultaneous onset of yellow coloured density difference below z = −100 aB

indicating a surplus of probability density. Similarly for the electron probability dis-
tribution initially bound to R0 in the right quantum dot, ∆I |Ψ|2 = 0.38 × 10−4 a−1

B

of electron probability density have been displaced a grid point off-centre towards
the outside of the confinement region. Due to the difference in deviation magnitude
of the probability density of the wavepacket and that within the confinement region,
Figure 6 (b) can only depict changes in probability density above 10−4 a−1

B and fails
to graphically resolve the fractions arising from occupations of L0. As time pro-
ceeds, the deviation in probability density evolves and enters orders of 10−2 a−1

B by
t = 295 ~/EH . In a compromise, colour resolution of deviations of that order and
above has been neglected and falls within the representation in dark-green colour for
density deficiencies of absolute magnitude above −4 a−1

B or within the representation
in red colour for density surplus above 6 a−1

B . The interference behaviour in the fully
interactive computation deviates particularly strongly from the reference simulation
due to the large portion of reflected incident electron probability distribution. Set-
ting on at t = 200 ~/EH , this governs the graph until t = 600 ~/EH when the tail
of the reflected wavepacket leaves the confinement region. At that instant in time,
the left quantum-dot holds a surplus of ∆I |Ψ|2 = +0.48 × 10−4 a−1

B at its centre at
z = −5 aB with two local maxima on the neighbouring grid points on either side,
measuring +1.08×10−4 a−1

B at z = −6.25 aB and +1.28×10−4 a−1
B at z = −3.75 aB.

This suggests a partial occupation of L1. The right confinement shows a deficiency
in electron probability density of ∆I |Ψ|2 = −1.02 a−1

B at its centre z = +5.00 aB at
time t = 600 ~/EH and a surplus of ∆I |Ψ|2 = +1.20 a−1

B outward at z = +6.25 aB.
At larger times, the deviation in electron probability density is dominated by 4
features: the deficiency of transmitted incident electron at constant momentum for
positive z, a surplus of reflected incident electron of equal, constant momentum for
negative z, a second stream of surplus reflected incident electron starting at lower
velocity but gradually accelerated by electronic repulsion and a surplus of electron
probability density in R0 from t ≈ 700 ~/EH onwards as the electron interaction
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Figure 7: Electron flux density in correlation with occupied state L0, R0 or
L1 as function of incident energy. (a) Full dynamics with electron-electron
interaction. (b) Difference in flux density with respect to non-interactive
dynamics. (c) Reference flux density of electron dynamics without electron
interaction.

prolongs longevity of the wavefunction norm within the numerical grid.

The difference in time-dependence of the flux density at zF = ±200 aB between
the full electron dynamics and the reference simulation is drawn in the upper panel of
Figure 6 (b) which allows to overcome some of the graphical difficulties the electron
probability density posed. It shows that the deviation in flux density correlated to
initially occupied state R0 is in fact by a factor thousand larger than the flux density
deviation correlated to occupied state L0. The maximal deficiency in transmission
direction reaches ∆IF

+
R0

= −8.23 × 10−4 EH/~ at t = 901 ~/EH with full width at
half maximum of 258 ~/EH which is mainly reflected by electron repulsion climaxing
at a surplus of ∆IF

−
R0

= 6.77×10−4 EH/~ already at t = 876 ~/EH and showing a full
width at half maximum of 214 ~/EH . Remaining above 13.5 % of its maximal value,
at a temporal minimum with surplus flux density of ∆IF

−
R0

= 0.92 × 10−4 EH/~
at t = 1 104 ~/EH , it peaks again at t = 1 195 ~/EH in a surplus of flux density
∆IF

−
R0

= 1.10 × 10−4 EH/~ before dying down below 10−9 EH/~ outside the depic-
ted time interval at t = 2 319 ~/EH . The graph of the deviation in flux density
further alludes that the flux densities correlating to an occupation of L0 are a pure
phenomenon of the electron interaction, as is the hundred times weaker temporally
diffuse contribution in correlation with an occupied excited state L1. They show
thus the same characteristics as in Figure 6 (a).

The Fourier transform of the measured quantum flux density F (t) with respect
to time resolves the individual contributions to the flux density as functions of total
energy E. This is illustrated in Figure 7 for the reference simulation in subfigure (c),
for the full interactive case in subfigure (a) and highlighting the difference between
both cases in subfigure (b).

In consequence of the time-dependent representation, the flux density as function
of system energy in case of the reference simulation is dominated by the contributions
correlated to the occupation of the initial bound state R0. Figure 7 (c) shows fur-
ther that transmission and reflection through the quantum-dot potential are energy
selective. Higher energy contributions are transmitted through the potential while
portions of lower energy are mainly being reflected. The energy difference between
the flux density maxima is 16.5 × 10−3 EH . The maximal flux density transmitted
is thus F+

R0
= 12.90 E−1

H at a system energy of E = −182.5 × 10−3 EH with a full
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width at half maximum of 32.6×10−3 EH . The maximal reflected flux density shows
F−

R0
= 16.32 E−1

H at E = −199.0 × 10−3 EH with full width at half maximum of
29.8 × 10−3 EH . Contributions correlated to any occupied state on the left quantum
dot are sixteen orders of magnitude smaller and show same maximum position and
FWHM as the R0 contributions supporting the hypothesis of echoing the main con-
tributions at the numerical accuracy limit. The transmitted flux densities climax at
F+

L0
= 2.27 × 10−19 E−1

H for the left ground state and at F+
L1

= 2.50 × 10−17 E−1
H for

the left excited state. The reflected contributions peak for the left ground state at
F−

L0
= 2.87 × 10−19 E−1

H and for the left excited state at F−
L1

= 3.16 × 10−17 E−1
H .

The three main contributions in flux density for the case of full electron interaction
as depicted in Figure 7 (a) have their maxima at other energies than for in the
non-interactive case. The reflected wavepacket in correlation with R0 occupation
shows its maximum of F−

R0
= 24.10 E−1

H at system energy E = −185.0 × 10−3 EH

which is 14.0 × 10−3 EH higher than in the non-interactive case. It has a full
width at half maximum of 39.0 × 10−3 EH . The ICEC relevant L0-correlated flux
density shows two local maxima for the reflected and the transmitted flux density
each. The maximal contribution of reflected wavepacket F−

L0
= 10.62 × 10−3 E−1

H in
correlation with an occupied ground state L0 is positioned at approximately equal
energy E = −185.2×10−3 EH as the reflected contribution correlated to R0. Its full
width at half maximum is 31.1 × 10−3 EH . It has a pronounced narrow second peak
of flux density F−

L0
= 7.08 × 10−3 E−1

H at E = −222.0 × 10−3 EH , however, which
shows a full width at half maximum of only 2.7 × 10−3 EH . The transmitted flux
density F+

L0
correlated with left ground state L0 exhibits also two peaks of similar

characteristic, one narrow and on broad, but its broader contribution at FWHM of
26.6 × 10−3 EH reaches with F+

L0
= 5.60 × 10−3 E−1

H at E = −181.0 × 10−3 EH only
about half of its reflected equivalent and the narrow peak at FWHM of 2.5×10−3 EH

dominates with F+
L0

= 6.08 × 10−3 E−1
H at E = −222.3 × 10−3 EH . The remaining

contributions to the overall flux density show a diffuse spectrum at least one order
of magnitude lower and appear to not exhibit any recognisable trends.

Investigating the deviation in flux density spectra between the fully interactive
dynamics and the reference case without electron interaction as it is depicted in
Figure 7 (b), one observes analogously to the representation of flux density devi-
ation as function of time in Figure 6 (b) that contributions correlated to L0 or
L1 are pure phenomena of interelectronic energy exchange. Moreover, the reaction
channels related to the initially occupied state R0 are being modulated. While the
transmission channel F+

R0
is primarily characterised by a nearly complete deficiency

in flux density with maximum of ∆IF
+
R0

= −12.90 E−1
H at E = −182.5×10−3 EH and

full width at half maximum of 32.6 × 10−3 EH , the reflection channel F−
R0

lacks flux
density at lower energies with maximal ∆IF

−
R0

= 5.45 E−1
H at E = −209.2×10−3 EH

and full width at half maximum of 18.2 × 10−3 EH but portrays a surplus at higher
energy of maximal ∆IF

−
R0

= 17.36 E−1
H at E = −178.5 × 10−3 EH and FWHM of

30.3 × 10−3 EH .

For the computation without electron interaction, the ratio of overall transmitted
flux density by incident flux density can be used to evaluate the transmittivity T of
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Figure 8: Transmittivity T and reflectivity R of the binding potential as
function of system energy E and free electron energy ǫ. The dashed line
represents 1 − T which is analytically equal to R. Deviations are due to
numerical division by small numbers at the edges of the energy distribution
of the system.

the quantum-dot binding potential as function of energy. Similarly, the ratio of re-
flected flux density and incident flux density can be used to evaluate the reflectivity R

of the binding potential in this setup. These are presented in Figure 8. Analytically,
transmission and reflection must make up all available probability density current
such that transmittivity and reflectivity add up to unity when electron capture is
not available as is the case in the simulation where electron interaction does not
take place. At the edges of the distribution where the incident flux density is close
to zero, the transmittivity is numerically more stable than the reflectivity which
oscillates for energies below −0.23 EH and for energies above −0.12 EH . As this
has to be a purely numerical phenomenon, the direct reflectivity R represented by a
violet line is overlain by a dashed black line indicating the alternative definition as
R = 1 − T.

As the system energy reduces to eigenenergy ER0
= −246.31 × 10−3 EH , the re-

flectivity of the confinement potential approaches unity and the transmittivity van-
ishes. Since the reference simulation ignores electron interaction, the two electrons
and their energies are independent of each other in that case. The reflectivity and
transmittivity are then analogously functions of free electron energy ǫ = E − ER0

.
At system energy E = −240.5×10−3 EH , the reflection coefficient of the binding po-
tential is still dominating largely with R = 99.56 % leaving a transmission coefficient
of only T = 0.04 %. This difference reduces with increasing energy until transmit-
tivity and reflectivity are equally reaching 50 % at E = −188.5 × 10−3 EH . This
is the energy where equivalent transmitted and reflected flux density contributions
F+

i and F−
i of Figure 7 (c) match in magnitude. From there on, the transmission

coefficient dominates of the reflectivity and reaches a maximum of T = 79.22 % at
E = −167.5 × 10−3 EH where the reflectivity reaches its minimum at remaining
R = 20.78 %. Their difference diminishes again slightly with increasing energy until
E = −112.0 × 10−3 EH where the transmission coefficient remains dominant as it
settles at T = 61.14 % leaving the reflection coefficient at R = 38.86 %. The transmit-
tivity slightly increases again with energy within the remaining window and reaches
T = 62.07 % at E = −100.0 × 10−3 EH where the reflectivity ends on R = 37.93 %.
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Previous studies of this system have concentrated on the transmitted quantum flux
density in correlation with capturing state L0.

3,8,9 This seemed reasonable because
the electron probability density of the fully interactive electron dynamics masked
any reflected contributions correlating to an electron capture within the dominant
broad stream of reflected incident wavepacket at occupied initial state R0. Due to
the immense mass of the quantum-dot system with respect to the moving electrons,
a conservation of electron momentum is not valid, however, and the densities of elec-
tron probability and the quantum flux show already in the reference computation
without electron interaction that reflected and transmitted contributions can be of
comparable magnitude. Equivalent flux densities corresponding to the same occu-
pied state were split in energy such that the transmission maximum in the reference
dynamics was 16.5 × 10−3 EH higher in energy than the reflection maximum. In the
ICEC dynamics computation, a local transmission maximum correlating to capture
state L0 lay only 4.2×10−3 EH above the reflection maximum which coincided ener-
getically with the R0-correlated reflection maximum in the full dynamics. That the
transmitted flux density presents two local maxima was recently observed.2 The dis-
tinctly different nature of both maxima was attributed to two distinct subprocesses
of interatomic coulombic electron capture: a direct energy transfer between the
electrons on impact which reflects the energetically broad spectrum of the incident
wavepacket, and an intermediary capture into L1R0 with consecutive interatomic
coulombic decay which shows a comparably narrow spectrum around a resonance
energy. The previously not-investigated reflected quantum flux density F−

L0
exhib-

its a qualitatively similar behaviour but while the decay-related maximum is only
16.49 % larger than its transmitted equivalent, the reflected impact maximum ex-
ceeds the transmitted one by 89.64 %. On the one hand, the maximal reflected
flux density due to the confining potential itself is already 26.46 % higher than the
transmitted one. On the other hand, transmittivity and reflectivity of the binding
potential are functions of the free energy ǫ of an electron. They thus shift with
respect to the system energy E depending on the correlated occupied state L0, R0

or L1. Nevertheless, free energies below ǫ = 57.8 × 10−3 EH are preferably reflected
while higher energies are mainly transmitted by the confinement potential. An addi-
tional obstruction of transmission derives from the electron repulsion which also adds
a further energetic dependence to transmission and reflection coefficients. Therefore
it is primarily the transmitted reference contribution F+

R0
which, in comparison of

the non-interactive dynamics with the full interaction, is converted into a surplus
of reflected flux density F−

R0
related to a persistent initial state R0 as well as flux

density F±
L0

related to interatomic coulombic electron capture.

6.2.2 The Influence of the Quantum Size Effect

In connection with former studies,3,8 the system under investigation showed three
different behaviours resulting from varying the size of the capturing confinement.
The distance between the confinement centres as well as the individual continuum
threshold energies have been kept constant. It is known that varying the confinement
size shifts the associated energy levels of eigenstates of the system. This phenomenon
known as quantum size effect is a universal quantum-mechanical phenomenon in-
dependent of the underlying potential. The exact variation of each level, however,
remains a function of the individual parameters to the potential. As two distinct
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reaction pathways have suggested themselves in the flux spectrum above which may
depend differently on the individual energy levels, their interaction and the ICEC
flux density may be tuned or detuned by the size parameter of the quantum con-
finement. Building and elaborating on the published results of Molle et al. [2], this
section presents the influence of the quantum size effect on the transmitted and
reflected electron flux F±

L0
correlated to an occupied state L0 within the quantum

confinement region. This represents a succesful interatomic coulombic electron cap-
ture.
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Figure 9: The impact of the quantum size effect on the interatomic
coulombic electron capture in a pair of quantum confinements within a
nanowire.

The quantum size effect with respect to characteristic diametric length LL =
2∆L in the model system has been investigated for a range between LL = 1

2

√
2 aB

and LL = 3.54 aB and shall be presented here in alignment with Figure 9 (a) for the
refined range from LL =

√
2 aB to LL = 3 aB which represents a respective size of

1LR and 3
2

√
2LR relative to the confinement size LR of the neighbouring quantum

dot. Equivalently to expressing the length parameter LL of the capturing confine-
ment in the characteristic effective length scale of aB, one may quantify it in terms
of the respective parameter LR =

√
2 aB of the neighbouring potential well. As the

exact dependence of the system’s energy levels and consequently the interatomic
electron capture on the individual confinement sizes and their interrelation are not
yet rigorously understood, both units are specified for the x axis in Figure 9. The
right panel shows the same data as the left panel but for a narrower size range from
LL = 2.2 aB to LL = 2.8 aB to aid the reader in visually distinguishing geometric
configurations of higher significance to the process of interatomic coulombic electron
capture.
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During this investigation, the distance R between the quantum confinements, the
potential parameters of standard deviation LR and continuum threshold energy DR

of the right potential well, the continuum threshold energy DL of the capturing
potential well and the energy distribution of the incident electron at average kinetic
energy ǫ0 have been kept constant. This implies a constant eigenenergy of right-
bound state R0 which is indicated by a dashed blue line in Figure 9 (a) and a
constant total energy ET of the system indicated by a green solid line at E =
−181.2 × 10−3 EH and standard deviation in the order of 10−6 EH . The constant
initial mean kinetic energy ǫi = 56.1 × 10−3 EH is indicated by a yellow dashdotted
line and the range in energy ±2∆±

ǫ is indicated by slim yellow dashdotted lines above
and below the mean energy. The distribution in kinetic energy is asymmetric with
longer tail towards higher energies. This is due to the dispersion relation between the
symmetrically distributed momentum with standard deviation ∆p = ~/∆z of inverse
proportionality to the initial spatial extension ∆z of the wavepacket and the kinetic
energy ǫ = p2/(2m). The characteristic energy range is thus ∆−

ǫ = 28.5 × 10−3 EH

for smaller energies and ∆+
ǫ = 38.5 × 10−3 EH for larger ones.

The change in length of the left quantum confinement induces a change in energies
of left-bound eigenstates L0 and L1. The left-bound ground-state L0 is presented
by a violet solid line uniformly decreasing with confinement size LL from EL0

=
−316.5 × 10−3 EH at LL =

√
2 aB to EL0

= −471.3 × 10−3 EH at length LL = 3 aB.
The left-bound excited state L1 is presented by a cyan solid line uniformly decreasing
with increasing size LL from EL1

= −0.573×10−6 EH at length LL = 2.065 aB down
to EL1

= −0.979 × 10−3 EH at length LL = 3 aB. At smaller confinement sizes LL,
the excited eigenenergy EL1

was numerically larger than zero and thus represented an
unbound electron state of the continuum. It is thus not being shown for those cases
in Figure 9. From the energy ER0

−EL0
transferred between the electrons during a

successful electron capture into L0, the expected range of outbound kinetic energy
for the released partner electron can be estimated ab initio by ǫf = ǫi + ER0

− EL0

and is illustrated by an orange dash-double-dotted line where the energy range ±∆±
ǫ

is indicated by slim lines of same style above and below. The estimated released
kinetic energy ǫf thus uniformly increases with confinement length LL. With an
average value of ǭf = 212.1 × 10−3 EH , it rises from ǫf = 126.3 × 10−3 EH at length
LL =

√
2 aB to ǫf = 281.1 × 10−3 EH at length LL = 3 aB.

In addition to the individual eigenenergy, varying the size of the quantum con-
finement also affects the extension of the wavefunctions associated to the bound
states. Particularly, when both electrons temporarily occupy a bound state within
the confinement region, the expectation values of their interaction potential as well
as their distance |z2 − z1| appear of relevance and are thus respectively illustrated
in Figure 9 (b) and (c) as function of size LL of the capturing confinement. As
first-order approximation, the interaction between two electrons simultaneously oc-
cupying the two potential wells in the confinement region has been estimated as
〈VLkR0

〉 ≈ EHaB/R which is inversely proportional to the centre-to-centre distance
R between the two wells.3,8,64 The accuracy of this estimate, however, has been
discussed in Molle et al. [2] and shall be paraphrased here for completeness and in
the context of Figure 9 (b) and (c). The electronic interaction potential at simul-
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taneous occupation of L0 and R0 increases uniformly with the confinement size of
the capturing quantum dot from VL0R0

= 101.39 × 10−3 EH at length LL =
√

2 aB

to VL0R0 = 101.75 × 10−3 EH at length LL = 3 aB. This corresponds to an under-
evaluation of the ground state through the 1/R-approximation by 1.37 % to 1.72 %.
The simultaneous occupation of left-bound excited state L1 and right-bound state
R0 shows a stronger variation with confinement size LL.

From the onset of state L1 at length LL = 2.065 aB to length LL = 2.43 aB,
the interaction energy is rapidly increasing with confinement size LL from VL1R0

=
39.07 × 10−3 EH at onset to its climax at VL1R0

= 112.03 × 10−3 EH . For larger
confinement sizes LL within the investigated range, the interaction energy decreases
uniformly to VL1R0

= 109.47 × 10−3 EH at LL = 3 aB. Its average expectation value
is V̄L1R0

= 107.74 × 10−3 EH with standard deviation of 9.04 × 10−3 EH . Clearly,
the interaction potential approximation by R−1 overestimates strongly for states
with energies EL1

close to zero. The interaction energy VL1R0
passes the value of

EHaB/R at length LL = 2.162 aB with a comparably steep slope ∆VL1R0
/∆LL =

199.8 × 10−3 EH/aB.
The average expectation value of electron-electron distance R̄L0R0

for a simul-
taneous occupation of left-bound ground state L0 and right-bound R0 within the
presented range of confinement sizes is 0.446×10−3 aB smaller than the distance para-
meter R = 10.0 aB. Over the size range, the electron-electron distance decreases
slightly but uniformly with increasing length parameter LL from RL0R0

= R at
length LL =

√
2 aB to RL0R0

= 99.981 %R at length LL = 3 aB. The expect-
ation value for simultaneously occupied states L1 and R0 is uniformly decreasing
from RL1R0

= 4.935 R at length LL = 2.065 aB to RL1R0
= 100.323%R at length

LL = 3.0 aB. For smaller lengths, the state L0 does not represent a bound but
rather a continuum state such that the expectation value of the electron-electron
distance RL1R0

is numerically limited by the size of the grid which is illustrated
by values of the order of 100 aB in Figure 9 (c). The average expectation value is
R̄L1R0

= 11.685 aB which is 16.85 % larger than the centre-to-centre distance R of
the quantum dot system.

With respect to the approximation of interaction energy VLkR0
as EHaB/R, the

interaction energy is thus generally underestimated within the presented confine-
ment size range for both VL0R0

and VL1R0
. While the estimate of interaction energy

in simultaneously occupied left- and right-bound ground states L0 and R0 appears
satisfactory with an average underestimate between 1.37 % and 1.72 % only, its ac-
curacy in estimation of VL1R0

is strongly dependent on confinement size and varies
between underestimating by up to 10.74 % to overestimating by 156.0 % within the
numerical model. A reduction of confinement size pushes the state L1 towards the
continuum at zero. As it approaches the continuum, the eigenfunction extends over a
larger domain which allows to reduce the electron-electron interaction. This implies
that the expectation value of the electron-electron distance RL1R0

diverges as the en-
ergy EL1

approaches the continuum and the approximation by R fails. Similarly to
the interaction energy, the estimate of expected electron-electron distance RL0R0

for
simultaneous occupation of the left- and the right-bound ground state proves satis-
factory within the presented size range with a deviation below 2 h. The expectation
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value RL1R0
, however, is generally larger than R and remains strongly dependent

on the size of the capturing quantum dot LL. An estimate of the electron-electron
distance by the distance between the quantum dots RL1R0

≈ R only underestim-
ates less than 10 % for capturing lengths above LL = 2.27 aB. Moreover, the
extension of the wavefunction increases the expectation value of interaction energy
with respect to the reciprocal expectation value of electron-electron distance such
that 〈V12〉 > EHaB/ 〈R12〉. The ground state interaction VL0R0

is thus in average
1.52 % larger than EHaB/RL0R0

with a standard deviation of 0.10 %. The excited
state interaction VL1R0

is in average 18.59 % above EHaB/RL1R0
and has a standard

deviation of 13.29 %.

The significant quantities related to the electron flux density in correlation with an
occupied state L0 and thus representing a successful interatomic coulombic electron
capture are illustrated in Figure 9 (d). Since reflected and transmitted contribu-
tions can be of comparable magnitude for appropriate conditions, the figure depicts
reflected contributions by long dashes and respective transmitted contributions by
short dashes. Therefore, the maximal reflected flux density (maxE F

−
L0

) with respect
to system energy E as function of capturing quantum dot size LL is presented as a
solid cyan line, the maximal transmitted flux density (maxE F

+
L0

) is represented by
a short-dashed blue line. The maximal capture probability (maxE P

−
L0

) with respect
to reflected Flux F−

L0
overall system energies E as function of length LL is presented

by a long-dash-dotted green line, its equivalent (maxE P
+
L0

) with respect to transmit-
ted flux is represented by a short-dash-dotted line. The overall capture probability
into state L0 is given by the integral (

∫

EdE F
±
L0

) of respective flux density over the
entire energy range as function of length parameter LL, such that the probability
(
∫

EdE F
−
L0

) of reflected quantum flux density in correlation to an occupied state L0

is presented by a long-dash-dot-dotted line in red and the probability (
∫

EdE F
+
L0

)
related to the equivalent transmitted flux density is illustrated by a short-dash-dot-
dotted orange line. The contributions related to transmission are labelled within
Figure 9 (d), their equivalents related to reflection remain unlabelled for the sake of
cleaner graphical presentation but show the same dash-dot pattern.

Within the investigated domain of confinement sizes LL, the maximum (maxE F
−
L0

)
with respect to energy of reflected flux density correlated to an occupation of state L0

ranges from (maxE F
−
L0

) = 0.52 %/EH at LL = 3 aB to (maxE F
−
L0

) = 132.98 %/EH at
LL = 2.63 aB. It has an average value over the studied domain of 17.49 %/EH and a
standard deviation of 168.7×10−3 aB but behaves strongly asymmetrical with respect
to confinement size LL. With a long onset at smaller sizes where it grows from a
tenth to its peak value over a size range of ∆LL = 262.7×10−3 aB, it dies down from
the peak value to a tenth for larger sizes over a range of only ∆LL = 125.4×10−3 aB.
The maximum of transmitted ICEC flux density (maxE F

+
L0

) with respect to energy
E ranges from (maxE F

+
L0

) = 0.41 %/EH at LL = 3 aB to (maxE F
+
L0

) = 380.60%/EH

at LL = 2.60 aB. It averages to 72.56%/EH over the studied domain with standard
deviation of 567.6×10−3 aB which is distributed asymmetrically in favour of smaller
confinement sizes LL. While slowly increasing with confinement size over a range
of ∆LL = 426.9 × 10−3 aB from a tenth to the peak value, the maximal transmitted
ICEC flux density ∆LL = 426.9 × 10−3 aB reduces quickly to a tenth of its peak
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value over a range of only ∆LL = 134.1 × 10−3 aB as confinement size increases
further.

The maximum of reflective ICEC probability density maxE P
−
L0

with respect to
system energy E varies for different capture sizes LL from maxE P

−
L0

= 0.02 % at
LL = 3 aB to maxE P

−
L0

= 11.59 % at LL = 2.67 aB with an average of 1.41 %
and standard deviation of 177.9 × 10−3 aB. The behaviour with respect to the
length parameter LL is asymmetric similar to the reflective flux density maximum.
Uniformly increasing with LL from a tenth to the full peak value over a range
of ∆LL = 230.9 × 10−3aB, it decreases back to a tenth of its peak value over a
range of ∆LL = 123.2 × 10−3aB towards larger confinement sizes. The maximum
of transmissive ICEC probability density maxE P

+
L0

with respect to system energy
E varies over the investigated domain of capturing quantum-dot sizes LL between
maxE P

+
L0

= 0.02 % at length LL = 3 aB and maxE P
+
L0

= 25.90 % at length
LL = 2.64 aB with an average of 5.01 % and standard deviation of 251.1 × 10−3aB

over the domain. It increases uniformly with length LL from a tenth to its peak value
over a range of 573.6×10−3 aB and decreases quickly over a range of 131.3×10−3 aB

for larger LL to a tenth of its peak value.

The total probability P̄±
L0

of the interatomic coulombic electron capture is the
energy-distribution-weighted integral of the capture probability at each energy E.
It thus corresponds to the expectation value of the flux density F±

L0
or equivalently

the expectation value of the probability P±
L0

(E). It is an average over the individual
energy contributions and depends on the initial wavepacket. It can be interpreted as
the average efficiency of the ICEC experiment. The reflective probability total P̄−

L0

is dependent on the length LL of the capturing quantum-dot within the nanowire.
It ranges from a probability of P̄−

L0
= 0.02 % at length LL = 3 aB to 0.64 % at LL =

2.59 aB. Its average probability total over the investigated domain of confinement
lengths is 0.14 % with standard deviation of 283.3 × 10−3 aB. The behaviour as
function of length LL is asymmetric with a long onset at lower lengths and a sharp
decrease at lengths above the peak position. The full width at tenth maximum for
the total reflective probability P̄−

L0
is thus comprised by 413.9 × 10−3 aB for lengths

below the peak position at LL = 2.59 aB and only 187.1×10−3 aB for lengths above.
Over the studied domain of capture lengths LL, the transmissive total probability
P̄+

L0
ranges from a total probability P̄+

L0
= 0.01 % at capture length LL = 3 aB to a

total transmissive probability of P̄+
L0

= 2.83 % at length LL = 2.48 aB. With length-
averaged total probability of 0.74 % and standard deviation of 197.4 × 10−3 aB, it
behaves similarly asymmetrically as the flux density and probability maxima. The
full width at tenth maximum is thereby constituted of a long onset of 489.9×10−3 aB

from narrow quantum dots towards the peak value in transmissive total probability
P̄+

L0
and 236.7 × 10−3 aB for longer capturing confinements.

Summarising, the behaviour as function of capture length LL of the maximal
flux density maxE F

±
L0

with respect to energy E, the maximal probability maxE P
±
L0

with respect to energy E and the energy-averaged probability P̄±
L0

for transmissive
flux density F+

L0
passing the point z+ = +200 aB and reflective flux density F−

L0

passing the point z− = −200 aB in correlation to an occupied state L0 within the
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quantum-confinement region is generally favouring lengths LL smaller than the re-
spective optimum. Each quantity climaxes at a different optimal length LL but
the optimal capture lengths LL of the reflective quantities prove to lie above each
respective transmissive equivalent and the optimal parameters for maximal capture
probability both lie above the optima for maximal flux density which themselves
both climax at higher lengths than either of the total probabilities P̄±

L0
. The op-

timal length for the total reflective capture probability P̄−
L0

lies 113 × 10−3 aB below

the optimal length for the transmissive total probability P̄+
L0

and 127 ×−3 aB below
the optimal length for the reflective flux density maximum maxE F

−
L0

. The trans-
missive flux density maximum climaxes maxE F

+
L0

for a capture length LL which
is 28 × 10−3 aB shorter than the optimum of the maximal reflective flux density
maxE F

−
L0

and 42 × 10−3 aB shorter than the optimal length for the transmissive
capture probability maximum maxE P

+
L0

. The optimal confinement length LL for
the reflective probability maximum maxE P

+
L0

is 29 × 10−3 aB longer than the trans-
missive equivalent maxE P

+
L0

and 43 × 10−3 aB longer than the reflective flux density
maximum maxE F

−
L0

.

The range in capture length LL between the optimum and a tenth of the optimal
value for each quantity is by a factor of 2 to a factor of 4 larger for smaller-than-
optimal LL in comparison with the respective range for larger-than-optimal LL.
This implies that ICEC is more resilient to a change in quantum-dot size at smaller
sizes and becomes sensitive to changes in LL for sizes above the optimum. This
asymmetry is enhanced for the transmissive energy-maximal flux density maxE F

+
L0

and probability maxE P
−
L0

where the domain of increase from a tenth to the op-
timal value with increasing length is three times and respectively four times as
large as the domain of decrease from the optimal value to a tenth with increasing
length. While persisting to favour smaller capture lengths, this asymmetry varies
less for the reflective flux density maxE F

−
L0

and the reflective probability maxE P
−
L0

where the increasing domain of LL is twice as large as the decreasing domain. The
energy-averaged probability P̄±

L0
differs less in asymmetry. Transmissive and reflect-

ive probability show both a domain roughly twice as broad for lower lengths than
for larger ones.

Although it was found in the previous section for capture length LL = 2.83 aB,
that the transmissive flux density corresponding to a successful electron capture
was considerably smaller than the reflective one, the investigation of varying con-
finement sizes LL as depicted in Figure 9 (d) presents the transmissive ICEC flux
and probability as the dominant contributions within the significant domain between
L = 2.2 aB and LL = 2.7 aB. The optimal confinement length LL of the trans-
missive energy-averaged probability P̄+

L0
coincides with the maximum in interaction

energy VL1R0
for the simultaneously occupied states L1 and R0, the optimal length

LL for the transmissive ICEC flux density F+
L0

coincides with the length at which the
energy difference between the states L1 and R0 equals the energy difference between
the states L0 and R0. For the remaining maxima, it is less apparent whether the
behaviour as function of confinement length LL would coincide with a particular
trend in induced by quantum size effect. Because the the initial wavepacket is kept
constant with a relatively large range in energy to probe the energy domain, it is not
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optimised to obtain a high total probability P̄±
L0

which is the average over energy.
Therefore the energy-maximal probability maxE P

±
L0

is ten times larger in order than

the energy-averaged probability P̄±
L0

for the wave-packet in this investigation. A nar-
rower wavepacket at appropriate incident energy, however, would allow to optimise
the total ICEC probability to come closer to the maximal probability with respect
to energy.
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Figure 10: The ICEC induced Electron Flux as function of incident energy
for various capture sizes.

While Figure 9 (d) summarises the maximal ICEC flux densities and probabilit-
ies over energy at a particular capture length LL, the individual flux density and
probability as function of energy is presented in Figure 10 for six different confine-
ment lengths LL. A part of these results have been published in Molle et al. [2].
In alignment with Figure 9 (d), the transmissive flux density F+

L0
is presented by

a short-dashed blue line which is overlain with a slimmer short-dashed grey line
indicating a fit to a decay spectrum in superposition with (146). The transmissive
probability P+

L0
= F+

L0
/Fi is indicated by a short-dash-dotted turquoise line for the

interval of sufficient incoming flux Fi as depicted by the dotted black line in the
background. In addition to Molle et al. [2], Figure 10 also presents the reflective
flux density F−

L0
by a solid violet line overlain by a long-dashed grey fit and the

reflective probability P−
L0

= F−
L0
/Fi by a green long-dash-dotted line for the interval

of sufficiently large incoming flux density. The six panels show the evolution in
shape and magnitude of the spectra of ICEC flux density and probability. While
the two panels on the left for LL = 2.95 aB and LL = 2.83 aB shed a light onto the
large-confinement limit, the centre panels for LL = 2.77 aB and LL = 2.72 aB depict
the region of steep slope towards optimal configurations for flux density and prob-
ability. The right-hand panels for lengths LL = 2.54 aB and LL = 2.39 aB represent
two examples on the long domain of shallow slopes ∆F±

L0
/∆LL and ∆P±

L0
/∆LL for

confinement lengths smaller than the optimum.
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The incident flux density indicated by the dotted black line in the background has
a peak value of maxE Fi = 24.09 E−1

H at system energy E = −185.0 × 10−3 EH with
full width at half maximum of 39 × 10−3 EH and expectation value of 3.996 E−1

H .
It is slightly asymmetrical in favour of higher energies such that the full width at
tenth maximum is composed of a energy difference of 29.7 × 10−3 EH from the low-
energetic tenth of the maximum to the maximum value and of 41.3 × 10−3 EH from
the maximum value to its tenth at higher energies. This remains a constant initial
condition over all capture lengths LL. For capture length LL = 2.95 aB presented
in Figure 10 (a), the transmissive ICEC flux density F+

L0
climaxes at energy E =

−182.7 × 10−3 EH with maxE F
+
L0

= 0.53 %/EH . The main contribution agrees with
a flux density spectrum of a Gaussian wavepacket as is indicated by the grey dashed
line and has an expectation value of 0.05%/EH with standard deviation of 12.2 ×
10−3 EH . Additionally, the transmissive flux density shows a small local maximum
of F+

L0
= 0.06 %/EH at energy E = −236.0 × 10−3 EH . Qualitatively, this small and

narrow shoulder can be attributed reasonably well to a Lorentzian profile with full
width at half maximum of 2.6×10−3 EH . The transmissive ICEC probability P+

L0
as

function of energy E thus reaches the maximal value of maxE P
+
L0

= 0.02 % for this
set-up at energy E = 182.5 × 10−3 EH . It exhibits a full width at half maximum of
28.36 × 10−3 EH which is symmetrically distanced from the maximum. However, a
shoulder manifests around E = −210×10−3 EH which does not appear on the other
branch of the curve but may be the consequence of the overall small magnitudes of
flux density and resulting probability. The quotient of ICEC flux density by incident
flux density F+

L0
/Fi becomes numerically instable for small incident flux densities

and has thus been cut off at Fi ≤ 0.15 E−1
H which corresponds to 0.6 % of the

maximal incident flux density. This prohibits the evaluation of ICEC probability
for the small local flux density maximum at E = −236.0 × 10−3 EH .

The reflective ICEC flux density F−
L0

is larger than the transmissive equivalent for
the capture length LL = 2.95 aB. With a maximum value of maxE F

−
L0

= 0.66 %/EH

at energy E = −182.2×10−3 EH , it reaches an expectation value of F̄−
L0

= 0.08 %/EH

and shows a standard deviation of 14.47 × 10−3 EH . Its full width at half maximum
reads 27.31×10−3 EH and it can be fitted reasonably well to the flux density spectrum
of a Gaussian wavepacket but fluctuates irregularly by approximately ±0.01%/EH

near the maximum as well as near the lower flux densities at the high-energy tail.
These fluctuation may however be of numerical nature due to the overall small
magnitude of ICEC throughput for this specific set-up. The reflective flux density
shows a small local maximum at low energies similarly to its transmissive equivalent.
This one is marginally shifted to higher energies with locally maximal flux density
F−

L0
= 0.05 %/EH at system energy E = −235.5 × 10−3 EH . Moreover, it shows a

small shoulder on the decreasing branch towards increasing energy which produces
a broadened full width at half maximum of 3.7 × 10−3 EH . Resulting from the
reflective and the incident flux density, the reflective ICEC probability P−

L0
reaches

a maximum of maxE P
−
L0

≈ 0.03 % at energy E = −182.0 EH . Opposed to the
transmissive equivalent, the reflective probability shows an apparent asymmetric
behaviour with respect to energy and favours the branch of energies above that of
the maximum where it remains above 6.5×10−3% probability before the cut off. Its
full width at half maximum measures 45.3 × 10−3 EH .
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For capture length LL = 2.83 aB illustrated in Figure 10 (b), the narrow local
maximum at the low-energy edge of the incident flux density distribution has sig-
nificantly grown in comparison to length LL = 2.95 aB. This particular set-up has
already been analysed above in Figure 7 including additional contributions to the
overall flux density and has been compared there to a reference simulation without
electron-electron interaction. Figure 10 (b) now emphasizes the evolution of the
transmissive and reflective ICEC contributions with respect to capture length vari-
ation and its consequences for the ICEC probability.

The transmissive flux density has narrow and sharp peak at energy E = −222.3×
10−3 EH . It has a flux density of maxE F

+
L0

= 0.61 %/EH , a full width at half
maximum of only 2.5 × 10−3 EH and a full width at tenth maximum of only 4.2 ×
10−3 EH . It shows a second broad-banded feature at higher energies, however, which
has a local maximum of F+

L0
= 0.56 %/EH at energy E = −181 × 10−3 EH with

full width at half maximum of 26.6 × 10−3 EH . The narrow peak is well fitted by
a Lorentzian profile while the broad part around the smaller local maximum is well
represented by the energy distribution of a Gaussian wavepacket. The final sum
of square residuals of such a fit as shown by the grey thin dashed line is 3.3428 ×
10−6 E−2

H . The small oscillatory deviations from the fit line of order of magnitude
of 10−4 %/EH arise from the numerical Fourier transformation of the flux density
as function of discrete time steps.

The transmissive ICEC probability arising from the flux density is strongly pri-
oritising the narrow peak at low energy over the broad feature around the incident
flux density maximum near E = −185 × 10−3 EH . Just past the numerical cut-off
energy, the probability reaches its global maximum at maxE P

+
L0

= 1.66 % at energy
E = −222.5 × 10−3 EH with full width at half maximum of 2.4 × 10−3 EH and full
width at tent maximum of 4.2 × 10−3 EH . The broader feature found in the flux
density spectrum is diminished by two orders of magnitude to a local maximum of
P+

L0
= 0.02 % at energy E = −178.2 × 10−3 EH which is shifted to higher energies

with respect to the broad-banded feature in the flux density. It shows a full width
at half maximum of 36.8 × 10−3 EH .

In contradiction to the transmissive flux density, the reflective flux density fa-
vours the broad feature at central energies of the energy distribution over the narrow
peak at the lower-energetic edge. The global maximum of maxE F

−
L0

= 1.06 %/EH is
therefore found at energy E = −185.2×10−3 EH with full width at half maximum of
31.1 × 10−3 EH , whereas a local maximum of F−

L0
= 0.71 %/EH manifests at energy

E = −222 × 10−3 EH with respective full width at half maximum of 2.7 × 10−3 EH

and full width at tenth maximum of 4.6 × 10−3 EH . The reflective flux density
spectrum is well described by a supperposition of a Lorentzian profile and a energy
density profile for a Gaussian wavepacket, which is indicated by a grey thin dashed
line in Figure 10 (b) with final sum of square residuals of 8.7100 × 10−6 E−2

H .

Nevertheless, the reflective probability density remains in favour of the sharp
peak rather than the broader feature which is due to the strong asymmetry in the
quotient of reflective ICEC flux density by incident one F−

L0
/Fi. So the global

maximum of maxE P
−
L0

= 1.8 % is reached at energy E=−22.3 × 10−3 EH with
full width at half maximum of 2.7 × 10−3 EH and full width at tenth maximum
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of 4.7 × 10−3 EH , whereas the second local probability maximum of only P−
L0

=
0.04% manifests at energy E = −182.7 × 10−3 EH with full width at half maximum
of 65.2 × 10−3 EH . While the local maxima around the maximal incident flux
density near −185 × 10−3 EH remain visible for flux density and probability in
both directions, that of reflection and that of transmission, they become orders of
magnitude smaller in the probability spectrum for confinement length LL = 2.83 aB

than the narrow feature at the low-energy edge of the incident energy spectrum
which remains of similar order as for the confinement length LL = 2.95 aB, however,
as discussed with Figure 10 (a). The reflective probability remains larger than the
transmissive one for both confinement lengths which will change for smaller lengths
though.

At confinement length LL = 2.77, the maxima in transmissive flux density and
transmissive ICEC probability exceed their reflective counterparts but retain the
features of a sharp peak at low energies and a broad local maximum near the incident
flux density maximum. The transmissive ICEC flux density F+

L0
climaxes thereby

at a value of maxE F
+
L0

= 5.55 %/EH at energy E = −215.2 × 10−3 EH with full
width at half maximum of 2.6 × 10−3 EH and full width at tenth maximum of still
only 4.4 × 10−3 EH . It offers a second maximum of flux density F+

L0
= 0.51 %/EH

at energy E = −180.2 × 10−3 EH with a broader full width at half maximum of
28.3 × 10−3 EH . This behaviour can be described by a superposition of a Lorentzian
spectrum with the spectrum of a Gaussian wavepacket indicated by the grey thin
dashed line in Figure 10 (c) of final sum od square residuals of 182.73 × 10−6 E−2

H .
The transmissive ICEC probability peaks to maxE P

+
L0

= 2.615 at energy E =
−215.5×10−3 EH with full width at half maximum of 2.6×10−3 EH and full width at
tenth maximum of still only 3.9 × 10−3 EH . It carries on to present a second broad-
banded feature of local maximum in ICEC probability P+

L0
= 0.02 % at energy

E = −172.7 × 10−3 EH of a broad full width at half maximum of 41.9 × 10−3 EH .
However, the oscillatory fluctuations in probability near the edges of either branch
of the narrow peak appear of similar order of magnitude to the broad feature around
the maximum of incident flux density distribution.

Whereas the maximum in reflective ICEC flux density maxE P
−
L0

= 5.16 % at
energy E = −215.2 × 10−3 EH amounts to less than the maximum of transmissive
flux density, its second local maximum of P−

L0
= 1.36 %/EH provided by a broad

feature at energy E = −184.5 × 10−3 EH near the incident flux density maximum
is twice as strong as the transmissive equivalent and of same order of magnitude as
its narrow overall maximum. The full width at half maximum of 32.6 × 10−3 EH

of the broader feature measure about twelve times that of the narrow peak with
full width at half maximum of 2.3 × 10−3 EH which measures a similarly narrow
full-width at tenth maximum of 4.4 × 10−3 EH as the equivalent narrow peaks at
the two larger confinement lengths. A description by superposition of a Lorentzian
profile and the energy distribution of a Gaussian wavepacket thus appear successful
with a final sum of square residuals of 215.13 × 10−6 E−2

H as depicted by the grey
thin long-dashed line in Figure 10 (c).

The maximum in reflective ICEC probability touches maxE P
−
L0

= 2.41 % at
energy E = −215.5 × 10−3 EH . It spreads to a full width at half maximum over
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2.6 × 10−3 EH and to a full width at tenth maximum over 3.9 × 10−3 EH . As the
narrow peak in the reflective flux density has shifted to higher energies in comparison
to the two larger confinement length discussed above, the estimate of reflective
ICEC probability by evaluating the quotient of reflective flux density by incident
one F−

L0
/Fi defies a clear distinction of the two features of different bandwidth. The

reflective probability thus appears as asymmetric sharp peak at the low-energetic
edge of the incident flux density spectrum and presents a long tail towards higher
energies. This tail extents over the entire incident spectrum but fails to reach a
tenth of the maximum probability.

For the capturing confinement length of LL = 2.72 aB, the the narrow peak in the
reflective and transmissive ICEC flux densities F±

L0
as well as ICEC probabilities P±

L0

grows and shifts further towards higher energies and merges with the broader feature
centred near the incident flux density maximum. The transmissive flux density F+

L0

dominates clearly over its reflective equivalent F−
L0

at the narrow peak but remains
inferior over the broad-banded shoulder at higher incident flux densities. Maximal
with maxE F

+
L0

= 67.08 %/EH at energy E = 210.0 × 10−3 EH , the transmissive
flux density exhibits a full width at half maximum of 2.5 × 10−3 EH and a full
width at tenth maximum of still only 4.2 × 10−3 EH . The broad feature around the
incident flux density maximum which was observed distinctly and clearly for the
three examples of higher capture size LL, now only manifests as a shoulder below
a tenth of the transmissive flux density maximum. Effectively, the transmissive flux
density of this broad-banded shoulder has retained the same order of magnitude
as for the previous examples discussed and shown in Figure 10 (a-c) but cannot
match the increasing magnitude of the narrow flux density feature. Nevertheless, a
description by superposition of a Lorentzian profile and the spectrum of a Gaussian
wavepacket proves successful still with a final sum of square residuals of 23.518 ×
10−3 E−2

H .

The transmissive ICEC probability climaxes here with maxE P
+
L0

= 12.69% at en-
ergy E = −210.0×10−3 EH as depicted in Figure 10 (d) by the turquoise dash-dotted
line. While the probability resembles at first glance a Lorentzian spectrum as was
suggested previously in Pont et al. [8], the positioning along the increasing branch
of the incident flux density spectrum and the superposing broad-banded shoulder
of the transmissive ICEC flux density at higher energies do force an asymmetrical
shape on the ICEC probability spectrum which manifests in a long tail towards the
centre of the incident flux density spectrum at higher energy. This takes place below
the threshold of a tenth of the maximum, however, such that the typical full width
at half maximum of 2.5×10−3 EH and full width at tenth maximum of 4.2×10−3 EH

are sustained.
The reflective ICEC flux density has a maximum maxE F

−
L0

= 44.76 %/EH at
energy E = −209.7 × 10−3 EH . It shows the typical full width at half maximum of
2.5×10−3 EH and full width at tenth maximum of 4.3×10−3 EH which were already
observed in the previous examples. Attached to the decaying branch at higher
energies, a broad shoulder manifests which outweighs its transmissive equivalent by
a factor of 3. In spite of the two features appearing not as distinctly positioned as
for larger capture lengths LL, the description by superimposing a Lorentzian profile
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with the spectrum of a Gaussian wavepacket remains successful with a final sum
of square residuals of 14.908 × 10−3 E−2

H . The resulting reflective ICEC probability
culminates at maxE P

−
L0

= 8.36 % at energy E = −210.0 × 10−3 EH and similar full
widths at half maximum of 2.5 × 10−3 EH and at tenth maximum of 4.3 × 10−3 EH .
In accord with the examples discussed above, it holds a long tail towards the centre
of the incident flux density at higher energies but with probability magnitude below
the tenth maximum threshold.

For the example of capture length LL = 2.54 aB shown in Figure 10 (e), the
peak in transmissive and reflective flux density shifts further to higher energies over
the spectrum of the Gaussian wavepacket which induces a tilting of the profile.
The decreasing branch with respect to increasing energy is passing the point of
maximal incident flux density which leads to an asymmetric broadening of the width
at tenth maximum in favour of higher energies. The transmissive flux density reaches
maxE F

+
L0

= 338.1 %/EH at energy E = −192.5 × 10−3 EH . While the full width
at half maximum of 5.7 × 10−3 EH is increased by a factor of 2.3 with respect to
LL = 2.72 aB, the full width at tenth maximum is increased by a factor 3.6 to
measure 15.1×10−3 EH in total. As measure of asymmetry, the energy difference on
the increasing branch between the tenth maximum and the maximal transmissive
flux density measures 6.6×10−3 EH while the branch of decreasing flux density with
increasing energy measures a width of 8.5 × 10−3 EH between the maximum and its
tenth. By this, the expectation value of the transmissive flux density retains F̄+

L0
=

100.1 %/EH . A description by superposition of a Lorentzian with the spectrum of
a Gaussian wavepacket proved here equally successful and yielded a final sum of
square residuals below 40.278 × 10−3 E−2

H .

Consequently, the transmissive ICEC probability attains maxE P
+
L0

= 15.69 % at
energy E = −192.8×10−3 EH . It has a full width at half maximum of 5.7×10−3 EH

and a full width at tenth maximum of 15.5 × 10−3 EH . With partial widths at
tenth maximum of 7.2 × 10−3 EH and 8.3 × 10−3 EH on the branch of respectively
increasing and decreasing probability with increasing energy, the transmissive ICEC
probability behaves less asymmetrical with respect to energy than the transmissive
flux density. The decreasing branch at higher energies remains in slight favour
though.

The maximum value of reflective flux density is significantly smaller than the
transmissive one. With maxE F

−
L0

= 71.2 %/EH at energy E = 192.3 × 10−3 EH ,
it remains below a quarter of the respective maximum in transmissive flux density.
Moreover, it appears slightly broader and less symmetrical with a full width at half
maximum of 6.0 × 10−3 EH and full width at tenth maximum of 17.5 × 10−3 EH of
which the partial widths from maximum to its tenth measure 6.2 × 10−3 EH for the
increasing branch and 11.3 × 10−3 EH for the branch of decreasing reflective flux
density with increasing energy. A description by superposition of a Lorentzian with
the spectrum of a Gaussian wavepacket proves to remain nevertheless successful
with a final sum of square residuals below 4.0761 × 10−3 E−2

H .

Similarly, the reflective probability maximum with respect to energy stays with
maxE P

−
L0

= 3.28 % at energy E = 192.5 × 10−3 EH below a quarter of the trans-
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missive probability maximum. The full width at half maximum spans 6.0×10−3 EH .
Whereas the partial width from maximum to its tenth narrows to 6.7 × 10−3 EH

for the increasing branch, it broadens to 11.0 × 10−3 EH on the branch of decreas-
ing ICEC probability with increase in energy. As result, the full width at tenth
maximum spans 17.7 × 10−3 EH .

Opposed to the previous set-ups, the maxima of both ICEC flux densities and
probabilities appear at energies above that of the maximal incident flux density for
the capture length LL = 2.39 aB depicted in Figure 10 (f) and span over more than
twice the bandwidth at half maximum observed for capture length LL = 2.54 aB.

The transmissive flux density arrives at maxE F
+
L0

= 170.60 %/EH at energy
E = −180.0 × 10−3 EH . The full width at half maximum spans 13.4 × 10−3 EH . Of
similar magnitude, the partial width between the maximum and its tenth measures
13.5 × 10−3 EH on the branch of increasing flux density with increase in energy and
14.3 × 10−3 EH over the decreasing branch. This amounts to a full width at tenth
maximum of 27.8 × 10−3 EH . Describing the curve by a superimposed Lorentzian
with the spectrum of a Gaussian wavepacket achieves a numerical accuracy in the
final sum of square residuals of 2.0929 × 10−3 E−2

H as illustrated by the thin grey
short-dashed line overlaying the cyan short-dashed line representing the transmissive
flux density F+

L0
in Figure 10 (f).

The transmissive ICEC probability remains asymmetrically distributed with longer
tail in favour of higher energies. Climaxing with a probability of maxE P

+
L0

= 7.42 %
at energy of E = −179.5 × 10−3 EH , it dissipates to a full width at half maximum
of 14.4 × 10−3 EH and a full width at tenth maximum of 31.4 × 10−3 EH . This
is composed of the partial width of 14.4 × 10−3 EH between maximal probability
and its tenth on the branch of increasing probability with increase in energy and of
16.9 × 10−3 EH on the decreasing branch such that it appears broadened towards
higher energies with respect to the transmissive flux density. This is depicted in
Figure 10 (f) where the increasing branches of transmissive ICEC flux density in
cyan short-dashed line and of transmissive ICEC probability in turquoise short-
dash-dotted line overlay while the decreasing branch of the probability delays to
higher energies in comparison to the flux density.

Less than a tenth of its transmissive equivalent, the reflective flux density reaches
only a maximum of maxE F

−
L0

= 16.58 %/EH at energy E = −179.5 × 10−3 EH . Its
full width at half maximum spans over 14.3 × 10−3 EH . Its partial widths between
maximal flux density and its tenth maximum carry 13.8×10−3 EH for the increasing
and 17.3 × 10−3 EH for the branch of decreasing flux density with respect to an
increase in energy. The full width at tenth maximum of 31.1 × 10−3 EH thereby
favours the larger energies. Although not showing distinctly, a superposition of a
Lorentzian profile and a Gaussian wavepacket spectrum describes the transmissive
flux density as function of energy to an accuracy given by a final sum of square
residuals amounting to only 301.1 × 10−6 E−2

H .

In consequence, the maximum in reflective ICEC probability of maxE P
−
L0

= 0.73 %
at energy E = −179.0×10−3 EH fails to touch a tenth of its transmissive equivalent
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but dissipates to half its maximum over a full width of 15.9 × 10−3 EH and to
a tenth of its maximum over a full width of 39.9 × 10−3 EH . The partial width
of 25.3 × 10−3 EH from maximum to its tenth on the branch of decreasing ICEC
probability with respect to an increase in energy reaches nearly 7

4
of the partial width

on the uniformly increasing branch which spans over 14.6 × 10−3 EH . As result, the
increasing branches of reflective flux density represented by a solid violet line and
that of the reflective ICEC probability represented by a green long-dash-dotted line
coincide in Figure 10 (f) but the uniformly decreasing branch of the probability
appears delayed to higher energies compared to the decreasing branch of the flux
density.

In all six set-ups, the reflective and the transmissive flux densities are successfully
represented by a superposition of a spectrum of Lorentzian shape with a spectrum
of a Gaussian wavepacket. In order of their presentation, from large capture lengths
LL to smaller ones, the Lorentzian profile changes position from lower energies to
higher energies and passes through different sections of the incident flux density
distribution. The Gaussian spectrum appears to retain its order of magnitude and
energetic position near the centre of the incident flux density spectrum such that
it shows distinctly for Figure 10 (a-c) but merges with the Lorentzian shape to
an asymmetric profile for Figure 10 (d-f). The successful description by a Gaussian
spectrum in part suggests a subprocess in the interatomic coulombic electron capture
where the incident electron represented by the Gaussian wavepacket transfers its
kinetic energy through a direct impulse onto the encountered partner electron. In
contrast, the partial description by a Lorentzian spectrum alludes to a subprocess
involving an exponential decay in time. The incident electron is thus partially bound
to an intermediate state simultaneously with the encountered partner electron before
decaying resonantly to the final capturing state L0 through release of the partner
electron. This aspect represents the process of the so-called interatomic coulombic
decay.72 Because the initial energy distribution is kept constant throughout this
study, the Gaussian contributions to the ICEC spectra appear less affected by the
change of the capturing confinement size LL. The electron capture with consecutive
decay, however, depends strongly on the resonant energy of the intermediary state.
The quantum size effect therefore leads to a shifting position of the Lorentzian
contribution to the ICEC spectrum as function of the capturing confinement length
LL. In addition, the electron capture ratio is strongly affected and varying over two
orders of magnitude.

The respective transmissive and reflective spectra of capture through direct im-
pulse are positioned at different group energies. This implies that transmission and
reflection coefficients differ energy-dependently which is induced by the confinement
potential itself as was shown and discussed above in relation to Figure 8 and which
is further modified by the Coulomb interaction potential between the electrons.
Overall, it appears advantageous to let the spectra of the two subprocesses overlap
significantly. Furthermore, it was observed here that the width of the ICEC spectra
increased with decreasing capture size LL where the Lorentzian and Gaussian con-
tributions appeared to merge in the spectrum of the flux density and that the spectra
were distributed asymmetrically in favour of higher energies. The reflective quant-
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ities showed larger asymmetry than the transmissive ones in each of the discussed
examples. In the set-ups investigated here, ICEC through direct impulse appeared
to favour electron emission in reflection direction while the contributions through
ICD favoured an emission in transmission direction. At set-ups of significant ICEC
flux density, the transmissive ICEC flux density and probability outweighed their
reflective equivalents.
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Figure 11: The development of transmitted ICEC flux spectrum F±
L0

(E)
with changing size of the capturing quantum confinement. The coloured
solid lines represent individual flux density spectra each at a different con-
finement size, the dotted line represents the scaled spectrum of incident flux
10−2Fi, the dashed line represents the envelope function maxLL

F±
L0

of all
ICEC flux density spectra. (a) Flux density F+

L0
as function of energy E

measured in transmission direction in correlation with an occupied capture
state L0 within the confinement region. Adapted from Molle et al. [2]. (b)
Energy dependence of flux density F−

L0
measured in reflection direction in

correlation with an occupied state L0.

Whereas Figure 10 shows examples of flux density and probability profiles at
different capturing confinement sizes LL which complement the discussion of the
evolution of the peak values with Figure 9 (d), it is possible to present transmissive
and reflective ICEC flux density profiles in juxtaposition to each other and to the
incident flux density spectrum. Figure 11 thus illustrates the 52 most prominent
ICEC flux density spectra in transmission and reflection direction to indicate their
difference to each other and the incident flux density and their evolution with respect
to a variation of confinement size LL. In their collective representation, these curves
appear to allude to an envelope function limiting the respective shape and size
of ICEC flux density in either direction. Showing a steep rise in magnitude on
the side of low energies, both ICEC flux densities broaden in their spectra while
they drop more slowly in magnitude towards higher energies above the optimum.
Noticeably, the optimal transmissive flux density is reached at higher energies than
the optimal reflective flux density. At the same time, the reflective flux densities
cover less bandwidth than the transmissive ones and reach only a third of the optimal
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transmissive flux density. During this study, both flux densities find their optimum
at energies smaller than that of the maximal incident flux density.

At first glance, the envelope of the flux density spectra appears to be of shape of a
Maxwell-Boltzmann energy distribution. On closer inspection, however, its energetic
width proves to be more closely matched by a superposition of a Lorentzian with the
spectrum of a Gaussian wavepacket, a one-dimensional Maxwell-Boltzmann energy
distribution. This is consistent with the discussion of the individual flux densities.
The analytical spectrum of the single-dimensional wavepacket involves square roots
of energy and their reciprocal value though which complicates numerical fitting by
involving limited domains and division by zero. A construction of the envelope func-
tion for the transmissive and reflective case was thus most successful by fitting the
two respective branches from the maximum individually. While this may suggest
the necessity of a more involved consideration of the expected overall spectrum and
ways to improve numerical stability of the superposition of the two complex solu-
tions that lead to Lorentzian and Gaussian energy spectra, it proves nevertheless
that both, the transmissive and reflective envelope function are of the same fam-
ily of functions. These envelopes are drawn in Figure 11 by a black dashed line.
On the other hand, the difference in composition of the increasing and decreasing
branch for the envelope functions may also be rooted in the fact that transmis-
sion and reflection coefficients from confinement potential and interaction potential
are energy-dependent and thus modify the shape. This exceeds the scope of this
work, however, and shall not be of further concern here. It suffices at this point to
find the envelope function can be successfully constructed to some extent by careful
superposition of a Lorentzian and Gaussian energy spectrum.

The envelope maxLL
F+

L0
(E) of the transmissive flux densities at varying capture

lengths LL as function of system energy E thus ranges from maxLL
F+

L0
= 1.18 %/EH

at energy E = −220.0 × 10−3 EH to its maximum over energy maxLL,E F
+
L0

=
381.7 %/EH at energy E = −198.1 × 10−3 EH . It shows an expectation value in flux
density of 92.9 %/EH with standard deviation of 14.0 × 10−3 EH . The full width at
half maximum spans 24.9 × 10−3 EH which is composed by more than two thirds by
the partial width from maximum to its half on the branch of decreasing flux density
with increasing energy. At the tenth maximum, the decreasing branch makes up
nearly three quarters of the total full width of at tenth maximum which spans over
a total of 50.4 × 10−3 EH . It thus provides an increasingly long tail on the branch
of higher energies whereas it dies down more quickly on the side of low energies.

For the illustrated energy domain, the envelope maxLL
F−

L0
(E) of reflective flux

densities at varying capture lengths LL as function of the system energy E ranges
from maxLL

F−
L0

= 0.33 %/EH on the edge at energy E = −130 × 10−3 EH to its
maximum of maxLL,E F

−
L0

= 131.90 %/EH at energy E = 201.6 × 10−3 EH . It
averages to an expectation value of only 30.79 %/EH with standard deviation of
10.1 × 10−3 EH . The full width at half maximum spans over 16.9 × 10−3 EH of
which only three fifth are made up by the partial width on the decreasing branch
with increasing energy. At tenth maximum, the partial width on the decreasing
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branch provides slightly more than two thirds of the full width which measures
37.9 × 10−3 EH in total.

The envelope function of the reflective flux density diminishes faster with higher
energies than the envelope for the transmissive ICEC flux density whereas the in-
crease towards the respective maximum with increasing energy for lower energies
is comparable. The maximum of the reflective envelope already remains below a
third of its transmissive equivalent and it has already died down below a fifth of
its maximum value at energy E = −181.1 × 10−3 EH where the envelope of trans-
missive ICEC flux density reaches the respective half maximum value. At energy
E = −175.5 × 10−3 EH , the reflective envelope reaches the tenth maximum while
the transmissive envelope function is still above a third of its respective maximum
value. In contrast, the energetic difference between the respective tenth maximum
measures only 2.1 × 10−3 EH on the side of lower energies and both curves’ half
maxima lie within 2.3 × 10−3 EH from each other. The respective maxima then
differ in energy by 3.5 × 10−3 EH .

In summary, Figure 11 provides insight into the optimal limits of the transmissive
and reflective ICEC flux density as function of energy which complements the inform-
ation provided on the limits of the two flux density contributions as function of con-
finement size illustrated in Figure 9 (d). The transmissive flux continues to become
more relevant than the reflective flux. At energies of maximal flux density below
approximately 200 × 10−3 EH corresponding to a capture size below LL = 2.62 aB,
the transmissive and reflective flux density spectra both appear narrow. The en-
velope functions grow with energy over a similar energy difference towards there
maximum value but the transmissive flux exceeds the reflective by a factor of three.
For energies above approximately 200×10−3 EH corresponding to capture sizes above
LL = 2.62 aB, the flux density spectra broaden with increasing energy and get smal-
ler in value. The transmissive flux is more resilient to a deviation from the optimal
capture size LL such that the envelope function of transmissive flux density retains
more significant values over a longer bandwidth at energies above the optimal energy
than its reflective counterpart. The transmissive flux density is therefore expected
to dominate for larger confinement sizes and at higher energies. The individual flux
density spectra were successfully described by a superposition of a Lorentzian pro-
file with the spectrum of a Gaussian wavepacket. This implies that there are two
distinct subprocesses involved in an interatomic coulombic electron capture into the
state L0 within this investigation: A decay process of an intermediary capture state
giving rise to an energy selection of some bandwidth around the resonant energy
of the intermediary state, and an energy transfer through direct impulse from the
incident electronic Gaussian wavepacket on the partner electron which gives rise to
a modified spectrum of another Gaussian wavepacket in the measured ICEC flux
density where the confinement potential itself and the Coulomb interaction between
the electrons act as modifiers. While it was found here that an envelope function
exists for either transmissive or reflective ICEC flux density, that describes the op-
timal flux density to be measured at an energy E, the respective envelope function
appears to be modified by the energy-dependence of the reflection and transmission
coefficients arising from the confinement potential.
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6.2.3 Capture Efficiency

Since it was found in the previous subsections that the confinement potential itself
modifies the measured flux density related to the interatomic coulombic electron
capture, the following will attempt to generalise the found dependence of ICEC flux
on the confinement parameters by a variation of capturing confinement size LL,
continuum threshold energy DL of the capturing quantum dot, and the distance R
between the centres of the two involved quantum confinements. In a potential elec-
tronic device exploiting ICEC induced electron flux in a nanowire, the transmissive
flux will play the predominant role in the application as it has been shown above, the
electronic charge within the confinement region hinders general transmission apart
from ICEC while reflected flux contributions will interfere with the incident flux and
with each other. Due to this and the shown advantageous dominance of the trans-
missive flux density, the following study will concentrate on the transmissive ICEC
probability only. The data on ICEC probability presented and analysed hereafter
has also been subject of the recent publication of a scientific article by Pont et al.
[64] discussing limiting conditions for a successful interatomic coulombic electron
capture and the estimation of such relations from single-electronic quantities.

2 2.5 3 3.5 4 4.5
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1

0

5

10

15

20

25

30

35

m
ax

P
I
C
E
C
(E

)
[%

]

L in [aB ]

D L
[E
H
]

m
ax

P
I
C
E
C
(E

)
[%

]

10−1

10+0

10+1

10+2

(a)

2 2.5 3 3.5 4 4.5 0.4
0.5
0.6
0.7
0.8
0.9
1
1.1

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0

E
i
[E

H
]

L in [aB ]

D L
[E
H
]

E
i
[E

H
]

−0.9
−0.8
−0.7
−0.6
−0.5
−0.4
−0.3
−0.2
−0.1
+0.0

R = 6 a
B

(b)

Figure 12: The maximal efficiency of interatomic coulombic electron cap-
ture in a pair of quantum confinements embedded in a nanowire as function
of acceptor length LL and its confinement strength DL at centre-to-centre
distance R = 6 aB. (a) ICEC efficiency as landscape in parameter space
(LL, DL). (b) Single-electron eigenenergy surfaces and contour lines of con-
stant energy in parameter space.

In line with the evaluation of the transmissive ICEC probability P+
L0

for Figure 10
as quotient of flux density measured in transmission direction in correlation with an
occupied capture state L0 by the incident flux density, such a spectrum can be de-
termined for every pair of parameters (LL, DL). Extracting the maximal probability
maxE P

+
L0

in each of those spectra allows to visualise it as a landscape of coordinates
(LL, DL) which is illustrated in Figure 12 (a) for a distance of R = 6 aB between
the two confinement centres. The ICEC probability varies between 0.0 % and a
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maximum of 34.57 % at a confinement length of LL = 4.26 aB and a continuum
threshold of DL = 0.52 EH .

The ICEC probability function maxE P
+
L0

(LL, DL) in the sampled parameter space
manifests in a rather narrow comb from P = 31.6 % at length LL = 2.39 aB and
continuum threshold energy DL = 1.00 EH in the background on the left hand side
of Figure 12 (a) decreasing slowly via P = 26.03 % at length LL = 2.89 aB and
threshold energy DL = 0.80 EH down to a probability of P = 12.44 % at length
LL = 3.33 aB and threshold DL = 0.68 EH and increasing again via P = 27.85 % at
length LL = 3.78 aB and threshold DL = 0.57 EH up to a probability of P = 34.57 %
at length LL = 4.26 aB and threshold energy DL = 0.52 EH shown in Figure 12
(a) in the foreground at the edge on the right hand side. This line of highest
probabilities on the map of parameter coordinates (LL, DL) is positioned in a slope
of ∆DL/∆LL = (−266 ± 17) × 10−3EH/aB with interpolated intercept with the DL-
axis at (+159±53)×10−3EH and a linear correlation coefficient of −97.95 % between
the two parameters. Owing to the narrow-combed distribution of the probability,
the average probability in the sampled parameter space reaches only 2.93 % with
weighted average coordinates of length LL = 3.21 aB and threshold DL = 0.67 EH .
Interestingly, the onset of probability which is highlighted by a purple colour in
Figure 12 (a) appears to partially separate from the main strand of high probability
into another yet weaker branch for confinement lengths below LL = 3 aB and
thresholds around DL = 0.6 EH to DL = 0.9 EH . While they are clearly seperated
for lengths below LL = 2.5 aB, their recombination coincides on the one hand with
the observed local reduction of ICEC probability on the major branch as described
above and coincides on the other hand with the position of the sample average whose
probability-weighted standard deviation measures 0.60 aB in confinement length and
0.15 EH in continuum threshold energy.

The simultaneous variation of confinement length LL and continuum threshold
energy DL in the capturing quantum dot of the underlying potential presents a
generalisation of the discussion on the quantum size effect of ICEC for a fixed con-
tinuum threshold parameter DL. The variation of eigenenergies Ei of the confine-
ment potential with respect to the parameter pair (LL, DL) is therefore illustrated
in Figure 12 (b) for the case of a distance of R = 6 aB between the centres of the two
quantum confinements. Within the investigated domain, an electron will be able to
find between two and four eigenstates in the confinement potential illustrated by the
four surfaces between energy values of 0 and −0.9 EH . Shown as diabatic energy
surfaces, the ground state of the potential is primarily constituted by the state L0

bound to the left quantum dot but approaches the eigenenergy of the right bound
state R0 in the lower third of the third quadrant in (LL, DL). At this point, any
higher eigenstate has already been expelled from the confinement potential by an
unfavourably narrow and energetically shallow left quantum dot. The energy cross-
ing between L0 and R0 is approximately situated on the line spanned between the
points of (LL, DL) = (2.6aB, 0.40EH) and (LL, DL) = (1.8aB, 0.48EH) indicated as
solid ochre-coloured contour line of constant eigenenergy on the surface and on the
bottom grid of Figure 12 (b).
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As the right parameters of the right quantum dot remain unchanged during
this study, the eigenenergy of the right-bound eigenstate R0 will remain constant
over large parts of the scanned domain as long as the left bound eigenstates are
sufficiently separated in energy and localised distinctly thanks to narrow enough
quantum confinements. Due to that constant nature over most of the domain,
the state R0 appears as orange plane making up most of the first excited state
in Figure 12 (b) which shows only few contour lines marking the edges of energy
crossings with L0 and L1. Due to the diabatic representation in Figure 12 (b),
the energy ordered surfaces depicted avoid the crossing while the degerate states
mix to form the eigenstate at these points. In the upper third, the energy cross-
ing of R0 with L1 coincides incidentally with the beginning of noticeable effects of
the parameter variation on the right-bound state itself. Marked by the unusually
straight yellow contour line marking a constant eigenenergy of Ei = −250×10−3 EH

from coordinates (LL, DL) = (2.8aB, 1.10EH) to (LL, DL) = (4.7aB, 0.44EH). Ran-
ging between a degeneracy with L0 around −211 × 10−3 EH and a minimum of
minLL,DL

ER0
= −312 × 10−3 EH at parameters (LL, DL) = (4.7aB, 1.10EH), the

state R0 has an average energy of ĒR0
= −226.2 × 10−3 EH over the investigated

domain.
The left-bound eigenstate L0 ranges from maxLL,DL

EL0
= −157 × 10−3 EH at

parameters (LL, DL) = (1.8aB, 0.40EH) where it exceeds the eigenenergy of R0 down
to minLL,DL

EL0
= −895 × 10−3 EH at (LL, DL) = (4.1aB, 1.10EH), the opposite

corner of the domain over which it thus uniformly decreases with increasing length
LL and with increasing continuum threshold DL. The average eigenenergy arrives
therefore at ĒL0

= −466 × 10−3 EH .

The excited state L1 only provides a valid localised eigenstate for part of the
investigated domain. The lines of constant energy show a distinctly steeper slope
∆DL/∆LL than the contour lines for L0. Both of them are negative. The limiting
solution of EL1

≈ 0 is indicated in Figure 12 (b) by the blue contour line passing
from coordinates (LL, DL) = (1.83aB, 0.89EH) in the background to (LL, DL) =
(2.96aB, 0.40EH) in the foreground. There the energy surface is setting on with yellow
colouring on top of the second lowest representing the R0 state at that point. The
energy of state L1 then decreases uniformly with increasing confinement length LL

and continuum thresholdDL, crosses the energy ofR0 and reaches its minimal energy
of minLL,DL

ER0
= −524 × 10−3 EH at the corner (LL, DL) = (4.7aB, 1.10EH) of the

investigated domain. The sample average thus measures ĒL1
= −105 × 10−3EH .

A third excited state L2 is present for some part of the parameter domain towards
large confinement lengths LL and continuum threshold energies DL but falls mainly
into the same region as the energy crossing of L1 with R0. Indicated by dashed black
line from parameters (LL, DL) = (3.09aB, 1.09EH) to (LL, DL) = (4.47aB, 0.58EH),
the eigenenergies decrease uniformly with increasing LL and DL to a minimum of
minLL,DL

EL2
= −182 × 10−3EH at the far corner of the domain at (LL, DL) =

(4.7aB, 1.10EH). It thus covers about 11 % of the domain and reaches an average
energy of ĒL2

= −43 × 10−3EH . Moreover, the far corner of the domain also sees
the onset of a fourth excited level L3 which, however, does not provide an energy
surface within the domain of parameters.
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Figure 13: The maximal efficiency of interatomic coulombic electron capture
in a pair of quantum confinements embedded in a nanowire as function of
acceptor length LL and its confinement strength DL at centre-to-centre
distance R = 6 aB. Top view onto the landscape of the ICEC efficiency
depicted in Figure 12 (a) which follows in trend the overlying contour lines of
constant acceptor eigenenergy L0 in shades of blue crossed by contour liness
of eigenenergy L1 in green to yellow which were presented and discussed with
respect to Figure 12 (b).

In order to investigate a possible correlation between the trends in the maximum
over energy of the ICEC probability maxE P

+
L0

shown in Figure 12 (a) and trends in
single-electronic eigenenergies Ei discussed with respect to Figure 12 (b) which each
are functions of the varied potential parameters (LL, DL), the top view onto the
map of ICEC probability is presented with overlaying lines of constant eigenenergies
EL0

and EL1
in Figure 13 for the distance of R = 6 aB between both quantum-dot

centres. The ICEC probability is presented in logarithmic colouring and has been
interpolated between the quantum-mechanically computed points of confinement
length LL and continuum threshold energy DL. A bright yellow colour represents
the maximal ICEC probability of 100 %. It iridesces in shade to arrive at an orange
colour for a probability of 10 %. Then it transforms to red below 5 % and ranges
through a fuchsia colour for a probability of 2% down to 1 % before fading to black
for ICEC probabilities below 0.1%.

As a general trend, regions of comparable ICEC probability present a negative
slope ∆DL/∆LL on the map with respect to confinement parameters of capture
length LL and continuum threshold energy DL. For confinement lengths below
LL = 2 aB, the ICEC probability map presents a single broad strand which is
emerging from the lower edge of the domain with length LL = 1.83 aB at continuum
thresholds of the confinement potential between DL ≈ 1.0 EH and DL ≈ 0.6 EH

showing a small but non-vanishing ICEC probability between 0.09 % and 0.26 %.
From a confinement length of LL = 2 aB to LL = 2.5 aB there appear two separate
branches in the probability map which merge above LL = 2.5 aB. The previous



6.2 Results 87

branch which arose from lower lengths LL increases in probability with increasing
confinement length and arrives at P+

L0
= 1.64 % for a continuum threshold of DL =

0.72 EH . Its negative slope ∆DL/∆LL has brought it down to lower threshold
energies between DL ≈ 0.48 EH and DL ≈ 0.81 EH . An upper branch with respect
to parameter DL emerges from the upper edge on the map at DL = 1.10 EH which
offers a larger ICEC probability above 30 % at length LL = 2.5 aB but is narrower
in DL too such that it its distribution in DL decreases to 1.5 % probability between
DL = 0.85 EH and DL = 1.00 EH . This branch provides the prominent ridge
of high probability discussed with respect to Figure 12 (a) and evolves across the
(LL, DL) parameter map with a steeper negative slope from its onset with 20.06 %
probability at (LL, DL) = (2.16aB, 1.10EH) to (LL, DL) = (2.5aB, 0.95EH) with an
ICEC probability of 31.28 %. In terms of confinement length, the upper branch
spans between 0.38 aB at DL = 1.00 EH and 0.45aB at DL = 0.90 EH .

Over the interval of confinement lengths LL ∈ (2.5aB, 3.0aB), the two branches
both broaden with respect to their width in DL and gradually merge. The lower
branch increases in probability to 6.61 % at (LL, DL) = (3.0aB, 0.61EH). Simul-
taneously, the upper branch decreases in probability to 17.48 % at (LL, DL) =
(3.0aB, 0.75EH) but remains dominant. The probability distribution edge toward
higher DL moves further down with increasing lengths LL such that at LL =
3.54 aB, the edge of 0.5 % probability is found at DL = 0.69 EH . The overall
probability-averaged position in parameter space is situated here at (LL, DL) =
(3.21aB, 0.67EH).

For confinement lengths between LL = 3.5 aB and LL = 4.0 aB, the probability
regains strength measuring 30.88 % at (LL, DL) = (3.92aB, 0.55EH) while the dis-
tribution’s 0.5%-edge moves further down to DL = 0.62 EH at length LL = 3.92 aB.
Simultaneously, this edge shows more pronounced oscillations in DL with increasing
LL which are partially introduced by the interpolation between available numerical
grid points on the map but also reflects the fact that the left-localised eigenstates
decrease in eigenenergy to larger negative values and increase in number towards
higher LL and DL. Above a confinement length of LL, the oscillations of the prob-
ability edge toward higher DL oscillates increasingly and gains in width to reach
above DL = 0.95 EH while irregularities appear to manifest in the spacing between
the overlaying contour lines indicating the energy crossing of L1 with R0 which
moves down in DL with increasing LL.

Overlaying the colour-graded ICEC probability map in Figure 13, the contour
lines of constant eigenenergy EL0

are presented in steps of −0.10 EH with increasing
continuum threshold DL whereas the contour lines of constant EL1

intercept those
and represent eigenenergies in steps of −0.05 EH with increasing DL. Moving along
an energy surface while keeping the energy value constant results in a family of
curves with parameter DL becoming a function of the independent parameter LL.
Along the DL axis at confinement length LL = 1.8 aB, the lowest contour line of
constant eigenenergy EL0

= −0.20 EH starts at DL = 0.48 EH as solid grey-cyan
line uniformly decreasing in DL with increasing length LL. The next contour line
represents an eigenenergy of EL0

= −0.30 EH and is beginning to appear along the
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DL-axis at DL = 0.62 EH . Providing a constant eigenenergy for the state L0 by
decreasing uniformly in DL with increasing LL, this contour line spreads over the
entire domain of confinement lengths and hits the edge of L = 4.7 aB at continuum
threshold DL = 0.41 EH . Between these two contour lines, L0 has passed the
eigenenergy of R0 which started out with ER0

= −224.0 × 10−3EH in the corner of
(LL, DL) = (1.8aB, 0.40EH) where the left-bound state had its maximum over the
parameter domain of EL0

= −156.9 × 10−3 EH . In line with this observation, it was
recently shown that a part of this edge in the probability distribution at low LL

and low DL is in fact following the curve of degeneracy where EL0
= ER0

.64 The
next contour lines of constant eigenenergy EL0

= −0.40 EH , EL0
= −0.50 EH and

EL0
= −0.60 EH appear parallel to the previous line along the abscissa at increasing

DL which are DL = 0.78 EH , DL = 0.92 EH and DL = 1.06 EH , respectively.
Moreover, two additional contour lines of constant energy EL0

= −0.70 EH and
EL0

= −0.80 EH appear from the upper border of the domain at DL = 1.10 EH at
confinement lengths of respectively LL = 2.22 aB and LL = 3.09 aB. For reasons of
visibility, the contour lines of EL0

are illustrated with a slight colour gradient with
decreasing energy from bluish grey at EL0

= −0.20 EH towards cyan colour with
decreasing energy down to EL0

= −0.80 EH . Along the axis of DL at confinement
length LL = 1.8 aB, a line manifests at DL = 0.89 EH which distinctly crosses the
otherwise parallel lines of constant EL0

on its passage through increasing LL and
decreasing DL until it reaches the lower border at (LL, DL) = (2.96aB, 0.40EH).

The lower branch of high ICEC probability is primarily situated between then
L0-contour lines of EL0

= −0.30 EH and EL0
= −0.50 EH which also describes

the merged distribution to some extent. It shows a sharper onset of probability
along EL0

= −0.50 EH visual by a more contrasted appearance of colouring against
the black background as opposed to the smoother fading of colouring on the side
of EL0

= −0.30 EH . Simultaneously, fluctuations and oscillations at the edge of
the probability distribution appear more pronounced around EL0

≈ −0.55 EH but
less ragged around EL0

≈ −0.25 EH . The highest probability along the DL axis at
LL = 1.8 aB occurs at DL = 0.90 EH just between the L0-contour of −0.50 EH and
the L1-contour of 0.0 EH . The maximal probability of the lower branch up to LL

appears to evolve on the line formed by this intersection to the intersection of the
next lower lying contours of L0 and L1 where EL0

= −0.40 EH and EL1
= −0.05 EH .

While the contours of L0 appear to coincide with the general trend of the lower
branch, the maximum of ICEC probability for a specific LL seems to be additionally
modified by contours of L1 which also coincides with the upper branch and main
ridge of high probability for EL1

= −0.10 EH . Most contours of L0 pass the entire
range of LL presented in Figure 13 which is thanks to the small slope ∆DL/∆LL

whereas all but one of the presented contours of L1 pass from a domain edge of
LL to a perpendicular domain edge of DL or vice versa due to their uniformly
steeply decreasing in DL with increasing LL. Descending from the upper border of
DL = 1.10EH , the contour lines of constant energy of L1 appear as EL1

= −0.05 EH

at LL = 1.93 aB, as EL1
= −0.10 EH at LL = 2.17 aB, as EL1

= −0.15 EH at length
LL = 2.41 aB and so forth in steps of −0.05 EH in energy. The next three contour
lines start out as regular as the previous ones but their spacing deviates for lengths
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above LL = 3.9 aB. This is induced by the energy crossing with R0 which itself
begins to decrease with increasing LL and DL.

The upper strand of significant ICEC probability is bound by the contour lines of
L1 of EL1

= −0.05 EH and EL1
= −0.15EH which also determine the trend of the

probability above confinement length LL = 3 aB where the upper branch merges
with the lower one which follows the contour lines of L0. The major trend of points of
high ICEC probability discussed with respect to Figure 12 (a) visible on the top view
onto the probability map by shades of bright orange to yellow thus follow the central
contour of EL1

= −0.10 EH closely over the entire map. While the confidence interval
of the upper branch in terms of eigenenergy of L1 spans below 0.10 EH . It broadens
where the three L1 contours overlap with the L0 contour lines determining the lower
branch confidence interval in terms of eigenenergy of L0 to about 0.25EH . As the
two branches join, their respective trends merge too and broaden the probability
distribution. Therefore, the boundary of 2 % probability within the lower branch
follows closely to the adjoining L1 level. As the L1 contour lines descend with
increasing LL, their spacing increases on the map. The broadening in the probability
distribution appears to occur in line with the broadening of the L1 contour line
spacing. While the fluctuations in shape of the edge of the probability distribution
to higher DL increase with LL and increasingly spread beyond the L1 contour of
EL1

= −0.15 EH , they reconvene within this boundary at confinement lengths where
local maxima appear in the probability. At the same time, the edge of the probability
distribution fluctuates and broadens particularly near the region of energy crossing
between L1 with R0 at confinement lengths above LL = 3.9 aB and continuum
threshold energies above 0.7 EH .

While the description of ICEC probability as well as eigenenergies of the captur-
ing potential in terms of the parameters of the used confinement potential appear
complicated and strongly dependent on the definition of the modelling potential
itself, a general correspondence between trends in the eigenenergies and trends in
the ICEC probability would offer a way to estimates beyond the particular model
used. It was thus possible in the related recent publication of Pont et al. [64] to
propose several limiting conditions estimated from single-electronic quantities which
mark boundaries of the ICEC probability. If the ICEC probability can be mapped
successfully in terms of the eigenenergies, as it appears suggestively from Figure 13,
this may simplify analysis and discussion of the efficiency of ICEC in a particular
system independently from the real or modelled underlying confinement potential
and its various available parameters. To this goal, the preliminary hypothesis shall
be tested qualitatively against selected larger quantum-dot distances R although
a quantitative representation resolved in terms of (EL0

, EL1
) is complicated by the

curvilinear nature of the contour lines on the numerically computed rectilinear grid
of parameters (LL, DL). For six different quantum-dot-distances R increasing in in-
crements of 1 aB, Figure 14 shows therefore the maximum with respect to energy of
the ICEC probability in transmission direction maxE P

+
L0

as function of confinement
parameters of capture length LL and continuum threshold energy DL in comparison
to curves of constant eigenenergy EL0

and EL1
as functions of the same confinement

parameters.
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Figure 14: The maximal efficiency of interatomic coulombic electron capture
in a pair of quantum confinements as function of acceptor size and poten-
tial strength in depends on distance but follows the contours of acceptor
eigenenergy L0 crossed by eigenenergy L1.

A distance of R = 7.0 aB between the centres of the two quantum confinements
is shown in Figure 14 (a). As the distance increases with respect to Figure 12,
the perturbative influence arising from the vicinity of the two quantum dots on
eigenstates of higher energy reduces slightly. This has an effect primarily on R0

and L1 and affects the energy surfaces particularly in regions of higher parameters
LL and DL where the right-bound level R0 was increasingly perturbed and de-
creased in energy ER0

for the distance R = 6.0 aB. At R = 7 aB, the right-bound
state R0 varies therefore less in energy. Over the dominant diagonal of the para-
meter domain, it thus varies from an eigenenergy of ER0

= −237.5 × 10−3 EH at
(LL, DL) = (1.8aB, 0.40EH) to an energy of ER0

= −277.3×10−3 EH at (LL, DL) =
(4.7aB, 1.10EH) at the opposite corner of the domain. In average, the state R0 has
an energy of ĒR0

= −239.2 × 10−3 EH . The left-bound state L1 remains mainly
unchanged in maxima and average but the higher states L2 and L3 which appear
towards large LL and DL move close to R0 by up to 25 × 10−3 EH . This changes
the progression of contour lines with respect to parameters (LL, DL) slightly. In
particular, the energy crossing of L1 with R0 now appears as consistent additional
spacing between the contour lines of L1 whereas it had appeared to repel the contour
lines for R = 6aB between EL1

= −0.2 EH and EL1
= −0.3 EH only for confinement

lengths above LL = 0.39 aB.

The probability map appears despite these changes qualitatively similar to Fig-
ure 13 but the regions of significant ICEC probability have narrowed to cover less
area in parameter space while becoming on average more efficient within those re-
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gions. In fact, the maximal probability on this map reaches 36.74 % at paramet-
ers (LL, DL) = (3.33aB, 0.57EH) which is roughly 2 % more effective here than
the maximum for R = 6 aB. Simultaneously, the average ICEC probability over
the map has increased to 3.92 % with a probability-weighted average position of
(LL, DL) = (3.03aB, 0.64EH). The sample standard deviation in ICEC probability
has grown to 7.36 % indicating an improved efficiency over the regions of signific-
antly large probability. Simultaneously, the probability-weighted standard deviation
in the parameter space has shrunk to 0.42 aB in confinement length and 99×10−3 EH

in continuum threshold energy which speaks for an overall smaller area on the map
in parameter space (LL, DL) covered by the probability distribution.

The probability map consists of one major area which is fenced in towards larger
LL and larger DL by the overlapping contours of EL1

≤ −125 × 10−3 EH and
EL0

≤ −0.52 EH , towards lower LL and higher DL by the overlapping contours of
EL1

> −0.05 EH and EL0
≤ −0.52 EH , and is fading towards lower LL and lower DL

where EL0
≈ ER0

and beyond EL1
= 0. Marginal increases in probability appear

outside this general area at intervals along the contour line of EL1
= −0.15 EH

and at the edge of LL = 4.7 aB between DL = 0.7 EH and DL = 0.9 EH but
these remain below 1 % probability. The two branches of ICEC probability remain
therefore visible for lower LL consistent with the previous distance R = 6. Similar
to the previous, the probability forms a major ridge of high probability along the
upper branch and down along the contour lines of L1 which decreases briefly in
strength when merging with the lower branch which then fluctuates strongly in
its edge when passing beyond the L1 branch to higher LL. However, intervals in
energies of L0 and L1 have reduced in their respective sizes. The confidence interval
in EL1

is now only about 0.07 EH and the confidence interval in EL0
spans about

0.2 EH . Local maxima in probability at constant confinement lengths LL occur
along the long diagonals drawn by the curvilinear intersections of the contours of L0

with L1 from the intersection of EL0
= −0.5 EH with EL1

= 0 through the cross of
EL0

= −0.4 EH with EL1
= −0.05 EH towards the intersection of EL0

= −0.30 EH

with EL1
= −0.10 EH . This agrees with the observations for Figure 13.

At distance R = 8 aB, the parameter space covered by the ICEC probability
reduces further while the average efficiency increases with respect to R = 7 aB.
The maximum probability encountered here is 47.65 % at confinement length LL =
3.02aB and continuum threshold DL = 0.63 EH . Averaged over the sampled domain,
the mean probability reaches 4.75 % with an increased sample standard deviation
of 9.65 %. At the same time, the probability-weighted standard deviation in para-
meter space decreases to 0.38 aB in confinement length LL and to 84 × 10−3EH in
threshold DL The probability map remains bound toward smaller LL and DL by
the condition of EL0

≈ ER0
and fades past EL1

= 0. The boundaries from above
have moved closer though such that the probability is slowly being pushed out.
Toward larger LL and larger DL, the simultaneous fulfilment of the conditions of
EL1

> −0.10 EH and EL0
> −0.48 EH appears to limit any probability contributions

above 0.8 %. However, larger confinement lengths LL > 4.2 aB allow a spreading of
low probability around 0.5 % down to EL0

= −0.70 EH . At high threshold DL and
low confinement LL, the probability appears in the known two branches confined
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by EL0
> −0.52 EH and EL1

< 0.04 EH . As the area covered by the upper branch
shrinks, the local probability appears to retract slightly towards the area where both
branches merge.

The probability density has been pushed further to areas of higher energies in L0

and L1 in Figure 14 (c) representing a distance of R = 9 aB and retracts further away
from a band of maxima toward a single larger maximum but retains the qualitative
shape of two joining branches. Its maximum ICEC probability of 55.18 % represents
thereby the largest maximum over the shown distances from R = 6 aB to R = 12 aB.
The position of the maximum at (LL, DL) = (2.89aB, 0.63EH) has moved to yet
smaller confinement length where the left-bound state measure an eigenenergy of
EL0

= −400.1 × 10−3 EH and EL1
= −56.9 × 10−3 EH . The average probability of

4.43 % has decreased in comparison to the result for R = 8 EH while the sample
standard deviation has increased to 9.71 % statistically distributed over a smaller
area in parameter space which reduces the probability-weighted standard deviation
to 0.34 aB in confinement length and 72×10−3 EH in continuum threshold DL. This
alludes at a larger range of probability covered by a smaller domain in (LL, DL).
The standard deviation in probability is the highest for the investigated distances
R whereas the probability-weighted standard deviation in LL and DL proves to be
smallest at the same time.

Taking into account that the R0 level has slightly shifted towards an average of
ĒR0

= −222 × 10−3 EH , the probability map remains bound towards small LL

and DL by the energy crossing of L0 with L1. Towards larger DL and larger LL,
the bounding conditions have moved to EL1

> −0.08 EH and EL0
> −0.45 EH

but are overcome for confinement lengths above LL = 4.25 aB where it becomes
possible to cover the entire domain in DL with probability up to 0.97 %. The
boundary between the two branches toward small LL and higher DL has are given
by EL0

< −0.47 EH and EL1
> −0.04 EH which is shifted slightly and condenses the

probability distribution to less area. As a result, the upper branch of the probability
map has lost its dominance seen in the case of R = 6 aB and barely exceeds 2 %
probability which concentrates towards the edge of the lower branch.

The quantum-dot distance of R = 10 aB becomes generally less favourable where
regions of higher probability concentrate more locally. As the boundary from larger
LL and DL pushes further towards the opposing bounds, the probability reduces
on the remaining available area. The maximum of only 36.36 % therefore localises
within then merging two branches at (LL, DL) = (2.67aB, 0.68EH). The average
probability reaches at 2.33 % only half of the value for R = 9 aB. Simultaneously,
the standard deviation reduces to 5.48 % and concentrates to a probability-weighted
standard deviation of 0.29 aB in confinement length LL and 67 × 10−3 EH in con-
tinuum threshold energy DL.

Bounding the probability distribution towards larger LL and larger DL are the
conditions of EL1

> −0.07 EH and EL0
> −0.42 EH . For larger confinement lengths

above LL = 4.2 aB, the probability persists to reach further into the domain ofDL up
to EL0

= −0.70 EH but barely reaches 0.67 %. The upper branch in the distribution
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seen at smaller distances is still present, but faded in probability to a local maximum
of 0.76 % at parameters (LL, DL) = (2.32aB, 0.85EH). The previously observed
reduction in probability at the point of merging with the lower branch begins to
manifest as gap between the two as they are both weakened. The long tail at
low thresholds DL to increasing lengths LL which had pertained a ridge of higher
probability throughout the variations of R has decreased below 1 % and is fading.
Towards lower LL and higher DL, the probability map is bound by the condition of
EL1

< −25 × 10−3 EH defining the upper branch but persists to hold its probability
at the intersection of both branches such that the lower branch is bound by EL0

>
−0.48 EH but fades quickly before that outside the intersection of both branches.
At low lengths LL and threshold energies DL, the probability map remains bound
by the energy crossing of L0 with R0 and is fading beyond the spawning line of L1

where EL1
= 0.

Gradually expelled, the ICEC probability reaches only a maximum of 26.36 % as
the boundaries approach each other and diminish the coverable domain in parameter
space for a quantum-dot distance of R = 11 aB as depicted in Figure 14 (e). Ten per-
cent lower in its maximal probability than for distance R = 10 aB, the average prob-
ability over the domain has reduced to 1.64 % and its probability-weighted position
is moving to lowerDL arriving at an average position of (LL, DL) = (2.78aB, 0.59EH)
in parameter space. The standard deviation in probability has diminished to 3.91 %
but retained the probability-weighted standard deviation of 0.32 aB in length LL

and of 66 × 10−3 EH in continuum threshold DL.

At this setup, the probability distribution barely reaches beyond the first contour
line of L1 but finds slightly more support by the intersection with the lower branch
such that the distribution as a whole is limited by EL1

> −0.07 EH . Apart from the
intersection, the lower branch only touches up to EL0

= −0.40 EH but reaches up
to −0.42 EH along the direction of the upper branch. Bound by the energy crossing
of L0 with R0 at small LL and DL, the distribution thus barely covers a third of
the parameter domain with probabilities above 0.1 %. The tail of the probability
distribution toward higher confinement lengths dies down at LL = 4.25 aB but
shows a marginal revival of probability up to 0.47 % at LL = 4.71 aB. Similarly,
a region of up to 0.92 % probability has remained within EL0

= −0.60 EH and
−0.70 EH . At this distance R, this small region of probability is possibly arising
from favourable energetic conditions from higher lying states L2 and L3 which both
present themselves at this border of the domain.

Eventually, the probability distribution diminishes quickly toward R = 12 aB

such that the maximum is ten percent less in probability than for R = 11 aB

and covers only a fifth of the investigated domain by three small main regions of
which only one exceeds 1 % probability. The maximum of 15.65 % has moved yet
again to lower confinement length and is positioned on the map at (LL, DL) =
(2.67aB, 0.62EH). The average probability has shrunk below one percent to only
0.76 % with a standard deviation of 2.02 % yet more localised in its position to
probability-weighted standard deviations of 0.31 aB in confinement length LL and
of 60 × 10−3 EH in continuum threshold energy DL.
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The upper branch has reduced to a small region of maximum 0.84 % at (LL, DL) =
(2.32aB, 0.80EH) which appears to experience a hard boundary at EL1

= −0.05 EH .
At the same time, the small region at large confinement lengths LL > 4.5 aB has per-
sisted and reaches a maximum of 1.28 % probability at (LL, DL) = (4.71aB, 0.85EH).
The lower branch has retracted and is bound by EL0

> −0.41 EH which shows
slightly more support where the conditions of both branches merge. The region of
higher probability, however, follows the bounding limit of the upper branch closely
such that the tail towards higher confinement lengths vanishes fades quickly. The
probability distribution is thus mainly confined between the two contour lines of L1

of energies between EL1
= 0 and EL1

= −0.05 EH and between the two contour
lines of L0 of energies between EL0

= −0.4 EH and EL0
= −0.30 EH but reaches

along the contour lines of L1 down to the energy crossing of L0 with R0.

In summary over the investigated distances from R = 6 aB depicted in Figure 13 to
R = 12 aB depicted in Figure 14 (f), the ICEC probability mapped logarithmically as
function of the parameters (LL, DL) shows two major branches for small confinement
lengths LL which merge towards larger LL and smaller DL. It has been shown that
the upper branch of the main body of the probability map has followed the contours
of lines of constant eigenenergy of the state L1 but its edge toward higher LL shifted
two contour lines of L1 from EL1

= −0.15 EH to EL1
= −0.05 EH . At the same time,

the shape of the lower branch at low LL appeared to follow the contours of constant
eigenenergy of state L0, as did the shape of the probability map for higher LL beyond
the merging of the two branches despite showing increasing oscillations in shape
with increasing LL. This edge toward higher DL has retracted by approximately
one contour line from EL0

= −0.52 EH at R = 6 aB to EL0
= −0.4 EH at distance

R = 12 aB. At the same time, the boundary of the probability distribution from
below at small LL andDL remains intact and varies little. In line with the arguments
presented in Pont et al. [64], part of the bounding shape coincides here with the
energy crossing of the capturing state L0 with the initial state R0. The probability
density appeared to fade here beyond the line of vanishing energy level L1.

At large LL above 4.25 aB, the initial state R0 varies significantly from its average
value over the remaining domain. Simultaneously, two energy levels are present
below R0 in this region while two excited levels present themselves above R0. This
allows the ICEC probability in this region of LL > 4.25 aB to spread from the
main body of its distribution to higher DL where it collates at distances R = 11 aB

and 12 aB while detaching itself from the main region at lower DL. In logarithmic
scaling from 0.2 % to 100 %, the ICEC probability covered approximately 60 % of
the investigated domain in parameters LL and DL for the distance of R = 6 aB in a
fairly uniform distribution of ICEC probability along the contour line of L1 at energy
EL1

= −0.1 EH and large regions above around and above 30 % ICEC probability.
As the boundaries move with increasing quantum dot distance, the probability map
has evolved into an uneven distribution covering 50 % of the domain for the distance
R = 9 aB and appears to follow the contour line of EL1

= −0.05 EH but has
concentrated into a single maximum exceeding 55 % ICEC probability which is the
highest found for the investigated parameter domain. With increasing distance,
the boundaries of the logarithmic ICEC probability contract further such that for
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R = 12 aB only 20 % of the domain are covered by the probability map which has by
now localised into three small regions with a mean below 1 % ICEC probability and
which appears to find a boundary of favourable conditions along the contour line of
EL1

= −0.05 EH . While it is clear that the distance between the two quantum-dots
R gives rise to the changes in the probability distribution which appears to follow
the trends of the contours of constant eigenenergy in L0 and L1, the relation between
variation of R and shift in eigenenergies is not yet apparent.

6.3 Conclusion

Throughout this chapter, the electron dynamics of interatomic coulombic electron
capture have been investigated numerically for the quasi-one-dimensional system of
two quantum confinements embedded longitudinally within a nanowire. While the
numerical model has been established and used with the MCTDH approach since
(2011) for numerical investigations of the dynamics of interatomic coulombic decay
and has been adapted successfully in (2013) to model electronic scattering and in-
teratomic coulombic electron capture,3,72 it was possible to draw several conclusions
in the current investigation which can inspire further comprehension of the dynam-
ics governing ICEC and which proposes several hypotheses beyond the employed
numerical model that may be employed in theory and experiment to guide future
investigations.

Section 6.2.1 discussed the resolution of quantum flux into contributions meas-
ured in the direction of reflection and that of transmission in correlation with an
occupation of various electronic bound states within the confinement region. In
comparison with an additional computation of the dynamics of two independent
electrons at same initial conditions, it was found that the transmission of electronic
flux associated with interatomic coulombic electron capture is modified by the en-
ergy dependence of the transmission coefficient of the confinement potential itself.
In addition to existing literature,2,3,8,9 the quantum flux in reflection direction was
analysed and discussed which showed that its spectrum differs from that of the
transmitted flux. The spectrum of the ICEC-correlated flux density showed clear
indications in either direction that two distinct subprocesses are active and can show
differing spectral features at independent resonant energies.

As discussed recently,2 interatomic coulombic electron capture may occur success-
fully on the one hand through a direct energy transfer on impact which will carry
a modulated echo of the original spectrum of the incident electron, and can take
place on the other hand through an energy conversion into potential Coulomb en-
ergy between the two electrons which allows capture into an intermediary state of
simultaneous localisation of both electrons. A consecutive decay will offer a distinct
spectral contribution to the ICEC-related flux density which carries the informa-
tion of the particular resonant energy and decay width of the decaying state. It
was found here, that the subprocesses can have different reflection and transmission
coefficients thus appearing to contribute in different amounts to the overall ICEC
flux depending on which emission direction is measured.
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Section 6.2.2 advanced these findings over a range of varying capture sizes and
showed that in either emission direction, the maximal flux density associated to
ICEC is limited by a function of system energy. However, the individual flux density
maximum moves along the system energy with increasing capture length as a result
of the quantum size effect. The flux density in transmission direction proved to
be dominant which supported the concentration on the emission in transmission
direction found in the literature.2,3,8,9,64 The envelope functions corresponding to
the maximal ICEC flux density at a particular system energy showed a comparable
rise toward their maximum value for both emission directions but differed in their
decrease for larger energies. The spectrum of the transmissive flux density presented
here a much broader range.

Eventually, Section 6.2.3 investigated the logarithmic ICEC probability and found
that the narrow ridge of high probability formed a curved line when mapped against
the domain of capturing length and continuum threshold which appeared to coin-
cide with the contours of constant eigenenergy of the excited capture state L1 and
presented a second branch coinciding with trends of the contour lines for capturing
ground state L0. This conclusion was validated at different distances between the
quantum confinement centres and it was found that the curvilinear behaviour with
respect to the parameters of capture size and continuum threshold were retained.
In a description by the respective eigenenergies of L0 and L1, the logarithmic ICEC
probability could be expressed by an interval of eigenenergies and was strongest in
the region where both intervals met. With increasing distance, the interval boundar-
ies toward larger confinement lengths and those toward larger continuum thresholds
shifted gradually toward lower parameters which corresponds with a shift toward
higher eigenenergies. At the same time, the interval boundaries toward lower con-
finement lengths and lower continuum threshold parameters appeared persistent in
their energetic value in L0 and L1 which roughly coincided with the degeneracy
between capturing ground state L0 and initially bound state R0 for one and faded
slowly beyond vanishing L1. This results in a focus of both branches on less para-
meter space with increasing confinement distance. By this, the curvilinear ridge of
high probability around 20 % to maximal 34.57 % at R = 6 aB focusses in one point
and rises up to 55.18 % at distance R = 9 aB before decreasing in maximum and
covered area in parameter space with further increasing distances. At the intersec-
tion between the two branches a reduced probability is visible for all distances which
leads to a separation of both regions of probability distribution as it decreases gen-
erally with the reduced area. Large confinement lengths show some resilience to the
general decrease in ICEC probability which has been attributed to be potentially
due to the presence of an additional energy level L3 energetically above initial state
R0 while also presenting an additional level L1 below R0. At the same time, this
region shows a stronger change in eigenenergy of the initial state R0 itself. Fur-
thermore, the parallel has been drawn that two subprocesses were observed over
the range confinement lengths which exerted a narrow-banded and a broad-banded
spectrum in ICEC flux density whereas similarly, the two branches presented one
with abroad energy range with respect to L0 and one with a narrow energy range
with respect to L1.
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In conclusion, the presented computational results proposed the hypotheses that a
presentation of the logarithmic ICEC probability resolved in terms of eigenenergies
of capturing states L0 and L1 will show a simpler and possibly model-independent
description. These dependences strongly suggest to relate to the respective subpro-
cesses of ICEC through direct inter-electronic impulse and of ICEC via interatomic
coulombic decay. At the current stage, the particular relation between the bounding
eigenenergies and the quantum dot distance remains unclear. Nevertheless, the in-
teratomic coulombic electron capture appears predominantly optimised by a tuning
of the single-electron energy levels independent on the employed confinement model
or real potential.

7 Electron Capture in Ultracold Atoms

Proven to be a powerful and adaptable method to attack the question of electron
dynamics of interatomic coulombic electron capture within the theoretically and
experimentally flexible system of artificial atom-like confining potentials within a
solid-state medium,2,3,8,9,64 the model was transferred naturally in Section 5 of this
work to encompass real ions in clouds assisting atoms. Trapped ultracold ions and
atoms are a particularly intriguing research field for a prospective application of a
generalized model to investigate ICEC dynamics. Offering a high experimental pre-
cision and quantum-mechanical yet macroscopic control over the reaction partners
on the one hand, and nearly two centuries of experience in manipulation of electron
rays through vacuum on the other hand, not at least from consumer electronics.
The first time-resolved ICEC experiment appears at our tips in this field of research
whereas the design of potential experimental set-ups seems evasive in other fields.
Moreover, the same working principles that allow entrapment and manipulation of
cold atoms and ions are being explores to produce beams of cold electrons at energies
on the order of 1 meV, just above ionisation threshold.119 Thus motivated to seize
this opportunity to diversify the field of investigation of the electron dynamics of the
interatomic coulombic electron capture, this chapter will present the first numerical
implementation towards this goal.

In search for a valid starting point, several approximations have been made. Re-
lying on the methodological approach which proved fruitful in constructively ana-
lysing the established solid-state systems involved in Section 6.2, insight shall be
gathered on the portability of the model and on weaknesses of and benefits from
the employed approximations. One of the challenges is the difference in orders of
magnitude between the characteristic range of a Coulomb interaction and typical
distances between trapped central ions and their surrounding atoms distributed in a
macroscopic cloud. On the other hand, the number of available identical interaction
partners is large and would be similarly reach the limit of computational feasibility.
It has thus been proposed in Section 5.1 that these extremes may allow to numer-
ically counteract each other in an averaged treatment in the spirit of an effective
particle approach not dissimilar to the successful interpretations in the application
to quantum dots. Freeing the assisting ultracold atom from a fixed distance R away
from the electron-capturing ion to be distributed but bound by a macroscopic har-
monic potential introduces in fact an effective nuclear degree of freedom into the
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two-electron model to make it computationally more robust.

7.1 Computational Details
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Figure 15: Schematic geometry and symmetries of an ICEC experiment
with barium (II) under assistance of rubidium. An electron gun provides an
electron density distribution with kinetic energy ε approaching a barium (II)
cation. The incident electron has a position vector ~xBa+ with respect to the
barium (II) cation and the distribution has a cylindrical symmetry with
coordinates (ζ, ρ, ϕBa+). A rubidium atom is situated at distance R from
the barium ion and forms an angle α between the atom-atom axis and the
axis cylinder axis of incident electron on barium. Rubidium’s electron sym-
metry is best described by a spherical coordinate system with coordinates
(r, ϑ, ϕRb) which is aligned with the atom-atom axis.

The electron coordinates of the free incident electron shall be given in cylindrical
coordinates ζ along the cylinder axis, ρ along the transverse and ϕBa+ along the
angular direction. The kinetic energy operator of the incident electron on barium (II)
can then be given by

T̂Ba+ = − ~
2

2m

(

∂ζ
2 + ∂ρ

2 + ρ−2(∂ϕ
Ba+

2 + 1
4
)
)

. (198)

The rubidium atom is situated at a distance R from the barium (II) cation in an
angle α from the electron beam axis on barium. In spherical coordinates of radius
r, polar angle ϑ with z axis along the atom-atom axis and azimuthal angle ϕRb, the
kinetic energy operator of the outermost valence electron bound to rubidium shall
be

T̂Rb = − ~
2

2m

(

∂r
2 + r−2ℓ̂2

(ϑ,ϕRb)

)

, (197)

where ℓ̂ indicates the electronic angular momentum operator.

In this model, bound electrons below the 6s shell on barium and the 5s shell
on rubidium shall be frozen and the effective binding potential for the remaining
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outer-most rubidium electron and the incident electron on barium be given by111,120

Vk(rk) = −Zk

rk

+
αk

r4
k

(

1 − exp
[

−
(

rk

δk

)2
])2

+Bk exp
[

−
(

rk

bk

)2
]

(212)

with respective parameters of distance from the ion core rk, effective core charge
Zk, dipole polarisability αk, approximate core radius δk, and relativistic correct-
ive parameters (Bk, bk) which are in general dependent on the electronic angular
momentum,111 where k shall represent barium or rubidium. For simplicity, the
dependence on the angular momentum is ignored in this study which is therefore
considered to present a proof of principle. The respective parameters are chosen to
describe the s shell and are summarized in Table 2 since these represent the ground
state configurations for both species.

Considering the incident electron and frozen barium (II) cation as a subsystem
with electrodynamic dipole ~xBa+ = (ζ, ρ, ϕBa+) and the outermost rubidium electron
with frozen rubidium (I) cation as a second subsystem of electrodynamic dipole
~xRb = (r, ϑ, ϕRb), the interaction potential between both subsystems shall be mod-
elled by the dipole-dipole interaction potential V12 as

4πǫ

e2
R3 V12(~xBa+, ~xRb) = ~xBa+ · ~xRb − 3

(

~xBa+ · ~R
R

)(
~R
R

· ~xRb

)

. (213)

To accommodate the macroscopic atom distribution of the rubidium Bose-Einstein
condensate, the effective distance R between the barium (II) cation and a rubidium
atom has been introduced as additional degree of freedom with an independent
Hamiltonian part

ĥR = − ~

2MRb

∂2
R +

~

4MRb∆2
Rb

R2 − ~
2

4MRb∆2
Rb

(214)

where MRb is the mass of a rubidium atom and ∆Rb is the standard deviation of the
spatial distribution of rubidium atoms which gives rise to a Gaussian distribution as
ground state function. The last term provides a zero-point energy correction to the
ground state which would otherwise be non-vanishing. This leads to the effective
interaction potential proposed as

4πǫ

e2

R3

NRb

V
eff

= ρ cosϕBa+ r sinϑ cosϕRb −4ρ sinϕBa+ r cosϑ−2ζ r sinϑ sinϕRb (204)

where the potential was integrated over the angle α between incident electron axis
and atom-atom axis given by the vector ~R. Moreover, the total atom number NRb is
counteracting the quick decay of the interaction with R3 which stabilises the model
toward larger interatomic distances. The Hamiltonian operator of the system is then

Ĥ = ĥR + ĥBa+ + ĥRb + V
eff

(~xBa+, ~xRb,R) − (iŴ ) , (215)

where ĥk := T̂k + Vk(~xk) denotes the respective Hamiltonian operator of the indi-
vidual electron-ion subsystem k ∈ {Ba+,Rb} and iŴ indicates a complex absorbing
potential as computational tool to prevent non-physical backscattering from the
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edges of a finite numerical grid of points in space. The overall wavefunction of the
system is then to be represented in the multi-configuration time-dependent Hartree
(MCTDH) framework90,91

Ψ(t, ~xBa, ~xRb,R) =
∑

J:=(jζ ,...,jr,...,jR)

AJ
(t)

(

Z
jζ

(t,ζ)Q
jρ

(t,ρ)f
jϕ

(t,ϕ
Ba+)

)(

u
jr

(t,r)Y
jY

(t,ϑ,ϕRb)

)

R
jR

(t,R) (216)

as partially entangled configurations from Hartree products of low-dimensional wave-
functions indexed by the 6-tuple J := (jζ , jρ, jϑ

Ba+
, jr, jY , jR) where Y jY

(t,ϑ,ϕRb) repres-
ents a combination of the two primitive degrees of freedom ϑ and ϕRb into one single-
particle function. The electron dynamics are being computed with the Heidelberg
MCTDH software suite.93,121

As initial wavefunction, the free electron shall be given by a spherical Gaussian
distribution of initial transverse uncertainty ∆ρ = 14.0 aB and longitudinal uncer-
tainty ∆ζ = 7.0 aB. It shall be centred at position ζ0 = −85.0aB on the cylindrical
axis with group momentum p0 = 0.39 ~/aB in positive ζ direction along the cylinder
axis. Its single particle functions are then initially composed of the Hartree product
from a longitudinal single-particle function (SPF)

Z
(0)

(0,ζ) := (2π∆ζ)− 1

4 exp
[

−
(

ζ
2∆ζ

)2
+ i

~
p0 (ζ − ζ0)

]

(217)

which is analogous to the initial condition for the quantum dot model and has been
discussed in Section 4.1, from a lateral single-particle function

Q
(0)
(0,ρ) :=

√
ρ

(2π∆2
ρ)

1

2

exp
[

−
(

ρ
2∆ρ

)2
]

(218)

where the factor
√
ρ accounts for the normalisation with respect to the cylindrical

volume element, and from an angular SPF

f
(0)
(0,ϕ

Ba+) := (2π)− 1

2 (219)

which is constant owing to the initially angle-independent cylindrical distribution of
the incident electron wavepacket.

The rubidium electron is initially in its 5s ground state provided numerically by
solving the stationary Schrödinger equation of the rubidium subsystem which is
separable into a radial and an angular stationary Schrödinger equation and defines
the initial single particles on rubidium by

ĥRb

∣
∣
∣
ℓRb=0

u
(0)
(0,r) = E

(0)
Rb

u
(0)
(0,r) (220)

for the radial single-particle function such that the eigenenergy E
(0)
Rb

is minimal for
vanishing angular momentum quantum number ℓRb and represents the ground state,
while the angular part of the rubidium subsystem shall be initially described by a
single-particle function

Y
(0)

(0,ϑ,ϕRb) := (4π)− 1

2 (221)
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Table 2: Collection of computational parameters used to model an in-
teratomic coulombic electron capture by a barium (II) cation assisted by
a surrounding cloud of ultracold neutral rubidium atoms.

Incident electron parameters, see Eqs. (217) and (218)
p0 = 0.39 ~/aB ζ0 = −85.0 aB ∆ζ = 7.0 aB ∆ρ = 14.0 aB

Frozen-core pseudopotential parameters,111,120 see Eq. (212)
ZBa

2+ = 2 e αBa
2+ = 10.17 EH δBa

2+ = 2.06 aB

BBa
2+ = 16.71 EH bBa+ = 1.2543 aB

ZRb = 1 e αRb = 8.67 EH δRb = 2.09 aB

BRb = 45.272 EH bRb = 0.9941 aB

MRb = 86.909181 u NRb = 3×106 ∆Rb = 5×10−6 m

DVR type grid points range
ζ FFT 243 −156.50 aB +156.50 aB

ρ Generalized Laguerre L(1)
n 125 0.01 aB 159.77 aB

ϕBa+ Periodic Exponential 15 0 2π
rRb Generalized Laguerre L(2)

n 125 0.02 aB 160.43 aB

(ϑ, ϕRb) Extended Legendre 7 ℓRb ∈ {0, . . . , 6}
7 mℓRb

∈ {0, . . . , ±3}
R Generalized Laguerre L(2)

n 122 80.09 aB 6.98×106 aB

SPF configurations (9×9×4) × (3×4) × 2

CAP n k zcap η
2 ±1 ±100.0 aB 72.0 × 10−6 EH

which shall be combined of two primitive angular degrees of freedom (ϑ, ϕRb) thus
closely related to the spherical harmonic functions Y mℓ

ℓ and shall initially represent
the ground state with angular momentum quantum number ℓRb = 0. Eventually
the atom distribution of rubidium atoms is initialised by the ground state with
respect to the stationary Schrödinger equation which has a vanishing eigenenergy
by construction

ĥRR
(0)
(0,R) = 0 . (222)

Moreover, a cylindrical volume V shall be defined with the barium (II) ion at the
centre, which is enclosed by its boundary

∂V = Â−
ζ + Âρ + Â+

ζ (223)

∂V being composed of a circular area A±
ζ at either end of the cylinder at ζ = ±ζV

such that it may be expressed by the operator

Â±
ζ := ρ2 ϕBa+ δ(ζ ∓ ζV ) Θ(ρV − ρ) (224)

and a closed lateral surface at ρV given by the operator

Âρ := ρ2 ϕBa+ Θ(ζ2
V − ζ2) δ(ρ− ρV ) (225)

where the cylinder dimensions have been set numerically to ζV = ρV = 100 aB, δ(x)
represents the Dirac delta function and Θ(x) represents the Heaviside step function
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defined by Θ(x < 0) := 0 and Θ(x ≥ 0) := 1. Then, the electron flux F 0
ζ into

the observation volume V may be analysed as well as the electron outflow F±
ζ and

Fρ through the respective boundary area of ∂V . The overall capture probability
P T

c of the computer experiment is then given by the large-time limit of the relative
difference between integrated electron flux into and out of the volume V ,

P T
c = lim

t→∞

∫

dt
(

F 0
ζ − (F−

ζ + Fρ + F+
ζ )
)

∫

dt F 0
ζ

(226)

due to the continuity of electric charge in the barium subsystem. A Fourier analysis
of the individual contributions of electronic flux eventually allows to resolve the
electron capture probability as function of total energy E of the system by

Pc(E) = 1 − F−
ζ (E) + Fρ(E) + F+

ζ (E)

F 0
ζ (E)

. (227)

7.2 Results

The numerical implementation of a dynamical simulation involving the full system
is demanding considerable computational resources owing to the extreme differences
between electronic free states and bound states. The cylindrical description intro-
duces two degrees of freedom demanding a continuum for the barium (I) subsystem
which is composed of the frozen barium (II) cation and an independent electron
within the effective potential field. However, for the free motion of the incident
electron, the composition of the wavefunction is satisfied with a handful of single-
particle functions for each degree of freedom. In contrast, an accurate composition
of barium (I) eigenfunctions calls for a larger set of single-particle functions in the
two continuum directions. While the relaxation of barium (I) eigenfunctions can
incorporate more single-particle functions in its A-vector, the propagation of the
full system is more restricted and its computability poses a technical limit to the
size of the A-vector. Figure 16 shows the numerical eigenfunctions of a barium (I)
cation and those of a rubidium atom at a distance of R = 100 aB in the numerical
implementation used for the computations of the electron dynamics of the full sys-
tem. Restricting the composition of barium (I) eigenfunctions to nine single-particle
functions in longitudinal direction ζBa, nine in transversal direction ρBa and three
in angular direction ϕBa, introduces deviations of the numerical eigenenergies from
the expected known experimental ones.82,84 The numerical ground state energy of
EBa+

0
= −544.7×10−3 EH faces the experimental value of −366.7×10−3 EH .82,84 The

experimental eigenenergies are indicated by constant dark grey lines below ρBa = 0
for comparison with the numerical values which can be read of at the onset of the
depicted energy-shifted wavefunctions. For the scope of this study towards a first nu-
merical model, the deviation between numerical realisation and real manifestation is
acknowledged but shall not hinder the validation whether ICEC may be successfully
undergone within the proposed model. The underlying black dashed line indicates
the atomistic effective binding potential employed for the barium (I) subsystem and
for the rubidium atom respectively. The description of the rubidium atom by a
local spherical subsystem closer to the known spectral lines of rubidium.82,83 The
spherical rubidium subsystem remains separable into its describing degrees of free-
dom and the one-dimensional eigenfunctions of the employed binding potential are
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Figure 16: Comparison of the eigenvalue-shifted reduced probability densit-
ies |ψ(n)

Ba+(ρ)|2 of wavefunctions of an electron in an approximate barium (II)

binding potential with reduced probability densities |ψ(m)
Rb

(r)|2 of electron
eigenfunctions in an approximate rubidium (I) binding potential. The first
hundred-fifty transverse wavefunctions of the barium (I) cation expressed
in cylindrical coordinates are not separable in ρ which renders the reduced
probability density in ρ into a superposition of states with different quantum
numbers (n, ℓ,mℓ) and do not show a clear nodal structure which is depicted
as grey lines and coloured lines on the left. The first ten radial electron wave-
functions of rubidium which is here situated at a distance of R = 100 aB,
are well-described by a one-dimensional wavefunction and a single quantum
number n such that they show a clear nodal structure in their reduced radial
probability density here depicted as grey and coloured lines on the right en-
ergetically shifted according to their eigenenergies. The experimental values
for the energy levels are indicated as solid dark grey lines along the abscissa
on the respective side. The black dashed line indicates the respective bind-
ing potential used in the numerical model. Matching colours on the left and
the right indicate wavefunctions of comparable binding energy.

independent of the number of single-particle functions. The illustrated radial wave-
functions originating at ρBa = 100 aB toward the barium (I) cation thus agree well
with the spectral lines indicated at larger distances. Unmet intermediate spectral
lines generally belong to p and d orbitals which are not represented by the current
implementation of the binding potential as the used software suite remains in want
of angular momentum projection operators to successfully implement variations of
binding strengths as function of the angular momentum.

In the current numerical setup, six electronic eigenstates align to comparable
eigenenergies between the first one-hundred-and-fifty eigenstates of the barium (I)
cation and the first ten eigenstates of the rubidium atom subsystem. These are
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indicated by matching colours in Figure 16. The rubidium ground state has an
energy of ERb0

= −153.2 × 10−3 EH which is met by the fourteenth excited state
EBa+

14
= −155.5×10−3 EH on the barium (I) cation. The first excited state of energy

ERb1
= −61.7 × 10−3 EH on rubidium faces the fifty-third on the barium ion with

energy EBa+
53

= −61.8 × 10−3 EH . Similarly, the second excited state with energy
ERb2

= −33.6 × 10−3 EH on rubidium faces an energy of EBa+
89

= −33.7 × 10−3 EH

of the eighty-ninth excited state on barium (I) whereas the third and fourth excited
states of energies ERb3

= −21.1 × 10−3 EH and ERb4
= −14.5 × 10−3 EH meet the

respective energies of EBa+
113

= −21.1 × 10−3 EH and EBa+
129

= −14.6 × 10−3 EH of
the hundred-thirteenth and hundred-twenty-ninth excited state on the barium (I)
ion. Eventually, the fifth and sixth excited state at energies ERb5

= −10.6×10−3 EH

and ERb6
= −8.1 × 10−3 EH on rubidium juxtapose the energies EBa+

138
= −10.9 ×

10−3 EH and EBa+
143

= −8.3 × 10−3 EH of the hundred-thirty-eighth and hundred-
fourty-third excited state on the barium (I) cation. The number of numerical radial
eigenstates of rubidium is restricted by the applied resolution of primitive basis
functions such that nine eigenstates with eigenenergy below zero can be achieved
for the employed computational setup. It is expected that each of these eigenstates
on rubidium finds a matching state with eigenenergy on barium (I) although only the
first six rubidium eigenstates found a comparable level within the first hundred-fifty
relaxed eigenstates of the barium ion. Graphically, the excited states of rubidium
and barium (I) of equal colouring fail to match up in their respective height at their
facing point at ρBa+ = 50 aB because the long tail of the respective effective binding
potentials results in a considerable remaining amplitude of the wavefunctions which
were graphically cut-off at 50 aB from their respective binding centres.

In the following, the numerical results of the simulation of such a prospective
ICEC experiment at the given typical experimental conditions shall be presented
and analysed in line with the methodical analysis applied to the results presented
in Figure 6. To this goal, Figure 17 presents the flux densities and spatial probab-
ility densities projected on the degrees of freedom ρBa+ and ζBa+ in the barium (I)
subsystem and in rRb within the rubidium subsystem as functions of time t for the
interatomic electron capture onto the central barium (II) cation in a cloud of ul-
tracold rubidium atoms of dimensions in the range of several millimetres as is typical
for current hybrid-trap experiments with ultracold atoms. Analogously to Figure 6
(a-c), the individual columns illustrate the full dynamics in column (a), the differ-
ence to a reference computation excluding interatomic electron-electron interaction
in column (b) and the reference computation itself in column (c). Arising from the
increased dimensionality of the simulation, each column presents the contributions
to the outgoing electron flux density measured around the barium (II) cation or the
rubidium atom in the upper panel and the projected spatial probability density onto
the three individual degrees of freedom of longitudinal direction ζBa+, transverse dir-
ection ρBa+ and radial direction rRb in the respective rows below. Starting with the
reference simulation of to familiarise with the time evolution of the incident electron
in the absence of interaction with the electron on rubidium, the time-dependent
results and their graphical illustration in the figure will be described and analysed
in the following paragraphs.
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Figure 17: Dynamics of interatomic coulombic electron capture onto
barium (II) through dipole-dipole interaction with the outermost valence
electrons of a cloud of ultracold rubidium atoms distributed spherically
around the barium (II) cation. (a) The full electron dynamics. (b) The
difference between the full dynamics and a reference computation of inde-
pendent electrons. (c) The simulation of independent electrons at same
initial conditions but denying interatomic interaction or energy transfer.

The reference simulation of independent electrons shows that the scattering of the
incident electron wavepacket on the barium (II) cation induces a quick dispersion of
the wavepacket over the entire available longitudinal and transversal domain.

Most instructing, is the graph in the second row of the Figure 17 column (c)
which depicts the spatial probability density in longitudinal direction ζBa+. The
yellow colour indicates a high density of 10−1 a−1

B and above which fades via bright
orange at a density of 10−2 a−1

B and orange at a density of 10−3 a−1
B to red, violet and

blue at respective spatial probability densities of 10−4 a−1
B , 10−5 a−1

B and 10−6 a−1
B .

For spatial probability densities at 10−7 a−1
B and below. At initial time, the incident

electron is spread in space indicated by the colouring at t = 0 of approximately 70 aB

below ζBa+ = −50aB. The barium (II) cation is situated at constant ζBa+ = 0 aB
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throughout the entire simulation. The attraction of the free wavepacket accelerates
the electron toward ζBa+ = 0 aB which is visible at the increasing slope ∆ζBa+/∆t
with time t of the wavepacket’s forefront. Simultaneously, the wavepacket spreads
over time such that its tail propagates decreasing slope with increasing time but
the width of the blue region indicating low spatial density increases with time.
As the forefront passes the height ζBa+ = 0 aB of the barium (II) cation at time
about t ≈ 100~/EH , it disperses rapidly toward positive and negative ζBa+ as well
as toward the transverse direction of ρBa+ indicated in the panel below. As the
forefront is partially reflected in longitudinal direction and moves back to smaller
ζBa+, it encounters parts of the wavepacket still propagating toward the barium (II)
cation at ζBa+ = 0 aB which induces interference between the partial waves which are
visible as slightly darker ridges within the orange regions from time t = 200~/EH

onwards at which time the maximum of the wavepacket arrives at ζBa+ = 0 aB.

As the portions of the spreading wavepacket reach a longitudinal distance of
ζBa+ = ±100 aB, they are registered as respective flux density F±

ζ
Ba+

on the upper

graph of Figure 17 (c) and the same holds for a transverse distance of ρBa+ = 100 aB

which registers as flux density Fρ
Ba+

(t) as function of time. The maximum over

time in longitudinally transmitted flux density of maxt F
+
ζ

Ba+
= 768 × 10−6 EH/~

occurs at time t = 413 ~/EH before the maximum over time is reached in the
transverse direction with a flux density of maxt Fρ

Ba+
= 1412 × 10−6 EH/~ at time

t = 446 ~/EH . As last, the temporal maximum of the longitudinally reflected flux
density of maxt F

−
ζ

Ba+
= 48 × 10−6 EH/~ is reached at simulation time t = 466 ~/EH .

Owing to the increasing spatial uncertainty with increasing time and the uncertainty
in momentum, the individual flux density contributions rise quickly to their respect-
ive temporal maxima but decrease gradually more slowly with increasing time. As a
result, the entire domain is covered by the incident wavepacket at time t = 400~/EH

and spatial probability density remains distributed from the barium (II) cation
at (ζBa+, ρBa+) = (0, 0) beyond the onset of the complex absorbing potentials at
ζcap = ±100 aB and at ρcap = 100 aB respectively. However, as increasing portions
of the initial wavepacket have effectively left the region of observation, the spatial
probability density decreases considerably, which is indicated by the colouring chan-
ging from orange and red to violet and blue while it remains distributed over the
entire observation volume surrounding the barium (II) cation. Simultaneously, the
spatial probability density of the radial part around the rubidium atom is depicted
in the last row of Figure 17 column (c) as function of radius rRb and time t. It
remains constant until t = 400 ~/EH where it begins to decay slowly. This is only
marginally due to any electronic flux density leaving the rubidium atom which is
of the order of 10−16 EH/~ only as indicated in the upper panel as FrRb

. There it
shows a rather random broad shoulder from t = 150 ~/EH to t = 250~/EH which
is approximately the time interval from when the maximum of the incident wave-
packet arrives at the barium (II) cation to when the forefront begins to numerically
leaves the barium subsystem at distance of 100 aB. The very small flux density on
rubidium thus appears to be a numerical echo of large interaction which also revives
at a much smaller magnitude around the time of the maximal flux density in trans-
versal direction on barium (II). The gradual decrease of probability density around
the rubidium atom is thus the numerical phenomenon of the combined two-electron
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wavefunction parts of which are continuously leaving the barium subsystem.

The fully interactive electron dynamics depicted in Figure 17 column (a) appears
very similar to the reference simulation but shows continuous spurts of flux density
leaving the rubidium atom and at larger times an increase of spatial probability
density around the barium (II) cation. While remaining orders of magnitude smaller
than the flux densities seen exiting the barium (II) cation, the flux density sent out
from the rubidium atom is orders of magnitude larger and more continuous over the
depicted time frame than in the reference computation. This is also clearly visible
as blue sprays in the graph of the spatial probability density projected onto rRb in
the lowest row. The flux density measured radially around the rubidium atom is
thus mainly induced by interatomic energy transfer between the electrons of at least
∆ERb = 142.5 × 10−3 EH necessary to excite the ground state to the fifth excited
state on rubidium which is the first to extend beyond rRb = 100 aB in its spatial
probability density and lies only 10.6 × 10−3 EH below the absolute continuum.
The dominating features of the flux density leaving the barium (II) cation, however,
remain quantitatively similar to the reference simulation. In longitudinal direction,
the temporal maximum in transmitted flux density reaches maxt F

+
ζ

Ba+
= 777 ×

10−6 EH/~ at same time t = 413 ~/EH whereas the transverse flux density climaxes
with maxt Fρ

Ba+
= 1409 × 10−6 EH/~ at time t = 442 ~/EH slightly faster than

the reference. The longitudinally reflected flux density increases up to maxt F
−
ζ

Ba+
=

49 × 10−6 EH/~ at time t = 458 ~/EH . Qualitative different, the electron-electron
interaction induces a faster yet quantitatively minor spray of spatial probability
arriving at the longitudinal and transversal borders of the depicted region at t =
200 ~/EH while the main body of the dispersed wavepacket arrives around t =
250 ~/EH as in the reference case. At the same instant in time, the spatial probability
density shows the largest extension in radial direction around the assisting rubidium
atom.

As the average spatial probability density decreases gradually with time around
the barium (II) cation, a small portion in the order of 2 × 10−5 a−1

B accumulates
within 7 aB around the barium (II) cation in addition to the widespread background
distribution of the dispersed wavepacket. This is indicated on the one hand, by
the oscillating dark-red colouring in spatial probability density around the barium
position in ζBa+ and ρBa+ in Figure 17 column (a). It is also highlighted more clearly,
on the other hand, by a yellow colouring against a black background in the difference
in spatial probability densities of the interactive with respect to the non-interactive
simulation which is illustrated in the two middle panels of Figure 17 column (b)
after time t = 600 ~/EH . While surplus and lack of spatial probability is mainly
leaving the observation region around the barium (II) cation in an oscillating fashion
in time until approximately t ≈ 900 ~/EH , a clearly shaped surplus probability
density retains its proximity near the cation for the remaining depicted time of
∆t = 500 ~/EH .

Indicating a coinciding evolution up to t = 100 ~/EH in all three presented degrees
of freedom, the interaction-induced deviations of the projected-probability and flux
densities propagate in an intricate oscillatory fashion. The deviation in flux density
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illustrated in the upper panel presents a clear yet random-looking continuous sur-
plus in radial flux density FrRb

on the rubidium atom. This underlines it to be a
purely interactive effect. In contrast, the deviation in flux density exiting from the
barium (II) cation oscillates between surplus and deficit. In transverse direction, the
deviation in flux density ∆IFρ

Ba+
shows three temporal extrema in surplus with the

largest of maxt ∆IFρ
Ba+

= +26.5 × 10−6 EH/~ at time t = 401 ~/EH and shows two
temporal extrema in deficit with the largest being mint∆IFρ

Ba+
= −23.6×10−6 EH/~

at time t = 488 ~/EH . In longitudinal transmission direction, the deviation in
flux density indicates three temporal extrema in surplus with the largest reaching
maxt ∆IF

+
ζ

Ba+
= 11.4 × 10−6 EH/~ at time t = 393 ~/EH and indicates two temporal

extrema in deficit with the largest reaching mint∆IF
+
ζ

Ba+
= −4.3 × 10−3 EH/~ oc-

curing at time t = 475 ~/EH . In longitudinal reflection direction, the flux-density
deviation presents only two temporal extrema in surplus with the maximum meas-
uring maxt ∆IF

−
ζ

Ba+
= 2.5 × 10−6 EH/~ at time t = 405 ~/EH and presents two

extrema in deficit ending on the largest of mint∆IF
−
ζ

Ba+
= −2.2 × 10−6 EH/~ at time

t = 579 ~/EH . Similarly, the deviation in spatial probability density illustrated in the
three lower panels of Figure 17 column (b) oscillate between regions of surplus and
deficit which flow outward in the case of the barium (II) cation and appear mainly
localised within a radius of 10 aB for the case of the rubidium subsystem. The col-
ouring in the plot of probability-density deviation is shown in multiples of 10−4 a−1

B .
While ending on a temporally extremal deficit of ∆I |〈rRb|Ψ〉|2 = −148 × 10−6 a−1

B

at radial distance rRb = +4.387 aB and time t = 798 ~/EH , the radial distribution
and amount of deficit decrease with time as the overall norm contained within the
observation volume decrease with the exiting wavepacket on the barium subsystem.
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Figure 18: Electron flux density F (E) as function of system energy E for
an incident electron on a frozen barium (II) interacting through dipole-
dipole interaction with the outermost valence electrons of a Bose-Einstein
condensate of rubidium atoms distributed spherically around the cation. (a)
The flux density spectrum for the full electron dynamics. (b) The deviation
of the fully interactive flux density spectrum from the reference flux density
spectrum of independently evolving electrons at equal initial conditions.
(c) The spectrum of flux density for a reference simulation of same initial
conditions but denying interatomic electron-electron interaction.

The Fourier transform with respect to time of the measured flux density F (t)
evaluates the spectrum of the flux density F (E) as function of energy E which
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is depicted in Figure 18 but shows barely any difference between the full dynam-
ics and the reference computation. Figure 18 (a) is representing the flux density
spectra of the full dynamics. Figure 18 (c) represents the flux density spectra of
the interaction-free reference computation. Comparing both computations, the flux
densities associated with the barium subsystem show a bell function with a single
maximum each while the radial flux density measured for the rubidium subsystem
shows an apparently energy independent value of FrRb

= 17×10−9 E−1
H in the fully in-

teractive case and in the case of the reference simulation a much smaller, widespread
and weakly fluctuating flux density of maximally FrRb

= 30×10−15 E−1
H . The trans-

verse flux density spectra juxtapose a spectral maximum of maxE Fρ
Ba+

= 9.78 E−1
H

at energy E = 1.2 EH and full width at half maximum of 1.55 EH in the full
dynamics against a spectral maximum of maxE Fρ

Ba+
= 9.55 at same energy but

with full width at half maximum of 1.58 EH in the non-interactive reference case.
In longitudinal direction, the transmissive flux density climaxes at flux density of
maxE F

+
ζ

Ba+
= 3.84 E−1

H at system energy E = 1.76 EH width full width at half
maximum of 1.96 EH for the full-interaction dynamics but climaxes at a flux density
of maxE F

+
ζ

Ba+
= 3.83 E−1

H with full width at half maximum of 1.98 EH at the same
system energy in the reference computation. Eventually, the reflected longitudinal
flux density reaches maxE F

−
ζ

Ba+
= 0.402 E−1

H with full width at half maximum of
1.32 EH at energy of E = 0.88 EH in the computation of the full dynamics and
reaches maxE F

−
ζ

Ba+
= 0.399 E−1

H with full width at half maximum of 1.39 EH at
energy E = 0.80 EH in the non-interactive reference.

The large agreement in both cases by their respective spectra leads to diffuse
difference spectra shown in Figure 18 (b). The erratic spectra of the deviation
in flux density all find their maximal deficit at a system energy of E = 0.08 EH .
At this energy, the maximal deficit in transverse flux density on barium (II) reads
minE ∆IFρ

Ba+
= −1.01 E−1

H , the maximal deficit in longitudinally transmitted flux

density on barium (II) reaches minE ∆IF
+
ζ

Ba+
= −0.13 E−1

H , the its reflected equivalent

touches minE ∆IF
−
ζ

Ba+
= −0.13 E−1

H , and the radial flux density on rubidium sees a

deficit of minE FrRb
= −17×10−15 E−1

H . All deviations in flux density show a deficit at
energies E = ±0.08 EH while all except ∆IF

−
ζ

Ba+
are offering a surplus at E = 0 EH .

Their maximal spectral surplus reaches maxE ∆IFρ
Ba+

= +0.23 E−1
H in transverse

direction on barium (II) at energy E = 1.20 EH , touches maxE ∆IF
+
ζ

Ba+
= +0.10 E−1

H

in longitudinal transmission direction on barium (II) also at energy E = 1.20 EH ,
maxE ∆IF

−
ζ

Ba+
= +8.2 × 10−3 E−1

H in longitudinal reflection direction on barium at

energy E = 1.44 EH , and climaxes at maxE ∆IFrRb
= +16 × 10−9 E−1

H in radial
direction on rubidium for an energy of E = 3.04 EH . The difference in flux density
between interactive and non-interactive case is clearly too small to draw any sensible
conclusions. This implies however, that the fraction of interatomically captured
electron wavefunction is yet too small.

Overall, the full electron dynamics computations for prototypical ICEC experi-
ment at macroscopic conditions proved to be very numerically demanding due to
their large dimensionality and partial inseparability of coordinate subsystems but
proved to successfully undergo ICEC with a surplus in spatial probability densities
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at time t = 2 150 ~/EH of ∆I |〈ρBa+|Ψ〉|2 = +47.7 × 10−6a−1
B at transverse dis-

tance of ρBa+ = 3.28 aB from the centre barium (II) cation and of ∆I |〈ζBa+|Ψ〉|2 =
+39.0×10−6a−1

B at longitudinal distance of |ζBa+| = 1.29 aB from the cation. Though
a winning proof of principle, several shortcomings were encountered during the im-
plementation of the model within the frame of the employed software suite. At
the current stage, the unavailability of implemented angular momentum operators,
spherical or solid harmonic and Bessel functions appear the major impediments to
a more robust, more accurate and potentially faster implementation. This would
allow on the one hand, to describe the various potentials more efficiently and more
accurately, and would possibly enable a transfer of the barium subsystem into spher-
ically symmetric coordinates by a more opportune description of the initial wave-
packet. This would allow to reduce the amount of primitive basis functions and
single-particle functions at the same time which might free numerical resources to
be employed on better accuracy or potentially on the transfer from a barium (II)
cation to a barium (I) cation by adding an additional valence electron to the sys-
tem. This step would have considerable significance in light of the fact that current
realisations of hybrid traps for ultracold atoms solely work with the singly charged
cations. Moreover, the here used effective two-electron model neglects the possibility
of consecutive dissipation pathways through intra-atomic energy down-conversion or
dielectronic excitations which could in turn enhance the ICEC rate. In a exclusively
two-electronic model, an intermediate interatomic energy transfer which may have
bound the incident electron temporarily but has not sufficed to ionise the assist-
ing electron on the neighbour will be able to transfer energy back to the incident
electron. If a third electron were present within the model, this would open up addi-
tional dielectronic reaction pathways to stabilise the interatomic coulombic electron
capture.
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Part IV

Conclusion
On the one hand, interatomic coulombic electron capture is a fundamental yet novel
process. On the other hand, theoretical descriptions are challenging and experi-
mental investigations have not yet been conducted. Starting from the established
numerical model of quantum confinements within a nanowire, this dissertation ap-
pended to existing observations on dynamics computations within the effective-two-
electron treatment of the model from which it drew model-independent hypotheses
for future investigations. Introducing a second application, it adapted the model
to test whether the effective-two-electron treatment suffices to successfully undergo
ICEC in the experimentally motivated system of a barium (II) cation engulfed in a
Bose-Einstein-condensate of neutral rubidium atoms. The electron dynamics were
computed in the framework of the multi-configurational time-dependent Hartree
approach employing the software suite of same name and resulted partially in an
environment-assisted electronic attachment of an incident free electron. The outgo-
ing electronic flux density was then analysed in correlation with available electronic
states within the confinement region and with respect to the directional depend-
ence of the outbound flux. Moreover, the effects arising from the dynamical energy
transfer between the two treated electrons was referenced against their otherwise
independent motion through the system.

Arisen Conjectures on Prospective Investigations

This work discussed the full state-resolved spectra of reflected and transmitted con-
tributions to the outgoing flux density and related ICEC probability at a particular
set-up, then presented the quantum size effect on the reflected and transmitted max-
imum of the spectrum of ICEC flux density, as well as maximum and expectation
value of the ICEC probability spectrum over a range of set-ups with varying cap-
ture lengths, before analysing the maximum of the transmitted ICEC probability
spectrum over a domain of sizes and confinement energies of the capturing quantum
dot at various distances between the quantum confinements in comparison to trends
in two available states localised within the capturing confinement. Providing an
extensive addition to the presently published findings on the dynamics of this sys-
tem, the numerical results suggest that the interatomic coulombic electron capture is
primarily governed by two distinct reaction pathways. Appearing to be associated
to differing electronic states of the confinement region, the two subprocesses can
show individual preference over spatial directions and different resonant energies.
For the investigated range of parameters, the energy levels of these associated states
suggest to provide a starting point for a more comprehensive description beyond the
particular parameters of an individual model. The optimal ICEC efficiency for the
sampled setups exceeded 55 %.

Overall, the presented data supports the following conjectures for prospective
directed investigations. An arbitrary confinement including atoms, molecules or
quantum-dots may be modified through any available control parameter, may it
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be size, element, material, applied local fields, various media or other. The ei-
genenergies of associated electron states of the involved confinements can be used as
independent descriptors to comprehend ICEC beyond the underlying model, set-up
or parameters. The dependence on the distance between the capturing confinement
and the interaction partner remains a significant modifier to the associated resonant
energies though.

Benefits and Impediments of a Bielectronic Model

Successful for pairs of effective-mass approximated electrons in artificial confine-
ments, the established model was then adapted to treat a prototypical electron
capture by a barium (II) cation aided through a surrounding cloud of ultracold ru-
bidium atoms. Whereas lower valence and core-electron excitations were neglected
together with the asymmetric contribution from different electronic angular mo-
menta, a rather simple electric dipole-dipole coupled model was able to successfully
show environment-assisted electron attachment in typical experimental conditions.
Many-particle interactions in a semiconducting medium can thus be averaged at
least conceptually to a particle with adapted effective mass, macroscopic confine-
ments can lead to artificial discrete energy levels not unlike those in much smaller
single atoms or theoretical equivalents of even lower degrees of freedom, and multi-
charged nuclei and lower lying electrons may be averaged under certain conditions
to an effective frozen core pseudopotential for outer valence electrons. In the case
of an environment of distributed ultracold interaction partners for an interatomic
coulombic electron capture, it appears a reasonable first approach to treat the cu-
mulative environment effectively.

The main advantages of this treatment are twofold. On the one hand, the cumu-
lated potential over the large number of interaction partners counters the numer-
ically quickly vanishing interaction potential of the individual partner at typically
rather large distances to the capturing atom. This allows to consider macroscopic
distributions of typical experimental conditions which would otherwise lie beyond
numerically possible accuracy and feasibility. On the other hand, the treatment as
single effective interaction partner with macroscopic spatial uncertainty offers the
opportunity to limit the increase in degrees of freedom to a single additional variable
and still conceptually account for the cumulative effect of the surrounding atoms.
This allows to keep the demand on numerical resources in check.

There are two apparent disadvantages of this effective bielectronic model. First, it
does not allow additional electronic responses neither to aid nor to hinder the elec-
tron capture. Transferred energy between electrons on different sites may dissipate
through local energy conversion which is not possible in this treatment such that it
excessively transfers back in lack of other channels. Second, barium (I) cations are
used in hybrid trap experiments, not barium (II) cations. These involve an addi-
tional outer valence electron experiencing the same pseudopotential from the frozen
core as the incident electron while interacting with it. This is not treated in this
two-electron model. Simultaneously, arriving at an experimental realisation with
barium (II) cations will demand considerably more effort.
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Apart from the advantages and disadvantages of the effective two-electron ap-
proximation, some aspects of the current implementation of the model could profit
from a different realisation but lack the necessary features in the currently available
software suites. Among these are a more accurate description of the frozen-core
pseudopotential by additional dependence on the electronic angular momentum in-
volving angular momentum projection operators, a more advanced description of
the Coulomb potential or an alternative description of the barium subsystem in a
spherical coordinate system both involving the introduction of Bessel functions.

In conclusion, the implementation of the introduced model within the chosen
method presented a compromise over an already high demand of computational re-
sources. Increasing the number of or the resolution in the chosen degrees of freedom
as well as reducing the level of approximations will quickly render the problem non-
computable. Several adaptations to the model suggest improving the accuracy at a
small computational cost but are not implemented in the available software suites
and would demand considerable effort in their adaptation. Nevertheless, the current
implementation of the model by an effective two-electron treatment was successful
in undergoing interatomic coulombic electron capture at typical macroscopic experi-
mental conditions. On the other hand, the derived model allowed, however, to bridge
the gap between the atomic scale interaction and the three orders of magnitude lar-
ger average distance to the first available partner atom for an interatomic coulombic
electron capture in ultracold atoms. Furthermore, the extended investigative re-
vision of ICEC in nanowire-embedded quantum dots revealed in a methodological
approach that interatomic coulombic electron capture can lead to a release of the
assisting nearby electron in the direction masked by the reflection of the incident
electron. The previously relied upon ionisation flux density measured in direction
of transmission thus presents only one but often dominant part of the actual overall
fraction of interatomic coulombic capture of the incident electronic wavepacket. A
previously unavailable extent of computational data proved consistently throughout
the sampled range of confinement parameters that the electron dynamics and cap-
ture efficiency are dominantly following significant single-electron eigenenergies of
the system. The simulations strongly support recent related studies2,64 and suggest
these dominant two energy levels are respectively related to two different reaction
pathways one of which engages ICD. Concluding, it has been hypothesised that fu-
ture investigations of ICEC dynamics are probable to profit from a resolution of
their findings in terms of the single-electron eigenstates and interatomic distance
rather than the employed model parameters of the specific confinement. This will
eventually allow to make the description and analysis of interatomic coulombic elec-
tron capture dynamics model-independent and the observations portable to other
theoretical and experimental realisations.
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