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1Department of Optics, Palacký University, 17. Listopadu 1192/12, 771 46 Olomouc, Czech Republic
2Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany

3School of Physics and Astronomy, Monash University, Victoria 3800, Australia
4Centre for Theoretical Atomic, Molecular and Optical Physics,

Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
5School of Physics, Trinity College Dublin, Dublin 2, Ireland

(Dated: May 15, 2018)

The work performed on or extracted from a non-autonomous quantum system described by means of a two-

point projective-measurement approach takes the form of a stochastic variable. We show that the cumulant

generating function of work can be recast in the form of quantum Rényi-α divergences, and by exploiting

convexity of this cumulant generating function, derive a single-parameter family of bounds for the first moment

of work. Higher order moments of work can also be obtained from this result. In this way, we establish a link

between quantum work statistics in stochastic approaches on the one hand and resource theories for quantum

thermodynamics on the other hand, a theory in which Rényi-α divergences take a central role. To explore this

connection further, we consider an extended framework involving a control switch and an auxiliary battery,

which is instrumental to reconstruct the work statistics of the system. We compare and discuss our bounds on

the work distribution to findings on deterministic work studied in resource theoretic settings.

Fundamental out-of-equilibrium fluctuation theorems have

been formulated to characterize the full non-linear response of

both classical and quantum systems, to the action of a time-

dependent external perturbation [1–5]. Such theorems can be

seen as refined statements of the second law of thermodynam-

ics suitable for application at the nano-scale. As such, they

play an important role in the characterization of quantum and

classical thermodynamic processes and thermal machines [6–

9]. In such a framework, the statistics of stochastic thermody-

namic variables can be gathered through two-time projective-

measurement protocols, where the fluctuating work done by

or on a system driven out of equilibrium or the heat that it ex-

changes with an environment are defined in terms of the dif-

ference of energy eigenvalues observed at the start and the end

of the dynamics [10, 11]. This approach is experimentally vi-

able [12, 13], has been useful for the characterization of non-

equilibrium features of quenched many-body systems [14–18]

and there is strong evidence that it has a physically meaningful

semi-classical limit [19–23].

A complementing and in many ways radically different for-

mal approach to the stochastic thermodynamics of quantum

systems is based on resource theories. These are mathemat-

ical frameworks that specify restrictions to the transforma-

tions that can be performed on a quantum system to iden-

tify sets of free states that can be prepared under such con-

straints. Any state ρ that is not free can then be consumed

to create final states which are also not free, making ρ a use-

ful resource [24]. Initially applied to entanglement and co-

herence [25], resource-theoretical approaches have also been

applied to study thermodynamics of quantum processes [26–

31], providing insights on the inter-convertibility of finite re-

source states and on extractable work [32–34] from a general,

axiomatic perspective that does not rely on specific details of
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a particular system. Despite some success in capturing funda-

mental aspects of the interplay between non-equilibrium ther-

modynamics and quantum dynamics, it is not yet ascertained

whether resource theories are mutually compatible with fluc-

tuation theorem settings, and if their predictive powers are

equivalent. Moreover, their predictive statements are rarely

phrased in a directly comparable manner, the only exception

insofar being in the thermodynamic limit. In such case the

fluctuations become negligible, and the optimal amount of

work extracted is found to be given as a function of the non-

equilibrium free energy of the system [26].

In this work, we make a step forward towards bridging the

gap between the resource theoretic approach to thermodynam-

ics of quantum systems and the quantum stochastic one by

presenting a situation in which these two frameworks may be

directly compared. In order to provide the foundations of our

approach, we start by considering closed unitary dynamics for

the system and, after showing that the cumulant generating

function can always be recast in terms of quantum Rényi-α
divergences, we derive a family of single parameter bounds

on the average work. Moreover, the relation between the cu-

mulant generating function and the Rényi divergences allows

to relate higher moments of the work distribution to higher

derivatives of the latter. The approach take is further moti-

vated by recent insights into modified versions of the Crooks

relation in the context of single-shot work extraction [35] and

one-shot dissipated work from Renyi divergences [36]. We

compare our result to findings from a resource theory perspec-

tive, where extractable work can also be phrased in terms of

Rényi divergences, and discuss the similarities and distinc-

tions of these two results.

We then consider an open quantum system scenario, where

the system of interest interacts with a thermal bath and is

attached to both an auxiliary quantum battery and a control

switch (the latter describing the action of an external driving

work protocol) so as to meet the usual conditions invoked in

resource theory-based approaches. As a general prescription,
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we perform the two-point measurement protocol on the aux-

iliary battery rather than on the system, thus preserving any

initial coherence in the latter. Work can then be consistently

defined in terms of the energy difference in the battery. This

allows us to show that, when the system is initially prepared

in a thermal state (which is anyway implicitly assumed in ev-

ery explicit quantum stochastic approach [19, 37]) the cumu-

lant generating function can still be cast in terms of quantum

Rényi-α divergences. Analogue considerations and results as

done in the first part of the work for closed systems are thus re-

covered in this extended scenario. In particular, this provides

strong (or significant) evidence of the equivalence. Moreover,

our results allow to attach a clear physical interpretation to the

α-Rényi divergences by linking them to statistical quantities

that are experimentally accessible.

Stochastic approach. Consider an isolated quantum system

– initially prepared in an equilibrium state at inverse temper-

ature β > 0 – subjected to an external force that changes a

work parameter λt in time according to a generic finite-time

protocol. The latter includes, at the initial time t = 0 and

final time t = τ , projective measurements of the energy of

the system, which results in the values Eλ0
n and Eλτ

m . Here,

n and m labels the respective energy levels of the initial and

final Hamiltonian H(λ0), H(λτ ) of the system. Thermal and

quantum randomness render the measured energy difference

Eλτ
m −Eλ0

n , which can be interpreted as the work done on the

system through the protocol, a stochastic variable whose val-

ues are provided by the trajectory-ensemble distribution [10]

pτ (W ) =
∑

n,m

Pτ

[

Eλτ
m , Eλ0

n

]

δ
[

W − (Eλτ
m − Eλ0

n )
]

. (1)

Here, Pτ [E
λτ
m , Eλ0

n ] is the joint probability density that the

two-time energy measurements results in the values Eλτ
m and

Eλ0
n . The Fourier transform of pτ gives a generating function

Θ(η, τ) := 〈eiηW 〉τ which, by derivation over the counting

field parameter η, gives the nth-order moment of work. An-

other informative quantity that we shall consider in this work

is the cumulant generating function

Φ(η, τ) := ln〈e−ηW 〉τ = ln

∫

dW pτ (W )e−ηW . (2)

The quantity (−1)n∂n
ηΦ(η, τ)|η=0, gives us the cumulants of

work. Using the Hölder inequality, it is possible to demon-

strate the convexity of Φ with respect to the first argument

[38]. This property can be equivalently stated as [39]

Φ(η, τ) ≥ η∂ηΦ(η, τ)|η=0, (3)

and, as 〈W 〉τ = −∂ηΦ(η, τ)|η=0, we immediately obtain a

single-parameter family of lower bounds for the mean work,

β〈W 〉τ ≥ −
β

η
Φ(η, τ), η > 0. (4)

A similar set of one-parameter bounds was recently derived

in the context of Landauer erasure [40]. For negative values

η < 0, a family of upper bounds β〈W 〉τ ≤ βΦ(η, τ)/|η| is

obtained instead.

Connecting the bounds to Rényi divergences. It is well

known in the field of full counting statistics [3] that, for an

initial Gibbs state of the bath, the cumulant generating func-

tion can be recast as

Φ(η, τ) = lnTr [ρS(η, τ)] (5)

with ρS(η, τ) = Uη/2(τ)ρS(0)U
†

−η/2(τ), with the operator

Uη(τ) := e−ηH(λτ )U(τ)eηH(λ0) and U(τ) being the time-

evolution operators of the system at time τ . Starting from

this expression, the following identity can be derived (see Ap-

pendix A for details)

Observation 1 (Cumulant generating function) The cumu-

lant generating function for the moments of work is given by

Φ(η, τ) = −
η

β
S1− η

β
(ρS(τ) || GS(λτ ))− η∆F, (6)

where GS(λt) := Z(λt)
−1e−βH(λt) denotes the canonical

Gibbs state at time t and ∆F = F (λτ ) − F (λ0) is the free

energy difference between canonical Gibbs states at the ini-

tial and final points, with the free energy of Gibbs states at

time t being F (λt) = −β−1 lnZ(λt) and Z(λt) the partition

function of H(λt).

In this expression, the quantum α-Rényi divergences are de-

fined as

Sα(ρ||σ) :=
1

α− 1
lnTr

[

ρασ1−α
]

, α ∈ (0, 1)∪(1,+∞),

(7)

with ρ and σ being two generic density matrices [41]. The

Rényi divergence of order α = 1 reduces to the familiar

quantum relative entropy, i.e., lim
α→1

Sα(ρ‖σ) = D(ρ‖σ) =

tr(ρ ln ρ− ρ lnσ). Eq. (7) has recently gained much attention

due to its role in resource-theoretical formulations of thermo-

dynamics [28] and the central role that it plays in the quan-

tification of the irreversible entropy production resulting from

non-equilibrium processes [41, 42]. Combining Eq. (6) with

Eq. (4), one obtains an inequality on the irreversible entropy

〈Sirr〉 := β(〈W 〉 −∆F ) [43, 44],

〈Sirr〉 ≥ S1− η
β
(ρS(τ) || GS(λτ )) . (8)

It is important to stress such a relation stems just from the

convexity property of the cumulant generating function of the

work distribution and Eq. (6). However, noting Refs. [45–47]

and accepting that the condition on Rényi divergences is the

tightest for α = 1, 〈Sirr〉 = limη→0+ S1− η
β
(ρS(τ) || GS(λτ )),

we arrive at the following statement.

Observation 2 (Stochastic irreversible entropy) The

irreversible entropy in the stochastic approach is

〈Sirr〉 = D (ρS(τ) || GS(λτ )) . (9)

Furthermore, Eq. (6) can be used to relate higher moments

of the work distribution and higher derivatives of the Rényi-α
divergence. In particular, the second cumulant Var(W ) is

Var(W ) =
2

β2

∂Sα(ρS(τ)‖GS(λτ ))

∂α

∣

∣

∣

∣

α=1

(10)
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=
1

β2
V (ρS(τ)‖GS(λτ )), (11)

where V (ρ‖σ) := tr(ρ(log ρ − log σ)2) − (tr(ρ(log ρ −
log σ)))2 is the relative entropy variance [48, 49]. Finally, the

fact that this cumulant generating function can be expressed in

terms of Rényi divergences allows us also to bound the fluc-

tuations of work. By using a simple Chernoff bound, we have

in fact that, for any k > 0,

Pr [W ≥ 〈W 〉+ kσW ] ≤
1

k2
, (12)

where σW =
√

Var(W ) is the standard deviation for the dis-

tribution of W . In a single instance of this thermodynamic

process, W may exhibit arbitrary fluctuations. However, if

one considers multiple identical processes and determines the

overall accumulated work, then we know via central limit the-

orem that the total work assumes a sharply peaked normal dis-

tribution. More concretely, consider the amount of work Wn

used to perform the stochastic process described above, for n
identical copies of the initial system. In this picture, one can

define the ε-deterministic work W ε
n to be the amount of work

such that Wn ≤ W ε
n, except with some failure probability

ε. The final state will be ρS(τ)
⊗n, and furthermore note that

both D(ρS(τ)‖GS(λτ )) and V (ρS(τ)‖GS(λτ )) are additive

under tensor product. Thus, for any ε > 0, by substituting

k−2 = ε, we conclude from Eq. (12) the following.

Observation 3 (Stochastic ε-deterministic work) The work

obtained in a setting failing with probability ε > 0 in the

multi-copy stochastic approach is given by

W ε
n =n

[

〈W 〉+

√

Var(W )

εn

]

, (13)

with 〈W 〉 = β−1[〈Sirr〉 + ∆F ] where 〈Sirr〉 was derived in

Eq. (9), and Var(W ) in Eq. (11).

General scenario and connection to resource theory. All

the results insofar have been obtained considering a closed

quantum system subject to an external driving work proto-

col [37]. The present aim is to demonstrate that a fundamental

relation like Eqs. (6) and (8) can be retrieved in a different sce-

nario closer to the typcial scenario in resource theories. For

this reason, alongside the system of interest S, let us consider

a control switch C, modeling the action of an external driving

protocol, and a battery B operating as a storage system for

work, such that the total Hamiltonian is given by

HS,B,C = HS(λ0)⊗Πλ0,C +HS(λτ )⊗Πλτ ,C+HB, (14)

where Πλ,C = |λ〉〈λ|C . The free Hamiltonian HB = X of

the battery is taken to be a Hamiltonian given by the position

operator.

Next, we specify the class of interactions allowed to take

place between the systems S, C and B. Here, we consider

operations that satisfy the following constraints: (1) Unitarity

of the dynamics of the whole compound, governed by some

U . (2) Energy-preserving nature, i.e., [U , HS,B,C ] = 0,

with HS,C,B denoting the Hamiltonian of the overall sys-

tem. (3) Invariance under displacements of the battery, i.e.,

[∆B,U ] = 0, with ∆B being the Weyl displacement operator

shifting positions [50]. This set of operations closely resem-

ble the set of thermal operations described in a resource theory

setting [51], being a special case that in Eq. (14) there is no ad-

ditional thermal bath, but instead the system itself is initialized

in a Gibbs state. The inclusion of both the control switch and

the battery are necessary in order to model an explicit time-

dependent external work protocol into a time-independent,

energy-preserving transformation [27, 32, 52]. While condi-

tion (1) is comes simply from quantum mechanics, request (2)
is equivalent to asking that the Gibbs state of the global sys-

tem is preserved. Finally, constraint (3) ensures that the bat-

tery acts only as a system that stores/provides work, instead of

acting as an additional resource for coherence, or as a entropy

sink. Work is defined as energy difference on the battery [53],

W := −
(

EB
n − EB

m

)

, (15)

where this is again a fluctuating work variable. The cru-

cial difference brought along by Eq. (15) lies in the fact that

the statistics of work is reconstructed by performing the two-

projective-measurement scheme on the battery, rather than on

the system.

As a final constraint, similar to that of Ref. [51], we require

that the unitary U(τ) acting on the systems S,B,C, perfectly

produces the desired change on the system Hamiltonian from

HS(λ0) to HS(λτ ). This means that, if the initial state of the

control switch is taken as ρC(0) = Πλ0,C , we want to have

U(τ) (ρS,B(0)⊗Πλ0,C)U
†(τ) = ρS,B(τ) ⊗Πλτ ,C . (16)

To satisfy this, we require that U(τ) = US,B,1(τ) ⊗
|λτ 〉〈λ0|C + US,B,2(τ)⊗ |λ0〉〈λτ |C , where US,B,(1,2)(τ) are

generic unitary transformations on the joint system S,B. This

ensures that when ρC(0) = Πλ0,C , then U(τ) effectively in-

duces a unitary transformation on system S,B,

ρS,B(τ) = US,B,1(τ)ρS,B(0)U
†
S,B,1(τ). (17)

Condition (2) expressing the energy conservation of the global

system S,B,C implies that

US,B,1(τ) (HS(λ0) +HB)U
†
S,B,1(τ) = HS(λτ ) +HB.

(18)

From this, we see that US,B,1(τ) does not necessarily preserve

the energy of S,B, and whatever energy difference incurred

on S,B is stored in the state of the switch C.

We demonstrate that a relation akin to Eq. (6) can be de-

rived also in this extended scenario. Let us consider the initial

system to be prepared in ρS(0) = GS(λ0), i.e. an equilibrium

Gibbs at inverse temperature β relative to the initial Hamilto-

nian HS(λ0). Furthermore, let the initial state of the battery

is a pure state ρB(0), in a Gaussian state that well approxi-

mates a state with definite position. Keeping in mind that after

the unitary transformation, the two-point measurement proto-

col will be performed on the battery. Therefore, the cumulant
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generating function of work defined in Eq. (15) is given by

Φ(η, τ) = lnTr
[

eηHBUS,B,1(τ)e
−ηHBρS,B(0)U

†
S,B,1(τ)

]

,

where ρS,B(0) = GS(λ0) ⊗ |x〉〈x|B , and US,B,1(τ) satisfies

Eq. (18). Using this property of US,B,1(τ), we show that (see

Appendix A 2 for details)

Φ(η, τ) = −
η

β
S1− η

β
(ρ̃S(τ) || GS(λτ ))− η∆F, (19)

where ρ̃S(τ) is defined as

ρ̃S(τ) =
(

TrB

[

US,B(τ) (ρS(0)
γ ⊗ ρB(0)) U

†
S,B(τ)

])1/γ

(20)

with γ := 1 − η/β. A comparison between Eq. (19) with

Eq. (6) shows the mutual similarity, the only difference be-

ing in the first argument of the quantum Rényi-α divergence,

namely in the ρ̃S(τ) in place of ρS(τ). The former in fact now

depends on the state of the newly introduced battery and on

the operation US,B(τ) performed on the S,B compound and

keeps track of the fact that the energy statistics is measured

and reconstructed on the battery rather than on the system. If

one substitutes γ = 1, one recovers Eq. (9) exactly. However,

the generic γ dependence implies that the second order cor-

rection terms might take on a more complicated form, when

ρS,B(τ) contains correlations. It is interesting to note that a

similar observation has been made in Ref. [51] (Section IV,

Eq. (30)), where higher order moments of the work distribu-

tion could not be directly analyzed due to correlating terms

between system and battery energy.

In order to further compare this result with that of the re-

source theory setting, let us assume that the final joint state

ρS,B(τ) in Eq. (17) is a product state ρS(τ)⊗ρB(τ). This im-

plies that ρ̃S(τ) = ρS(τ), and thus one recovers the identity

in Eq. (6), the set of lower bounds on 〈Sirr〉 in Eq. (8), and also

the second moment of work distribution given by Eq. (10).

Comparison of the two approaches. In Ref. [28], a family of

generalized second laws has been derived in the resource the-

ory setting. These laws form a set of necessary and sufficient

conditions for single-shot state transformations, on a single-

copy of ρS(0) → ρS(τ) via thermal operations. Furthermore,

one may utilize these conditions to calculate the amount of

deterministic work required for this process. This is modelled

by requiring that the state transition ρS(0) ⊗ |E0〉〈E0|B →
ρS(τ) ⊗ |Eτ 〉〈Eτ |B satisfies all the generalized second laws,

and the amount of work invested is given by Wdet = E0−Eτ .

Applying the generalized second laws to this scenario tells us

that the amount of deterministic work used in bringing the

system from ρS(0) to ρS(τ) is ([28], Appendix I)

Wdet ≥ Fα (ρS(τ),GS(λτ ))−Fα (ρS(0),GS(λ0)) , (21)

for all α ≥ 0, with

Fα (ρ(t),G(λt)) := −β−1 [lnZ(t)− Sα (ρ(t) || GS(t))] .
(22)

If the initial state is assumed to thermal i.e., ρS(0) = GS(λ0),
then Fα (ρS(0),GS(λ0)) = −β−1 lnZS(λ0). Therefore, if

one defines the quantity Sdet
irr := β(Wdet−∆F ), then Eq. (21)

reads as follows.

Observation 4 (Resource-theoretic irreversible entropy)
The irreversible entropy in a resource-theoretic approach is

lower bounded by

Sdet
irr ≥ Sα (ρS(τ) || GS(λτ )) , α ≥ 0. (23)

Comparing Eq. (23) and (8), we observe a direct con-

nection for η ∈ (0, β), corresponding to the range α ∈
(0, 1). In this parameter regime, we see that 〈Sirr〉 and Sdet

irr

are bounded identically. Therefore, the stochastic approach

sheds some light on the significance of these α-free energies,

due to their relation with the physically accessible quantity

Φ(η, τ) [12, 13]. In contrast, the qualitative difference be-

tween Sirr and Sdet
irr is captured by the regime of η < 0

(corresponding to α > 1). In this regime, we have that

S〈Sirr〉 ≤ Sα (ρS(τ) || GS(λτ )) [40], while for Sdet
irr , Eq. (23)

still holds. This difference is largely due to the fact that Eq. (8)

deals with mean work, thus considered as a fluctuating quan-

tity, while Eq. (23) bounds the deterministic work Wdet. The

best estimate for Sdet
irr is given by the ∞−Rényi divergence

instead, and in general S∞ ≥ S1.

A second reconcilation. A second reconciliation point be-

tween the stochastic approach and the resource theory ap-

proach can be reached when one compares the quantity W ε
n

in Eq. (13) to the ε-deterministic work of formation W ε
F,n de-

rived in Ref. [54]. The analysis of W ε
F,n adapts also a resource

theoretic approach, namely it considers work for a single-shot

process. However, this process may be a global operation oc-

curing on n copies of identical systems, for finite but large n.

In particular, one considers the amount of work W ε
F,n required

in order to prepare n identical copies of some final target state,

ρ⊗n
S , with fidelity at least 1− ε. The quantity of interest W ε

F,n
is defined as follows: For some fixed energy value E, and

some parameter n, consider the minimum integer m such that

the following transition on m+n systems with identical, time-

independent Hamiltonians,

|E〉〈E|⊗m⊗G⊗n → σ, F̂ (σ,G⊗m⊗ρ⊗n) ≥ 1−ε, (24)

is possible via thermal operations with a bath at inverse tem-

perature β, G being the Gibbs state, and F̂ (ρ, σ) denoting

Uhlmann’s fidelity [55]. The amount of work is given by

W ε
F,n = mE. In Ref. [54], it is shown that

W ε
F,n ≈ β−1

[

nD(ρ‖G) +
√

nV (ρ‖G)f(ε)
]

, (25)

where f(ε) > 0. Comparing the expressions for W ε
n captured

in Observation 3 (taking into account that when the initial and

final Hamiltonian coincide, ∆F = 0) and W ε
F,n, which were

defined using very different approaches, we see that neverthe-

less they are in qualitative agreement with one another.

Outlook. In this work, we have brought two approaches to

quantum thermodynamics significantly closer to each other.

While the approaches taken are radically different in mind-

set, they give rise to expressions formally providing similar or

identical predictions, specifically when this line of thought is

applied to notions of work extraction in quantum thermody-

namics. It is the hope that this reconciling work can signifi-

cantly contribute to the emerging theory of quantum thermo-

dynamics.
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Appendix A: Details of calculations

1. Proof of Eq. (6)

In the following we will explicitly derive the identity in Eq. (6), which connects the cumulant generating function of work

statistics to an opportune α−Rényi divergence. Here, we make use of the fact that the initial state is given by

ρS(0) = GS(λ0) =
1

Z(λ0)
e−βH(λ0). (A1)

For all values of η ∈ (−∞,∞)\{0, β}, the cumulant generating function then reads as

Φ(η, τ) = lnTrS

[

e−(η/2)H(λτ )U(τ)e(η/2)H(λ0)ρS(0)e
(η/2)H(λ0)U †(τ)e−(η/2)H(λτ )

]

= lnTrS

[

e−ηH(λτ )U(t)eηH(λ0)
e−βH(λ0)

Z(λ0)
U †(τ)

]

= lnTrS

[

e−ηH(λτ )U(τ)
e−(β−η)H(λ0)

Z(λ0)
U †(τ)

]

= lnTrS

[

(

e−βH(λτ )

Z(λτ )

)η/β

U(τ)

(

e−βH(λ0)

Z(λ0)

)1−η/β

U †(τ)

]

+ ln

[

Z(λτ )

Z(λ0)

]η/β

= lnTrS

[

(GS(λτ ))
η/β

(ρS(τ))
1−η/β

]

+ ln

[

Z(λτ )

Z(λ0)

]η/β

=

(

η

β
− 1

)

S η
β
(GS(λτ ) || ρS(τ)) +

η

β
ln

Z(λτ )

Z(λ0)

= −
η

β
S1− η

β
(ρS(τ) || GS(λτ ))− η∆F. (A2)

In the last line, a skew-symmetry property of the α− Rényi divergence has been used, namely that for ∀α 6= 0, 1, we have

Sα(ρ||σ) =
α

1− α
S1−α(σ||ρ). (A3)

Alternatively, one can also achieve this by applying the cyclic property of the trace operation in the third last line, i.e. by using

the fact that trS(AB) = trS(BA).

2. Proof of Eq. (19)

We know that if the global unitary U on joint systems S,B,C the requirement U(τ) = US,B,1(τ)⊗ |λτ 〉〈λ0|C +US,B,2(τ)⊗
|λ0〉〈λτ |C , then it satisfies Eq. (16) and also gives an effective unitary US,B(τ) = US,B,1(τ) on the reduced state of the system

and battery. This unitary, in particular, changes the Hamiltonian on the system from HS(λ0) to HS(λτ ), as described in

Eq. (18). Moreover, note that since HS(λ) always commutes with HB , we see how the two point measurement scheme acting

on the battery can be directly related to the measurement statistics done on the system. In particular,

US,B(τ) [HS(λ0) +HB]U
†
S,B(τ) = HS(λτ ) +HB ,

⇒ US,B(τ)e
−η[HB+HS(λ0)]U†

S,B(τ) = e−η[HS(λτ )+HB ],

⇒ US,B(τ)e
−ηHBU†

S,B(τ)US,B(τ)e
−ηHS(λ0)U†

S,B(t) = e−ηHS(λτ )e−ηHB ,

⇒ US,B(τ)e
−ηHB = e−ηHS(λτ )e−ηHB US,B(τ)e

ηHS(λ0). (A4)

Let us consider the two-time measurement protocol on the battery B as explained in the main text. The cumulant generating

function is

Φ(η, τ) = lnTrS,B,C

[

eηHBU(τ)e−ηHB ρS,B,C(0)U
†(τ)

]

= lnTrS,B

[

eηHBUS,B(τ)e
−ηHB ρS,B(0)U

†
S,B(τ)

]

, (A5)
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where we have substituted ρC(0) = Πλ0,C and used Eq. (16), and traced out system C. We first note that, in order to evaluate

Φ(η, τ), the relation ρB(0)
α ∝ ρB(0) is needed in our calculations, in order to simplify the cumulant generating function down

to terms that only involve the system S. One can understand this intuitively: if the initial battery starts out with some non-trivial

energy distribution, and if one defines the work statistics via TPM on the battery, this will depend not only on work fluctuations

from the system but also on the prior distribution on the battery. Furthermore, ρB(0)
α ∝ ρB(0) is satisfied if and only if

ρB(0) =
1

dR
ΠR (A6)

is a maximally mixed state on a subspace R of dimension dR. In particular, if ρB is of such a form, then

ρB(0)
α = d1−α

R ρB(0). (A7)

Later on, we shall see that in order to maximize the cumulant generating function, dR = 1, which means that the battery initial

state ρB(0) is a pure Gaussian state approximating a state with definite position. Now, by evaluating Eq. (A5) by making use of

Eq. (A4), we have

Φ(η, τ) = lnTrS,B

[

eηHBUS,B(τ)e
−ηHB ρS,B(0)U

†
S,B(τ)

]

= lnTrS,B

[

eηHB

(

e−ηHS(λτ )e−ηHBUS,B(τ)e
ηHS(λ0)

)

ρS,B(0)U
†
S,B(τ)

]

= lnTrS,B

[

e−ηHS(λτ )US,B(t)e
ηHS(λ0) [GS(λ0)⊗ ρB(0)] U

†
S,B(t)

]

= lnTrS,B

[

(

e−βHS(λτ )

Z(λτ )

)η/β

⊗ 1B US,B(t)

(

e−βHS(λ0)

Z(λ0)

)1−η/β

⊗ ρB(0)U
†
S,B(t)

]

+
η

β
ln

Z(λτ )

Z(λ0)

= lnTrS,B

[

(GS(λτ )⊗ 1B)
η/β

US,B(t) (GS(λ0)⊗ ρB(0))
1−η/β

U†
S,B(t)

]

+
η

β
ln

Z(λτ )

Z(λ0)
−

η

β
ln dR. (A8)

Besides other manipulations which are straightforward, the last line is obtained by assuming Eq. (A7). Observing Eq. (A8),

since the last term is always non-positive for η > 0, in order to maximize it we take dR = 1, and this term vanishes. We also

observe that within the first term, we have an expression US,B(t)ρS,B(0)
1−η/βUS,B(t)

†. To simplify this, note that the final

state on S,B is given by

ρS,B(t) = US,B(t)ρS,B(0)US,B(t)
† =

∑

i

pi|fi〉〈fi|S,B, (A9)

where ρS,B(0) has the diagonal form ρS,B(0) =
∑

i pi|ei〉〈ei|, and US,B performs a unitary transformation from the ordered

basis {|ei〉S,B} to {|fi〉S,B}. In other words, for all i, US,B|ei〉 = |fi〉. This, together with the fact that for any α ∈ R,

ρS,B(0)
α =

∑

i p
α
i |ei〉〈ei| gives us that

US,B(τ)ρS,B(0)
1−η/βUS,B(τ)

† = ρS,B(τ)
1−η/β , (A10)

which we may now substitute back into Eq. (A8). Finally, we have

Φ(η, τ) = lnTrS,B

[

(GS(λτ )⊗ 1B)
η/β

(ρS,B(τ))
1−η/β

]

+
η

β
ln

Z(λτ )

Z(λ0)

= lnTrS

[

(GS(λτ ))
η/β

TrB

[

(ρS,B(τ))
1−η/β

]]

+
η

β
ln

Z(λτ )

Z(λ0)

=

(

η

β
− 1

)

S η

β
(GS(λτ ) || ρ̃S(τ)) +

η

β
ln

Z(λτ )

Z(λ0)

= −
η

β
S1− η

β
(ρ̃S(τ) || GS(λτ )) +

η

β
ln

Z(λτ )

Z(λ0)
, (A11)

where the idempotency of ρB(0) and of 1B have been used (an operator A is idempotent iff for any γ 6= 0, we have Aγ = A).

Furthermore, we have defined the quantity

ρ̃S(τ) =
(

TrB

[

US,B(τ) (ρS(0)
γ ⊗ ρB(0)) U

†
S,B(τ)

])1/γ

, γ := 1− η/β. (A12)

Similarly, Eq. (A3) has been used to obtain the last line in Eq. (A11).
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Appendix B: Details of the consistency between the family of lower bounds Eq. (8) and [28]

According to Ref. [28], a transition from a generic state ρ to another state ρ′ is possible if and only if the family of generalized

second laws applies, namely iff

Fα (ρ,G) ≥ Fα (ρ′,G′) , ∀α ≥ 0, (B1)

where Fα is defined in Eq. (22) and G denotes the Gibbs state of the system. According to Ref. [28], we assume to start an

initially uncorrelated state

ρS,B(0) = ρS(0)⊗ ρB(0), (B2)

where, in line with our choice throughout the main text, we take the initial state of the battery to be ρB(0) = |E0〉〈E0|B ,

corresponding to a pure energy eigenstate with energy EB(0). Moreover, in the weak coupling regime assumed in Ref. [28] (see

their Appendix I for details) implies

ρS,B(τ) := ρ′ = ρS(τ)⊗ ρB(τ). (B3)

In what follows, GS(B) denotes the Gibbs state of the system (battery). Furthermore, for deterministic work, the final state of

ρB(τ) = |EB(τ)〉〈EB(τ)|B is a pure energy eigenstate as well. Using the definition of Fα as given by Eq. (22), and noting that

Fα is additive under tensor product, we have therefore that Eq. (B1) reduces to

Fα (ρS(0)⊗ ρB(0),GS ⊗ GB) ≥ Fα (ρS(τ)⊗ ρB(τ),G
′
S ⊗ G′

B)

Fα (ρB(0),GB)−Fα (ρB(τ),G
′
B) ≥ Fα (ρS(τ),G

′
S)−Fα (ρS(0),GS)

β−1 [Sα(ρB(0)||GB)− lnZB(0)− Sα(ρB(τ)||G
′
B) + lnZB(τ)] ≥ Fα (ρS(τ),G

′
S)−Fα (ρS(0),GS) .

To further simplify these expressions, let us note that Sα(ρB(0)||GB) can be further evaluated. Since ρB(0) is diagonal in the

energy eigenbasis by construction, ρB(0) and GB also commute. Their α−Rényi divergence is simply given by

Sα(ρB(0)||GB) =
1

α− 1
ln tr

[

(|EB(0)〉〈EB(0)|)
α

(

e−βHB

ZB(0)

)1−α
]

=
1

α− 1
ln

(

e−βEB(0)

ZB(0)

)1−α

= βEB(0) + lnZB(0).

This expression holds for a pure battery state, and since one is concerned with deterministic work here, a similar expression

holds for Sα(ρB(τ)||GB) as well. Substituting both expressions into the previous result, we end up with

EB(0)− EB(τ) ≥ Fα (ρS(τ),G
′
S)−Fα (ρS(0),GS) ,

from which, by simply using the definition of work given by the energy difference in the battery W = EB(0) − EB(τ), we

obtain Eq. (21).


