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Summary

A novel wetting and drying treatment for second-order Runge-Kutta discon-
tinuous Galerkin methods solving the nonlinear shallow-water equations is
proposed. It is developed for general conforming two-dimensional triangular
meshes and utilizes a slope limiting strategy to accurately model inundation.
The method features a nondestructive limiter, which concurrently meets the
requirements for linear stability and wetting and drying. It further combines
existing approaches for positivity preservation and well balancing with an inno-
vative velocity-based limiting of the momentum. This limiting controls spurious
velocities in the vicinity of the wet/dry interface. It leads to a computationally
stable and robust scheme, even on unstructured grids, and allows for large time
steps in combination with explicit time integrators. The scheme comprises only
one free parameter, to which it is not sensitive in terms of stability. A number
of numerical test cases, ranging from analytical tests to near-realistic labora-
tory benchmarks, demonstrate the performance of the method for inundation
applications. In particular, superlinear convergence, mass conservation, well
balancedness, and stability are verified.
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1 INTRODUCTION

In order to successfully compute near and onshore propagation of ocean waves, depth-integrated equations such as the
shallow-water equations are commonly employed. While these are derived under the assumption that vertical velocities
are negligible, they efficiently model large-scale horizontal flows and wave propagation with high accuracy. Compu-
tational problems occur in the coastal area, where the shoreline, theoretically defined as the line of zero water depth,
represents a moving boundary condition, which must be considered in the numerical scheme. Here, it is essential to
construct a computational method, which concurrently fulfills the physical requirements for accurate coastal modeling:

• conservation of mass,
• exact representation of the shoreline (wetting and drying), and
• robust computation of perturbations from the steady state at rest (well balancedness).
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medium, provided the original work is properly cited and is not used for commercial purposes.
© 2019 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd.

Int J Numer Meth Fluids. 2019;91:395–418. wileyonlinelibrary.com/journal/fld 395

https://doi.org/10.1002/fld.4762
https://orcid.org/0000-0002-4741-6500
https://orcid.org/0000-0002-3810-6148
https://orcid.org/0000-0001-9836-8716
http://creativecommons.org/licenses/by-nc-nd/4.0/


396 VATER ET AL.

Although the moving shoreline can be incorporated into the numerical scheme by adjusting the computational domain,
its implementation is difficult and often only simple flow configurations have been successfully considered with this
approach.1 Only recently, an arbitrary Lagrangian-Eulerian method together with a moving r-adaptive mesh was applied
to more complex flow situations.2 Most commonly, an Eulerian approach is considered, where the mesh points are fixed
and the numerical scheme is applied to all cells, regardless if they are wet or dry. Cells are flooded or run dry through the
interaction with other cells, ie, by fluxes.

In recent years, discontinuous Galerkin (DG) methods have gained a lot of scientific interest within the geophysical
fluid dynamics modeling community. They combine a number of desirable properties important for coastal applications
such as conservation of physical quantities, geometric flexibility, and accuracy.3-5 While Godunov-type finite volume (FV)
methods are considered one of the most comprehensive tools for hydrologic modeling of coastal inundation problems,6,7

several studies have investigated possible merits of the more complex DG formulation. General comparisons between the
two discretization techniques point out that FV methods need wide stencils to attain high order of accuracy, whereas DG
discretizations remain compact.8,9 This feature of DG formulations makes them particularly viable for p-adaptivity and
parallelization. On the other hand, the linear stability limit (CFL condition) is more generous for FV methods. Concerning
coastal modeling, Kesserwani and Wang7 argue that the extra complexity associated with DG discretizations pays off by
providing higher-quality solution behavior on very coarse meshes. Furthermore, DG methods better approximate the
near-shore velocity in certain situations.7,10

While there is theoretically no barrier to extend the DG method to higher-order accuracy, several practical aspects
impede this endeavor. For the time discretization, appropriate integration schemes (such as strong stability preserving
methods) have to be applied, which maintain crucial properties of the governing equations. Such methods can be hard
to derive for high-order methods. In many practical applications, data sets expose a large amount of roughness leading to
small-scale variations in high-order methods requiring appropriate filtering with associated order reduction. With respect
to coastal inundation, no high-order convergence can be expected at the wet-dry interface due to the nondifferentiable
transition from wet to dry. Therefore, a second-order DG model seems to be a reasonable choice for practical coastal
modeling.7 This is also reflected in the DG literature, where most wetting and drying treatments are build on top of a
second-order accurate DG discretization,11-14 and only few go beyond formal second-order accuracy (eg, the work of Xing
and Zhang15).

Several concepts addressing the abovementioned physical requirements for wetting and drying in a DG framework
proved to be practical. To guarantee positivity of the fluid depth and conserve mass at the same time, various authors
proposed a redistribution of mass within each cell.13-15 This reduces the problem of positivity preservation to only requir-
ing positivity in the mean, which can be guaranteed by a CFL time step restriction.15 Since the DG discretization may
not exactly resolve the wet/dry interface, artificial gradients can occur in the surface elevation, which render the method
unbalanced. To preserve a discrete steady state at rest in this case, it was proposed to neglect the gravity terms in such
cells.11,13 To retain a well-defined velocity computation, which is usually not a primary variable and calculated through
the quotient of momentum and fluid depth, a so-called thin-layer approach was introduced, where a point is considered
dry, if the fluid depth drops below a given tolerance.13 Using this tolerance, the velocity can be set directly to zero in such
a situation and the problem of possibly dividing by a zero fluid depth is circumvented.

Although there are other approaches to deal with the wetting and drying problem,11,16 the most common procedure is
based on slope-modification techniques.12-15 Based on the work of Cockburn and Shu,17 a generalized Minmod total vari-
ation bounded (TVB) limiter is usually combined with the wetting and drying treatment to guarantee linear stability and
prevent oscillations in case of discontinuities. However, several authors point out that this slope limiting and the han-
dling of wetting and drying may activate each other, such that their concurrent use can lead to instabilities. This conflict
is circumvented by applying the TVB limiter only in those cells, where the wetting and drying algorithm is not activated.
This is the starting point of the current study, in which we base our wetting and drying treatment on Barth/Jespersen-type
limiters.18 To the authors' experience, such limiters do not severely alter a discrete state at rest and small perturbations
around it, when limiting in surface elevation.

The application of the new nondestructive limiter leads to another problem, which does not seem to be as prominent
for the TVB limiter. Because both fluid depth and momentum diminish close to the shoreline, the quotient of both, rep-
resenting the velocity, becomes numerically ill-conditioned. This may lead to spurious errors in the velocity values and
result in severe time step restrictions induced by the CFL stability condition inherent in the discretization of hyperbolic
problems. In order to solve this issue, our approach incorporates the velocity field into the limiting procedure for the
momentum. The idea is borrowed from FV methods, where interface values are often reconstructed from other variables
than the primary prognostic variables (see the work of van Leer19 and references therein). Here, we develop an approach
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for DG methods to modify the primary variables based on other secondary variables. We stress that our scheme maintains
common time step restrictions unlike implicit methods, such as in the work of Meister and Ortleb.20

The aim of this work is to introduce a new approach that addresses all of the above issues by combining existing with
novel strategies for a robust, efficient, and accurate inundation scheme for explicit DG computations on general triangular
grids. In this course, a previously developed one-dimensional limiter21 is generalized to the two-dimensional case. Here,
we rely on a nodal DG formulation along the lines of the work of Giraldo and Warburton,4 where we work with geomet-
rical nodes and basis function expansions defined by nodal values. To preserve positivity, we adopt the “positive-depth
operator” from the work of Bunya et al,13 but only applied to the fluid depth. Furthermore, cancelation of gravity terms is
applied in cells adjacent to the wet/dry interface. The presented method is based on limiting total fluid height H = h + b,
which is the sum of fluid depth h and bathymetry b, and velocity in the momentum-based flux computation. This approach
is based on the original idea of hydrostatic reconstruction for FV methods.8,22,23 Two Barth/Jespersen-type limiters are
employed, the original edge-based version18 and a modified vertex-based development,24 the latter being particularly
suitable for triangular grids. We find only minor differences between these options and utilize them for computational effi-
ciency reasons. Although the limiter from the work of Kuzmin24 also works for higher than second-order accuracy, for the
reasons given above, we stick to piecewise linear basis functions and leave the extension of our approach to higher-order
for future research. A set of six commonly used test cases is implemented to demonstrate stability, accuracy, convergence,
well balancedness and mass conservation of our scheme in the presence of moving wet-dry interfaces.

This manuscript is organized into four further sections. Following this introduction, we briefly introduce the equations
and review the DG discretization scheme. We then detail the wetting and drying algorithm in Section 3, before demon-
strating rigorously the properties of the new limiting approach with numerical examples in Section 4. We conclude with
final remarks and an outlook for future applications.

2 THE SHALLOW-WATER EQUATIONS AND THEIR RKDG
DISCRETIZATION

To model two-dimensional waves in shallow water and their interaction with the coast, this study employs the nonlinear
shallow-water equations. They are derived from the principles of conservation of mass and momentum and can be written
compactly in conservative form

U t + ∇ · F(U) = S(U), (1)

where the vector of unknowns is given by U = (h, hu)T. Here and below, we have written the partial derivative with
respect to time t as U t ≡ 𝜕U

𝜕t
and the divergence with respect to the spatial horizontal coordinates x = (x, 𝑦)T as ∇ · F,

which is applied to each component of F. The quantity h = h(x, t) denotes the fluid depth of a uniform density water
layer and u = u(x, t) = (u(x, t), v(x, t))T is the depth-averaged horizontal velocity. The flux function is defined by

F(U) =
(

hu
hu ⊗ u + g

2
h2I2

)
, where g is the acceleration due to gravity and I2 is the 2 × 2 identity matrix. Furthermore,

the bathymetry (bottom topography) b = b(x) is represented by the source term S(U) = (0,−gh∇b)T.
Note that realistic simulations might require further source terms such as bottom friction or Coriolis forcing since these

can significantly influence the wetting and drying as well as the propagation behavior. However, this paper focuses on
novel slope limiting techniques for robust inundation modeling. Hence, we only consider the influence of bathymetry
and leave the inclusion of further source terms for future investigation to avoid additional (stabilizing) diffusive effects
caused, for example, by bottom friction.

For the discretization using the DG method, the governing equations are solved on a polygonal domain Ω ⊂ ℝ2, which
is divided into conforming elements (triangles) Ci. On each element, system (1) is multiplied by a test function 𝜑 and
integrated. Integration by parts of the flux term leads to the weak DG formulation

∫
Ci

U t𝜑 dx − ∫
Ci

F(U) · ∇𝜑 dx + ∫
𝜕Ci

F∗(U) · n 𝜑d𝜎 = ∫
Ci

S(U)𝜑 dx, (2)

where n is the unit outward pointing normal at the edges of element Ci. The interface flux F ∗ is not defined in general,
as the solution can have different values at the interface in the adjacent elements. This problem is circumvented in the
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discretization by using an (approximate) solution of the corresponding Riemann problem. For the simulations in this
study, we used the Rusanov solver.25

Another integration by parts of the volume integral over the flux yields the so-called strong DG formulation26

∫
Ci

U t𝜑 dx + ∫
Ci

∇ · F(U) 𝜑 dx + ∫
𝜕Ci

(F∗(U) − F(U)) · n 𝜑 d𝜎 = ∫
Ci

S(U)𝜑 dx, (3)

which recovers the original differential equations within a cell, but with an additional term accounting for the jumps at
the interfaces. We will deal with both formulations (2) and (3) in this work.

The system of equations is further discretized using a semidiscretization in space with a piecewise polynomial ansatz
for the discrete solution components and test functions 𝜑k. We obtain formally second-order accuracy by using piecewise
linear functions, which are represented by nodal Lagrange basis functions,4,26 based on the cell vertices as nodes. The
solution in one element is then given by U(x, t) =

∑
𝑗Ũ𝑗(t)𝜑𝑗(x), where (Ũ𝑗(t))𝑗 is the vector of degrees of freedom.

The integrals are computed using three-point and two-point Gauß-Legendre quadrature for volume and line integrals,
respectively. Note that the divergence of the flux is computed analytically at each quadrature point based on piecewise
linear distributions of h and hu. For the gravitational part, this leads to the identity ∇ · ( g

2
h2I2) = gh∇h within each cell.

This discretization in space leads to a system of ordinary differential equations

𝜕ŨΔ

𝜕t
= HΔ(ŨΔ),

where ŨΔ contains the degrees of freedom for all cells. The right-hand-side HΔ(ŨΔ) represents the discretized flux and
source term. This system is then solved using a total variation diminishing (TVD) s-stage Runge-Kutta scheme.27,28 In
each Runge-Kutta stage, a limiter is applied, which is usually employed to stabilize the scheme in case of discontinuities.
However, as stated above, it can also be used for dealing with the problem of wetting and drying. In this study, we employ
Heun's method, which is the second-order representative of a standard Runge-Kutta TVD scheme.

For the discretization of the bottom topography, we use a piecewise linear representation, which is continuous across
the interfaces. It is derived from the given data and fixed throughout a simulation. In order to achieve well-balancedness in
the DG formulations (2) and (3), exact quadrature of the terms involving g

2
h2 and the source term is a basic requirement.29

This ensures that the sum of cell integrals over flux and source terms together with the line integrals representing interface
fluxes vanishes in the lake at rest case. It is achieved by the given quadrature rules. Note that one could also employ
a discretization of the bottom topography, which has jumps at the cell interfaces (eg, resulting from a L2 projection of
the exact data). In this case, one has to include higher-order correction terms into the source term discretization,29,30

which is based on hydrostatic reconstruction of the interface values.22 However, throughout this work, we use discretely
continuous representations of the bathymetry and exact quadrature rules.

3 WETTING AND DRYING ALGORITHM

After having introduced the governing equations and the general DG discretization, we describe our approach for deal-
ing with wetting and drying, which is a direct generalization of the one-dimensional limiter described in the work of
Vater et al21 to the two-dimensional case of triangular meshes. It consists of a flux modification applied in cells with dry
nodes and a specially designed limiter, which is nondestructive for the steady state at rest, ensures positivity of the fluid
depth, and leads to a stable velocity computation. The flux modification is needed to maintain the lake at rest. While the
positivity preservation is mostly taken from previous works,13,15 we introduce a new strategy for the momentum, where
we essentially limit the velocities but keep piecewise linear momentum distributions.

3.1 The wet/dry interface
By using a piecewise polynomial DG discretization and enforcing positivity, the discrete shoreline is located at cell inter-
faces. This can introduce artificial gradients of the fluid depth for the lake at rest in cells, which have at least one node with
zero fluid depth, the latter we call “semidry” cells (cf. Figure 1). Here, we define the discrete lake at rest by interpolating
the exact surface elevation H = h + b at triangle nodes and setting the momentum to zero. This results in a continuous
representation of the fluid depth. On the other hand, there may be semidry cells that are approximated physically correct
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FIGURE 1 Discontinuous Galerkin discretization of a partly dry
domain using a triangular grid. The exact shoreline is printed in red,
whereas the discrete is in black. Semidry cells where at least one
node has zero fluid depth are hatched [Colour figure can be viewed
at wileyonlinelibrary.com]

FIGURE 2 Different configurations of semidry cells using a DG discretization with piecewise linear elements in 1D (red dashed: surface
elevation; green dotted: bottom topography). Black circles denote nodal values of fluid depth and bathymetry. A configuration where (4) is
fulfilled and the gradient in surface elevation should be neglected (left) and two situations that are discretized physically correct (middle and
right) are displayed [Colour figure can be viewed at wileyonlinelibrary.com]

(eg, in a dam-break situation where the water comes from higher elevation), which must be distinguished from the
lake-at-rest case (Figure 2). We do this by comparing the maximum total height with the maximum bottom topography
within a cell. If the maximum total height is not larger than the maximum bottom topography within cell Ci, ie,

max
x∈Ci

H(x) − max
x∈Ci

b(x) < TOLwet, (4)

we are possibly in a local lake-at-rest situation, and the cell must be specially treated. Here, we have introduced the
parameter TOLwet, which is a threshold for the fluid depth under which a point is considered dry. At such points, the
velocity is set to zero, which is computed by division of (hu)∕h elsewhere. Otherwise, if (4) is not fulfilled, the cell is treated
as a completely wet cell.

To render the method well-balanced for the discrete lake at rest, we neglect the volume integrals over the terms involving
g
2

h2I2 and the source term in semidry cells where (4) is fulfilled. This is equivalent to setting g to zero. For the strong
DG formulation (3), no further modifications are needed. In the case of the lake at rest where no advection is present,
all volume integrals vanish for wet and semidry cells, and the flux difference F ∗(U) − F(U), which is computed at the
interfaces, automatically cancels due to continuity of the surface elevation and consistency of the numerical flux function.
This is different for the weak DG formulation (2), where also the volume integrals associated with gravitational forces
are neglected. The interface contributions involving g

2
h2 cannot be simply neglected since the numerical flux at the wet

interfaces couples to adjacent cells, which is needed in case of perturbations. For these wet interfaces, an additional flux
term is introduced, which balances the numerical flux. It includes only the gravitational part and is based on the fluid
depth of the semidry cell at the wet interface. The momentum equation in a semidry cell then reads

∫
Ci

𝜑(hu)t dx − ∫
Ci

∇𝜑 ·
(

hu ⊗ u +
�

��g
2

h2I2

)
dx+

3∑
𝑗=1∫

Ei
𝑗

(
F∗

hu −
g
2
(h−)2I2

)
· n 𝜑 d𝜎 = −∫

Ci

����𝜑gh∇b dx,

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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where h− is the value of the fluid depth at the interface based on cell Ci, and Ei
𝑗
, j ∈ {1, 2, 3} are the three edges of

Ci. In the equation, we have canceled the abovementioned volume integrals associated with gravitational forces. If this
discretization is applied to the lake at rest with u ≡ 0, then all the edge contributions in a semidry cell vanish. For dry
edges, this is because h is zero, and for wet cells, the difference computed under the integral cancels to zero. Note, however,
that well-balancing is easier accomplished by using the strong form, and this form also leads to slightly better results as
we will see in Section 4. These described modifications can be also interpreted as a flux limiting approach.

3.2 Limiting of the fluid depth
Limiting with respect to fluid depth is based on a Barth/Jespersen-type limiter,18 which fulfills the requirement to not
alter a well-balanced discrete solution, when limiting in total height H = h+b. Positivity is attained by ensuring positivity
in the mean and redistribution of fluid depth within each cell.

Barth/Jespersen-type limiters modify the solution within a cell, such that it does not exceed the maximum and mini-
mum of the cell mean values of adjacent cells. In this work, we study the original version by Barth and Jespersen, which
incorporates the cells that are connected by a common edge to the cell under consideration. Additionally, we consider a
generalization for triangular grids, which was introduced by Kuzmin.24 This limiter incorporates the cells, which are con-
nected by a common vertex for comparison. We refer to these two versions as “edge-based” and “vertex-based” limiters,
respectively. Note that the main goal is not to compare these two limiters. We introduce the two versions to offer some flex-
ibility in the computational setup since some algorithms require edge-based computations for efficiency, whereas others
are organized by nodal representations.

Given the cell average or centroid value Hc = H = h + b of the total height, the piecewise linear in-cell distribution can
be described by H(x) = Hc + (∇H)c · (x − xc). A Barth/Jespersen-type limiter modifies this to

Ĥ(x) = Hc + 𝛼e(∇H)c · (x − xc), 0 ≤ 𝛼e ≤ 1,

where 𝛼e is chosen, such that the reconstructed solution is bounded by the maximum and minimum centroid values of a
given cell neighborhood

Hmin
c ≤ Ĥ(x) ≤ Hmax

c .

For the original Barth/Jespersen limiter, this cell neighborhood is given by the considered cell and the three cells sharing
an edge with this cell. In case of the limiter described by Kuzmin,24 the cell neighborhood is given by the considered cell
and the surrounding cells sharing a vertex with this cell. The correction factor is explicitly defined as

𝛼e = min
i

⎧⎪⎪⎨⎪⎪⎩
min

{
1, Hmax

c −Hc

Hi−Hc

}
, if Hi − Hc > 0

1, if Hi − Hc = 0
min

{
1, Hmin

c −Hc

Hi−Hc

}
, if Hi − Hc < 0,

where Hi are the in-cell values of H at the three vertices of the triangle. The limited fluid depth ĥ is then recovered by
ĥ = Ĥ − b.

Positivity is enforced in a second step by the positive depth operator originally proposed by Bunya et al.13 Note that
this approach is closely related to the positivity preserving limiter introduced in the work of Xing and Zhang,15 the latter
being also suitable for higher-order elements. Here, we also follow the aforementioned work15 by relying on a CFL time
step restriction to preserve positivity in the mean. Applied to the Runge-Kutta DG (RKDG2) method, the CFL limit is
1/3, which is less restrictive than the time step restriction to ensure linear stability. Let us express the piecewise linear
function ĥ by its nodal representation with Lagrange basis functions

ĥ(x, 𝑦) =
3∑

i=1
ĥi𝜑i(x, 𝑦) for (x, 𝑦) ∈ Ck,

where we take as nodes the vertices of the triangle Ck. Then, positivity on the whole triangle is obtained by requiring
positivity for the nodal values. Denoting the final limited values by hlim and hlim

i with hlim =
∑

hlim
i 𝜑i, hlim

i is determined
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by the following procedure: If ĥi ≥ 0 ∀i ∈ {1, 2, 3}, then

hlim
i = ĥi, i ∈ {1, 2, 3}.

Otherwise, we determine the order of nodal indices ni ∈ {1, 2, 3} that satisfy ĥn1 ≤ ĥn2 ≤ ĥn3 and compute the values in
the following sequence:

hlim
n1

= 0

hlim
n2

= max
{

0, ĥn2 −
(

hlim
n1

− ĥn1

)
∕2

}
hlim

n3
= ĥn3 −

(
hlim

n1
− ĥn1

)
−
(

hlim
n2

− ĥn2

)
.

As the work of Bunya et al13 has shown, this algorithm lowers the depths at nodes n2 and n3 by equal amounts, and the
algorithm is mass conserving.

3.3 Velocity-based limiting of the momentum
In a last step, the momentum distribution is modified by limiting the in-cell variation of the resulting velocity distribution.
This provides a stable computation near the wet/dry interface in situations when both h and (hu) are small. It is designed
to keep a piecewise linear momentum distribution with fixed cell mean values. As noted in the introduction, this approach
originates from FV methods, where the reconstruction of interface values by means of other than the primary variables
has a long tradition.19,22 For FV methods, this does not pose a problem since the reconstructed values are only used for
flux computation. In DG methods, the situation is more complicated since the whole in-cell solution is limited and used
throughout the computations. Therefore, one is usually bound to use the primary variables for limiting.

For the momentum limiting, we first compute preliminary limited velocity components ûi (and similarly v̂i) at each
node i of the triangle

ûi = max
{

min
{

ui,umax
c

}
,umin

c
}
,

where ui = (hu)i∕hi and uc = (hu)c∕hc are the x-velocities computed from the nodal and centroid values of momentum
and (the unlimited) fluid depth. Note that, in case hi < TOLwet, the velocity is set to 0. The minimum and maximum
values umin ∕max

c are determined as in Section 3.2 for the total height by considering the centroid values of the neighboring
cells, which share a common edge (edge-based limiter) or a common vertex (vertex-based limiter) with the cell.

This results in three different linear momentum distributions based on two of the three preliminary nodal velocities,
by keeping the cell mean value of the momentum and the distribution of the fluid depth. For the three possibilities, we
obtain a velocity for the third node with

û23
1 =

3(hu)c − hlim
2 · û2 − hlim

3 · û3

hlim
1

, û13
2 =

3(hu)c − hlim
1 · û1 − hlim

3 · û3

hlim
2

,

û12
3 =

3(hu)c − hlim
1 · û1 − hlim

2 · û2

hlim
3

,

where the lower index denotes the node for which the velocity is computed and the upper index defines which nodal
velocities this is based on. The final limited momentum component is then chosen to produce the smallest in-cell velocity
variation. Set

𝛿û1 = max
{

û23
1 , û2, û3

}
− min

{
û23

1 , û2, û3
}
,

𝛿û2 = max
{

û1, û13
2 , û3

}
− min

{
û1, û13

2 , û3
}
,

𝛿û3 = max
{

û1, û2, û12
3
}
− min

{
û1, û2, û12

3
}
.

(5)

If 𝛿û1 ≤ 𝛿ûi for i ∈ {2, 3}, then

(hu)lim
1 = hlim

1 · û23
1 , (hu)lim

2 = hlim
2 · û2, (hu)lim

3 = hlim
3 · û3. (6)

If 𝛿û2 ≤ 𝛿ûi for i ∈ {1, 3}, then

(hu)lim
1 = hlim

1 · û1, (hu)lim
2 = hlim

2 · û13
2 , (hu)lim

3 = hlim
3 · û3. (7)
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Otherwise,

(hu)lim
1 = hlim

1 · û1, (hu)lim
2 = hlim

2 · û2, (hu)lim
3 = hlim

3 · û12
3 . (8)

The final limited momentum is then given by (hu)lim
h =

∑
i[(hu)lim

i 𝜑i(x, 𝑦)]. The same procedure is applied to the
y-momentum. In conclusion, the wetting and drying algorithm can be summarized as follows:

4 NUMERICAL RESULTS

In the following, we demonstrate the major functionalities of the limiting procedure described in the last section. Using
a hierarchy of test cases, where we start with configurations where the exact solution to the shallow-water equations
is known, we show the scheme's mass conservation and well balancedness, as well as the correct representation of the
shoreline. Two test cases, which originate from the work of Thacker,31 particularly demonstrate the scheme's ability of
representing a moving shoreline. Two further test cases are derived from laboratory experiments, which, together with
the runup onto a linearly sloping beach, are standard test cases for the evaluation of operational tsunami models.32

For the simulations, we use both versions of the limiter, ie, vertex-based and edge-based limiting of total height and
velocity, and show that although they differ slightly in computational complexity and added numerical diffusion, they
both yield comparable and accurate results. The presented limiter depends on one free parameter, the wet/dry tolerance
TOLwet, that defines the fluid depth threshold, below which a point is considered dry. This is especially important for the
computation of the velocity. We comment on this tolerance for each test case and, overall, conclude that the stability of
the limiting strategy is not sensitive to it. However, it can influence the discrete location of the wet/dry interface.

Apart from the first test case, where we compare the weak and strong DG formulations concerning well balancedness,
we only present results using the strong DG form in the simulations. Although the strong DG form shows somehow better
results in case of the lake at rest, the other test cases produce nearly indistinguishable results for both DG formulations.

Throughout this section, we set the acceleration due to gravity to g = 9.80616m∕s2 and omit the units of measurement
of the physical quantities, which should be thought in standard SI units with m (meters), s (seconds), etc. For the spatial
discretization, we mostly use regular grids, which are usually derived from one or more rectangles, each divided into two
triangles. Such a grid is then repeatedly uniformly refined by bisection to obtain the desired resolution (see the work of
Behrens et al33 for details on grid generation). The discrete initial conditions and the bottom topography are derived from
the analytical ones by interpolation at the nodal points (vertices of triangles).

Explicit methods for the solution of hyperbolic problems are usually subject to a CFL time step restriction,34 which is of
the form Δt ≤ cfl hΔ∕cmax. Here, hΔ defines a grid parameter and cmax is the maximum propagation speed of information.
For one-dimensional problems, Cockburn and Shu35 proved that cfl1D = 1∕3 for the RKDG2 method. However, this
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cannot be directly transferred to two-dimensional triangular grids. We follow the work of Kubatko et al,36 who propose the
radius of the smallest inner circle of the triangles surrounding a vertex as grid parameter. These nodal values are further
aggregated to each triangle by taking the minimum of its three vertex values. The 2D CFL number then approximately
relates to its 1D counterpart by cfl2D ≈ 2−1∕(p−1)cfl1D, where p is the order of discretization. This results in cfl2D ≈ 0.233
for our RKDG2 method. Note that this limit is more restrictive than the time step restriction of 1/3 to ensure positivity in
the mean. If not stated otherwise, we choose a constant time step size Δtn = Δt, which guarantees that the CFL condition
is essentially satisfied.

Besides fluid depth and momentum, we often show the velocity u = (hu)∕h with its in-cell distribution, which is derived
diagnostically by the quotient of the two other quantities.

4.1 Lake at rest
As a first test, we conduct two simple “lake at rest” experiments with different bathymetries to examine the
well-balancedness of our scheme. In a quadratic and periodic domain Ω = [0, 1]2, the first bathymetry is defined by
b(x) = max{0, 0.25− 5((x − 0.5)2 + (𝑦 − 0.5)2)}, which features a local, not fully submerged, parabolic mountain centered
around the mid point (0.5, 0.5)⊤. The initial fluid depth and velocity are given by

h(x, 0) = max {0, 0.1 − b(x)} ,
u(x, 0) = 0.

(9)

This is a steady-state solution that should be reproduced by the numerical scheme. We run simulations using the strong
and weak DG formulations with both limiters and a grid resolution of Δx ≈ 0.022 (leg of right angled triangle) until
Tend = 40. A time step of Δt = 0.002 is used, which results in 20 000 time steps. The wet/dry tolerance is chosen as
TOLwet = 10−6.

The results are depicted in Figure 3. We show the error in the L2 as well as the maximum (L∞) norm for the fluid
depth (top row) and momentum (bottom row) for all four possible configurations. All combinations are well-balanced
almost up to machine precision considering fluid depth. The momentum is also balanced, except for the vertex-based
limiter in combination with the weak DG form, which shows a slowly growing, yet well controlled, momentum error.
The simulations using the strong DG form show generally smaller errors. This behavior can be explained by the superior
balancing property of the strong DG formulation, which has been already observed in the work of Beisiegel.37

FIGURE 3 Lake at rest: errors over time for the fluid depth (top) and momentum (bottom) in the L∞ (left) and L2 norms (right) for the
first bathymetry setup. Vertex-based limiter with weak DG formulation (red), edge-based limiter with weak DG formulation (blue),
vertex-based limiter with strong DG formulation (magenta dashed), edge-based limiter with strong DG formulation (cyan dashed) [Colour
figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Lake at rest: Initial setup for the second bathymetry configuration (left), and L∞ errors over time for fluid depth (magenta) and
momentum (dark purple). Vertex-based limiter with strong DG formulation [Colour figure can be viewed at wileyonlinelibrary.com]

For the second bathymetry setup, we define the subdomains

Ω1 =
{

x ∈ Ω|||x − (0.35, 0.65)⊤|| < 0.1
}
,

Ω2 =
{

x ∈ Ω|||x − (0.55, 0.45)⊤|| < 0.1
}
,

Ω3 = {x ∈ Ω||x − 0.47| < 0.25 ∧ |𝑦 − 0.55| < 0.25} , and
Ω4 =

{
x ∈ Ω|||x − (0.5, 0.5)⊤|| < 0.45

}
.

The bathymetry is given by

b(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.15 if x ∈ Ω1

0.05 if x ∈ Ω2

0.07 if x ∈ Ω3 ⧵ {Ω1 ∪ Ω2}
0.03 if x ∈ Ω4 ⧵ {Ω3}
0 otherwise.

The initial conditions are given as in (9) (cf. Figure 4, left). Although the analytical setup has discontinuities in the
bathymetry, we also interpolate bathymetry and initial condition by piecewise linear and continuous approximations at
the cell vertices. Using the same grid and time step size as in the first setup, we obtain L∞ errors for fluid depth and
momentum over time as displayed in Figure 4, right. One can see that the scheme is also well-balanced in this case with
steps in the bathymetry.

4.2 Tsunami runup onto a linearly sloping beach
A standard benchmark problem to evaluate wetting and drying behavior of a numerical scheme is the wave runup onto a
plane beach. We perform this quasi–one-dimensional test case38 to compare the results to the ones already obtained with
the one-dimensional version of the scheme in the work of Vater et al.21 The test case admits an exact solution following
a technique developed in the work of Carrier et al.39

In a rectangular domainΩ = [−400, 50 000]×[0, 400]with linearly sloping bottom topography b(x) = 5000−𝛼x, 𝛼 = 0.1,
and initial velocity u(x, 0) = 0, an initial surface elevation is prescribed in nondimensional variables by

𝜂′(x′) = a1 exp{k1(x′ − x1)2} − a2 exp{k2(x′ − x2)2}.

The parameters are given by a1 = 0.006, a2 = 0.018, k1 = 0.4444, k2 = 4, x1 = 4.1209, and x2 = 1.6384. Then, the
initial surface profile is recovered by taking x = Lx′ and 𝜂 = 𝛼L𝜂′ with the reference length L = 5000 (cf. Figure 5).
As the solution near the left boundary of Ω is always dry and that on the right boundary outgoing waves should not be
reflected, we set wall and transparent boundary conditions for the left and right boundary, respectively. The boundaries
in y-direction are set periodic, to avoid any artifacts coming from the definition of the boundary conditions.

The simulations are run with a time step of Δt = 0.04, and a spatial resolution of Δx = 50, which corresponds to the
length of the leg of a right angled triangle. The resulting Courant number is approximately 0.25, which is attained offshore
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FIGURE 5 Tsunami runup onto a beach: initial surface elevation
at t = 0 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Tsunami runup onto a beach: surface elevation, x-momentum, and x-velocity (derived by u = (hu)∕h) along line y = 200 at
times t = 160 (top), t = 175 (middle), and t = 220 (bottom). Exact solution (green dash-dotted), vertex-based limiter (red), edge-based limiter
(blue) [Colour figure can be viewed at wileyonlinelibrary.com]

where the fluid depth is largest. The wet/dry tolerance is set to TOLwet = 10−2. We compare our numerical results with
the analytical solution on the interval x ∈ [−400, 800] at times t = 160, 175, and 220. The results are depicted in Figure 6.

The left column shows the free surface elevation, where the simulations with both limiters (red and blue lines) match
the exact solution (green line). However, it can be observed that, due to its smaller stencil, the edge-based limiter develops
spurious discontinuities at cell edges. The middle column and the right column show the momentum and the recon-
structed velocity at the respective times. As expected, the momentum is reproduced well while the velocity shows some
spurious overshoots and undershoots in the near-dry area, but good results elsewhere.

In general, the vertex-based limiter yields qualitatively better results for this test case. The results are comparable to
those in one space-dimension given in the work of Vater et al21 and demonstrate the similarity of our two-dimensional
extension of the limiter.

4.3 Long wave resonance in a paraboloid basin
The following two test cases particularly address the correct representation of a moving shoreline. They were originally
defined in the work of Thacker31 and have an analytical solution. The first problem is a purely radially symmetric flow.
Here, we also discuss the impact of the wet/dry tolerance on our method. Note that we work with a scaled version of
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the problem as given in the work of Lynett et al.40 In a quadratic domain Ω = [−4000, 4000]2 with a parabolic bottom
topography given by b(x) = b̃(r) = H0

r2

a2 where r = |x| = √
x2 + 𝑦2, the initial fluid depth and velocity are prescribed by

h(x, 0) = max

{
0,H0

(√
1 − A2

1 − A
− |x|2(1 − A2)

a2(1 − A)2

)}
u(x, 0) = 0,

where

A =
a4 − r4

0

a4 + r4
0
,

H0 = 1, r0 = 2000, a = 2500. The exact radially symmetric solution is then given by

h(x, t) = max

{
0,H0

( √
1 − A2

1 − A cos(𝜔t)
− |x|2(1 − A2)

a2(1 − A cos(𝜔t))2

)}

(u, v)(x, t) =

{
𝜔A sin(𝜔t)

2(1−A cos(𝜔t))
x if h(x, t) > 0

𝟎 otherwise,

where 𝜔 is the frequency defined as 𝜔 =
√

8gH0∕a.
The simulations are run for two periods (P) of the oscillation, ie, until Tend = 2P = 2 · (2𝜋∕𝜔), with a time step of

Δt = P∕700 ≈ 2.534, and a spatial resolution of Δx = 125∕
√

2 ≈ 88.39 (leg of right angled triangle). The initial Courant
number is approximately 0.16. This is lower than the theoretically maximal Courant number because of possibly occurring
spurious velocities in nearly dry regions affecting the Courant number at later times of the simulation. The maximum
Courant number that is obtained for TOLwet = 10−14 is 0.22, whereas it is 0.16 for TOLwet = 10−2.

FIGURE 7 Long wave resonance in a paraboloid basin: cross section of fluid depth, x-momentum, and x-velocity (left to right) at times
t = 1.5P, t = 1.75P, and t = 2P (top to bottom) at y = 0. Exact solution (green dash-dotted), vertex-based limiter (red), edge-based limiter
(blue), TOLwet = 10−2 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Long wave resonance in a paraboloid basin: cross section of fluid depth, x-momentum, and x-velocity (left to right) at time
t = 2P at y = 0 for the vertex-based limiter. Exact solution (green dash-dotted), solution with TOLwet = 10−2 (red), with TOLwet = 10−8 (blue),
and with TOLwet = 10−14 (cyan) [Colour figure can be viewed at wileyonlinelibrary.com]

The results for fluid depth, x-momentum, and x-velocity at times t = 1.5P, 1.75P, and 2P over a cross section y = 0 are
shown in Figure 7. Qualitatively, the vertex-based limiter (red line) shows slightly better results than the edge-based limiter
(blue line). Note the small scale for the momentum at t = 1.5P and t = 2P in comparison with t = 1.75P. The momentum
plots in comparison with the velocity plots also show the action of the limiter. While the momentum, especially for the
edge-based limiter, is non-monotone in some regions, the velocity is mostly monotone. Only near the wet/dry interface
some spurious velocities are visible when the overall velocity is close to zero.

A comparison of simulation results at final time t = 2P with different wet/dry tolerances TOLwet reveals that the
results for the prognostic variables as well as the reconstructed velocities are largely insensitive to the chosen tolerance
(see Figure 8). However, as wet/dry tolerance gets small, a larger area is considered wet by the scheme. This is visible in
the velocity plot, where spurious velocities start to appear in nearly dry regions.

We further illustrate the effect of the parameter TOLwet by comparison of fully two-dimensional fields obtained with
the vertex-based limiter (Figure 9). The top and bottom rows show the fluid depth and velocity with TOLwet = 10−2 and
TOLwet = 10−8, respectively. The results for the fluid depth are largely identical with the exception that the area that the
model recognizes as “wet” is much larger with a smaller tolerance. In the additional wet area obtained with a smaller
tolerance, small values of momentum and fluid depth lead to spurious velocities. However, we note that in spite of the
observed existence of spurious velocities, these are still bounded and their magnitudes are within the range of the exact
solution to the problem.

A major aspect of the velocity-based limiter becomes apparent when compared to the non-velocity-based version of that
same limiter, ie, limiting directly in the momentum variable. In Figure 10, we show the maximal possible global time step
Δt for a fixed CFL number cfl = 0.2. We allow the time step to vary over time based on the CFL number and compute
it using the numerical velocity and fluid depth. Both simulation runs use the same version of the vertex-based limiter
with respect to the fluid depth. We observe that the velocity-based limiter (cyan line in Figure 10) allows for a reasonable
time step that does not show much variation. In contrast, if we do not use the velocity-based limiter, the simulation result
shows large accumulations of spurious velocities in the first drying phase, leading to an unreasonably small time step
(blue line in Figure 10) to the extent that we were not able to finish the simulation within reasonable time.

4.4 Oscillatory flow in a parabolic bowl
The second test case, which goes back to the work of Thacker,31 is also defined in a parabolic bowl but describes a circular
flow with a linear surface elevation in the wet part of the domain. It is the 2D analog of the 1D test case described in the
work of Vater et al.21 Here, we follow the particular setup of the work of Gallardo et al.41 In a square domain Ω = [−2, 2]2

with bottom topography b = b(x) = 0.1(x2 + y2), an analytical solution of the shallow-water equations is given by

h(x, t) = max
{

0, 0.1
(

x cos(𝜔t) + 𝑦 sin(𝜔t) + 3
4

)
− b(x)

}
(u, v)(x, t) =

{
𝜔

2
(− sin(𝜔t), cos(𝜔t)) if h(x, t) > 0

𝟎 otherwise,

with 𝜔 =
√

0.2g.
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FIGURE 9 Long wave resonance in a paraboloid basin: 2D view of fluid depth (left) and x-velocity (right) at time t = 2P for the
vertex-based limiter. Note that only the area where the fluid depth is above the wet/dry tolerance is colored. TOLwet = 10−2 (top) and
TOLwet = 10−8 (bottom) [Colour figure can be viewed at wileyonlinelibrary.com] [Correction added on 23 August 2019, after first online
publication: white rendering artifacts have been corrected in the figure]

FIGURE 10 Long wave resonance in a paraboloid basin: resulting time step Δt
over time by keeping cfl = 0.2 fixed. Results with velocity-based limiting of the
momentum (cyan) and with direct limiting in momentum (blue) [Colour figure can
be viewed at wileyonlinelibrary.com]

Starting with t = 0, we ran simulations for two periods until Tend = 2P = 2 · (2𝜋∕𝜔) of the oscillation with a time step
of Δt = P∕1000 ≈ 0.004487. The spatial resolution is set to 8192 elements, which is a Cartesian grid with 642 squares
divided into two triangles of an edge length of 0.0625 (leg of right angled triangle).

Figure 11 shows cross sections over the line y = 0 at time t = 2P. The exact solution is plotted in green and the
numerical approximation in red and blue is for the vertex-based and edge-based limiter, respectively. The tolerance is
chosen to TOLwet = 10−3. We observe good agreement of the numerical results with the analytical solution for fluid
depth, momentum, and velocity. Note, however, that the edge-based limiter tends to produce artificial discontinuities in
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FIGURE 11 Oscillatory flow: cross section at y = 0 for time t = 2P. Fluid depth, x-momentum, y-momentum, x-velocity, y-velocity (left to
right, top to bottom). Exact solution (green dash-dotted), vertex-based limiter (red), edge-based limiter (blue), TOLwet = 10−3 [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 12 Oscillatory flow: 2D view for vertex-based limiter (top) and edge-based limiter (bottom). Fluid depth, x-momentum,
y-momentum (left to right) at time t = 2P. White areas denote where the fluid depth is below the wet/dry tolerance TOLwet = 10−3 [Colour
figure can be viewed at wileyonlinelibrary.com] [Correction added on 23 August 2019, after first online publication: white rendering artifacts
have been corrected in the figure]

the solution and to slightly underpredict the y-momentum due to a higher inherent diffusion, which results from the
edge-based stencil. This also yields a too small velocity and is visible in the 2D plots in Figure 12. Moreover, the contour
plot of the x-momentum (middle column) shows that the triggered discontinuities are clearly visible. The results with the
vertex-based limiter (top) are smoother and show less diffusion.

To show that our limiting approach is applicable to arbitrary meshes, Figure 13 shows analog simulation results on a
highly unstructured Delaunay mesh with 1233 elements. Note that this mesh has a coarser resolution than the one used
in Figures 11 and 12. As can be seen from the cross section plots, the results are similar to those on the other meshes.
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FIGURE 13 Oscillatory flow on unstructured mesh: 2D view of fluid depth with mesh outline (left) and cross section at y = 0 for fluid
depth and y-momentum (right) at time t = 2P. Exact solution (green dash-dotted), vertex-based limiter (red), TOLwet = 10−3 [Colour figure
can be viewed at wileyonlinelibrary.com] [Correction added on 23 August 2019, after first online publication: white rendering artifacts have
been corrected in the figure]

FIGURE 14 Oscillatory flow: errors in fluid depth (left) and momentum (right) measured in the L2 norm (circles) and the L∞ norm
(squares). Vertex-based limiter (red), edge-based limiter (blue) [Colour figure can be viewed at wileyonlinelibrary.com]

Besides the accuracy on fixed grids, also the convergence of the wetting and drying scheme is of interest. While we
cannot expect second-order convergence due to the non-smooth transition (kink) between wet and dry regions in the
flow variables, the convergence rate should be at least approximately linear. For the convergence calculation, we have
computed the solution up to t = 2P on several grids with the number of cells ranging from 2048 to 524 288 and fixed ratio
𝛥t∕𝛥x and a wet/dry tolerance TOLwet = 10−8. The experimental convergence rate is then calculated by the formula

𝛾
𝑓
c ∶=

log(||ec||∕||e𝑓 ||)
log(Δxc∕Δx𝑓 )

.

In this definition, ec and ef are the computed error functions of the solution on a coarse and a fine grid (denoted by the
number of cells) and Δxc and Δxf are the corresponding grid resolutions. In Figure 14 and Table 1, we show the results of
this convergence analysis. The DG method converges with both limiters; however, the convergence rate that is achieved
in the L2 norm is higher with the vertex-based limiter (≈ 1.6) than with the edge-based limiter (≈ 1).

The test case of an oscillatory flow in a parabolic bowl is also suitable to evaluate the conservation of mass and of
total energy E = ∫Ωh(u · u)∕2 + gh(h∕2 + b)dx for the numerical method since there is no flow across the boundary
of the domain. While mass conservation should hold up to machine accuracy, total energy can only hold within the
approximation error. We can see that mass conservation is not affected by the slope limiters (left plot of Figure 15), whereas
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L2(h) L2(m) L∞(h) L∞(m) L2(h) L2(m) L∞(h) L∞(m)
𝛾8192

2048 1.6873 1.6230 0.9104 1.1587 𝛾8192
2048 1.0048 0.9332 0.9926 0.9494

𝛾32768
8192 1.6903 1.5996 1.3190 1.3072 𝛾32768

8192 1.0125 0.9527 0.9860 0.9491
𝛾131072

32768 1.5626 1.5671 0.8477 1.0294 𝛾131072
32768 1.0090 0.9694 0.9513 0.9834

𝛾524288
131072 1.5779 1.5901 1.1845 1.0847 𝛾524288

131072 1.0012 0.9802 0.8538 0.9957
𝛾 fitted 1.6289 1.5926 1.0690 1.1496 𝛾 fitted 1.0077 0.9593 0.9505 0.9688

TABLE 1 Oscillatory flow: convergence
rates between different grid levels for fluid
depth (h) and momentum (m) in the L2

and L∞ norms. Vertex-based limiter (left)
and edge-based limiter (right). Moreover,
the mean convergence rate 𝛾 fitted, which is
obtained by a least squared fit, is displayed

FIGURE 15 Oscillatory flow: time series of relative mass (left) and energy (right) changes for the vertex-based limiter (red) and edge-based
limiter (blue) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 16 Oscillatory flow: time series of maximum Courant number with wet/dry tolerance TOLwet = 10−2 (red dashed),
TOLwet = 10−4 (blue), TOLwet = 10−8 (cyan), TOLwet = 10−14 (magenta). Vertex-based limiter (left), edge-based limiter (right) [Colour figure
can be viewed at wileyonlinelibrary.com]

only the vertex-based limiter (right plot of same figure) nearly conserves energy. This indicates that the edge-based limiter
exposes some numerical dissipation.

Finally, we record the Courant number for this test case over time for different wet/dry tolerances. In Figure 16, we
plot the Courant number for the vertex-based (left) and edge-based limiters (right) with wet/dry tolerances TOLwet ∈
{10−2, 10−4, 10−8, 10−14}. It can be observed that, for all tolerances, the Courant number stays bounded and mostly below
the theoretical limit. However, when the wet/dry tolerance becomes smaller, spurious velocities start to arise and affect
the Courant number. If the tolerance is set large enough (≈ 10−4), we obtain a nearly constant Courant number over time,
which is similar to the Courant number of the exact problem.

4.5 Runup onto a complex three-dimensional beach
The 1993 Okushiri tsunami caused many unexpected phenomena, such as an extreme runup height of 32 m, which
was observed near the village of Monai on Okushiri Island. The event was reconstructed in an 1/400 scale laboratory
experiment, using a large-scale tank (205 m long, 6 m deep, 3.4 m wide) at Central Research Institute for Electric Power
Industry (CRIEPI) in Abiko, Japan.42 For the test case, the coastal topography in a domain of 5.448 m × 3.402 m and
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FIGURE 17 Okushiri: time series of incident wave that is used as boundary condition (left) and experimental setup (right) [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 18 Okushiri: time series of gauge data: gauge 5 (left), gauge 7 (middle), gauge 9 (right), experimental data (green dash-dotted),
vertex-based limiter (red), edge-based limiter (blue dashed). TOLwet = 10−4 [Colour figure can be viewed at wileyonlinelibrary.com]

the incident wave from offshore are provided. Beside the temporal and spatial variations of the shoreline location, the
temporal evolution of the surface elevation at three specified gauge stations is of interest (Figure 17).

At the offshore boundary, we set the incident wave as right-going simple wave. This means, given the fluid depth h of
the incident wave, the x-velocity is computed by

u = 2
(√

gh −
√

gh0

)
, (10)

where h0 = 0.13535 m denotes the water depth at rest. At the other three boundaries, walls were reported to be present.
Hence, we set reflective wall boundary conditions at these locations.

We perform simulations with a time step of Δt = 0.001 until 40 000 steps (Tend = 40) on a grid with 393 216 elements
(384 × 256 rectangles divided into four triangles). The wet/dry tolerance is set to TOLwet = 10−4. The results are depicted
in Figures 18 and 19. Figure 18 shows the comparison of the numerical results with experimental data at gauges 5, 7, and
9. Overall, we observe good agreement with both limiters (red and blue lines). Detailed contour plots of the coastal area
together with the experimentally derived shoreline are shown in Figure 19 for times t = 15.0, 15.5, 16.0, 16.5, 17.0. This
shoreline is taken from the work of LeVeque43 and adjusted to the figures, which means it can only be used as a rough esti-
mate. However, the flood line is represented well and we also demonstrate a good match of the maximum runup (red dot)
at t = 16.5.

4.6 Flow around a conical island
This test is part of a series of experiments carried out at the U.S. Army Engineer Waterways Experiment Station in a
25× 28.2 m basin with a conical island situated at its center.44,45 The experiment was motivated by the 1992 Flores Island
tsunami runup on Babi Island.

The conical island has its center at xI = (12.96, 13.8)⊤ and is defined by

b(x) = b̃(r) =
⎧⎪⎨⎪⎩

0.625 r ≤ 1.1
(3.6 − r)∕4 1.1 ≤ r ≤ 3.6
0 otherwise,

with r = ||x − xI||2 being the distance from the center (see Figure 20). The initial fluid depth and velocity are given by
h(x, 0) = max{0, h0 −b(x)} and u(x, 0) = 0, where h0 = 0.32. Three different solitary waves (denoted by cases A, B, and C)
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FIGURE 19 Okushiri: detailed contour plot of the coastal area at t = 15.0, 15.5, 16.0, 16.5, 17.0, (top left to right bottom), vertex-based
limiter with TOLwet = 10−4. Contour colors are given for the fluid depth. Contour lines represent the topography at 0.0, 0.01, … , 0.11. In
addition, the approximate location of the shoreline from the experiment (yellow dashed) and the maximum observed runup (red circle),
which happened around t = 16.5, is given [Colour figure can be viewed at wileyonlinelibrary.com]

were generated by a wavemaker in the experiments at the left side of the domain, from which we only consider cases A
and C. Besides the trajectories of the wave paddle, time series of the surface elevation at 27 different gauge stations, eight
of which are freely available, were measured. The first four gauge stations were situated in a L∕2 distance in x-direction
from the toe of the beach, where L∕2 is the distance at which the solitary wave height drops to 5% of its maximum height,
and L defines the wave length. In the numerical simulations, we describe the wave by an incoming analytical solitary
wave through the boundary condition on the left side of the domain. In order to make the analytical wave compatible to
measurements, it needs to be adjusted with the parameters given as follows. The wave is defined by

hb(t) = h0 + a
(

1
cosh(K(cT − ct − x0))

)2

,

where K =
√

3a
4h3

0
and c =

√
gh0(1 + a

2h0
). To obtain the other parameters, we fitted the solitary wave to the experimental

data at the first four gauge stations. This resulted in an amplitude and time shift of a = 0.014 and T = 8.85 for case A. The
parameter x0 = 5.76 is the x-coordinate of the first four gauges. For case C, the parameters are a = 0.057, T = 7.77, and
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FIGURE 20 Conical island: top and side views of experimental setup with
location of wave gauges (blue) [Colour figure can be viewed at
wileyonlinelibrary.com]

x0 = 7.56. Compared to the experiments, this also includes a time shift of 20. As in the Okushiri test case, the velocity at
the boundary is defined to obtain a right running simple wave (cf. (10)).

For the numerical simulations, the domain is slightly adjusted to have dimensions 25.92× 27.60, and the conical island
is exactly centered. The domain is discretized into 1024 × 1024 uniform squares, which are divided into two triangles
(2 097 152 elements). The time step is Δt = 0.0025, and the computations are run until Tend = 20. Results are computed
using both limiters with a wet/dry tolerance of TOLwet = 10−3. On the left side of the domain, we impose an inflow
boundary condition to prescribe the solitary wave. Furthermore, a transparent boundary condition is set on the right side
and wall boundary conditions are set at the top and the bottom of the domain.

FIGURE 21 Conical island: time series for case A of surface elevation at wave gauges 6, 9, 16, 22 (top left to bottom right) experimental
data (green dash-dotted, shifted by Δt = −20), vertex-based limiter (red), edge-based limiter (blue dashed) [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 22 Conical island: time series for case C of surface elevation at wave gauges 6, 9, 16, 22 (top left to bottom right) experimental
data (green dash-dotted, shifted by Δt = −20), vertex-based limiter (red), edge-based limiter (blue dashed) [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 23 Conical island:
contour plot of surface
elevation for case A (top) at
t = 13 (left) and t = 16 (right)
using the vertex-based limiter.
Same for case C (bottom) at
t = 11 (left) and t = 14 (right)
[Colour figure can be viewed
at wileyonlinelibrary.com]
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FIGURE 24 Conical island: maximum vertical runup in cm for case A (left) and case C (right). Results using vertex-based limiter (red),
edge-based limiter (blue), and from the experiments (green asterisks). Initial numerical shoreline is displayed in gray. Note the enlarged
runup scale for case A [Colour figure can be viewed at wileyonlinelibrary.com]

In Figures 21 and 22, we compare the resulting time series of the surface elevation at gauge stations 6, 9, 16, and 22 for
cases A and C, respectively, with the experimental data. Note that some time series from the experiments were slightly
shifted to have an initial zero water level. While gauges 6 and 9 are right in front of the island, gauge 16 is on the side
and gauge 22 is at the rear of it. It can be seen that, for smaller wave amplitudes (case A), the experimental data can be
reproduced well. On the other hand, for higher amplitudes in case C, nonlinear effects become dominant and are not
balanced because of the lack of wave dispersion. The result is a steepening of the wave at the front and a flattening at the
rear. Furthermore, we observe a general underestimation of the trough after the first wave.

In Figure 23, some snapshots of the simulations using the vertex-based limiter are displayed. They demonstrate that
the initial wave correctly splits into two wave fronts after hitting the island. These wave fronts collide behind the island
at a later time in the simulation. Finally, we compare the computed maximum runup on the island with measurements
from the experiments in Figure 24. For both configurations of wave amplitude, the simulations resemble measurements
well and only slightly overestimate the runup. These deviations are larger in case C at the front of the island, where the
wave first arrives. This behavior is probably due to the lack of wave dispersion and an imprecise representation of the
wave generated by the wavemaker. Additional discrepancies might be related to the neglected bottom friction within the
model. We attribute the better fit of the runup resulting from the simulation with the edge-based limiter to the additional
diffusion introduced by this limiter, and not to a better physical modeling of the runup.

5 CONCLUSIONS

In this work, a new wetting and drying treatment for RKDG2 methods applied to the shallow-water equations is pre-
sented. The key ingredients are a nondestructive limiting of the fluid depth combined with a velocity-based limiting of
the momentum, the latter preconditioning the velocity computation near the shoreline, ie, in areas of small fluid depth
and momentum. This, in turn, guarantees a uniform time step with respect to the CFL stability constraint for explicit
methods, which we explicitly report. The limiting strategy is complemented by a straightforward flux modification and a
positivity-preserving limiter, which renders the scheme mass conservative, well-balanced, and stable for a wide range of
flow regimes. It is a natural extension of a previously developed 1D scheme21 to the case of two-dimensional structured
and unstructured triangular grids.

Originally designed to control linear stability, the chosen limiter for the fluid depth does not alter steady states at rest
and small perturbations around them.

Two versions of the limiter are presented that differ in the selection of cells to be included into the limiting procedure.
The “edge-based” version is based on the original Barth/Jespersen18 limiter. Due to its small stencil, it modifies states
with constant gradients and therefore introduces additional diffusion into the method. The “vertex-based” version is an
extension of the Barth/Jespersen limiter24 especially designed for triangular grids and is nondestructive to linear states.
It results in slightly more accurate computations in most situations but has a larger stencil.
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Only one single parameter TOLwet enters the scheme, which controls the threshold in fluid depth considered to be
dry. We show that the stability of the method is unaffected by this parameter. It solely determines the effective area,
which is considered wet by the discretization. A carefully chosen wet/dry tolerance thus leads to an accurate shoreline
computation.

The presented test cases range from simple configurations where the analytical solution is known to the reproduction
of laboratory experiments. They illustrate the method's applicability to a variety of flow regimes and verify its numerical
properties: well-balancing in the case of a lake at rest, accurate representation of the shoreline, even in case of fast tran-
sitions, and convergence to the exact solution. Comparison with laboratory experiments shows good agreement. Some of
the test cases are benchmark problems for the evaluation of operational tsunami models.32 With the successful simula-
tion of these problems, we could show that the presented model satisfies the requirements for its application to realistic
geophysical problems.

Future research will concentrate on the extension of the current scheme to adaptive grids and its application to tsunami
and storm surge simulations. In this respect, additional source terms such as the parametrization of subgrid roughness
by bottom friction and wind drag must be incorporated into the model. Furthermore, possibilities to extend the proposed
concept to higher than second-order RKDG methods are investigated.
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