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ABSTRACT The occurrence of carbapenemase-producing Enterobacteriaceae (CPE)
poses a considerable risk for public health. The gene for Klebsiella pneumoniae
carbapenemase-2 (KPC-2) has been reported in many countries worldwide, and
KPC-2-producing strains are mainly of human origin. In this study, we identified
two novel hybrid plasmids that carry either blaKPC-2 or the fosfomycin resistance
gene fosA3 in the multiresistant K. pneumoniae isolate K15 of swine origin in
China. The blaKPC-2-bearing plasmid pK15-KPC was a fusion derivative of an
IncF33:A�:B� incompatibility group (Inc) plasmid and chromosomal sequences
of K. pneumoniae (CSKP). A 5-bp direct target sequence duplication (GACTA) was
identified at the boundaries of the CSKP, suggesting that the integration might
have been due to a transposition event. The blaKPC-2 gene on pK15-KPC was in a
derivative of ΔTn6296-1. The multireplicon fosA3-carrying IncN-IncR plasmid
pK15-FOS also showed a mosaic structure, possibly originating from a recombi-
nation between an epidemic fosA3-carrying pHN7A8-like plasmid and a pKPC-
LK30-like IncR plasmid. Stability tests demonstrated that both novel hybrid plas-
mids were stably maintained in the original host without antibiotic selection but
were lost from the transformants after approximately 200 generations. This is ap-
parently the first description of a porcine sequence type 11 (ST11) K. pneumoniae
isolate coproducing KPC-2 and FosA3 via pK15-KPC and pK15-FOS, respectively.
The multidrug resistance (MDR) phenotype of this high-risk K. pneumoniae isolate
may contribute to its spread and its persistence.

IMPORTANCE The global dissemination of carbapenem resistance genes is of great
concern. Animals are usually considered a reservoir of resistance genes and an im-
portant source of human infection. Although carbapenemase-producing Enterobacte-
riaceae strains of animal origin have been reported increasingly, blaKPC-2-positive
strains from food-producing animals are still rare. In this study, we first describe the
isolation and characterization of a carbapenem-resistant Klebsiella pneumoniae ST11
isolate, strain K15, which is of pig origin and coproduces KPC-2 and FosA3 via two
novel hybrid plasmids. Furthermore, our findings highlight that this ST11 Klebsiella
pneumoniae strain K15 is most likely of human origin and could be easily transmit-
ted back to humans via direct contact or food intake. In light of our findings, signifi-
cant attention must be paid to monitoring the prevalence and further evolution of
blaKPC-2-carrying plasmids among the Enterobacteriaceae strains of animal origin.
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Since the Klebsiella pneumoniae carbapenemase (KPC) was first identified in North
Carolina in 1996 (1), KPC-producing K. pneumoniae (KPC-Kp) strains have spread

globally. These strains are challenging pathogens that pose a great threat to public
health, due to their multidrug resistance (MDR) phenotypes and due to significantly
higher rates of morbidity and mortality associated with infections by these strains
compared to the rates of morbidity and mortality associated with nonresistant bacteria
(2, 3). As a member of the carbapenem-resistant Enterobacteriaceae (CRE), KPC-Kp was
recognized as an urgent threat to public health in reports issued by the U.S. CDC and
the UK Department of Health (4). Recently, the occurrence and spread of extended-
spectrum �-lactamase (ESBL)-producing hypervirulent K. pneumoniae (HvKP) and KPC-
2-producing HvKP have deepened our understanding of the importance of KPC-Kp
(5–8). The ongoing rapid global dissemination of KPC-Kp mainly involves the dominant
clonal group 258 (CG258), including the most prevalent multilocus sequence types
ST258 and ST11, which prevail in different parts of the world. The horizontal transfer of
KPC-encoding plasmids between bacteria of the same or different genera has also been
documented (9, 10).

In contrast to the situation in humans, K. pneumoniae is widely considered an
opportunistic pathogen that can inhabit the gastrointestinal tract of healthy animals,
although it can also cause invasive diseases in different animal species (e.g., pig,
chicken, and horse) and is a common cause of mastitis in dairy cows (11). The
antimicrobial resistance of K. pneumoniae isolates of animal origin has not received
much attention compared with that of other Enterobacteriaceae, such as Escherichia coli.
However, there have been growing concerns in the veterinary field regarding the
occurrence of ESBL-producing K. pneumoniae isolates in companion animals, as well as
food-producing animals, in recent years (12–14). Nonetheless, KPC-Kp isolates from
food-producing animals have rarely been detected so far. A few reports describe the
occurrence of such isolates among broilers in Egypt (15) or functional blaKPC-2 se-
quences in beef cattle feces in the United States (16).

In the present study, we report for the first time the occurrence of a KPC-2- and
FosA3-producing K. pneumoniae isolate, strain K15, obtained from a diseased pig in
China. We further analyze in depth the structure and organization of the two plasmids
that harbored the blaKPC-2 and fosA3 genes.

RESULTS AND DISCUSSION
Phenotypic and genotypic characteristics of the KPC-2-producing strain. K.

pneumoniae K15 exhibited an MDR profile for a wide range of antimicrobial agents,
including meropenem, cefepime, and ciprofloxacin, which are classified as critically
important antimicrobials for human medicine by the World Health Organization (WHO).
However, this isolate was susceptible to colistin and tetracycline (Table 1) (17). Com-
prehensive resistome analysis of K. pneumoniae K15 revealed the presence of �-lactam
resistance genes (blaKPC-2, blaCTX-M-55/-14, and blaTEM-1) and other important resistance
determinants conferring resistance to quinolones (qnrS1 and oqxAB), aminoglycosides
[aadA2, rmtB, and aac(3)-IId], fosfomycin (fosA3), chloramphenicol (catA2), chloram-
phenicol/florfenicol (floR), sulfonamides (sul1), and trimethoprim (dfrA1). S1 nuclease
pulsed-field gel electrophoresis (S1-PFGE) and hybridization revealed two plasmids in
the K15 strain, with the blaKPC-2 and fosA3 genes being located on different plasmids of

TABLE 1 MICs for clinical strain K15 and its transformants TK15-KPC and TK15-FOS

Isolate Species Plasmid(s) harbored

MIC (mg/liter) ofa:

MEM FOS CAZ FEP GEN CST CIP FFC CHL TET AMK SXT

K15 K. pneumoniae pK15-KPC, pK15-FOS 256 �512 256 256 �512 2 256 32 �512 2 512 �32/608
TK15-KPC E. coli pK15-KPC 2 16 16 2 0.5 0.25 �0.031 4 128 0.5 2 0.063/1.19
TK15-FOS E. coli pK15-FOS 0.031 512 1 0.5 256 0.25 �0.031 4 2 0.5 256 0.063/1.19
DH5� E. coli 0.031 16 0.5 0.031 1 0.25 �0.031 4 2 1 2 0.063/1.19
aMEM, meropenem; FOS, fosfomycin; CAZ, ceftazidime; FEP, cefepime; GEN, gentamicin; CST, colistin; CIP, ciprofloxacin; FFC, florfenicol; CHL, chloramphenicol; TET,
tetracycline; AMK, amikacin; SXT, trimethoprim-sulfamethoxazole.
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�180 kb (designated pK15-KPC) and �115 kb (designated pK15-FOS), respectively.
Although conjugation experiments were unsuccessful for both plasmids, they could be
transferred into E. coli strain DH5� via electrotransformation. The two transformants,
TK15-KPC and TK15-FOS, exhibited substantially increased MICs for �-lactams (includ-
ing meropenem) and fosfomycin, respectively (Table 1). Notably, the K15 strain belongs
to the high-risk clone K. pneumoniae ST11, which is the most frequent sequence type
contributing to the worldwide spread of KPC-Kp in Asia (10). This clone has also been
found in Latin America and Spain (18, 19). The dominant clone K. pneumoniae ST11
mediating the spread of KPC or ESBL genes has also been detected in broilers in Egypt
and China (15, 20), respectively. These findings, combined with our results, indicate that
K. pneumoniae ST11 is spreading across continents and across host species.

Structure of the KPC-2-encoding plasmid pK15-KPC. Plasmid pK15-KPC is
180,154 bp in size, has an average GC content of 54.6%, and contains 125 open reading
frames (ORFs), only 33 of which encode proteins with known functions, such as plasmid
replication, transfer, or maintenance or antimicrobial resistance (Table S1 in the sup-
plemental material). pK15-KPC belongs to the IncF33:A�:B� incompatibility (Inc)
group. The overall genetic structure of pK15-KPC is a fusion derived from a plasmid and
chromosomal sequences. It can be divided into two genetically distinct modules: (i) a
90,244-bp plasmid backbone and (ii) an 89,905-bp fragment that contains chromo-
somal sequences of K. pneumoniae (CSKP) (Fig. 1).

Except for the CSKP fragment, pK15-KPC shows high homology to an unnamed
F33:A�:B� blaKPC-2-carrying plasmid (GenBank accession number CP023942) from
human K. pneumoniae strain FDAARGOS_444, isolated in the United States. We ob-
served 100% query coverage and 99% nucleotide identity. Additionally, 85% and 74%
query coverage and 99% nucleotide similarities were observed when comparing pK15-
KPC with the blaKPC-2-harboring plasmid pKPC-CR-HvKP4 from a carbapenem-resistant
hypervirulent ST11 K. pneumoniae strain in China (7) and plasmid pKP1034 (GenBank
accession number KP893385) coharboring blaKPC-2, fosA3, rmtB, and blaCTX-M-65 from an
ST11 K. pneumoniae strain in China, both of which were multireplicon plasmids carrying
IncF33:A�:B� and IncR replicons.

Comparative analysis of the replication region (composed of repA1, repA2, and repA4
genes) and the transfer region (comprising trbJ, trbF, and traHGSTDI genes) of pK15-KPC
showed that the two regions were organized very similarly to K. pneumoniae plasmids
pKP1034, p1068-KPC, and pKPC-CR-HvKP4, as well as the E. coli plasmid pHN7A8, an
F33:A�:B� type epidemic plasmid cocarrying fosA3, blaCTX-M-65, rmtB, and blaTEM-1

genes (21). However, the tra region in pK15-KPC is incomplete compared with that in
pHN7A8, and the deleted part of the tra region in pK15-KPC is occupied by ΔtnpA of
Tn2, an IS1294 element, a putative ORF encoding a phage integrase, and an IS26
element. The deletion of the tra region in pK15-KPC may explain why pK15-KPC was
not able to transfer conjugatively to E. coli strain J53, as was pHN7A8. Another two
pHN7A8-related multiresistance plasmids coharboring the blaCTX-M-65, fosA3, and rmtB
genes, p397Kp and p477Kp, were detected in human clinical isolates of K. pneumoniae
from Bolivia in 2016 (22), indicating intercontinental dissemination of pHN7A8-like
plasmids. Altogether, these results, combined with our findings in this study, suggest
that genetic recombination or extensive gene exchange events can readily occur
between pHN7A8 and other plasmids of different incompatibility groups, including
pK15-KPC.

Multidrug resistance region of the KPC-2-encoding plasmid pK15-KPC. The
multidrug resistance (MDR) plasmid pK15-KPC harbors three antibiotic resistance genes
located in two drug resistance (DR) regions (Fig. 1). The primary components of the
22.4-kb DR region 1 consist of ΔTn21, containing an intact mercury resistance operon
and a 1,210-bp remnant of the In2 class 1 integron tniA gene, ΔTn6296, carrying the
blaKPC-2 gene, and one IS26-based transposition unit composed of ΔIS26-blaSHV-12-
deoR-yjbJ-yjbK-yjbM-ΔIS26 (Fig. 2a). As reported in Europe and the Americas, the most
common blaKPC-2-containing mobile element is a Tn3 family transposon named Tn4401.
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Its core structure is Tn3-ISKpn7-blaKPC-2-ISKpn6, which is mainly carried by Inc group FII
plasmids, as well as a variety of other plasmids of different Inc groups, such as FIA, I2,
A/C, N, X, R, P, U, W, L/M, and ColE (3). However, the blaKPC-2 gene found in isolates from
China is exclusively located in the novel transposon Tn6296 and its derivatives (23).
Archetypal Tn6296, as observed in the MDR plasmid pKP048, derived from the ST11 K.
pneumoniae isolate KP048 in China (24), is formed by the insertion of a core blaKPC-2

module (Tn6376-blaKPC-2-ΔISKpn6-korC-klcA-orf279-orf396-ΔrepB) that has been inte-
grated into Tn1722, thereby resulting in the truncation of the gene mcP (Fig. 2a). To
date, at least four Tn6296 derivatives resulting from insertions, deletions, and rear-

FIG 1 Sequence alignment of K. pneumoniae strain KPN1482 chromosome DNA (GenBank accession number NZ_CP020841), plasmid unnamed 2 (GenBank
accession number CP023938), pKP048 (GenBank accession number FJ628167), pHN7A8 (GenBank accession number JN232517), pKP1034 (GenBank accession
number KP893385), p1068-KPC (GenBank accession number MF168402), pKPC-CR-HvKP4 (GenBank accession number MF437312), and pK15-KPC (GenBank
accession number MK433207). pK15-KPC was used as a reference to compare with the strain KPN1482 chromosome, plasmid unnamed 2, pKP048, pHN7A8,
pKP1034, p1068-KPC, and pKPC-CR-HvKP4. The red outer circle denotes annotation of the reference plasmid. The circles show (from outside to inside): predicted
coding sequences (CDS), GC skew, GC content, and scale in kilobase pairs. CSKP represents the chromosomal sequences of K. pneumoniae. Red star, plasmid
was isolated from a K. pneumoniae strain; red triangle, plasmid was isolated from an E. coli strain.
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rangements at different locations have been reported in KPC-producing plasmids from
human K. pneumoniae isolates in China (23). Based on the above-mentioned classifi-
cation criteria (23), the blaKPC-2 gene in pK15-KPC is in the ΔTn6296-1 derivative that
lacks a 3,804-bp region including the Tn6376-associated tnpA gene and ΔmcP (Fig. 2a).

FIG 2 (a) Organization of the plasmid pK15-KPC MDR region. The MDR region of plasmid pK15-KPC is compared with Tn1722 (GenBank accession number X61367),
pKP048 (GenBank accession number FJ628167), p1068-KPC (GenBank accession number MF168402), and Tn21 (GenBank accession number AF071413). The 38-bp
IRmer21 of the Tn21 sequence is boxed. (b) Linear comparison of the region of plasmid pK15-KPC in which CSKP is inserted and plasmid pKP1034 (GenBank accession
number KP893385). The 5-bp direct target site duplication sequences (GACTA) of CSKP are boxed. Genes are denoted by arrows and are colored based on gene
function classification. Shaded regions denote shared regions of homology (�95% nucleotide identity). The scale of identity is shown on the left.
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Such a structure is also found in the two K. pneumoniae plasmids pKPC-LK30 (GenBank
accession number KC405622) and p1068-KPC (GenBank accession number MF168402).

Immediately downstream from the 5= end of ΔTn6296 of pK15-KPC, a truncated
IS26-based transposition unit harboring the �-lactam resistance gene blaSHV-2 was
detected, which is also found in p1068-KPC from a human K. pneumoniae strain in
China. Nonetheless, the truncated IS26-based transposition unit in pK15-KPC differs
from its counterpart in p1068-KPC by the absence of 272 bp of the 5= end of the IS26
element, which is due to the insertion of another IS26 element. Upstream from the IS26
element, adjacent to the 5= end of ΔTn6296, are a 3= terminal remnant of ΔTn21
containing the 16-bp inverted repeat IRmer21 of Tn21, a mercury resistance operon
(merRTPCADE), and ΔtniA.

DR region 2 comprises the chloramphenicol resistance gene catA2 flanked by two
directly oriented IS26 elements (Fig. 1 and 2b). This has commonly been found on
different Inc group plasmids, such as p64917-KPC (IncFII and IncR) (GenBank accession
number MF168405) from a human K. pneumoniae isolate and pIMP-4-EC62 (IncHI2)
(GenBank accession number MH829594) from a swine Enterobacter cloacae isolate,
indicating that it is horizontally transferred via plasmids that vary regarding replicon
type, source, and size.

The chromosomal insert in pK15-KPC. The remaining region (nt 53864 to 180152)
in pK15-KPC shares high identity with the corresponding fragment in the IncR-F33:
A�:B� plasmid pKP1034 (Fig. 2b). However, the insertion of the 89,905-bp CSKP in the
IS5075 element in pK15-KPC was not present in pKP1034. The 5-bp direct target
sequence repeat (target site duplication [TSD]) 5=-GACTA-3= at the boundaries of the
CSKP may point toward a probable integration by transposition (Fig. 2b). Notably, the
same chromosomal fragment has been present not only in the chromosomal DNA of
human K. pneumoniae strains from different countries, such as the WCHKP015625 strain
(China, GenBank accession number CP033396) and FDAARGOS_443 strain (United
States, GenBank accession number CP023933), but also on the chromosome of K15,
further supporting its integrative nature. Apart from two resistance-related ORFs en-
coding the 16S rRNA methyltransferase RsmB and the multidrug efflux transporter
permease (resistance-nodulation-division [RND] family efflux pump), the CSKP also
contained genes that code for products related to the toxin-antitoxin system HicB, the
AaeAB efflux system, and the DNA-protecting protein DprA, all of which likely contri-
bute to the stability and maintenance of pK15-KPC in the parental strain K15 (Fig. 3a).
Chromosomal fragments have sporadically been inserted into plasmids, thereby gen-
erating hybrid elements like the IncP-2 plasmid pJB37 from Pseudomonas aeruginosa
(25). To the best of our knowledge, this is the first report of such a large chromosomal
fragment being integrated into a plasmid.

Structure and MDR region of the FosA3-encoding plasmid pK15-FOS. Plasmid
pK15-FOS has a size of 112,375 bp and an average GC content of 51.9% (Fig. 4). There

FIG 3 Measurement of pK15-KPC (a) and pK15-FOS (b) stability in donor and transformants. Serial passaging in antibiotic-free
LB broth was performed daily. At 0, 50, 100, 150, and 200 generations, samples were tested. The y axis shows the percentages
of cells containing the plasmid in all picked cells. Data points and error bars represent mean values � standard deviations (SD)
of three independent lineages.
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are 87 predicted ORFs, 48.2% of which encode hypothetical proteins (Table S2).
pK15-FOS has two replicons, an IncR replicon and an IncN replicon. BLASTn compari-
sons revealed that the backbone of pK15-FOS is highly homologous to that of IncR
plasmids, such as the K. pneumoniae plasmids pKPC-LK30 (GenBank accession number
KC405622) from Taiwan, pKP1034 (GenBank accession number KP893385) from China,
and pKP1780 (GenBank accession number JX424614) from Greece (Fig. 5a). Its back-
bone regions harbor the genes repB, resD, parAB, umuCD, and retA, which are involved
in plasmid replication, partitioning, maintenance, and stability. Sequence analysis
revealed that the multidrug resistance plasmid pK15-FOS carries five antimicrobial
resistance genes, including fosA3, blaCTX-M-55, rmtB, and an intact and a truncated

FIG 4 Gene map of fosA3-carrying plasmid pK15-FOS. GC content and GC skew are indicated from the inside out. Positions and transcriptional directions of
the ORFs are indicated by arrows.
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blaTEM-1, all included in a single MDR region. In addition, six copies of intact IS26 were
found to at different sites of the MDR region. Because no TSD was found flanking IS26,
it is possible that the generation of this MDR region was driven by IS26-mediated
homologous recombination events. Linear comparisons demonstrated that an �32-kb
segment immediately upstream from the MDR region exhibits high nucleotide se-
quence identity with the corresponding region of the epidemic IncF33:A�:B� type

FIG 5 (a) Linear comparison of the complete sequences of plasmids pK15-FOS (GenBank accession number MK433206), pHN7A8 (GenBank accession number
JN232517), and pKPC-LK30 (GenBank accession number KC405622). Blue shading indicates shared regions with a high degree of homology. Genes are
represented by arrows and are colored depending on gene function. Genes are color coded as follows: dark blue, replication; green, conjugative transfer; brown,
stability; red, antimicrobial resistance; yellow, mobile element; gray, hypothetical proteins. The scale of identity is shown on the left. (b) A comparative analysis
of the complex MDR region of pK15-FOS, Tn2 (accession number HM749967), plasmid pHNZY118 (accession number MG197503), and plasmid unnamed3
(accession number CP023934). Genes are displayed by arrows and are colored depending on gene function classification. Vertical lines represent the IRs of ISs
or transposon Tn2.
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fosA3-carrying plasmid pHN7A8, isolated from an E. coli strain from a dog in China
(Fig. 5a) (21). The pHN7A8-like fragment contains a partial tra region and several genes
related to plasmid maintenance and stability, such as psiAB, parB, ssb, and stbAB. The
incomplete transfer region likely explains why plasmid pK15-FOS is nonconjugative.

Plasmid pK15-FOS exhibits a highly mosaic structure, suggesting that it has possibly
undergone multiple recombination events. The analysis of the genetic environment
revealed that the fosA3 gene is in an IS26-based composite transposon (IS26-fosA3-
orf1-orf2-Δorf3-IS26) that has been identified in plasmids of diverse replicons, such as
IncHI2, IncN, and IncF (26, 27). When compared with plasmid pHNZY118 (GenBank
accession number MG197503), isolated from an E. coli strain of human origin, the MDR
region shares high similarity (Fig. 5b). However, the downstream region of IS26 adjacent
to gshB is in the opposite orientation. Upstream from rmtB, a remnant of Tn2, including
blaTEM-1 and ΔtnpR, was found. Moreover, the �7.6-kb segment downstream from rmtB
and IS26 adjacent to ISEcp1 exhibits a high degree of identity with the corresponding
region of another unnamed plasmid (GenBank accession number CP023934), isolated
from a K. pneumoniae strain of human origin. Whether this structural unit flanked by
IS26 is able to form more complicated IS26-based composite transposons requires
further research.

Although fosfomycin is not used in food-producing animals in China, an increasing
prevalence of fosA3 in bacteria of animal origins has been reported (27, 28). Overall, the
coexistence of fosA3 with other resistance genes on the same plasmid may result in the
persistence and dissemination of fosA3 in food-producing animals, even in the absence
of a direct selection pressure. IncR plasmids are closely associated with the spread of
clinically important resistance genes, including blaKPC-2, blaNDM-1, blaVIM-1, blaCTX-M, and
armA (29–31). Despite their inability to transfer by conjugation, IncR plasmids can
broaden their host range and enhance mobility by fusion with other types of plasmids,
such as IncFII, IncN, and IncA/C (31–33). Furthermore, plasmid stability experiments
showed that pK15-FOS was also stably maintained in K. pneumoniae K15 (Fig. 3b), even
though it was unstable in the E. coli transformant. This may have limited the spread of
this plasmid between different bacterial species. However, pK15-FOS might become
another important vehicle for and play a vital role in the dissemination of antimicrobial
resistance genes like fosA3 and blaCTX-M-55 in K. pneumoniae.

Until now, there have been some reports about human isolates of K. pneumoniae
coharboring KPC-2 and FosA3 (34–36). To the best of our knowledge, this is the first
report of an ST11 KPC-carrying K. pneumoniae isolate coproducing KPC-2 and FosA3
being recovered from a pig, specifically, from a lung sample of a diseased pig in China.
From a One Health perspective, colocalization of these two genes in a single isolate of
food-producing-animal origin will pose a challenge to public health. Considering the
absence of carbapenem use in food-producing animals, the genotype and antibiotic
resistance pattern of strain K15, and the blaKPC-2-harboring ΔTn6296 transposon in
pK15-KPC, this isolate is most likely of human origin. A serious finding is that this isolate
carries 14 resistance genes, 7 of which are plasmid borne. The copresence of many
resistance genes in a single strain provides this isolate with the selective advantage
needed to successfully spread or persist in the animal or the farm environment. It
cannot be excluded that this isolate may spread to humans via direct contact or the
food chain. As such, further studies are needed to investigate the prevalence of blaKPC

genes among Gram-negative bacteria of animal origin.

MATERIALS AND METHODS
Bacterial isolate and antibiotic susceptibility testing. During a surveillance study on carbapenem

resistance in Klebsiella spp. of swine origin in China from July 2017 to June 2018, 103 Klebsiella species
isolates were obtained from 351 swine clinical samples (278 pathological lung specimens and 73 nasal
swabs). Resistance to meropenem was tested by growth on MacConkey agar plates containing 2 mg/liter
meropenem for 18 h at 37°C. A single meropenem-resistant isolate, K15, was identified, and the species
was confirmed using an API 20E strip (bioMérieux, Marcy-l’Étoile, France) and 16S rRNA gene sequencing
(37). Multilocus sequence typing (MLST) of K. pneumoniae was then performed according to a published
protocol (38). The isolate was screened for the presence of major carbapenemase genes by PCR and
sequencing of the amplicons, as described previously (39). The MICs of the original isolate and its
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transformants were determined using the broth microdilution and agar dilution methods according to
CLSI recommendations (40). The MICs of fosfomycin were determined by the agar dilution method on
Mueller-Hinton (MH) agar supplemented with 25 �g/ml glucose 6-phosphate. E. coli ATCC 25922 served
as a quality control strain.

Plasmid analysis, S1-PFGE, and Southern blot hybridization. Plasmid profiles were prepared as
previously described (26, 41). Electrotransformation and conjugal transfer of the plasmids were per-
formed using E. coli strains DH5� and J53 as recipients for the selection of blaKPC-2- or fosA3-positive
transformants and transconjugants, respectively (26, 41). S1-PFGE and hybridization with blaKPC-2 and
fosA3 probes were employed for plasmid profiling and determining the locations of the above-
mentioned resistance genes (26, 41).

Plasmid sequencing and bioinformatics analysis. To gain insight into the resistome of K. pneu-
moniae K15 and the genetic environment of blaKPC-2 and fosA3 on the two plasmids, the draft genome
sequence of K. pneumoniae K15 and the complete sequences of the two plasmids, obtained from the
corresponding transformants, were determined using the Illumina NextSeq 500 and the PacBio RSII
system (Tianjin Biochip Corporation, Tianjin, China). RAST combined with BLASTP/BLASTN was applied
for annotating the two plasmid sequences. The resistome, MLST, and plasmid replicon typing were
analyzed using bioinformatics software available from the Center for Genomic Epidemiology (http://
www.genomicepidemiology.org). The BLAST Ring Image Generator (BRIG) tool was applied to compare
plasmids.

Plasmid stability tests. The stability of two hybrid plasmids in the parental strain K. pneumoniae K15
and its E. coli transformants TK15-KPC (harboring pK15-KPC) and TK15-FOS (harboring pK15-FOS) was
evaluated by passaging in antibiotic-free Luria-Bertani (LB) broth, as described previously (42).

Accession numbers. The complete nucleotide sequences of plasmids pK15-KPC and pK15-FOS have
been deposited in GenBank under accession numbers MK433207 and MK433206, respectively.
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