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Community detection is a fundamental challenge in the analysis of online networks. However, there is a lack of
consensus regarding how to accomplish this task in a manner that acknowledges domain-specific, substantive
social theory. We develop a typology of what social phenomena communities of hyperlinked actors may sig-
nify—topical similarities, ideological associations, strategic alliances, and potential user traffic—and offer re-
commendations for community detection grounded in these concepts. Testing procedures on a hyperlink net-
work of the food safety movement, we demonstrate that the handling of tie directions and weights as well as

algorithm choice influence which communities are ultimately detected in such a network.

Over the past decade, the study of networks has rapidly gained
traction among social scientists investigating (online) civil society (e.g.,
Bennett and Segerberg, 2013; Castells, 2010). Many of these studies
collect hyperlink networks—that is, networks in which websites re-
present nodes and hyperlinks the directed ties among them (Park,
2003). These networks are often studied as “issue networks” in the
sense of hosting public debates on specific issues such as climate change
(Rogers and Marres, 2000), fair trade (Bennett et al., 2011), or online
copyright law (Benkler et al., 2015).

Furthermore, hyperlink networks are analyzed to infer meaningful
social relationships, as hyperlinks may signify collective identities,
discursive coalitions, or ideological affinity among actors (Sereno,
2010). Hyperlinks also offer resources to civil society organizations
trying to mobilize for their interests. First, they grant visibility. They
structure the distribution of attention across the Internet by directing
users to websites (Barzilai-Nahon, 2008). Second, links act as re-
commendations signifying common interests and affiliations (Gonzélez-
Bailon, 2009), which lend prestige to a website. Even in the age of social
media, the relevance of these functions of hyperlinks remains. Websites
are still the public faces of organizations (Bennett and Segerberg,
2013), and social actors use social media to connect followers and
sympathizers to the content on their website (Nitschke et al., 2014).
Furthermore, hyperlinks are crucial for the importance that is attrib-
uted to websites by search engine algorithms (Brin and Page, 1998).

Since hyperlinks are not uniformly distributed, cohesive node
clusters or communities emerge in networks (Gonzalez-Bailon, 2009).
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These are “subsets of actors among whom there are relatively strong,
direct, intense, frequent or positive ties” (Wasserman and Faust, 2009,
p- 249). From the perspective of resource mobilization theory
(McCarthy and Zald, 1977), such communities represent opportunity
structures for civil society actors (Kriesi et al., 1992). They facilitate the
spread of collective action frames (Snow et al., 1986) and the mobili-
zation of resources such as attention, prestige, or information
(Baldassarri and Diani, 2007). In the growth phases of social move-
ments, network communities are relevant for creating a critical mass of
like-minded, interconnected actors (Centola, 2013).

Consequently, there is an increasing usage of community detection
procedures by researchers working on online civil society networks.
However, the range of community detection algorithms is wide, as is
the range of interpretations of what communities are, often based on
specific theoretical concepts from sociology and public spheres re-
search. Some researchers interpret communities as topical clusters of
larger issue networks in the sense of issue-specific sub-publics (e.g.,
Ackland and O’Neil, 2011; Herring et al., 2005). Others add ideological
homophily in terms of issue positions, which allows them to differ-
entiate between publics and counter-publics (Benkler et al., 2015; Kaiser
and Puschmann, 2017). To the extent that different actors within
communities share the same beliefs and stories about issues, commu-
nities can also be interpreted as discourse coalitions, as introduced by
Hajer (1995). An even stronger collective identity is assumed by re-
searchers who define communities as strategic alliances (Pilny and
Shumate, 2012). Referencing Sabatier (1988), Adam et al. (2018) term
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these alliances advocacy coadlitions if they are formed in response to
specific policy issues, share the same beliefs, show a substantial degree
of coordination, and are stable over time. When referring to theory or
theoretical considerations in the following, we mean this type of do-
main-specific or substantive theory.

On the methodological side, many community detection algorithms
exist, and researchers have to make decisions concerning the pre-
processing of networks. For instance, not all algorithms are capable of
handling the natural features of hyperlinks—their directedness and
weight. Therefore, either hyperlink data has to be preprocessed or do-
main-specific theoretical considerations may support the inclusion of
tie weights and directions, thereby restricting the choice of algorithm.
Although the goal of community detection is identifying natural
structures within a network (Newman, 2006), we show that decisions
regarding tie weights and directionality, as well as the choice of a
community detection algorithm, critically influence the uncovered
community structure.

As Peel et al. (2017) have argued, the diversity of options is not a
weakness, as many mechanisms may have contributed to a network’s
formation and not all procedures will be equally appropriate for un-
covering each process. Accordingly, Ghasemian et al. (2018) found that
results of different algorithms vary widely for the same data and that
for different circumstances, different algorithms perform best.

Existing studies comparing different community detection algo-
rithms mostly evaluate algorithms on artificial networks with respect to
a known ground truth (Fortunato, 2010; Papadopoulos et al., 2012;
Yang et al.,, 2016) or on empirical networks with respect to perfor-
mance-based benchmarks (Ghasemian et al., 2018; Leskovec et al.,
2010). We argue that the decisions required in community detection
should also be based on domain-specific theoretical considerations. This
is important for two reasons: First, performance-based assessment alone
does not help in choosing a specific methodological design (as several
algorithms might perform equally well with respect to general bench-
marks); second, when studying large online networks of civil society
actors there is often no clear ground truth against which performance
might be tested.

The main contribution of this paper is to provide a heuristic scheme
that matches the theoretically derived social meanings of hyperlinks
among websites of civil society actors with the most appropriate
methods for finding communities within such networks. Our focus is on
public/political debate in issue networks, as this is one of the most
intensively studied areas in hyperlink network analysis (De Maeyer,
2013).

The remainder of the article is organized as follows. First, we briefly
introduce the challenge of community detection. We then synthesize
and discuss the research literature, focusing on two questions: What
kind of social structures may communities in hyperlink networks re-
present? And which methods are most appropriate for which kind of
community? We conclude by offering guidelines on how to choose the
method of community detection based on the specific aims of the re-
search. Second, we evaluate different approaches to community de-
tection for an empirical hyperlink network of the food safety movement
in the United Kingdom. In offering a theoretically grounded rationale
for the decisions required for community detection and discussing their
consequences, we provide guidance to researchers in the field of com-
munication networks online.

Theoretical foundations of community detection
Decisions on community detection for hyperlink networks

Communities or cohesive subgroups are “groups of actors who in-
teract with each other to such an extent that they could be considered to
be a separate entity” (Borgatti et al., 2013, p. 181). Because several
properties of subgroups, such as their relative relational density and
degree of connectivity, may be considered relevant (Barabasi, 2016), no
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single operational definition of communities exists. Here, we discuss
three decisions relevant in community detection: choice of algorithm,
handling of tie directions and tie weights.

Algorithms

Because hyperlink networks tend to contain at least a few hundred
nodes, there are some constraints on community detection methods.
Concepts defining clear-cut criteria for intra-group cohesion, such as n-
cliques or k-plexes (Wasserman and Faust, 2009), may not yield useful
results, identifying either very few or very many largely overlapping
subgroups and frequently leaving many nodes unassigned. Therefore,
algorithmic procedures have become the most applied strategies. In
contrast to previous deductive approaches, they specify the process of
community detection, rather than the communities themselves
(Borgatti et al., 2013). A multitude of such procedures exist (see
Fortunato, 2010 for an overview), and many are readily implemented
in software. In the following, for reasons of applicability, accessibility,
and practical relevance, we will focus on five algorithms that are im-
plemented in the igraph package (Csardi and Nepusz, 2006) for the
statistical programming environment R (R Development Core Team,
2008) and that are widely used in social scientific research. A com-
prehensive review of community detection procedures exceeds the
scope of this article (for more extensive discussion, see e.g., Fortunato,
2010; Papadopoulos et al., 2012).

The five algorithms are each grounded on different principles. The
map equation algorithm (Rosvall et al., 2009) is based on the movement
of a random walker through the network. Its aim is to optimize a global
two-level code in such a way that nodes the walker frequently visits in
sequence are grouped together. The algorithm is based on an agglom-
erative principle. It starts out with each node as its own community and
subsequently merges them. The label propagation algorithm (Raghavan
et al,, 2007) assigns temporary labels to each node and then in-
vestigates the communities that emerge when the nodes iteratively
adopt their nearest neighbors’ labels. Therefore, this algorithm is also
agglomerative; however, it is based on the emergence of local proper-
ties, matching the intuitive notion of group structure. Both of the above
algorithms contain stochastic processes. Accordingly, they will not
discover completely identical communities when applied multiple
times.

The other algorithms, edge betweenness (Girvan and Newman, 2002;
Newman and Girvan, 2004), leading eigenvector (Newman, 2006), and
multilevel (Blondel et al., 2008), are each based on the optimization of
the partitions’ modularity. This metric describes the proportion of intra-
community ties, compared to the one expected in a random network
(Newman and Girvan, 2004). The edge betweenness algorithm focuses on
identifying the ties with the highest betweenness, that is, “the [highest]
number of shortest paths between pairs of vertices that run along it”
(Girvan and Newman, 2002, p. 7822). Edges with a high betweenness
will likely run between communities, where there are only relatively
few connections. The algorithm operates divisively by iteratively
eliminating the ties with the highest betweenness so that the network
begins to separate into communities. Modularity is used to determine
when the procedure has achieved an optimum community structure.

The leading eigenvector algorithm employs modularity by identifying
the modularity matrix’s leading eigenvector and sequentially bisecting
the network accordingly. After each division, the leading eigenvector is
calculated for the modularity matrix of each component and the process
repeats iteratively until further bisections will not yield an improve-
ment in modularity. Finally, the multilevel algorithm initially treats all
nodes as individual communities and successively moves nodes be-
tween communities. This agglomerative process also uses modularity to
determine the optimal community solution.

Comparative studies suggest that results vary significantly across
different algorithms. One strand of research focuses on performance
evaluation on artificial benchmark graphs. Yang et al. (2016) evaluated
the properties of several algorithms on artificial benchmark graphs by
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varying the mixing parameter, that is, the share of inter-community
ties. If the mixing parameter was small, all algorithms performed
comparatively well. However, most algorithms exhibited a turning
point value beyond which performance decreased rapidly.
Papadopoulos et al. (2012) focused on performance in terms of com-
putational complexity and memory requirements and found that pro-
cedures showed marked differences, with label propagation and mul-
tilevel being comparatively computationally cheap and therefore
applicable even to very large networks.

Other work focuses on empirical networks. In a comparison of 16
different procedures on a large corpus of empirical networks,
Ghasemian et al. (2018) showed that outputs differed widely in the
number and composition of communities. They argue that different
algorithms do not outperform others in general, but performance is
based on the specific network. Similarly, Leskovec et al. (2010) showed
that results for different community detection procedures vary both in
their quality (i.e., how well procedures perform in approaching an
optimal group structure) and the structural properties of their solutions.

These studies indicate that different algorithms come to rather di-
vergent results, depending on the properties of the network. However,
researchers may be left wondering what method to choose and why
(Hartman et al., 2017). We argue that integrating the notion of what
social phenomena communities indicate is necessary to this end.
Hartman et al. (2017) also make this proposition and introduce a rank
stability measure to evaluate how well a community structure aligns
with ground truth metadata. They applied this to Reddit user interac-
tion data and tested how well community structure aligns with common
SubReddits.

This is a step towards connecting network structure and the social
meaning of nodal relations, as we propose. However, we take it a step
further: Rather than proposing an ex-post evaluation based on a known
ground truth, we highlight the necessity for domain-specific theoretical
considerations. Grounding selection of community detection algorithms
and respective preprocessing steps in sociological concepts (in our case,
referring to theories of the public sphere, civil society, and social
movements) ensures construct validity of the method. This is particu-
larly relevant if a pre-evaluated community ground truth is unavailable,
as is often the case when exploring community structures of online
networks.

Tie weights and directions

Hyperlink ties are generally directed (one website links to another)
and weighted (more than one hyperlink may exist between two web-
sites). Due to the different capabilities of community detection algo-
rithms, however, the directedness and weightedness of edges are fre-
quently modified by symmetrizing the adjacency matrix and
dichotomizing weights. We focus on tie directions and weights here
because, while other graph features, such as density, degree distribu-
tion, and diameter (Leskovec et al., 2010) have consequences for the
resulting graph partitioning too, they are not the target of transfor-
mation. Moreover, most hyperlink networks exhibit similar features,
i.e., a sparsity of ties, long-tail degree distributions and short diameters.

Diagnostic Interpretation
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A review of research on hyperlink networks shows that the direc-
tionality of ties is frequently ignored, while tie weights are usually re-
tained (e.g., Ackland and O’Neil, 2011; Pfetsch et al., 2016). However,
this choice and its implications are not frequently discussed. We argue
that, depending on the research question, either retaining or ignoring
tie weights may be reasonable. The latter option requires the definition
of a threshold value w, a minimum weight required for ties to be re-
tained. For w = 1, all ties remain, whereas for w = 2, ties with w < 2 are
ignored while all remaining ties are treated equally.

All algorithms discussed here are capable of handling weighted and
unweighted networks, but in their implementation in the igraph
package (Csardi and Nepusz, 2006), most cannot handle directed ties.
Only the map equation and the edge betweenness algorithms detect
communities in directed networks. To circumvent this problem, one can
symmetrize the network’s adjacency matrix either by keeping re-
ciprocated ties only or by ignoring the direction of the ties. Most hy-
perlink networks are sparse (Barabasi, 2016) and have few reciprocated
hyperlinks. Thus, retaining only reciprocated ties will dramatically
shrink the number of connected actors.

The social meaning of communities in hyperlink networks

Social scientists are usually not interested in hyperlinks as purely
technical artifacts. Instead, the underlying assumption is that hy-
perlinks signify meaningful social relations. Regarding hyperlinked
communities, the hypothesis is that ““members’ differ from ‘non-mem-
bers’ in theoretically important ways” (Wasserman and Faust, 2009, p.
283). To define what constitutes a meaningful difference, researchers
need to determine what features would constitute a community based
on the domain-specific theory guiding their work. Then, translating
these features into appropriate network measures ensures construct
validity.

Referring to the literature on civil society hyperlink networks, we
extracted four concepts that hyperlinks may represent (see Fig. 1). In
most studies, hyperlinks are used diagnostically to learn about the re-
lationships between senders and receivers of links—that is, topical si-
milarity, ideological association, or strategic alliance. The fourth concept is
prognostic, as it is concerned with the consequences of hyperlink
structures.

The lowest level of actor relationships is topical similarity (Park and
Thelwall, 2003). Hyperlinks between websites may indicate topical si-
milarity because actors establish links to provide context information,
improve the informational value of a website (Park and Thelwall,
2008), or enhance the salience of embedded information (Benkler et al.,
2015). Communities based on topical similarity would be characterized
by the actors’ interest in the same issue, but not necessarily by a shared
opinion.

Empirically, the observation of communities of actors with similar
topics linking to each other on the web was made quite early (Herring
et al., 2005; Kleinberg and Lawrence, 2001). Even within issue net-
works that focus on the same overarching topic, such as the environ-
mental movement (Ackland and O’Neil, 2011), community detection

Prognostic Interpretation
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Fig. 1. Interpretations of subgroups in civil society online networks.
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has proven capable of identifying communities focusing on sub-topics.
Because topical similarity is a weak relationship criterion, we argue that
it demands only a low level of cohesion in community detection.

The second level of actor relationships can be described as ideolo-
gical association and is probably the most popular interpretation of
hyperlinking behavior in social movement research. Accordingly, hy-
perlinks indicate common goals (Bennett and Segerberg, 2013; Burris
et al., 2000) or a collective identity (Pilny and Shumate, 2012). Ackland
and O’Neil (2011) remark that “[r]eceiving hyperlinks is a form of
endorsement” (p. 180). Conversely, the act of non-linking has been
interpreted as boundary definition (Rogers and Marres, 2000). We can
assume that actors develop some idea of belonging to the same col-
lective, as the definition of social movements suggests (Diani, 1992).
For example, Adamic (1999) discovered separate communities of pro-
life and pro-choice activists in the online debate about abortion, and
both Hyun (2012) and Adamic and Glance (2005) found divides be-
tween conservative and liberal bloggers in the United States. Unlike
topical similarity, ideological association requires shared positions,
beliefs, or narratives amongst actors forming a community. Accord-
ingly, hyperlink communities can be interpreted as discourse coalitions
(Hajer, 1995).

Interpreting hyperlinks as indicative of strategic alliances
(Baldassarri and Diani, 2007) or advocacy coalitions (Adam et al., 2018;
Sabatier, 1988) presupposes that hyperlinks provide resources, such as
visibility or prestige. Actors strategically use hyperlinks to take ad-
vantage of these resources. Hyperlinking is seen as indicative of col-
lective action (Gonzalez-Bailén, 2009; Shumate and Dewitt, 2008).
Rational actors form an alliance to work toward a collective good that
none of them could produce on their own (Shumate and Lipp, 2008).
Hyperlinking can facilitate civil society actors’ efforts by increasing
issue salience as well as the prominence of the actors, enhancing mo-
bilization and coalition building, and improving access to stakeholders
(Pfetsch et al., 2013). Strategic alliances require actors’ commitment to
contribute, coordinate, and communicate. Altogether, these demands
translate into a high level of cohesion.

These three diagnostic interpretations may be read as hierarchical, that
is, groups of strategically allied actors are likely to also be on the same
ideological side of a debate and concerned with similar topics. Meanwhile,
it is entirely possible for actors to be topically similar without being
ideologically associated, let alone strategically allied. These differences in
the degree of cohesion between actors should be reflected in the oper-
ationalization of communities. It must be acknowledged that this cate-
gorization represents ideal types. Occasionally, deviant patterns of linking
have been described (Sereno, 2010).

While the previous three categories are diagnostic, the fourth category
is prognostic in that it is concerned with the consequences of link struc-
tures—that is, user traffic. Although Wu and Ackland (2014) showed a
mismatch between hyperlinks and the clickstream network inferred from
user movement at the global level, this finding might not hold for country-
and issue-specific networks, which on aggregate reflect user movement
patterns of browsing by topic more closely (Bruns, 2007). While we cannot
assume a near-perfect correlation between hyperlink networks and user
traffic, the former are often the only indication of the latter that re-
searchers can access. Consequently, links are interpreted as making in-
formation available to an audience (Benkler et al., 2015) or providing non-
members with orientation within the issue network (Shumate and Dewitt,
2008). In this sense, communities represent densely interlinked areas of
networks to which users are likely to remain bounded while surfing the
web. Hyperlinks, thus, structure flow processes, and strong community
structure points toward structural holes that may hamper this flow
(Gonzélez-Bailon and Wang, 2016).

Finding theory-based communities in hyperlink networks

Drawing on this typology, we argue that not all methodological
options for community detection are equally appropriate in all cases.
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Because hyperlinking is a cheap form of communication, the danger of
overstating the social-scientific informative value of communities is
high. Therefore, we need to align the methodological decisions with
regards to preprocessing the network with the theoretically derived
concept of community. Treating all (e.g., reciprocal and asymmetric, or
strong and weak) hyperlinks equally, regardless of the type of com-
munity that researchers are seeking, might lead to erroneous conclu-
sions. The required degree of cohesion is higher when we are searching
for ideologically associated communities or strategically allied com-
munities than for topically similar actor groups. If conclusions about
user flow are drawn, different demands must once again be met.

Adamic and Glance (2005) provided a striking example of the im-
portance of tie directions and weights. Analyzing a network of 40 US
political blogs (20 liberal and 20 conservative), they found that keeping
all hyperlink ties, regardless of weight and direction, resulted in a
densely connected network. Gradually increasing the weight threshold
and demanding reciprocity finally led to the network’s division into two
components along partisan lines. This illustrates that setting a low
weight threshold and disregarding the directionality of hyperlinks re-
sults in one densely connected group that is characterized by topical
similarity: all blogs deal with US politics, after all. Meanwhile, altering
the threshold value and demanding reciprocity leads to a divide based
on ideology. What do these considerations mean for the three metho-
dological decisions outlined above?

Tie directions

The decision on how to handle tie directions is fundamental.
Because few community detection algorithms handle directed net-
works, researchers may be tempted to symmetrize ties. But if they want
to draw conclusions on user traffic through hyperlink networks, they
need to use a directed network. Community detection in the undirected
(symmetrized) version of the network might lead to communities that
would not allow navigation within the community.

Symmetrizing may be appropriate, if we are interested in undirected
relationships—for example, if we want to learn which actors are topi-
cally similar or strategically allied. For symmetrizing, there are two op-
tions—either treat all ties equally, irrespective of directionality, or take
only reciprocal ties into account. While reciprocal ties are the preferred
choice in the analysis of social networks (Borgatti et al., 2013) such as
friendship networks, they can be impractical for large, sparse hyperlink
networks. As most hyperlinks are asymmetric relations, reciprocal-tie
symmetrizing erases them, and the network will fall apart. We believe,
however, that this can be necessary when looking for relationships
beyond mere content similarity. If the aim is to identify cooperating
actors, reciprocal links should be focused, because the “relation ‘is
strategically allied with’ is a bidirectional relation” (Monge and
Contractor, 2003, p. 35).

The order in which network data is preprocessed is important. We
suggest adjusting tie directions first. Possible weight dichotomization
should be executed only thereafter, because symmetrizing reciprocal
ties requires summating the weights of both directions. This may affect
whether the resulting tie weight is above a certain threshold.

Tie weights

Most studies retain tie weights, implying that actors who link to
each other frequently are likely to be grouped together. However, re-
searchers should consider whether a dyad sharing 30 hyperlinks should
be treated as three times as close as one that shares 10 hyperlinks or if
there is a threshold, beyond which the exact number of links no longer
matters. From our point of view, frequent hyperlinks signify stronger
relationships than single connections. Therefore, thresholding may be a
viable choice to focus strong ties when investigating, for example,
ideological association. However, it may be misleading to treat tie
weight as directly proportional to the quality of a relationship.
Therefore, researchers should critically examine whether weights add
useful information for community detection. There may also be factors
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introducing additional noise: for example, the heterogeneity of website
architecture leads to diversity in document volumes and design fea-
tures." Websites with a higher volume of documents have a higher
chance to link to others more frequently and are more likely to be
classified as central actors in communities.

Testing different threshold values reveals the community structure
at different degrees of cohesion (Borgatti et al., 2013). Herring et al.
(2005) showed that when changing the threshold, some communities
fall apart, while others remain stable. In any case, an increased
threshold prevents an overstatement of the importance of infrequent
intra-community ties when searching for strong-tie communities such
as strategic alliances.?

There are also cases in which tie weights are clearly useful to retain,
for example, when studying potential user movement. Here, users are
more likely to click from one site to another if there are more links
between the two.

Choosing an algorithm

Of the algorithms considered, only edge betweenness and map equa-
tion are capable of handling directed networks in igraph (Csardi and
Nepusz, 2006) (see Table 1). Map equation may be the better choice for
finding communities in which users can linger, because it assesses the
possibility of flow within groups. In contrast, edge betweenness does not
investigate intra-group paths and may create communities with limited
possibilities of flow.

Beyond this restriction, it is difficult to make a priori predictions as
to which procedures may be most appropriate for which research
question. From a theoretical perspective, the label propagation algorithm
is compelling, as it is based on a network’s local properties, which is
consistent with sociological notions of communities. In practice, how-
ever, modularity optimization procedures, such as multilevel or leading
eigenvector, dominate. Both have been shown to yield results with well-
separated communities (Yang et al., 2016), although a resolution lim-
it—the inability of modularity optimization procedures to detect very
small communities—has been described (Fortunato and Barthélemy,
2007). Peel et al. (2017) argue that, when choosing a community de-
tection procedure, one should take into consideration both beliefs about
the data-generating process and how the outputs will subsequently be
used—for example, whether the aim is testing a specific hypothesis or
simply coarse-graining the network structure. One may therefore also
take the specific features of algorithmic solutions into account. For
instance, if we are interested in discovering structural holes, an algo-
rithm, which identifies well-separated communities (i.e., delivers high
modularity solutions), is a reasonable choice. If, however, we want to
identify communities that enable quick information flow, short paths
within the groups are the more important feature.

With the above considerations on data preprocessing and choosing
an algorithm, we argue for the primacy of a theory-driven approach;
that is, decision-making based on what ties may represent and what
researchers are interested in learning. We acknowledge, however, that
some decisions will also be data-driven. For example, what constitutes a
weak vs. a strong tie will depend on the overall distribution of tie
weights and reciprocal ties on the network (Barrat et al., 2004; Serrano
et al., 2009). How specific algorithm perform will depend on various
properties of a given network, such as its size, its tendency towards

! Our study solely focuses on hyperlink ties embedded in the HTML source
code of web pages. Other relations, such as textual or visual relations (e.g.,
logos of affiliated organizations), which are not accompanied by hyperlinks,
remain omitted.

2 Another possibility that we will not follow up on here is the definition of
ordinal threshold categories. That is, instead of retaining tie weights in their
original form, researchers may classify weights into groups of weak, medium,
and strong ties. This may prevent the illusion of a quasi-metric strength in-
dicator. However, the definition of such categories is, again, in danger of being
arbitrary if there is no theoretical reasoning.
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Table 1
Capabilities of different algorithms.

Algorithm Tie weights Tie direction

Edge betweenness
Multilevel

Leading eigenvector
Label propagation
Map equation

SSSSS
X X% x &

triadic closure, the number of cross-cutting ties between densely con-
nected network modules, the skewness of the degree distribution etc.
Excellent guidance for such data-driven criteria is provided by the lit-
erature in statistical physics and computer science (Lancichinetti and
Fortunato, 2009; Lancichinetti et al., 2008; Yang et al., 2016).

In most cases, neither purely theory-driven nor purely data-driven
approaches are likely to be superior. Instead, researchers need to ex-
plore the empirical features of their networks with theory in mind; that
is, data-driven decision-making must be compatible with the domain-
specific notion of community.

Methods

We compare the results of five popular algorithms and of different
preprocessing choices using an empirical data set. Our test case is an
issue-specific hyperlink network of (mainly) British websites concerned
with the topic of food safety, which was collected in July 2014. The
network was generated using the Issue Crawler® and eight systematically
chosen seed URLs of civil society actors that were deemed central to the
issue.” Starting from these websites, a snowball procedure was applied
using a crawl depth of two (i.e., internal links were collected from the
domain’s main site up to two levels) and a degree of separation of one
(i.e., from all pages, external links to other websites were followed). For
the crawled websites, two levels of internal links were followed, and all
ties leading back to websites already in the network were added.

Snowballing is the most inclusive mode of crawling when capturing
the interlinking structure of an a priori unknown assemblage of web-
sites (Waldherr et al., 2017). The technique was tested multiple times
using varying parameters. While choosing a degree of separation
parameter greater than one led to an unmanageable amount of the-
matically unrelated sites (i.e., many false positives), a crawling depth
parameter greater than two yielded insignificantly deviating networks.
It is worth noting, that snowball networks do not require an a priori
knowledge about their boundaries (Adam et al.,, 2016). Instead,
boundary definition remains an analytical challenge (Maier et al.,
2018b). In our case, the boundaries of the network are defined the-
matically.

As we focused on a network of organizations tied together by hy-
perlinks rather than on a network of websites, the websites’ hosting
organizations were manually coded. The network was aggregated so
that all websites hosted by the same organization were merged into a
single organizational node. Furthermore, the websites were checked for

3 For documentation on Issue Crawler, see: http://www.issuecrawler.com

“To define the starting pages of the crawling procedure, we systematically
conducted Google searches using different keywords associated with food
safety, reviewed the literature, and gathered experts’ opinions. This systematic
search led to a list of websites, which we checked for availability, update fre-
quency, and centrality of the food safety issue. Finally, we chose the following
websites as starting points (seed websites) for the crawl: http://www.which.co.
uk/about-which/what-we-do/which-policy/food/food-safety/  http://www.
consumerfocus.org.uk/wales/policy-research/food  http://www.sustainweb.
org/  http://www.acornsafety.co.uk/category/food-safety-news-and-advice/
http://www.greenpeace.org/international/en/campaigns/agriculture/ http://
www.cieh.org/policy/food_safety_nutrition.html  http://www.foe.co.uk/get_
involved/natural_resources.html http://www.soilassociation.org/
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Fig. 2. Network versions after preprocessing.

thematic relevance using a keyword filtering procedure with Visual Web
Spider.® The resulting network consisted of 551 organizations and 904
directed and weighted hyperlink ties between them. The network fea-
tured a low density of 0.006 and an average degree of 1.76.

Through preprocessing (symmetrizing, dichotomizing), we created
the versions of the network represented in Fig. 2. We used edge be-
tweenness to assess the impact of varying the treatment of tie weights
and directions because it is a flexible algorithm that can handle directed
and weighted networks. This allowed us to evaluate the impact of all
preprocessing steps while using the same algorithm. After increasing
the threshold value for tie weights, we deleted isolates before applying
the algorithm. As discussed, it is not possible to settle on an absolute
weight threshold, at which ties represent a particular relation type. We
chose the tested thresholds so that each step represents major changes
in the number of remaining nodes and ties. Increasing the threshold
from one to two eliminates those ties most likely to be spurious by
focusing on repeated connections. Further, a threshold of five focuses
our attention on roughly the top ten percent of weighted ties—the
strongest relationships within the network.

To see how different algorithms performed in comparison to the
edge betweenness algorithm, we applied them to the undirected,
weighted network containing all ties. We tested a selection of popular
algorithms—namely, the leading eigenvector, multilevel, and label propa-
gation algorithms—on this network. Furthermore, we applied the map
equation algorithm to the directed, weighted network. We further
conducted sensitivity analyses to investigate how varying values for the
thresholding technique affects the solutions of the algorithms.®

As noted above, the analyses were conducted using the igraph
package (Csardi and Nepusz, 2006) for the statistical computing en-
vironment R (R Development Core Team, 2008). For network visuali-
zations, we used Gephi (Bastian et al., 2009).

In order to systematically compare the partitioning solutions, we
calculated several measures, including the number of groups, average
and median group size, skewness and kurtosis of the distribution of
group sizes, the maximum and minimum number of group members,
and the number of unassigned nodes and dyads. These measures are
descriptive, and there was no objective optimum value. Rather, the aim
was to compare how the solutions differ. Furthermore, we used mod-
ularity (Newman and Girvan, 2004) and the share of intra-community
ties to assess the extent to which communities are separated from each
other. For these measures, high values are usually regarded as desir-
able, as they point toward well-separated communities. We also used

5 The keyword filtering was conducted using Visual Web Spider. A detailed
documentation of the software may be found here: http://www.newprosoft.
com/web-spider.htm. A list of the search terms can be found in Table 5 in the
Appendix.

6 The sensitivity analyses as well as the data set and the respective scripts are
available at https://osf.io/sy3r2/?view_only =
e133dc22cb8b4511b648aa420fd0deea

the maximum and average diameter to assess reachability between
members within communities. Here, low values indicate that all
members can be reached via short paths, which is desirable if the
theoretical construct under study demands reachability—for example,
information flow, user flow, or other flow processes.”

Lacking a ground truth variable in our data, we validated results
based on a two-step assessment procedure that focused on (a) the in-
terpretability of subgroup structures and (b) the concept fit of significant
subgroups.® In the first step, (a) we asked to what extent the network
partitions in fact display significant subgroups. If the aforementioned
metrics or other indications suggest that the partitioning does not re-
flect significant groups, the solution was deemed uninterpretable. In-
significant subgroup structures may be indicated by a high number of
communities and a heavy skewness of group size distribution, i.e., there
is only one large community and many tiny ones consisting of only one
or two nodes. If the solution represents a significant group structure, in
the second step, (b) we asked whether the groups correspond to a
community concept we are looking for. Two researchers conducted the
validity assessment to ensure intersubjectivity. To aid this assessment,
we consulted the types of actors and topics within groups,’ as well as
known institutionalized affiliations (e.g., between different regional
chapters of organizations like Greenpeace or the Chartered Institute of
Environmental Health).

Results

We will discuss the results according to the three decisions outlined
above. First, we present our findings regarding the different options for
handling tie directions. Next, the results regarding tie weights and, fi-
nally, the different algorithms are discussed.'®

7 For stochastic algorithms, n = 100 iterations were run. This pertains to the
label propagation and map equation algorithms. The mean and standard devia-
tion of all measures were calculated.

8Network community detection is a type of unsupervised clustering.
Therefore, we used a validity-assessment approach, which was originally de-
veloped for interpretations of topic models (Maier et al., 2018a), also an in-
stance of unsupervised clustering.

9 The coding of actor type categories was based on a broad categorization
similar to that of Rucht et al. (2008) and conducted by two trained coders. The
coding reached a satisfactory intercoder reliability of 0.78 (Krippendorff’s a). A
more detailed description can be found in Miltner et al. (2013). Qualitative
inspection was used to gather the main topics that the websites were dealing
with.

10 A file containing all network visualizations with node IDs and a node list is
also available at https://osf.io/sy3r2/?view_only =
€133dc22cb8b4511b648aa420fd0deea under the file name Visualizations with
IDs and Nodelist to allow readers to see in more detail which actors are grouped
into communities under what conditions.
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Table 2
Community solutions depending on tie directionality.
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Undirected network, all ties

Undirected network, reciprocated ties only Directed network

Number of nodes 551
Number of ties 904*
Number of components 1
Density 0.006
Number of communities 26
Average number of members 21.19

Median number of members 8

Skewness of community size distribution 2.84
Kurtosis of community size distribution 11.05
Largest community 158
Smallest community 2
Number of single nodes 0
Number of dyads 3
Modularity 0.47
Share of intra-community ties 0.65
Largest diameter 8
Average diameter 3.69

45 551
45 949
5 1
0.045 0.003
7 229
6.43 2.41

2 1

1.36 15.03
3.25 226.95
22 317

2 1

0 224

4 3

0.18 0.13""
0.91 0.50

3 7

1.57 2.40"

All values are based on the edge betweenness algorithm (Girvan and Newman, 2002) and were calculated based on weighted networks. “All ties” include all
hyperlinks between actors, regardless of direction (i — j,j—1i, i <>j). “Reciprocated ties” take only reciprocal hyperlink relations into account (i <=j). All values (except

for density) were rounded to the second decimal place.

* Differences in the number of ties are due to igraph treating reciprocal links as two separate ties in directed networks. As there are 45 reciprocated ties, the directed

network contains 45 additional ties.

T When calculating average diameters, values for “communities” consisting of just one member are not taken into account, as they always equal zero and distort the

results significantly.

71 Modularity is only implemented for undirected graphs in igraph, which must be taken account in the interpretation of these values. However, there is no consensus
so far on how to generalize this measure for directed networks (Malliaros and Vazirgiannis, 2013).

Handling tie directionality

The decision on how to handle directions should be the first one.
There are three options. The most common one is symmetrizing, which
treats all ties (reciprocated and non-reciprocated) equally. The second
approach is to settle on reciprocated ties only and the third is to leave
the adjacency matrix as is and use the directed network. The results of
these three approaches can be found in Table 2. The respective network
visualizations are provided in Fig. 3.

The first solution ignores tie directions, thereby creating a network
with mostly unreciprocated ties. The community partitions are rela-
tively homogeneously sized (Fig. 3a) and may be interpreted as topi-
cally similar groups. For instance, we find groups mainly concerned
with contaminated food or with organic food. The solution consists of
26 communities, and the modularity of 0.47 indicates a significant
community structure (Newman and Girvan, 2004). The average dia-
meter of 3.69 is rather high, so paths within groups are long in many
cases.

The network with only reciprocated ties reveals that there is little
reciprocity among the actors’ websites (Fig. 3b). Only 45 nodes main-
tain reciprocal hyperlinks. The main component contains 37 nodes,
which the edge betweenness algorithm groups into three communities.
The Chartered Institute of Environmental Health now forms a community
with only its local subdivisions in Ireland and Wales. More generally,
the groups exhibit a clear sorting by actor type, with few connections
persisting between, for instance, economic and civil society actors. This
finding provides evidence that insisting on reciprocity may indeed lead
to communities of strategically cooperating actors.

Finally, the solution for the directed network (Fig. 3c) does not yield
an interpretable community structure. The algorithm divides the net-
work into 229 communities, 224 of which consist of only one node.
There is one large community with 317 nodes. The unbalanced com-
munity size distribution is indicated by the large skewness and kurtosis
values (Table 2). Although there are large and small groups in every
solution, the extreme imbalance indicates a malfunctioning of com-
munity detection for the directed network. This is also indicated by the
low modularity of 0.13. Not much interpretative value can be derived
from this solution: The only sizable group consists of mostly economic
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and civil society actors and forms around outlinks from one civil society
actor (Sustain). While a similar group is found in most solutions, it is
much larger and less topically coherent here.

Handling tie weights

Table 3 and Fig. 4 present the community solutions discovered by
the edge betweenness algorithm for the weighted network, as well as for
dichotomous networks with weight threshold values for w = 1, 2, and
5. Although the statistical descriptions for the weighted network dis-
cussed above (Fig. 4a) and the dichotomous network for w = 1
(Fig. 4b) differ, a closer examination of the groups reveals several si-
milarities. The larger, more centralized communities, as well as most
pairwise groupings of dyads, are nearly identical in both versions.
However, many of the smaller groups in the weighted network are parts
of larger communities in the solution for the dichotomized network.
Thus, although the number of groups differs, the community assign-
ment is similar. The solution for the dichotomous network may be
slightly preferable as it exhibits a lower number of communities and
higher modularity. Additionally, the lower skewness and kurtosis of the
group size distribution indicate a greater balance among communities.

Regarding the weight threshold models, we observe that even a
slight increase of the threshold strongly alters the community structure
(Fig. 4c). Taking into account only ties representing at least two hy-
perlinks shrinks the network to about half its size (n 243 nodes). At
w = 5, only about one sixth of the nodes and 10.5% of ties remain in
the network (Fig. 4d).

With an increased threshold value, community structures show
higher modularity values and larger shares of intra-community ties. A
closer look reveals consistent patterns of structural changes. While the
central actors of large, highly centralized groups remain in their posi-
tions, the communities at the network’s periphery change. Some of the
small and medium-sized communities fall apart completely or are re-
distributed across several other groups. Thus, while some groups re-
main almost the same for w = 1 and w = 2, we cannot generally as-
sume that increasing the threshold value leads to an equivalent
structure in which all groups lose some members equally. Instead, we
observe a reorganization of the community structure.
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a. Communities in undirected, weighted network
with all ties per edge betweenness algorithm

Py

c. Communities in directed, weighted network per
edge betweenness algorithm
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b. Communities in undirected, weighted network
with reciprocal ties only per edge betweenness algorithm

Fig. 3. Community structures for different handling of tie directions.

A more qualitative inspection reveals that an increased weight
threshold leads to groups that are sorted more clearly by actor type. For
instance, in the weighted network, two central actors (Sustain and Soil
Association) tended to be clustered with many economic actors. This
tendency is less pronounced at w = 2 and all but disappears at w = 5,
when both Sustain and Soil Association form groups with mostly other

Table 3
Community solutions depending on tie weights.

civil society actors. Some topical groups (e.g., on organic food) that
clearly emerged previously disappear with the increased threshold.
Conversely, actors that are marked by a known institutionalized con-
nection (e.g., different regional sections of Greenpeace) cluster together
more clearly at an increased threshold.

Weighted network
value w = 1

Dichotomous network, threshold

Dichotomous network, threshold
value w = 2

Dichotomous network, threshold
valuew =5

Number of nodes 551 551
Number of ties 904 904
Number of components 1 1
Density 0.006 0.006
Number of communities 26 18
Average number of members 21.19 30.61
Median number of members 8 12
Skewness of community size 2.84 2.46
distribution
Kurtosis of community size 11.05 8.72
distribution
Largest community 158 182
Smallest community 2 3
Number of single nodes 0 0
Number of dyads 3 0
Modularity 0.47 0.55
Share of intra-community ties 0.65 0.70
Largest diameter 8 8
Average diameter 3.69 4.28

243 92
302 95
7 15
0.010 0.023
17 20
14.29 4.60
4 2
2.22 1.96
7.69 6.08
79 19
2 2

0 0

7 11
0.64 0.70
0.82 0.84
9 3
3.29 1.70

All values are based on the edge betweenness algorithm (Girvan and Newman, 2002) and were calculated based on undirected networks. All values (except for

density) were rounded to the second decimal place.
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a. Communities in undirected, weighted network per
edge betweenness algorithm
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c. Communities in undirected, unweighted network
per edge betweenness algorithm (w = 2)
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b. Communities in undirected, unweighted
network per edge betweenness algorithm (w = 1)

d. Communities in undirected, unweighted
network per edge betweenness algorithm (w = 5)

Fig. 4. Community structures for unweighted networks.

Choosing a community detection algorithm

There are numerous community detection algorithms, and it is not
obvious how they affect the communities discovered in real-world hy-
perlink networks. We compared the results of several algorithms
against the edge betweenness algorithm (applied above)—namely, map
equation for directed networks, as well as leading eigenvector, multilevel,
and label propagation for undirected networks. Comparative results are
provided in Table 4 and Fig. 5.

Focusing on the right side of Table 4 (directed networks), we ob-
serve that the map equation algorithm, like edge betweenness, reveals
problems when searching for communities in the directed network. As
the underlying procedure is based on the movements of a random
walker, communities should be detected only in the areas, in which the
walker lingers. At first glance, this algorithm appears to find an inter-
pretable community solution. As expected for a directed network, the
algorithm leaves some nodes and dyads unassigned. However, on
average 28.89 communities with at least three and up to 288.83 nodes
remain, and the mean modularity of 0.56 suggests a significant com-
munity structure.

However, there are some inconsistencies. The algorithm tends to
place central nodes outside densely connected network areas leading to
communities that are internally disconnected. This is inconsistent with
conceptual notions of communities in networks. Elsewhere in the net-
work, the algorithm shows results consistent with these criteria, re-
moving actors with no outlinks from groups. This is desirable, as these
actors do not allow for further movement within the community in the
case of directed networks. Qualitatively, the groups tend to be less to-
pically coherent, with, for instance, the previously identified group on
food contamination merging with the largest group in the network and
the organic food actors being distributed across several communities.
Therefore, the directed network does not seem to be more capable of
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finding topically coherent groups.

All algorithms applied to the undirected network display significant
community structures. However, the solutions also exhibit substantial
differences, proving how critical the choice of an algorithm is. Although
edge betweenness is very popular, its solution is the one with the lowest
modularity score and highest average and absolute diameter. The
number of communities is comparable to that of leading eigenvector and
label propagation. The multilevel algorithm’s solution combines the
lowest number of groups with the highest modularity score and features
the most balanced community size distribution.

A more detailed examination reveals that leading eigenvector divides
the network into communities with remarkably low diameters. Each
node can reach every other node in a community within a maximum
path length of four, the average being only 2.17. This is interesting
because short diameters are not an optimization criterion of the algo-
rithm. However, as with the map equation algorithm, this procedure
yields an internally unconnected group in one case. Again, this is in-
consistent with notions of what constitutes a group in a network.
Regarding modularity, leading eigenvector (0.65) performs slightly worse
compared to label propagation (0.70) and multilevel (0.73). Qualitatively,
many findings hold in comparison to edge betweenness. Topical groups
are still visible. Known institutionalized connections (e.g., different
Greenpeace or Chartered Institute chapters) are reflected well in the
group structure.

The multilevel algorithm performs well according to several criteria.
It has the highest modularity value (0.73) and lowest number of groups
(17). Regarding average diameters, it performs worse (3.29) than
leading eigenvector (2.17) and label propagation (2.23). These high dia-
meters point to long path distances between group members; however,
they are at least partly a result of the larger community sizes. Focusing
on individual groups (Fig. 5b) reveals a tendency to merge small groups
discovered by other algorithms into larger ones. This is likely an effect
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Table 4
Community solutions of different algorithms.
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Edge betweenness
(Girvan and Newman,

Leading eigenvector
(Newman, 2006b),

Multilevel
(Blondel et al.,

Label propagation
(Raghavan et al.,

Edge betweenness
(Girvan and Newman,

Map equation
(Rosvall et al.,

2002), undirected undirected 2008), undirected 2007), undirected 2002), directed 2009), directed
Number of nodes 551 551 551 551 551 551
Number of ties 904’ 904’ 904 904 949" 949
Number of components 1 1 1 1 1 1
Density 0.006 0.006 0.006 0.006 0.003 0.003
Number of communities 26 29 17 29.01 (1.45) 229 73.76 (13.71)
Average number of 21.19 19 32.41 19.03 (0.93) 2.41 7.78 (1.70)
members
Median number of 8 3 9 3.07 (0.20) 1 1.91 (0.63)
members
Skewness of community size 2.84 3.88 2.60 4.14 (0.16) 15.03 8.08 (0.79)
distribution
Kurtosis of community size ~ 11.05 18.16 9.13 20.09 (1.34) 226.95 68.45 (12.74)
distribution
Largest community 158 235 232 258.21 (4.85) 317 288.83 (21.44)
Smallest community 2 1 2 1.89 (0.31) 1 1.01 (0.10)
Number of single nodes 0 5 0 0.12 (0.36) 224 31.89 (13.22)
Number of dyads 3 8 3 8.1 (0.88) 3 12.98 (0.47)
Modularity 0.47 0.65 0.73 0.70 (0.01) 0.13" 0.56 (0.02)""
Share of intra-community 0.65 0.65 0.74 0.71 (0.01) 0.50 0.42 (0.10)
ties
Largest diameter 8 4" 7 5.73 (0.72) 7 7.41 (0.65)
Average diameter 3.69 217" 3.29 2.31 (0.08) 2.40' 2.28 (0.06)""

All values were calculated based on weighted networks. The first four columns are based on undirected networks, and the last two are based on directed networks. All

values (except for density) were rounded to the second decimal place.

* Differences in the number of ties are due to igraph treating reciprocal links as two separate ties in directed networks. As there are 45 reciprocated ties, the

directed network contains 45 additional ties.

** The algorithm contains stochastic elements. The presented values refer to the mean of 100 runs. The respective standard deviations are indicated in brackets.
T When calculating average diameters, values for “communities” consisting of just one member are not taken into account, as they always equal zero and distort

the results significantly.

™ Modularity is only implemented for undirected graphs in igraph, which must be taken account in the interpretation of these values. However, there is no
consensus so far on how to generalize this measure for directed networks (Malliaros and Vazirgiannis, 2013).
* These algorithms discovered groups that were not internally connected. In these cases, the diameters for individual components were taken into account.

of a resolution limit that prohibits the detection of very small groups
(Fortunato and Barthélemy, 2007). As the clusters are larger, they are
also less easily interpretable in terms of shared topics or identities.
However, actors among whom there is a known institutional affiliation
are again clearly grouped together. Moreover, we find some clusters
dominated by a single actor type. Therefore, we have indication that
the grouping is meaningful, but would require more sophisticated
procedures to decode regarding shared topics.

The label propagation algorithm achieves a high average modularity
of 0.70. What is more, the largest (5.73) and mean average diameter
(2.32) are also comparatively small. On average, the algorithm divides
the network into 29.01 communities, 8.1 of which consist of only 2
members. Among the remaining groups, many contain only few nodes.
These small communities are usually grouped together by other algo-
rithms too, but they are merged with larger communities. However, the
label propagation algorithm also finds the largest community detected by
any algorithm in the undirected network, revealing a highly skewed
community size distribution. The small communities allow additional
insights into topical alignments, as we find, for instance, one commu-
nity exclusively concerned with organic baking.

In additional analyses, we also checked how varying global
thresholding values affected the partitioning solutions of the algorithms
(see Footnote 6). Generally, with higher global thresholds for tie
weights, we witness an increase in modularity and in the share of intra-
community ties. Conversely, the average diameter and the average
number of community members decrease with an increasing threshold.
The number of communities remains relatively stable for all algorithms
except one. For the edge betweenness algorithm (applied on the directed
network), the number of communities decreases in an exponential-like
trajectory.
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Discussion

As we have seen, communities, which are vaguely defined as den-
sely connected parts of a network, can be specified in a multitude of
ways. We discussed three general decisions that researchers have to
make concerning community detection: How do we handle (1) the di-
rectionality and (2) the weight of ties? And (3) which community de-
tection procedure do we apply? We will first discuss the implications of
our empirical findings before connecting them to our theoretical con-
siderations.

Empirical consequences of different community detection procedures

The standard case in current research practice is the undirected,
weighted network, which contains both reciprocal and non-reciprocal
ties. With our empirical example, we were able to specify the con-
sequences of disregarding tie directions. Keeping only reciprocal ties
drastically reduced the size of our network. Barely one tenth of the
actors remained in the resulting network, and the community structure
had little in common with the one discovered in a non-reciprocal net-
work. Interpreting non-reciprocal ties as proof of reciprocal social re-
lations (e.g., strategic alliances) between actors in a community may
therefore overestimate the degree of cooperation. Conversely, the re-
ciprocal network offers a conservative perspective on the degree of
interlinkage and points out only highly connected actor groups. This
comes at the cost of being unable to draw conclusions about most actors
from the original network.

Both the edge betweenness and map equation algorithm revealed is-
sues when applied to a directed hyperlink network. The former found
one large group, supplemented by a large number of unassigned nodes,
while the latter exhibited a tendency to place central nodes outside of
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a. Communities in undirected, weighted network
per leading eigenvector algorithm

c. Communities in undirected, weighted network
per label propagation algorithm
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b. Communities in undirected, weighted network per
multilevel algorithm

d. Communities in directed, weighted network per
map equation algorithm

Fig. 5. Community structure discovered by different algorithms.

communities. As cohesive groups within networks are conceptualized
as constellations of actors densely connected by ties (Wasserman and
Faust, 2009), such a community partitioning challenges the very basis
of that definition.

Altogether, the findings regarding the directed network may signify
either a weakness of the algorithms or an absence of internally well-
connected communities in our network. Only replications on different
networks can provide a conclusive answer to this conundrum, but the
latter may well be the case. Like most hyperlink networks, ours is sparse
and has few reciprocal ties. A small group of actors sends and receives
most of the hyperlinks, leading to star-configurations. These features
may prohibit lingering in network areas, and this becomes evident only
when the direction of hyperlinks is considered. In any event, this
finding indicates that researchers ought to be very cautious about
making assumptions about directed processes, such as user traffic,
based on undirected networks.

Concerning tie weights, communities were similar regardless of
whether we dichotomized the network before running a community
detection procedure. Increasing the weight threshold even slightly,
however, led to entirely different communities in parts of the network.
This is a warning sign against overinterpreting communities detected in
the weighted network, as many are based on very weak hyperlink re-
lations. Such communities may not be appropriate indicators for social
phenomena, such as shared ideology or strategic cooperation. If one is
merely interested in topical similarity, however, even infrequent links
may be meaningful.

Different algorithms applied to the same network yielded quite
different community solutions, with strengths and weaknesses emer-
ging. The edge betweenness algorithm is flexible regarding tie weights
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and directions and delivered a solution with many medium-sized
communities; however, compared to other algorithms, it performed
poorly regarding modularity and diameter lengths. Multilevel found a
solution with a small number of groups and a high modularity, but also
high diameters. Leading eigenvector performed best regarding diameter
lengths, but left many nodes unassigned and, in one case, discovered an
internally unconnected community. Label propagation combined low
diameters and a high modularity, identifying a large number of very
small groups in the process.

In summary, while large, highly centralized communities could be
detected consistently, divergent results were found for peripheral
groups, which were small and lacked central hub nodes. We, therefore,
advocate for a theory-based approach to community detection, as well
as for better reporting standards to explicitly justify methodological
choices.

Theory-based decisions on community detection methods

Why theory matters

In contrast to studies working with networks where a community
ground truth is available, our data set incorporates natural hurdles that
researchers face when  exploring community  structures.
Notwithstanding the fact that “no algorithm can uniquely solve com-
munity detection (...) and that there can be no algorithm that is optimal
for all possible community detection tasks” (Peel et al., 2017, p. 1),
defining an ever-valid ground truth independently from the substantive
theoretical notion of a community at hand is in our view largely im-
possible. In our case, a ‘true’ community structure could be defined only
for strategically cooperating actors where publicly available documents



D. Stoltenberg, et al.

exist that state the existence of their alliance. Informal collectives, such
as movements, often lack documents stating their cooperation formally.
In larger discourse coalitions, actors might not be aware of everyone
with whom they share discursive positions. Ground truth changes with
the theoretical perspective.

Moreover, we face a different ontological problem when turning to
discursive coalitions, which emerge from their communicative relations.
This ontological problem turns the ground truth challenge upside down:
Instead of asking if the solution reflects true communities there are no
true communities in the first place. Thus, we strongly require theore-
tical guidance to define when a condensed communicative structure
signifies a community.

A theoretical guide

Based on our review of studies broadly concerned with civil society,
we found four prevailing theoretical interpretations of communities in
hyperlink networks. These interpretations demand different levels of
cohesion for communities. Fig. 6 sums up our recommendations for
choosing a community detection procedure. The aim of providing such
a heuristic scheme is to provide a concise overview of our main find-
ings. It does not replace thinking critically about how to best approx-
imate any particular theoretical group concept.

First, researchers need to explicate what theoretical concept they
believe the hyperlinks in a network signify and whether it is a strong or
weak type of relation. Topical similarity, ideological association, and
strategic alliances (i.e., our three diagnostic concepts) represent pro-
gressively stronger types of relationships, which ought to be reflected in
the level of cohesion of subgroups. Furthermore, prognostically, hy-
perlinks may signify potential avenues of user flow.

Next, the way of handling tie directions must be considered. If the
theoretical concept is directed (such as potential user traffic), tie di-
rections ought to be retained, even taking into account the possible
issues of community detection in directed networks. If the theoretical
concept is reciprocal, we recommend limiting the analysis to reciprocal
ties, even if it shrinks the network. This is particularly vital for strategic
alliances or advocacy coalitions, but even with ideological associations
or discourse coalitions, reciprocal relations may present more compel-
ling evidence. Rather than treating the undirected non-reciprocal net-
work as the default, it should only be used if it is in line with the
construct under study (e.g., topical similarity).

For tie weights, too, theoretical considerations should be para-
mount. For theoretical concepts representing strong relations, such as
ideological associations or strategic alliances, thresholding makes sense
to foreground frequent connections and avoid overinterpreting spurious
links. If, however, more frequent linkages represent stronger relations,
using a weighted network makes sense. User traffic is an illustrative
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example, as users are more likely to click through from one website to
another if there are more links. While these are theory-driven ap-
proaches, we acknowledge that they must be combined with data-
driven considerations. For example, if no connections remain in the
network at a certain threshold, researchers may need to settle for a
lower one. However, if all connections in the network are weak, one
should be cautious about drawing conclusions on strong relational
concepts.

Regarding algorithm choice, more deliberation is necessary. For
directed networks, researchers are limited to the map equation and edge
betweenness algorithms in igraph (Csardi and Nepusz, 2006). For un-
directed networks, a bigger selection of procedures is available. Here,
researchers may focus on two aspects: how the algorithm’s principles
relate to the theoretical concept and what the aim of data analysis is.
One main difference can be drawn between agglomerative (label pro-
pagation, multilevel) and divisive (edge betweenness, leading eigenvector)
algorithms. One may argue that agglomerative algorithms more closely
mirror processes of network generation and therefore the mechanisms
behind actor relations (diagnostic interpretations).

Regarding the aim of data analysis, we may focus on the empirical
features the algorithms produce. If, for instance, the aim is to identify
structural holes, an algorithm that produces a high modularity is a
reasonable choice. If researchers want to examine communication
processes, short group diameters should enable such flows. Granularity
may also be considered; that is, searching for cooperating actor groups
may work better with an algorithm without a resolution limit, one that
can identify small, tightly connected actor groups. Finally, there is
value in trying more than one approach to community detection, as this
reveals which findings are robust against methodological variations.

Can we generalize?

We chose real-world observational data of civil society online
communication about food safety. Therefore, our empirical test case is
customized for studying hyperlink relations among civil society actors
and other important social actor types. Any generalizations beyond this
domain have to be carefully considered and adapted to the specifics of
the networks and theoretical background.

For instance, community detection in social media networks might
be tentatively informed by our scheme. Friendship or follower networks
also represent an infrastructure for information flow granting visibility
and endorsement to highly followed individuals. Similar mechanisms
such as homophily, triadic closure, and resource dependence lead to
communicative connectivity among actors and thus to the emergence of
community structures (Guilbeault et al., 2018; Ugander et al., 2012).
However, most nodes of such networks are individuals with a less stable
and strategic agenda than corporate actors in hyperlink networks

: ) Community
Tie weights detection algorithm
Choose algorithm based on
desired features:
» Edge betweenness:
Medium group sizes,
flexible

> « Leading eigenvector:

Use all ties, possibly
keep weights

Use weight threshold,

possibly keep weights short diameters, many

groups

*  Multilevel: High
modularity, few groups

* Label propagation:
High modularity, large
and small groups

Use weight threshold,
possibly keep weights

Choose algorithm for
directed networks, likely
map equation (based on
flow), alternatively edge
betweenness

Use all ties, keep
weights

Fig. 6. Theory-based decisions in community detection in hyperlink networks.
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(Lotan et al., 2011). Consequently, social media network relations may
be more fluid and less enduring than hyperlink connections.

Even more caution is advised when transferring our conclusions to
networks of offline social relationships, such as friendship networks
among students or networks of war among nation states. Other theories
apply to such networks and, in accordance with them, other algorithms
and preprocessing steps may be useful.

This paper offers an example of how a scheme of the meaning of ties
can be abstracted from a review of domain-specific literature and
connected to concrete methodological choices. Similar schemes may be
derived from the literature in other research fields, be they online (e.g.,
social media influencers, bloggers, news media) or offline networks
(e.g., protests, friendships, trade). The general message to take away
from our paper is that the most appropriate partitioning of a social
network is guided by a substantial social-scientific concept.

Directions for future research

Some questions remain. Within the scope of this paper, we could not
test every combination of the three variable conditions outlined.
Further, the qualitative assessment of communities’ interpretability
could not be discussed in full breadth here. A more systematic approach
(e.g., by combining community detection and topic modeling) could be
fruitful.

Additionally, there are further possibilities of community detection
that we could not take into account. First, there are other algorithms
with the same aims as the ones tested. Second, there is the question of
allowing for overlap between communities, enabling researchers to
identify actors who belong to more than one group. With any case
study, one must be cautious to generalize findings. Similar work on
different networks should be fruitful in grounding or qualifying our
findings.
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