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Abstract 

Controlling molecules in direct contact with surfaces is central to molecular electronics. 

Photochromic molecules immobilized and contacted by a surface promise to provide remote 

control on the molecular level using light. Combining x-ray absorption spectroscopy, differential 

reflectance spectroscopy, and density functional theory, we demonstrate highly efficient and 

bidirectional photochromism of a spirooxazine molecular switch in direct contact with a Au(111) 

surface. The ring-opening reaction by UV light is two orders of magnitude more efficient than 

previously reported for other surface-adsorbed systems and, even more importantly, the red-

light-induced ring-closing is accessible even in contact with a metal surface. This opens new 

prospects for applications by utilizing the gold surface with directly adsorbed functional units 

consisting of molecular photochromic switches.  
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Introduction 

Photochromism of molecules, a well-known and ubiquitous effect, enables to remotely control 

systems on the molecular level by illumination only. Excitation with light of different 

wavelengths leads to a bidirectional switching of the molecules. In addition to having distinct 

absorption spectra, the resultant isomers also exhibit drastically different physical and chemical 

properties, for example in the electric dipole moment.1,2 Different groups of photochromic 

molecules cover a diverse and broad range of current and future applications. Possible 

applications can be found in nature, where fundamental functions, e.g. the activation of the 

retinal molecule,3 can be linked to photoinduced processes. Furthermore, the implementation of 

tailored molecular switches is not limited to biological systems, but compounds designed for 

molecular electronics may lead to a significant improvement in data storage and logic circuits.4,5 

The possibility of optically accessible transistors6 or even memories7 as well as logic modules8 

has recently been demonstrated using molecular switches. Of particular interest for applications 

is the group of spiropyranes (SP) and spirooxazines (SO). Their drastic change of chemical 

reactivity, electric dipole moment, and geometry upon isomerization attracted great attention of 

scientists. In solution, they share the ability for highly efficient light-induced interconversion to 

the corresponding merocyanine (MC) forms. Modifications of SPs and SOs have been studied to 

a large extent, leading to many examples of SP-based materials2 and (a still incomplete) 

understanding of the complex isomerization process of SP/SOs.9–13 For utilization in nanoscale 

systems such as for molecular electronics, immobilization on a surface is required. The switching 

ability needs to persist on the surface, which is challenging for photochromic molecules.14–19 Due 

to additional effects such as hybridization of electronic states, fast relaxation of excited states, or 

steric hindrance, the switching is quenched in proximity to a surface in most systems. To 
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overcome these limitations, attempts to decouple molecules from the surface in self-assembled 

monolayers (SAMs) led to promising results of efficient and reversibly switching layers.20–24 

When in direct contact to a surface, as it is required for molecular electronics, the isomerization 

of photochromic molecules was found to be strongly suppressed,25 non-existent,14,16 or 

energetically reversed.15 With the availability of a fully reversible system in contact with a 

conducting surface, new prospects would evolve for future devices, such as embedding 

molecular switching units in networks, controlling the current through molecular wires, or 

influencing magnetic properties of adsorbed molecules.  

For photochromic molecules on surfaces, irreversible thermal switching from SP to MC was 

observed on Au(111).15 In Refs. 26 and 27, optical switching from SP/SO to MC was 

demonstrated and reversibility was achieved through thermal backswitching. The key to enable a 

reversible isomerization was to exchange the frequently used electron-withdrawing nitro group 

on the pyran moiety by an electron-donating naphtho-group. This leads to a destabilized MC 

configuration and thus a thermally reversible process.26 However, so far no photoinduced 

backswitching has been shown in direct contact with solid surfaces. This lack of optical control 

over electrically contacted molecules hampers the implementation in applied systems. Gold is 

often the preferred choice of substrate or metal electrode for single molecules or in assembling 

molecular layers20,28,29 due to its inert surface, high electrical and thermal conductivity, their well-

known vacuum cleaning procedure, and frequently investigated surfaces.30–34 On gold, the 

famous unidirectional molecular motor has been immobilized35 and phenyl-spacer-group linked 

diarylethene were found to be able to switch their conductance.34 

Scheme 1. Spironaphthooxazine (SNO, left) can be converted to merocyanine (MC) by UV light 

and reversibly back to SNO by visible light or temperature increase. 
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Here, we show the fully reversible and light-only driven photoisomerization of a SO derivate 

in less than one layer of molecules on a Au(111) surface. By exchanging the previously used 

spironaphthopyran derivate26 to spironaphthooxazine (SNO), a change in the energy landscape 

enables repeatable control of the isomerization states using only UV and red LED illumination. 

We prove this by a combination of x-ray absorption (XA) spectroscopy, density functional 

theory (DFT) simulations, and differential reflectance spectroscopy (DRS). DRS, a direct and 

nondestructive method for probing the mean isomerization state on the surface, provides also a 

quantification of the corresponding effective cross-sections of the switching processes. 

The photoinduced reaction is sketched in Scheme 1. A colorless spironaphthooxazine (SNO, 

1,3,3-trimethylindolinonaphthospirooxazine, purchased from TCI Chemicals) can be converted 

to the colored merocyanine (MC) by UV light and reversibly back by visible light or temperature 

increase. This is a well-known photoconversion, intensely studied in various solutions,36,37 gels,38 

or thin films.39,40 

 

Experimental Section 

All sample preparations have been carried out in ultrahigh vacuum (UHV). Standard sputter 

and annealing cycles were applied by using Ar+ ions with an energy of 1 kV and subsequent 

annealing slightly above 900 K for 15 min. The spironaphthooxazine (SNO, 1,3,3-

trimethylindolinonaphthospiro-oxazine), purchased from TCI Chemicals, has been evaporated 

from a home-built Knudsen cell evaporator with a Knudsen cell at a temperature of 363 K onto 
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the substrate maintained at a temperature of 200 K. Coverages were estimated for the x-ray 

measurements by comparing the total absorption of the carbon K edge to the calibration as 

carried out in reference 26. The estimated coverage is 0.70(5) monolayer (ML) for the x-ray 

absorption (XA) studies. For the calibration of the coverage of the samples used in the 

differential reflectance spectroscopy (DRS) setup, the procedure is presented in detail in 

reference 27. A saturation of one layer of molecules has been measured on a Bi(111) surface. 

With this, the change of frequency of an ice-water-cooled quartz microbalance can be related to 

the amount of molecules on the surface. Exactly the same setup has been used for all DRS 

measurements and with the explained calibration, layer thicknesses of 0.7(1) ML were 

investigated. 

XA measurements were carried out at the synchrotron radiation facility BESSY II of the 

Helmholtz-Zentrum Berlin at the beamline UE56-2/PGM-2 with a home-built UHV chamber. 

This undulator beamline exhibits a degree of linear polarization of about 99 %. The energy 

resolution was set to 150 meV for the measurement of the nitrogen K edge. The base pressure 

was 8 × 10-10 mbar for all XA experiments. The signal was acquired with the total electron yield 

method by measuring the amplified sample current via a FEMTO DDPCA-300 sub-femtoampere 

amplifier. A freshly prepared gold grid upstream of the experimental chamber was used to 

normalize the x-ray beam intensity. To extract XA signals arising only from the molecules, all 

measurements are normalized to that measured from a clean substrate. An incidence angle of 25° 

with respect to the surface plane was used for measuring spectra with p- and s-polarized light. 

Magic-angle spectra for identification of the isotropic absorption were acquired at an angle of 

54.7° and using p-polarized light.  
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To reduce the influence of x rays on the sample, the chamber was moved out of the focus of 

the beamline. By that, an x-ray spot of about 1 × 1 mm2 illuminated the sample, leading to an 

estimated photon flux density of about 1013 photons s-1 cm-2. Except for the time evolution of the 

nitrogen K edge in panel (b) of Figure 1, all spectra have been measured on virgin positions. A 

longer exposure for more than 30 minutes leads to a small reduction of absorption intensity on 

the first π* resonances, presumably by destruction of molecules. Additionally, an influence of x-

ray exposure on the switching itself is also observed. This has been observed for different 

switchable molecules before.17,41 Hence, the XA data is not used for a quantification of the 

switching process and the favorable method of DRS is applied instead. The details of the DRS 

experiments and DFT simulations can be found in the Supporting Information. 

 

Results and Discussion 

 

 

Figure 1. Nitrogen K-edge XA of a sub-ML SNO on Au(111). (a) Shows the pristine state after 

evaporation for p and s polarizations measured at 25° angle of incidence and at the magic angle 

(probing the isotropic absorption at 54.7° angle of incidence). (b) Consecutive recording of p-

polarized spectra for 40 min during in-situ UV illumination. (c) XA after 40 min UV 

illumination for both polarizations and the magic angle. 
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Figure 1 shows the results of the XA investigations of SNO on Au(111). With a coverage of 

70% of a fully covered monolayer (ML), direct contact of the molecules with the surface is 

expected. Figure 1 (a) presents the XA at the nitrogen K edge of a freshly evaporated sample at a 

sample temperature of 200 K for all experiments. An intense π* resonance is present at an 

energy of 398.2 eV. The angle dependence, obtained from the comparison of the p-polarized 

spectrum (measured at 25° angle of incidence) and the s-polarized spectrum, enables the 

determination of the mean angle of the corresponding orbital for all probed molecules.42 The 

magic-angle spectrum is measured at an angle of 54.7° to the surface and represents the isotropic 

absorption. Quantitative analysis of the angle dependence yields a mean angle of 35(1)° between 

the orbital and the surface normal. In DFT calculations, this orbital is localized on the 

naphthooxazine moiety of the SNO (cf. Supporting Information). Using a UV LED, a very clear 

change to the XA spectrum can be induced, as shown in Figure 1 (b). After 40 minutes of UV 

illumination, the 398.2 eV peak vanished and a new π* resonance at 397.4 eV evolved (green 

line). In addition, a new resonance appears at 399.7 eV. For different SP derivates, such as nitro-

BIPS15 or spironaphthopyran26 a similar new resonance was found and attributed to the MC form. 

The XA at the nitrogen K edge of MC differs strongly from that of the pristine state. As can be 

seen in Figure 1 (c), beside the different energies of the π* resonances, the intensity ratio 

between p- and s-polarized spectra increases upon UV-light illumination. This signifies an on 

average more flat-lying molecule, with a mean angle of 23(1)° to the surface. The optimization 

of the geometric structure of the free molecule in DFT simulations and previous results in 

literature point towards a flat MC configuration.15 
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To interpret the changes of the observed nitrogen K-edge XA resonances, DFT calculations on 

both isomers were carried out. The StoBe code package43 has been used, which had been 

successfully applied to many photochromic molecules before to identify isomerization states, 

even by comparing the simulated free-molecule XA to the one measured on the surface.15,25,26,44 

For the spectrum of the pristine state in Figure 1 (a), a clear agreement with Figure 2 is visible 

for the SNO isomer (black line). The calculation yields a prominent π* resonance at 398.2 eV 

and two less intense resonances at 399.6 eV and 401.1 eV. The 398.2-eV resonance originates 

from the nitrogen of the oxazine compound, which is the most obvious difference compared to 

spectra of spironaphthopyran.26 The simulation of the corresponding MC species in the most-

observed trans-trans-cis configuration of the carbon and nitrogen (of the oxazine moiety) bonds 

(as sketched in scheme 1), is represented by the red line in Figure 2. The shift of 0.8 eV of the 

first π* resonance in the experimental data is consistent with the shift of 1.0 eV to lower energies 

in the simulated spectrum. The overall spectral shape of the experimental spectrum after UV 

illumination agrees well with the simulated MC spectrum. 

  

Figure 2. Simulation of the XA spectra of SNO and MC for a free molecule by means of DFT 

(cf. Supporting Information). 
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For the x-ray measurements, radiation-induced changes have been observed and therefore, 

virgin sample positions were chosen to measure the spectra in each of the panels in Figure 1. 

This is clearly not possible for an accurate determination of the switching kinetics and attempts 

to reversibly switch the sample isomerization over a longer time span. To investigate and 

demonstrate the control of the isomerization, we thus utilize DRS.27 DRS allows to identify 

changes of the optical reflectance of adsorbate/solid hybrid systems by comparing the reflection 

R(λ) of a system as a function of the wavelength λ with the reflection R0(λ) of the substrate only. 

This is calculated as  

∆R(λ)/R0(λ) = R(λ) / R0(λ) – 1 . 

 

To acquire DRS with very low noise and minimum light exposure during the measurement as 

well as a very precise control over the temperature, a special setup was built to investigate 

photochromic molecules on solid surfaces. Details of this experiment are described briefly in the 

Supporting Information and in Ref. 27. DRS does not relate directly to the reflection of the 

adsorbate since also the complex optical constants of the surface contribute to the signal. For 

only slightly bound or even decoupled molecules, clear assignments of the absorption bands can 

be attained. 
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Figure 3. DRS of a sub-ML SNO on Au(111) at T = 200 K. The pristine state after evaporation 

and six further illumination steps, alternatingly by UV and red LEDs, are shown. Total 

illumination time for UV and red light was more than 100 s and 4000 s, respectively. Negative 

DRS corresponds to a stronger absorption of the organic-inorganic system compared to the clean 

substrate. 

 

Figure 3 shows the DRS of a sub-ML (coverage around 0.7 ML) SNO on Au(111). The 

molecules have been evaporated onto the Au(111) crystal kept at 200 K and all illuminations 

were performed at this temperature by a 365 nm UV LED and a 625 nm red LED (cf. Supporting 

Information). Clearly, a bidirectional photochromism using both LEDs is achieved. The spectra 

reproduce completely after the 1st UV illumination. The pristine spectrum (black line) features a 

peak at 485 nm and one at 350 nm. Except for the 485-nm peak, the overall spectral shape of the 

change in reflectance has similarities with SNO measured in ethanol solution, where only a peak 

at 360 nm is present.40 The 485-nm peak is presumably originating from the change of surface 

properties induced by molecule adsorption, since gold has a strong change of absorption at this 

wavelength and no SNO or MC absorption is expected from solution results.40 A similar peak is 

also observed for alkanethiolate SAMs on Au(111).20 In addition, the same SNO molecule did 

not feature such a peak on a Bi(111) substrate.27 After the first UV illumination a strong change 

of the overall spectral shape of the DRS is achieved (red line). The main difference are new 

peaks at 570 and 625 nm, a reduction of the intensity of the 485-nm peak and a shift to 505 nm. 

By comparing these changes of reflectance to UV/Vis spectra of MC in solution, the presence of 

a MC isomer on the surface can be clearly stated with its absorption close to reported 

wavelengths in solution.40 MC, recorded in ethanol solution, shows a double peak at 570 and 620 
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nm. The DRS upon UV illumination on Au(111) shows a remarkable resemblance with peaks at 

the same wavelength. The double-peak structure stems from either a vibronic shoulder or an 

aggregation of MC molecules,45 but due to the complex interaction of the optical properties, it is 

not feasible to analyze the aggregation in DRS.  

Illumination of the MC isomer on Au(111) with red light leads to a relaxation of the sample 

back to the SNO isomer (blue line). A pronounced difference to the pristine state, especially in 

the region of 485 nm, where the surface-attributed peak is slightly lowered and shifted to 500 

nm, is observed. We attribute this to a rearranging of the SNO molecules, since the difference of 

the SNO states is dominated by increased reflectance at the 485-nm peak. The overall remaining 

difference in DRS intensity does not show the shape of the MC/Au(111) DRS and suggests that 

for the photostationary state by the red light all MC isomers were converted back to SNO. On the 

Bi(111) surface, DRS attributed to the MC isomer was found to have a peak at 625 nm as well, 

but, as previously mentioned, no light-induced photoconversion from MC to SNO could be 

observed.27  

The same sample was switched by three UV illuminations from SNO to MC and three times 

by red light from MC to SNO. Except for the difference between the first two SNO states, all 

further illumination steps led to very reproducible spectra. To quantify the switching kinetics, 

DRS can be utilized as well. Highest reliability was achieved by using the DRS asymmetry, 

more specifically by comparing the reflectance at two different wavelengths (cf. Supporting 

Information and Ref. 27). This asymmetry is defined as 

asym(λ1, λ2) = (R(λ1)-R(λ2))/ (R(λ1)+R(λ2)) . 
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Figure 4. In-detail investigation of the switching kinetics leading to the final isomerization states 

shown in Figure 3. The asymmetry of the 620-nm and 720-nm reflectance intensities is recorded 

as a function of illumination time at a temperature of 200 K. The illumination time before each 

measurement point for UV illumination was 3.7 s, while in the case of red-light illumination it 

was 300 s for the first two series and 100 s for the last illumination series. 

Figure 4 shows the time-resolved asymmetry measurements leading to molecule isomerization 

of which the DRS spectra are shown in Figure 3. Starting from a MC configuration, red-light 

illumination was carried out alternating with recordings of the asymmetry (red lines). For each 

point, 300 s red-light illumination was applied using a 625 nm LED with a FWHM of 18 nm. A 

clear increase of the asymmetry signifies the switching from MC to SNO. Since the MC-to-SNO 

conversion can be induced by either red-light illumination or temperature, it is necessary to 

identify the origin of the effect. We conclude that the MC-to-SNO switching as shown in Figure 

4 originates from red-light illumination: The temperature on the sample is well known from the 

silicon temperature diode. As described in reference 27, the sample is pressed to a thick copper 

block which is PID-controlled with an accuracy of 0.1 K. The complete sample plate is in contact 

with the copper block by pressing it with two strong phosphorus bronze springs. The 
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measurement data do not allow for a full exclusion of an additional temperature-induced 

relaxation, but different observations emphasize the conclusion of light-induced switching:  

(1) Red-light-induced switching at 130 K (cf. Supporting Information section 3) is possible 

whereas thermal stability at higher temperatures (165 K by the same asymmetry measurement, 

more than three hours of measurement time at 200 K) has been observed. 

(2) The thermal relaxation (cf. Supporting Information section 4) reveals the barriers of the 

MC-to-SNO relaxation. Assuming an Arrhenius behavior, the corresponding necessary 

temperature for the switching of the 130 K illumination as a pure thermal effect would be above 

230 K. If such a temperature increase would take place, attempts of illumination at room 

temperature would have led to a direct desorption of the molecules, since they start desorbing 

above room temperature. 

(3) In case of a bad thermal contact, the thermal equilibrium would need longer time to settle 

(e.g. measured with a time constant around 145 s in Ref. 26). This would lead to a strongly 

different average temperature for the measurement with different illumination times, as the one 

shown in Figure 3 for the 3rd red-light illumination (100 s illumination steps instead of 300 s). 

After each measurement point, the asymmetry is recorded for approximately 60 s. In case of the 

100 s illumination time steps, the average temperature would be lower, leading to slower 

switching speeds, which has not been observed. 

(4) SNO on Bi(111) was not possible to switch reversibly back by red light in the same setup 

with the same temperatures and very similar relaxation barriers.27  

In figure 4, the following UV-light illuminations for 3.7 s each point (blue lines, using a 365 

nm LED with a FWHM of 9 nm) present a significantly faster process. This is expected, since 

the quantum yield of the photocoloration is around 0.4 in solution,37 about two orders of 
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magnitude above the one for decoloration.1 The last MC-to-SNO switching series with 

illumination steps of 100 s is saturated slightly below the other two red illuminations, but this 

might be considered an artifact, due to possible experimental drifts.27 

A closer look into the time dependence reveals the high efficiency of the process: The time 

constants as determined by the single-exponential fits are 1074(57) s (1st red), 16(1) s (2nd UV, 

first blue line), 872(21) s (2nd red), 14(1) s (3rd UV), 836(27) s (3rd red). This is potentially a 

process that can be trained by illumination cycles and therefore the switching efficiencies after 

each step increase slightly. A rearrangement as assumed for the initial UV/red light cycles of the 

molecules is likely. Additionally, the fits for UV illumination are not completely fitting to the 

experimental data. Beside the possibility of experimental drifts, also a more complex behavior 

such as cooperativity might be present.  For the fastest UV and red illuminations, effective cross 

sections can be calculated using the photon flux density and switching time constant by σeff = 

(ϕτ)-1 as σeff,UV = 2.5(6) × 10-19 cm2, and σeff,red = 1.4(3) × 10-21 cm2. The process is highly efficient 

compared to previous findings on similar molecules on surfaces, where effective cross-sections 

were lower by around two orders of magnitude.16,26 There is still a high potential for further 

increase of the efficiency, since in solution cross-sections up to 10-16 cm2 have been 

determined.1,37 The improved effective cross-section compared to spironaphthopyran or nitro-

BIPS could originate from the formation of a singlet state instead of a triplet state upon UV-

excitation as has been discussed for SOs in gels or films.38,39 Our findings show that an efficient 

photochromism can also be achieved on the surface without a decoupling layer, which enhances 

the amount of possible applications and reduces the complexity of the system. This and the 

enhanced effective cross-section of the SNO-to-MC conversion constitute a huge leap forward in 

realization of photochromic molecular devices on solid surfaces.  
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Conclusions 

In conclusion, we demonstrate a functional photochromic molecular switch directly adsorbed 

on a Au(111) surface, which had previously been found to stabilize MC isomers. XA 

measurements reveal an intact SNO that can be converted to MC by UV illumination. The fully 

reversible, purely light-driven process in molecules immobilized on a surface is demonstrated by 

DRS using UV and red LEDs for the control of the isomerization. In contrast to previous studies 

of photochromic molecules on surfaces, the effective cross-section for the SNO-to-MC 

photoconversion is increased by nearly two orders of magnitude. This opens new horizons for 

applications of photochromic molecules, e.g. in assemblies with networks or inorganic 

molecules. 
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