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ABSTRACT: There is a recent surge of interest in amplification and detection of tiny motion
in the growing field of opto and electro mechanics. Here, we demonstrate widely tunable, broad
bandwidth and high gain all-mechanical motion amplifiers based on graphene/Silicon Nitride (SiNx)
hybrids. In these devices, a tiny motion of a large-area SiNx membrane is transduced to a much
larger motion in a graphene drum resonator coupled to SiNx. Furthermore, the thermal noise of
graphene is reduced (squeezed) through parametric tension modulation. The parameters of the am-
plifier are measured by photothermally actuating SiNx and interferometrically detecting graphene
displacement. We obtain displacement power gain of 38 dB and demonstrate 4.7 dB of squeezing
resulting in a detection sensitivity of 3.8 fm/

√
Hz, close to the thermal noise limit of SiNx.

KEYWORDS: Graphene, Nems, Transducer, Parametric Amplification, Thermomechanical
Squeezing.

Measuring small forces with high precision has been a
major goal in fields ranging from gravitational astronomy
to atomic force microscopy1–3. Mechanical resonators of
low mass and high quality factor (Q), that operate by
converting force into displacement, have been a dom-
inant choice for such detectors. Resonators based on
two-dimensional (2D) materials such as graphene4,5, with
Q > 2 × 104 at cryogenic temperatures, have enabled
detection of forces at a record level, down to zeptonew-
tons6,7. However, Q of graphene resonators decreases by
orders of magnitude at room temperatures. Alternatively
for room temperature operation, more traditional Silicon
Nitride (SiNx) resonators with Q above 2×107 and force
sensitivity of attonewtons have been developed8,9. Sig-
nificantly larger mass of these resonators compared to
graphene leads to small amplitude of the force-induced
motion. Accordingly, a variety of transducers have been
proposed to amplify tiny motion10–12. Traditionally, op-
tical interferometers have enabled detection of resonator
displacements at unprecedented precision. At the same
time, high optical power used in such interferometers of-
ten leads to heating and is particularly severe for micro-
resonators in restricted on-chip environment. A variety
of auxiliary on-chip motion pre-amplifiers and transduc-
ers have been proposed and demonstrated to improve
detection sensitivity without additional heating. These
include tunnelling point contacts13–15, superconductors
with capacitive coupling6,7,16 and microwave cavities17,
all demonstrating high gain and sensitivity11,12. How-
ever, reliable and robust amplification of motion remains
challenging. In particular, stringent coupling require-
ments of these transducers to the target resonator result
in low device yield. Furthermore resonant nature of such
amplifiers designed at a specific frequency compromises
on tunability, and their high Q leads to a narrow detec-
tion bandwidth.

Here we realize a highly tunable, broad bandwidth,
high-gain, all-mechanical motion amplifier18,19 at room
temperature that is based on SiNx/graphene hybrids.

Our goal is to amplify motion of the target resonator, a
large area SiNx membrane. A monolayer of graphene is
deposited onto holes etched on the SiNx. The supported
part of graphene is coupled to the SiNx by robust Van
der Waals forces. The graphene pre-amplifier operates as
follows: by electrostatically controlling the tension of the
suspended graphene resonator, its mechanical modes are
brought into resonance with the target mechanical mode
of SiNx. Coupling between the resonators together with
large disparity of their masses leads to amplification: a
tiny motion of SiNx is converted into much larger mo-
tion of graphene, which is eventually detected by optical
interferometry. Comparing SiNx to graphene displace-
ment power spectra, we measure amplification with an
average power gain of 36.8 dB in 5 resonators. Further-
more, by modulating the intrinsic tension of graphene, we
demonstrate parametric gain accompanied by 4.7 dB sup-
pression (squeezing) of graphene’s thermal noise in one
motion quadrature. With additional feedback squeez-
ing of the thermal noise20 along with side-band cooling
of the amplifier mode temperature21,22, graphene-based
motion amplifiers can reach unprecedented displacement
sensitivities at room temperature.

Experimental setup: At the heart of the experiment is a
large area (320×320 ×0.3 µm3) SiNx membrane covered
by a 20 nm-thick layer of gold (Au), with through holes
of diameters 15 and 20 µm etched in it. A monolayer
CVD graphene is mechanically transferred onto the en-
tire structure. A conductive silicon chip is placed 30 µm
below graphene/SiNx and separated from it by a layer
of insulating material23. Separate electrical contacts are
made to SiNx/Au/graphene and bottom Si and the en-
tire structure is placed inside a vacuum chamber. All
measurements are done at room temperature and 10−2

mbar pressure. While measurements were done on five
devices, we focus on the data from two of them. The
built-in tension of SiNx in device A is 600 MPa, estimated
from rather sparse vibrational modes of that device (Fig.
1d). Device B has lower tension of 150 MPa, with denser

ar
X

iv
:1

80
5.

04
85

9v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
3 

O
ct

 2
01

8



2

Figure 1: Graphene and SiNx resonators: (a) Scanning electron microscope image of a typical device together with its
cartoon representation. (b) Schematic of the experimental setup. A frequency and power stabilized external cavity diode laser
acts as a probe for a confocal microscope in an interferometric configuration. One arm of the microscope is actively stabilized.
Graphene is actuated by applying a gate voltage between it and the substrate whereas SiNx is actuated by periodically heating
it with an external laser beam. Light reflected from graphene or SiNx is detected by a photodetectors and analyzed either by

a spectrum analyzer or a lock-in amplifier. (c) Brownian displacement spectral density S
1/2
x,g of an undriven 20 µm diameter

graphene resonator (device A), as a function of probing frequency and gate voltage(measured at a probe power of 0.4 mW). (d)

Displacement spectral density S
1/2
x,s for a SiNx membrane driven by an external laser beam. Red arrows indicate interacting

modes of graphene and SiNx resonators (probe power of 0.4 mW).

distribution of vibrational modes24.

Mechanical motion of suspended graphene and SiNx
membranes is independently actuated and detected. To
probe the motion, a fiber-based confocal microscope is
focused on either graphene or SiNx, while weak motion-
induced modulation in the reflected signal is amplified
and recorded by an interferometer in Michelson configu-
ration (Fig. 1b). Graphene is actuated electrostatically
by applying an oscillating voltage Vg between it and the
gating chip. This modulation is too small to drive heav-
ier SiNx membrane. Instead, SiNx is driven photother-
mally by periodically heating it with laser beam of optical
power ∼ 3.4 mW incident at an angle.

Graphene and SiNx resonances: When the microscope

is focused on graphene, distinct peaks are visible in the
power spectrum of the reflected light, even when the
membrane is not driven externally (Fig. 1c). These peaks
correspond to the resonant drum modes of suspended
graphene excited by thermal fluctuations25. We use the
equipartition theorem to convert the measured optical
power spectrum into displacement power spectrum24,26.
For the fundamental mode, the root mean square dis-
placement is around 30 pm. Along with the fundamental
mode (ω0/2π = 3.32 MHz at Vg = 0) several higher order
modes are typically visible24. The modes match well to
simulated modes of circular membrane with anisotropic
tension and an average quality factor Qg ∼ 200. When
a static gate voltage Vg is applied, the mode frequencies
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Figure 2: Graphene/SiNx coupling and gain: (a) Blue curve is a displacement spectrum of undriven graphene at Vg = 420
V, close to resonance with SiNx (probe power of 0.1 mW). Red curve is a fit to the data using the bi-linear interaction model
described in the text. (inset) Corresponding avoided level crossing with static gate voltage (detuning). (b) Displacement
spectrum measured on graphene (red curve) and on SiNx (green curve and separately in the inset) for driven SiNx (probe
power of 0.4 mW). A gain of Gc ∼ 38 dB is extracted by comparing the two spectra. The broad shape of the peaks in the red
curve is set by thermal spectrum of graphene, dominating the total added noise. It can be noted that the noise floor for SiNx
(inset) is lower than that of graphene due to difference in reflectivity of the two materials24.

upshift, indicating increased tension27 (Fig. 1c). We fit
the corresponding dispersion curve to extract the effec-
tive mass (mg = 29×m0, where m0 is the effective mass
of single layer graphene resonator) for the fundamental
mode.27,28

For the significantly heavier SiNx membrane, the am-
plitude of thermal motion is below our interferometer
detection limit. To convert the detected power spectrum
on SiNx to displacement, we use the thermal spectra of
graphene correcting for difference in surface reflectivity
while carefully maintaining all other detection param-
eters. When the membrane is driven photo-thermally,
multiple peaks with small frequency spacing and higher
quality factors (Qs ∼ 3,000) are visible (Fig. 1d). The
frequencies of these modes are nearly independent of Vg,
as the tension induced by electrostatic pulling is sig-
nificantly smaller compared to the built-in tension of
SiNx. Simulation suggests that these modes correspond
to modes of a square membrane24.

We use electrical gating to bring one mode of graphene
in resonance with a mode of SiNx. Such resonance con-
ditions are fulfilled for modes marked by red triangles in
Figs. 1c,d at ω/2π = 4.17 MHz. Around the degeneracy,
the modes are coupled and hybridized5,29. Indeed, we ob-
serve a sharp splitting in the Brownian mode of graphene
(Fig. 2a, blue curve). Moreover, two split peaks exhibit
an avoided-crossing pattern vs. Vg around degeneracy, a
tell-tale sign of inter-mode interaction (Fig. 2a, inset).

All-mechanical amplifier: We now focus on the use of
graphene as an all-mechanical amplifier31 of SiNx mo-
tion. Experimentally, we observe amplification in device
A by weakly driving the SiNx mode photo-thermally,
while recording the power spectrum both on SiNx and
graphene. When graphene mode is not in resonance with

SiNx, photo-thermal driving of SiNx does not affect the
spectrum of graphene. However, on resonance, we ob-

serve a peak in graphene displacement spectrum S
1/2
x,g

(Fig. 2b, red curve) which is much larger than that mea-

sured on SiNx, S
1/2
x,s (Fig. 2b, green curve and inset).

Ratio of the two peak heights is the coupling power gain
of our all-mechanical amplifierGc = Sx,g/Sx,s = 6.2×103

(38 dB). We find an average gain of 36.8 dB across the
range of 5 measured devices. We note that the frequency-
dependent gain spreads over a relatively large band-width
of ∼ 38 kHz(FWHM)24.

To quantitatively analyze the amplifier parameters, we
use a model of graphene and SiNx resonators (trans-
verse displacements xg and xs) interacting via bilinear
coupling αxgxs

5,24. The Brownian noise spectrum of
graphene/SiNx fits well with the model (red trace in
Fig. 2a) with α/4π2 ∼ 11.9(±0.2) × 10−3 kg Hz2 for
device A. Furthermore from fitting of the driven SiNx
mode (Fig.2b), the extracted gain is Gfit

c = 34.6 dB.

An approximate, on-resonant expression for the power

gain of Gth
c ∼

∣∣∣ α
mgγgω0

∣∣∣2 (42 dB) scales directly with cou-

pling constant, inversely with effective mode mass mg

and damping γg of graphene and is in agreement with
the measured value. It can be noted that Gth

c = Q2
g (∼

46 dB) sets the maximum limit of the power gain24,29.

Detection sensitivity of the graphene amplifier is lim-

ited by the noise of interferometric detector S
1/2
I0

∼
0.04 − 0.20 pm/

√
Hz (for probe power of 0.4 mW to

0.1 mW, incident on graphene) along with the Brown-

ian noise added by graphene, Sth
x,g

1/2 ∼ 0.38 pm/
√

Hz.
When referred back to minimum detectable displacement
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Figure 3: Parametric squeezing: (a) Parametric gain vs. phase of the pump signal (with respect to a weakly driven signal)
for device B modulated (pumped) at twice its resonant frequency for pump amplitudes V 0

p = 2.5 V, 3.5 V, and 4.5 V. (b)
Amplification (at φp = 45◦) and deamplification (at φp = 135◦) of a signal vs. pump voltage. Self-oscillation sets in at a critical

voltage V c
p = 5.2 V (inset). These curve are fitted24 with function Gp(φp = 45◦, 135◦) = 1/(1∓ V 0

p

V c
p

). (c) Normalized variance

in graphene quadratures X1 and Y1 vs. pump voltage at φp = 135◦. Similar plot, but for φp = 45◦ is shown in the inset. Signal
goes into a self-oscillation regime above V c

p with overall increase in noise floor.

on SiNx, the resultant sensitivity (imprecision noise) is

Simp
x

1/2
=
(SI0(ω) + Sth

x,g

Gc

)1/2

.

For device A, we estimate Simp
x

1/2 ∼ 5.5(±0.7)

fm/
√

Hz. It is dominated by the Brownian motion of
graphene. Further improvement therefore requires either
a boost in gain or a reduction in thermal fluctuations of
graphene.

Squeezing of thermo-mechanical noise: We add a sec-
ond stage of amplification by parametrically driving
graphene resonators9,32,33,35. Parametric amplification
is studied in device B by actuating SiNx with a weakly
driven resonant signal. Tension of the device is modu-
lated at twice its resonant frequency by applying an AC
pump voltage Vp = V 0

p cos(2ω0t + φp) of amplitude V 0
p

and phase φp (φp = 0 corresponds to the phase of the

weakly driven signal on SiNx) between graphene and the
back gate. Comparing the displacement power spectra of

graphene with (S
Vp
x,g) and without (S

Vp=0
x,g ) pump signals,

we observe an additional parametric gain in power spec-

trum measured on graphene Gp(Vp, φp) = S
Vp
x,g/S

Vp=0
x,g

(Fig. 3a). This gain is phase(φp)-dependent, with max-
imum at φp = 45◦ and minimum at φp = 135◦. With
increasing pump V 0

p , the graphene enters into a self-
oscillation regime at a critical voltage V cp ∼ 5.2 V (Fig.
3b and inset).

In presence of the pump, fluctuations in the sig-
nal (graphene displacement) become phase-dependent as
well. This is particularly evident when we measure the
two quadratures X and Y of graphene motion, defined
as xg(t) = X cos(ω0t) + Y sin(ω0t), with a dual chan-
nel lock-in amplifier. The pump signal is in phase with
X for φp = 0. With increasing pump voltage V 0

p , fluc-
tuations in the quadratures become correlated. Specifi-
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Figure 4: Noise in graphene pre-amplifier:(a) Each point is an independent measurement of X and Y quadratures. The
points cloud correspond to detector focused on weakly driven SiNx (yellow), on graphene (grey) and on parametrically driven
graphene (red). The cloud points are experimental data, while the cloud centers are representative values corresponding to
measured amplifier parameters. (b) Total added noise (red) composed of detector imprecision noise (green dash) and back
action (blue dash), as a function of coupling constant. One data point with error bars illustrates typical parameters for the
measured devices.

cally, the fluctuations are minimum for the combination
X1 = 1/

√
2(X+Y ) and maximum for Y1 = 1/

√
2(Y −X).

Variance σ2
X1

and σ2
Y1

for X1 and Y1 are plotted in Fig.

3c (normalized with respect to the variance σ2
0 without

pump) for pump parameters φp = 135◦ and V 0
p = 4.5 V.

We observe a decrease of 4.7 dB in σ2
X1

when compared to
its value in absence of pump. This is a clear signature of
parametric squeezing. To the best of our knowledge, this
is the first observation of thermo-mechanical squeezed
states in 2D resonators.

The observed squeezing improves performance of
the amplifier. The corresponding detection sensitivity
lowers due to reduction of the thermal fluctuations
along X1. Using squeezing parameters in Fig. 3c
at Vp = 4.5 V as typical values, the effective gain is
G = Gp ×Gc ∼ 32.3 dB and the estimated measurement

sensitivity is 3.8(±0.5) fm/
√

Hz. Instead of optimizing
sensitivity, one can also simply boost up the overall
gain to ∼ 47 dB (for parameters in Fig. 3c, inset
at Vp = 3.5 V) with a corresponding large modula-
tion to detect. However, in this case the squeezing is
less, with the sensitivity degrading to 4.6(±0.6) fm/

√
Hz.

Discussion: Performance of the proposed graphene
pre-amplifier along with relative contributions of vari-
ous noise sources is summarized in Fig. 4a. Each point
represents a pair of quadrature values X and Y , inte-
grated over 20 ms. The yellow cluster correspond to dis-
placements detected on SiNx, where the spread is set
by the detector noise (larger than the SiNx thermal mo-
tion). The red cloud correspond to displacements mea-

sured on parametrically driven graphene (For device B,
with V 0

p = 4.5 V, φp = 135◦). The elliptical shape of the
data cluster indicates squeezing. Squeezing is especially
evident in comparison with the circular black cloud due
to fluctuations of data point measured on un-pumped
graphene. To show gain, the center of the red cluster is
shifted with respect to yellow.

Relative strengths of intrinsic noise12 contributions of
the graphene pre-amplifier, on SiNx, are summarized in
Fig. 4b. First, the thermal fluctuations of graphene pro-
duce back-action force on the target resonator (SiNx).
The corresponding contribution in displacement spectral

density, Sba
x

1/2
= ( α

msγsωs
)Sth
x,g

1/2
scales directly with

coupling strength α/4π2 and inversely with the mass of
graphene (Fig. 4b, blue curve). On the contrary, the

imprecision noise (Simp
x

1/2
), scales down with α/4π2 but

increases with mg. Therefore, there exists a critical cou-
pling strength (αc/4π

2) or, equivalently, a critical mass
(number of graphene layers nc) for which the amplifier is
quietest (adds minimum noise). For typical values of our
devices (black point in Fig. 4b), the parameters are close
to optimal, with thermal back action force of graphene
dominating the noise on SiNx.

Our results suggest several routes to further improve
the performance of graphene pre-amplifiers. First, by
controlling the mass or built-in tension, the noise sources
of the resonators can be moved closer to the optimal in-
tersection point in Fig. 4b. With further squeezing using
electronic feedback20, one can go beyond the 6 dB (ther-
mal) limit, thereby improving sensitivity without adding
any back-action noise12.
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In conclusion, we have demonstrated that graphene
can serve as an all-mechanical amplifier for a coupled
mode of a SiNx resonator. The amplifier has a gain of
38 dB, bandwidth of 38 kHz and an overall detection
sensitivity of 3.8 fm/

√
Hz, limited by graphene thermal

fluctuations. With further squeezing of thermal noise
through feedback, along with choice of optimal device
parameters, graphene based motion amplifiers can serve
as an important tool in the growing field of opto and
electro-mechanics.

AUTHOR INFORMATION:
Corresponding Author
*Email: gsaikat@iitk.ac.in

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS:
We thank C. S. Vatsan, Sagar Chakraborty, Amit
Agarwal, C. S. Sundar, H. Ulbricht, Mishkatul Bhat-
tacharya and Jan Kirchoff for insightful discussions
and comments. We also thank Om Prakash for his
numerous help in construction of the experimental
setup. This work was supported under DST Grant No.
SERB/PHY/2015404 and ERC Grant No. 639739.

∗ Electronic address: gsaikat@iitk.ac.in
1 Braginsky, V. B.; Khalili, F. Y. Quantum Measurement,

Cambridge University Press : Cambridge, 1992.
2 LIGO Scientific Collaboration and Virgo Collaboration,

Observation of Gravitational Waves from a Binary Black
Hole Merger. Phys. Rev. Lett. 2016, 116, 061102.

3 Binnig, G.; Quate, C. F.; Gerber, Ch. Atomic Force Micro-
scope. Phys. Rev. Lett. 1986, 56, 930-933.

4 Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.;
Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craig-
head, H. G.; McEuen, P. L. Electromechanical Resonators
from Graphene Sheets. Science 2007, 315, 490-493.

5 Poot, M.; van der Zant, H. S. J. Mechanical systems in the
quantum regime. Physics Reports 2012, 511, 273-335.

6 Weber, P.; Gttinger, J.; Noury, A.; Vergara-Cruz, J.; Bach-
told, A. Force sensitivity of multilayer graphene optome-
chanical devices. Nat. Commun. 2016, 7, 12496.

7 Singh, V.; Bosman, S. J.; Schneider, B. H.; Blanter, Y. M.;
Castellanos-Gomez, A.; Steele, G. A. Optomechanical cou-
pling between a multilayer graphene mechanical resonator
and a superconducting microwave cavity. Nat. Nano. 2014,
9, 820-824.

8 Reinhardt, C.; Müller, T.; Bourassa, A.; Sankey, J. C.
Ultralow-Noise SiN Trampoline Resonators for Sensing and
Optomechanics. Phys. Rev. X 2016, 6, 021001.

9 Norte, R. A.; Moura, J. P.; Gröblacher, S. Mechanical Res-
onators for Quantum Optomechanics Experiments at Room
Temperature. Phys. Rev. Lett. 2016, 116, 147202.

10 Caves, C. M. Quantum limits on noise in linear amplifiers.
Phys. Rev. D 1982, 26, 1817-1839.

11 Clerk, A. A. Quantum-limited position detection and am-
plification: A linear response perspective. Phys. Rev. B
2004, 70, 245306.

12 Clerk, A. A.; Devoret, M. H.; Girvin, S. M.; Marquardt,
F.; Schoelkopf, R. J. Introduction to quantum noise, mea-
surement, and amplification. Rev. Mod. Phys. 2010, 82,
1155-1208.

13 Knobel, R. G.; Cleland, A. N. Nanometre-scale displace-
ment sensing using a single electron transistor. Nature
2003, 424, 291-293.

14 LaHaye, M. D.; Buu, O.; Camarota, B.; Schwab, K. C.
Approaching the quantum limit of a nanomechanical res-
onator. Science 2004, 304, 74-77.

15 Poggio, M. M.; Jura, M. P.; Degen, C. L.; Topinka, M.

A.; Mamin, H. J.; Goldhaber-Gordon, D.; Rugar, D. An
off-board quantum point contact as a sensitive detector of
cantilever motion. Nat. Phys. 2008, 4, 635-638.

16 Etaki, S.; Poot, M.; Mahboob, I.; Onomitsu, K.; Yam-
aguchi, H.; van der Zant, H. S. J. Motion detection of a mi-
cromechanical resonator embedded in a d.c. SQUID. Nat.
Phys. 2008, 4, 785-788.

17 Regal, A.; Teufel, J. D.; Lehnert, K. W. Measuring
nanomechanical motion with a microwave cavity interfer-
ometer. Nat. Phys. 2008, 4, 555-560.

18 Huang, P.; Wang, P.; Zhou, J.; Wang, Z.; Ju, C.; Wang,
Z.; Shen, Y.; Duan, C.; Du, J. Demonstration of Motion
Transduction Based on Parametrically Coupled Mechanical
Resonators. Phys. Rev. Lett. 2013, 110, 227202.

19 Mahboob, I.; Flurin, E.; Nishiguchi, K.; Fujiwara, A.; Ya-
maguchi, H. Enhanced force sensitivity and noise squeezing
in an electromechanical resonator coupled to a nanotransis-
tor. Appl. Phys. Lett. 2010, 97, 253105.

20 Vinante, A.; Falferi, P. Feedback-Enhanced Parametric
Squeezing of Mechanical Motion, Phys. Rev. Lett. 2013,
111, 207203.

21 Alba, R. D.; Massel, F.; Storch, I. R.; Abhilash, T. S.;
Hui, A.; McEuen, P. L.; Craighead, H. G.; Parpia, J. M.
Tunable phonon-cavity coupling in graphene membranes.
Nat. Nano. 2016, 11, 741-746.

22 Mathew, J. P.; Patel, R. N.; Borah, A.; Vijay, R.; Desh-
mukh, M. M. Dynamical strong coupling and parametric
amplification of mechanical modes of graphene drums. Nat.
Nano. 2016, 11, 747-751.

23 Nicholl, R. J. T.; Conley, H. J.; Lavrik, N. V.; Vlassiouk, I.;
Puzyrev, Y. S.; Sreenivas, V. P.; Pantelides, S. T.; Bolotin,
K. I. The effect of intrinsic crumpling on the mechanics of
free-standing graphene. Nat. Commun. 2015, 6, 8789.

24 Singh, R.; Nicholl, R. J. T.; Bolotin, K.; Ghosh, S. Sup-
porting Information: Motion transduction with thermo-
mechanically squeezed graphene resonator modes.

25 Davidovikj, D.; Slim, J. J.; Cartamil-Bueno, S. J.; van der
Zant, H. S. J.; Steeneken, P. G.; Venstra, W. J. Visualizing
the Motion of Graphene Nanodrums. Nano Lett. 2016, 16,
4, 2768-2773.

26 Hauer, B. D.; Doolin, C.; Beach, K. S. D; Davis, J.
P. A general procedure for thermomechanical calibration
of nano/micro-mechanical resonators. Annals of Physics
2013, 339, 181-207.

mailto:gsaikat@iitk.ac.in


7

27 Chen, C.; Rosenblatt, S.; Bolotin, K. I.; Kalb, W.; Kim, P.;
Kymissis, I.; Stormer, H. L.; Heinz, T. F.; Hone, J. Perfor-
mance of monolayer graphene nanomechanical resonators
with electrical readout. Nat. Nano. 2009, 4, 861-867.

28 Chen, C. Graphene NanoElectroMechanical Resonators
and Oscillators. Ph.D. Thesis, Columbia University, 2013.

29 Schwarz, C.; Pigeau, B.; de Lpinay, L. M.; Kuhn, A. G.;
Kalita, D.; Bendiab, N.; Marty, L.; Bouchiat, V.; Arcizet,
O. Deviation from the Normal Mode Expansion in a Cou-
pled Graphene-Nanomechanical System. Phys. Rev. Appl.
2016, 6, 064021.

30 Okamoto, H.; Gourgout, A.; Chang, C.; Onomitsu, K.;
Mahboob, I.; Chang, E. Y.; Yamaguchi, H. Coherent
phonon manipulation in coupled mechanical resonators.
Nat. Phy. 2013, 9, 480-484.

31 Kim, B.; Lin, Y.; Huang, W.-L.; Akgul, M.; Li, W.-

C.; Ren, Z.; Nguyen, C. T.-C. Micromechanical Resonant
Displacement Gain Stages. 2009 IEEE 22nd International
Conference on Micro Electro Mechanical Systems, Sorrento,
2009, 19-22.

32 Rugar, D.; Grütter, P. Mechanical parametric amplifi-
cation and thermomechanical noise squeezing. Phys. Rev.
Lett. 1991, 67, 699-702.

33 Natarajan, V.; DiFilippo, F.; Pritchard, D. E. Classical
squeezing of an oscillator for sub thermal operations. Phys.
Rev. Lett. 1995, 74, 2855-2858.

34 Eichler, A.; Chaste, J.; Moser, J.; Bachtold, A. Parametric
Amplification and Self-Oscillation in a Nanotube Mechani-
cal Resonator. Nano Lett. 2011, 11, 7, 2699-2703.

35 Prasad, P.; Arora, N.; Naik, A. K. Parametric amplifica-
tion in MoS2 drum resonator. Nanoscale 2017, 9, 18299-
18304.



8

Supporting Information: Motion Transduction with Thermo-mechanically Squeezed
Graphene Resonator Modes

I. EXPERIMENTAL METHODS:

Experimental setup: Motion of graphene and SiNx mechanical resonators is detected with a confocal microscope
(spot-size of 2 µm) (Fig. 1b), using a probe laser (ECDL,Toptica) at a wavelength of 780 nm. The microscope forms
one arm of a Michelson interferometer while a second (reference) arm is actively stabilized using PI lock box to
counter ambient vibrations. The probe, derived from a frequency and power stabilized external cavity diode laser, is
detected with a balanced photo-detector of bandwidth of 45 MHz. Subsequently, a spectrum (network) analyser is
used to detect (drive) displacement power spectrum of the graphene or SiNx target resonator. The sample is placed in
a rough vacuum chamber (at a pressure of ∼ 10 mTorr), along with high voltage gate contacts. The chamber in turn
is placed on a 3D scanning stage (Thorlabs) having active position locking, with a closed-loop position stability of 5 nm.

Sample Preparation: Silicon nitride membranes (thickness 300 nm) are fabricated by depositing low-stress silicon-rich
silicon nitride on both sides of a silicon chip. An array of holes of 15 and 20 um diameter is then patterned in the
nitride using standard fabrication procedures. A metallic contact (20 nm Au) is deposited onto the top surface of the
SiNx to facilitate electrical gating. Monolayer chemical vapor deposition (CVD) graphene is then transferred onto
holes in the nitride membranes. We use a high-quality atmospheric CVD growth and wet transfer. The samples are
subsequently annealed in an Ar − H2 environment at 350◦C. The graphene membranes remained clamped to the
sample chip via van der Waals interactions forming suspended circular graphene membranes.

II. EXPERIMENTAL PARAMETERS:

A. Displacement Calibration from Thermal modes of graphene resonator

A vibrational mode of a suspended graphene resonator, driven thermally, can be modeled as a simple harmonic
oscillator1:

ẍg + γgẋg + ωg
2xg = F thg /mg, (S.1)

The corresponding thermal displacement power spectrum then takes a form

Sth
x,g = |x̃g(ω)|2 = |χg|2

Sth
F,g

m2
g

(S.2)

where force spectral density Sth
F,g = 4kBTmgγg. Here χg is a linear response function: χg = 1/[(ωg

2 − ω2) + iγgω].

On the contrary, the measured voltage power spectrum (Sv,g(ω)) is expressed as

Sv,g(ω) = κSth
x,g + Snoise, (S.3)

with Snoise as the noise power introduced by our measurement setup and κ (measured in units of V2/m2) is a
voltage to displacement conversion factor. By fitting the Eq. S4 to experimentally measured thermal noise spectrum
of the graphene drum, we extract the value of κ, ωg, Qg(quality factor of graphene), and Snoise. To extract thermal

displacement spectrum (in units of m/
√

Hz), experimental data (units of V/
√

Hz) is divided by
√
κ.

For the fundamental mode of a graphene resonator of diameter 20 µm, we use: mg = 29×0.625×10−16 kg for fitting.
Fig. S.1a shows a typical of the voltage spectrum along with fitting Lorentzian function and corresponding dis-

placement spectrum. In Fig. S.1b, we plot the extracted thermal displacement (|xg|) of the fundamental mode which
decreases with increasing gate voltage, in accordance with equipartition theorem. There is a corresponding monotonic
decrease in the extracted quality factors (Fig. S.1c).

B. Brownian modes of Graphene

Fig. S.2a shows a typical Brownian spectrum ( 20 µm resonator, device A) with 8 visible graphene modes. Increasing
d.c. gate voltage results in overall blue shift in mode frequency (with small initial red shift for few higher modes)3. Fig.
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Figure S.1: Displacement calibration: (a) Displacement spectral density (right axis) and voltage spectral density (left axis)
vs. frequency for thermally excited graphene drum (blue curve) together with a fit to Eq. S.3 (red curve). (b) Displacement
amplitude vs. gate voltage for the same device. (c) Quality factor vs. gate voltage along with a linear fit to the data.(inset)
Temprature corresponding to the fundamental mode of graphene with the gate voltage calculated using equipartition theoram

S.2b shows power spectrum at Vg = 100 V, along with expected values for an ideal circular graphene resonator (blue
dashed lines). Interestingly, we observe splitting of few modes. We attribute this to asymmetric tension in graphene
and was verified numerically (COMSOL). Simulated resonance modes of graphene with varying the anisotropy (∆T )
shows splitting in modes with axes of symmetry. Mode frequencies for first 10 modes are plotted in Fig. S.2c. The
simulation results are in overall agreement with the observations, explaining the emergence of splitting with increasing
∆T . We estimate the mass and tension of the graphene drum by fitting the dispersion of fundamental mode (Fig.
S.2d) following Continuum Mechanics model3,4. The extracted mass is 29.18(±0.02)m0 (where m0 = 0.625× 10−16kg
is assumed to be the mass of pristine residue-free graphene) and tension(T) is 3.588(±0.004)× 10−4N/m.

C. Silicon Nitride resonator

Graphene is supported on holes etched on a large area SiNx plate which has its own distinct vibrational modes.
For the SiNx resonator of effective dimension of 320 × 320 × 0.3 µm3 and density ρs = 3100 kg/m3, we estimate its

mass ms = 2.38 × 10−11 kg. These values yield a thermal displacement power spectrum S
1/2
x,s =

(
4kBT
msγsω2

s

)1/2

' 10

fm/
√

Hz (at ω = ωs, at a SiNx resonant frequency ωs = 2π × 4.163 MHz with a damping γs = 2π × 1.5 kHz). We do
not observe such Brownian oscillations of the SiNx modes as it lies below our detection noise floor.

D. Driven SiNx modes

We excite SiNx resonator modes photo-thermally, using a laser (DL pro, Toptica), which is amplitude modulated
with a AOM and is incident at an angle. When SiNx is driven with the modulated laser beam, while the probe is
focused on the same device, we observe a zoo of modes. These modes remain unaffected with gate voltage (Fig. 1d of

the main text), are of relatively high quality factors (Qs ∼ 103) with eigenfrequencies fmn =
√
Ts/4ρsL2

√
m2 + n2 of

that of a square membrane. Furthermore, the density of vibrational modes can be controlled by changing its inbuilt
tension (Ts). In Fig. S.6a, the device with high built-in tension (device A) has smaller mode density as compared to
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Figure S.2: Brownian modes with anisotropic tension: (a) Measured Brownian displacement spectral density with varying
gate voltage for a un-driven graphene resonator. (b) A cross-section (for the data of (a)) at Vg = 100 V, along with expected
values for a circular membrane (blue dashed lines). (c) Simulated variation of mode frequencies of a circular graphene resonator
vs. tension anisotropy (∆T ). (d) Estimation of mass and tension by fitting the dispersion of fundamental mode of graphene
with gate voltage.

low built-in tension (device B). Fig. S.6b represents hybrid mode resulting from interaction of graphene with many
modes of SiNx in device B.

E. Graphene spectrum with probe power

We studied dependence of thermal motion of graphene’s fundamental mode with increasing incident probe power
that was varied from 0.1 mW to 3 mW and observed changes in displacement, frequency, quality factor and temperature
by fitting the mode profiles.

We found that the absolute displacement for the fundamental mode of the graphene remains constant (∼ 30 pm)
when the probe power is increased (Fig. S.4b), while the resonance frequency redshifts by ∼ 50 kHz (Fig. S.4c). We
also estimated the effective mode temperature using equipartition theorem and have not observed significant changes
with probe power below 1 mW (Fig. S.4e). Based on these observations, we keep probe power less than 0.5 mW for
all subsequent measurements.

III. ON THE THEORETICAL MODEL:

To describe graphene/SiNx interaction2,5, we consider a simple model of bilinear coupling of two harmonic oscillators

with an effective interaction Hamiltonian Ĥint = αx̂gx̂s. The corresponding coupled equations are:
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Figure S.3: Graphene spatial modes: Simulated spatial mode profiles of a circular resonator under anisotropic tension.
f(m,n) denotes the frequency corresponding to the mode index (m,n).

Figure S.4: Power spectra at different probe powers: (a) Voltage spectrum of graphene fundamental mode at different
probe powers together with fits to the data. Absolute displacement (b), resonance frequency (c), quality factor (d), and
temperature (e) extracted from the fit vs. excitation power. Note that displacement, quality factor, and temperature remain
unchanged while frequency is redshifted ∼ 50 kHz.
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Figure S.5: Extracted displacement spectral density of hybrized SiNx: Extracted SiNx Brownian spectrum, hybridized
with graphene as extracted from Eq. S.9 using the fitting parameters from Eq. S.8 and Fig. 2a of main text(probe power at
0.1 mW).

ẍg + γgẋg + ωg
2xg −

α

mg
xs =

Fg
mg

(S.4a)

and

ẍs + γsẋs + ωs
2xs −

α

ms
xg =

Fs
ms

, (S.4b)

where Fg and Fs are forces acting on graphene and SiNx oscillators respectively.
Solving the above coupled equations, we get

Sx,g = |x̃g(ω)|2 =

∣∣∣∣∣ χg

1− α2

mgms
χgχs

∣∣∣∣∣
2
〈F 2
g 〉

mg
2

+
α2

m2
g

∣∣∣∣∣ χgχs

1− α2

mgms
χgχs

∣∣∣∣∣
2
〈F 2
s 〉

ms
2

(S.5)

Sx,s = |x̃s(ω)|2 =

∣∣∣∣∣ χs

1− α2

mgms
χgχs

∣∣∣∣∣
2
〈F 2
s 〉

ms
2

+
α2

m2
s

∣∣∣∣∣ χgχs

1− α2

mgms
χgχs

∣∣∣∣∣
2
〈F 2
g 〉

mg
2

(S.6)

Here χg,s are the response functions (susceptibilities, scaled with the respective masses) of the bare graphene and
SiNx oscillators, respectively and are defined as

χk =
1

(ωk2 − ω2) + iγkω
, (S.7)

where k = g, s. Rewriting, we get

Sx,g =
C[(ω2

s − ω2)2 + γ2
sω

2] +D[ α
2

m2
g
]

[(ω2
g − ω2)(ω2

s − ω2)− γgγsω2 − α2

mgms
]2 + [(ω2

g − ω2)γsω + (ω2
s − ω2)γgω]2

, (S.8)

Sx,s =
D[(ω2

g − ω2)2 + γ2
gω

2] + C[ α
2

m2
s
]

[(ω2
s − ω2)(ω2

g − ω2)− γsγgω2 − α2

mgms
]2 + [(ω2

s − ω2)γgω + (ω2
g − ω2)γsω]2

, (S.9)

where C =
〈F 2

g 〉
m2

g
and D =

〈F 2
s 〉

m2
s

.



13

Figure S.6: SiNx modes: (a) COMSOL simulation of SiN modes frequency at built-in tension corresponding to device A (600
MPa) and device B (150 MPa). (b) Interaction between a graphene mode and SiN modes for a low built-in tension device 2.
(c) COMSOL simulation of spatial profiles of SiN resonance modes.

Equation S.8 fits well to the power spectra of thermally excited graphene-substrate coupled mode (Fig. 2a
of main text). The fitting coefficeents are: C = 103.31(±5.61) × 10−5 N2/Kg2, D = 73.97(±9.78) × 10−10

N2/Kg2, ωg/2π = 4.1688(±0.0003) MHz,ωs/2π = 4.1633(±0.0003) MHz, γg/2π = 0.021445(±0.000833) MHz,
γs/2π = 0.001502(±0.000508) MHz, α/4π2 = 1.1919(±0.0023)× 10−14 KgMHz2. Figure S.5 shows the corresponding
extracted SiNx spectrum, as extracted from Eq. S.9, using these parameters.

IV. MOTION TRANSDUCTION:

The SiNx target oscillator is coupled to a thermal bath, which sets its decay rate γs along with a fluctuating thermal
force F ths . Additionally, it is driven externally with a phase-coherent drive Fd such that the total force acting on the
oscillator takes a form Fs(t) = F ths + Fd(t).

The equation of motion of the uncoupled SiNx target oscillator is

ẍs + γsẋs + ωs
2xs = Fs/ms (S.10)

A. Interferometric detection scheme

When this target oscillator is directly probed with an interferometer, the intensity I(t) at the detector takes a form

I(t) = Is(t) + Ir(t) + 2
√
IsIrsin(φs + φr). (S.11)

Here φs(=
2π
λ xs(t)) and φr are phases corresponding to signal and reference arms with intensities Is(t) and Ir(t),

respectively. For small target oscillator displacements compared to wavelength, xs(t)� λ, we approximate sinφ(t) ∼
φ(t), such that

I(t) = Is(t) + I ′r(t) + ζsxs (S.12)
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where ζs = 4π
λ

√
IsIr cosφr is the interferometric gain coefficient and I ′r(t) = Ir(t) + 2

√
IsIrsinφr, is the modified

reference intensity. The phase of the reference part is denoted as the lock phase. By changing that phase through
control of our active lock circuit (Fig. 1b of the main text), we can optimize the signal to noise ratio.

Power spectrum of the signal recorded by the spectrum analyzer is given as

S(ω) =

∫
〈I(t)I(t+ τ)〉e−iωtdτ (S.13)

= SI0 + ζ2
sSx,s(ω)

where SI0 = SI,s(ω) + SI′,r(ω) is the total spectral noise floor corresponding to optical and technical contributions.

B. Our proposed detection scheme: two step process

The amplification scheme proposed here has two parts:
(a) a graphene oscillator mode that couples to the target SiNx resonator mode, thereby amplifying the displacement

power spectrum, followed by (b) a Michelson interferometer that detects the amplified graphene displacement.
The corresponding power spectrum recorded at the output of the interferometer then takes a form:

SI = SI0(ω) + ζ2
gSx,g(ω) (S.14)

Using the bi-linear model, graphene power spectrum takes a modified form

Sx,g =
|χg|2

m2
g

(〈F 2
g 〉+ α2〈xs(ω)2〉) (S.15)

which yields,

SI = SI0(ω) + ζ2
gS

th
x,g + ζ2

g

|χg|2

m2
g

α2Sthx,s(ω) + ζ2
g

|χg|2

m2
g

α2Sx,s(ω). (S.16)

Here first three terms are the detection noise, graphene thermal noise and SiNx thermal noise, respectively. These
terms determine the overall sensitivity of the graphene/SiNx hybrid. The last term is the target oscillator spectrum
multiplied by a coupling and mass dependent pre-factor leading to gain.

The corresponding gain in displacement power spectrum is defined as ratio of displacement spectrum on graphene
to that on SiNx, and can be approximated to

Gc =
ζ2
g

∣∣∣χg(ω)
mg

∣∣∣2 α2Sx.s(ω)

ζ2
sSx,s(ω)

'
∣∣∣∣ α

mgγgωg

∣∣∣∣2 . (S.17)

1. Gain in device A

The reflectivity (R = Ig,s/Ii, where Ig,s is the reflected intensity from graphene or SiNx, and Ii is the incident
intensity of probe beam) of SiNx is 15.2 times larger than that of graphene. To compensate for the difference in
reflectivity we divide the SiNx power spectrum by 15.2. In other words, detected intensity of SiNx is 15.2 times larger
compare to that from graphene. Comparing graphene spectrum, Sx,g(ω) with that of bare SiNx, Sx,s(ω) we estimate
the average gain to be Gc ∼ 6.21× 103 (38 dB) (Fig. 2b, main text).

2. Gain in device B

As discussed earlier, SiNx in device B has low built-in tension resulting in higher mode density leading to interaction
of a single graphene mode with multiple SiNx modes. Fig. S.7 shows the gain corresponding to three modes in device
B while inset shows corresponding weakly driven SiNx mode. Coupling to graphene results in average gain of 36.4
dB. We ascribe variations to varying coupling strengths between SiNx modes and graphene.
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Figure S.7: Gain in device B: Displacement power spectrum on graphene due to coupling with the SiNx modes (Inset)
resulting in massive gain.

C. Backaction on SiNx

Corresponding power spectrum of the SiNx target oscillator takes a form:

Sx,s(ω) =

∣∣∣∣ χsms

∣∣∣∣2 [Fs + αxg(ω)]2 =

∣∣∣∣ χsms

∣∣∣∣2 SFs +

∣∣∣∣ χsms

∣∣∣∣2 α2Sx,g(ω), (S.18)

where the first term in r.h.s is due to the external drive (Fs) acting on SiNx. The second term is due to graphene’s

backaction on SiNx, such that Sbax =
∣∣∣ χs

ms

∣∣∣2 α2Sx,g(ω).

Backaction corresponding to thermal fluctuations of graphene (Sth
x,g) leads to Sbax

1/2
= α

msγsωs
Sthx,g

1/2 ∼ 31(±5)

fm/
√

Hz.

D. Detection bandwidth of graphene

Detection bandwidth of graphene amplifier in device A is ∼ 38 kHz (FWHM) (Fig. 2a of the main text) whereas
in device B due to interaction with more SiNx mode the bandwidth is larger ∼ 196 kHz (Fig. S.6b).

E. Validity of our model

The model proposed in the manuscript considers both SiNx and graphene membrane resonators as harmonic oscil-
lators, with their single degree of freedom, transverse displacements xs and xg respectively, characterizing the model.
Furthermore, the co-ordinates are assumed to be coupled with a coupling constant α and is described with a coupling
Hamiltonian Hint = αxgxs . The corresponding gain then takes a form Gc ' | α

mgωgγg
|2.

One can optimally model the coupled oscillator system as that of graphene oscillator with base excitation of SiNx,
to which it is coupled elastically. Such a direct coupling then translates to α = k = mω2 and the corresponding gain
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Figure S.8: Coupled resonator model: (a) Base excitation model (b),Coupled oscillators with a coupling constant that
depends on 2-d geometry.

is then: Gc ' | α
mgωgγg

|2 = |ωg

γg
|2 = Q2

g ∼ 4 × 104 which would be an order of magnitude larger than the measured

Gc = 6.2×103. The differences in base excitation model2,6 and our model5 are particularly evident in a corresponding
spring mass picture of Fig. S.8. While the base excitation model considers a direct base excitation (Fig. S.8a), we
consider an intermediate coupling (Fig. S.8b), such that the SiNx effective mass spends part of its energy in squeezing
a spring with a larger spring constant. The base excitation scenario, when α reduces to α = k is achieved only in an
ideal 1-d scenario, when there is a perfect coupling between the two transverse mode excitations. However, for 2-d
membranes (or plates with a finite thickness), along with coupling to transverse mode, base excitation due to clamped
graphene drums, results in longitudinal and radial excitation modes. Such coupling are particularly critical due to
the following reasons:

1. Both SiNx and graphene resonators have large intrinsic and anisotropic tension. Effective coupling of transverse
modes of such plates and membranes have been studied extensively in connection to MEMS and NEMS and is
found to scale down with increasing intrinsic tension.

2. Since the vibrational mode of SiNx is high order, the corresponding spatial mode is not uniform, particularly
around the edges of graphene. The effective coupling, which depends on the spatial mode overlap of SiNx and
graphene at the interface, is thereby non-optimal.

3. Folds on graphene leading to hidden areas and accordingly, more complex mode structures than simple circular
membrane.

4. A part of the base excitation energy is spent due to bending rigidity of both SiNx and graphene (albeit small)
plates.

Such mechanisms, all combined, results in a partial transfer of the transverse mode energy of SiNx to the correspond-
ing transverse mode of graphene. Accordingly, to capture this, we use the model of Fig. S.8b, with an intermediate
coupling spring α ≥ kg. The larger spring constant physically implies simply that some part of the base excitation is
lost to other modes of circular graphene sheet. It can also be argued that in such scenarios (with α being a geometric
factor for circular plates), the gain Gc ' | α

mgωgγg
|2 indeed scales inversely with the resonator mass, thereby having

an advantage in using graphene sheets as transducers. Similar to our approach have been used extensively used for
two coupled mechanical modes in MEMS and NEMS community before.5

V. THERMO-MECHANICAL SQUEEZING IN GRAPHENE

The parametric amplification7–9 can be represented as follows

mgẍg +mgγgẋg + [kg + kp(t)]xg + ηx2
gẋg + βx3

g = F thg + Fgcos(ωdt+ φd) (S.19)

where k is the intrinsic spring constant, kp(t)(= k0
pcos(ωpt + φp)) is the modulated spring constant, β is cubic

nonlinear coefficient and η is nonlinear damping coefficient. In case of degenerate parametric amplification, graphene
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Figure S.9: Parametic Amplification and Squeezing with pump phase: (a) Quadrature plots at φp = 0◦ to 180◦ in
steps of 10◦ at V 0

p = 4.5 V and (b) in steps of 20◦ at 3.5 V.(b) shows plot of mean of quadtaures X̄ and Ȳ with φp at 4.5 V,
3.5 V and 2.5 V.(c) Orientation of ellipse with pump phase at different pump voltages.

mode tension is capacitively modulated at twice the resonance frequency (ωp = 2ωd). From above equation, when
nonlinear terms are negligible parametric gain is represented as

Gp =
cos2(φp + π/4)

(1 +
V 0
p

V c
p

)2
+
sin2(φp + π/4)

(1− V 0
p

V c
p

)2
(S.20)

which explains the behavior of gain with phase and pump voltage below the critical voltage (V cp ). At V cp graphene

mode goes into self oscillation regime8,9.

A. Detection Sensitivity of Graphene after Thermomechanical squeezing

Detection sensitivity of graphene improves after thermomechanical squeezing along one quadrature at the cost of

another. Including the contribution from squeezing, the detection sensitivity is written as, S
1/2
x,min =

√
Sth
x,gσ

2
X1

+SI0

Gc

where σ2
x is the variance or squeezing factor along one axis. In Fig. S.10, detection sensitivity is plotted along both

quadratures with pump voltage at φp = 45◦ (green markers) and 135◦ (blue markers). The best sensitivity we achieved

is 3.8 fm/
√

Hz at φp = 135◦ and V 0
p = 4.5 V where σX1 = 0.58.

∗ Electronic address: gsaikat@iitk.ac.in
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Figure S.10: Detection sensitivity: Detection sensitivity with pump voltage along two quadrature at φp = 45◦ (green pair)

and 135◦ (blue pair) respectively. We achieved best sensitivity of 3.8 fm/
√

Hz at φp = 135◦ and V 0
p = 4.5 V.
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