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Abstract
Characterizing distinct electronwave packets is a basic task for solid-state electron quantumoptics
with applications in quantummetrology and sensing. A important circuit element for this task is a
non-stationary potential barrier that enables backscattering of chiral particles depending on their
energy and time of arrival. Herewe solve the quantummechanical problemof single-particle
scattering by a ballistic constriction in an fully depleted quantumHall systemunder spatially uniform
but time-dependent electrostatic potentialmodulation. The result describes electrons distributed in
time-energy space according to amodifiedWigner quasiprobability distribution and scatteredwith an
energy-dependent transmission probability that characterizes constriction in the absence of
modulation.Modification of the incomingWigner distribution due to external time-dependent
potential simplifies in case of linear time-dependence and admits semiclassical interpretation. Our
results support a recently proposed and implementedmethod formeasuring time and energy
distribution of solitary electrons as a quantum tomography technique, and offer newpaths for
experimental exploration of on-demand sources of coherent electrons.

1. Introduction

Electron quantumoptics is a relatively newfield, aiming to reproduce quantumoptics experiments with
electronwave packets instead of photons [1–4]. It offers the prospects of probing the interaction between just a
few electrons, as well as studying phenomena on the scale of electron coherence time. Thefield has potentially
promising applications in signal processing [5] and quantum sensing [6].

One of the crucial ingredients that hasmade the investigation of single electron excitations in ballistic
waveguides possible is the advent of devices that emit ordered streams of electronswith sufficient separation
between individual particles [7–21]. Techniques to characterize quantumproperties of electrical current have
been adapted fromphoton quantumoptics. Statistical properties of the source and the exchange statistics of the
particles can be probed using intensity interferometers such as theHanbury–Brown–Twiss andHong–Ou–
Mandel interferometers [22–27], while coherence, entanglement, and thewave-like nature of particles can be
probed using amplitude interferometers such as theMach–Zehnder interferometer [28–30].

However,most of the existing electron quantumoptics experiments have focused on single-electron sources
that emit electrons close to the Fermi sea [3, 31]. These excitations can be accessed by perturbing the Fermi sea
through the application of periodic gate potentials allowing for quantum state reconstruction through
correlationmeasurements between the unknown and the reference signal [32–34]. Such an approach is not
possible in the case of ‘high-energy’ electrons [19, 35–39] emitted far above (tens ofmeV) the Fermi sea, because
they do not overlapwith perturbations around the Fermi energy. These excitations provide a new kind of quasi-
particle whose coherence properties are largely unexplored.

A recent work by Fletcher et al [40] addresses the characterization of these ‘high-energy’ electrons by using an
energy barrier that is tuned tomatch the energy of the quasiparticles. The authors propose and implement an
electron tomography protocol that reconstructs the joint energy-time quasi-probability distribution p(E, t) of
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the incoming electrons bymeasuring the transmitted charge through an energy barrier whose height is varied
linearly in time. The experimental setup can be described by amodel shown schematically infigure 1, where the
time-dependent energy barrier ismodelledwith a static constriction subject to a (locally) uniform gate voltage

a= +( )V t V t0 . The two parameters of the linearmodulation (the offset in energyV0 and the slopeα in the
time-energy plane) provide a two-dimensionalmap of the chargeQ(V0,α), that is used to infer p(E, t) using
inversion techniques from tomographic image processing [40]. The key relation connecting the properties of the
incomingwave-packets with themeasured signal can bewritten as

ò= +( ) ( ( ) ) ( )Q e E t T E p E V t td d , , 1

whereT(E) is the energy-dependent transmission probability of the constriction in the absence of the gate
voltagemodulation.3

Equation (1) has been previously derived classically [39] by considering scattering of a statistical ensemble of
electronswith simultaneously well-defined energy and time of arrival, impinging on a scattering barrier with a
transmission probabilityT(E, t). Due to gauge invariance under uniformmodulation, shift in voltage is
equivalent to shift in energy, = -( ) ( ( ) )T E t T E V t t, , , giving equation (1). In this classical picture p(E, t) is
simply the joint probability density characterizing the electrons emitted by the source.

In this work, we derive a general expression for the transmitted charge for an arbitrary time-dependence of
V(t) and show that the distribution p(E, t) in a general case needs to be replaced by a suitablymodifiedWigner
function.We also show that if the gate voltageV(t) has a linear dependence on time, nomodification of the
Wigner function is necessary and equation (1) is valid if we take p(E, t) to be theWigner function of the incoming
electron ρin(E, t). This confirms that the protocol implemented in [40] can be used not only for classical but also
for quantum tomography, i.e. quantum state reconstruction.We argue that if there are deviations from a linear
time dependence of the gate potential, themodifiedWigner function instead of the actual incomingWigner
functionwill be observed.Wenote that theWigner distribution function has previously been found to be a
useful concept in electron quantumoptics [33, 41, 42]. Here it appears naturally as a quantum counterpart of the
classical probability density.

Ourmanuscript is organized as follows: In section 2we give a precise definition of our system and of the
approximations involved, as well as introduce theWigner distribution function.Ourmain result, a quantum
version of equation (1), is presented and derived in section 3. In that sectionwe also discuss special cases, such as
a gate voltage with a linear time dependence (for which equation (1) is exact), a gate voltage with sharp edges, and
the limit of a slowly varying gate voltage. Section 4 illustrates our results, by comparing the ‘classical’ and
‘quantum’ expressions for a few characteristic examples. In section 6we discuss the implication of our results for
the analysis and improvement of electron tomography experiments.We conclude in section 7.

2.Model

Weconsider a constrictionwith two counterpropagating quantumHall edge channels. The coordinate x
measures the distance along the edge, taking the center of the constriction as the origin, such that points
to the left (right) of the constriction have negative (positive) x, seefigure 2. TheHamiltonian for the two

Figure 1.A sketch of the setup: a chiral edge states (orange) in a quantumHall systempass through a constrictionwhere backscattering
between the edges is possible. Individual electronic excitations are launched from the source (left) and get either transmitted or
reflected. The scattering region is electrostatically gated and the energy-dependent transmission probabilityT(E) can bemodulated by
the voltage on the gate (shaded shape). It is assumed that the potentialV(t) created by the gate voltagemodulation is spatially uniform
in the scattering regionwhere backscattering between the edge channels takes place. Tuning the time- and energy- dependence of the
transmission function -( ( ))T E V t by appropriately designed time-dependence of the gate potentialV(t) enables tomography—the
measurement of joint energy-time content—of the wavepacket.

3
Strictly speaking, in equation (1)V(t) should be replaced by the integral of the electricfield for electrons traveling along the edge, which

need not be equal toV(t) for a time-dependent gate potential, see section 3.
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counterpropagating edge states reads

 s= -
¶
¶

+ +ˆ ˆ ˆ ˆ ( ) ( )H v
x

H V x ti , , 23 bs

where v is the electron velocity, ŝ3 is the Paulimatrix, and the 2×2matrix structure refers to the two edges. The
second term Ĥbs describes backscattering in the constriction, and

=
⎛
⎝⎜

⎞
⎠⎟ˆ ( ) ( )

( ) ( )V x t
V x t

V x t
,

, 0
0 ,

3R

L

is a gate potential. The backscatteringHamiltonianHbs is characterized by its transmission probability

t=( ) ∣ ( )∣ ( )T E E , 42

in the absence of the gate voltageV(x, t), where τ(E) is the transmission amplitude.
Since backscattering takes place locally at the contact, the backscattering termhas finite support whichwe

define to be <∣ ∣x xb. Outside of the constriction ( >∣ ∣x xb), the tunelling amplitude between the leftmovers and
the rightmovers is exponentially suppressed due to the Lorentz-force induced localization of the edge states at
the opposite sides of theHall system. Thismakes xb awell-defined quantity despite the non-locality of tunneling
in general.

We furthermore assume that the externally controlled part of the potential is spatially uniform inside the
backscattering region:

= = <( ) ( ) ( ) ∣ ∣ ( )V x t V x t V t x x, , for . 5bR L

For a point-contact geometry sketched infigure 2, this approximation is justified because the two
counterpropagating edge states are closest in centre of the constrictionwhere the effect of a sufficiently wide top
gate (shaded region) is spatially uniform. Although, strictly speaking, the condition (5) is stronger than the
assumption that a (time-independent) shift of the gate voltageV is equivalent to a shift in energy, the relation
T(E,V )=T(E−V ) (which is central to the tomography experiment [40]) does not hold for a generic scatterer
if the condition (5) is not satisfied.

Finally, we set the gate potential to zero sufficiently far away from the constriction,

= = >( ) ( ) ∣ ∣ ( )V x t V x t x x, , 0 for . 6gR L

Weconsider a wavepacket incident on the constriction, such that it reaches the center of the constriction for
t≈0. For times  -¥t this initial state is described by thewavefunction

y j= - ( )( ) ( ) ( )x t t x v, 1
0

, 7in in

where the functionjin(t) is peaked near t=0. The initial-state wavefunction is normalized such that

ò j =
-¥

¥
∣ ( )∣ ( )t td 1. 8in

2

Figure 2.Constrictionwith two counterpropagating chiral edgemodes. The coordinate xmeasures the distance from the center of the
constriction at x=0. Backscattering takes placewithin the region- < <x x xb b only; in this region the gate voltage ( )V x t, is
spatially uniform and equal for both edgemodes. The gate voltage is zero for >x xg and < -x xg .

3
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Similarly, for times  ¥t thewavepacket is described by thewavefunction

y
j

j
=

-
¢ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( )
( )

( )x t
t x v

t x v
, , 9out

out

out

wherej -( )t x vout represents the transmitted part of thewave packet, andj¢ +( )t x vout represents the
reflected part.

Instead of the functionjin(t) it is convenient to use theWigner transform ρin(E, t), which is defined as

*


òr
p

j j= ¢ - ¢ + ¢
-¥

+¥
¢( ) ( ) ( ) ( )E t t t t t t,

1
d e . 10Et

in
2i

in in

The classical limit of theWigner distribution function ρ(E, t) is the joint probability density p(E, t) of energyE
and time t and corresponds to aDirac delta distribution peaked around the classical trajectoryE(t).
Correspondingly, the spread of theWigner distribution around the classical trajectory is amanifestation of the
quantumness of thewave packet [42]. The interpretation of ρ(E, t) as a joint probability distribution is not
rigorous, though, since theWigner distribution can also take on negative values. Integrating ρ(E, t)with respect
to one of its arguments, however, one obtains a positive function, which is the probability density (marginal
distribution) of the other argument, i.e.

ò

ò

r

r

=

=

-¥

+¥

-¥

+¥

( ) ( )

( ) ( ) ( )

p E E t t

p t E t E

, d ,

, d . 11

E

t

3. Transmitted charge

3.1.Derivation of themain result
Wenowproceedwith the calculation of the chargeQ transmitted through the constriction,

ò j= ∣ ( )∣ ( )Q e t td . 12out
2

For this calculation it is sufficient to consider the right-moving edge only.We drop the spinor notation of the
previous section, use the scalar wavefunctionψ(x, t) to refer to thewavefunction component at the right-moving
edge, andwriteV(x, t) instead ofVR(x, t).

In the absence of the gate voltage,V(x, t)=0, the result can be easily expressed in terms of the energy-
dependent transmission probabilityT(E),

ò r= ( ) ( ) ( )Q e E t T E E td d , , 13in

which is a special case of the classical equation (1), with p(E, t) replaced by ρin(E, t).
We now consider the general case of time- and energy-dependent scattering, specializing to the geometry

described in section 2, for which the time dependence comes from the gate potentialV(x, t).
Since the potential =( )V x t, 0 for < -x xg , the initial-state solution (7) is valid for all < -x xg . Similarly,

the expression (9) for the transmittedwavepacket is valid for all x>xg. In thefirst step of our calculationwe
solve the time-dependent Schrödinger equation to calculate thewavefunction at all positions  -x xb and
x xb,









ò

ò

y j

y j

= - -

= -

- ¢ - - ¢ ¢

+ ¢ - - ¢ ¢

-¥

¥

( ) ( )

( ) ( ) ( )

[ ( ) ]

[ ( ) ]

x t t x v x x

x t t x v x x

, e , ,

, e , . 14

t V x v t t t
b

t V x v t t t
b

in
d ,

out
d ,

t

t

i

i

In a second stepwe perform the gauge transformation

 òy y=
~ ¢ ¢

-¥( ) ( ) ( )( )x t x t, , e , 15V t td
t

i

whereV(t) is the value of the gate voltage at the center of the constriction, see equation (5). For- < <x x xb b

the transformedwavefunction ỹ satisfies a Schrödinger equationwithout gate potential, so that

òy t y+ = - ¢ - ¢ - ¢
~ ~( ) ( ) ( ) ( )x t x v t t x t x v t, , d , 16b b b b
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where


òt

p
t= -( ) ( ) ( )t E E

1

2
d e 17Eti

is the Fourier transformof the constriction’s transmission amplitude τ(E). The choice of the offsets in the time
arguments in equation (16) ensures that, for a perfectly transmitting constrictionwith τ(t)=δ(t), y ( )x t, is a
function of -t x v only.

Note that we do not need to invokeψ(x, t) explicitly for Î - +[ ]x x x,b b —all the information about
coherent dynamics inside themodulated scattering region is encoded in thematrix element τ(t) of the time
evolution operator which is time-translation invariant in the gauge expressed by equation (15). This is valid as
long as themodulation is spatiallyflat as expressed by condition (5).Matching equations (14) and (16) at
x=−xb and x=+xb, we find

òj t j= ¢ ¢ ¢( ) ˜ ( ) ( ) ( )t t t t td , , 18out in

with

 



ò ò

ò

t

t

¢ =

´ - ¢

-  - ¢-   -  

-  - -  

-¥

¢

¢

¥

˜ ( )

( ) ( )

[ ( ) ] ( )

[ ( ) ]

t t

t t

, e

e . 19

t V v t t t t V t

t V v t t t

d , d

d ,

t

t

t

t

i i

i

Transmitted charge (12) can bewritten in the form that closely resembles the classical result (1) and the limiting
case (13),

ò r= ( ) ˜( ) ( )Q e t E T E E td d , , 20

butwith the function

*


ò òr
p

j j= ¢ + ¢ - ¢ +
- ¢

+ ¢

˜( ) ( ) ( ) ( )[ ( )]E t t t t t t,
1

d e 21t E t
in in

d
t t

t t
i

1 1

instead of p(E+V(t), t). Here

 ò=
¶ ¢

¶-¥ ¢ +

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )t x

V x t

x
d

,
22

t t x v

0

is the integral of the electricfield along the electron’s trajectory. The expressions (20)–(22) are the key results of
this article.

ThemodifiedWigner function r̃( )E t, can be interpreted as theWigner representation (10) of amodified

incoming asymptotic state, j j= ò- ¢ ¢˜ ( ) ( ) ( )t t e t t
in in

i d
t

. The effective gate potential ( )t represents the
relevantmodification of the applied gate potentialV(t) due tofinite spatial extent of the gate. Although j̃ ( )tin ,
and hence r̃( )E t, , does not in general represent the actual quantum state of the electron at any time instant,
r̃( )E t, can still bemeasured as the outcome of a tomographic reconstruction, as we argue in section 6.

Themain result (20) can easily be generalized to the case inwhich the incoming state is not a pure state. In
this case theWigner function is definedwith the help of the single-particle densitymatrix r̂ and the product
*j j- ¢ + ¢( ) ( )t t t tin in in equation (20) is replaced by thematrix element rá - ¢ + ¢ñ∣ ˆ∣t t t t .
Ourmodel Hamiltonian (2) does not take into account decoherence during the propagation along the

chiral edge, or dispersion resulting from (small) corrections to the linear kinetic energy term. Dispersion
preserves the pure-state character of the incoming wavepacket, whereas decoherence changes it into a
mixed state, whichmust be described using a densitymatrix (see the preceding remark). If these processes
are relevant (e.g. due to phonon emission [43]), themodifiedWigner function in equation (21)must be
calculated with respect to theWigner function of the wavepacket as it arrives at the constriction, i.e.
it should include the decoherence and dispersion effects accumulated during the propagation along the
chiral edge. Dispersion or decoherence processes associated with the (short) propagation inside the
constriction region (i.e. for- < < -x x xg b) are not included in our approach. These can, however, be
assumed to be small, since the size of the constriction itself is typicallymuch less than the distance between
the source and the constriction.

5
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3.2. Special cases
Belowwe consider a number of special cases ofV(x, t) and discuss the corresponding forms of ( )t and r̃( )E t, .

3.2.1. Time-independent potential
One verifies that for a time-independent potential ¶ ¶ =( )V x t t, 0 wehave  =( )t V and

r r= +˜( ) ( ) ( )E t E V t, , , 23in

whereV is the value of the spatially uniformpotential in the scattering region.We see that the time-independent
V just changes the energy reference level in equation (13), as expected fromgauge invariance.

3.2.2. Factorized time and coordinate dependence
If the time and coordinate dependence is such that =( ) ( ) ( )V x t u x V t, where the shape function u(x) satisfies

=
- < < +
< - > +

⎧⎨⎩( ) ( )u x
x x x

x x x x

1, ,

0, or
24

g g

b b

then

 ò= +
-

-
( ) ( ) ( )t x V t x v

u

x
d

d

d
. 25

x

x

g

b

Typically, u(x) is expected to be a smooth sigmoid function, inwhich case the convolution (25) limits the
sharpness of time-dependent features in ( )t compared toV(t).

3.2.3. Gate potential with sharp edges
In the limit of a sharp edge,-  -x xg b, equation (25)with d +( )u x x xd d g is applicable, and the
correction ofV(t) becomes just the shift of the argument,

 = -( ) ( ) ( )t V t x v . 26g

We see that themodification of thewave-packet happens at the edge of the gate-affected region.

3.2.4. Linear time dependence
The experiment of [40] features a potential with a linear time dependence,

= +( ) ( ) ( ) ( )V x t V x t V x, , 270 1

which yields a linear ( )t ,

 ò= - +
-¥

( ) ( ) ( ) ( ) ( )t V
v

x V x V t0
1

d 0 . 280

0

1 1

In this casewefind that the function r̃( )E t, can be expressed directly in terms of theWigner distribution ρin(E, t)
of the incomingwavepacket,

r r= +˜( ) [ ( ) ] ( )E t E t t, , . 29in

Upon comparing equations (20) and (29)with (1)we conclude that for a potential with linear time dependence
the quantum-mechanical theory reproduces the classical approximation (1).

Note that ( )t is not in general equal to the value of the potential = =( ) ( )V x t V t0, at the centre of the gate
at the same time instant t, but rather at an earlier time corresponding to the effective position of the gate edge.We
can define the latter explicitly by rewriting equation (28) as  = + = + +( ) ( ˜ ) ( ) ( )( ˜ )t V t x v V V t x v0 0g g0 1

where <x̃ 0g is the center ofmass of the accelerating electricfield distribution, ò=
-¥

˜ ( ) ( )x x V x x Vd d d 0g
0

1 1 .

For a sharp edge,wehave = -x̃ xg g , in accordwith equation (26).

3.2.5. Slowly varying potential
If the rate of change of the gate voltage is slow compared to the velocity of thewave packet, it is reasonable to
expand

= + + + ¼( ) ( ) ( ) ( ) ( )V x t V x V x t V x t,
1

2
. 300 1 2

2

Truncating after the quadratic term, this leads to the formal expression

r r= +- ¶
¶˜( ) [ ( ) ] ( )( )E t E t t, e , , 31V 0

inE
1

24 2
2 3

3
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where

 ò ò ò=
¶ ¢

¶
= - + + - +

-¥ ¢ + -¥ -¥

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

32

t x
V x t

x
V x

V x

v

V x x

v
V x

V x

v
t V td

,
0 d 0 d

1

2
0 .

t t x v

0

0

0
1 2

2 1

0
2

2
2

Equation (31) contains the result (29) for a gate potential with a linear time dependence and is a good starting
point for an expansion in a small second derivativeV2(x) of the time-dependent gate potential.

3.2.6. Linear time dependence superimposed on an arbitrary gate potential ¢( )V x t,
If on top of a linear time dependence the potential ( )V x t, also contains arbitrary additional terms ¢( )V x t, ,

= + + ¢( ) ( ) ( ) ( ) ( )V x t V x tV x V x t, , , 330 1

themodifiedWigner function r̃( )E t, can be expressed as

r r= ¢ +˜( ) ˜ ( ( ) ) ( )E t E t t, , , 34

where ( )t is given by equation (28) and r¢ +˜ ( ( ) )E t t, is calculatedwith respect to ¢( )V x t, only. The
relevance of this result will be discussed in section 6. (Note that equation (34) simplifies to equation (29) for the
special case ¢ =( )V x t, 0.)

4. Examples

In this sectionwe show explicit results for three examples: a gate voltagewith linear time dependence, a gate
voltagewith an abrupt step-like time dependence, and a gate voltage with parabolic time dependence.We take
the spatial profile of the gate voltage ( )V x t, to be a spatially uniformpotential with sharp edges at = x xg .We
also shift the time origin by-x vb , so that the integral ( )t of the electric field can be replaced directly by the
potentialV(t) at the center of the constriction, see equation (26). For the incomingwavepacket we take the
uncorrelatedGaussian form,

j
ps

= - -
s( )

( )
( )t

1

2
e . 35

t
in 2 1 4

E t t

t

i 0 2

4 2

The scale st sets the characteristic width in the time domain. The energy of thewavepacket is centered around E0,
withfluctuations of order  st . TheWigner distribution r ( )E t,in corresponding to thewavefunction (35) is


r

p
= s s- - -( ) ( )( ) ( )E t,

1
e . 36E E t

in
2 2t t0

2 2 2 2 2

For the examples in this and the following sections, wemodel the energy-dependence of the transmission
probability through a static constriction as

d
= +

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( ) ( )T E

E1

2
1 erf

2
, 37

where δ gives thewidth of the energywindow inwhich the transmission changes from0 to 1 and the zero of
energy is chosen to coincide with half-transmission point of the constriction. For the numerical calculationswe
will take the idealized limit d  0, corresponding to a point contact that perfectly selects the sign of the
electron’s energy.

4.1. Linear ramp
Wefirst consider the case of a gate voltagewith a linear time dependence,

a= +( ) ( )V t t V . 380

Gate voltages with different offsetsV0 are related by a delay time a= -t Vd 0 . For this case themodification of
theWigner distribution can be obtained from equation (29), which gives:


r

p
= s s- - + -˜( ) ( )( ( ))E t,

1
e . 39E E V t t2 2t t0

2 2 2 2 2

ThemodifiedWigner distribution for different values of the ramp rateα and the offsetV0 is shown infigure 3,
alongwith the non-transformedWigner distribution. In comparison to the originalWigner distribution rin, the
modified distribution r̃ has a shifted center energy, determined by the offsetV0, and it is stretched along a
straight linewith slope a- . Figure 4 shows the transmitted charge as a density plot in the case of a linear ramp as
a function of the parametersα andV0. This transformation gives the basis for interpreting ( )p E t, in equation (1)
as the r ( )E t,in , as discussed in the discussed in section 3.

7
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4.2. Step-like ramp
Asmentioned in the introduction, performing the detectionmeasurement with an energy-independent
transmission probability that abruptly switches on or off allows one tomeasure the electron probability
distribution as a function of time. Such an instantaneous switching on or off of the transmission function of the
constriction requires an increase of the gate voltageV(t) by an amountmuch larger than the energy uncertainty
 st of the incomingwavepacket. Richer information about time and energy distribution can be obtained if the
gate voltage jumps by afinite amount at time =t t0,

=
<
>

⎧⎨⎩( ) ( )V t
V t t
V t t

for ,
for .

40i 0

f 0

For aGaussian incomingwavepacket, the correspondingmodifiedWigner distribution can be calculated from
equations (21) and (26),
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Figure 3.ModifiedWigner distribution in units of 1 of aGaussianwave function after entering a gate with time-dependent
potential a= +( )V t t V0 for different values of the ramp rateα and the offsetV0 as shown above. The upper left panel shows the
Wigner distribution r ( )E t,in of the incomingwavepacket, the yellow line isV(t).

Figure 4.Transmitted charge through the constriction for the case of a linear voltage ramp, as a function of the ramp rateα and the
offsetV0.
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wherewe abbreviated

= + -¯ ( ) ( )V V V E
1

2
. 42f i 0

A comparison between the initial-stateWigner function r ( )E t,in , themodifiedWigner function r̃( )E t, for
two different parameter choices, and the semiclassical expectation4 r +( ( ) )E V t t,in is shownfigure 5. Because
of the abrupt time dependence at t=t0, the semiclassical expectation is a poor approximation, as can be seen in
thefigure. In particular, the truemodified distribution function is a continuous function ofE and t, whereas the
semiclassical expectation has a discontinuous jump by -V Vf i at t=t0. The two lower panels of thefigure show
that in contrast to a linear ramp, a step-like ramp transforms theWigner distribution such that it assumes
negative values.

In figure 6 we show the transmitted charge at a fixed step height  s- =V V 3 tf i as a function of the
center potential V̄ and the switch time t0. The top left panel shows the exact result (20), and the top right panel
the semiclassical approximation (1). Their difference is shown in the bottom panel. As expected, if ∣ ¯ ∣V is
sufficiently large, the transmitted charge is independent of t0 and approaches 0 or 1 (corresponding to
maximumpossible transmittance). For intermediate values of V̄ , there is a transition from 0 to 1 transmitted
charge as t0 goes from large negative to large positive values. Although the exact and the semiclassical results
both reproduce the correct limits for large ∣ ¯ ∣V and ∣ ∣t0 , the behavior for small V̄ and t0 shows qualitative
differences (such as shape of themedianQ=e/2 curve), as well as quantitative differences (more than 0.1e,
see bottompanel).

We can check explicitly that a large-amplitude sudden step inV(t)will sample the time distribution. For this
we need to prove that for  s d- V V, ,ti f ,finiteE0, and r̃( )E t, given by equation (41), the transmitted
charge

ò ò r=
-¥

¥

-¥

¥
( ) ˜( ) ( )Q E t T E E td d , 43

equals to ò ò r=
-¥

¥

-¥
( )Q E t E td d ,

t

in
0 . Of the two terms in equation (41), the contribution of the second one

to the time integral in equation (43) vanishes the limit of large -V Vf i due to fast oscillations, while thefirst term
contributes only at <t t0, when integrand is non-zero in the vicinity of » -E Vi . Taking the limit  -¥Vi ,
this gives

Figure 5.ModifiedWigner distribution in units of 1 of aGaussianwave function after passing through a step-like ramp for
different values of the barrier height -V Vf i , compared to a non-transformedWigner distribution (top left panel), as well as the
semiclassical approximation (top right panel).We have setVi=E0 and t0=0.

4
We call r +( ( ) )E V t t,in ‘semiclassical’ because it can be interpreted as a quasi-probability density for electrons that have awell-defined

energyE+V(t) at every time instant t.
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ò ò r= ¢ ¢ -
-¥ -¥

¥
( ){ ( )]} ( )Q t E E t w zd d , 1 Re e , 44

t
z

in

0 2

where s s= ¢ + -( ) ( )z E t t2 i 2t t0 andw(z) is Faddeeva function òp x x= -x-( ) ( ) ( )w z zi e d
2

( >zIm 0). Thefirst term in curly brackets in equation (44) gives the expected result. Straightforward integration
confirms that the second term, proportional tow(z), contributes zero.

4.3. Parabolic ramp
The third example is the case of a parabolic ramp,whichmay serve as an approximation of a periodic
(sinusoidal) gate potential near themaximumorminimumof the potential.We consider a gate potential of the
form

= - -( ) ( ) ( )V t V W t t
1

2
. 450 0

2

ThemodifiedWigner function is
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where ( )zAi is the Airy function of the first kind.
Figure 7 contains a comparisonbetween the exact result for themodifiedWigner function, the semiclassical

approximation (29) and a slow-potential approximationobtainedby truncating the exponential in equation (31) at
first order in the secondderivative of the potential, for different values ofW and for  s= +V E t0 0 , =t 00 . The
figure confirms that both the semiclassical and the slow-potential approximation are good approximations for the
modifiedWigner function r̃( )E t, if  s∣ ∣W t

3, whereby the slow-potential approximation also faithfully
reproduces someof the fringes at larger values ofW, which are absent from the semiclassical approximation.

Infigure 8we show the transmitted charge for two different values of the the curvature parameterW, with
separate panels for the exact result, the semiclassical approximation, and the slow-potential approximation.
Their difference is shown in the bottompanels. The transmitted charge goes from zero for values of -V E0 0 far
below the line - =V E Wt0 0

1

2 0
2 to 1 for values of -V E0 0 far above this line. The differences between the exact

and the slow-potential solution growswithW, remaining below 1% for  s=W 0.2 t
3 and going up to 10%

for s=W 2 t
2.

Figure 6.Transmitted charge for the case of a step-like ramp as a function of = + -¯ ( )V V V E2f i 0 and the switching time t0. The
height of the step -V Vf i is keptfixed and equal to 3 ÿ/σt. The top left panel shows the exact result; the top right panel shows the
semiclassical approximation ((1)with p→ρin). The black curve in the two top panels shows theQ=e/2median. The bottompanel
shows the difference between the exact and the semiclassical result.
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Figure 7.ModifiedWigner distribution r̃ in units of 1 for aGaussianwavepacket incident on the constriction. The gate potential
V(t) is taken to have the parabolic time dependence (45)with  s=W 0.02 t

3 (top),  s=W 0.2 t
3 (center), and  s=W 2 t

3

(bottom).We have set  s= +V E t0 0 and =t 00 . The left column shows the full quantum-mechanical result (20), the center
column shows the semiclassical approximation (29), and right column shows the slow-potential approximation, obtained by
truncating the exponential in equation (31) atfirst order inW.

Figure 8.Transmitted chargeQ for aGaussianwavepacket incident on a constriction subject to a gate potential with the parabolic time
dependence (45)with  s=W 0.2 t

3 (left) and  s=W 2 t
3 (right). The top row is obtained from the full quantum-mechanical

expression equation (20), the center rowuses the slow-potential approximation (31)with the exponential truncated after first order in
the second derivative of the potential. The bottom row shows the difference between the slow-potential approximation and the full
quantum-mechanical result.
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5. Extension to non-chiral scattering

The results of section 3 and the examples discussed so far are exact for themodel defined in section 2which
includes a strict separation of the scattering and the acceleration/deceleration regions, as well as linear
dispersion.Herewe demonstrate that ourmain results are robust against relaxing these assumptions, and show
that equations (20)–(22) can provide a rather accurate approximation for scattering by a time-dependent one-
dimensional potential controlled by a single gate even in the absence of a back-scattering-suppressing
magnetic field.

In this sectionwe compare analytical results of section 3 to a direct numerical solution of the time-
dependent Schrödinger equation for the followingHamiltonian:

*


= -
¶
¶

+ +ˆ ( ) ( ) ( ) ( )H
m x

V u x V t u x
2

, 47c1D

2 2

2

=
+ -

-
+ +

( )
[( ) ] [( ) ]

( )u x
x L l x L l

1

1 exp 2

1

1 exp 2
. 48

g g g g

The second term and the third terms in equation (47)mimic the constriction part Ĥbs and the gate part
=( ) ( ) ( )V x t V t u x, of theHamiltonian (2), respectively. For L lg g the potential form factor u(x) is amesa

of height 1with aflat plateaux part for- < < +L x L2 2g g , and rounded edges of characteristic width lg (see
figure 9(a)). This approximates the condition of spatially flatmodulation. In the absence ofmodulation,

=( )V t 0, the barrier heightVc determines the transmission energy threshold.We emphasize that (47)defines a
model different to that of section 2, because both potential terms contribute to back-scattering between the left-
and the right-movers; an approximate equivalence is expected only if ∣ ( )∣V t Vc during scattering. In the
comparison below, we consider linearmodulation only, a= +( )V t V t0 as in section 4.1, see equation (38).

For thenumerical solution, thex-coordinate is discretisedona regularmeshwith lattice spacinga and total
numberof sites »N 16000, theHamiltonian (47) is approximatedby anearest-neighbor tight-bindingHamiltonian
withhopping amplitude-J . The latter isfixedbymatching theparabolic approximationat thebottomof the tight-
bindingband to thekinetic energypart of equation (47), i.e. *= - = +( ) ( ) ( ) ( )E k J ka k m O k a2 1 cos 22 2 4 4 .
Units of energy, length, and timearefixedby setting J=1,a=1and  = 1,whichgives * =m 1 2.

We follow propagation of theGaussianwave-packet

y µ d-( ) ( )( )x e e , 49k x k x
0

i 0
2 2

which corresponds to approximately normal energy distribution of width *s d= k k mE
2

0 centered at ( )E k0 .
Split-step Fouriermethod [44, 45] is used to implement time evolution generated by ˆ ( )H t1D . The initial state

y y= +( ) ( )ˆx t x, e H t
in 0

i
0

0 0 , where *= - ¶ ¶ˆ ( ) ( )H x m20
2 2 , and time <t 00 are chosen such that y ( )x t,in 0 is

centred at least 10 standard deviations from the edge = -x̃ L 2g g . This initial wave-packet is the propagated

with full ˆ ( )H t1D from =t t0 up to time = + ∣ ∣t t1.5 0 , and the transmitted fraction is computed by projecting the
final state wave-function onto the subspace of right-movers (wave numbers p< < ( )k a0 2 ).

We set theworking point for comparison to the linearisedmodel at = ( )V E kc c with =k a 0.25c chosen so
that the tight-binding approximation of the parabolic dispersion remains sufficiently accurate while the
corresponding =( )E k 0.062c is large enough to explore the regime s ∣ ∣V V, E c0 .

The numerical correspondence between theGaussianwave-packets in the twomodels, equations (35) and
(49), respectively, is established by y j j= - » -+ -( ) ( ) ( )( )x x v x ve ek x E x v k x

0 in
i i

in
i c0 0 , with the velocity

* = ¶ ¶ » =-
=( ) ∣v E k k k m 0.5k k c

1
c

and thewidths relation s s = 2t E . Here eik xc the carrier planewave
forwhich the amplitude distribution y ( )x t, (equation (7)) in the linearizedmodel (2) acts as an envelope.
Changing k0 around kc in equation (49) corresponds to changing = - » -( ) ( ) ( )E E k E k v k kc c0 0 0 around 0
in equation (35).

ThemodifiedWigner function (39) for theGaussian incomingwave packet (35) and linearmodulation (48),
can be used to compute the transmitted charge fromour general expression (20). Taking into account that
 a a= - +( ) ( )t V L v t2g0 for u(x) given by equation (48) (computed in the limit l Lg g with xb=0 and

 +¥xg in equation (25); corresponds to the effective gate edge position = -x̃ L 2g g in contrast to =x̃ 0g

and  =( ) ( )t V t used in equation (39)), the extrapolation of our analytic theory to the one-dimensionalmodel
defined by Ĥ1D reads

òs p
= a s- - + -

˜
( ) ( )[ ( ) ( )] ( ˜ )Q e T E E

1

2
e d , 50

E

E E k V L v2 2g E0 0
2 2

where s s a s= +˜ ( )/ 4E E E
2 2 2 2 . Equation (50) includes the transmission probabilityT(E) for the static

potential ( )V u x ;c we computeT(E)numerically using the scatteringmatrix expression in terms of a numerically
computedGreen function as in [46].
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Figures 9(b)–(f)plot the probability of transmissionQ/e for the same initial wave packet ( =k kc0 and
s = -10E

3), but different sharpness (lg=2 versus lg=6) andmodulation speed (a = 0, ´ -5 10 6, and
 ´ -5 10 5) of the barrier, as function of the additional barrier heightV0.We note rather accurate agreement
between the direct numerical integration (dots) and the approximation (50) (continuous blue line), validating
themain thesis of this section.

Additionally, we plot the transmissionT(E) as function of energy (dashed line). For small s̃E, seefigures 9(b),
(e), the transmitted charge followsT(E) since Since (50) is a convolution ofT(E) and aGaussian function of
width s̃E , the transmitted charge followsT(E). Note that this agreement is a direct demonstration of the relation

= -( ) ( )T E V T E V,0 0 0 0 for the potential shown infigures 9(a) becauseT is computed by varying E0, andQ is
computed by varyingV0.

The sharper shapeofT(E) infigures 9(b)–(d) corresponds to a steeperpotential edge (lg=2) compared to awider
step-likeT(E) for lg=6 infigures 9(e), (f). Transmissionmaximaarise due tomultiple-reflection resonances at
quasi-bound state energies *p= ( )E n m L2 g0

2 2 2 2 where = ¼n 1, 2 is thenumberofhalfwavelengthsmatching the
distancebetween sharp edgesLg.Wenote that by increasingLg andadjusting the roundingparameter ( )l L Lg g g

accordingly, one canachieve a smooth transition fromT=0 toT=1over an arbitrarilynarrowenergy range,
suitable formodifiedWigner functionfiltering as assumed in the examples of section4 anddiscussed in the contextof
the tomography techniquebelow in section6.

We conclude the discussion of the one-dimensional model (47)with an example of potential parameters
at which the analytic result (49) borrowed from the chiral model with local backscattering (section 2)
clearly fails. If the barrier is too thin, tunnelling across the full width of the barrier becomes relevant, the
scattering is not localized at the edges, and adjusting of the barrier height can no longer be approximated by
a uniform shift in energy. For an unmodulated (a = 0) rectangular ( l 0g ), barrier of heightV the exact

subthreshold ( <E V ) transmission is = + - - -( ) { [ ( ) ] [ ( )]}T E V V L m V E E V E, 1 sinh 2 4grect
2 2 1 .

If  »L mV2 4.0g c (for the parameter values used in figure 9), the product + -( )( )V E V Ec 0 0 0 in
+ +( )T V E V V,c c0 0 is well-approximated by -( )V V Ec 0 0 andT is a function of -E V0 0 only, as in the

numerical examples above. For Lg=5, however, the approximation breaks down as a numerical calculation

Figure 9. (a)The real-space shape of the gate potential u(x), for lg=2 (continuous line) versus lg=6 (dashed–dotted line) at Lg=50.
(b)–(f)Comparison of numerical solution for time-dependent scattering in the non-chiralmodel defined by equations (47) (dots) and
the formula (50) (continuous line). The graphs show the average transmitted chargeQ/e as function ofV0 ; the dashed line in the
background is the static transmission probability +( )T E Vc0 , as function of an incoming plane-wave energy, E0. Parameters of the
scattering potential: (b)–(d): lg=2, (e), (f): lg=6, (b), (e): a = 0, (c): a = ´ -5 10 6, (d): a = ´ -5 10 5, (f); a = - ´ -5 10 5. All
data are computedwith = =( )V E k 0.062c 0 , Lg=50 and s = 0.001E .
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shown in figure 10 illustrates. In this example, equation (49) uses =( ) ( )T E T E V, crect (computed numerically
in the tight-binding approximation), which thusmust agree with the direct wave-packet propagation
approach at =V 00 , as indeed is the case in figure 10. However, asV0 is varied, the scattering of the wave-
packets incoming at =( )E k Vc0 is no longer equivalent to wavepackets impinging at an unmodified ( =V 00 )
barrier at an energy = -( )E k V Vc0 0.

6. Connection to experiment

In this sectionwe discuss the relevance of our results to the recently proposed and implemented tomography
protocol for solitary electrons [40].

6.1. Scattering by a linearlymodulated barrier as a Radon transform
Asmentioned in the introduction, the tomography experiment provides amap of the charge a( )Q V ,0

transmitted through barrier that is controled by a gate voltage a= +( )V t t V0 with a linear time dependence as
a function of the energy offsetV0 and the energy-time slope a a q= tan0 , where a0 is a scale factor adapted to
the characteristic time and energy scales of the experiment. The quantity

ò

ò ò

q a q
r

r a q

¶
¶
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¶ - -

¶

= + -

- ( ) ( ) ( )

( ) ( ) ( )

Q V

V
t E
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V
E t

t E
T E

E
V t E t

e
,

d d
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,

d d
d

d
tan , 51

1 0

0

0 0

0
in

in 0 0

represents the Radon transform [47] of the incomingWigner distribution r ( )E t,in convolvedwith the energy
derivative of the transmission coefficient T Ed d . In equation (51)we have used the fact that, according to
equation (29), for a linear ramp themodifiedWigner function r̃( )E t, can be expressed in terms of the incoming
Wigner function r ( )E t,in simply by addingV(t) to the energy. The tomography protocol of [40] consists of
measuring (51) for a sufficiently wide range ofV0 and θ to enable numerical computation of the the inverse
Radon transformusing the standard filtered back-projection algorithm [47]. A sufficiently sharpT(E), such that
the derivative dT/dE can be approximated as a delta function, ensures that the inversion accurately represents
the unknown r ( )E t,in .

To illustrate theRadon transform, infigure 11wehave shown thequantity q¶ ¶( )Q V V,0 0 calculated for the
incomingWigner distribution r ( )E t,in of aGaussianwave packet, exactly like theone depicted in the top left
panel offigure 3. TheRadon transform is the line integral of r ( )E t,in along the straight line a q= +E V t tan0 0 .
Thenon-zero values infigure 11 are concentrated around q = 0. A correlation between energy and time [42] that
has a slopeβ in the time-energy planewould introduce a shift by b a( )arctan 0 along theθ axis [40]. Notice that the
width of the non-zero regions along theV0 axis at q = 0 corresponds to thequantum-limited energywidth
 s( )2 t of theGaussian distribution, as d  0 in this example.

Figure 10. Inset: rhe real-space shape of the gate potential u(x)with Lg=5 and lg=0 (continuous line) contrastedwith the cases
illustrated in figure 9 (dashed lines).Main panel: the average transmitted chargeQ/e (dots) is compared to the approximation (50)
(continuous blue line) as function of the additional barrier heightV0 of a static (a = 0) barrier. The reference barrier heightmatches
the incoming electron energy, = =( )V E k 0.062;c 0 thewavepacket width is s = 0.005E . AtV0=−Vc there is no barrier (perfect
transmission of anywave-packet). The dashed line shows the analytical transmission probability of a rectangular barrier of heightVc as
function of energy, -( )T V V V,c crect 0 .
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6.2. Resolution limits
Afinite sharpness δ of the transmission functionT(E) in equation (51) can be seen as afinite resolution of the
measurement apparatus that defines the energy level against which r ( )E t,in is inferred by the tomography
protocol. For ( )T E Ed d 0, the convolution of the incomingWigner function r ( )E t,in with ¶ ¶T E in (51)
can be interpreted as theWigner representation

 òr p r= á + ¢ - ¢ñ- ¢( ) ( ) ∣ ˆ∣ ( )E t t t t t t, e d 52E t
eff

1 i2

of an effective densitymatrix

*òr j já ¢ñ = ¢∣ ˆ∣ ( ) ( ) ( ) ( )t t E
T E

E
t td

d

d
53E E

*j j= P - ¢ ¢( ) ( ) ( ) ( )t t t t , 54in in

where j j= -( ) ( )t t eE
Et

in
i is the incoming statej ( )tin shifted in energy by E, and òP = -( ) ( )t T Ee dEti . In

the limit of d  0, T Ed d becomes a delta-function, P - ¢( )t t becomes 1, and r ( )E t,eff in equation (52)
reduces to the pure-stateWigner function (10). For finite δ though, the characteristic temporal width  d of the
Fourier transform P - ¢( )t t in the time-domain representation (equation (54)) sets the upper limit on the
coherence time of thewave-packet that can be resolved by the tomographic reconstruction.

For d > 0, electron partitioning at the barrier introduces shot noise that reduces the purity of the
reconstructed effectivemixed state r̂.We illustrate this by computing the convolution of the uncorrelated
Gaussianwavepacket (35) and aGaussian dT/dE from equation (37),
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Quantumpurity, defined as g r= tr 2, is straightforward to compute in theWigner representation,
g r= ∬ ( )h E t E t, d deff [40]. Using (55)we obtain the effective purity of tomographic reconstruction by a
finite-width barrier for a quantum-limitedGaussianwave-packet,




g
s d
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( )2

2
. 56

t
2 2

We see that γ in the case of an uncorrelatedGaussianwavepacket is equal to the ratio between the ideal
Heisenberg uncertainty product ( )2 and the product of time and energywidths in the effective distribution
(55)which is broadened by afinite resolution δ of the energy detector. Note that in general, the uncertainty
product alone is insufficient to distinguish the incoherent broadening (e.g. δ-dependent terms in equation (55))
from coherent broadening (e.g. the energy-time correlation created in the source [40, 42]). Hence a full
tomography technique is essential for evaluating the quality a sourcewith respect to the quantum limit of
localizing a single particle in energy and time.

The dependence of δ on the parameters of the constriction depends on the details of the scattering
interaction Ĥbs and goes beyong the scope of this work.Nevertheless, we can use the simple sketch infigure 2 for
an order ofmagnitude estimate. For a single-channelmodel with the backscattering amplitude distributed
spatially over a length Î - ¼ +[ ]x x xb b , the temporal width of t ( )t (and hence P( )t ) is limited by x v2 b .
This gives an estimate

Figure 11.TheRadon transform, defined in equation (51), of theWigner distribution of aGaussianwave packet ρin(E, t)described by
equation (36)with a step-functionT(E) (δ→0).We have set a s= t0

2.
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d ( )v

x
57

b

for the achievable energy resolution of the tomography techniquewithin a specificmodel of the scattering
barrier depicted schematically infigure 2. This bound can also be interpreted as Dx pb where dD =p v is
the Fourier (diffraction) limit on themomentum resolution achievable over the characteristic length xb of the
backscattering region for a particle propagatingwith velocity v.

One can expect from equation (57) that the effective length of the spatially uniformpart of the scattering
region is an important parameter for designing a barrier suitable for high-resolution tomography. On the other
hand, aswe have seen in section 3.2, the length and the shape of the gate edge region from-xg to-xb is not
important as long as the linear-in-timemodulation condition (27) is fulfilled and the velocity dispersion can be
ignored.

6.3.Measurement of themodifiedWigner function
Asmentioned in section 3, themodifiedWigner function r̃( )E t, is not a physical observable and does not
represent theWigner function of thewave packet at any stage.However, it can be experimentally obtained as the
outcome of tomographic reconstruction. To see this, we consider a gate voltageV(t) that is the sumof a linear
part a+V t0 , as in the experiment of [40], and an additional perturbation ¢( )V t . This scenario is discussed
theoretically at the end of section 3.2, see equations (33) and (34). Analogously to equation (51), themodified
Wigner function corresponding to the perturbation ¢( )V t only, can be expressed as

ò
q

r a q
¶

¶
= ¢ +

( ) ˜ ( ) ( )Q V

V
e t V t t

,
d tan , , 580

0
0 0

wherewe have assumed ideal energy resolution, inserted  a q= +( )t V t tan0 0 , and absorbed the correction
toV(t) due to a possibly non-sharp edge of the gate intoV0. This resultmeans that, if we perform the inverse
Radon transformof q¶ ¶( )Q V V,0 0, the outcomewould be themodifiedWigner distribution calculated for the
non-linear part ¢( )V t of the potentialV(t) only. For example, the function r̃( )E t, of equation (41) can be
measured using the linear tomographic reconstruction protocol of [40]while applying a gate voltage that is the
sumof equations (38) and (40), i.e.

a
a

=
+ + <
+ + >

⎧⎨⎩( ) ( )V t
V t V t t
V t V t t

for ,
for .

590 i 0

0 f 0

By introducing such a sharp voltage ‘kick’ on top of a linear time dependence of the gate potential, it would be
possible to gather direct evidence of coherence of the electron source, since negative values in themeasurement
of r¢˜ ( )E t, arise from interference between phase-coherent parts of the incomingwave packet. This is relevant
for the investigation of the properties of single-electron sources that emit solitary electrons high above the Fermi
energy, where coherence is key to potential interferometric applications [3].

Our results also provide away to describe a different kind of problem: sampling the potentialV(t)with single
electronswhose incoming distribution is well known [48]. In this case, the deviations in themeasurement of
r ( )E t,in from the actual incoming distributionmay allowone tomeasure thewave-formV(t) beyond the
classical resolution limit. In this context, equation (25) can elucidate the influence of the potential shape on the
bandwidth of such a ‘quantumoscilloscopic’measurement.

7. Conclusions

Inspired by recent experiments [39, 40], we have constructed a fully quantum-mechanical description of a
dynamical scattering problemof electronwave packets in a one-dimensional chiral channel passing through a
constriction subject to a time-dependent gate potentialV(t).We have shown that the expression for the
transmitted charge in this system is analogous to the corresponding classical expression, with amodifiedWigner
distribution function r̃ being the quantumanalog of the classical probability distribution. In particular, if the
gate voltage time dependence is linear then themodifiedWigner distribution is obtained from theWigner
function of the incoming electron by a time-dependent shift of the energy E. In this case the full quantum-
mechanical theory agrees with the classical-limit estimate (1) justifying the quantum tomography proposal put
forward in [40].

Afinite energy resolution δ of the scattering barrier adds shot noise to the tomographically reconstructed
Wigner distribution, limiting themaximal coherence time that can be probed by  d . Small δ requires large
spatial extent xb of the uniformlymodulated part of the constriction, d v xb.We have shown that neither
the length of thewave-packet nor the shape of the accelerating edge of the gate potential perturbs the linear
tomography protocol as long as themodulation of the scattering region remains spatially uniform.
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Our fully quantum-mechanical theory provides the tools to analyze experiments with a general time
dependence of the gate voltage, relevant for wave-packets that are stretched in the time domain. The results
presented here can be used to describe existing and propose newquantummeasurement protocols. They can
also serve to analyze a reverse problem: determining the gate potentialV(t)when the incoming electron
distribution is known.We have shown that additionalmodification of theWigner function by non-linear gate
modulation can in principle be revealed by quantum tomographywithin the same device. This opens a
possibility to probe coherence of single-electron sources with explicit signatures of quantum interference (e.g.
negativity of themodifiedWigner function)which does not requiremultiple-path layouts.
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