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Introduction 

1 Introduction 

 

1.1 The photoperiod stress syndrome 
 

Plants are exposed to several environmental stimuli that can act as potential stressors. One of these 

stimuli is the alteration of the light-dark cycle. As shown recently, a novel type of abiotic stress caused 

by an exposure to a prolonged light period (PLP) - coined photoperiod stress - has been described in 

Arabidopsis (Nitschke et al., 2016, 2017). The standard photoperiod stress regime consists of a five-

week-long short-day (SD) entrainment that is interrupted once by a 32 h-lasting PLP (Figure 1). 

 

 

Figure 1: Schematic overview of the photoperiod stress regime and physiological and molecular markers 
measured in this thesis. 
After five weeks of short-day entrainment, a prolonged light period (PLP) of 32 h is given. (A) During the night 
following the PLP, photoperiod sensitive plants show an altered expression of stress marker genes compared to 
resistant plants (Induction of marker genes in A serves as one example but a downregulation is also possible). (B) 
15 h after the PLP-treatment, sensitive plants accumulate more H2O2 compared to resistant plants. The next day, 
a reduction in photosystem II maximum quantum efficiency (Fv/Fm) is noted in leaves of sensitive plants (C), and 
the formation of lesions becomes visible which ultimately results in programmed cell death (PCD, D). Adapted from 
Nitschke et al., 2017. 

 

Characteristic for the response to photoperiod stress is, amongst others, an altered expression of stress 

and cell death marker genes - for example BON ASSOCIATION PROTEIN1 (BAP1), RESPONSIVE TO 

HIGH LIGHT41 (RHL41/ZAT12) and CHLOROPHYLL A/B BINDING PROTEIN2 (CAB2) - in sensitive 

plants compared to resistant plants during the night following the PLP (Figure 1A). In addition to the 

differential expression of marker genes, an accumulation of reactive oxygen species (ROS) in form of 

H2O2 is detected during and especially at the end of the night after the PLP in sensitive plants (Figure 

1B). The next day, sensitive plants display a reduced photosynthetic efficiency compared to resistant 

plants (Figure 1C). Lastly, an increased number of leaves that are lesioned is visible in sensitive plants 

compared to resistant ones resulting eventually in programmed cell death (PCD; Figure 1D). Notably, 

while a PLP of 32 h was applied in the first description of the stress syndrome (Nitschke et al., 2016, 

2017), an extension of the light period by four hours is sufficient to trigger a photoperiod stress response 

in terms of lesion formation (Nitschke, 2014), while a prolongation by two hours is sufficient to cause 
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photoperiod stress at the molecular level (Abdelsloud et al., unpublished). Furthermore, only mature, 

fully expanded leaves are fully sensitive and especially young leaves that are still growing are not or 

less responsive to photoperiod stress (Nitschke, 2014).  

So far, two pathways have been described to be crucial for the sensitivity to photoperiod stress (Nitschke 

et al., 2016, 2017). The first one is the circadian clock. An impairment of the circadian oscillations by the 

loss of the circadian oscillators CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED 

HYPOCOTYL (LHY) as well as an overexpression of PSEUDO RESPONSE REGULATOR1 

(PRR1)/TIMING OF CAB EXPRESSION1 (TOC1) led to an increased sensitivity to photoperiod stress 

(Nitschke et al., 2016). Moreover, the synthesis, metabolism and signaling of the phytohormone 

cytokinin has been found to be of major importance for the photoperiod stress sensitivity (Nitschke et 

al., 2016). Central components in this context are ISOPENTENYLTRANSFERASE3 (IPT3), IPT5, IPT7, 

CYTOKININ OXIDASEs (CKXs), ARABIDOPSIS HISTIDINE KINASE3, ARABIDOPSIS RESPONSE 

REGULATOR2 (ARR2), ARR10 and ARR12 (Nitschke et al., 2016). In plants with either an impaired 

circadian clock or a decreased cytokinin status, expression of jasmonic acid (JA) synthesis and signaling 

genes were misregulated upon photoperiod stress (Nitschke et al., 2016). Furthermore, cytokinin 

receptor and metabolism mutants accumulated several JA derivatives including bioactive JA-isoleucine. 

The loss of JA-isoleucine synthesis in the cytokinin mutant background rescued the photoperiod stress 

phenotype of these plants (Nitschke et al., 2016). As the expression of circadian clock genes was also 

misregulated in plants with a decreased cytokinin status compared to wild type after exposure to 

photoperiod stress, a model has been proposed that puts the circadian clock in the center of photoperiod 

stress regulation and places cytokinin as one factor influencing the circadian clock by regulating the 

transcription of its components (Nitschke et al., 2016, 2017). 

 

 

1.2 Cytokinin 
 

Cytokinins are one major group of phytohormones and have been named originally after their ability to 

regulate cell division. In the 1950s, Miller and colleagues isolated the first cytokinin derivative by 

autoclaving DNA and demonstrated its cell division-inducing properties in tissue cultures (Miller et al., 

1955, 1956). Since then, experimental evidence suggests that cytokinins are involved in nearly all 

aspects of plant growth and development like e.g. shoot initiation, shoot and root growth in general, 

embryonic development, nutrient acquisition, flowering, leaf senescence and in the resistance against 

biotic and abiotic stresses (Werner and Schmülling, 2009; Kieber and Schaller, 2014; Cortleven et al., 

2019b). Furthermore, its biosynthesis and metabolism, transport and signaling pathway has been 

studied extensively in the last decades. 

 

1.2.1 Cytokinin biosynthesis and metabolism 
 

Structurally, natural cytokinins are adenine derivatives that are either isoprenylated or carry an aromatic 

side chain at the N6-residue (Sakakibara, 2006). The four biologically most important types - N6-

isopentenyladenine (iP), cis-zeatin (cZ), trans-zeatin (tZ) and dihydrozeatin (DHZ) - belong to the 

isoprenoid class. All can exist either as O- and N-glucosides, ribotides, ribosides or as a bioactive free 
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base (Sakakibara, 2006). In Arabidopsis, iP and tZ are the biologically most relevant cytokinins. iP is 

predominantly important for root development and tZ is crucial for most developmental processes in 

shoot tissue (Miyawaki et al., 2006; Kiba et al., 2013). They are initially synthesized by the addition of 

dimethylallyl diphosphate (DMAPP), which mainly derives from the methylerythritol phosphate (MEP) 

pathway, to adenosine mono-/di-/triphosphate (AMP/ADP/ATP) (Sakakibara, 2006; Figure 2). 

 

 

Figure 2: Simplified scheme of cytokinin biosynthesis and metabolism. 
As a first step of synthesis, isopentenyl adenine (iP) nucleotides are formed by ISOPENTENYLTRANSFERASE 
(IPT) enzymes. Conversion to the respective trans-zeatin (tZ)-nucleotides is catalyzed by CYTOCHROME P450 
MONOOXYGENASEs (CYP735As). In addition, cis-zeatin (cZ)-type CKs are formed by tRNA-IPT enzymes. iP 
riboside monophosphate (iPRMP), tZ riboside monophosphate (tZRMP) and cZ riboside monophosphate (cZRMP) 
can be directly converted to biologically active free bases (green box) by LONELY GUY (LOG) enzymes. 
Inactivation of all metabolites is catalyzed by CYTOKININ OXIDASES/DEHYDROGENASE (CKX) enzymes. 
Modified after Cortleven et al., 2019. 

 

This reaction is catalyzed by ISOPENTENYLTRANSFERASEs (IPTs) that constitute a nine-member 

family in Arabidopsis (Takei et al., 2001; Kakimoto, 2001). Seven of these nine members are involved 

in iP nucleotide (iP riboside (iPR) mono-/di-/triphosphate (iPRMP/iPRDP/iPRTP)) formation. Cytokinin 

measurements as well as phenotypic analyses of ipt single and higher order mutants indicates that iP-

type cytokinins are mainly formed by IPT3 and that IPT3, IPT5 and IPT7 are the most relevant enzymes 

(Miyawaki et al., 2006). They are expressed in the phloem (IPT3), lateral root primordia (IPT5) as well 

as root tips and the endodermis (IPT7) (Miyawaki et al., 2004). It is assumed that cytokinin is mainly 

synthesized in plastids as studies revealed that IPT1, IPT3, IPT5 and IPT8 are localized in plastids, 

while IPT4 is localized in the cytosol and IPT7 in mitochondria (Kasahara et al., 2004). Formed iP 

nucleotides are converted further to tZ nucleotides by two cytochrome P450 monooxygenases - 

CYP735A1 and CYP735A2 (Takei et al., 2004). CYP735A1 is predominantly expressed in flowers and 

roots and CYP735A2 predominantly expressed in roots  but also in the hypocotyl close to the shoot 

apical meristem (Takei et al., 2004; Kiba et al., 2013). Characterization of tZ-deficient cyp735a mutants 

indicated that both isoforms act redundantly (Kiba et al., 2013). In cypDM double mutants, tZ-type 

cytokinin content is strongly reduced but total cytokinin levels are unchanged as the reduction is 

compensated by an increased content of iP-type cytokinins (Kiba et al., 2013).  

cZ-type cytokinins are formed via a different pathway that involves transfer ribonucleic acid (tRNA)-IPTs 

IPT2 and IPT9. These enzymes catalyze the reaction of DMAPP, which mainly derives from the 

mevalonate (MVA) pathway, with tRNAs which results in the formation of cZ ribotides (Takei et al., 2001; 
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Miyawaki et al., 2006). On the one hand, studies suggest that cZ-type cytokinins are formed in the 

cytosol as IPT2 is localized there (Kasahara et al., 2004). On the other hand, ipt2ipt9 mutant analysis 

indicates that cZ-type cytokinins are involved in primary root growth and protoxylem formation (Köllmer 

et al., 2014).  

All isoprenoid class cytokinins are converted to their bioactive form by cytokinin nucleoside 5’-

monophosphate phosphoribohydrolase enzymes named LONELY GUY (LOGs) through 

dephosphorylation of respective riboside monophosphate precursors (Kurakawa et al., 2007). In 

Arabidopsis, seven out of nine LOG genes are functional, each one being expressed in different tissues 

and mutant analysis indicates that they act redundantly in various processes (Kuroha et al., 2009; 

Tokunaga et al., 2012). In log septuple mutant (logS), levels of bioactive cytokinins are reduced by more 

than 50 %, while levels of cytokinin ribosides and nucleotides are strongly increased (Tokunaga et al., 

2012). 

Bioactive cytokinins are degraded irreversibly by either N-glucosylation or by side chain cleavage. 

Further, zeatin-type cytokinins can be inactivated temporarily by O-glucosylation and it is believed that 

they are reactivated by hydrolases. From the five genes encoding glucosyl transferases in Arabidopsis, 

N-glucosylation is catalyzed by two enzymes - URIDINE DIPHOSPHATE GLYCOSYLTRANS-

FERASE76C1 (UGT76C1) and UGT76C2 (Hou et al., 2004; Wang et al., 2011, 2013). CYTOKININ 

OXIDASEs (CKXs) cleave bioactive cytokinins irreversibly. Seven CKX genes are present in 

Arabidopsis and they are localized mainly in the ER and vacuoles and have distinct expression patterns 

(Werner et al., 2003). Further, constitutive overexpression of CKX genes as well as ckx mutant analysis 

showed the importance for plant development (Werner et al., 2001, 2003; Bartrina et al., 2011; Werner 

et al., 2010; Köllmer et al., 2014). O-glucosylation is catalyzed by the other three enzymes of the glucosyl 

transferase family (Hou et al., 2004; Jin et al., 2013). Studies indicate that UGT85A1 is the enzyme with 

the biggest impact on O-glucosylation by regulating tZ homeostasis (Jin et al., 2013). 

 

1.2.2 Cytokinin transport 
 

After their synthesis, cytokinins either signal directly at or are transported to the site of action (Kang et 

al., 2017). iP-type and tZ-type cytokinins are carried over long distances via the vasculature. The 

direction of their transport reflects the side of their biological function. iP-type cytokinins move basipetally 

in the phloem (Matsumoto-Kitano et al., 2008; Bishopp et al., 2011), while tZ-type cytokinins move 

acropetally in the xylem mainly as ribosides but also as free bases (Kiba et al., 2013; Osugi et al., 2017). 

Crucial for the long-distance translocation of tZ-type cytokinins is ABCG14, a member of the 28-member 

containing subfamily G of ATP-BINDING CASSETTE (ABC) proteins. It is mainly expressed in the root 

and as a consequence, abcg14 mutants accumulate tZ-type cytokinins in root tissue (Ko et al., 2014; 

Zhang et al., 2014). 

Apart from ABCGs, members of two other transporter families are also involved in cytokinin translocation 

and either transport inactive cytokinin ribosides or bioactive cytokinins. EQUILIBRATIVE NUCLEOSIDE 

TRANSPORTER (ENT) proteins translocate cytokinin ribosides (Hirose et al., 2005; Sun et al., 2005). 

In Arabidopsis, ENTs constitute an eight-member family and so far, cytokinin riboside transport through 

ENT3, ENT6 ENT7 and ENT8 has been experimentally proven (Hirose et al., 2005, 2008). From these, 

all ENTs are expressed to different extends in leaves and while ENT6 is expressed vasculature specific 
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throughout the plant, ENT8 is expressed strongly in hypocotyls and petioles (Li et al., 2003; Sun et al., 

2005; Hirose et al., 2008).  

Plasma membrane-localized PURINE PERMEASE (PUP) symporters are involved in H+-dependent 

transport of cytokinin free bases and are encoded by 21 genes in Arabidopsis (Durán-Medina et al., 

2017). PUP1 and PUP2 were the first family members identified (Gillissen et al., 2000; Bürkle et al., 

2003) and while PUP1 is predominantly expressed in hydathodes but also in stigma tissue, PUP2 is 

expressed specifically in the vasculature (Bürkle et al., 2003; Cedzich et al., 2008). Recently, PUP14 

has been identified to be crucial for seedling development as amiRNA lines were strongly impaired 

(Zürcher et al., 2016). Interestingly, PUP14 expression was inversely correlated to cytokinin signaling 

output and as PUP14 is also localized at the plasma membrane, a discussion started whether cytokinin 

perception is taking place at the plasma membrane or the endoplasmic reticulum (ER) (Zürcher et al., 

2016; Kang et al., 2017; Romanov et al., 2018). 

 

1.2.3 Cytokinin signaling 
 

After cytokinins are synthesized and transported, bioactive cytokinins activate the cytokinin signaling 

pathway, which is a histidine/aspartate phosphorylation cascade (reviewed in e.g. Werner and 

Schmülling, 2009; Kieber and Schaller, 2014). In Arabidopsis, cytokinins are bound by a three-member 

family of ARABIDOPSIS HISTIDINE KINASE (AHK) receptors (Inoue et al., 2001; Suzuki et al., 2001a; 

Ueguchi et al., 2001; Yamada et al., 2001) (Figure 3). Activated receptors phosphorylate the histidine 

residue of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEINS (AHPs) (Hutchison et al., 

2006). Five redundant genes encode AHPs with histidine residues in Arabidopsis (Hutchison et al., 

2006). AHP6 does not contain the histidine residue and acts as a negative regulator of cytokinin 

signaling (Mähönen et al., 2006). The phosphorylation signal of AHP1 to AHP5 is transferred to and 

thus activates type-B ARABIDOPSIS RESPONSE REGULATOR (type-B ARR) transcription factors, 

which ultimately regulate cytokinin- dependent gene expression (Imamura et al., 1999). Type-B ARRs 

contain a phosphorylation domain as well as a DNA-binding domain (Sakai et al., 1998a). Thus, they 

act as positive regulators of cytokinin signaling in most cases. However, some studies suggest that gene 

regulation by type-B ARRs is more complex (Mason et al., 2005; Ramireddy et al., 2013). 

Part of cytokinin regulated genes encode for type-A ARRs that act as negative regulators, thereby 

establishing a feedback mechanism (Brandstatter and Kieber, 1998; Sakai et al., 1998a). As known from 

bacterial RRs (Mack et al., 2009), some ARRs like ARR18 can homo- and heterodimerize in a 

phosphorylation-dependent manner (Veerabagu et al., 2012). Further, they can interact with 

transcription factors of other hormone signaling pathways like ETHYLENE INSENSITIVE3 (EIN3) or 

PHYTOCHROME-INTERACTING FACTORs (PIFs) (Marín-de la Rosa et al., 2015; Yan et al., 2017). 
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Figure 3: Simplified scheme of cytokinin signaling in Arabidopsis. 
Bioactive cytokinins bind to the CHASE-domain (green) of ARABIDOPSIS HISTIDINE KINASE (AHK) receptors 
thereby initiating a histidine (H)/aspartate (D) phosphorylation (P; purple) cascade. The phosphorylation signal is 
transduced by ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEINs (AHPs) that contain H residues and 
ultimately given to type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs). Upon phosphorylation, they activate 
cytokinin response genes by binding to DNA via their DNA-binding domain (orange). Among cytokinin response 
genes are type-A ARRs. These act as negative feedback regulators as they compete with type-B ARRs for 
phosphorylation but are unable to bind DNA. Modified after Werner and Schmülling (2009). 

 

 

1.3 Auxin 
 

Auxins are another group of molecules that belong to the ‘classical’ phytohormones and are named after 

their ability to regulate plant growth. Already in the 19th century, Charles Darwin and his son Francis 

studied the bending of coleoptiles towards light, which is an auxin-regulated process (Darwin and 

Darwin, 1880). Since then, it was discovered that auxins are mobile molecules (Went, 1926) and that 

they not only regulate coleoptile bending but are also crucial for developmental processes of e.g. 

embryos, primary and lateral roots and the vascular tissue (Teale et al., 2006). During many of these 

processes, auxin and cytokinin interact with each other by regulating the others metabolism, signaling 

and transport (Coenen and Lomax, 1997; El-Showk et al., 2013). 
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1.3.1 Auxin biosynthesis and metabolism 
 

So far, three naturally occurring active auxins - indole-3-acetic acid (IAA), 4-chloroindole-3-acetic acid 

(4-Cl-IAA), and phenylacetic acid (PAA) - have been identified (reviewed in Korasick et al., 2013). From 

these, only IAA has been found in Arabidopsis and originates from indole. It can be formed tryptophan-

independently or tryptophan-dependently (reviewed in Woodward and Bartel, 2005). One of the three 

proposed tryptophan-dependent branches - the indole-3-pyruvic acid (IPA) pathway – appears to be the 

main contributor of IAA formation in Arabidopsis and it is the only one where all genes have been 

described (reviewed in Zhao, 2012; Korasick et al., 2013). 

As the initial step of the IPA pathway, TRYPTOPHAN AMIDOTRANSFERASE OF ARABIDOPSIS1 

(TAA1) and TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) proteins convert tryptophan to 

IPA (Stepanova et al., 2008) (Figure 4). 

 

 

Figure 4: Simplified scheme of auxin biosynthesis and metabolism. 
First, TRYPTOPHAN AMIDOTRANSFERASE OF ARABIDOPSIS (TAA1) and TRYPTOPHAN AMINOTRANS-
FERASE RELATED (TAR) proteins convert tryptophan (Trp) to indole-3-pyruvic acid (IPA), which is converted to 
bioactive free IAA by YUCCA (YUC) proteins. IAA can be inactivated irreversibly to 2-oxoindole-3-acetic acid 
(oxIAA) by DIOXYGENASE FOR AUXIN OXIDATION (DAO) proteins or to either IAA aspartic acid (IAA-Asp) and 
IAA glutamic acid (IAA-Glu) by GRETCHEN HAGEN3 (GH3) proteins. GH3s catalyze also the reversible inactivation 
to other IAA-amino acid conjugates. Reversion of the reaction is catalyzed by IAA-ALANINE RESISTANT3 (IAR3), 
IAA-LEUCINE RESISTANT1 (ILR1) and IAA-LEUCINE RESISTANT-LIKE (ILL) proteins. 

 

taa1 mutants were initially found in screens for weak ethylene insensitivity and loss of shade avoidance 

in seedlings (Stepanova et al., 2008). Further, only taa1 single mutant and respective higher order 

taa1tar mutants showed auxin-related phenotypes such as reduced vascular patterning or a reduced 

gravitropic response and in most cases, taa1tar1tar2 triple mutants were seedling lethal (Stepanova et 

al., 2008). After its formation, IPA is converted further to bioactive free IAA by YUCCA (YUC) proteins. 

Arabidopsis harbors eleven YUC genes that are expressed in various tissues at different developmental 

stages (Cheng et al., 2006; Müller-Moulé et al., 2016). A gain-of-function YUC1 mutant - named yuc1D 

hereafter – had severe developmental alterations due to an increased content of free IAA (Zhao et al., 

2001) as had other 35S::YUC lines (Cheng et al., 2006). yuc loss-of-function mutants on the other hand 
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had increased levels of IPA and showed phenotypes related to a lowered auxin status (Cheng et al., 

2006; Mashiguchi et al., 2011; Müller-Moulé et al., 2016). 

IAA is modified/inactivated in many ways like oxidation or amino acid and carbohydrate conjugation. 

The most important irreversible inactive forms in Arabidopsis are 2-oxoindole-3-acetic acid (oxIAA), IAA 

aspartic acid (IAA-Asp) and IAA glutamic acid (IAA-Glu). Oxidation of IAA to oxIAA is catalyzed by two 

DIOXYGENASE FOR AUXIN OXIDATION (DAO) homologs (Porco et al., 2016; Zhang et al., 2016a). 

Amino acid conjugation of IAA is catalyzed by subfamily II of GRETCHEN HAGEN3 (GH3) proteins 

(Staswick et al., 2002, 2005). Both inactivation branches act redundantly, as IAA levels in dao1 mutants 

were not altered compared to wild type due to increased IAA-Asp and IAA-Glu levels that compensated 

the impaired oxIAA formation (Porco et al., 2016). Further, a gh3.1-6 sextuple mutant had increased 

IAA and IAA-Glu levels while IAA-Asp formation was abolished (Porco et al., 2016). Apart from 

conjugating Asp and Glu to IAA, GH3s also catalyze the reversible inactivation to other IAA-amino acid 

conjugates like IAA-Leu and IAA-Ala. Hydrolysis of these IAA conjugates is catalyzed by IAA-ALANINE 

RESISTANT3 (IAR3), IAA-LEUCINE RESISTANT1 (ILR1) and IAA-LEUCINE RESISTANT-LIKE (ILL) 

proteins (Davies et al., 1999; LeClere et al., 2002). From seven genes in Arabidopsis, IAR3, ILR1, ILL1 

and ILL2 are able to release free IAA from amino acid conjugates and ILL5 has been suggested to be a 

pseudogene (LeClere et al., 2002). Genetic analysis further indicated that the release of IAA is of 

importance for hypocotyl growth and root development (LeClere et al., 2002; Rampey, 2004). 

 

1.3.2 Auxin signaling 
 

Formed IAA can activate signaling pathways whose receptors are in either the apoplast or in the inside 

of cells. While extracellular AUXIN-BINDING-PROTEINs (ABP1)-dependent IAA perception is only of 

minor importance in Arabidopsis (Gao et al., 2015), intracellular perception of IAA is accomplished by 

TRANSPORT INHIBITOR RESISTANT1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) receptors and thus 

represents the major auxin perception pathway (Dharmasiri et al., 2005a, 2005b; Parry et al., 2009). 

TIR1/AFBs are expressed ubiquitously and genetic analysis demonstrated their functional redundancy 

in leaf development as well as in root development (Dharmasiri et al., 2005b; Parry et al., 2009). In 

absence of IAA, TIR/AFBs are inactive (Figure 5). 

As a result, AUX/IAA proteins - Arabidopsis harbors 29 Aux/IAA genes - are present and inhibit the 

function of AUXIN RESPONSE FACTOR (ARF) transcription factors by interacting directly through 

domain III and IV (Ulmasov et al., 1997b, 1999b). There are 23 ARF genes in Arabidopsis of which one 

is a pseudogene (ARF23). Structurally, ARFs can be divided in class A ARFs, whose members share a 

Q-rich middle region and act mostly as transcriptional activators, and class B and class C ARFs that act 

as repressors of auxin signaling (Ulmasov et al., 1999a; Tiwari et al., 2003; Guilfoyle and Hagen, 2007). 
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Figure 5: Simplified scheme of auxin signaling. 
In absence of auxin (IAA), TRANSPORT INHIBITOR RESISTANT1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) 
receptors are inactive. Consequently, Aux/IAA proteins inhibit the function of class A, B and C AUXIN RESPONSE 
FACTOR (ARF) transcription factors. With perception of IAA by TIR1/AFB receptors, the latter interact with and 
thus inhibit Aux/IAAs by mediating their ubiquitin-dependent degradation. In consequence, class A ARFs act as 

transcriptional activators while class B and C ARFs mostly act as transcriptional repressors. 

 

With perception of IAA by TIR1/AFB receptors, a Skp1-Cullin-F-box (SCF)-TIR1/AFB complex is formed 

that inhibits Aux/IAA function by mediating their ubiquitination and consequently, their proteasome-

dependent degradation. Domain II of Aux/IAA is crucial for this process (Worley et al., 2000; Ramos et 

al., 2001). Characterization of aux/iaa single and higher order mutants did not show any differences 

from wild type but gain-of-function mutations as in IAA17 led to strong changes in auxin sensitivity 

(Overvoorde et al., 2005). As a consequence of Aux/IAA degradation, ARFs get active, can form dimers 

and positively or negatively regulate the transcription of output genes via binding to auxin response 

elements (Ulmasov et al., 1997a, 1999a, 1999b). Genetic studies indicate that arf single mutants do not 

exhibit strong phenotypes, but higher order mutants like arf7arf19 and arf6arf8 show severe root and/or 

shoot phenotypes (Okushima et al., 2005). 

 

 

1.4 Ethylene 
 

Belonging to the ‘classical’ phytohormones, ethylene is a gaseous hormone that is involved in regulating 

numerous developmental processes like seedling growth, fruit ripening, leaf and root development, the 

juvenile-to-adult transition or senescence (Abeles et al., 1992; Bleecker and Kende, 2000; Schaller and 

Kieber, 2002; Schaller, 2012). Further, ethylene is crucial for the tolerance to a variety of biotic and 

abiotic stresses (Wang et al., 2002; Kazan, 2015). Structurally, ethylene displays the simplest 

unsaturated hydrocarbon (C2H4) and had already been discovered at the end of the 19th century 

(Neljubow, 1901; Abeles et al., 1992). First mutants have been identified by screening for the ethylene-

triggered ‘triple response’, characterized by the formation of an exaggerated apical hook, hypocotyl 
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shortening and thickening and the inhibition of root elongation of dark-grown Arabidopsis seedlings 

(Guzman and Ecker, 1990). Mutant screens in the early 1980s and 1990s further led to the identification 

of pathways involved in ethylene biosynthesis, metabolism and signaling.  

 

1.4.1 Ethylene biosynthesis 
 

The metabolism of ethylene has been summarized elsewhere (Wang et al., 2002) and thus will be 

covered briefly in this section. As the first step of ethylene synthesis, SAM-SYNTHETASE (SAM) 

proteins convert methionine (Met) and ATP to S-adenosyl-L-methionine (S-AM) (Figure 6). 

 

 

Figure 6: Simplified scheme of ethylene biosynthesis. 
Schematic presentation of ethylene metabolism. First, SAM-SYNTHETASE (SAM) proteins convert methionine 
(Met) to S-adenosyl-L-methionine (S-AM), which is converted to 1-aminocyclopropane-1-carboxylic acid (ACC) by 
ACC-SYNTHASE (ACS) enzymes. ACC can be converted to either α-ketobutyrate (αKB) by ACC DEAMINASE1 
(ACD1) or γ-glutamyl-ACC (G-ACC) by γ-GLUTAMYL-TRANSPEPTIDASE (GGT) proteins. Ethylene itself (C=C) 
is synthesized from ACC by ACC-OXIDASE (ACO) enzymes. Please note that other ACC conjugates exist that are 
not depicted in this figure. 

 

S-AM is not only a precursor during ethylene production, but is also a methyl-group donor during DNA 

and protein methylation (Yang and Hoffman, 1984; Wang et al., 2002; Shyh-Chang et al., 2013). 

Consequently, changes in S-AM levels in sam1sam2 plants and SAM overexpression lines mimic 

ethylene related phenotypes (Mao et al., 2015). The next step of ethylene synthesis is the conversion 

of S-AM to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC-SYNTHASE (ACS) enzymes. The 

Arabidopsis genome harbors 12 ACS genes from which eight catalyze the reaction as ACS3 is a 

pseudogene, ACS1 is not functional and ACS10 and ACS12 encode for aminotransferases (Liang et 

al., 1995; Yamagami et al., 2003). In ethylene-overproducer (eto) mutants eto1, eto2 and eto3, ACS5 

and ACS9 protein levels are increased due to impairment of their degradation (Vogel et al., 1998; 

Woeste et al., 1999b). Characterization of acs single and higher order mutants on the other hand 

indicates a crucial role in general shoot development, flowering time, seed and silique development and 

ethylene production (Tsuchisaka et al., 2009). 

ACC can be conjugated or irreversibly degraded. The conjugation to γ-glutamyl-ACC (G-ACC) catalyzed 

by γ-GLUTAMYL-TRANSPEPTIDASE (GGT) proteins. Four genes encode GGTs in Arabidopsis and 

while phenotypic analysis of ggt mutants indicates a role for GGT1 and GGT3, determination of catalytic 

activity indicates that GGT1 and GGT2 are active (Martin et al., 2007). ACC is irreversibly degraded to 
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α-ketobutyrate (αKB) by ACC DEAMINASEs (ACDs). ACDs can be found in many bacteria and fungi 

and recently, one gene encoding ACD1 (also D-CYSTEINE DESULFHYDRASE, D-CDES) has been 

identified and characterized in Arabidopsis (McDonnell et al., 2009). If not conjugated or degraded, ACC 

is oxidized by ACC-OXIDASE (ACO) enzymes, leading to ethylene formation. So far, only few aco 

mutants have been characterized. For example, ACO2 functionality is crucial to counteract ABA-

mediated inhibition of seed germination through ACC (Linkies et al., 2009). 

 

1.4.2 Ethylene signaling 
 

At the end of its synthesis, ethylene can activate a signaling cascade that has certain similarities to the 

cytokinin signaling pathway and bacterial two component systems. In its resting state without ethylene,  

ETHYLENE RESPONSE (ETR)/ETHYLENE RESPONSE SENSOR (ERS)/ETHYLENE INSENSITIVE4 

(EIN4) receptors act as negative regulators of ethylene signaling (Figure 7) (Ecker, 1995; Hua et al., 

1995; Sakai et al., 1998b). 

 

 

Figure 7: Simplified Scheme of ethylene signaling. 
In absence of ethylene (C=C), ETHYLENE RESPONSE (ETR)/ETHYLENE RESPONSE SENSOR 
(ERS)/ETHYLENE INSENSITIVE4 (EIN4) receptors act as negative regulators of ethylene signaling by interacting 
with CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), which inactivates EIN2. In addition, EIN2 can be degraded 
26S proteasome-dependently, which is mediated by F-box proteins EIN2 TARGETING PROTEIN (ETP) F-box 
proteins. Because of EIN2 inactivation and degradation, EIN3/EIN3-LIKE1 (EIL1)/EIL2 transcription factors get 
degraded mediated by EIN3-BINDING F-BOX PROTEINs (EBFs). Upon ethylene perception, ETR/ERS/EIN4 
receptors get inactive and consequently CTR1. This leads to an activation of EIN2, which stabilizes EIN3/EIL 

proteins and mediates EBF degradation, leading to the activation of ethylene-regulated genes. 
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In Arabidopsis, five genes encode ETR/ERS/EIN4 proteins and based on the N-terminal structure, they 

are divided in type I receptors (ETR1 and ERS1) that have three transmembrane domains and type II 

receptors (ETR2, ERS2 and EIN4) that have four transmembrane domains (Hua et al., 1998). 

ETR/ERS/EIN4 interact with and thus activate CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) - a 

Ser/Thr kinase (Kieber et al., 1993). CTR1 phosphorylates EIN2 at its C-terminus, causing its 

inactivation (Ju et al., 2012). In addition, EIN2 can be degraded 26S proteasome-dependently, which 

needs the function of F-box proteins EIN2 TARGETING PROTEIN1 (ETP1) and ETP2 (Qiao et al., 

2009). In consequence of EIN2 inactivation and degradation, EIN3/EIN3-LIKE1 (EIL1)/EIL2 transcription 

factors become degraded with help of two other F-box proteins - EIN3-BINDING F-BOX PROTEIN1 

(EBF1) and EBF2 (Guo and Ecker, 2003; Potuschak et al., 2003; An et al., 2010). The lack in 

EIN3/EIL1/EIL2 ultimately causes an absence of ethylene-response genes transcription. 

Upon ethylene perception, ETR/ERS/EIN4 receptors get inactive, causing CTR1 inactivation. 

Simultaneously, EIN2 interacts with ETR/ERS/EIN4 in a phosphorylation dependent manner which 

protects EIN2 from degradation (Bisson and Groth, 2010). Further, inactivation of CTR1 enables the 

cleavage of the EIN2 C-terminus, which migrates into the nucleus and stabilizes EIN3/EIL proteins 

directly but also indirectly by mediating EBF degradation (Wen et al., 2012; An et al., 2010). In addition, 

ethylene perception leads to a downregulation of EBF1 and EBF2 (An et al., 2010). EIN3/EIL1/EIL2 

accumulation finally leads to the transcriptional regulation of ethylene-response genes (Chao et al., 

1997; Guo and Ecker, 2003; Potuschak et al., 2003). 

 

 

1.5 Gibberellic acid (GA) 
 

Like all formerly introduced phytohormones, GAs belong to the ‘classical’ phytohormones and the 

research can be followed back to the end of the 19th century. Back then, it was found that fungal 

pathogens were able to cause uncontrolled seedling elongation and infertility (Hori, 1898). Later, the 

growth promoting substance was isolated from the fungus Gibberella fujikuroi and was named 

accordingly (Yabuta and Sumiki, 1938). Since then, GA function has been studied extensively. It has 

been assumed that GAs regulate various developmental processes like seed germination and 

development, leaf expansion, flowering or regulation of the juvenile-to-adult transition and the underlying 

metabolism and signaling has been deciphered (Hedden and Phillips, 2000; Yamaguchi, 2008; Sun, 

2008; Davière and Achard, 2013; Hedden and Sponsel, 2015). 

 

1.5.1 GA biosynthesis and metabolism 
 

Since its discovery, over 130 GAs have been found but only a small number has been suggested to be 

bioactive (Yamaguchi, 2008). In Arabidopsis, the main GA-precursor GA12 is formed through multiple 

consecutive reactions from geranylgeranyl diphosphate (GGDP; Figure 8). 
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Figure 8: Simplified scheme of GA biosynthesis and metabolism. 
Starting from geranylgeranyl diphosphate (GGDP), the main GA-precursor GA12 is formed through multiple 
consecutive reactions involving ent-COPALYL DIPHOSPHATE SYNTHASE (CPS) that forms ent-copalyl 
diphosphate (ent-C), ent-KAURENE SYNTHASE (KS) that forms ent-kaurene (ent-K), ent-KAURENE OXIDASE 
(KO) that forms ent-kaurenoic acid (ent-KA) and ultimately ent-KAURENOIC ACID OXIDASE (KAO) enzymes. GA12 
can be converted to either GA53 via GIBBERELLIN 13-OXIDASE (GA13OX) enzymes (genes have not been 
identified yet) or to GA9 via GIBBERELLIN 20-OXIDASE (GA20OX) enzymes (yellow arrows). The latter also 
catalyze the conversion of GA53 to GA20. GIBBERELLIN 3-OXIDASE (GA3OX) enzymes convert GA9 to bioactive 
GA4 and GA7 (dark orange) and GA20 to bioactive GA1, GA3, GA5 and GA6. Inactivation of GA1 and GA4 is facilitated 
by GIBBERELLIN 2-OXIDASE (GA2OX) enzymes, which also convert GA9 and GA20 precursors to inactive forms. 
GA2OX7 and GA2OX8 inactivate GA12 and GA53 precursors (indicated by ‡). Double arrows indicate multiple 
reaction steps catalyzed by the same enzyme. 

 

First, ent-COPALYL DIPHOSPHATE SYNTHASE (CPS) forms ent-copalyl diphosphate (ent-C) from 

GGDP (Sun and Kamiya, 1994). Formed ent-C is converted to ent-kaurene (ent-K) by ent-KAURENE 

SYNTHASE (KS) (Yamaguchi et al., 1998). ent-K is used as a substrate by ent-KAURENE OXIDASE 

(KO) to form ent-kaurenoic acid (ent-KA) (Helliwell et al., 1998). Ultimately, ent-KAURENOIC ACID 

OXIDASE (KAO) enzymes use ent-KA as a substrate to form GA12 (Helliwell et al., 2001). Arabidopsis 

harbors two KAO genes that have overlapping expression patterns as in the root meristem and in flowers 

but are also expressed distinctly as in the vasculature (KAO2). Further, mutant analysis indicates that 

they act redundantly (Regnault et al., 2014). 

After its formation, GA12 itself is transported over long distances through the vasculature (Regnault et 

al., 2015) and is converted afterwards to either GA53 by GIBBERELLIN 13-OXIDASEs (GA13OXs) of 

which the coding genes have not been identified yet or to GA9 by GIBBERELLIN 20-OXIDASEs 

(GA20OXs). The latter also catalyze the conversion of GA53 to GA20 (Phillips et al., 1995). Mutant 

analysis indicates that from the five isoforms in Arabidopsis, GA20OX1 GA20OX2 have the major role 

while GA20OX4 and GA20OX5 are of minor importance (Plackett et al., 2012). The reactions leading to 

the formation of bioactive GAs are catalyzed by GA3OX enzymes. On the one hand, GIBBERELLIN 3-

OXIDASEs (GA3OXs) convert GA9 to bioactive GA4 and GA7. On the other hand, they convert GA20 to 

bioactive GA1, GA3, GA5 and GA6. Four genes encode GA3OX proteins in Arabidopsis and from these, 

GA3OX1 and GA3OX2 are expressed throughout the plant (Mitchum et al., 2006; Sun, 2008). 

Characterization of ga3ox single and higher order mutants further indicates that GA3OX1 and GA3OX2 
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are the most important isoforms for general shoot development while GA3OX1 and GA3OX3 are of 

major importance for GA production in the flower (Hu et al., 2008). 

Following their formation and potential action, bioactive GAs are inactivated by different mechanisms. 

The best studied pathway involves GIBBERELLIN 2-OXIDASEs (GA2OXs) that inactivate GA1 and GA4 

but also the direct precursors GA9 and GA20 (Thomas et al., 1999). Recently, two GA2OX7 and GA2OX8 

have been found to deactivate bioactive GAs but GA20 and GA53 precursors (Schomburg et al., 2003). 

Conclusively, ga2ox mutants have increased levels of bioactive GAs and resemble phenotypes 

indicative for an increased GA status (Schomburg et al., 2003; Wang et al., 2004). 

 

1.5.2 GA signaling 
 

Synthesized bioactive GAs can activate a nucleus-localized signaling pathway that involves 

GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptors, DELLA proteins GIBBERELLIC ACID 

INSENSITIVE (GAI)/ REPRESSOR-OF-GA1-3 (RGA)/RGA-LIKE (RGL), F-box proteins SLEEPY1 

(SLY1) and SNEEZY (SNE) and transcription factors like e.g. PHYTOCHROME-INTERACTING 

FACTORs (PIFs) (Sun, 2008; Schwechheimer, 2012; Davière and Achard, 2013). In the absence of 

bioactive GA, GID1 receptors are inactive (Figure 9). 

 

 

Figure 9: Simplified scheme of GA signaling in Arabidopsis. 
In the absence of GA (dark orange), GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptors are inactive. 
Consequently, DELLA proteins GIBBERELLIC ACID INSENSITIVE (GAI)/ REPRESSOR OF GA1-3 (RGA)/RGA-
LIKE (RGL) inhibit the function of transcription factors (TF) like e.g. PHYTOCHROME-INTERACTING FACTOR 
(PIF) proteins. With perception of GA by GID1 receptors, the latter associate with F-box proteins SLEEPY1 (SLY1) 
or SNEEZY (SNE) and inhibit DELLA function by mediating their degradation. In consequence, TFs are active and 

mediate the transcription of output genes. 
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GID1 was originally found in rice in which it is encoded by only one gene (Ueguchi-Tanaka et al., 2005). 

In comparison, three genes encode for GID1 receptors in Arabidopsis and characterization of gid1 

mutants indicates that GID1A and GID1C are the major GA receptors (Griffiths et al., 2006). Because 

of GID1 inactivity, DELLA proteins GAI/RGA/RGL inhibit the GA signaling pathway (Peng and Harberd, 

1993; Silverstone et al., 1998; Lee et al., 2002; Cheng, 2004). Mechanistically, GAI/RGA/RGL repress 

the function of transcription factors like PIFs by e.g. binding to their DNA-recognition domain (De Lucas 

et al., 2008; Feng et al., 2008).  

With perception of GA by GID1 receptors, the latter become active and inhibit DELLA function together 

with F-box proteins SLY and SNE by causing their ubiquitination and subsequent 26S proteasome-

dependent degradation (McGinnis et al., 2003; Dill et al., 2004; Ariizumi et al., 2011). Consequently, 

formerly repressed transcription factors get active and mediate the transcription of output genes. 

 

 

1.6 Phases of plant and leaf development 
 

During its lifetime, a plant itself but also each of its leaves individually undergo various developmental 

programs characteristic for certain developmental stages. Previous work has shown that young leaves 

of a plant are less responsive to photoperiod stress compared to mature ones (Nitschke, 2014; Nitschke 

et al., 2016). However, which age-related developmental processes are involved could not be solved. 

In order to deepen the understanding of this process, two distinct developmental programs that are 

influenced by cytokinin - the so-called juvenile-to-adult transition and leaf aging itself - were investigated 

and therefore will be introduced in this section. 

 

1.6.1 Juvenile-to-adult transition 
 

As plants develop, they undergo distinct phases that follow one another and that normally cannot be 

skipped (Poethig, 2003; Huijser and Schmid, 2011). The length of the phases is influenced by 

environmental stimuli like the light-dark rhythm (Martínez‐Zapater et al., 1995; Chien and Sussex, 1996). 

Generally, plants grow vegetatively after germination. During this period, plants increase their biomass 

and form leaves. Further, vegetative growth starts with a juvenile phase that progresses to an adult 

phase. Plants then enter a phase of reproductive growth in which they flower and produce seeds. 

Ultimately, plants end their life cycle by entering the phase of senescence. All phases possess distinct 

morphological and genetic traits. In the following, the focus will lie on the vegetative growth phase. 

Morphologically, leaves formed during juvenile vegetative growth have long petioles, roundly shaped 

blades with smooth margins and lack abaxial trichomes while on the other hand, adult leaves have 

shorter petioles, elongated blades with serrations and abaxial trichomes (Martínez‐Zapater et al., 1995; 

Chien and Sussex, 1996; Telfer et al., 1997). The presence of both juvenile and adult traits on one plant 

has been termed heteroblasty. Molecularly, vegetative growth and the so-called juvenile-to-adult 

transition is regulated by two microRNAs - miRNA156 and miRNA172 (Figure 10). Expression of 

MIRNA156 is high in young plants while expression of MIRNA172 is low (Axtell and Bartel, 2005), which 

leads to the formation of juvenile leaves. Plants constitutively overexpressing either MIRNA156 

(35S::MIRNA156) or miRNA172 mimicry targets (35S::MIM172) form many juvenile leaves and have a 
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delayed flowering as they leave vegetative growth later (Schwab et al., 2005; Wu and Poethig, 2006; 

Todesco et al., 2010). With age, miRNA156 levels decrease while miRNA172 accumulates until a certain 

threshold is reached and the juvenile-to-adult transition has progressed to a point where newly formed 

leaves possess adult traits. Supportively, 35S::MIRNA172a and 35S::MIM156 plants form only few adult 

leaves until flowering (Franco-Zorrilla et al., 2007; Todesco et al., 2010). 

 

 

Figure 10: Regulation of the juvenile-to-adult transition through miRNA156 and miRNA172. 
Abundance of miR156 is high in early stages of plant development and thus positively regulates the juvenile 
vegetative growth phase within these phases. As the plant matures, the abundance of miRNA156 decreases, which 
results in the accumulation of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9 (SPL9) and SPL10 proteins 
that promote adult leaf traits. Simultaneously, SPL9 and SPL10 induce the expression of MIR172 genes. An 
accumulation of miRNA172 results in a negative regulation of AP2-like transcription factors, which repress flowering. 
A loss of this repression enables the development of flowering competence. Moreover, some AP2-like transcription 

factors positively regulate miRNA156. Altered after Huijser and Schmid, 2011. 

 

Both miRNAs are connected via miRNA156 downstream targets SQUAMOSA PROMOTER BINDING 

PROTEIN-LIKEs (SPLs) (Wu and Poethig, 2006; Franco-Zorrilla et al., 2007). With age, SPLs 

accumulate and induce the transition to the adult growth phase and loss-of-function mutants possess 

more juvenile leaves (Cardon et al., 1999; Wu and Poethig, 2006; Wu et al., 2009). Further, SPL9 and 

SPL10 regulate MIRNA172 transcription (Wu et al., 2009). Subsequently, miRNA172 represses 

APETALA2 (AP2)-type transcription factors that act downstream not only during vegetative growth but 

also during flowering induction (Aukerman and Sakai, 2003; Chen, 2004; Mathieu et al., 2009). Apart 

from miRNAs, the length of juvenile and adult vegetative growth is regulated by different phytohormones. 

For example, GA acts as a positive regulator of the juvenile growth phase by regulating SPL transcript 

levels through the chromatin remodeling enzyme PICKLE (Telfer et al., 1997; Park et al., 2017). Further, 

it has been reported that tZ-type cytokinins are regulators of the juvenile-to-adult transition (Kiba et al., 

2013) as well as ethylene (Lumba et al., 2012). 

 

1.6.2 Leaf aging 
 

With age, individual leaves undergo several developmental phases that go hand in hand with 

morphological and molecular alterations. After their initiation, leaves undergo phases of growth, 

maturation and senescence until eventually they die off (Gonzalez et al., 2012; Tsukaya, 2013; Woo et 

al., 2013; Schippers, 2015; Nelissen et al., 2016). During growth, young leaves sequester nutrients and 

carbohydrates to grow and build up the photosynthetic apparatus. Further, they are not responsive to 
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external stimuli that induce senescence (Figure 11) (Jing et al., 2005; Jibran et al., 2013; Kanojia and 

Dijkwel, 2018). 

 

 

Figure 11: Model of the regulation of leaf senescence by integration of environmental signals and age-
related changes (ARCs). 
Over time, ARCs accumulate during plant development (right-angled triangle). They are integrated together with 
environmental signals and, depending on the occurrence of certain ARCs, senescence is induced. Environmental 
signals alone cannot induce senescence in young leaves as these lack ARCs. With leaf maturation through ARCs, 
they become responsive to external senescence-inducing signals. In old leaves, a critical number of ARCs has 

occurred that triggers senescence regardless of environmental signals. Altered after Jibran et al., 2013. 

 

The major drivers of leaf growth - cell division and cell expansion - change with progression. In its early 

development, leaf tissue grows due to cell proliferation, which displays a combination of cell division and 

cell expansion (Donnelly et al., 1999; Granier et al., 2002). Eventually, a so-called cell-cycle arrest front 

is formed at which an area of cell expansion at the tip and the proliferating tissues of the basal leaf meet 

(Donnelly et al., 1999; Kazama et al., 2010; Andriankaja et al., 2012). Starting from the leaf tip, the cell-

cycle arrest front migrates to the base but then stays at a certain position. Afterwards, it disappears 

abruptly and cell expansion becomes the major form of leaf growth (Kazama et al., 2010; Andriankaja 

et al., 2012). At the molecular level, cell proliferation is positively regulated by many factors like 

AINTEGUMENTA (ANT) (Mizukami and Fischer, 2000), GROWTH REGULATING FACTORs (GRFs) 

(Kim and Kende, 2004; Horiguchi et al., 2005), ANGUSTIFOLIA3 (AN3)/GRF-INTERACTING 

FACTOR1 (GIF1) (Kim and Kende, 2004; Lee et al., 2009), AUXIN-REGULATED GENE INVOLVED IN 

ORGAN SIZE (ARGOS) (Hu et al., 2003) or STRUWWELPETER (SWP) (Autran et al., 2002). 

Respective loss-of-function mutants possess smaller leaves than wild type. Analysis of spatula (spt) 

plants (Ichihashi et al., 2010) and ROTUNDOFOLIA4 (ROT4)-LIKE (RTFL)/DEVIL (DVL) 

overexpressors indicates that these factors are negative regulators (Narita et al., 2004; Wen et al., 

2004). 

With the end of growth and differentiation, leaves enter the maturation phase (Gonzalez et al., 2012; 

Bar and Ori, 2014). Here, they are photosynthetically active and thus crucial for the plant’s energy supply 

in form of carbohydrates. Over time, leaves undergo more and more age-related changes (ARCs) that 

are irreversible and make them responsive to stress-triggered senescence (Figure 11) (Jibran et al., 

2013; Kanojia and Dijkwel, 2018). Examples of ARCs are an increased sensitivity and production of 

ROS, a gradual decline in the antioxidant system (by e.g. a decrease in ascorbic acid content), an 

increased sensitivity to ethylene, an altered transcriptional responsiveness, a reduced repairment of 

damaged DNA or a decrease in cytokinin content (Dertinger et al., 2003; Jing et al., 2005; Kotchoni et 

al., 2009; Breeze et al., 2011; Jibran et al., 2013; Kanojia and Dijkwel, 2018; Skalák et al., 2019). The 
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entrance into stress-independent senescence displays the final phase in the life cycle of a leaf (Woo et 

al., 2013; Schippers, 2015; Kim et al., 2018b) Physiologically, senescent leaves gradually lose their 

chlorophyll/photosynthetic activity and degrade proteins and nucleic acids (Dertinger et al., 2003). 

Furthermore, nutrients are relocated to non-senescing tissues (Hensel et al., 1993; Breeze et al., 2011). 

The molecular mechanisms behind the onset of senescence have been studied thoroughly. Many 

transcription factors regulating senescence belong to two families - NACs (standing for NO APICAL 

MERISTEM (NAM)/ATAF/CUP‐SHAPED COTYLEDON (CUC)) and WRKYs. In Arabidopsis, over 100 

genes encode NACs and many of them have been genetically characterized (Ooka et al., 2003; Kim et 

al., 2016). Recently, three of them - ANAC017, ANAC082, and ANAC090 - have been identified as 

negative regulators of senescence and to be crucial already in a pre-senescent state (Kim et al., 2018a). 

WRKYs comprise 74 members in Arabidopsis and characterization of wrky53 (positive regulator), 

wrky54 and wrky70 mutants (negative regulators) demonstrated their important regulatory function 

(Miao et al., 2004; Besseau et al., 2012). Further, REVOLUTA (REV) transcription factors induce 

WRKY53 expression in an H2O2-dependent manner (Xie et al., 2014). Apart from transcription factors, 

other genes upregulated (SENESCENCE-ASSOCIATED GENES, SAGs) or downregulated 

(SENESCENCE-DOWN-REGULATED GENES, SDGs) during senescence have been described 

(Hensel et al., 1993; Lohman et al., 1994; Li et al., 2012). 

Numerous phytohormones have been found to regulate leaf development and senescence. Among 

them, cytokinin acts positively on cell proliferation (Miller et al., 1955; Werner and Schmülling, 2009; 

Kieber and Schaller, 2014) and - by signaling through AHK3, ARR2 and CYTOKININ RESPONSE 

FACTOR6 (CRF6) - negatively regulates senescence (Kim et al., 2006; Zwack et al., 2013; Bartrina et 

al., 2017). In agreement with this, cytokinin levels in young tobacco and poplar leaves are high and 

decrease with age (Hewett and Wareing, 1973; Singh et al., 1992a, 1992b) and tZ levels are higher in 

young, proliferating Arabidopsis leaves (Skalák et al., 2019). Furthermore, senescence can be delayed 

by IPT expression under control of the senescence-induced SAG12 promoter (Gan and Amasino, 1995). 

 

 

1.7 Research aims 
 

Based on previous findings in the context of photoperiod stress (Nitschke, 2014; Nitschke et al., 2016), 

my work aimed to deepen the understanding of photoperiod stress in three directions.  

The first research question aimed to further specify which type of cytokinin is protective and which 

signaling components act during photoperiod stress. Therefore, mutants lacking certain cytokinin 

biosynthesis enzymes, cytokinin transporters or cytokinin signaling components were exposed to 

photoperiod stress and characterized at the phenotypic and molecular level. To provide further 

experimental evidence, watering of plants with cytokinin was performed to protect photoperiod stress 

sensitive cytokinin-deficient mutants. Cytokinin levels were monitored throughout photoperiod stress 

treatment and development of stress symptoms in wild-type plants to get insight into the direct temporal 

regulation. 

The second part dealt with the question of what causes the differences in photoperiod stress 

competence of young and mature leaves and which tissues contribute to the photoperiod stress 
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response. Therefore, the focus of my experiments was on two different developmental programs of 

leaves and plants. On the one hand, the involvement of plant and leaf age was investigated by testing 

the photoperiod stress sensitivity of wild-type and ahk2ahk3 plants and specific leaves of different age. 

On the other hand, it was evaluated which leaves of a single rosette are photoperiod stress responsive 

and if correlation between leaves and their age could be made. Further, the involvement of the leaf 

identity (juvenile vs. adult leaves) was investigated by characterizing mutants with either a prolonged or 

shortened juvenile vegetative growth phase for their response to photoperiod stress. Apart from the 

importance of leaf tissue in responding to photoperiod stress, the molecular response to alterations of 

the light-dark-cycle was investigated in wild-type and ahk2ahk3 roots and compared to that of leaves. 

The third question aimed to elaborate if other phytohormones apart from cytokinin and jasmonic acid 

are involved in the response to photoperiod stress. Here, the focus was on the phytohormones auxin, 

ethylene and GA. As a first step, auxin and GA levels were determined in the same setup as for cytokinin. 

To get insights into the regulation of these hormones in photoperiod stress resistant and sensitive plants, 

transcript levels of genes involved in hormone synthesis, metabolism and signaling were analyzed via 

RNA sequencing (RNAseq) and quantitative real time (qRT)-polymerase chain reaction (PCR) in wild 

type and ahk2ahk3. Mutants with a higher or lower hormone status were exposed to photoperiod stress 

and analyzed for their phenotypic and molecular response to decipher the importance of hormone 

homeostasis for photoperiod stress sensitivity. As the experiments pointed to a contribution of ethylene 

and auxin, first experiments studying the genetic interaction of auxin and cytokinin signaling have been 

conducted.  
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2 Materials and Methods 

 

2.1 Databases and software 
 

The databases and software programs used in this thesis are displayed in Table 1. 

 

Table 1: Databases and software programs used in this thesis. 

Name Company, reference or internet link Purpose of use 

NCBI 
The National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/) 
Literature (PubMed), BLAST 

and others 

Excel Microsoft Office 
Calculations, statistical 

analysis and graph design 

PowerPoint Microsoft Office Figure design 

ImageJ Abramoff et al., 2004 Image analysis 

NEBcutter 
New England BioLabs Inc. 

(http://tools.neb.com/NEBcutter2/) 
Search for restriction sites 

Bio-Rad CFX 
Manager 

Bio-Rad® 
Quantitative real time-PCR 
(qRT- PCR), primer quality 

assessment 

NASC 
The European Arabidopsis Stock Centre 

(http://arabidopsis.info/) 
Ordering Arabidopsis seeds 

ThaleMine (Araport) 
Krishnakumar et al., 2017 

(https://apps.araport.org/thalemine/begin.do) 
Arabidopsis gene 
information search 

SIGnAL T-DNA 
Express 

Salk Institute Genomic Analysis Laboratory 
(http://signal.salk.edu/cgi-bin/tdnaexpress), Alonso et 

al., 2003 

Search for Arabidopsis T-
DNA insertion mutants 

SIGnAL T-DNA 
Primer Design 

Salk Institute Genomic Analysis Laboratory 
(http://signal.salk.edu/tdnaprimers.2.html) 

Primer design for T-DNA 
insertion mutants 

QuantPrime 
Max-Planck Institute of Molecular Plant Physiology 

(http://quantprime.mpimp-golm.mpg.de/), Arvidsson et 
al., 2008 

Primer design for qRT-PCR 

Gen5™ Reader 
Control and Data 
Analysis Software 

Biotek®, Winooski, Vermont, U.S.A. 

controlling of Synergy™ 2 
Multi-Detection Microplate 

Reader for ROS 
measurements 

GenoCapture Synoptics Ltd., Cambridge, UK Agarose gel documentation 

 

 

2.2 Kits 
 

Kits used in this thesis are displayed in Table 2. 

 

Table 2: Kits used in this thesis. 

Name Manufacturer and Cat. No. Purpose of use 

NucleoSpin® Gel and 
PCR Clean-up 

Macherey-Nagel, Cat. No. 740609.250 
DNA gel extraction/ PCR 

purification 

NucleoSpin® RNA 
Plant 

Macherey-Nagel, Cat. No. 740949.250 RNA purification for RNAseq 

NucleoSpin® Plasmid 
EasyPure 

Macherey-Nagel, Cat. No. 740727.250 Plasmid purification 

Pierce™ Quantitative 
Peroxide Assay Kit 

Thermo Scientific, Cat. No. 23280 
Quantification of the H2O2 

content in Arabidopsis leaves 
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2.3 Enzymes 
 

Enzymes used in this thesis are displayed in Table 3. 

 

Table 3: Enzymes used in this thesis. 

Name Manufacturer and Cat. No. Purpose of use 

Taq DNA Polymerase 
AG Schuster Institute of Biology/Applied Genetics, 

FU Berlin 
PCR analysis for genotyping 

Phusion High-Fidelity 
DNA Polymerase 

Fermentas/Thermo Scientific, Cat. No. F530S Cloning-PCRs 

RNAseOUTTM 
Recombinant 

Ribonuclease Inhibitor 

Invitrogen/Life Technologies, 
Cat. No. 10777019 

RNase-inhibitor during stem-
loop-cDNA-synthesis 

Gateway® BP 
Clonase® Enzyme Mix 

Invitrogen/Life Technologies, 
Cat. No. 11789013 

Cloning 

Gateway® BP 
Clonase® II Enzyme 

Mix 

Invitrogen/Life Technologies, 
Cat. No. 11789020 

Cloning 

Gateway® LR 
Clonase® Enzyme Mix 

Gateway® 

Invitrogen/Life Technologies, 
Cat. No. 11791019 

Cloning 

Gateway® LR 
Clonase® II Enzyme 

Mix 

Invitrogen/Life Technologies, 
Cat. No. 11791020 

Cloning 

SuperScript III Reverse 
Transcriptase 

Invitrogen/Thermo Scientific, Cat. No. 18080-044 cDNA synthesis 

DNaseI Thermo Scientific, EN0521 
DNase digestion during RNA 

purification 

Immolase DNA 
Polymerase 

Bioline, Cat. No. BIO-21047 qRT-PCR 

Restriction enzymes Fermentas/Thermo Scientific 
Restriction digestion for 

genotyping (CAPS marker) 

 

 

2.4 Generation of SUCROSE-PROTON SYMPORTER2 (SUC2)::CKX1-Myc 
plants 

 

2.4.1 Microorganisms and growth conditions 
 

Escherichia coli and Agrobacterium tumefaciens stems used in this study are listed in Table 4. E. coli 

stem DH5α was used for plasmid/vector replication with exception for replication of Gateway® empty 

vectors that were replicated in DB3.1.  

 

Table 4: Microorganisms used in this thesis. 

Species Stem Genotype Reference 

E. coli 

DH5α 
F- Φ80dlacZΔM15 Δ(lacZYA-argF)-U169 endA1 

recA1 glnV44 thi-1 relA1 gyrA96 deoR nupG hsdR17 
(rK

- mK
+) λ- 

Grant et al., 1990 

DB3.1 
F- gyrA462 endA1 glnV44 Δ(sr1-recA) mcrB mrr 

hsdS20(rB
-, mB

-) ara14 galK2 lacY1 proA2 
rpsL20(Smr) xyl5 Δleu mtl1 

Hanahan, 1983; 
Bernard and 

Couturier, 1992 

A. tumefaciens GV3101:pMP90 pMP90 (pTiC58ΔT-DNA); RifR, GentR 
Koncz and Schell, 

1986 
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Usually, E. coli were cultivated at 37 °C in either LB solid or liquid medium. After transformation of E. 

coli (section 2.4.2), SOC medium was used to let bacteria recover. For transformation of A. thaliana 

plants (section 2.4.8), A. tumefaciens stem GV3101::pMP90 was used. Generally, A. tumefaciens were 

cultivated at 28 °C on either LB solid medium or YEB liquid medium. Media used are listed in Table 5, 

Table 6 and Table 7. 

 

Table 5: Composition of lysogeny broth (LB) medium (Bertani, 1951). 

Components Concentration 

tryptone 1.0 % (w/v) 

yeast extract 0.5 % (w/v) 

NaCl 10 % (w/v) 

agar (for solid medium) 1.5 % (w/v) 

pH 7.0 adjusted with NaOH 

Kanamycin1) 

or 
Spectinomycin1) 

50 µg/mL 

1) Added after autoclaving at a temperature of ca. 60 °C 

 

 

Table 6: Composition of super optimal broth with catabolite repression (SOC) medium (Hanahan, 1983). 

Components Concentration 

tryptone 2.0 % (w/v) 

yeast extract 0.5 % (w/v) 

NaCl 10 mM 

KCl 2.5 mM 

pH 7.4 adjusted with NaOH 

MgCl2 (after autoclaving) 10 mM 

MgSO4 (after autoclaving) 10 mM 

glucose (after autoclaving) 20 mM 

 

 

Table 7: Composition of yeast extract broth (YEB) medium (Vervliet et al., 1975). 

Components Concentration 

meat extract 0.5 % (w/v) 

yeast extract 0.1% (w/v) 

peptone 0.5 % (w/v) 

sucrose 0.5 % (w/v) 

MgSO4 2 mM 

pH 7.2 adjusted with NaOH 
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2.4.2 Transformation of microorganisms 
 

In this study, chemo-competent E.coli cells were used for transformation. Aliquots were thawed for 20 

minutes on ice. Thereafter, plasmid DNA was added to aliquots and mixed carefully. After a 20 minute 

incubation on ice, a heat shock of 45 sec at 42 °C was given by placing the aliquots in a water bath. 800 

µL SOC medium (Table 6) was given to the cells directly after the heat shock, reaction tubes were 

carefully mixed and incubated for 60 minutes at 37 °C and 180 rpm for regeneration of cells and 

formation of resistance to antibiotics. Afterwards, cells were distributed on LB plates that contained 

plasmid-specific antibiotics (Table 5) and were incubated overnight at 37 °C. 

For transformation of A. tumefaciens, an aliquot of electro-competent cells (kindly provided by Dr. Sören 

Werner) per transformation was thawed for 20 minutes on ice. Thereafter, plasmid DNA was added, 

carefully mixed and put into a cooled electroporation cuvette. After another 20 minutes on ice, cuvettes 

were dried from the outside and cells were electroporated with a MicroPulserTM (Bio-Rad, Munich, 

Germany) with 2,4 kV for 5 ms. 1 mL YEB-Medium (Table 7) was added directly, briefly mixed and put 

into a fresh 1.5 mL Eppendorf tube. Cells were incubated for 1 h at 28 °C and 180 rpm and placed on 

LB plates for selective growth for two days at 28 °C. 

 

2.4.3 Vectors used and plasmids generated 
 

Vectors used and plasmids generated in this work are listed with their respective resistances in Table 

8.  

 

Table 8: Vectors and plasmids used and generated in this thesis. 

Name Resistance in bacteria Resistance in plants Reference 

pDONRTMP4P1R KanR1 --- 
Invitrogen/Life 
Technologies 

(Carlsbad, CA) 

pB7m34GW SpecR3), CmR2) BastaR/PPTR4) 
Karimi et al., 

(2005) 

pDONRTMP2RP3-4xMyc KanR1) --- 
Dr. Sören Werner 

FU Berlin 

pDONRTM221-CKX1(w/o 
stopp) 

KanR1) --- 
Dr. Sören Werner 

FU Berlin 

pDONRTMP4P1R-pSUC2 KanR1) --- This study 

pB7m34GW-
SUC2::CKX1-4xMyc 

SpecR3) BastaR/PPTR4) This study 

1) Kanamycin resistance 
2) Chloramphenicol resistance 
3) Spectinomycin resistance 
4) Phosphinothricin resistance 

 

2.4.4 Amplification of SUC2 promoter 
 

For the amplification of the SUC2 promoter (An et al., 2004; Endo et al., 2014) with Gateway attachment 

sites attB4 and attBR1, PCR reactions were conducted with Phusion High-Fidelity DNA Polymerase 

(Thermo Scientific). The reaction mixture used is depicted in Table 9. 
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Table 9: Reaction mixture for amplification of the SUC2 promoter. 

Components Volume [µL]. Final concentration 

5 x Phusion buffer 4 1 x 

5 mM dNTPs 0.8 200 µM 

50 µM forward primer 0.25 625 nM 

50 µM reverse primer 0.25 625 nM 

Phusion High-Fidelity 
DNA Polymerase 

0.5 --- 

water ad 19 --- 

Template (undiluted 
DNA extract) 

1 --- 

 

 

Primer pairs used can be found in sections 2.4.3. The respective product of ca. 3500 bp was amplified 

as follows: Initial denaturation step (95 °C, 5 min), 40 PCR cycles comprised of denaturation (95 °C, 15 

sec), annealing (55 °C, 30 sec), and elongation (72 °C, 210 sec). The final elongation step (at 72 °C) 

was five minutes long. 

 

2.4.5 Cloning of SUC2 constructs 
 

After promoter amplification, the fragment was cloned into pDONRTMP4P1R by BP reaction at 25 °C for 

3 h (Table 10). 

 

Table 10: BP reaction mixture used in this thesis for generation of pDONRTMP4P1R-SUC2. 

Component Volume [µL]. 

5 x BP buffer 2 

pDONRTMP4P1R 1 

attB4-pSUC2-attBR1 5 

BP Clonase 2 

 

 

Afterwards, the final pB7m34GW-SUC2::CKX1-4xMyc construct was created by Gateway LR reaction 

at 25 °C over night (Table 11). Calculation of amounts of vectors needed for the reaction was done as 

follows: 

 

𝑛𝑔 = 𝑓𝑚𝑜𝑙𝑣𝑒𝑐𝑡𝑜𝑟  𝑥 𝑏𝑝𝑣𝑒𝑐𝑡𝑜𝑟  𝑥 (
660 𝑓𝑔

𝑓𝑚𝑜𝑙
) 𝑥 (

1 𝑛𝑔

106𝑓𝑔
) 
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Table 11: LR reaction mixture use for generation of pB7m34GW-SUC2::CKX1-4xMyc. 

Component Volume [µL]. 

pDONRTMP2RP3-4xMyc 0.25 

pDONRTM221-CKX1(w/o 
Stopp) 

0.75 

pDONRTMP4P1R-pSUC2 0.32 

pB7m34GW 2.38 

Clonase 2 

1 x TE ad 10 

 

 

The final construct was used for transformation of Arabidopsis plants, respectively (section 2.4.8). 

Respective primer sequences for fragment amplification (section 2.4.4), colony PCR (section 2.4.6) and 

sequencing can be found in Table 12. Sequencing of constructs was performed by GATC Biotech 

(Konstanz, Germany). 

 

Table 12: Primer sequences for construction of plasmids, colony PCR and sequencing. 
Underlined sequences represent the attB-sequences, respectively. 

Name 
Primer sequences wild-type allele (5’ → 

3’) 

Annealing 
temperature 

used [°C] 

Purpose 

pSUC2-Fwd 
GGGGACAACTTTGTATAGAAAAGTTGTC 

TTTGTCATACATTTATTTGCCACAAG 
55 

amplification of 
SUC2 promoter 

pSUC2-Rev 
GGGGACTGCTTTTTTGTACAAACTTGC 

ATTTGACAAACCAAGAAAGTAAGAAAAAA 

M13 fwd CTGGCCGTCGTTTTAC 

55 

colony PCR and 
sequencing of 

pDONRTMP4P1R-
pSUC2 

M13 rev CAGGAAACAGCTATGAC 

CKX1-
intern2rev 

CCAGCATTAGATAGTGTACC 55 

colony PCR 
pB7m34GW-
SUC2::CKX1-

4xMyc 

pSUC2-Fwd2 GCAAAACACATGTTGCCGAGTC --- sequencing of 
pDONRTMP4P1R-

pSUC2 pSUC2-Fwd3 CTAATTGGTTGTTCGTAAATGGTGC --- 

pSUC2-Fwd4 GCCTGAGGATACTATTATTCTCTGTC 55 

colony PCR with 
CKX1-intern2rev, 

sequencing of 
pDONRTMP4P1R-

pSUC2 

 

 

2.4.6 Colony PCR 
 

Colony PCR was performed to test if E. coli and A. tumefaciens colonies carry the correct plasmids. 

Here, thermostable DNA polymerase from Thermus aquaticus (Taq, see Table 3) was used to amplify 

DNA. The 10x Taq PCR buffer consisted of 500 mM KCl, 100 mM Tris/HCl pH 9, and 1 % Triton X-100. 

A typical colony PCR reaction mixture is displayed in Table 13. 
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Table 13: PCR reaction mixture used for colony PCR. 

Components Volume [µL]. Final concentration 

10 x Taq buffer  
incl. MgCl2 

2 1 x 

5 mM dNTPs 0.8 200 µM 

50 µM forward primer 0.25 625 nM 

50 µM reverse primer 0.25 625 nM 

Taq DNA Polymerase 0.5 --- 

water ad 20 --- 

Template (undiluted 
colony) 

toothpick tip --- 

 

 

Primer pairs used can be found in section 2.4.5. The elongation time was changed to the product sizes, 

respectively. PCR setup was as follows: Initial denaturation step (95 °C, 5 min), 35 PCR cycles 

comprising denaturation (95 °C, 15 sec), annealing (55 °C, 40 sec), and elongation (72 °C, 1 kb/min). A 

final elongation step (at 72 °C) of five minutes. 

 

2.4.7 Purification of PCR products 
 

PCR products were either purified by direct PCR cleanup or by gel extraction using the NucleoSpin® 

Gel and PCR Clean-up kit by Macherey-Nagel (see Table 2) and plasmid DNA was purified with the 

NucleoSpin® Plasmid EasyPure kit following the manufacturer’s protocols. DNA concentration 

determination was facilitated by photometrical measurement using the NanoDrop ND-1000 

spectrophotometer with the ‘DNA-50’ program. 

 

2.4.8 Transformation of Arabidopsis thaliana plants 
 

Stable transformation of Arabidopsis plants was performed as described previously (Clough and Bent, 

1998; Davis et al., 2009). Flowers of four- to five-week-old plants, cultivated under long-day conditions 

in the greenhouse, were dipped twice for ten seconds in a 500 mL YEB over-night liquid culture 

containing Agrobacteria that were successfully transformed with the binary pB7m34GW-SUC2::CKX1-

4xMyc plasmid and 200 µl Silwet L-77 that was added immediately before the floral dip (Lehle Seeds, 

Round Rock, Texas, USA). Afterwards, dipped plants were stored humidly in the dark over night at room 

temperature and placed back in the greenhouse for seed production. 

 

2.4.9 Selection and segregation analysis of SUC2::CKX1-4xMyc transformants 
 

After transformation, primary selection of T0 transformants was performed by spraying soil-grown plants, 

cultivated in the greenhouse under long day (LD) conditions (see also section 2.6), one and two weeks 

after germination with Basta® (Bayer, Leverkusen, Germany). T1 and T2 segregation analysis of ppt-

resistant SUC2::CKX1-4xMyc lines was conducted on sterile ½ Murashige and Skoog (MS)-medium 

containing Petri dishes. Composition of respective MS-medium is displayed in Table 14. 
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Table 14: Composition of plant culture medium. 

Components Concentration 

MS basal salt mixture, Duchefa 2.15 g/L 

MES 0.5 g/L 

Emprove® Essential, BP Agar extra 
pure, Merck 

10 g/L 

pH 5.7 adjusted with 1 N KOH 

ppt1) 10 µg/mL 

1) Added after autoclaving at a temperature of ca. 60 °C 

 

Sterilization of seeds was achieved under a sterile hood by soaking and shaking for one minute in 

absolute ethanol. After this, seeds were rinsed twice with 70 % ethanol. After being washed once with 

water, seeds were homogenously distributed in 0.1 % agarose solution. The seeds were then transferred 

onto the medium using sterile pipette tips. After the seeds were sown on the medium, the Petri dishes 

were sealed with Leukopor tape. Petri plates were grown in a culture room at 22 °C under long day 

conditions. 

 

 

2.5 Arabidopsis thaliana plants 
 

For experiments of this study, Columbia-0 (Col-0) was used as wild type. Table 15 lists all mutant and 

transgenic Arabidopsis plants that were used. 

 

Table 15: Mutant and transgenic Arabidopsis plants. 

Name1) References Source2) 

Cytokinin-related 

abcg14-2 (SK15918, abcg14) 
Ko et al., 2014; 

Zhang et al., 2014 

PhD Youngsook Lee, Pohang 
University of Science and 

Technology (Pohang, Korea) 

ahk2-5 (ahk2) ahk3-7 (ahk3) Riefler et al., 2006 Dr. Anne Cortleven, FU Berlin 

ahp2-1 (ahp2) ahp3 
ahp2 ahp5-2 (ahp5) 

ahp3 ahp5 
ahp2 ahp3 ahp5 

Hutchison et al., 2006 

N860151 
Daniela Pezzetta, FU Berlin 

N860155 
Daniela Pezzetta, FU Berlin 

arr2-1 (arr2), GK269G01 Nitschke, 2014 Dr. Sören Werner, FU Berlin 

arr10-5 (arr10) 
arr12-1 (arr12) 

arr10 arr12 

Mason et al., 2005; 
Ishida et al., 2008 

Dr. Sören Werner, FU Berlin 

arr2 arr10 
arr2 arr12 

arr2 arr10 arr12 
--- Dr. Sören Werner, FU Berlin 

cyp735a1-2 (cyp735a1) cyp735a2-2 
(cyp735a2) (cypDM) 

Kiba et al., 2013 Dr. Sören Werner, FU Berlin 

log1-2 (log1) log2-1 (log2) log3-1 
(log3) log4-3 (log4) log5-1 (log5) log7-

1 (log7) log8-1 (log8) (logS) 

Kuroha et al., 2009; 
Tokunaga et al., 2012 

Prof. Hitoshi Sakakibara, RIKEN 
Center for Sustainable 

Resource Science (Yokohama, 
Japan) 

35S::CKX1 Werner et al., 2003 Daniela Pezzetta, FU Berlin 

ATML::CKX1-4xMyc Werner, 2016 Dr. Sören Werner, FU Berlin 
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CLV1::CKX1 Otto, 2013 Daniela Pezzetta, FU Berlin 

SUC2::CKX1-4xMyc3) This study --- 

WUS::CKX1 Otto, 2013 Daniela Pezzetta, FU Berlin 

Auxin-related 

tir1-1 (tir1) 
afb2-3 (afb2) 
afb3-4 (afb3) 

tir1 afb2 
tir1 afb2 afb3 

Dharmasiri et al., 2005a 
Parry et al., 2009 

N3798 
N69651 
N69652 
N69691 
N69653 

yuc1D 
Zhao et al., 2001 

Cheng et al., 2006 

Prof. Christine Beveridge, The 
University of Queensland (St. 

Lucia, Australia) 

ahk2 ahk3 tir1 afb23) This study --- 

Ethylene-related 

ctr1-1 (ctr1) Kieber et al., 1993 
N8057; Dr. Anne Cortleven, FU 

Berlin 

ctr/sis1-1 Gibson et al., 2001 
N3874; Dr. Anne Cortleven, FU 

Berlin 

etr1-1 Guzman and Ecker, 1990 
N237, Dr. Silvia Nitschke 

(formerly FU Berlin) 

etr1-6 (etr1) etr2-3 (etr2) ein4-4 (ein4) 
etr2 ers2-3 (ers2) ein4 

Hua and Meyerowitz, 1998 
Prof. Eric Schaller, Dartmouth 

College (Hanover, USA) 

ein2-1 (ein2) Guzman and Ecker, 1990 
N3071, Tanja Rublack (formerly 

FU Berlin) 

ein3-1 (ein3) Rothenberg and Ecker, 1993 
N8052, Tanja Rublack (formerly 

FU Berlin) 

GA-related 

gid1a-1 (gid1a) gid1b-1 (gid1b) 
gid1a gid1c-1 (gid1c) 

gid1b gid1c 
Griffiths et al., 2006 

Dr. Stephen Thomas, 
Rothamsted Research 

(Harpenden, United Kingdom) 

ga20ox1 ga20ox2 
ga20ox1 ga20ox3 
ga20ox2 ga20ox3 

Plackett et al., 2012 
Dr. Stephen Thomas, 
Rothamsted Research 

(Harpenden, United Kingdom) 

gai Matschi et al., 2015 Daniela Pezzetta, FU Berlin 

rga28 (rga1) Park et al., 2013 Daniela Pezzetta, FU Berlin 

miRNA-related 

35S::MIR156B --- Dr. Sören Werner, FU Berlin 

35S::MIM172 Werner, 2016 Dr. Sören Werner, FU Berlin 

1) Written in parentheses are the names used throughout this study  
2) NASC ID if ordered from stock centre or seeds kindly provided by the indicated researcher 
3) Generated in this study 

 

 

2.6 Growth conditions for Arabidopsis thaliana plants 
 

For photoperiod stress experiments Arabidopsis plants were grown under short day (SD) conditions 

(light/dark: 8 h/16 h) in a phytochamber at 22 °C and light intensities of 100-150 µmol m-2s-1. For these 

experiments seeds were sown on ‘sowing soil’ (2:2:1, Soil Type P:Soil Type T:Sand). In experiments 

that aimed to harvest root material, ‘sowing soil’ and sand were mixed in a ratio of 1:3. Seeds were 

stratified at 4 °C for two days before they were transferred to the phytochamber. For the first few days, 

seedlings were cultivated under a plastic hood to ensure sufficient humidity. After two weeks of growth, 

plants were separated and further cultivated on “sowing soil”. 
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For genotyping, propagation, crossing and segregation analyses, plants were cultivated under long day 

(LD) conditions (light/dark: 16 h/8 h) in the greenhouse. Plants in the greenhouse were cultivated under 

temperature cycles (light/dark: 22/18 °C) and were sown on “sowing soil” and cultivated under a plastic 

hood. After separation, seedlings were transferred to soil containing Perligran G instead of sand. 

 

 

2.7 Genetic crosses 
 

Genetic crosses were performed on two consecutive days. On the first day, female organs of two or 

three flower buds that were still closed were prepared. After removing all other siliques, leaves, younger 

flower buds and open flowers near the chosen flower buds using precision tweezers, gynoecia were 

prepared by removing sepals, petals, and all six stamens on the selected flower buds, respectively. 

Afterwards, it was checked that gynoecia were intact. Inspected plants were grown in the green house 

for one more day. Thereafter, development of ‘stigma hairs’ was checked as an indicator that gynoecia 

were not pollinated before and pollination was conducted by removing a complete open flower of the 

male parent and brushing its anthers over the stigma of the gynoecium. Pollination was visually 

inspected under the binocular microscope. Elongation of siliques was observed after two to three days 

if plants were successfully crossed. Seeds of respective siliques were collected in paper bags and sown 

out for propagation after ripening. Segregation analyses and genotyping were conducted in the F2 and 

F3 generation, respectively. 

 

 

2.8 Nucleic acid methods 
 

2.8.1 Quantification of transcript abundance via quantitative RT-PCR 
 

2.8.1.1 Isolation and purification of total RNA 

 

For RNA isolation, frozen samples (100 mg fresh weight) were ground using a Retsch mill in pre-cooled 

adapters. Afterwards, samples were dissolved in 750 μL extraction buffer (0.6 M NaCl, 10 mM EDTA, 4 

% (w/v) SDS, 100 mM Tris/HCl pH 8) and 750 μL phenol chloroform isoamyl alcohol (PCI; 25:24:1) 

solution was added. Samples were vortexed, shaken for 20 minutes at room temperature and 

centrifuged at 19.000 x g for five minutes at 4 °C. The supernatants were transferred into fresh 1.5 mL 

Eppendorf tubes and chloroform isoamyl alcohol (CI, 24:1) solution was added in a 1:1 ratio. Samples 

were vortexed briefly and centrifuged at 19.000 x g for five minutes at 4 °C. Supernatants were 

transferred into fresh tubes and RNA was precipitated for 2 h on ice by adding 0.75 volumes of 8 M LiCl. 

After centrifugation at 19.000 g for 15 minutes at 4 °C, supernatants were removed and resolved in 300 

μL RNase-free water. RNA was precipitated again by the addition of 30 μL 3 M sodium acetate and 750 

μL absolute ethanol and incubation at -70 °C for 30 minutes. Samples were centrifuged at 19.000 g for 

ten minutes at 4 °C and the supernatant was discarded. Pellets were washed either with 200 μL 70 % 

ethanol (v/v) or - to avoid loss of miRNAs - with 80 % ethanol (v/v) and after centrifugation, pellets were 

dried at room temperature and resolved in 40 μL RNase-free water. 
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2.8.1.2 cDNA synthesis from total RNA 

 

Following isolation, 16 µL of RNA were firstly incubated with DNaseI (Thermo Scientific) for 30 minutes 

at 37 °C and inactivated in the presence of 2.5 mM EDTA for ten minutes at 65 °C. After total RNA 

measurement at the Nanodrop®, 150 - 500 ng of total RNA (same amount in each distinct experiment, 

respectively) were used per sample, put into a new test tube and filled to a volume of 10 µL with RNase-

free water. Thereafter, two reaction mixtures were prepared that are displayed in Table 16. 

 

Table 16: Reaction mixtures for cDNA synthesis from total RNA. 

Mix 1 Mix 2 

Components 
(stock conc.) Volume [µL] 

Components 
(stock conc.) Volume [µL] 

Oligo-dT-Primer T25 
(50 µM) 

1 
First Strand Buffer 

(5x) 
4 

Random-Primer N9 

(50 µM) 
1.8 

DTT 
(100 mM) 

1 

5 mM dNTPs 2 
SuperScript® III Reverse 

Transcriptase 
(200 U/µL) 

0.5 

 

For cDNA synthesis, 4,8 µL of Mix 1 were added and incubated for five minutes at 65 °C. After cooling 

down on ice, 5,5 µL of the Mix 2 were added and cDNA was ultimately synthesized by incubation for 

five minutes at 25 °C, following 60 minutes at 50 °C and 15 minutes at 70 °C. After its synthesis, cDNA 

was diluted to a concentration of 50 ng/µL using 1 x TE buffer and stored in either the fridge or freezer 

until usage.  

 

2.8.1.3 cDNA synthesis from miRNAs 

 

For cDNA synthesis of miRNAs (Chen et al., 2005; Pant et al., 2008), 500 ng of DNaseI-digested total 

RNA was used for Mix 1 Table 17. 

 

Table 17: Reaction mixtures for cDNA synthesis from miRNAs. 

Mix 1 Mix 2 

Components 
(stock conc.) Volume [µL] 

Components 
(stock conc.) Volume [µL] 

total RNA x (500 ng) 
First Strand Buffer 

(5x) 
2.5 

miRNA-specific StLp-
Primer (50 µM) 

0.125 
DTT 

(100 mM) 
0.5 

TAFII15-qRT_rev 
(50 µM) 

0.125 
SuperScript® III Reverse 

Transcriptase 
(200 U/µL) 

0.5 

5 mM dNTPs 1 RNaseOUT (40 U/µl) 0.3 

dd H2O (RNase-free) ad 8.7   

 

Mix 1 was incubated for five minutes at 65 °C and put on ice afterwards. Following the addition of 3.8 

µL Mix 2 to Mix 1, samples were incubated for 30 minutes at 16 °C, 30 minutes at 50 °C and for 15 

minutes at 70 °C. cDNA synthesized was stored in either fridge or freezer until usage (undiluted). Primer 

for synthesis of cDNA from miRNAs and their sequences are displayed in Table 18. 
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Table 18: Primer used for cDNA synthesis from miRNAs. 

Primer Sequence Source 

miR156-
StLp 

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGTGCT1) 
Werner, 

2016 

miR172ab
e-StLp 

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATGCA1) 
Werner, 

2016 

TAFII15-
qRT_rev 

ACTCTTAGCCAAGTAGTGCTCC 
Werner, 

2016 

1) underlined sequences are miRNA-specific 

 

2.8.1.4 Primer design for qRT-PCR analysis and primer sequences 

 

Apart from already established primer pairs, all new primer pairs were designed using the QuantPrime 

software (see Table 1) under the following conditions:  

Design mode: Primer pair (SYBR Green or EtBr detection); Limit 3' G/C content within the 5 last bases 

of each primer, allow max 3 G/C bases; Specificity prefiltering BLAST E-value: 1; Specificity prefiltering 

splice variant options: Primer pairs perfectly matching splice variants will neither be filtered out nor 

required;  Prefer 3' tail of transcript for amplicons (recommended when using oligo-dT for cDNA 

synthesis), Use the last 1000 bp of transcript 3' tail as preferred range; Hybridization probe options: 

Don't allow a G at the 5' end, use the strand with most C's. Force strand for hybridization probe: No 

Taqman; Primer3 parameters: PRIMER_MAX_POLY_X = 3, PRIMER_GC_CLAMP = 1, PRIMER-

_TM_SANTALUCIA = 1, PRIMER_SALT_CORRECTIONS = 1, PRIMER_DNTP_CONC = 0.4, 

PRIMER_DIVALENT_CONC = 1.5, PRIMER_DNA_CONC = 50.0, PRIMER_SALT_CONC = 50.0, 

PRIMER_MIN_SIZE = 20, PRIMER_OPT_SIZE = 22, PRIMER_MAX_SIZE = 24, PRIMER-

_PRODUCT_SIZE_RANGE = 150-250 250-350, PRIMER_PRODUCT_MIN_TM = 75.0, #PRIMER-

_PRODUCT_OPT_TM = 80.0, PRIMER_PRODUCT_MAX_TM = 95.0, PRIMER_MIN_GC = 45.0, 

PRIMER_OPT_GC_PERCENT = 50.0, PRIMER_MAX_GC = 55.0, PRIMER_MIN_TM = 59.0, 

PRIMER_OPT_TM = 60.0, PRIMER_MAX_TM = 61.0, PRIMER_MAX_DIFF_TM = 2.0; Specificity test 

parameter set: BLAST expectation: 200, require a possible amplicon, up to a maximum size of 1500 bp. 

Suitable primer pairs were ordered from ThermoFisher Scientific. In Table 19 all qRT-PCR primers (for 

genes of interest (GOI) and reference genes) used in this work are listed. 

 

Table 19: Primer sequences for qRT-PCR. 

Gene AGI number Forward Primer Reverse Primer Source 

Genes of Interest (GOI) 

ABCG14 AT1G31770 
TTCTGGAGGAAGAACAGTCG

TC 
CTGAGTATCAGGTGGGATTC

CG 
--- 

ARR5 AT3G48100 CTACTCGCAGCTAAAACGC GCCGAAAGAATCAGGACA 
Louisa 
Brock 

ARR6 AT5G62920 GAGCTCTCCGATGCAAAT GAAAAAGGCCATAGGGGT 
Louisa 
Brock 

BAP1 AT3G61190 
CCAGAGATTACGGCGCGTGT

T 
TACAGACCCCAAACCGGAAC

TCC 
Nitschke, 

2014 

CAB2 AT1G29920 
AGAGGCCGAGGACTTGCTTT

AC 
GCCAATCTTCCGTTCTTGAG

C 
Nitschke, 

2014 

CTR1 AT5G03730 
CGTTTCTTTCCTCGAAGTCA

GC 
AACCGCAGCTACAACCTGAG --- 
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CYP735A1 AT5G38450 
CAACGGTGTTAGTGGAAGAT

CG 
CATATGCCTTGCGTATCCCT

TG 
--- 

CYP735A2 AT1G67110 
GTCTCTTGGTCCAAACAATAT

GGG 
AGAAGCCCACGCCCTATAAA

C 
--- 

ETR1 AT1G66340 
CCGATCAATTCTTCCCAAGT

GTG 
GCACCAAACTGAACAAGTAC

CC 
--- 

GAI AT1G14920 
GATCGGTTTACTGAGTCGTT

GC 
AACGTTTCATGACGCTCAAC

TC 
--- 

GID1A AT3G05120 
AGCAGAACAGTGGTTCCTCT

C 
CCTGCGATCAATCAAGACAT

CG 
--- 

LOG8 AT5G11950 
GAACTCGGCAATGAACTCGT

G 
TCATGCATGTCTGCAACAAC

TC 
--- 

MIRNA156 --- CAGTGCAGGGTCCGAGGT1) 
CCGTGGTGACAGAAGAGAGT

GA2) 
Werner, 

2016 

MIRNA172 --- CAGTGCAGGGTCCGAGGT1) 
GTCCGTGGAGAATCTTGATG

ATG2) 
Werner, 

2016 

TAA1 AT1G70560 
TGTCTAAGGAGTCACAGGTT

CG 
CAAACGCAGGGTAAGATTCG

AG 
--- 

TIR1 AT3G62980 
ACTTGCAGGAATCTGAAAGA

GC 
GAGATTGGGACACCTAGTCA

CC 
--- 

ZAT12 AT5G59820 CGCTTTGTCGTCTGGATTG AGCAGCCCCACTCTCGTT 
Nitschke, 

2014 

Reference genes 

MCP2D AT1G79340 
AACCCGCTATGCAGACACAC

G 
CAGTTGGTTTCCCCGCTGGA 

Nitschke, 
2014 

PP2AA2 AT3G25800 
CCATTAGATCTTGTCTCTCTG

CT 
GACAAAACCCGTACCGAG 

Nitschke, 
2014 

TAFII15 AT4G31720 GAATCACGGCCAACAATC 
ACTCTTAGCCAAGTAGTGCT

CC 
Werner, 

2016 

UBC10 AT5G53300 CCATGGGCTAAATGGAAA TTCATTTGGTCCTGTCTTCAG 
Nitschke, 

2014 

1) StLp-qRT_for: stem loop specific 
2) underlined sequences represent binding sequences to respective miRNA 

 

2.8.1.5 Quantitative reverse transcription PCR (qRT-PCR) 

 

qRT-PCR was performed with the CFX96TM Real-Time Touch System (Bio-Rad®) using SYBR Green I 

as DNA-binding dye. The reaction mix is listed in Table 20. 

 

Table 20: Reaction mix for qRT-PCR. 

Components Volume [µL]. Final concentration 

10 x Immolase buffer 2 1 x 

50 µM MgCl2 0.8 2 mM 

5 mM dNTPs 0.4 100 µM 

10 x SYBR Green I 0.2 0.1 x 

50 µM forward primer 0.12 300 nM 

50 µM reverse primer 0.12 300 nM 

Immolase (5 U/µL) 0.04 0.01 U/µL 

water ad 18 µL --- 

Template (50 ng/µL) 2 5 ng/µL 

All components except for the template DNA were mixed together and 18 µL of that master-mix were 

added to each well of a 96-well-plate. Afterwards, template DNA or water was added.  
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The following PCR setup was used: heat activation of the Immolase for 15 minutes at 95 °C, 40 cycles 

of five seconds at 95 °C (denaturation), 15 seconds at 55 °C (annealing), and ten seconds at 72 °C 

(elongation). After PCR, the Bio-Rad CFX Manager generated a dissociation curve which was checked 

to ensure specificity of the amplification. 

Primer efficiencies for newly designed primers were tested by mixing all cDNAs (50 ng/µL) from one 

experimental setup and making a 1:10 dilution series consisting of five dilutions. After respective PCR, 

efficiencies (E in %) were calculated by Bio-Rad CFX Manager. Only primers with an efficiency between 

90 % and 110 % were used for further studies. Expression of GOI was normalized against reference 

genes according to Vandesompele et al., 2002 using Microsoft Excel by calculation of a normalization 

factor (NF) for each sample. It represented the geometric mean of the 2-ΔCt values of all reference genes 

tested. The relative expression of the GOI tested was finally determined as 2-ΔCt (GOI)/NF. In general, 

these relative expression values were normalized to wild-type control which was set to 1. Data in which 

the relative expression was normalized to other controls/samples are described in the figure description, 

respectively. 

 

2.8.2 Genotyping of Arabidopsis plants 
 

2.8.2.1 Genotyping strategies 

 

Plants were genotyped after ordering seeds from NASC or in all generations following genetic crosses 

(also parental plants). Mutants with clear phenotypical characteristics in the homozygous state were 

selected by phenotype, respectively. Such mutants were ctr1 and ctr/sis1-1 (dwarfed shoot, dark green 

leaves, late flowering), etr1etr2ein4 and etr2ers2ein4 (different degree of dwarfed shoot and dark green 

leaves), ga20ox1ga20ox2, ga20ox1ga20ox3 and ga20ox2ga20ox3 (reduced germination rates that can 

be rescued by addition of active GAs, different degrees of reduced shoot size with different degrees of 

small, dark green roundish leaves) and yuc1D (long petioles, reduced plastochron, curled down leaves). 

T-DNA insertions mutants were genotyped via PCR using two primer pairs, one flanking the insertion to 

amplify the wild-type allele if no insertion was existent and another pair with a gene-specific and an 

insertion (T-DNA)- specific primer to amplify the mutant allele. In Table 21 all insertion-specific primers 

that were used are listed and Table 22 contains all gene-specific primer pairs with further information 

about primer combinations that detect the mutant alleles, respectively. 

 

Table 21: Insertion-specific primers used for genotyping. 

Name Primer Purpose of use 

SAIL-IT1_F (SAIL) GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC Genotyping of SAIL lines 

GABI-Kat (GABI) CCCATTTGGACGTGTAGACAC Genotyping of GABI-Kat lines 

LBaI (SALK1) TGGTTCACGTAGTGGGCCATCG Genotyping of SALK lines 

LBbI (SALK2) GCGTGGACCGCTTGCTGCAACT Genotyping of SALK lines 

SLAT-3’ CTTATTTCAGTAAGAGTGTGGGGTTTTGG gid1b-1 genotyping 

JMLB1 GGCAATCAGCTGTTGCCCGTCTCACTGGTG ahp mutant genotyping 

pSKTAIL-L1 (TAIL) TTCTCATCTAAGCCCCCATTTGG abcg14-2 genotyping 
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Table 22: Gene-specific primers used for genotyping. 

Mutant 
Primer sequences1) wild-type allele (5’ 

→ 3’) 
Product 
size [bp] 

Primer combination 
mutant allele 

Annealing 
temperature 

used [°C] 

abcg14 
F-ATGCCTCAGAACTGCATAGC 
R-TTACCGCAACTTCACCCGAT 

2100 F + TAIL (~650 bp) 60 

afb2 
F-TCAACGGTCAAGATCCATCTC 
R-CTGCAATTAGCGGCAATAGAG 

1100 R + SALK1 (~900 bp) 59 

afb3 
F-TCATGTTGCTTACAAATTGCG 
R-TCTGCAAACAGATGACAAACG 

1100 R + SALK1 (~800 bp) 59 

ahk2 
F-GCAAGAGGCTTTAGCTCCAA 
R-TTGCCCGTAAGATGTTTTCA 

672 F + SAIL (650 bp) 59 

ahk3 
F-CCTTGTTGCCTCTCGAACTC 

R-CGCAAGCTATGGAGAAGAGG 
558 R + GABI (450 bp) 59 

ahp2 

F-TCATGAGGTCAAGTTGATGAGAG 
TATATG 

R-TTTGTATTTGACAGTGAGACTG 
CGTTGAC 

1308 F + JMLB1 (~850 bp) 57 

ahp3 

F-TCATGAGGTCAAGTTGATGAGAG 
TATATG 

R-TTTGTATTTGACAGTGAGACTGC 
GTTGAC 

2320 
F + JMLB1 (~1100 

bp) 
57 

ahp5 

F-ATTTTTCCTGTTTTGTAACTGTGG 
ACGAT 

R-TCCTTTCTCAATCTATTGTCACA 
ATCATG 

2156 R + JMLB1 (~750 bp) 57 

cyp735a1 
F-CTTGCGGTTACGTCGGCTC 

R-ATCCTCATGAAACCAATGGCTTC 
1357 R + SALK2 (~500 bp) 55 

cyp735a2 
F-CCAAGATGGTGTCCCTTCCG 

R-CTTGGTAAAAGTGTGGCAGGAG 
1518 R + SALK2 (~700 bp) 55 

gid1a 
F-GAATTATCGGCGTGCACCA 

R-TGATTGTTATTAGGCAAGAGGTAAA 
ACC 

552 R + SALK1 (684 bp) 55 

gid1b 
F-TCTCCTGTCCACCAAACATTG 
R-CTGGGTTTTGGAGACTATGGC 

897 R + SLAT3’ (354 bp) 55 

gid1c 
F-ATGGCTGGAAGTGAAGAAGTTAA 

TCT 
R-CAGGGCGACGCAGGAG 

570 R + SALK1 (559 bp) 55 

log1 
F-ATGGAGATAGAATCAAAGTTCAAGA 
R-CCAATGCTCCCTCCACCATAGACAA 

1173 
F + SALK1  
(~1500 bp) 

55 

log2 
F-GTGGCATGGGTTGAAGTCTATATTC 
R-TGGAAGTCTCAATGCTTGGAAAATG 

935 F + SALK1 (~800 bp) 55 

log3 
F-CATTCCCAAGACCCTCATGCCTAGA 
R-CTAATTTTAAGTGCCAGATGTTGAT 

1037 F + SALK1 (~700 bp) 55 

log4 
F-GGTTTGCTTTGTAATGATTTCTGGG 
R-TCAGTCTTCAGAAGAGTAGTCAATC 

923 R + SALK1 (~700 bp) 55 

log5 
F-ATGGAAATAGTGAAGTCGAGGTTCA 
R-CTAAAGGGCAATCTCAGTCTGCATG 

1367 F + GABI (~1000 bp) 55 

log7 
F-GTCATTACATGGGCTCAACTCGGTA 
R-TCACAATCAGGGGTTATGTAGTCGT 

449 R + SALK1 (~800 bp) 55 

log8 
F-CACTTTACTTTGTTTGCCCCCCTTT 
R-AGAAACAATCCCAAACTAATCAAC 

1346 F + SALK1 (~900 bp) 55 

tir1 
F-GACGGATGGGGAGGTTACGTG 
R-CTGCAGTGTACCCACCAGTGC 

~1200 bp 

BsaI digest: wild type 
1000 + 200 bp, 

mutant resistant → 
1200 bp 

55 

1) F: forward primer; R: reverse primer 

 

The tir1 mutants carries a point mutation (derived from EMS mutagenesis) and was genotyped using 

cleaved amplified polymorphic sequences (CAPS) markers. The point mutation resulted in a loss of a 

BsaI in the fragment amplified via PCR. Table 23 displays the primers used as well as further information 

about the tir1 mutation, respectively. 
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Table 23: Genotyping of tir1 with CAPS markers. 

Mutant 
Primer sequences1) wild-type 

allele (5’ → 3’) 

Annealing 
temperature 

used [°C] 

Restriction 
enzyme 

Wild-type 
allele/ 

mutant 
allele [bp] 

Mutation 

tir1 
F-GACGGATGGGGAGGTTACGTG 
R-CTGCAGTGTACCCACCAGTGC 

55 BsaI 
1000 + 200/ 

1200 
Gly147Asp 

(GGT→GAT)  

 

 

2.8.2.2 Extraction of genomic DNA from Arabidopsis 

 

For isolation of genomic DNA, a small piece of leaf tissue was placed in a tube of an 8x stripe filled with 

400 µL extraction buffer and ground for two minutes from each side using a Retsch mill. Afterwards, 

samples were centrifuged at maximum speed for 15 minutes. 300 µL of each supernatant were 

transferred into fresh 8x stripes filled with 300 µL 2-propanol per tube. After inverting tubes briefly, 

samples were centrifuged at maximum speed for 1 hour at 4 °C. Supernatants were discarded and 

pellets were washed with 300 μL 70 % ethanol. After centrifugation at maximum speed for 15 minutes 

at 4 °C, pellets were dried at 60 °C and resolved in 100 μL Tris-EDTA (TE) buffer. 

 

2.8.2.3 PCR analysis 

 

PCR analysis was performed in order to genotype Arabidopsis plants using genomic DNA extracts (see 

section 2.8.2.2). For that purpose, Taq Polymerase (see 2.4.6) was used to amplify DNA. A typical PCR 

reaction mixture (20 µL) for Arabidopsis genotyping is depicted in Table 24. 

 

Table 24: PCR reaction mixture used for genotyping of Arabidopsis plants. 

Components Volume [µL]. Final concentration 

10 x Taq buffer  
incl. MgCl2 

2 1 x 

5 mM dNTPs 0.8 200 µM 

50 µM forward primer 0.25 625 nM 

50 µM reverse primer 0.25 625 nM 

Taq DNA Polymerase 0.5 --- 

water ad 19 µL --- 

Template (undiluted 
DNA extract) 

1 --- 

 

 

Primer pairs used can be found in sections 2.8.2.1. The respective product size changed between 

different approaches (Tables 11 and 12, section 2.8.2.1). After the initial denaturation step (95 °C, 5 

min) between 30 and 35 PCR cycles followed consisting of denaturation (95 °C, 15 sec), annealing (55-

65 °C, 30 sec), and elongation (72 °C, 1 kb/min). The final elongation step (at 72 °C) was five minutes 

long. 

 



 

36 
 

Materials and Methods 

2.8.2.4 Restriction digestion 

 

Restriction enzymes for genotyping using CAPS markers (section 2.8.2.1) and cloning of SUC2 

constructs (section 2.4.5) were purchased from Fermentas/Thermo Scientific or New England BioLabs. 

For CAPS marker analysis, restriction enzymes were directly added to PCR reaction mixture after PCR. 

For cloning of SUC2 constructs, supplied reaction buffers were used. A typical reaction mixture 

consisted of ca. 1 µg DNA, 5-10 U of the restriction enzyme, 1x of the recommended reaction buffer and 

water to a final volume of 40 µL or for CAPS genotyping, 5-10 U of the restriction enzyme was added 

directly to each PCR reaction mixture after PCR (section 2.8.2.3). The reaction mixtures were incubated 

at 37 °C in either a PCR machine or an incubator for at least one hour. For enzyme inactivation, samples 

were heated (> 70 °C) for five minutes. 

 

2.8.2.5 Agarose gel electrophoresis 

 

Following PCR or restriction digestion, DNA fragments were separated by size via agarose gel 

electrophoresis. Samples were prepared for electrophoresis by addition of 6x loading dye (30 % glycerol, 

0.25 % bromophenol blue, 0.25 % xylene cyanol FF) so that the final loading dye concentration was 1x. 

In most experiments, gels consisted of 1 to 1.5 % (w/v) agarose and ethidium bromide (0.75 µL/mL gel) 

solved in 1x TAE (40 mM Tris, 20 mM acetic acid and1 mM EDTA, pH 8). To determine DNA size, the 

100 bp DNA ladder Hyperladder I (Thermo Scientific) was used in most experiments. DNA was stained 

with ethidium bromide and visualized with an ultraviolet (UV) transilluminator (Genoplex, VWR 

International GmbH, Darmstadt, Germany) using the GenoCapture sofware. 

 

 

2.9 Determination of cytokinin, auxin and GA levels 
 

For hormone measurements, 100 mg fresh weight of leaf tissue per sample and hormone was collected 

and shock-frozen in liquid nitrogen under white light (time points during light exposure) or green safety 

light (time points during night). Samples were sent to Prof. Ondrej Novak (Palacký University & Institute 

of Experimental Botany AS CR, Olomouc, Czech Republic). Analysis of hormones was carried out using 

ultra-performance liquid chromatography-electrospray tandem mass spectrometry as described (Novák 

et al., 2008; Pěnčík et al., 2009; Urbanová et al., 2013) with 15 mg/techn. or biol. replicate/hormone. All 

samples were measured in quintuplicate for each genotype and each timepoint. 

 

 

2.10 Photoperiod stress treatment and evaluation of physiological and 
molecular parameters 

 

2.10.1 Quantification of lesions 
 

Lesions were quantified three to four hours after the night following PLP treatment. First, the total number 

of fully expanded leaves (except for leaf 1 and 2 as well as cotyledons) of a plant was counted. 
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Afterwards, the total number of lesioned leaves was determined (0 = not lesioned, 0.5 = less than 50 % 

lesioned, 1 = more than 50 % lesioned) and the percentage was calculated by dividing the number of 

lesioned leaves by the total number of fully expanded leaves (for each plant, respectively). 

 

2.10.2 Chlorophyll Fluorometry (Fv/Fm ratio) 
 

As a measure of stress and progress of cell death, the photosystem II maximum quantum efficiency 

(Fv/Fm ratio, Baker, 2008) was determined six to seven hours after the night following the prolonged light 

period. First, healthy and lesioned leaves of several plants (3 leaves per plant) were detached in a ratio 

reflecting the determined lesion percentage of the respective genotype in the same experiment. 

Detached leaves were placed in Petri dishes filled with water with the abaxial part of the leaf directly 

facing the water. 

After 20 minutes of incubation in darkness, pulse-amplitude-modulated (PAM) measurements were 

performed with the chlorophyll fluorometer FluorCam (Photon Systems Instruments). First, the minimum 

fluorescence emission signal F0 was recorded. Afterwards, the maximum fluorescence yield Fm (induced 

by a saturating light pulse of 1500 μmol m-2 s-1) was recorded. The variable fluorescence Fv is defined 

as the difference Fm - F0. As a result, the full equation is defined as Fv/Fm = (Fm - F0)/Fm. 

 

2.10.3 Determination of hydrogen peroxide (H2O2) content 
 

For H2O2 measurements, ca. 100 mg of leaf material was harvested per sample, put into a 2 mL 

Eppendorf tube and shock-frozen in liquid nitrogen under green safety light. After samples were ground 

in pre-cooled adapters in a Retsch mill, 700 µL of 0.1 % (v/v) trichloroacetic acid (TCA) were added, 

samples were vortexed and put on ice. Samples were consecutively vortexed every five minutes for 15 

minutes and centrifuged at 16000 g at 4 °C for 15 minutes. 300 µL per supernatant were transferred to 

a fresh 1.5 mL Eppendorf tube. 20 µL of each supernatant were used and mixed with 200 µL of a freshly 

prepared working solution in a well of a 96 well plate (ratio 1:100, colorless solution one: yellow solution 

two; Pierce™ Quantitative Peroxide Assay Kit). For H2O2 quantification, a 1000 µM H2O2 stock solution 

was prepared and a dilution series was made (100 µM, 80 µM, 60 µM, 40 µM, 20 µM and 0 µM H2O2, 

respectively). 20 µL of each dilution were used in the same manner as for the other samples. In addition, 

20 µL of 0.1 % (v/v) TCA were used as a blank. After ten minutes of incubation, absorption was 

measured with a Synergy™ 2 Multi-Detection Microplate Reader (Biotek®, Winooski, Vermont, USA) at 

a wavelength of 595 nm using the Gen5™ Reader Control and Data Analysis Software. As a plate 

control, absorption of a second plate was measured with the same wells filled with 

samples/controls/blank but with 200 µL of water instead of working solution. H2O2 quantities were 

determined by subtracting either the TCA blank or the lowest value measured from all other values and 

calculating the linear function y = mx + b (m = slope, b = 0) of the dilution series first. Afterwards, the 

final quantity was calculated using the equation: H2O2 contentnm/g FW = absorption595nm * mL TCA solution 

added / weight [g] * m. 
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2.10.4 Sampling for expression analysis of stress marker genes 
 

For expression analysis, ca. 100 mg of leaf material were harvested into 2 mL Eppendorf tubes and 

shock-frosted in liquid nitrogen under white light (0 h time points) or green safety light (7.5, 15 h time 

points). Root samples were harvested by washing out soil and sand with water under the same light 

conditions as described before. Roots were then dried briefly using paper towels, weighed (50 to 100 

mg) and shock-frozen in liquid nitrogen. Methods for determination of marker gene expression are 

described in section 2.8.1. 

 

2.10.5 RNA sequencing (RNAseq) analysis 
 

For RNAseq analysis, ca. 100 mg of leaf material was harvested into 2 mL Eppendorf tubes and shock-

frozen in liquid nitrogen under white light (0 h time points) or green safety light (4 h, 6 h, 8 h and 12 h 

time points). After RNA isolation (NucleoSpin® RNA Plant Kit, section 2.2), samples were sent to the 

Beijing Genomics Institute (BGI) Co., Ltd. (Hongkong, China) for quality and integrity control, library 

construction and sequencing. Concentration and integrity of RNA and the extent of rRNA contamination 

were determined by the Nanodrop NA-1000 and the Bioanalyzer Agilent 2100 (Agilent Technologies, 

Santa Clara, CA, USA). RNA was treated with DNaseI and an enrichment and fragmentation of mRNA 

was achieved by using oligo-dT magnetic beads. Hereafter, random hexamer primers were used for 

first-strand cDNA synthesis and after that, second strand synthesis was performed. Following 

purification, end repair, and 3ʹ end single-nucleotide A addition, sequence adaptors were ligated. Prior 

to the sequencing of the library products with the BGISEQ‐500 platform (Zhu et al., 2018), quality control 

was conducted with the Agilent 2100 Bioanalyzer and PCR amplification was performed using the ABI 

StepOnePlus Real-Time PCR System (Thermo Fischer Scientific, Waltham, MA, USA). Bioinformatics 

analysis of RNAseq data including mapping against the Arabidopsis genome (TAIR10) and statistical 

analysis with DESeq2 (pairwise comparisons: Bonferroni correction) was performed by Dr. Anne 

Cortleven using R®. 

 

 

2.11 Statistical analysis 
 

For statistical analysis of most data, SAS®Studio (https://odamid.oda.sas.com/SASStudio) was used. 

One- and two-way ANOVA were performed after testing the homogeny (Shapiro-Wilk test; p ≥ 0.95) of 

samples. In sets with an equal variance (Levenes test; p ≥ 0.01) Tukey post-hoc-test was performed. If 

assumptions were not applicable, transformations were performed. A Wilcoxon test was performed in 

the case that assumptions were still not met after transformation. 

For cytokinin auxin and GA measurements, the significance of differences between control and PLP-

treated samples was calculated with a paired Student’s t-test in Microsoft Excel®.  
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3 Results 

 

3.1 tZ-type cytokinins are essential to cope with photoperiod stress and require 
AHPs and ARRs to transduce their signal 

 

3.1.1 Photoperiod stress increases the cytokinin content in wild-type plants 
 

Plants impaired in cytokinin biosynthesis and signaling are sensitive to alterations of the light-dark cycle 

(Nitschke et al., 2016). To investigate whether photoperiod stress directly influences the hormone level, 

cytokinin concentrations were measured in leaves of short-day grown wild-type plants exposed to a 32 

h light period, which is the standard stress treatment (in cooperation with Assoc. Prof. Ondrej Novak, 

Palacký University, Olomouc) (Figure 12A). 

Plants experiencing photoperiod stress had an elevated total cytokinin content at the end of the PLP 

treatment and in the middle of the following night (Figure 12B; time points 2 and 3). Furthermore, content 

of CK free bases was elevated up to three-fold in PL plants compared to control plants at the end of 

PLP and in the middle and at the end of the following night (Figure 12C; time points 2, 3 and 4). A similar 

pattern could be observed for the content of CK ribosides. Here, an increase in PL plants compared to 

control plants was measured already during PLP and at the end of the night following PLP treatment, 

0.25 pmol CK ribosides/g FW were measured in PL plants, which reflected a three-fold increase 

compared to control plants (Figure 12D, time points 1 and 4). Moreover, cytokinin nucleotides were 

increased two-fold in PL plants compared to control after 16 h of additional light (Figure 12E; time point 

1). Nucleotide content stayed elevated in PL plants in comparison to control plants until the end of the 

night following PLP (time points 2 and 3). While concentrations of total cytokinin N-glucosides did not 

differ between control and PL, O-glucoside content was elevated 20 - 30 % in PL samples compared to 

control in the middle and the end of the night following PLP (Figure 12F, G).  

The increase in free bases, nucleosides, nucleotides and O-glucosides was reflected by the 

concentrations of iP- and tZ-type cytokinin metabolites respectively. With 0.234 pmol/g FW, iP content 

was elevated the most (three-fold) in PL compared to control at the end of the night following treatment 

(Table 25; time point 4). In response to exposure to PLP, iPR content was increased directly after 

treatment and further increased until the end of the following night (Table 25; time points 2 to 4). The 

biggest difference in cytokinin content between stressed and control plants was detected for iPRMP, as 

its content was elevated more than four-fold already during PLP-treatment (Table 25; time point 1). 

Similar to the regulation of iP-type cytokinin content, an increased tZ, tZR and tZRMP content could be 

detected at several time points throughout photoperiod stress treatment (Table 26). Strikingly, tZRMP 

content was decreased by 25 % in PL plants compared to control plants the day after experiencing 

photoperiod stress (Table 26; time point 5). During the night after the PLP, the content of tZ-type O-

glucosides was elevated as much as 40 % in PL plants (Table 26; time points 3 and 4).  
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Figure 12: Photoperiod stress causes an increased cytokinin content in wild-type plants. 
(A) Schematic overview of sampling time points (grey arrows) for CK measurements. Five-week-old wild-type plants 
were either cultivated under SD conditions (control) or were treated with a prolonged light period (PLP) of 32 h (PL). 
(B - G) Content of total CK (B), CK free bases (C), CK ribosides (D) CK nucleotides (E), CK O-glucosides (F) and 
CK N-glucosides (G) in control (black bars) and PL samples (white bars) at the time points depicted in A. Stars 
indicate a statistically a significant difference between PL and respective control samples at the given time point (1 
- 5) in a paired Student's t-test (p ≤ 0.05). Error bars indicate SD (n = 5). 

 

Similar tendencies were also detected for DHZ-type cytokinins (Supplemental Table 1). In contrast, the 

concentrations of cZR and cZRMP were decreased in PL plants during PLP-treatment but were elevated 
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up to eightfold at the end of the following night and nearly tenfold 16 hours later (Supplemental Table 2; 

time points 1, 4 and 5). 

 

Table 25: iP-type cytokinin content in control and PL plants at the time points depicted in Figure 12A. 
Bold numbers indicate a statistically significant difference in PL samples versus the controls under each sampling 
time point (1 - 5) in a paired Student's t-test. Values indicate pmol/g FW ± SD. 

Condition 
Total iP-

types iP iPR iPRMP iP7G iP9G 

control 1 29.4 ± 1.3 0.090 ± 0.027 0.24 ± 0.06 5.13 ± 0.74 22.04 ± 1.25 1.90 ± 0.11 
PL 1 48.1 ± 4.1 0.103 ± 0.021 0.75 ± 0.11 21.61 ± 1.81 23.56 ± 2.89 2.10 ± 0.25 

control 2 33.1 ± 2.0 0.078 ± 0.024 0.40 ± 0.10 10.86 ± 1.77 20.03 ± 0.74 1.70 ± 0.04 
PL 2 44.7 ± 2.6 0.161 ± 0.034 0.87 ± 0.10 20.66 ± 1.46 21.10 ± 1.31 1.91 ± 0.19 

control 3 36.8 ± 2.9 0.115 ± 0.018 0.51 ± 0.05 10.98 ± 1.02 23.19 ± 1.66 2.01 ± 0.22 
PL 3 41.4 ± 3.1 0.193 ± 0.056 0.61 ± 0.13 14.69 ± 3.15 23.91 ± 0.85 2.04 ± 0.07 

control 4 28.0 ± 1.8 0.074 ± 0.022 0.27 ± 0.05 5.27 ± 1.22 20.64 ± 0.58 1.78 ± 0.11 

PL 4 34.5 ± 3.6 0.234 ± 0.059 1.11 ± 0.25 6.56 ± 1.97 24.65 ± 1.92 1.96 ± 0.18 

control 5 38.0 ± 0.6 0.063 ± 0.014 0.56 ± 0.16 14.44 ± 1.19 21.19 ± 0.98 1.76 ± 0.10 
PL 5 33.1 ± 5.9 0.059 ± 0.019 0.54 ± 0.17 10.32 ± 2.84 20.59 ± 2.74 1.58 ± 0.23 

 

To sum up, the content of all types of cytokinin changed upon photoperiod stress treatment and more 

importantly led to an increase of the bioactive cytokinins iP and tZ as well as their transport forms and 

precursors. 

 

Table 26: tZ-type cytokinin content in control and PL plants at the time points depicted in Figure 12A. 
Bold numbers indicate a statistically significant difference in PL samples versus the controls under each sampling 
time point (1 - 5) in a paired Student's t-test. Values indicate pmol/g FW ± SD. 

Condition 
Total tZ-

types tZ tZR tZRMP tZOG tZROG tZ7G tZ9G 

control 1 132.1 ± 4.9 0.009 ± 0.003 1.67 ± 0.19 8.11 ± 1.20 6.77 ± 0.43 1.10 ± 0.05 87.53 ± 3.94 26.97 ± 0.60 
PL 1 129.3 ± 11.5 0.009 ± 0.002 3.03 ± 0.53 13.25 ± 3.13 6.47 ± 0.49 1.08 ± 0.11 81.79 ± 6.96 23.71 ± 2.26 

control 2 113.6 ± 8.9 0.007 ± 0.001 2.43 ± 0.43 7.56 ± 1.65 5.64 ± 0.31 0.98 ± 0.08 74.79 ± 5.97 22.16 ± 1.99 
PL 2 124.7 ± 3.7 0.010 ± 0.002 3.51 ± 0.77 11.89 ± 2.17 6.02 ± 0.24 1.06 ± 0.05 79.45 ± 2.35 22.78 ± 0.76 

control 3 113.4 ± 3.2 0.003 ± 0.001 2.90 ± 0.90 6.01 ± 0.31 5.37 ± 0.17 0.90 ± 0.04 77.34 ± 2.45 20.82 ± 1.05 
PL 3 116.3 ± 1.5 0.006 ± 0.001 4.04 ± 0.89 8.88 ± 1.75 5.88 ± 0.26 1.24 ± 0.09 76.07 ± 2.10 20.23 ± 0.73 

control 4 116.5 ± 10.5 0.006 ± 0.001 1.90 ± 0.24 6.04 ± 1.13 5.52 ± 0.46 1.05 ± 0.08 79.79 ± 6.84 22.18 ± 2.32 
PL 4 126.1 ± 12.3 0.007 ± 0.001 3.36 ± 0.78 4.83 ± 1.25 6.42 ± 0.61 1.46 ± 0.17 85.25 ± 8.16 24.80 ± 2.21 

control 5 110.3 ± 4.4 0.004 ± 0.001 2.59 ± 0.47 7.85 ± 1.61 5.52 ± 0.16 0.93 ± 0.04 73.74 ± 1.31 19.62 ± 1.60 
PL 5 92.7 ± 10.6 0.003 ± 0.001 2.73 ± 0.46 3.98 ± 0.91 4.67 ± 0.57 0.90 ± 0.15 63.65 ± 6.76 16.82 ± 2.49 

 

 

3.1.2 Transcript levels of genes involved in cytokinin metabolism, transport and 
signaling change upon photoperiod stress 

 

To elucidate which genes might be involved in coping with photoperiod stress, Dr. Anne Cortleven and 

I collected wild-type and ahk2ahk3 leaf samples of control and stressed (PL) plants during the night 

following PLP (0 h, 4 h, 6 h, 12 h). These samples were sent in for RNAseq analysis to get an overview 

over the whole transcriptional response in both genotypes. Analysis of RNAseq raw data and statistical 

analysis was performed by Dr. Anne Cortleven and for this thesis, I filtered results specifically for certain 

gene families, specifically.  

In the night following the prolonged light period of 32 h, several ARRs were differentially regulated in 

wild type but even more pronounced in photoperiod stress sensitive plants (Nitschke, 2014; Nitschke et 

al., 2016). To get further insights into the cytokinin-related transcriptome, transcript abundances of 
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cytokinin metabolism, transport and signaling genes were extracted from RNAseq data. In comparison 

to wild type control, the transcript abundance of LOG7 was increased at all investigated time points in 

ahk2ahk3 control (Figure 13B). 

 

 

Figure 13: Expression of cytokinin synthesis and metabolism genes during photoperiod stress in wild type 
and ahk2ahk3. 
(A) Simplified scheme of cytokinin metabolism in Arabidopsis. As a first step of synthesis, isopentenyl adenine (iP) 
nucleotides are formed by ISOPENTENYLTRANSFERASE (IPT) enzymes. Conversion to the respective trans-
zeatin (tZ)-nucleotides (tZ-n) is catalyzed by CYTOCHROME P450 MONOOXYGENASEs (CYP735As). In addition, 
cis-zeatin (cZ)-type CKs are formed by the tRNA-IPTs IPT2 and IPT9. iP riboside monophosphate (iPRP), tZ 
riboside monophosphate (tZRP) and cZ riboside monophosphate (cZRP) can be directly converted to biologically 
active free bases (green) by LONELY GUY (LOG) enzymes (blue arrows). Irreversible inactivation of all metabolites 
is catalyzed by CYTOKININ OXIDASES/DEHYDROGENASE (CKX) and URIDINE DIPHOSPHATE 
GLYCOSYLTRANSFERASE76C (UGT76C) enzymes. Furthermore, O-glucosylation of zeatin-type free bases and 
ribosides is catalyzed by UGT73Cs and UGT85A1 and displays a reversible inactivation step (orange items). (B) 
Transcript levels 0, 4, 6 and 12 hours after the PLP in either PL plants or control plants of wild type and ahk2ahk3. 
Stars indicate a significant difference between groups at the given time point after Bonferroni correction (p ≤ 0.05; 
n = 3). 

 

Furthermore, CKX4 and CKX5 abundances were decreased 4 h after nightfall. UGT76C2 abundance 

was reduced at all time points investigated, while the abundance of UGT85A1 was increased sixfold 12 

h after nightfall. Upon photoperiod stress treatment, transcriptional changes were similarly induced in 

both genotypes. Most strikingly, the abundance of genes involved in O-glucosylation of zeatin-type 

cytokinins was strongly enhanced (up to 1000-fold) compared to their respective controls 6 and 12 h 

after the PLP. Direct comparison between ahk2ahk3 and wild type PL revealed that 12 h after the PLP, 

the abundance of IPT3, IPT9, LOG1, CKX5-7 and UGT76C1 was reduced in ahk2ahk3. 

Next, abundances of genes known to be involved in cytokinin transport in the leaf were analyzed. Except 

for the reduced abundance of PUP1 in ahk2ahk3 12 h after nightfall, no alterations were found between 

controls of ahk2ahk3 and wild type (Figure 14B) 
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Figure 14: Expression of cytokinin transporter genes during photoperiod stress in wild type and ahk2ahk3. 
(A) Schematic view over cytokinin transport. EQUILIBRATIVE NUCLEOSIDE TRANSPORTER (ENT) proteins 
translocate cytokinin ribosides. Plasma membrane-localized PURINE PERMEASE (PUP) symporters are involved 
in H+-dependent transport of cytokinin free bases like iP or tZ. Modified after Kudo et al. (2010). (B) Transcript levels 
0, 4, 6 and 12 hours after the PLP in either PL plants or control plants of wild type and ahk2ahk3. Stars indicate a 
significant difference between groups at the given time point after Bonferroni correction (p ≤ 0.05; n = 3). 

 

Photoperiod stress treatment led to several changes in transcript abundance in both genotypes. First, 

both genotypes responded to the applied PLP with an increased abundance of ENT6 and PUP14 

compared to respective controls, which was most pronounced 4 and 6 h after the PLP. Moreover, PUP1 

and PUP2 transcript abundance was reduced more than threefold in ahk2ahk3 PL compared to its 

control 6 h after the PLP. Lastly, PUP1 abundance was reduced in ahk2ahk3 PL plants compared to 

wild-type PL plants as early as 4 h after the PLP-treatment, while that of PUP14 was increased 2.8-fold.  

Expression analysis of genes involved in cytokinin signaling proved that the sent in samples belonged 

to the respective genotypes as AHK2 and AHK3 expression was strongly reduced in ahk2ahk3 control 

plants compared to wild type (Figure 15B). In addition, the transcript abundance of AHK4 as well as of 

several type-A ARRs (ARR4-7, ARR15 and ARR16) was reduced in ahk2ahk3, mostly 4, 6 and 12 h 

after nightfall but the abundance of AHPs and type-B ARRs was not altered. Further changes in 

transcript abundance were induced with application of photoperiod stress in both genotypes. In 

comparison to their respective controls, AHP1 and AHP5 were more abundant in PL samples 6 h after 

treatment. Moreover, the abundance of type-A ARR6 to ARR9 and ARR16 was reduced as much as 

nine-fold in ahk2ahk3 PL and wild type PL 12 h after the exposure to a PLP. Differences in the 

abundance of type-B ARRs were only detected in ahk2ahk3 PL compared to its respective controls. 

Here, ARR1, ARR11 and ARR14 were less abundant as early as 4 h after the PLP-treatment, while 

ARR18 was over eleven-fold more abundant in 12 h after the PLP-treatment. In ahk2ahk3 PL plants 

compared to wild-type PL plants, all AHK and most type-A ARR transcripts were less abundant at nearly 

all time points investigated. The biggest difference was detected for ARR15, which was over 80 times 

less abundant in ahk2ahk3 PL plants. 

Summing up, both wild type and ahk2ahk3 modulated the transcript abundance of genes involved in 

cytokinin synthesis, metabolism, transport and signaling in response to the exposure to photoperiod 

stress with ahk2ahk3 being similarly more responsive. 
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Figure 15: Expression of cytokinin signaling genes during photoperiod stress in wild type and ahk2ahk3. 
(A) Simplified scheme of cytokinin signaling in Arabidopsis. Bioactive cytokinins (CK, green) bind to ARABIDOPSIS 
HISTIDINE KINASE (AHK) receptors thereby initiating phosphorylation cascade. The phosphorylation signal is 
transduced by ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEINs (AHPs) and is ultimately given to 
type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs). AHP6 competes with other AHPs for phosphorylation 
but does not phosphorylate type-B ARRs. Activated type-B ARRs transcriptionally regulate output genes. Among 
them are type-A ARRs, which act as negative feedback regulators as they compete with type-B ARRs for 
phosphorylation but are unable to bind DNA. (B) Transcript levels 0, 4, 6 and 12 hours after the PLP in either PL 
plants or control plants of wild type and ahk2ahk3. Stars indicate a significant difference between groups at the 
given time point after Bonferroni correction (p ≤ 0.05; n = 3). 

 

3.1.3 Root-derived tZ-type cytokinins protect plants from photoperiod stress 
 

Stressed wild-type plants regulated the concentrations of both functionally relevant cytokinins - iP and 

tZ. To decipher which of these two forms might be protective against photoperiod stress, the involvement 

of tZ-type cytokinins was investigated by exposing mutants that are impaired in either the biosynthesis 

of tZ-type cytokinins (cypDM; Kiba et al., 2013) or their transport from the root to the shoot (abcg14-2; 

Ko et al., 2014) to photoperiod stress. 

Over 80 % of cypDM and abcg14 leaves were lesioned after photoperiod stress treatment, which 

reflected a four-fold increase compared to wild-type plants (Figure 16B). Furthermore, photoperiod 

stress caused a drop in Fv/Fm of over 50 percent in these mutants compared to wild type (Figure 16C). 

At the molecular level, cypDM leaves accumulated six times more H2O2 than wild type (Figure 16D) and 

7.5 and 15 hours after the PLP-treatment, abundances of stress marker genes BAP1 and ZAT12 were 

increased two- to threefold in cypDM and abcg14 (Figure 16E, F). The abundance of CAB2 on the other 

hand was markedly decreased in both mutants compared to wild type (Figure 16G). Summing up, these 

results support a protective function of root-derived tZ-type cytokinins against photoperiod stress. 
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Figure 16: Plants deficient in tZ-type cytokinins are strongly affected by photoperiod stress. 
(A) Schematic overview of photoperiod stress treatment. Time points for quantification of lesion formation, PAM 
measurements as well as sample taking for gene expression analysis and H2O2 measurements are depicted. (B) 
Lesion formation of leaves at five-week-old Col-0, cypDM and abcg14 plants the day after the PCD-inducing night 
(n = 15). (C) PAM measurements of leaves the day after PCD-inducing night (n = 15). (D) H2O2 measurements of 
Col-0 and cypDM 15 h after the PLP treatment (n = 4). (E - G) Expression of marker genes (BAP1, ZAT12, CAB2) 
0 h, 7.5 h and 15 h after the PLP (n ≥ 3). (H) Pictures of representative plants that experienced a PLP. Letters 
indicate significant differences between groups (p ≤ 0.05). Error bars indicate SE. 
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3.1.4 Watering of cypDM plants with either tZ or tZR reduces the sensitivity to 
photoperiod stress 

 

Recent studies by Osugi et al., 2017 demonstrated that under long-day conditions, root-derived tZ has 

distinct functions in the shoot (e.g. in regulating the size of leaves or the SAM) compared to root-derived 

tZR that is converted to tZ later. In order to dissect the role of root-derived tZ and tZR in photoperiod 

stress, we watered cypDM plants with either 10 µM tZ or 10 µM tZR daily during the whole cultivation 

period and exposed them to photoperiod stress. 

tZR application reduced lesion formation about 10 % compared to untreated cypDM plants (Figure 17A). 

In addition, the decrease in photosynthetic capacity of tZR-treated plants was lower compared to 

untreated cypDM controls. These results indicate that tZR might render plants less sensitive to 

photoperiod stress. Watering plants with tZ suppressed the photoperiod stress syndrome almost 

completely showing that the transport of tZ from the root to the shoot protects plants during photoperiod 

stress (Figure 17B). At the molecular level, treatment with either tZR or tZ reduced the photoperiod 

stress-induced misregulation of stress marker genes 15 h after the PLP (Figure 17C-E). Furthermore, 

the twofold decrease in the abundance of cytokinin response genes ARR5 and ARR6 in control cypDM 

plants compared to wild type was abolished by application of tZR and tZ (Figure 17F-G).  

In summary, watering experiments indicated that lesion formation, the decrease in photosynthetic 

capacity and the transcriptional response can be rescued nearly completely by tZ while tZR was able to 

fully rescue the stress response at the transcriptional level as well as the deregulation of cytokinin 

response genes. However, the phenotypic changes upon photoperiod stress treatment were not fully 

rescued by tZR. 
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Figure 17: Pretreatment of cytokinin-deficient plants with tZ-type cytokinins for five weeks reduces the 
damage caused by photoperiod stress. 
(A) Percentage of lesion formation in five-week-old short day-grown plants the day after the PCD-inducing night (n 
= 12). (B) Photosystem II maximum quantum efficiency (Fv/Fm) of leaves evaluated in A (n = 15). (C - E) Expression 
of marker genes (BAP1, ZAT12, CAB2) 0 h and 15 h after the PLP treatment (n ≥ 3). (F, G) Expression of cytokinin 
output genes (ARR5, ARR6) 0 h after the PLP treatment (n ≥ 3). (H) Pictures of representative plants tested after 
the PLP-treatment. Abbreviations: D, DMSO; tZ, trans-zeatin (10 µM); tZR, trans-zeatin-riboside (10 µM). Letters 
indicate significant differences between groups (p ≤ 0.05). Error bars indicate SE. 
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3.1.5 Impairment in synthesis of bioactive cytokinins does not increase photoperiod 
stress sensitivity 

 

In Arabidopsis, the conversion of inactive iP- and tZ-type cytokinins to their active forms is catalyzed via 

a nine-member family of LOG enzymes of which seven are functionally relevant (Kuroha et al., 2009). 

To demonstrate the necessity for plants to form bioactive tZ as a protectant against photoperiod stress, 

the log septuple (logS) mutant (Tokunaga et al., 2012) was tested. 20 % of leaves were lesioned in logS 

as well as wild-type plants after photoperiod stress (Figure 18A).  

 

 

Figure 18: Plants deficient in bioactive cytokinins are less affected by photoperiod stress. 
(A) Quantification of lesioned leaves at five-week-old Col-0 and log septuple mutant (logS) plants the day after 
PCD-inducing night (n = 15). (B) Fv/Fm measurements of leaves the day after PCD-inducing night (n = 15). (C) 
Pictures of representative plants that experienced a PLP. (D - F) Expression of marker genes (BAP1, ZAT12, CAB2) 
0 h, 7.5 h and 15 h after the PLP-treatment (n ≥ 3). Letters indicate significant differences between groups (p ≤ 
0.05). Error bars indicate SE. 

 

Consistently, no decrease in photosynthetic capacity was observed in logS (Figure 18B). At the 

transciptional level, logS plants showed no differences to wild type plants or performed even better 

(Figure 18B-E). All in all, a lack of free base cytokinins in logS plants had no effect on the sensitivity to 

photoperiod stress. 
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In Arabidopsis, AHK receptors transduce the cytokinin signal to AHPs via phosphorylation and 

phosphorylated AHPs activate type-B ARRs. Although AHPs are involved in several developmental 

processes and responses to stress (Hutchison et al., 2006), their role during photoperiod stress has not 

been investigated so far. Thus ahp2ahp3ahp5 triple mutants as well as the corresponding double 
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mutants (Hutchison et al., 2006) were exposed to photoperiod stress. 25 % of leaves were lesioned in 

wild-type plants, while 50 % were lesioned in ahp2ahp3 and ahp2ahp3ahp5 (Figure 19A). 

 

 

Figure 19: AHP2, AHP3 and AHP5 act redundantly during photoperiod stress. 
(A) Lesion formation in five-week-old Col-0, ahp2ahp3 (ahp2,3), ahp2ahp5 (ahp2,5), ahp3ahp5 (ahp3,5) and 
ahp2ahp3ahp5 (ahp2,3,5) plants the day after PCD-inducing night (n = 15). (B) Fv/Fm measurements of leaves the 
day after PCD-inducing night (n = 15). (C - E) Expression of marker genes (BAP1, ZAT12, CAB2) 0 h, 7.5 h and 15 
h after the PLP-treatment. (F) Pictures of representative plants that experienced a PLP. Letters indicate significant 
differences between groups (p ≤ 0.05; n ≥ 3). Error bars indicate SE. 

 

Correspondingly, the photosynthetic capacity of ahp2ahp3ahp5 plants was decreased compared to all 

other genotypes (Figure 19B). A functional redundancy of AHPs was also reflected at the molecular 

level (Figure 19C-E). While the increase in BAP1 and ZAT12 abundance was apparent in all ahp double 

and triple mutants compared to wild type 15 hours after the PLP-treatment, the amplitude was highest 

in ahp2ahp3 and ahp2ahp3ahp5 (Figure 19C, D). Similar to the differential impact on BAP1 and ZAT12 

expression, a decrease of CAB2 transcript levels was more apparent in ahp2ahp3 and ahp2ahp3ahp5 

plants 15 hours after exposure to a PLP (Figure 19E). To sum up, AHPs act redundantly in photoperiod 

stress signaling with AHP2 and AHP3 having a more prominent role in comparison to AHP5. 
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3.1.7 Loss of ARR10 and ARR12 rescues photoperiod stress sensitivity of arr2 
mutants 

 

After phosphorylation by AHPs, type-B ARRs regulate the cytokinin signaling output. As demonstrated 

by Nitschke et al. (2016), three members of the type-B ARR family - namely ARR2, ARR10 and ARR12 

- act in photoperiod stress signaling. Their functional redundancy in this signaling pathway has, however, 

not been demonstrated. Characterization of the function of type-B ARRs hint at a complex genetic 

interaction in other developmental processes (Mason et al., 2005). Hence, arr2arr10arr12 triple mutants 

and corresponding double and single mutants (created by Dr. Sören Werner) were exposed to a 

prolonged light period. 

Consistent with the findings of Nitschke et al., (2016), 2.5-fold more leaves were lesioned in arr2 plants 

compared to wild-type plants after photoperiod stress treatment and arr10 and arr12 plants did not differ 

from wild type with respect to lesion formation (Figure 20A). Surprisingly, arr2,10 and arr2arr12 plants 

were also indistinguishable from wild type and lesion formation in arr2arr10arr12 plants was increased 

four-fold compared to respective double mutants and wild-type plants. This indicated that ARR2, ARR10 

and ARR12 may interact in regulating the response to photoperiod stress. Measurement of the 

photosynthetic capacity confirmed that arr2 leaves were more affected by the given prolonged light 

period compared to all other genotypes except for arr2arr10arr12, which were similarly affected (Figure 

20B). At the molecular level, the response of the different arr mutants varied (Figure 20C-E). While the 

abundances of BAP1 and ZAT12 did not give clear indications whether tested mutants differed in their 

photoperiod stress response (Figure 20C, D), CAB2 abundance in arr2 and arr2arr10arr12 decreased 

considerably compared to all other genotypes 15 hours after the PLP (Figure 20E). Confirmative to the 

observed phenotypical differences, CAB2 abundance in arr2arr10 and arr2arr12 was similarly regulated 

as in wild type at all time points and its abundance was increased compared to wild type in arr10,12 7.5 

and 15 hours after the PLP.  

Summing up, the results confirm the previously described positive regulatory function of ARR2 in 

photoperiod stress and additionally demonstrate that ARR10 and ARR12 act in a more complex manner 

than previously described. 
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Figure 20: Loss of ARR10 or ARR12 rescues the arr2 photoperiod stress phenotype. 
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Lesion formation in five-week-old Col-0, arr2, arr10, arr12, arr2arr10 (arr2,10), arr2arr12 (arr2,12), arr10arr12 
(arr10,12) and arr2arr10arr12 (arr2,10,12) plants the day after the PCD-inducing night (n = 15). (B) Fv/Fm 
measurements of leaves the day after PCD-inducing night (n = 15). (C - E) Expression of marker genes (BAP1, 
ZAT12, CAB2) 0 h, 7.5 h and 15 h after the PLP-treatment. (F) Pictures of representative plants that experienced 
a PLP. Letters indicate significant differences between groups (p ≤ 0.05; n ≥ 3). Error bars indicate SE. 

 

 

3.2 The sensitivity to photoperiod stress is tissue- and age-specific 
 

3.2.1 Leaves of the same plant differ in their photoperiod stress responsiveness 
 

As described in Nitschke (2014), not all leaves were equally sensitive to photoperiod stress. Mature, 

fully expanded leaves were highly responsive to photoperiod stress while young, still growing leaves did 

respond much less, both in wild type and ahk2ahk3. As a first approach to understanding the mechanism 

behind this observation further, the photoperiod stress sensitivity of distinct leaves was evaluated in the 

same genotypes as mentioned previously. Leaf one to leaf four were already senescent or dead in most 

plants before the actual treatment and therefore excluded from analysis. 40 % of all wild-type and 

ahk2ahk3 plants had a fifth leaf that was lesioned after experiencing photoperiod stress (Figure 21B). 

From leaf five to leaf eight, wild type and ahk2ahk3 did not differ in lesion formation. Starting from leaf 

9, differences were observed as 20 % of wild-type leaves nine to twelve were lesioned and 90 % of 

ahk2ahk3. No lesions were formed by leaves 13 and 14 of wild-type plants. The photosynthetic capacity 

of the tested leaves was more affected in ahk2ahk3, especially between leaves seven and 13 (Figure 

21C). 

Representative of these observations on the phenotypical level, leaves six, eight, ten and twelve were 

chosen for the expression analysis of marker genes. 18 hours after the PLP-treatment, BAP1 expression 

was increased in all ahk2ahk3 leaves compared to wild type except for leaf eight (Figure 21D). In 

comparison to that, the abundance of ZAT12 was not altered in leaves six to ten, but was increased 20-

fold in leaf twelve of ahk2ahk3 compared to that of wild type (Figure 21E). In support of the observed 

reduction of the photosynthetic capacity in ahk2ahk3 compared to wild type, the abundance of CAB2 

was reduced more than 80-fold in ahk2ahk3 leaves compared to the respective wild-type leaves (Figure 

21E). 

Summing up, sensitivity to photoperiod stress was highest in ahk2ahk3 leaves nine to twelve. The same 

leaves of wild-type plants were the ones in which the sensitivity slowly decreased until in leaf 13 and 14, 

lesion formation and a reduction of the photosynthetic capacity were absent. 
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Figure 21: Distinct leaves of an Arabidopsis rosette differ in their photoperiod stress sensitivity. 
(A) Schematic overview of photoperiod stress treatment. Time points for quantification of lesion formation, PAM 
measurements (both white arrows) as well as sampling for gene expression analysis (grey arrows) are depicted. 
(B) Lesion formation of leaves six to 14 in five-week-old Col-0 (black bars) and ahk2ahk3 plants (white bars) the 
day after PCD-inducing night (n = 12). # indicates that no leaves were lesioned (C) PAM measurements of leaves 
six to 14 the day after PCD-inducing night (n = 12). (D - F) Expression of marker genes (BAP1, ZAT12, CAB2) 0 h 
and 18 h after the PLP-treatment (n ≥ 3) relative to leaf six of Col-0 at 0 h. Letters indicate significant differences 

between groups (p ≤ 0.05). Error bars indicate SE. 

 

3.2.2 The leaf identity does not influence the response to photoperiod stress 
 

Because mature leaves were more sensitive to photoperiod stress, further experiments were conducted 

to clarify which developmental program might be involved in modulating the sensitivity to photoperiod 

stress. Two cytokinin-dependent developmental programs were considered. Firstly, the juvenile-to-adult 

transition and secondly, leaf and plant aging itself.  

Previously, it was reported that tZ-type cytokinins negatively regulate the formation of juvenile leaves by 

regulating the miRNA172 abundance (Kiba et al., 2013; Werner, 2016). In agreement with these reports, 

formation of juvenile leaves was increased in ahk2ahk3. The receptor double mutant formed eleven 

juvenile leaves on average while wild type formed seven (Figure 22A). Moreover, MIRNA172 were less 

abundant in ahk2ahk3 compared to wild type, while the abundance of MIRNA156 did not differ (Figure 

22B - D). The influence of the leaf identity was further analyzed by using plants that form more juvenile 
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leaves as they have altered miRNA156 and miRNA172 levels. While lesion formation was not altered in 

35S::MIRNA156B, 1.75-fold more leaves of 35S::MIM172 were lesioned compared to wild type in 

response to photoperiod stress (Figure 22E). However, Fv/Fm values did not differ between the 

genotypes (Figure 22F). 

All in all, results indicate that the increased formation of juvenile leaves in ahk2ahk3 is not causative for 

its increased sensitivity to photoperiod stress as 35S::MIRNA156B and 35S::MIM172 only showed minor 

phenotypic alterations upon exposure to photoperiod stress. 

 

 

Figure 22: The responsiveness to photoperiod stress does not depend on the leaf identity. 
(A) Number of juvenile leaves in five-week-old short day-grown Col-0 and ahk2ahk3 plants (n = 12). (B, C) Transcript 
abundance of MIRNA156 (B) and MIRNA172 (C) in Col-0 (black bars) and ahk2ahk3 (white bars) (n ≥ 3). (D) Ratio 
between MIRNA156 and MIRNA172 based on the results in B and C. (E) Lesion formation of five-week-old Col-0, 
35S::MIRNA156B (MIR156) and 35S::MIM172 (MIM172) the day after the PCD-inducing night (n ≥ 15). (F) PAM 
measurements of leaves the day after PCD-inducing night (n = 15). (G) Pictures of representative plants from 
experiments depicted in E and F. Letters indicate significant differences between groups (p ≤ 0.05). Error bars 
indicate SE. 
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3.2.3 The sensitivity to photoperiod stress is age-dependent 
 

Since the identity of leaves was of minor importance for the sensitivity to photoperiod stress, it was 

evaluated whether and how the age of the whole plant and of specific leaves correlated with the 

photoperiod stress responsiveness. Three-, four- and five-week-old wild-type and ahk2ahk3 plants were 

exposed to a PLP. Whereas the plant age did not affect lesion formation of wild type, 20 % of leaves 

were lesioned in three-week-old ahk2ahk3 plants and 50 % in four- and five-week-old plants (Figure 

23A). However, Fv/Fm ratios did not differ between leaves of both genotypes independent of plant age 

(Figure 23B). 

At the molecular level, BAP1, ZAT12 and CAB2 transcript abundance indicated that plants of all ages 

were photoperiod stress responsive (Figure 23E - G). 15 hours after the PLP, BAP1 abundance was 

increased by 50 % in three-week-old ahk2ahk3 compared to wild-type plants of the same age (Figure 

15E). A similar expression pattern was observed for five-week-old plants of both genotypes. The highest 

abundance of BAP1 was detected in five-week-old ahk2ahk3 plants, which was 50 % higher than in 

wild-type plants of the same age. Simultaneously, this abundance displayed also a 50 % increase 

compared to three- and four-week-old ahk2ahk3. ZAT12 expression was similarly induced by 

photoperiod stress. Here, the transcript abundance was twofold higher in four- and five-week-old 

ahk2ahk3 compared to respective wild-type plants 15 hours after nightfall (Figure 23F). Furthermore, 

photoperiod stress led to a decrease in CAB2 abundance in both genotypes independent of age (Figure 

23G). However, 15 hours after experiencing a PLP, the abundance was decreased more than 20-fold 

in five-week-old ahk2ahk3 plants compared to all other groups tested. 

As the results indicated that the responsiveness to photoperiod stress was at least partially plant age-

dependent, further experiments evaluated whether the age of specific leaves was also important. Here, 

leaf eight was chosen as it was one of the leaves that were very responsive to photoperiod stress in 

five-week-old wild type and ahk2ahk3. Leaf eight was formed shortly before plants were three weeks 

old and thus, leaf areas were determined as a measure of leaf maturity in three-, four- and five-week-

old plants. Within the fourth week of growth, area of leaf eight in wild type plants increased tenfold 

(Figure 24A) 
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Figure 23:The responsiveness to photoperiod stress depends on the plant age. 
(A) Schematic overview of photoperiod stress treatment. Time points for quantification of lesion formation, PAM 
measurements as well as sample taking for gene expression analysis are depicted. (B) Lesion formation in leaves 
of three-, four- and five-week-old Col-0 and ahk2ahk3 plants the day after PCD-inducing night (n = 15). (C) PAM 
measurements of leaves the day after PCD-inducing night (n = 15). (D) Pictures of representative plants tested. (E 
- G) Expression of marker genes (BAP1, ZAT12, CAB2) 0 h and 15 h after the PLP-treatment. Letters indicate 

significant differences between groups (p ≤ 0.05; n ≥ 3). Error bars indicate SE. 
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Compared to that, growth of leaf eight was reduced in ahk2ahk3 as the increase in leaf area between 

week three and four was only six-fold. After week four, leaf eight did not grow significantly further in both 

genotypes. However, leaf eight was about five times bigger in wild type compared to ahk2ahk3. 

After exposure to photoperiod stress, lesion formation was absent in leaf eight of three-week-old wild-

type and ahk2ahk3 plants (Figure 24B). With age, the percentage of leaf eight lesion formation increased 

in both genotypes, but it increased earlier in ahk2ahk3. 20 % of four-week-old wild-type plants had an 

eighth leaf that was lesioned, whereas, in comparison, lesion formation was increased four-fold in 

ahk2ahk3. Moreover, the photosynthetic capacity was reduced significantly in leaf eight of four-week-

old ahk2ahk3 plants compared to wild type (Figure 24C). At the molecular level, H2O2 accumulated to a 

greater extend in leaf eight of five-week-old plants (Figure 24D). In agreement with lesion formation, 

about 35 times more H2O2 accumulated in leaf eight of four-week-old ahk2ahk3 plants compared to wild-

type of the same age. 

To sum up, the sensitivity of plants as well as of distinct leaves to photoperiod stress increased with age 

in both wild type and ahk2ahk3 and after four weeks of growth, ahk2ahk3 was already as sensitive to 

photoperiod stress as after five weeks. 

 

 

Figure 24: The responsiveness to photoperiod stress depends on the leaf age. 
(A) Areas of leaf eight of three-, four- and five-week-old SD-grown wild-type and ahk2ahk3 control plants (n = 10). 
(B) Percentage of leaf eight lesion formation in three-, four- and five-week-old plants the day after PCD-inducing 
night (n = 12). # indicates that no lesions were visible. (C) Photosystem II maximum quantum efficiency (Fv/Fm) of 
leaves evaluated in B (n = 12). (D) H2O2 levels in leaf eight of four- and five-week-old plants 15 h after the PLP-

treatment (n = 4). Letters indicate significant differences between groups (p ≤ 0.05). Error bars indicate SE. 
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3.2.4 Establishment of tissue-specific cytokinin decreases influences the sensitivity 
to photoperiod stress 

 

As shown in 3.1.3, root-derived tZ-type cytokinins are important to protect plants from photoperiod 

stress. To further elaborate which tissues are involved in determining the cytokinin-dependent sensitivity 

to photoperiod stress, plants were exposed to a PLP that have a reduced cytokinin content by 

overexpressing CKX1 under the constitutively active 35S promoter (Werner et al., 2003), the meristem-

specific WUSCHEL (WUS) promoter and the vasculature- and meristem-specific CLAVATA1 (CLV1) 

promoter (Otto, 2013). Moreover, lines overexpressing CKX1-4xMyc under the leaf epidermis-specific 

ARABIDOPSIS THALIANA MERISTEM LAYER (ATML) promoter (Werner, 2016) as well as under the 

vasculature(phloem)-specific SUCROSE-PROTON SYMPORTER2 (SUC2) promoter (created in this 

thesis, further information can be taken from Supplemental Figure 2) were exposed to photoperiod 

stress.  

Except for WUS::CKX1 #14, lesion formation was increased in all lines compared to wild type (Figure 

25A). 90 % of SUC2::CKX1-4xMyc #23 leaves were lesioned, which was four times more than in wild 

type and the highest lesion formation percentage of all lines tested. Similarly, all lines tested had a 

reduced Fv/Fm except for WUS::CKX1 #14 (Figure 25B). In agreement with the formation of lesions, 

the lowest Fv/Fm was detected in SUC2::CKX1-4xMyc #23. 

 

 

Figure 25: A tissue specific CKX1 overexpression results in an increased photoperiod stress sensitivity. 
(A) Lesion formation of five-week-old Col-0, 35S::CKX1 (35S), CLV1::CKX1-4xMyc (CLV1), SUC2::CKX1-4xMyc 
(SUC2), ATML::CKX1::4xMyc (ATML) and WUS::CKX1 (WUS) plants the day after the PLP (n ≥ 12). (B) PAM 
measurements of leaves the day after PCD-inducing night (n = 15). (C) Pictures of representative plants after 
photoperiod stress treatment. Letters indicate significant differences between groups (p ≤ 0.05). Error bars indicate 
SE. 
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All in all, overexpression of CKX1 in both the vasculature (SUC2 and CLV1 lines) and leaf epidermis 

(ATML lines) caused an increase in photoperiod stress sensitivity displayed by an increased lesion 

formation and reduced photosynthetic capacity. 

 

3.2.5 The responsiveness to photoperiod stress varies in different tissues 
 

As tZ-type cytokinins are mainly formed in root tissue, expression of photoperiod stress marker genes 

and of genes involved in cytokinin synthesis and metabolism was analyzed in wild type and ahk2ahk3. 

At the end of the PLP treatment, no differences in BAP1 and ZAT12 transcript abundance was detected 

between leaf and root tissue (Figure 26A, B). 15 hours after experiencing the prolonged light period, 

transcript levels of BAP1 and ZAT12 did not differ between both genotypes in roots whereas BAP1 (and 

in tendency ZAT12) abundance was increased threefold in ahk2ahk3 leaves compared to wild type. As 

a control of tissue purity, abundance of CAB2 was determined. While CAB2 expression was detected in 

leaf samples of both genotypes, CAB2 abundance was very low in root samples (Figure 26C). 

Moreover, the abundance of BAP1 and ZAT12 was not affected by photoperiod stress in roots of both 

genotypes compared to their respective control samples (Figure 26D, E). Similarly, the abundance of 

IPT3, CYP735A1, CYP735A2, ABCG14 and LOG8 was unaffected by photoperiod stress (Figure 26F – 

J). Summing up, the transcriptional response of wild type and ahk2ahk3 to photoperiod stress was 

different in roots and leaves. 
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Figure 26: Leaves and roots respond differently to photoperiod stress. 
(A - C) Expression of marker genes (BAP1, ZAT12, CAB2) 0 h and 15 h after the PLP-treatment in PL shoots and 
roots of ahk2ahk3 and wild type (Col-0). Expression of BAP1 (D), ZAT12 (E), IPT3 (F), CYP735A1 (G), CYP735A2 
(H), ABCG14 (I) and LOG8 (J) 0 h and 15 h after the PLP-treatment in control and PL roots of ahk2ahk3 and wild 
type. Letters indicate significant differences between groups (p ≤ 0.05; n ≥ 3). Error bars indicate SE. 
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3.3 Formation of photoperiod stress requires the perception of auxin and 
ethylene 

 

3.3.1 Photoperiod stress treatment increases content of free IAA in wild-type plants 
 

The contents of bioactive free IAA and its irreversibly inactivated derivatives oxIAA, IAA-Asp and IAA-

Glu were measured in the same leaf samples used for cytokinin measurements in section 3.1.1. During 

PLP-treatment (time points 1 and 2), PL plants and respective control plants did not differ in their IAA 

content (Figure 27B). 

As the night after the PLP-treatment progressed (time points 3 and 4), endogenous IAA content 

increased in PL plants compared to the respective controls. At the end of the night (time point 4), IAA 

content was increased two-fold. In comparison, oxIAA levels were unchanged at all time points (Figure 

27C)Figure 27. The most pronounced differences were detected for the content of IAA-Asp (Figure 27D). 

While it was decreased at the end of PLP-treatment (time point 2), it was increased 4.5-fold and 3.5-fold 

at the end of the night after the PLP-treatment and at the end of the following day, respectively. IAA-Glu 

levels were reduced directly after the PLP-treatment, in the middle of the night following the PLP and at 

the end of the following day (Figure 27E; time points 2, 3 and 5). All in all, contents of both bioactive IAA 

as well as its irreversibly inactivated derivative IAA-Asp increased due to exposure to a PLP followed by 

darkness. 
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Figure 27: Photoperiod stress causes an increased content of IAA and IAA-Asp in wild-type plants. 
(A) Schematic overview of sampling time points for IAA measurements. five-week-old wild type plants were either 
cultivated under SD conditions (control) or were treated with a prolonged light period (PLP) of 32 h (PL). (B - E) 
Content of free IAA (B), oxIAA (C), IAA-Asp (D) and IAA-Glu (E) in control samples and PL samples at the time 
points depicted in A. Stars indicate statistically a significant difference between PL and respective control samples 

at the given time point (1 - 5) in a paired Student's t-test (p ≤ 0.05). Error bars indicate SD (n ≥ 3).  

 

3.3.2 GH3 transcripts are more abundant in response to photoperiod stress 
 

To investigate whether changes in IAA and IAA-Asp content of wild-type plants are also reflected at the 

transcriptional level and whether photoperiod stress sensitive ahk2ahk3 plants respond differently, 

genes involved in auxin metabolism were analyzed via RNAseq and qRT-PCR during the night after the 

PLP-treatment (Figure 28). Except for TAA1, the abundance of all other genes was not significantly 

altered in ahk2ahk3 compared to wild type under control conditions (Figure 28B , see also Supplemental 

Figure 3A for the confirmation via qRT PCR). 
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Figure 28: Expression of auxin biosynthesis and metabolism genes during photoperiod stress in wild type 
and ahk2ahk3. 
(A) Schematic presentation of auxin biosynthesis and metabolism. First, TRYPTOPHAN AMIDOTRANSFERASE 
OF ARABIDOPSIS (TAA1) and TAA-RELATED (TAR) proteins convert tryptophan (Trp) to indole-3-pyruvic acid 
(IPA), which is converted to bioactive free IAA by YUCCA (YUC) proteins. IAA can be inactivated irreversibly to 2-
oxoindole-3-acetic acid (oxIAA) by DIOXYGENASE FOR AUXIN OXI-DATION (DAO) proteins or to either indole-
3-acetic acid aspartic acid (IAA-Asp) and indole-3-acetic acid glutamic acid (IAA-Glu) by GRETCHEN HAGEN3 
(GH3) proteins. GH3s also catalyze the reversible inactivation to other IAA-amino acid conjugates. Reversion of the 
reaction is catalyzed by IAA-ALANINE RESISTANT3 (IAR3), IAA-LEUCINE RESISTANT1 (ILR1) and IAA-
LEUCINE RESISTANT-LIKE (ILL) proteins. (B) Transcriptional regulation 0, 4, 6 and 12 hours after the PLP (PL 
plants) compared to respective control plants. Stars indicate a significant difference between groups (p ≤ 0.05; n = 
3). 

 

Most changes in transcript abundance were detected 6 and 12 hours after the PLP-treatment in both 

wild type and ahk2ahk3. The abundance of IAR3, GH3.2, GH3.3 and GH3.5 was increased 12 hours 

after the PLP-treatment in wild-type PL plants compared to control plants while the YUC6 and ILL1 

abundance was decreased 2.7-fold and 1.5-fold, respectively. A similar regulation could be observed in 

ahk2ahk3 PL plants compared to control plants. Most genes differently expressed in wild type were also 

differently expressed in ahk2ahk3 but already 4 and 6 hours after the PLP. Additionally, the abundance 

of YUC8, DAO1 and ILR1 was increased while the abundance of TAR2 and ILL2 was decreased 14-

fold and two-fold in ahk2ahk3 PL plants 12 hours after the PLP-treatment. Supportive for a stronger 

response of ahk2ahk3 to photoperiod stress were differences in the transcript abundance of most 

previously mentioned genes in ahk2ahk3 PL plants when compared to wild-type PL plants. 

Like the differential expression of auxin metabolism genes, the abundance of auxin signaling genes did 

not differ in control plants of wild type and ahk2ahk3 (Figure 29B). In wild type PL, the abundance of 

TIR1 and AFB5 was decreased twofold and 2.2-fold compared to control plants 12 hours after the PLP 

as well as the abundance of IAA8 and IAA12 and several ARF transcripts (confirmation of changes in 

TIR1 abundance can be found in Supplemental Figure 3B). In addition, IAA2, IAA10 and IAA19 were 

more abundant as well as ARF7. In comparison to ahk2ahk3 control, the abundance of the previously 

mentioned genes was also changed in ahk2ahk3 PL 12 hours after the PLP-treatment but more strongly 

(e.g. AFB5; WT PL vs control: twofold decreased, ahk2ahk3 PL vs control: ~eight-fold decreased). As 

seen for the expression of auxin metabolism genes, The abundance of these genes was different 
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between ahk2ahk3 PL and ahk2ahk3 control already 4 and 6 hours after the PLP and the difference 

was stronger 12 hours after the PLP. In addition, a changed abundance of several more AFB, IAA and 

ARF transcripts was detected. 

 

 

Figure 29: Expression of auxin signaling genes during photoperiod stress in wild type and ahk2ahk3. 
(A) Schematic presentation of auxin signaling. In absence of auxin (IAA), TRANSPORT INHIBITOR RESISTANT1 
(TIR1)/AUXIN SIGNALING F-BOX (AFB) receptors are inactive. Consequently, Aux/IAA proteins inhibit the function 
of class A, B and C AUXIN RESPONSE FACTOR (ARF) transcription factors. With perception of IAA by TIR1/AFB 
receptors, the latter inhibit Aux/IAA function by mediating their ubiquitin-dependent degradation. In consequence, 
class A ARFs act as transcriptional activators whereas class B and C ARFs mostly act as transcriptional repressors. 
(B) Transcriptional regulation 0, 4, 6 and 12 hours after the PLP (PL plants) compared to respective control plants. 
Stars indicate a significant difference between groups (p ≤ 0.05; n = 3). 
 

In comparison with wild-type PL plants, the transcript abundance of the previously mentioned genes 

was also changed in the same direction as in ahk2ahk3 PL plants, even though the differences were 

less pronounced. Summing up, the alterations in the abundance of auxin metabolism and signaling 

genes in response to photoperiod stress were more pronounced in ahk2ahk3 plants compared to wild 

type.  

 

3.3.3 Plants with an impaired auxin perception are less sensitive to photoperiod stress 
 

As many auxin metabolism and signaling genes were differently regulated, plants with an altered auxin 

status were exposed to photoperiod stress. With an increasing impairment in auxin perception, plants 

became less photoperiod stress sensitive (Figure 30). While ca. 25 % of wild-type leaves formed lesions, 

less than 10 % of tir1afb2afb3 leaves did (Figure 30A). Furthermore, all respective single mutants as 

well as tir1afb2 did not differ from wild type in their photoperiod stress sensitivity. Except for ahk2ahk3, 

no receptor mutant differed in its Fv/Fm from wild type (Figure 30B). 
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Figure 30: Plants impaired in auxin perception are less sensitive to photoperiod stress. 
(A) Lesion formation of leaves at five-week-old Col-0, ahk2ahk3, tir1, afb2, afb3, tir1afb2 and tir1afb2afb3 plants 
the day after the PCD-inducing night (n ≥ 12). (B) PAM measurements of leaves the day after PCD-inducing night 
(n = 15). (C) Pictures of representative plants that experienced a PLP. Letters indicate significant differences 
between groups (p ≤ 0.05). Error bars indicate SE. 

 

To further investigate an involvement of auxin in photoperiod stress, tir1afb2afb3 plants as well as plants 

with an increased auxin status were tested not only phenotypically but also at the molecular level. While 

tir1afb2afb3 plants were less sensitive to photoperiod stress, yuc1D plants, which have an increased 

auxin content, were more sensitive (Figure 31). In comparison to photoperiod sensitive ahk2ahk3 plants, 

formation of lesions was less pronounced in yuc1D but Fv/Fm was similarly affected (Figure 31A, B). 

Moreover, yuc1D plants formed more H2O2 in comparison to wild type but less than ahk2ahk3 (Figure 

31C). At the transcriptional level, the abundance of BAP1 and ZAT12 did not differ between stressed 

wild-type plants and tir1afb2afb3 0 and 15 hours after the PLP (Figure 31D, E). 15 hours after the PLP, 

both genes were more abundant in yuc1D but still less than in ahk2ahk3. CAB2 abundance decreased 

in wild type and yuc1D to a similar level 15 hours after the PLP (Figure 31F). In ahk2ahk3, its abundance 

was even further decreased to approximately a quarter of wild type level. Strikingly, no difference in 

abundance of CAB2 was detected in tir1afb2afb3 15 h after the PLP treatment compared to 0 h.  
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To sum up, plants with an elevated auxin status were more sensitive to photoperiod stress while plants 

with a reduced auxin status were less sensitive. 

 

 

Figure 31: Plants with an increased auxin status are more sensitive to photoperiod stress. 
(A) Lesion formation of leaves at five-week-old Col-0, ahk2ahk3, tir1afb2afb3 (tir1a2a3) and yuc1D plants the day 
after the PCD-inducing night (n = 15). (B) PAM measurements of leaves the day after PCD-inducing night (n = 15). 
(C) H2O2 measurements 15 h after the PLP-treatment (n = 4). (D - F) Expression of marker genes (BAP1, ZAT12, 
CAB2) 0 h and 15 h after the PLP-treatment (n ≥ 3). (G) Pictures of representative plants that experienced a PLP. 
Letters indicate significant differences between groups (p ≤ 0.05). Error bars indicate SE. 

 

3.3.4 Impairment in auxin perception reduces photoperiod stress sensitivity of 
cytokinin signaling mutants 

 

As impairment in auxin perception caused a reduction in photoperiod stress sensitivity and plants with 

an impaired cytokinin perception were more sensitive to photoperiod stress, a genetic interaction of both 

hormones was tested by generating crosses between ahk2ahk3 and tir1afb2afb3 and by exposing the 
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generated crosses to photoperiod stress. Compared to ahk2ahk3, lesion formation was ~ 50 % reduced 

in ahk2ahk3tir1afb2 plants but it was still six times higher than in tir1afb2afb3 (Figure 32A). 

 

 

Figure 32: An impairment of auxin perception in ahk2ahk3 decreases the sensitivity to photoperiod stress. 
(A) Lesion formation of leaves at five-week-old Col-0, ahk2ahk3, tir1afb2afb3(tir1a2a3) and ahk2ahk3tir1afb2 
(ahk2ahk3tir1a2) plants the day after the PCD-inducing night (n ≥ 10). (B) PAM measurements of leaves the day 
after PCD-inducing night (n = 15). (C) H2O2 measurements 15 h after the PLP-treatment (n = 4). (D) Pictures of 
representative plants that experienced a PLP. Letters indicate significant differences between groups (p ≤ 0.05). 
Error bars indicate SE. 

 

Moreover, ahk2ahk3 and ahk2ahk3tir1afb2 showed a similar drop in Fv/Fm after exposure to 

photoperiod stress (Figure 32B). The molecular response, reflected by the content of H2O2, was similar 

to the percentage of lesion formation, as in ahk2ahk3tir1afb2 less H2O2 was detected than in ahk2ahk3 

(Figure 32C). All in all, an impairment of auxin perception in ahk2ahk3 partially reduced the photoperiod 

stress responsiveness. 

 

3.3.5 The abundance of genes involved in ethylene synthesis is increased in plants in 
the night after exposure to a prolonged light period 

 

To examine whether and how ethylene is involved in the formation of photoperiod stress, transcriptional 

regulation of genes involved in ethylene metabolism was investigated in wild-type and ahk2ahk3 plants. 

Except for ACS6, which was 3.5-fold more abundant 12 hours after exposure to a PLP, no other 

transcripts differed in their abundance in ahk2ahk3 control plants compared to wild type at any time 

point (Figure 33B). 
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Figure 33: Expression of ethylene biosynthesis and metabolism genes during photoperiod stress in wild 
type and ahk2ahk3. 
(A) Schematic presentation of ethylene metabolism. First, SAM-SYNTHETASE (SAM) proteins convert methionine 
(Met) to S-adenosyl-L-methionine (S-AM), which is converted to 1-aminocyclopropane-1-carboxylic acid (ACC) by 
ACC-SYNTHASE (ACS) enzymes. ACC can be formed to either α-ketobutyrate (αKB) by ACC DEAMINASE1 
(ACD1) or γ-glutamyl-ACC (G-ACC) by γ-GLUTAMYL-TRANSPEPTIDASE (GGT) proteins. Ethylene itself (C=C) 
is synthesized from ACC by ACC-OXIDASE (ACO) enzymes. Please note that other ACC conjugates exist that are 
not depicted in this figure. (B) Transcript levels 0, 4, 6 and 12 hours after the PLP-treatment in either PL plants or 
control plants of wild type and ahk2ahk3. Stars indicate a significant difference between groups at the given time 

point after Bonferroni correction (p ≤ 0.05; n = 3). 

 

In wild-type PL plants, SAM1, ACS6, ACS7 and ACS8, ACO2 and ACO4 were more abundant compared 

to respective control plants mostly 12 hours after the PLP-treatment. The transcript abundance of ACS6 

was increased at all time points. In addition, GGT1 (12 hours after the PLP) and ACD1 (12 hours after 

the PLP-treatment) were less abundant. A similar - but mostly stronger - change in gene expression 

than in wild type was observed by comparing ahk2ahk3 PL plants with respective control plants. 

Furthermore, ACS6 and ACS7 were more abundant already 4 hours after the PLP-treatment GGT1 was 

less abundant. In case of ACD1, a 1.5-fold decreased abundance was observed 6 hours after the PLP. 

The abundance of SAM2 (6 and 12 hours after the PLP) and ACO3 (4, 6, and 12 hours after the PLP) 

was increased and decreased in addition to the formerly mentioned genes in ahk2ahk3. The expression 

pattern of SAM2 and ACO3 similar in ahk2ahk3 PL plants compared to wild-type PL plants 12 hours 

after exposure to the PLP. In addition, the abundance of SAM1 and ACO2 was increased 1.7-fold and 

2.4-fold and abundance of ACS8 was decreased 20-fold 12 hours after the PLP-treatment. 

Apart from transcriptional regulation of genes involved in ethylene metabolism, the transcript abundance 

of genes involved in ethylene signaling was analyzed via RNAseq. Wild type control and ahk2ahk3 

control did not differ in expression of these genes (Figure 34B). 6 hours after the PLP-treatment, the 

abundance of ETR1, ERS1, ERS2, EIN4, CTR1 and EIN3 was increased in wild-type PL plants 

compared to its respective control plants (qRT experiment to confirm changes in ETR1 and CTR1 can 

be found in Supplemental Figure 3C and D). A similar regulation was observed 12 hours after the PLP-

treatment with the exception that ETR1 was not regulated but ETR2. The expression of the previously 

mentioned genes in ahk2ahk3 plants was like that in wild type. ERS1 and ERS2 were 2.2-fold and 1.5-

fold more abundant already 4 hours after exposure to a PLP in PL plants, while the abundance of EIN2 
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was decreased onefold and 1.6-fold 4 and 6 hours after the PLP-treatment. Additionally, EIL1 was less 

abundant 6 and 12 hours after the PLP. In comparison to wild-type PL plants, the abundance of ETR1 

and CTR1 was increased 6 and 12 hours after the PLP-treatment in ahk2ahk3 PL plants while the 

abundance of EIL1 was decreased at those time points. Furthermore, the abundance of ERS1 was 

increased 1.85-fold 4 hours after exposure to the PLP. 

 

 

Figure 34: Expression of ethylene signaling genes during photoperiod stress in wild type and ahk2ahk3. 
(A) Schematic presentation of ethylene signaling. In absence of ethylene (C=C), ETHYLENE RESPONSE 
(ETR)/ETHYLENE RESPONSE SENSOR (ERS)/ETHYLENE INSENSITIVE4 (EIN4) receptors act as negative 
regulators of ethylene signaling by interacting with CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), which 
inactivates EIN2. In addition, EIN2 can be degraded 26S proteasome-dependently, which is mediated by F-box 
proteins EIN2 TARGETING PROTEIN (ETP) F-box proteins. Because of EIN2 inactivation and degradation, 
EIN3/EIN3-LIKE1 (EIL1)/EIL2 transcription factors become degraded mediated by EIN3-BINDING F-BOX 
PROTEINs (EBFs). Upon ethylene perception, ETR/ERS/EIN4 receptors get inactive and consequently CTR1. This 
leads to an activation of EIN2, which stabilizes EIN3/EIL proteins and mediates EBF degradation, leading to the 
activation of ethylene-regulated genes. (B) Transcript levels 0, 4, 6 and 12 hours after the PLP in either PL plants 
or control plants of wild type and ahk2ahk3. Stars indicate a significant difference between groups at the given time 
point after Bonferroni correction (p ≤ 0.05; n = 3). 

 

Summing up, PLP-induced changes in transcript abundance were detected via RNAseq mostly for 

genes encoding ethylene receptors in both wild type and ahk2ahk3. Responses to photoperiod stress 

in ahk2ahk3 were either stronger (e.g. ETR1 transcription) or faster (ERS1 transcription). 

 

3.3.6 A constitutively active ethylene pathway protects plants from photoperiod stress 
 

As transcriptional analysis of wild type and ahk2ahk3 indicated an influence of photoperiod stress on 

the transcription of genes involved in ethylene metabolism and signaling, it was investigated whether a 

difference in ethylene status has an influence on the photoperiod stress sensitivity of plants. To do so, 

mutants impaired either in ethylene perception or signaling were exposed to PLP. Compared to wild 
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type, lesion formation was doubled in etr1-1 and ein2 but less in comparison with ahk2ahk3 (Figure 

35A). 

 

 

Figure 35: Plants with an impaired ethylene signaling are more sensitive to photoperiod stress. 
(A) Lesion formation of leaves at five-week-old Col-0, ahk2ahk3, etr1-1, ein3 and ein2 plants the day after the PCD-
inducing night (n≥13). (B) PAM measurements of leaves the day after PCD-inducing night (n = 15). (C) Pictures of 
representative plants that experienced a PLP. Letters indicate significant differences between groups (p ≤ 0.05). 
Error bars indicate SE. 

 

Furthermore, Fv/Fm values were unchanged in all genotypes compared to wild type except for ahk2ahk3 

(Figure 35B). Importance of functional ethylene signaling was further supported by testing mutants 

having a constantly activated ethylene signaling. ctr1-1 and ctr1/sugar-insensitive1 (sis1) plants did not 

form any lesions in response to exposure to a PLP while ahk2ahk3 had 2.5 times more lesions than wild 

type (Figure 36A).  
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Figure 36: Loss of CTR1 causes a reduced sensitivity to photoperiod stress. 
(A) Lesion formation of leaves at five-week-old Col-0, ahk2ahk3, ctr1-1 and ctr1/sis1 plants the day after the PCD-
inducing night (n≥10). (B) PAM measurements of leaves the day after PCD-inducing night (n ≥ 14). (C) Pictures of 
representative plants that experienced a PLP. Letters indicate significant differences between groups (p ≤ 0.05). 
Error bars indicate SE. 

 

Fv/Fm values of these mutants did not differ from wild type while that of ahk2ahk3 was reduced (Figure 

36B). Since ctr1-1 and ctr1/sis1 plants are strongly affected in growth (Figure 36C), ethylene receptor 

mutants, which are less growth-impaired, were exposed to photoperiod stress to exclude growth-related 

influences on the formation of photoperiod stress. Like ctr mutants, etr1etr2ein4 and etr2ein4ers2 did 

not form any lesions after exposure to photoperiod stress while ahk2ahk3 did form 3.5 times more 

lesions compared to wild-type plants (Figure 37A). Furthermore, Fv/Fm was reduced in ahk2ahk3 

compared to wild type while etr1etr2ein4 and etr2ein4ers2 did not differ from wild type (Figure 37B).  

To sum up, plants with a decreased ethylene status/impaired ethylene signaling were more sensitive to 

photoperiod stress whereas plants with an increased ethylene status/constantly active ethylene 

signaling were more sensitive to photoperiod stress. 
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Figure 37: Loss of type-II ethylene receptors causes a reduced sensitivity to photoperiod stress. 
(A) Lesion formation of leaves at five-week-old Col-0, ahk2ahk3, etr1etr2ein4 and etr2ein4ers2 plants the day after 
the PCD-inducing night (n ≥ 12). (B) PAM measurements of leaves the day after PCD-inducing night (n = 15). (C) 
Pictures of representative plants that experienced a PLP. Letters indicate significant differences between groups (p 
≤ 0.05). Error bars indicate SE. 

 

3.3.7 The GA content does not change in wild-type plants in response to a prolonged 
light period 

 

In addition to auxin, different active GAs as well as their precursors and deactivated forms were 

measured in the same experimental setup used for cytokinin measurements in section 3.1.1. Of all active 

GA forms measured, GA1 and GA3 levels differed between control and PL plants. GA1 levels were 

increased in PL plants after 24 hours of light by 50 % compared to control plants (Figure 38B; time point 

1). 

Furthermore, GA3 levels were reduced in PL plants at the end of the night following PLP (Figure 38C; 

time point 4). Photoperiod stress did not induce changes in GA5, GA6 and GA7 content (Figure 38D - F). 

Similarly, content of most bioactive GA-precursors was not altered upon photoperiod stress 

(Supplemental Figure 4). The only exception was content of GA13, which was reduced by 40 % in PL 

samples compared to control in the middle of the night following PLP (Supplemental Figure 4B; time 

point 3). 
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Figure 38: Photoperiod stress does not change levels of bioactive GAs in wild-type plants. 
(A) Schematic overview of sampling time points for GA measurements. five-week-old wild type plants were either 
cultivated under SD conditions (control) or were treated with a prolonged light period (PLP) of 32 h (PL). (B - F) 
Content of GA1 (B), GA3 (C), GA5 (D), GA6 (E) and GA7 (F) in control and PL samples at the time points depicted in 
A. Stars indicate statistically significant a difference between PL and the respective control at the given time point 
(1 - 5) in a paired Student's t-test (p ≤ 0.05; n = 5). Error bars indicate SD.  

 

Additionally, except for GA34 content no differences of GAs formed by inactivation of bioactive GAs was 

observed (Supplemental Figure 5). Content of GA34 was reduced by 10 % in PL plants compared to 
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control at time point 1 (Supplemental Figure 5C). Summing up, neither content of bioactive GAs nor 

their precursors nor their inactivation products was altered by photoperiod stress in a clear manner. 

 

3.3.8 Expression of genes encoding GA receptors is altered in response to 
photoperiod stress 

 

Next, it was examined whether genes encoding enzymes involved in GA metabolism are differently 

regulated in wild type and ahk2ahk3 during the night after exposure to photoperiod stress. Under control 

conditions, KS and GA3OX1 were less abundant in ahk2ahk3 compared to wild type 4, 6 and 12 hours 

after the PLP while no other genes differed in their abundance (Figure 39B). The decreased abundance 

of KS was strongest after 12 hours, at which it was decreased nearly fivefold compared to the respective 

wild-type samples in ahk2ahk3. GA3OX1 abundance was also decreased 5-fold in ahk2ahk3 12 hours 

after the beginning of night. In comparison, the exposure to a PLP resulted in a decrease of KAO1 and 

KAO2 abundance and an increase of GA2OX2 and GA2OX6 abundance in wild-type and ahk2ahk3 

plants compared to their respective control plants. Mostly, the expression of these genes occurred either 

earlier or stronger in ahk2ahk3. For example, KAO1 was less abundant already 4 hours after the PLP-

treatment, while KAO2 abundance decreased 1.2-fold in wild-type PL plants compared to its respective 

control while it was decreased 1.4-fold in ahk2ahk3 PL plants compared its control. Direct comparison 

of wild type PL and ahk2ahk3 PL plants uncovered a decreased abundance of KS at all time points in 

ahk2ahk3, of KAO1 and KAO2 12 hours after the PLP-treatment, of GA20OX1 4 hours after the 

exposure to a PLP and of GA3OX1 4, 6 and 12 hours after the PLP-treatment. 

Furthermore, the expression of genes involved in GA signaling was elucidated. No differences were 

detected under control conditions except for RGL1, which was less abundant in ahk2ahk3 compared to 

wild type at all time points (Figure 40B). 
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Figure 39: Expression of GA biosynthesis and metabolism genes during photoperiod stress in wild type 
and ahk2ahk3. 
(A) Simplified schematic presentation of GA metabolism. Starting from geranylgeranyl diphosphate (GGDP), the 
main GA-precursor GA12 is formed through multiple consecutive reactions involving ent-COPALYL DIPHOSPHATE 
SYNTHASE (CPS) that forms ent-copalyl diphosphate (ent-C), ent-KAURENE SYNTHASE (KS) that forms ent-
kaurene (ent-K), ent-KAURENE OXIDASE (KO) that forms ent-kaurenoic acid (ent-KA) and ultimately ent-
KAURENOIC ACID OXIDASE (KAO) enzymes. GA12 can be converted to either GA53 via GIBBERELLIN 13-
OXIDASE (GA13OX) enzymes (genes have not been identified yet) or to GA9 via GIBBERELLIN 20-OXIDASE 
(GA20OX) enzymes (yellow arrows). The latter also catalyze the conversion of GA53 to GA20. GIBBERELLIN 3-
OXIDASE (GA3OX) enzymes convert GA9 to bioactive GA4 and GA7 (dark orange) and GA20 to bioactive GA1, GA3, 
GA5 and GA6. Inactivation of GA1 and GA4 is facilitated by GIBBERELLIN 2-OXIDASE (GA2OX) enzymes, which 
also convert GA9 and GA20 precursors to inactive forms. GA2OX7 and GA2OX8 inactivate GA12 and GA53 
precursors (indicated by ‡). Double arrows indicate multiple reaction steps catalyzed by the same enzyme.  (B) 
Transcript levels 0, 4, 6 and 12 hours after the PLP in either PL plants or control plants of wild type and ahk2ahk3. 
Stars indicate a significant difference between groups at the given time point after Bonferroni correction (p ≤ 0.05; 
n = 3). 

 

12 hours after the PLP, the abundance of GID1B, SCL3, PIF3, PIF4, PIF5 and PIF7 was increased in 

wild-type PL plants compared to its control plants. In addition, the abundance of GID1A was reduced 

two-fold 6 and 12 hours after the PLP and a similar tendency was confirmed via qRT PCR (Supplemental 

Figure 3E). The exposure of ahk2ahk3 to a PLP caused a decrease of GID1A, GID1C, GAI and PIF1 

transcript levels already 4 hours after the PLP-treatment. Furthermore, the abundance of RGA, RGL1 

and PIF5 was decreased while the abundance of GID1B, SCL3 and PIF7 was increased. In comparison 

to wild-type PL plants, transcript levels of GID1A, GID1B, GAI, RGA, RGL1, PIF1, PIF3, PIF4 and PIF5 

were decreased 12 hours after the exposure to a PLP. For some genes like GAI, a decreased 
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abundance was detected as early as 4 hours after the PLP-treatment. In contrast, PIF7 abundance was 

increased 2.7-fold already 4 hours after the PLP-treatment. 

 

 

Figure 40: Expression of GA signaling genes during photoperiod stress in wild type and ahk2ahk3. 
(A) Schematic presentation of GA signaling. In the absence of GA (dark orange), GIBBERELLIN INSENSITIVE 
DWARF1 (GID1) receptors are inactive. Consequently, DELLA proteins GIBBERELLIC ACID INSENSITIVE (GAI)/ 
REPRESSOR OF GA1-3 (RGA)/RGA-LIKE (RGL) inhibit the function of transcription factors (TF) like e.g. 
PHYTOCHROME-INTERACTING FACTOR (PIF) proteins. With perception of GA by GID1 receptors, the latter 
associate with F-box proteins SLEEPY1 (SLY1) or SNEEZY (SNE) and inhibit DELLA function by mediating their 
degradation. In consequence, TFs are active and mediate the transcription of output genes. (B) Transcript levels 0, 
4, 6 and 12 hours after the PLP in either PL plants or control plants of wild type and ahk2ahk3. Stars indicate a 
significant difference between groups at the given time point after Bonferroni correction (p ≤ 0.05; n = 3). 

 

All in all, exposure to photoperiod stress induced changes in transcript abundance mostly of genes 

involved in early steps of GA synthesis as well as of genes encoding GA receptors and transcription 

factors. Additionally, genes encoding GA signaling repressors (DELLAs) were downregulated in 

ahk2ahk3 in response to photoperiod stress. 

 

3.3.9 Plants with an impaired GA synthesis are less sensitive to photoperiod stress 
 

To further elucidate the effect of GA on the formation of the photoperiod stress syndrome, plants with 

either an increased GA status (gai and rga1) or a decreased GA status (gid1 and ga20ox mutants) were 

exposed to PLP. While ahk2ahk3 formed more lesions in response to PLP-treatment compared to wild 

type, plants with a decreased GA status did not differ from wild type in their response (Figure 41A). 

Surprisingly, while gid1agid1c formed more lesions than wild type, all ga20ox double mutants were less 

responsive. The latter also had increased Fv/Fm values compared to wild type (Figure 41B). ahk2ahk3 

had the lowest Fv/Fm of all mutants tested. All in all, while an increased GA status did not alter the 

responsiveness to photoperiod stress, a decreased GA status caused either an increased sensitivity or 

an insensitivity. 
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Figure 41: ga20ox mutants are less sensitive to photoperiod stress. 
(A) Lesion formation of leaves at five-week-old Col-0, ahk2ahk3, gid1agid1b, gid1agid1c, gid1bgid1c, 
ga20ox1ga20ox2 (ox1,2), ga20ox1ga20ox3 (ox1,3), ga20ox2ga20ox3 (ox2,3), gai and rga1 plants the day after the 
PCD-inducing night (n ≥ 13). (B) PAM measurements of leaves the day after PCD-inducing night (n = 12). (C) 
Pictures of representative plants that experienced a PLP. Letters indicate significant differences between groups (p 
≤ 0.05). Error bars indicate SE. 
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4 Discussion 

 

4.1 tZ-type cytokinins protect plants against photoperiod stress 
 

4.1.1 The cytokinin concentration is increased in response to photoperiod stress 
 

As an addition to the work of Nitschke, 2014 and Nitschke et al., 2016 reporting a general importance 

of cytokinin to cope with alterations of the light-dark cycle, this work demonstrated that short-day grown 

wild-type plants increase the cytokinin concentration in leaves due to a 24h-prolongation of the light 

period. With exception of cZ-type cytokinins, the level of all other cytokinin types were increased in 

plants that experienced a prolonged light period compared to control plants (Figure 12, Table 25, Table 

26, Supplemental Table 1 and Supplemental Table 2). These results are consistent with findings of 

Corbesier et al., 2003, who reported that the exposure of short-day grown plants to a prolonged light 

period of 16, 20 or 24 hours induced an increase in the content of tZ-type cytokinins but more strikingly 

of iP-type cytokinins. Since plants with a reduced cytokinin status develop the photoperiod stress 

syndrome during the night after the exposure to a prolonged light period (Nitschke et al., 2016), it might 

be assumed that the increase in endogenous cytokinin levels is crucial to reduce the symptoms induced 

by photoperiod stress. 

One function of increased endogenous cytokinin levels could be to modulate chloroplast responses and 

prevent stress-induced changes in chloroplast architecture. An elevation of endogenous cytokinin levels 

through expression of an IPT gene under the control of a senescence- and maturation-induced SARK 

promoter (SARK::IPT) dampened the consequences of drought stress in several species like tobacco 

(Rivero et al., 2007), rice (Peleg et al., 2011; Reguera et al., 2013), peanut (Qin et al., 2011) or maize 

(Décima Oneto et al., 2016) by increasing or maintaining the photosynthesis rate and stomatal 

conductance. Other studies reported a direct influence of cytokinin on the shape and development of 

chloroplasts (Cortleven et al., 2014). Chemical inhibition of cytokinin degradation by INHIBITOR OF 

CYTOKININ DEGRADATION (INCYDE) protected the photosystem of tomato plants from its 

impediment by salt stress (Aremu et al., 2014). Furthermore, cytokinin protects plants by repressing the 

retardation of grana stacking that is caused by exposure to heat stress (Caers et al., 1985) and 

excessive starch grain and plastoglobuli formation under high light stress (Cortleven et al., 2014). 

Notably, in contrast to photoperiod stress, endogenous cytokinin levels decrease in plants after 

exposure to other abiotic stimuli like heat, salt or drought and moreover, mutants with a lower cytokinin 

status are more resistant to these stresses (Itai et al., 1973; Caers et al., 1985; Nishiyama et al., 2011). 

Another function of cytokinin might be to reduce/regulate the formation of potentially toxic compounds 

like H2O2 and other ROS by modulating the antioxidant system. Elevated cytokinin contents in tobacco 

by introgression of the SARK::IPT construct resulted in an improved antioxidant system (increased 

contents of ascorbic acid, glutathione, GLUTATHIONE REDUCTASE (GR), ASCORBATE 

PEROXIDASE (APX) and SUPEROXIDE DISMUTASE (SOD)) especially in old leaves (Dertinger et al., 

2003; Procházková et al., 2008). Moreover, ahk2ahk3 and ipt1ipt3ipt5ipt7 roots had an elevated ROS 

content compared to wild type and it increased further when plants were grown under K+-deficiency 

(Nam et al., 2012). Upon pathogen infection, tZ signals through AHK3 and ARR2 to regulate the 
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expression of the apoplastic peroxidases PRX33 and PRX34 that cause an accumulation of H2O2 and 

consequently the closure of stomata (Arnaud et al., 2017). 

Further indications for the importance of cytokinin during photoperiod stress can be found in the 

expression of respective genes during the night after the PLP-treatment in wild type and the cytokinin 

signaling mutant ahk2ahk3. While most genes in cytokinin biosynthesis and metabolism were not 

significantly regulated, an increased abundance of cytokinin metabolism genes UGT73C1, UGT73C5 

and UGT85A1 was detected (Figure 13). The increase correlates with the increase in tZ O-glucosides 

in wild type during the night following PLP treatment (Table 26). Furthermore, a similar transcriptional 

response of these genes could be detected in ahk2ahk3 and thus might hint to an importance of tZ 

inactivation via O-glucosylation in order to properly balance tZ levels during the exposure to photoperiod 

stress. An importance of cytokinin O-glucosylation has been described for ovule development and for 

the onset of senescence in Arabidopsis plants that constitutively overexpressed either UGT73C1 or 

UGT85A1 (Jin et al., 2013; Cucinotta et al., 2018).  

Moreover, the abundance of ENT6 involved in cytokinin riboside transport and of several PUP genes 

that are involved in cytokinin free base transport was altered due to PLP-treatment in wild type and 

ahk2ahk3 (Figure 14). This might indicate that an exposure to photoperiod stress leads to an alteration 

in the transport and flux of cytokinin ribosides and free bases. This work focused only on the expression 

profile of ENT and PUP genes known to be involved in cytokinin transport. However, the ENT gene 

family harbors eight members and the PUP family harbors 21 members in Arabidopsis (Hirose et al., 

2005; Durán-Medina et al., 2017). Thus, it might be that many more genes are involved in the transport 

of cytokinin ribosides and free bases and that photoperiod stress also influences the transcript 

abundance of these genes.  

Lastly, the transcript abundance of several cytokinin signaling components was altered in wild type and 

ahk2ahk3 under control conditions and upon PLP treatment (Figure 15). Under control conditions, 

decreased abundances of AHK2 and AHK3 in ahk2ahk3 compared to wild type were detected and verify 

the purity of the samples sent for sequencing. Moreover, decreased abundances of type-A ARRs 

especially at later time points (6 and 12 h after the PLP) in samples of stressed plants of both genotypes 

compared to their respective controls have been detected. This indicates that the cytokinin signaling 

output might be decreased in the night after the PLP treatment, as type-A ARR expression is part of the 

cytokinin signaling pathway feedback loop (see section 1.2.3, Figure 3; reviewed in e.g. Werner and 

Schmülling, 2009). Furthermore, these results demonstrate the validity of the RNAseq experiment for 

the regulation of cytokinin related genes, as the decreased abundance of type-A ARRs in response to 

photoperiod stress was described previously (Nitschke, 2014; Nitschke et al., 2016). All in all, the 

decrease in type-A ARR abundance, the alterations in AHP and type-B ARR abundance and the 

measured increase in cytokinin content taken together might be interpreted as another indication for the 

importance of properly balancing cytokinin function in order to cope with photoperiod stress. 

 

4.1.2 tZ-type cytokinins act as protectants against photoperiod stress 
 

Both cypDM and abcg14 plants were very sensitive to photoperiod stress as demonstrated 

phenotypically by an increased lesion formation, physiologically by a decreased photosynthetic capacity 

and molecularly by an increased H2O2 formation and altered abundance of marker genes (Figure 16). 
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tZ-type cytokinins are mainly involved in development processes in the shoot and are formed by two 

redundant CYP735A enzymes (Kiba et al., 2013). Moreover, tZ-type cytokinins are transported from the 

root to the shoot via the xylem flow with the help of ABCG14 (Ko et al., 2014; Zhang et al., 2014). Thus, 

the results indicate that root-derived tZ-type cytokinins are crucial for the resistance of plants to 

photoperiod stress in the shoot. ahk3 plants as well as in ahk2ahk3 and ahk3cre1 are more sensitive to 

photoperiod stress (Nitschke et al., 2016). The protective function of tZ-type cytokinins to photoperiod 

stress might explain why AHK3 is the receptor with the major role in this context. A first indication is that 

AHK3 has a higher affinity to bind tZ as to bind iP whereas, for example, AHK2 has a similar affinity to 

both iP and tZ (Stolz et al., 2011; Romanov et al., 2006; Lomin et al., 2015). Secondly, ahk3 plants and 

respective ahk higher order mutants have a strongly increased content of tZ-type cytokinins whereas 

the content of iP-type cytokinins is not changed (Riefler et al., 2006). Moreover, crosses of ahk double 

mutants with cypDM plants showed that the additive effect in growth retardation caused by the 

simultaneous loss of tZ-type cytokinin biosynthesis and cytokinin perception was less pronounced in 

ahk3cypDM mutant combinations (Kiba et al., 2013). Summing up, the cause of the increased 

photoperiod stress sensitivity of ahk3 single and higher order mutants is most probably an impairment 

in tZ perception. 

Watering of tZ-type cytokinin deficient cypDM plants with either the major transport form tZR or bioactive 

tZ demonstrated that both forms can protect plants against photoperiod stress although tZ was more 

effective (Figure 17). Furthermore, both tZ and tZR supplementation rescued the decrease in type-A 

ARR abundance in these plants. These results suggest that tZR supplementation is able to positively 

influence some but not all tZ-regulated processes. The reduced potency of tZR in the context of 

photoperiod stress might be a consequence of the fact that tZR must be converted to tZ to unfold its 

protective function (Lomin et al., 2015) and that tZ concentrations might than be lower in tZR-watered 

plants as in those ones that were watered with tZ. One could further speculate that during photoperiod 

stress, tZ and tZR enter different tissues. In support of that, it was recently shown that under long-day 

conditions, root-derived tZ has distinct functions in the shoot (e.g. in regulating the size of leaves or the 

SAM) compared to root-derived tZR that is converted to tZ later (Osugi et al., 2017). Moreover, as 

already discussed in section 4.1.1, cytokinin ribosides and free bases are transported by different 

transporter families (ENTs and PUPs; Durán-Medina et al., 2017). 

 

4.1.3 logS plants are insensitive to photoperiod stress 
 

In the experiments conducted for this thesis, logS plants did not show an increased sensitivity to 

photoperiod stress neither phenotypically nor physiologically nor at the molecular level (Figure 18). LOG 

enzymes catalyze the activation of riboside monophosphate cytokinins to free bases (Kurakawa et al., 

2007; Kuroha et al., 2009). Only the free bases can bind to the cyclase histidine kinase associated 

sensory extracellular (CHASE) domain of HISTIDINE KINASE receptors and activate cytokinin signaling 

(Lomin et al., 2015). Hence, the results obtained are surprising as the deficiency in cytokinin free bases 

should, in theory, have caused and increased photoperiod stress sensitivity. One could speculate that 

the consequences of photoperiod stress caused by a deficiency of active cytokinins in logS plants are 

compensated by the different developmental status. The sensitivity to photoperiod stress is to some 

extent dependent on the developmental stage (see section 3.2, Nitschke, 2014; Nitschke et al., 2016) 
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and logS plants are severely impaired in root and shoot development and accumulate cytokinin 

nucleotides (Tokunaga et al., 2012). The latter have been shown to cause growth retardation at high 

concentrations (Zhang et al., 2013). Hence, the increased amounts of cytokinin ribotides in logS plants 

could be causative for the growth retardation or could stress plants in general so that the exposure to a 

PLP might no longer have a reduced impact or any impact at all.  

 

4.1.4 ARR2, ARR10 and ARR12 regulate the response to photoperiod stress in a 
complex manner 

 

Upon perception of cytokinin through AHKs, five of the six-member family of AHPs become 

phosphorylated by AHKs and act as positive regulators of cytokinin signaling (Suzuki et al., 2000). This 

study demonstrated that AHP2, AHP3 and AHP5 act redundantly during photoperiod stress and that 

AHP2 and AHP3 might have a prominent role compared to AHP5 (section 3.1.7; Figure 19). A functional 

redundancy of AHPs has been shown before (Hutchison et al., 2006). The results obtained thus 

complement the cytokinin-dependent photoperiod stress signaling pathway with the addition of AHPs, 

which so far involved AHK3 as the main receptor and ARR2 as the main transcription factor (Nitschke 

et al., 2016).  

AHP1 to AHP5 phosphorylate and thus activate type-B ARR transcription factors (Suzuki et al., 2001b). 

Testing of arr2arr10arr12 triple mutant as well as its respective double and single mutants revealed that 

loss of ARR10 and ARR12 can rescue the phenotype of arr2 plants and that loss of all three transcription 

factors results in an increased photoperiod stress sensitivity compared to respective double mutants 

(section 3.1.7; Figure 20). This hints at a complex regulatory mechanism during photoperiod stress 

signaling between ARR2 on the one hand and ARR10 and ARR12 on the other. A similar relationship 

between the aforementioned type-B ARRs and also other members of this family has been described in 

the context of root development. For example, arr12 and arr10arr12 root elongation was more affected 

by cytokinin treatment than that of arr2arr12 and arr2arr10arr12, respectively (Mason et al., 2005). In 

the context of type-B ARR dependent gene regulation a model has been proposed in which 

simultaneous binding of multiple/different type-B ARRs and unknown factors to certain promoter regions 

is crucial (Ramireddy et al., 2013). Experimental evidence for a direct interaction between members of 

the type-B ARR family is rare. An interaction of ARR2 and ARR14 has been described in yeast (Dortay 

et al., 2006). Recently, it was found that the C-termini of ARR1 and ARR12 interact to regulate auxin 

synthesis (Yan et al., 2017). It could also be the case that interactions between type-B ARRs are 

context/status-dependent as it is known that the homodimerization of bacterial RRs depends on their 

phosphorylation status (Mack et al., 2009). Similarly, ARR18 can homodimerize when both ARR18 

proteins are either both phosphorylated or not phosphorylated (Veerabagu et al., 2012).  

The findings of this study could be explained by a model, in which ARR2, ARR10 and ARR12 interact 

with a yet unknown interaction partner (X) that is essential for photoperiod stress resistance. It is 

predicted that the affinity of ARR2 to X would be higher than affinities of ARR10 and ARR12 to X. In 

addition, a direct or indirect interaction of ARR10 and ARR12 is proposed. In photoperiod stress-treated 

wild-type plants, ARR2 would interact with X resulting in photoperiod stress resistance while ARR10 and 

ARR12 would directly/indirectly interact with each other to fulfill different functions. In arr2 plants, X 

would not have an interaction partner and thus would be unable to function in stress protection because 
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ARR10 and ARR12 would not be available as interaction partners. Consequently, stress resistance 

would be lowered. Resistance of arr2arr10 and arr2arr12 plants would be caused by the loss of the 

ARR10-ARR12 association and the resulting interaction of X with ARR10 or ARR12. Ultimately, the 

enhanced stress phenotype of arr2arr10arr12 plants would be caused by the complete loss of interaction 

partners for X.  

Beside the interaction amongst ARRs, interactions between several type-B ARRs and other proteins 

exist and might give indications which protein X could be. For example, ARR1, ARR2 and ARR14 

interact with DELLA proteins RGA1 and GAI to regulate root development and photomorphogenesis 

(Marín-de la Rosa et al., 2015; Yan et al., 2017). During the regulation of auxin synthesis, EIN3 interacts 

with the C-terminus of ARR1 and thereby increases ARR1 activity (Yan et al., 2017). As part of the 

crosstalk between cytokinin and abscisic acid, ARR1, ARR11 and ARR12 directly interact with 

SUCROSE NON‐FERMENTING‐1 (SNF1)‐RELATED PROTEIN KINASE2 (SnRK2) kinases and 

thereby inhibit their function prior to drought stress (Huang et al., 2018). 

 

 

4.2 The response to photoperiod stress is age- and tissue-specific 
 

4.2.1 The age of plants and specific leaves influences the photoperiod stress 
sensitivity 

 

In the first detailed description of the photoperiod stress syndrome, indications have been presented 

that the photoperiod stress syndrome develops mainly in mature, fully expanded leaves (Nitschke, 

2014). In agreement with these findings, the detailed phenotypical, physiological and molecular 

analyses of specific wild-type and ahk2ahk3 leaves demonstrated that the oldest, non-senescent leaves 

(leaves 5 to 8) of both genotypes were strongly affected by a PLP while only in more sensitive ahk2ahk3 

plants leaves 9 to 13 were also affected (Figure 21). These results indicate that there might be an effect 

of the developmental stage of the leaves on the sensitivity to photoperiod stress. As has been described 

previously, mature leaves are also more sensitive than young leaves in the context of other abiotic 

stresses like drought stress (Koffler et al., 2014), salt stress (Munns et al., 1995; Munns, 2002) or high 

light stress (Bielczynski et al., 2017). This indicates that the competence of mature leaves to enter 

senescence seems to be a general phenomenon.  

As a next step, developmental programs of leaves that are influenced by cytokinin and might regulate 

the sensitivity to photoperiod stress were further investigated. ahk2ahk3 had an increased number of 

juvenile leaves compared to wild type and an increased MIRNA156 transcript abundance in relation to 

MIRNA172 (Figure 22A-D) confirming previous findings stating that the cytokinin status influences the 

timing of plants to form leaves with a juvenile or adult identity by regulating the ratio of MIRNA156 to 

MIRNA172 (Kiba et al., 2013; Werner, 2016). However, neither 35S::MIR156B nor 35S::MIM172 plants, 

which have also an increased number of juvenile leaves, were strongly affected by the exposure to a 

PLP (Figure 22E-G). Thus, it is very unlikely that the leaf identity is causative for the different sensitivities 

of wild type and ahk2ahk3 to photoperiod stress. 

Other experiments rather indicate that the plant- and leaf age is of importance as the phenotypic and 

molecular sensitivity of plants to alterations of the light-dark rhythm increased with age in ahk2ahk3 
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plants (Figure 23) and with the age of leaf 8 in both genotypes (Figure 24). In addition, the area of leaf 

8 of four-week-old and five-week-old ahk2ahk3 plants was reduced compared to wild type and leaf 

growth was slower in ahk2ahk3 plants (Figure 24A). An indicator for the developmental age of a leaf is 

its expansion and leaf maturity is characterized by its arrest (Gonzalez et al., 2012; Jibran et al., 2013; 

Bar and Ori, 2014). Moreover, cytokinin is known not only to regulate leaf expansion by influencing the 

cell size but also to influence the very early stages of leaf development by being crucial for cell division 

and proliferation (Miller et al., 1955, 1956; Werner et al., 2001, 2003; Riefler et al., 2006). Taken 

together, one could argue that ahk2ahk3 leaves end cell proliferation and enter maturity earlier as wild-

type leaves.  

During its life cycle, leaves undergo ARCs and in mature leaves these ARCs result in an competence 

to induce leaf senescence by external stimuli like abiotic and biotic stress (Jing et al., 2005; Jibran et 

al., 2013; Kanojia and Dijkwel, 2018). Some changes that occur with age are an increasing ROS 

sensitivity and ROS production in the pre-senescent state, decreasing ascorbic acid levels and 

chlorophyll contents, increasing JA levels and an increased sensitivity to ethylene (Dertinger et al., 2003; 

Jing et al., 2005; Kotchoni et al., 2009; Breeze et al., 2011). Another ARC is the decrease in cytokinin 

content (Hewett and Wareing, 1973; Singh et al., 1992a, 1992b; Skalák et al., 2019). Several studies 

have demonstrated the importance of cytokinin to inhibit leaf senescence (Richmond and Lang, 1957; 

Dyer and Osborne, 1971; Gan and Amasino, 1995) and to counteract the occurrence of ARCs by 

regulating ascorbic acid levels and chlorophyll content (Dertinger et al., 2003). Thus, it might be the case 

that the competence to induce leaf senescence by external stimuli develops earlier in plants with a 

reduced cytokinin status as these accumulate ARCs faster.  

 

4.2.2 The responsiveness to photoperiod stress differs between leaves and roots 
 

As already indicated by the results of section 3.1 and discussed in section 4.1, different tissues 

contribute to the responsiveness of plants to photoperiod stress. In the course of this work it was further 

elaborated whether different tissues show a similar response to photoperiod stress. Exposure of lines 

overexpressing cytokinin degradation enzyme (Myc-tagged) CKX1 tissue-specifically to photoperiod 

stress indicates that the vasculature and the epidermis are of crucial importance to cope with alterations 

of the light-dark cycle (Figure 25). The vasculature serves as the main route to distribute iP-type 

cytokinins (via phloem) and more importantly tZ-type cytokinins (via xylem) to root and shoot tissue (Ko 

et al., 2014; Zhang et al., 2014; Durán-Medina et al., 2017). Furthermore, tZ-type cytokinins are formed 

CYP735A enzymes from iP-type cytokinins (Takei et al., 2004; Kiba et al., 2013). Thus, the increased 

sensitivity of SUC2::CKX1-4xMyc and CLV1::CKX1 might be explained by a decrease in iP-type 

cytokinins in the phloem, which are then missing as precursors that could be formed into tZ-type 

cytokinins ultimately resulting in a reduced tZ-type cytokinin content. Moreover, the epidermis-specific 

overexpression of CKX1 in ATML::CKX1-4xMyc resulted in a fourfold reduction of the tZ content in shoot 

tissue compared to that of wild type (Werner, 2016), which provides an explanation for the increased 

photoperiod stress sensitivity of these plants.  

In addition to the results discussed above, one could deduce the importance of certain tissues from the 

role of type-B ARRs in regulating the sensitivity to photoperiod stress (section 3.1.7). ARR2, ARR10 and 

ARR12 are expressed together in stomata, hydathodes and in the root elongation zone while ARR2 is 
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expressed right next to the vasculature and ARR10 and ARR12 are expressed within it (Mason et al., 

2004). Furthermore, the importance of the vasculature and of roots is indicated not only by type-B ARR 

expression patterns but also by that of CYP735A genes, which are mainly expressed in these tissues 

(Takei et al., 2004; Kiba et al., 2013). 

Exposure of wild type and ahk2ahk3 to a PLP did not alter the abundance of stress marker genes BAP1 

and ZAT12 in roots during the night after treatment compared to respective controls (Figure 26). These 

results indicate that the transcriptional response to photoperiod stress differs between leaves and roots 

independent of the plants’ photoperiod stress sensitivity as such. As the transcript abundance of BAP1 

and ZAT12 also displays the cell death and oxidative stress response of root tissue (Yang et al., 2007; 

Le et al., 2016), the results indicate that roots might not have oxidative stress upon exposure to 

photoperiod stress and that cell death might not be induced. This is consistent with the systemic 

response from shoot to root tissue in the context of high light stress. While the exposure of specific 

leaves to high light stress induced the expression of ZAT10 in distal leaves, no induction could be found 

in root tissue (Rossel et al., 2007). However, a systemic response from roots to shoots mediated by 

Ca2+ waves was postulated in the context of salt stress. Within one minute, an induction of respective 

marker genes could be measured in shoot tissue of plants of which the root had been exposed to high 

concentrations of NaCl (Choi et al., 2014). 

In addition to the expression of stress marker genes, no changes in the abundance of genes involved 

in cytokinin biosynthesis, metabolism and transport were detected after exposure to a PLP (Figure 26). 

This is surprising as roots are the main source for tZ-type cytokinins (Kiba et al., 2013; Ko et al., 2014; 

Zhang et al., 2014; Osugi et al., 2017) and thus are of great importance in the context of photoperiod 

stress. As the cytokinin content was already increased in PL plants during PLP treatment (Figure 12), 

the time points chosen for transcript analyses of roots during the night after the exposure to a PLP might 

have been too late to detect differences in the transcript abundance of these genes between PL and 

control plants. 

 

 

4.3 The sensitivity to photoperiod stress is influenced by the auxin and 
ethylene status 

 

4.3.1 The regulation of auxin homeostasis is crucial to cope with photoperiod stress 
 

As one of the best studied antagonists of cytokinin, auxin is involved in many developmental and stress-

related processes. Within this study, several indications have been collected that the auxin status of 

plants might be crucial to cope with photoperiod stress. Most strikingly, an elevation in the content of 

endogenous IAA in yuc1D (Zhao et al., 2001) increased the sensitivity to photoperiod stress while an 

increasing impairment in auxin perception by the loss of TIR/AFB genes resulted in a decreasing 

sensitivity in terms of lesion formation, H2O2 formation and partially in marker gene expression (Figure 

30 and Figure 31). Similarly, an increased auxin status in Arabidopsis was associated with a decreased 

stress resistance to cold, drought and salt (Park et al., 2007) while a decreased auxin status by either 

loss of TIR/AFB or by a constitutive overexpression of GH3.5 (wes1-D mutant) enhanced the resistance 

to the previously mentioned stresses (Park et al., 2007; Iglesias et al., 2010). In rice, decreased IAA 
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level by a gain of GH3.13 function improved the resistance to drought (Zhang et al., 2009). Vice versa, 

auxin supplementation and an increase in endogenous IAA content by YUC overexpression improved 

the resistance to drought stress, while yuc mutants were less resistant than wild type (Lee et al., 2012; 

Shi et al., 2014). 

The importance of auxin in coping with photoperiod stress is further indicated by auxin measurements 

in less sensitive wild-type plants. Here, concentrations of bioactive IAA and - more pronounced - its 

irreversibly inactivated conjugate IAA-Asp increased during the night after exposure to a PLP while IAA-

Glu levels were only slightly changed (Figure 27D, E). These results might indicate that plants which 

are able to cope with photoperiod stress avoid the accumulation of free IAA by inducing certain 

inactivation pathways. In support of this, only minor changes in the expression of genes involved in 

auxin biosynthesis have been detected in wild-type leaves (Figure 28). Instead, enhanced expression 

levels of several GH3 genes - involved in IAA-Asp formation - were observed at earlier but also similar 

time points as the IAA-Asp accumulation (Figure 28). These results indicate that PLP treatment might 

induce the formation of GH3 enzymes, which ultimately conjugate and thus inactivate free IAA. As 

mentioned before, previous studies suggest that the constitutive overexpression of GH3.5 (wes1-D 

mutant) not only causes an IAA deficiency phenotype but also increases the resistance to abiotic stress 

(Park et al., 2007). In agreement with this, gh3.5 plants had increased IAA levels and were more affected 

by abiotic stress. Endogenous IAA concentrations are even more elevated in gh3 sextuple mutants 

(Porco et al., 2016).  

In addition to the conjugation of IAA to Asp and Glu, GH3 enzymes also catalyze the conjugation of IAA 

to other amino acids like leucine (Leu), tryptophan (Trp), phenylalanine (Phe) or alanine (Ala) (Staswick 

et al., 2002, 2005). In contrast to the conjugation with Glu and Asp, these conjugations are reversible 

and are catalyzed IAR3/ILR1/ILL enzymes (Davies et al., 1999; LeClere et al., 2002; Rampey, 2004). 

The RNAseq results presented in this study showed that the abundance of IAR3 and ILL1 was altered 

upon photoperiod stress treatment in wild type (Figure 28). These results might indicate that due to 

exposure to photoperiod stress, not only the irreversible but also the reversible inactivation of IAA and 

more importantly the reactivation of IAA amino acid conjugates must be balanced. IAR3 catalyzes the 

formation of bioactive IAA from IAA alanine (Davies et al., 1999). In Arabidopsis, iar3 mutants had 

reduced IAA levels and were less tolerant to drought stress than wild type, demonstrating the importance 

of this reaction (Kinoshita et al., 2012). However, in vitro and in vivo experiments suggest that IAR3 not 

only hydrolyzes IAA conjugates but also catalyzes the inactivation of bioactive JA isoleucine as 

demonstrated by wounding of IAR3 overexpressors that led to a diminished increase in JA isoleucine 

content compared to wild type (Zhang et al., 2016c). Lastly, neither the IAAox content nor the 

abundances of IAAox forming DAO genes were changed in wild type upon exposure to photoperiod 

stress (Figure 27C and Figure 28). These results indicate that IAAox formation is of minor importance 

with regard to coping with a prolongation of the light period. 

What might be the mechanism behind the toxicity of bioactive IAA in the context of photoperiod stress? 

As the peak in free IAA correlates with the peak in H2O2 levels (Figure 27B, Abduelsoud et al., 

unpublished) one could assume that excessive amounts of IAA might induce H2O2 formation and by that 

induce oxidative stress ultimately resulting in the photoperiod stress syndrome. Several studies suggest 

that auxin induces the formation of ROS during the gravitropic response of Arabidopsis roots (Joo et al., 



 

86 
 

Discussion 

2001), Arabidopsis lateral root and root hair development (Duan et al., 2010; Ma et al., 2014), cell wall 

loosening in maize coleoptiles (Schopfer, 2001) and quiescent center formation in maize roots (Jiang et 

al., 2003). Moreover, auxin induces the formation of H2O2 during salt stress (Iglesias et al., 2010). 

Mechanistically, auxin acts through NADPH oxidases RESPIRATORY BURST OXIDASE HOMOLOGs 

(RBOHs), the content of ascorbic acid and amount of SOD, GR and CATALASEs (CATs) (Duan et al., 

2010; Peer et al., 2013; Shi et al., 2014). 

One could also assume that increased IAA levels are the product of H2O2 accumulation. The only 

influence of H2O2 on auxin signaling has been described recently (Biswas et al., 2019). In a feed-forward-

loop in lateral root founder cells, auxin stimulates the RBOH-dependent formation of ROS, which in turn 

leads to the formation of reactive carbonyl species (RCS). The latter promote the degradation of Aux/IAA 

proteins via the TIR1/AFB-SCF complex ultimately activating the auxin signaling pathway (Biswas et al., 

2019).  

 

4.3.2 An interaction of cytokinin and auxin during the regulation of photoperiod stress 
 

As an addition to the role of auxin in forming the photoperiod stress syndrome, the decreased sensitivity 

of ahk2hk3tir1afb2 to an alteration of the light-dark cycle compared to ahk2ahk3 provided genetic 

evidence that the increased sensitivity of plants with a reduced cytokinin status might be due to an 

increased activation of the auxin signaling pathway downstream of the cytokinin signaling pathway 

(Figure 32). In agreement with this, previous experiments found that ahk2ahk3 mutants accumulated 

more IAA than wild type in response to an applied PLP (Dr. Anne Cortleven; personal communication). 

Furthermore, RNAseq results in this study revealed an increased gene abundance of IAR3 and ILR1 

and a decreased abundance of ILL1 and ILL2 in stressed ahk2ahk3 compared to wild type as well as a 

lowered expression of auxin biosynthesis enzymes (Figure 28). One could therefore speculate that 

caused by a malfunctioning IAA conjugation, free IAA levels increase in plants with a lowered cytokinin 

status, which cause oxidative stress ultimately leading to the phenotypic shaping of the photoperiod 

stress syndrome. Numerous studies suggest that cytokinin and auxin regulate each other’s synthesis 

pathways and thus their hormone levels (Eklöf et al., 2000; Nordström et al., 2004; Jones et al., 2010; 

Di et al., 2016; Yan et al., 2017). Furthermore, cytokinin perception has a substantial influence on auxin 

transport in the root and during de novo organogenesis (Dello Ioio et al., 2008; Ruzicka et al., 2009; 

Pernisova et al., 2009, 2016). Even though GH3 expression in stressed ahk2ahk3 was not altered 

compared to stressed wild-type plants (Figure 28), recent studies found that cytokinin directly induces 

the expression of several GH3 genes and further demonstrated that cytokinin function on root meristem 

size is in part dependent on GH3 function (Pierdonati et al., 2019). 

Apart from the regulation of hormone levels, RNAseq results showed that the abundances of genes 

involved in auxin signaling were affected in wild type, but more strongly - mostly decreased - in ahk2ahk3 

(Figure 29). For example, the abundance of TIR1/AFB genes was decreased markedly in response to 

a PLP in wild type and in ahk2ahk3, but the decrease was more marked in ahk2ahk3. The same 

tendencies could be observed for the abundance of IAA/AUX and class B and C ARF genes. The 

reduction in TIR/AFB abundance might indicate that the auxin signaling output is reduced in ahk2ahk3. 

Simultaneously, the decreased abundance of IAA/AUX and class B and C ARF genes might indicate a 

hyperactivation of the auxin signaling pathway as these all act as negative regulators of auxin signaling 



 

87 
 

Discussion 

(Ulmasov et al., 1997b, 1999b; Guilfoyle and Hagen, 2007). In contrast, several IAA/AUX genes were 

induced by auxin treatment in Arabidopsis seedlings (Stowe-Evans et al., 1998). As both genetic and 

physiological evidence indicate a positive relationship between auxin and the sensitivity to photoperiod 

stress it might be more plausible to interpret the described transcriptional deregulation as a 

hyperactivation. In support of this, previous studies found that tZ could induce the expression of 

IAA3/SHORT HYPOCOTYL 2 (SHY2) and IAA17/AXILLARY ROOT3 (AXR3) (Jones et al., 2010). As 

tZ-type cytokinins act as protectants against photoperiod stress and the perception of tZ is greatly 

impaired in ahk2ahk3, it might be that tZ is crucial to induce gene expression of auxin signaling 

components and thus, to keep them in balance. 

Another explanation for the opposing functions of cytokinin and auxin in the context of photoperiod stress 

might be that they share components downstream of the signaling pathways of both hormones and that 

these are deregulated. One potential candidate gene family could be SMALL AUXIN-UP RNAs 

(SAURs), whose expression was decreased after photoperiod stress treatment, especially in ahk2ahk3 

(Dr. Anne Cortleven, personal communication). SAURs were originally found to be induced by auxin 

treatment (McClure and Guilfoyle, 1987, 1989) and are crucial for the regulation of the light response 

(Sun et al., 2016) but also for the development of leaves, flowers and siliques (van Mourik et al., 2017). 

Recent studies further indicate that the expression of several SAURs is also induced by tZ and other 

hormones (van Mourik et al., 2017). Hence, it might be that the differential expression of SAURs in 

ahk2ahk3 is a cause of an imbalance between cytokinin and auxin output. 

 

4.3.3 Loss of type-II ethylene receptors causes a reduced photoperiod stress 
sensitivity 

 

In addition to the role of auxin, this thesis characterized the role of ethylene and its signaling pathway in 

photoperiod stress. As a first indication of a potential role for ethylene in photoperiod stress, the 

transcript abundance of a majority of ACS and ACO genes which are involved in ethylene biosynthesis 

was increased in both wild-type and ahk2ahk3 plants, during the night after the exposure to a PLP 

(Figure 33). Ethylene is known to be induced by abiotic and biotic stresses and thought to activate 

numerous processes that result in the senescence of plants (Reviewed in Yang and Hoffman, 1984; 

Abeles et al., 1992; Schaller and Kieber, 2002). Moreover, ethylene is able to induce the expression of 

proteins involved in its synthesis (Van Zhong and Burns, 2003). One might therefore suggest that a 

decreased ethylene status might result in an improved photoperiod stress resistance of plants. However, 

a constitutive activation by either loss of CTR1 or loss of three of the five ethylene receptors (etr1etr2ein4 

and etr2ein4ers2 plants) resulted in a considerably decreased photoperiod stress sensitivity (Figure 36 

and Figure 37). These results indicate that ethylene might act as a positive regulator of photoperiod 

stress resistance. 

In the context explained before, the improved resistance of plants with an increased ethylene status is 

contradictory at first sight. However, a protective function of a constitutive active ethylene signaling has 

been suggested against high concentrations of salt by a permanent increase in the amount of ROS (Cao 

et al., 2007; Jiang et al., 2013) and the response to ethylene does not necessarily cause the induction 

of senescence as a plant’s responsiveness to ethylene is age-dependent (Jing et al., 2005). Thus, it 

might be that the perception of ethylene is a necessary process to induce the molecular and 
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phenotypical changes caused by photoperiod stress. A constitutively activated ethylene pathway might 

reflect a type of ethylene ‘blindness’ in this context as minor changes in ethylene concentration as well 

as a more marked increase could not be sensed properly. In fact, ctr1 did not show a phenotypic 

response due to ethylene treatment (Kieber et al., 1993) and it has been suggested that a negative 

feedback regulation exists (Van Zhong and Burns, 2003). The improved photoperiod stress resistance 

of ctr1, etr1etr2ein4 and etr2ein4ers2 might thus be the result of the discussed ethylene insensitivity. 

Based on their N-terminal structure, the five ethylene receptors in Arabidopsis can be divided into two 

subfamilies, type I receptors (ETR1 and ERS1) and type II receptors (ETR2, ERS2 and EIN4) (Hua et 

al., 1998). The phenotypic and physiological response of etr2ein4ers2 to photoperiod stress thus 

indicates that the loss of type II ethylene receptors is sufficient to protect plants from the phenotypic 

consequences of photoperiod stress. Furthermore, etr1etr2ein4, etr2ein4ers2 and ctr1 were similarly 

sensitive to photoperiod stress but ctr1 mutants were much smaller due to the maximal activation of 

ethylene signaling compared to etr1etr2ein4 and etr2ein4ers2 (Figure 36C and Figure 37C). This might 

indicate that the ethylene-dependent response to photoperiod stress is independent of the plant size but 

it might rather suggest that a constitutively active ethylene signaling induces developmental changes, 

which prevent plants forming the photoperiod stress syndrome. 

An important role for ethylene perception by ETR/ERS/EIN4 receptors during photoperiod stress is 

further supported by the transcriptional response to a PLP treatment in wild type and ahk2ahk3. In 

stressed plants of both genotypes, the transcript abundance of most ethylene receptors increased in the 

course of the night following PLP treatment compared to respective controls (Figure 34). This might 

signify that in order to properly cope with a prolongation of the light period, ethylene receptor transcript 

- and probably protein - levels must be adjusted very precisely. In agreement with that, a differential 

regulation of ethylene receptor genes has been described previously in the context of drought, osmotic 

and salt stress (Peng et al., 2014b; Ren et al., 2017). As the expression of ethylene receptors can be 

induced by ethylene treatment (Hua et al., 1998; Van Zhong and Burns, 2003), the results could further 

suggest a synthesis of ethylene in response to a prolongation of the light period, which then might have 

induced the transcription of its receptors. 

In which tissue could ethylene signaling unfold its protective function against photoperiod stress? The 

importance of a tissue-specific ethylene signaling is suggested by analysis of lines overexpressing F-

box protein EBF2 in different tissues. An overexpression of EBF2 caused a reduction in ethylene 

signaling and in the ctr1 background, an epidermis-specific EBF2 expression was able to rescue the 

ctr1 dwarf phenotype (Vaseva et al., 2018). Thus, one could speculate that during photoperiod stress, 

ethylene signaling in the epidermis might be crucial. This would also implicate that ethylene might act in 

the same tissue as cytokinin (see section 4.2.2 for discussion of tissue-specific cytokinin response). 

In addition to the protective function of a constitutive ethylene signaling, an impairment in ethylene 

perception in etr1-1 and ein2 but not in ein3 increased the sensitivity of plants to photoperiod stress 

(Figure 35). As EIN2 stabilizes EIN3 and EIL transcription factors by direct interaction and by inducing 

degradation of EBF proteins (An et al., 2010; Wen et al., 2012), the results indicate that EIN3 acts 

redundantly with EILs as positive regulators of photoperiod stress resistance. The importance of EIN3 

and EIL transcription factors in positively regulating the resistance to other abiotic stresses like salt 

stress was suggested before (Peng et al., 2014a). Downstream targets of EIN3/EIL transcription factors 
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during photoperiod stress could be ETHYLENE RESPONSE FACTORs that are crucial in the response 

to pathogen infection, salt, drought and heat (Reviewed in Müller and Munné-Bosch, 2015). 

Several studies indicate that ROS and ethylene regulate each other on multiple levels during the 

formation of senescence/PCD after exposure to a variety of abiotic stresses (Reviewed in Zhang et al., 

2016b; Kanojia and Dijkwel, 2018). For example, ethylene regulates the formation of ROS via RBOHF 

and PEROXIDASEs during salt stress (Jiang et al., 2013; Peng et al., 2014a). In cotton, ethylene-

dependent induction of H2O2 occurred as early as 6 h after treatment while H2O2-dependent induction 

of ethylene synthesis was detected 3 days after treatment (Qin et al., 2008). Hence, during/after 

exposure to a PLP, ethylene could trigger ROS formation or vice versa, which might ultimately result in 

lesion formation and a PCD response. 

 

4.3.4 Potential interactions of ethylene with cytokinin in the context of photoperiod 
stress 

 

With the exception of the transcriptional regulation of genes involved in ethylene biosynthesis, 

metabolism and signaling in ahk2ahk3, which suggested that cytokinin might impact the ethylene output 

(Figure 33 and Figure 34), no direct interactions between these hormones have been investigated in 

this thesis. However, the alterations in photoperiod stress sensitivity of plants caused by changes in the 

ethylene and cytokinin status cannot be fully interpreted by looking at each hormone separately as their 

synthesis and signaling are closely interconnected (Schaller and Kieber, 2002; Iqbal et al., 2017; Liu et 

al., 2017).  

As discussed before, an exposure to photoperiod stress led to increased contents of various types of 

cytokinin (Figure 12 and section 4.1.1) and it was suggested that especially tZ-type cytokinins have a 

protective function (Figure 16, Figure 17 and section 4.1.2) which required the functioning of AHPs and 

ARRs. Moreover, an impaired ethylene perception and signaling in etr1-1 and ein2 caused a lowered 

photoperiod stress sensitivity while an increased ethylene status caused by an absence of ethylene 

receptors or the protein kinase CTR1 protected plants from photoperiod stress (Figure 35, Figure 36, 

Figure 37 and section 4.3.3). These results could be linked as previous studies have found that ethylene 

production and thus the triple response is induced in seedlings by treating them with cytokinin (Cary et 

al., 1995; Vogel et al., 1998; Woeste et al., 1999a; Cortleven et al., 2019a).  

Mechanistically, the increase in ethylene content is caused by a ARR1-dependent posttranslational 

stabilization of ethylene biosynthesis enzyme ACS5 and loss of function mutants were named after their 

inability to induce the cytokinin-dependent triple response (cytokinin insensitive5; cin5) (Vogel et al., 

1998; Chae et al., 2003; Hansen et al., 2009). Other studies suggested a similar mechanism for ACS4 

(Woeste et al., 1999a) and it was reported that the transcript abundance of ACO4 and ACS6 was 

reduced eight-fold in arr2 compared to wild type, which suggests that ARR2 acts as a positive regulator 

of ethylene biosynthesis (Hass et al., 2004). Furthermore, cytokinin applied to Arabidopsis seedlings 

increased the protein abundance of ACO2 in the root (Zdárská et al., 2013). If the increase in cytokinin 

content during the exposure to a PLP is protective against photoperiod stress by signaling through the 

cytokinin signaling pathway and an increased ethylene status is protective as well, one could speculate 

that tZ-type cytokinins act upstream of ethylene biosynthesis to enable their protective function. 

Consequently, plants that are either deficient in tZ-type cytokinins or have an impaired tZ perception 
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would not be able to induce ethylene biosynthesis upon exposure to photoperiod stress. It is also 

possible that ethylene acts upstream of cytokinin synthesis. However, so far, no other study reported 

such a relationship. 

Beside the effect of cytokinin on ethylene biosynthesis, the signal transduction of the hormones is 

interconnected at various levels. Numerous studies suggest that ETR1 directly interacts with AHPs 

which consequently regulate type-B ARRs (e.g. ARR2) and thus directly influences the output of the 

cytokinin signaling pathway (Hass et al., 2004; Binder et al., 2018; Zdarska et al., 2019). Hence, one 

cannot exclude that cytokinin signaling is already affected in the etr1-1 or etr1-6 background before and 

especially during photoperiod stress treatment and consequently, that the increased phenotypic 

sensitivity of etr1-1 plants might not only be a result of an impaired ethylene perception. Another indicator 

for a shared signaling of ethylene and cytokinin could be the cytokinin-dependent induction of the 

constitutive triple response that is transduced through EIN2 (Cary et al., 1995). Similarly, cytokinin acts 

through EIN2 during root elongation (Ruzicka et al., 2009). This might indicate that the increased 

photoperiod stress sensitivity of ein2 plants could also be caused by a reduced cytokinin function. 

Downstream of EIN2, EIN3/EIL transcription factors regulate the ethylene signaling output (Chao et al., 

1997; Guo and Ecker, 2003; Potuschak et al., 2003). Some studies demonstrated that EIN3 acts as a 

negative regulator of type-A ARR expression, thus inhibiting the cytokinin-induced feedback inhibition 

of its own signaling pathway (Shi et al., 2012). Moreover, it was suggested that EIN3 interacts with type-

B ARR1 to increase ARR1 dependent TAA1 expression (Yan et al., 2017). Hence, type-B ARR function 

and thus cytokinin signaling might be reduced in ein3 and more considerably in ein2 as these plants 

have reduced EIN3 and EIL protein levels (An et al., 2010). The increased photoperiod stress sensitivity 

of ein2 plants could thus be a cause of a reduced cytokinin signaling output. 

 

4.3.5 Potential interactions of ethylene with auxin in the context of photoperiod stress 
 

As described in this thesis, plants with either an increased auxin content (yuc1D) or an impaired ethylene 

signaling (ein2 and ein3) were less resistant to photoperiod stress while either an impaired auxin 

perception (tir1afb2afb3 plants) or a constitutively active ethylene signaling (ctr1, etr1etr2ein4 and 

etr2ein4ers2 plants) improved the resistance to photoperiod stress (Figure 31, Figure 36 and Figure 37). 

Furthermore, auxin content was increased upon exposure to photoperiod stress (Figure 27). All these 

observations could be linked to each other as auxin and ethylene signaling and synthesis are 

interconnected (Reviewed in Benková and Hejátko, 2009; Muday et al., 2012; Hu et al., 2017) and thus 

will be outlined in this section. 

The ethylene response in roots and hypocotyls depends on the induction of auxin synthesis via WEAK 

ETHYLENE INSENSITIVE2 (WEI2)/ANTHRANILATE SYNTHASE α1 (ASA1) and WEI7/ANTHRA-

NILATE SYNTHASE β1 (ASB1) enzymes that act in the formation of Trp precursors as well as on 

TAA1/TAR (Stepanova et al., 2005, 2008). Further studies suggest that ethylene signaling in the root 

epidermis triggers auxin synthesis (Vaseva et al., 2018). Vice versa, auxin can induce ethylene 

synthesis in tomato by inducing expression of several ACS (Yip et al., 1992). In rice, auxin induced 

ethylene synthesis by positively regulating ACO expression (Chae et al., 2000). Taking this into account, 

one could speculate that the increase in IAA content upon exposure to photoperiod stress in wild-type 
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plants (Figure 27) is caused ethylene-dependently or that the increased IAA levels might render ethylene 

synthesis, which ultimately induces senescence and PCD (see also sections 4.3.1and 4.3.3). 

The interaction of ethylene and auxin signaling was indicated by genetic studies suggesting that CTR1 

acts upstream of TIR1 in the regulation of hypocotyl elongation (Alonso et al., 2003) and that ARF2 is 

necessary for ethylene function on apical hook development (Li et al., 2004). In the root tip, cell 

proliferation is inhibited by ethylene through induction of IAA3/SHY2 gene expression (Street et al., 

2015). Based on this, one could speculate that ethylene function is suppressed in tir1afb2afb3 as auxin 

signaling might be required. If a temporarily increased ethylene signaling output were necessary to form 

the photoperiod stress syndrome and auxin signaling might be required for proper ethylene signaling, 

one could argue that tir1afb2afb3 mutants are at least partially insensitive to ethylene and that this might 

be the reason for its increased photoperiod stress resistance.  

 

4.3.6 The GA status has a minor influence on the sensitivity to photoperiod stress 
 

In wild-type plants, concentrations of active GAs, their precursors and deactivated forms did not 

drastically change upon photoperiod stress exposure (Figure 38, Supplemental Figure 4 and 

Supplemental Figure 5). Similarly, the abundance of most genes involved in GA synthesis and 

metabolism did not differ in wild type and ahk2ahk3 upon PLP-treatment (Figure 39). Furthermore, 

ga20ox double mutants were less sensitive to photoperiod stress at the phenotypical level compared to 

wild type (Figure 41). During cold stress, bioactive GAs are negative regulators of resistance and the 

amount of bioactive GAs is reduced by the cold-induced expression of GA2OX genes (Achard et al., 

2008). Application of bioactive GAs reduced the resistance to salt stress and plants deficient in their 

synthesis had increased survival rates upon exposure to high concentrations of NaCl (Magome et al., 

2004). A similar effect of GA application was communicated for the heat stress resistance of barley 

seedlings (Vettakkorumakankav et al., 1999). However, the data presented in this thesis indicate that 

GA biosynthesis and metabolism are of minor importance during the exposure to photoperiod stress 

itself but might be crucial during the short-day cultivation period prior to PLP treatment by influencing 

plant development. 

As well as GA biosynthesis and metabolism, the importance of GA signaling on photoperiod stress 

resistance has been analyzed. RNAseq revealed that the exposure of wild type and ahk2ahk3 to a PLP 

induced similar changes in the transcript abundance of GA receptors as well as downstream 

transcription factors like PIFs (Figure 40), which has been confirmed via qRT PCR for GID1A 

(Supplemental Figure 3E). At the same time, abundance of several GAI/RGA/RGL genes was reduced 

only in stressed ahk2ahk3 plants. These results suggest that a PLP leads to a modulation of the GA 

signaling pathway at the transcriptional level in plants with differing sensitivities to photoperiod stress. 

Moreover, the reduced abundance of GAI/RGA/RGL in stressed ahk2ahk3 compared to control plants 

might indicate that an increased GA signaling output could be a cause for the formation of the 

photoperiod stress syndrome. The importance of these genes is indicated by previously described 

decreased salt stress and cold stress resistance of Arabidopsis gairga double mutants (Achard et al., 

2006, 2008). Genetic evidence provided in this work suggests that a loss of GA receptors leads to an 

increased phenotypic sensitivity to photoperiod stress whereas an increased GA signaling by a loss of 

GA signaling repressors (gai and rga plants) did not alter the phenotypic responsiveness to photoperiod 
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stress (Figure 41). Confirmative for the phenotypic sensitivity of gid1 double mutants to photoperiod 

stress, gid1agid1c plants are impaired the most in GA signaling compared to other gid1 double mutant 

combinations and thus show the strongest GA-related developmental phenotypes (Griffiths et al., 2006). 

However, especially the phenotypic response of gid1agid1c plants and ga20ox mutants contradicts each 

other. One reason for this observation might be that a reduction in GA content in ga20ox plants causes 

an equal reduction in the activity of all three GID1 receptors while in gid1 double mutants, GA responses 

are channeled through one receptor in specific tissues. Furthermore, as all receptors have different 

binding affinities to bioactive GAs (Nakajima et al., 2006), the loss of receptors might alter the 

responsiveness of plants to specific but not all bioactive GAs and thus might induce changes that differ 

from a reduction of all bioactive GAs in ga20ox. All in all, the importance of GA biosynthesis and 

signaling to cope with photoperiod stress was not fully conclusive from the experiments conducted so 

far and remains to be solved by future investigations. 

 

 

4.4 Differences between RNAseq and qRT data 
 

In order to confirm the results of the RNAseq experiment, transcript abundances of some genes involved 

in auxin, ethylene and GA biosynthesis and signaling were tested via qRT-PCR with a different sample 

set (Supplemental Figure 3). While some tendencies like the decreased abundance of TIR1 upon PLP 

treatment were consistent with the RNAseq data, other effects like the differences in TIR1 and CTR1 

abundance between PL plants of wild type and ahk2ahk3 could not be confirmed. What might be the 

reason for this? One explanation could be that the leaves taken for RNAseq analysis did not show any 

lesion formation in wild type whereas ahk2ahk3 leaves were all affected. In addition, leaves eight to 

eleven of both genotypes were taken for the qRT confirmation experiment. Based on the differences in 

lesion formation of wild-type and ahk2ahk3 (Figure 21), leaves eight to eleven best reflect the 

percentage in lesion formation of whole plants. This implicates that the data obtained by RNAseq might 

show the difference between an ‘all or nothing’ photoperiod stress response independent of the 

genotype, whereas the samples taken to confirm the RNAseq data via qRT-PCR reflect a mixture of 

strong and weak responding leaves. Thus, some differences found by RNAseq that have been 

interpreted as genotype specific could also be interpreted as being specific for a marked photoperiod 

stress response. 
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4.5 Future perspectives 
 

4.5.1 Role of cytokinin synthesis, metabolism and signaling in photoperiod stress 
 

This study provided experimental evidence that root-derived tZ-type cytokinins have a protective 

function against photoperiod stress (sections 3.1.3 and 3.1.4). However, even though the cytokinin 

content increased in leaves during and after exposure to photoperiod stress in wild type (section 3.1.1), 

it is still not known whether cytokinins are needed during the stress treatment or whether they affect 

developmental processes prior to it that influence the sensitivity to photoperiod stress later. To decipher 

this in future experiments, one could spray tZ-type cytokinins onto plants which are unable to synthesize 

different types of cytokinin (e.g. ipt3ipt5ipt7 or cypDM) only during PLP treatment as well as in the night 

afterwards. 

Apart from investigating the role of tZ-type cytokinins prior and during photoperiod stress, results of this 

study suggest that their transport from the root to the shoot via ABCG14 is of importance (section 3.1.3). 

Reciprocal grafting of wild type and abcg14 or cypDM should confirm the results indicating the 

importance for the root-to-shoot transport of tZ-type cytokinins and by exchange of the wild type with 

other mutants, one could use grafting experiments as a fast approach to investigate the connection of 

other factors with cytokinin in the context of photoperiod stress (some other grafting experiments are 

proposed in section 4.5.3).  

As a part of cytokinin signaling, AHP2, AHP3 and AHP5 act redundantly to regulate the photoperiod 

stress response (section 3.1.6). As all AHPs except AHP6 are mostly positively regulating cytokinin 

signaling (Hutchison et al., 2006; Mähönen et al., 2006) it could be the case that AHP1 and AHP4 are 

also involved in photoperiod stress signaling. Future experiments that test the photoperiod stress 

sensitivity of ahp1, ahp4 as well as higher order ahp mutants (e.g. ahp1ahp2ahp3) should give further 

insights into the regulation of photoperiod stress through AHPs. 

Downstream of AHPs, a complex regulation of the photoperiod stress sensitivity by type-B ARR2, 

ARR10 and ARR12 is indicated by the sensitivity of respective arr single, double and triple mutants to 

photoperiod stress (section 3.1.7) and a model explaining this regulation has been proposed (section 

4.1.4). In order to test the proposed model, one could investigate the interaction of type-B ARRs by 

testing e.g. N-terminally truncated ARR versions in a yeast-two-hybrid assay as these were able to 

interact compared with each other and compared to full-length versions (Dortay et al., 2006; Yan et al., 

2017). In another approach that might lead to the identification of the unknown interaction partner X, 

one could generate lines that express tagged ARR2, ARR10 or ARR12 under their native promoters 

and introgress them in the arr2arr10arr12 background (e.g. ARR2::ARR2-Myc, ARR10::ARR10-HA, 

ARR12::ARR12-Myc). One would expect that X could be found via co-immunoprecipitation by cross-

linking it to either of the tagged ARRs in ARR2-Myc/arr2arr10arr12, ARR10-HA/arr2arr10arr12, and 

ARR12-Myc/arr2arr10arr12 and analyzing the interaction partners via MS. In plants expressing ARR10-

HA simultaneously with ARR12-Myc in arr2arr10arr12, an ARR10-HA-ARR12-Myc interaction could be 

found and the interaction to X would be lost and thus not detected. If ARRs bind directly to promoters to 

regulate the sensitivity to photoperiod stress (not X), one could further perform ChiPseq experiments 

and find target genes and compare the overlap of these between ARR2, ARR10 and ARR12 in the same 

lines discussed before. A potential ARR-X interaction might be reflected by a similar set of target genes 
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which are bound by ARR2, ARR10 and ARR12 in ARR2-Myc/arr2arr10arr12, ARR10-

HA/arr2arr10arr12, and ARR12-Myc/arr2arr10arr12 plants, while in those expressing ARR10-HA 

simultaneously with ARR12-Myc, ARR10 and ARR12 might target different genes than ARR2. 

Depending on whether the interaction is of importance during development or during photoperiod stress 

treatment, one would detect the ARR-X/ARR10-ARR12 interaction either in control or in stressed plants. 

To explain the complex regulation of photoperiod stress by ARRs, one could also assume that B-type 

ARRs interact indirectly through other proteins. However, experimental evidence would be much more 

difficult to generate as there is no possibility of optimizing experimental conditions to stabilize the 

interaction of two interaction partners compared to a direct ARR-interaction. 

In a forward genetic approach that might lead to the identification of factors that either interact with or 

are downstream targets of type B ARRs, one could mutagenize arr2 or arr2arr10arr12 seeds and screen 

for plants which show a dampened/suppressed sensitivity to photoperiod stress compared to the control 

mutant population. 

 

4.5.2 The importance of leaf/plant age and different tissues in photoperiod stress and 
a potential influence of cytokinin 

 

As shown and discussed in this thesis, ahk2ahk3 leaves might end cell proliferation and enter maturity 

or senescence earlier than wild-type leaves (sections 3.2.3 and 4.2.1). At the molecular level, cell 

proliferation is positively regulated by many factors like ANT (Mizukami and Fischer, 2000), GRFs (Kim 

and Kende, 2004; Horiguchi et al., 2005), AN3/ GIF1 (Kim and Kende, 2004; Lee et al., 2009), ARGOS 

(Hu et al., 2003) or SWP (Autran et al., 2002). Moreover, senescence is regulated by NACs (Ooka et 

al., 2003; Kim et al., 2016, 2018a), WRKYs (Miao et al., 2004; Besseau et al., 2012), SAGs and SDGs 

(Hensel et al., 1993; Lohman et al., 1994; Li et al., 2012). To get further insights into the importance of 

the above mentioned factors regulating cell proliferation and senescence, one could measure the 

transcript and protein abundance of these factors in leaves of both genotypes in three-, four- and five-

week-old plants prior to the exposure to a PLP as well as during the night after the exposure. As a next 

step, one could expose loss- and gain-of-function mutants of potential candidate genes to photoperiod 

stress and determine their phenotypic and molecular responses. 

Beside the discussed molecular foundation of senescence, the increased responsiveness to ethylene 

and the decrease in the ability to prevent ROS accumulation, by e.g. ascorbic acid, are two major ARCs 

in mature leaves that could be causative for the ability to senesce in response to environmental cues 

like a PLP. In future experiments, one could treat wild-type plants and ahk2ahk3 of different age (three-

, four-, and five-week-old) or leaf eight of respective plants with ethylene/ethephon (Zhang and Wen, 

2010) to induce ARC-dependent senescence. Moreover, five-week-old wild type and ahk2ahk3 could 

be supplied with the ascorbic acid precursor L-Gal (Kotchoni et al., 2009) prior to exposure to a PLP to 

get additional insights in the importance of the antioxidant system for the responsive to photoperiod 

stress.  

Not only the age of plants and leaves might be crucial for the formation of the photoperiod stress 

syndrome but also the response of different tissues within a plant might impact on its photoperiod stress 

sensitivity as indicated by the photoperiod stress response of CKX(-4xMyc) overexpressing lines 

(section 3.2.4). To investigate the impact of the exposure to photoperiod stress on different leaf tissues, 
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future experiments could compare the transcriptional changes caused by photoperiod stress in the 

vasculature, the mesophyll and the epidermis with those of total leaves. Moreover, to elucidate the role 

of the different leaf tissues in more detail, one could express ARR2 under the control of tissue-specific 

promoters in the arr2 background to rescue the mutant’s phenotype. Conversely, one could express a 

dominant negative ARR2 (ARR2DN) variant under the same promoters in wild-type and would expect 

an increased sensitivity to photoperiod stress for those plants that express ARR2DN in an important 

tissue. 

Roots are of importance to protect plants from the photoperiod stress syndrome (section 3.1.3) but 

exposure of wild type and ahk2ahk3 to a PLP did not alter the abundance of photoperiod stress marker 

genes (section 3.2.5). To characterize the transcriptional responsiveness of roots in more detail, one 

should perform RNAseq experiments with roots of wild type and ahk2ahk3 that would be either exposed 

to photoperiod stress or not. By comparing the results of these experiments with the expression data 

collected for leaves, one could further identify shared stress markers and might get insights into which 

genes are regulated specifically in the different tissues. 

 

4.5.3 Deciphering the crosstalk between cytokinin, auxin and ethylene in photoperiod 
stress 

 

During the exposure to photoperiod stress, increased IAA and IAA-Asp levels were detected in wild-type 

plants (section 3.3.1) and might be causative for the formation of the stress syndrome as yuc1D plants 

had an increased photoperiod stress sensitivity (section 3.3.3). Future experiments could further 

investigate the importance of IAA during PLP treatment by spraying wild-type plants with IAA or with the 

auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Another approach would be to create lines 

which induce the expression of auxin biosynthesis or degradation/conjugation genes during/after the 

photoperiod stress treatment. For that purpose, promoters of genes that are photoperiod stress induced 

like ZAT12 or BAP1 could be used. The developmental alterations caused by a constantly changed 

auxin homeostasis could thus be minimized.  

In order to find out whether a constant reduction in free IAA results in a reduced sensitivity to photoperiod 

stress, plants impaired in auxin biosynthesis like yuc mutants could be exposed to a PLP. Similarly, in 

order to decipher whether IAA-Asp accumulation is of importance to cope with photoperiod stress by 

decreasing endogenous IAA concentrations, it might be of interest to expose gh3 single and higher order 

mutants to photoperiod stress. Apart from IAA-Asp, altered transcript abundances of IAR3 and ILR3 

indicate that other IAA conjugates could be of importance to cope with prolongations of the light period 

(section 3.3.2). To further elucidate whether these alterations in transcript abundance are relevant for 

auxin homeostasis during photoperiod stress, measurements of respective IAA-conjugates should be 

conducted in wild-type. As discussed before, ahk2ahk3 might have increased IAA levels after exposure 

to photoperiod stress (section 4.3.2). Future experiments should thus measure the content IAA and all 

amino acid conjugates in ahk2ahk3 as well as other cytokinin mutants. 

In addition to auxin biosynthesis and metabolism, auxin signaling has a crucial function in photoperiod 

stress as tir1afb2afb3 were much less sensitive to PLP treatment than wild type (section 3.3.3). Further 

receptor mutant analysis might give indications which auxin receptors are of major importance. In 

addition, future experiments testing the photoperiod stress sensitivity of ahk2ahk3tir1afb 
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quadruple/quintuple mutants and of tir1afb2afb3/abcg14 grafts (similar setup as described in 4.5.1) 

might give additional proof for the crucial role of auxin perception in plants with a reduced cytokinin 

status. 

After exposure of wild-type and ahk2ahk3 plants, an increase in the abundance of genes involved in 

ethylene biosynthesis (e.g. SAM and ACS genes) and signaling (e.g. ETR, ERS, and EBF genes) was 

found (section 3.3.5). To study whether ethylene is induced in response to photoperiod stress, 

measurements of ethylene and its precursors during the formation of the photoperiod stress syndrome 

in wild type and ahk2ahk3 should be performed. Moreover, exposure of plants with an increased or 

impaired ethylene biosynthesis to photoperiod stress might give further insights into its involvement. 

Analysis of ethylene signaling mutants indicates that an impaired ethylene perception increases the 

photoperiod stress sensitivity while a constitutively active signaling has the opposite effect (section 

3.3.6). To decipher which ethylene receptor has the prominent role in the regulation of photoperiod 

stress, lower order mutants of etr1etr2ein4 and etr2ein4ers2 should be exposed to a PLP. To figure out 

which tissues require proper ethylene signaling in the context of photoperiod stress, ctr1 lines 

overexpressing EBF2 that were used before (Vaseva et al., 2018), could be tested. 

As discussed before (section 4.3.4), ETR1 directly interacts with components of the cytokinin signaling 

pathway. To analyze whether ETR1 acts independently of cytokinin signaling during photoperiod stress, 

generation and exposure of e.g. etr1-1ahk2ahk3 and etr1-6ahk2ahk3 mutants to a PLP should be 

considered. An increased sensitivity to photoperiod stress in etr1-1ahk2ahk3 compared to their 

respective ahk2ahk3 and etr1-1 controls would be indicative of a separate regulation of photoperiod 

stress while a sensitivity of etr1-6ahk2ahk3 that is not intermediate to etr1-6 and ahk2ahk3 would 

suggest a shared regulation. In addition, a cytokinin-ethylene interaction could be tested by exposing 

e.g. etr1etr2ein4/abcg14 or ctr1/abcg14 reciprocal grafts to photoperiod stress (similar setup as 

described in 4.5.1). 

Not only ETR1 directly interacts with cytokinin signaling components but also EIN3 as it directly interacts 

with type-B ARRs and as a consequence positively regulates their function (Yan et al., 2017). Hence, it 

might be of interest in future studies to characterize an EIN3/EIL-ARR interaction in the context of 

photoperiod stress by e.g. exposing ein3arr2, eil1arr2 and ein3eil1arr2 mutants to a PLP. Furthermore, 

one could perform ChiPseq experiments with e.g. ARR2 and EIN3 overexpressing lines and expose 

these to photoperiod stress. A comparison between the targets found for each transcription factor might 

provide further indications for a synergistic effect of ethylene and cytokinin and could give insights into 

potential downstream targets of both pathways. 

To investigate a potential interaction between ethylene and auxin during photoperiod stress in more 

detail, one could measure the content of ethylene precursor ACC or ethylene itself in wild type in a 

similar experimental setup as done for auxin measurements. Moreover, ACC/ethylene content could be 

measured in yuc1D or tir1afb2afb3 and IAA/IAA-Asp contents could be determined in ctr1 or in ein2 

plants. If one of the hormones is causative for the formation of the photoperiod stress syndrome, 

hormone levels should correlate with the phenotypic sensitivity of the respective genotypes. Genetic 

evidence for an interaction could be provided by generation and testing of etr1etr2ein4yuc1D plants. If 

auxin is acting downstream of ethylene signaling, the quadruple mutant should phenocopy the yuc1D 

photoperiod stress phenotype. 



 

97 
 

Discussion 

4.5.4 Photoperiod stress as a system to study the ability of plants to adapt to seasonal 
changes in daylength  

 

As mentioned briefly in the introduction to photoperiod stress (section 1.1), differences in the expression 

of marker genes as well as an increase in H2O2 is detectable after a light period that has been prolonged 

by two hours compared to SD cultivation. Moreover, this PLP can prevent a response to a second PLP 

of twelve hours if the second PLP is applied within five days (Dr. Sylvia Illgen, personal communication). 

These results indicate that plants can perceive much shorter extensions in daylength and implicate that 

the given PLP of 32 hours is an extreme version of photoperiod stress. As the quantification of marker 

gene expression and H2O2 has technical limitations in detection, future experiments could indirectly 

prove the perception of very short extensions in daylength by testing e.g. the protective effect of a first 

PLP of eight hours and ten minutes to a second PLP of twelve hours. Independent of that one could 

speculate that an accumulation of H2O2 also occurs by prolonging the daylength by 5 minutes (with a 

much smaller amplitude). In that case, H2O2 might act as a signaling molecule inducing changes in e.g. 

the antioxidant system of chloroplasts, peroxisomes or mitochondria (Reviewed in Niu and Liao, 2016). 

Summing up, photoperiod stress in its current form displays a type of artificial light stress but might 

develop into a setup which, in future, enables us to study the ability of plants to adapt to extensions in 

daylength as they occur in nature during seasonal changes from winter to spring or spring to summer. 
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5 Summary 

 

Photoperiod stress is a novel type of abiotic stress in plants caused by a prolongation of the light period. 

It has been reported that plants require a functional circadian clock as well as a functional cytokinin 

synthesis, metabolism and signaling to cope with photoperiod stress. Within this thesis, additional 

factors influencing the sensitivity to photoperiod stress have been investigated. 

In the first chapter of this work, plants that are either unable to synthesize tZ-type cytokinins (cypDM) or 

transport them from the root to the shoot (abcg14) were exposed to photoperiod stress. As indicated by 

an increased lesion formation, a reduced photosynthetic capacity, an altered expression of marker 

genes and an accumulation of H2O2, these plants were more sensitive to a prolongation of the light 

period. Further experimental evidence for the importance of these type of cytokinins was provided by 

watering of cypDM plants with tZ-type cytokinins which rescued the photoperiod stress phenotype. 

Moreover, cytokinin levels were monitored throughout photoperiod stress treatment and development 

of stress symptoms in wild-type plants and indicated that the treatment leads to a general cytokinin 

accumulation. Apart from cytokinin synthesis and transport, mutant analysis led to the identification of 

AHP2, AHP3 and AHP5 as key components of cytokinin signaling during photoperiod stress. In addition, 

indications for a complex regulatory mechanism of ARR2, ARR10 and ARR12 transcription factors 

during photoperiod stress have been collected and based on these, a model in which ARRs either 

interact with each other or with unknown factors has been proposed. 

In the second chapter, the photoperiod stress sensitivity of young and mature plants and leaves and the 

contribution of different tissues to the photoperiod stress response has been investigated. The 

photoperiod stress sensitivity of wild-type and ahk2ahk3 plants and leaves of different age and the 

photoperiod stress response of leaves on a single rosette was determined. Results indicated that with 

an increasing leaf and plant age the ability to cope with prolongations of the light period decreased. 

Furthermore, analysis of MIR156B and MIM172 overexpressors demonstrated that there is no influence 

of the leaf identity (juvenile vs. adult leaves) on the photoperiod stress response. Moreover, the 

exposure of plants tissue-specifically expressing CKX1 to photoperiod stress indicated that the 

vasculature and epidermis are crucial to regulate the sensitivity to photoperiod stress. Lastly, the 

molecular response to photoperiod stress in leaves and roots of wild type and ahk2ahk3 was compared 

and indicates that roots differ substantially in their response from leaves. 

In the third chapter, the importance of the phytohormones auxin, ethylene and GA in coping with 

photoperiod stress was investigated. Auxin and GA measurements in wild-type leaves, transcriptome 

analysis of wild-type and ahk2ahk3 leaves as well as mutant analysis hints at a protective function of 

ethylene and a photoperiod stress inducing the role of auxin. Strikingly, a partial loss of auxin perception 

in ahk2ahk3 caused a partial rescue of the photoperiod stress phenotype and thus indicates that an 

imbalance in auxin homeostasis might be causative for the increased photoperiod stress sensitivity of 

plants with a lowered cytokinin status. 
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6 Zusammenfassung 

 

Photoperiodischer Stress ist ein kürzlich entdeckter abiotischer Stress, der durch die Verlängerung der 

Lichtperiode hervorgerufen wird. In der Erstveröffentlichung zu photoperiodischem Stress wurde eine 

funktionelle Relevanz der circadianen Uhr und der Synthese, des Metabolismus und der 

Signaltransduktion des Pflanzenhormons Cytokinin beschrieben. In der vorliegenden Arbeit wurden 

weitere Faktoren, die potenziell die Sensitivität gegenüber photoperiodischem Stress beeinflussen, 

untersucht. 

Im ersten Kapitel dieser Arbeit wurden Pflanzen, die entweder tZ-Typ-Cytokinine nicht mehr 

synthetisieren (cypDM) oder von der Wurzel Richtung Spross transportieren können (abcg14) 

photoperiodischem Stress ausgesetzt. Diese Pflanzen reagierten sehr sensitiv auf die Verlängerung der 

Lichtperiode, was eine erhöhte Läsionsbildung, eine Verringerung der photosynthetischen Kapazität, 

eine veränderte Expression von stressregulierten Genen und eine Akkumulation von H2O2 zur Folge 

hatte. Als weiterer experimenteller Beleg für die Wichtigkeit von tZ-Typ Cytokininen reduzierte das 

Wässern von cypDM Pflanzen mit tZ-Typ Cytokininen die Sensitivität der Pflanzen gegenüber 

photoperiodischem Stress. Weiterhin wurde im Wildtyp der Cytokinin-Gehalt über die Ganze 

Stressbehandlung hinweg verfolgt und zeigte, dass die Behandlung der Pflanzen mit photoperiodischem 

Stress zu einer allgemeinen Erhöhung des Cytokinin-Gehalts führt. Die Analyse von Mutanten zeigte 

zudem, dass die Signalkomponenten AHP2, AHP3 und AHP5 sowie die Transkriptionsfaktoren ARR2, 

ARR10 und ARR12 von zentraler Bedeutung für die Cytokinin-Signaltransduktion während 

photoperiodischem Stress ist. Des Weiteren wurde ein Modell vorgeschlagen, in dem ARR2, ARR10 

und ARR12 entweder untereinander oder mit unbekannten Faktoren interagieren. 

Im zweiten Kapitel wurde die Antwort von jungen und alten Pflanzen und Blättern sowie verschiedener 

Gewebe gegenüber photoperiodischem Stress untersucht. Hierfür wurde die Sensitivität von Pflanzen 

und Blättern des Wildtyps und von ahk2ahk3 verschiedenen Alters bestimmt sowie die Antwort 

verschiedener Blätter einer Rosette untersucht. Die Untersuchungen deuten unter anderem auf eine 

reduzierte Toleranz von Pflanzen und Blättern gegenüber einer Verlängerung der Lichtperiode mit 

zunehmendem Alter hin. Die Analyse von MIR156B- und MIM172-überexprimierenden Pflanzen zeigte 

weiterhin, dass die Blattidentität (juvenile vs. adulte Blätter) keinen Einfluss auf die Stressantwort hat. 

Durch die Untersuchung von Pflanzen, die das Cytokinin-abbauende Enzym CKX1 gewebespezifisch 

exprimieren, wurde zudem eine zentrale Aufgabe der Vaskulatur und der Epidermis in der Modulation 

der Stressantwort demonstriert. Der Vergleich der molekularen Antwort von Wurzeln und Blättern deutet 

zudem auf eine unterschiedliche Antwort der Gewebe gegenüber photoperiodischem Stress hin. 

Im dritten Kapitel wurde die Rolle der Pflanzenhormone Auxin, Ethylen und GA für die Sensitivität 

gegenüber photoperiodischem Stress bestimmt. Messungen des Auxin- und GA-Gehalts in Pflanzen 

des Wildtyps, eine Transkriptomanalyse des Wildtyps und von ahk2ahk3-Pflanzen sowie die Analyse 

von Auxin-, Ethylen- und GA-Mutanten demonstrierten eine schützende Wirkung von Ethylen und einen 

Stress-induzierenden Einfluss von Auxin. Eine Beeinträchtigung der Auxin-Signaltransduktion in 

ahk2ahk3-Pflanzen resultierte in einer Verringerung der Stressantwort. Dies könnte darauf hindeuten, 

dass Pflanzen mit einem verringerten Cytokinin-Status ein Ungleichgewicht der Auxin-Homöostase 
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aufweisen, welche für die erhöhte Sensitivität gegenüber photoperiodischem Stress verantwortlich sein 

könnte. 
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Supplemental Figure 1: Maps of vectors used and cloned in this study. 
(A) pDONRP4P1R, (B) pDONRP4P1R-SUC2, (C) pDONR221-CKX1(w/o stopp), (D) pDONRP2RP3-4xMyc, (E) 
pB7m34GW, (F) pB7m34GW-SUC2::CKX1-4xMyc. 
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Supplemental Figure 2: Expression of CKX1 in SUC2::CKX1-4xMyc lines and shoot phenotypes. 
(A) Expression of CKX1 in five-week-old long-day cultivated Col-0, CLV1::CKX1 (CLV1) line #3-3 and SUC2::CKX1-
4xMyc (SUC2) lines #7-5, #10-5 and #23-6 (n ≥ 3). (B) Rosette diameter, (C) shoot FW and (D) area of leaf 8 of 
four-week-old long-day cultivated Col-0, 35S::CKX1 (35S) and SUC2::CKX1-4xMyc (SUC2) lines #7-5, #10-5 and 
#23-6 (n = 10). (E) Pictures of representative plants grown for experiments shown in B to D. Letters indicate 
significant differences between groups and stars indicate a significant difference to Col-0 wild type (p ≤ 0.05). Error 

bars indicate SE. 
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Supplemental Figure 3: Confirmation of RNAseq results via qRT-PCR. 
Transcript abundances of TAA1 (A), TIR1 (B), CTR1 (C), ETR1 (D), GID1A (E) and GAI (F) 0 h, 4 h, 6 h and 12 h 
after the PLP-treatment in control and stressed (PL) leaves of ahk2ahk3 and wild type. Letters indicate significant 

differences between groups (p ≤ 0.05; n = 4). Error bars indicate SE. 
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Supplemental Figure 4: Photoperiod stress does not change levels of GA-precursors in wild-type plants. 
Content of GA9 (A), GA13 (B), GA19 (C), GA20 (D), GA24 (E), GA44 (F) and GA53 (G) in control and PL samples at the 
time points depicted in Figure XA. Stars indicate statistically a significant difference between PL plants and the 
respective control at the given time point (1 - 5) in a paired Student's t-test (p ≤ 0.05; n = 5). Error bars indicate SD. 
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Supplemental Figure 5: Photoperiod stress does not change levels of deactivated GAs in wild-type plants. 
Content of GA8 (A), GA29 (B), GA34 (C) and GA51 (D) in control and PL samples at the time points depicted in Figure 
38A. Stars indicate statistically a significant difference between PL and the respective control at the given time point 

(1 - 5) in a paired Student's t-test (p ≤ 0.05; n = 5). Error bars indicate SD. 
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Supplemental Table 1: DHZ-type cytokinin content in control and PL plants at the time points depicted in 
Figure 12A. 
Bold numbers indicate statistically a significant difference in PL samples versus the controls under each sampling 
time point (1 - 5) in a paired Student's t-test. Values indicate pmol/g FW ± SD. 

Condition 
Total 
DHZ-
types DHZ DHZR 

DHZR 
MP DHZOG DHZROG DHZ7G DHZ9G 

control 1 6.05 ± 0.15 <LOD 0.026 ± 0.007 <LOD 0.059 ± 0.005 0.059 ± 0.005 5.73 ± 0.17 0.17 ± 0.03 
PL 1 5.87 ± 0.46 <LOD 0.053 ± 0.015 <LOD 0.057 ± 0.003 0.062 ± 0.013 5.56 ± 0.43 0.14 ± 0.01 

control 2 5.41 ± 0.21 <LOD 0.027 ± 0.008 <LOD 0.054 ± 0.002 0.067 ± 0.006 5.13 ± 0.20 0.14 ± 0.01 
PL 2 5.87 ± 0.43 <LOD 0.049 ± 0.010 <LOD 0.055 ± 0.006 0.072 ± 0.015 5.58 ± 0.39 0.12 ± 0.01 

control 3 5.35 ± 0.21 <LOD 0.031 ± 0.009 <LOD 0.048 ± 0.006 0.057 ± 0.009 5.11 ± 0.20 0.11 ± 0.02 
PL 3 6.45 ± 0.33 <LOD 0.075 ± 0.021 <LOD 0.062 ± 0.005 0.096 ± 0.021 6.11 ± 0.35 0.10 ± 0.01 

control 4 4.93 ± 0.29 <LOD 0.023 ± 0.002 <LOD 0.042 ± 0.006 0.056 ± 0.007 4.70 ± 0.28 0.11 ± 0.01 
PL 4 6.51 ± 0.92 <LOD 0.138 ± 0.037 <LOD 0.064 ± 0.006 0.122 ± 0.036 6.02 ± 0.86 0.16 ± 0.04 

control 5 4.69 ± 0.26 <LOD 0.023 ± 0.005 <LOD 0.041 ± 0.003 0.056 ± 0.010 4.46 ± 0.24 0.11 ± 0.01 
PL 5 4.66 ± 0.59 <LOD 0.067 ± 0.020 <LOD 0.051 ± 0.008 0.068 ± 0.017 4.38 ± 0.54 0.10 ± 0.02 

 

 

Supplemental Table 2: cZ-type cytokinin content in control and PL plants at the time points depicted in 
Figure 12A. 
Bold numbers indicate statistically a significant difference in PL samples versus the controls under each sampling 

time point (1 - 5) in a paired Student's t-test. Values indicate pmol/g FW ± SD. 

Condition 
Total cZ-

types cZ cZR cZRMP cZOG cZROG cZ7G cZ9G 
control 1 21.6 ± 1.6 <LOD 0.41 ± 0.04 3.72 ± 0.58 1.14 ± 0.08 2.73 ± 0.16 13.32 ± 0.99 0.28 ± 0.01 

PL 1 18.1 ± 1.6 <LOD 0.10 ± 0.02 1.54 ± 0.15 1.20 ± 0.12 2.48 ± 0.21 12.53 ± 1.36 0.23 ± 0.03 
control 2 17.1 ± 0.8 <LOD 0.30 ± 0.10 2.84 ± 0.42 1.02 ± 0.07 2.30 ± 0.13 10.46 ± 0.46 0.21 ± 0.02 

PL 2 16.7 ± 0.8 <LOD 0.21 ± 0.06 2.22 ± 0.46 1.18 ± 0.09 2.07 ± 0.17 10.82 ± 1.04 0.17 ± 0.02 
control 3 21.6 ± 1.0 <LOD 0.33 ± 0.02 4.39 ± 0.23 1.16 ± 0.11 2.64 ± 0.12 12.88 ± 0.79 0.24 ± 0.03 

PL 3 22.0 ± 1.0 <LOD 0.34 ± 0.03 4.43 ± 0.57 1.29 ± 0.06 3.20 ± 0.30 12.59 ± 0.93 0.17 ± 0.01 
control 4 20.1 ± 1.5 <LOD 0.44 ± 0.01 3.56 ± 0.19 0.99 ± 0.04 2.73 ± 0.11 12.13 ± 1.30 0.22 ± 0.02 

PL 4 24.7 ± 3.1 <LOD 3.22 ± 0.92 6.18 ± 0.81 1.29 ± 0.04 3.17 ± 0.38 10.67 ± 1.22 0.20 ± 0.02 
control 5 17.2 ± 1.7 <LOD 0.16 ± 0.03 1.74 ± 0.34 1.04 ± 0.08 2.54 ± 0.25 11.46 ± 1.05 0.25 ± 0.02 

PL 5 20.5 ± 2.4 <LOD 1.55 ± 0.46 4.62 ± 0.88 1.72 ± 0.42 2.56 ± 0.31 9.83 ± 0.73 0.18 ± 0.02 
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