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Abstract 

Background:  Serum potassium concentrations are commonly between 3.5 and 5.0 mmol/l. Standardised protocols 
for potassium range and supplementation in the ICU are lacking. The purpose of this retrospective analysis of ICU 
patients was to investigate potassium concentrations, variability and supplementation, and their association with in-
hospital mortality.

Methods:  ICU patients ≥ 18 years, with ≥ 2 serum potassium values, treated at the Charité - Universitätsmedizin 
Berlin between 2006 and 2018 were eligible for inclusion. We categorised into groups of mean potassium concentra‑
tions: < 3.0, 3.0–3.5, > 3.5–4.0, > 4.0–4.5, > 4.5–5.0, > 5.0–5.5, > 5.5 mmol/l and potassium variability: 1st, 2nd and ≥ 3rd 
standard deviation (SD). We analysed the association between the particular groups and in-hospital mortality and 
performed binary logistic regression analysis. Survival curves were performed according to Kaplan–Meier and tested 
by Log-Rank. In a subanalysis, the association between potassium supplementation and in-hospital mortality was 
investigated.

Results:  In 53,248 ICU patients with 1,337,742 potassium values, the lowest mortality (3.7%) was observed in patients 
with mean potassium concentrations between > 3.5 and 4.0 mmol/l and a low potassium variability within the 1st SD. 
Binary logistic regression confirmed these results. In a subanalysis of 22,406 ICU patients (ICU admission: 2013–2018), 
12,892 (57.5%) received oral and/or intravenous potassium supplementation. Potassium supplementation was associ‑
ated with an increase in in-hospital mortality in potassium categories from > 3.5 to 4.5 mmol/l and in the 1st, 2nd and 
≥ 3rd SD (p < 0.001 each).

Conclusions:  ICU patients may benefit from a target range between 3.5 and 4.0 mmol/l and a minimal potassium 
variability. Clear potassium target ranges have to be determined. Criteria for widely applied potassium supplementa‑
tion should be critically discussed.

Trial registration German Clinical Trials Register, DRKS00016411. Retrospectively registered 11 January 2019, http://
www.drks.de/DRKS0​00164​11
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Background
Potassium homeostasis is regulated within extracel-
lular concentrations between 3.5 and 5.0  mmol/l [1]. 
This is of importance for physiological processes, such 
as the negative resting membrane potential and con-
sequently neuromuscular and cardiac excitability [1]. 
Severe hyperkalaemia is associated with ventricular 
arrhythmia, bradycardia and cardiac arrest [2]. Symp-
toms of severe hypokalaemia include muscle weakness 
up to paralysis, respiratory insufficiency, constipation 
and cardiac arrhythmias [3]. Hypo- and hyperkalaemia 
are associated with an increased complication rate and 
mortality risk [1–6].

Contributing mechanisms for potassium electrolyte 
disorders include disturbances in potassium ingestion, 
excretion and potassium shifting between intra- and 
extracellular compartment. Various medications inter-
fere with potassium homeostasis [3]. The drug with the 
highest risk for inducing hyperkalaemia is the intrave-
nous potassium supplementation [7].

The European Resuscitation Council Guidelines for 
Resuscitation 2015 state that there is no universal defi-
nition of hyperkalaemia [2]. They define hypokalaemia 
as serum potassium concentration < 3.5  mmol/l and 
hyperkalaemia as > 5.5 mmol/l. According to the guide-
line, therapy to lower potassium concentration should 
be initiated > 5.5  mmol/l. Severe hypokalaemia should 
be treated with intravenous potassium application in 
emergency situations [2]. In patients with myocardial 
infarction, a previous American College of Cardiol-
ogy/American Heart Association (ACC/AHA) Guide-
line suggested to elevate potassium concentrations 
> 4.0  mmol/l to reduce the risk of ventricular fibrilla-
tion [8, 9]. Evidence for potassium targets in the upper 
reference level originates from studies implemented 
before the routine use of β-blockers and reperfusion 
therapy in patients with myocardial infarction [8]. 
Potassium repletion to 4.0 mmol/l or higher is recom-
mended in patients with torsade de pointes episodes 
associated with medication-induced QT prolongation 
[10]. After cardiac and thoracic surgery, guidelines rec-
ommend to correct hypokalaemia to 4.5–5.5  mmol/l 
in order to prevent atrial fibrillation, although they 
emphasise that this suggestion has never been scientifi-
cally confirmed [11]. In summary, previous guidelines 
recommend potassium concentrations rather in the 
upper normokalaemic range. However, there is evi-
dence that potassium concentrations above 4.5 mmol/l 

may be adversely associated with survival in patients 
with myocardial infarction [8, 12].

Increased mortality has been shown for hyperkalaemia 
in ICU patients [6]. To our knowledge, there is no valid 
guideline available regarding potassium target ranges 
and supplementation in ICU patients. The purpose of 
this retrospective study was to analyse mean potassium 
concentrations as well as potassium variability and their 
association with mortality in a general ICU popula-
tion. We aimed to identify possible mortality differences 
within the normal range. Until now, this is the largest 
analysis considering the association between mortality 
and potassium concentrations in the range from 3.0 to 
> 5.5 mmol/l. In addition, we investigated the association 
of potassium supplementation with mortality in groups 
of potassium mean and variability.

Materials and methods
We performed a retrospective analysis of ICU patients 
treated in the Department of Anaesthesiology and Oper-
ative Intensive Care Medicine, Charité – Universitäts-
medizin Berlin. Trial registration: German Clinical Trials 
Register, DRKS00016411. Retrospectively registered 11 
January 2019, http://www.drks.de/DRKS0​00164​11.

Inclusion criteria and patient cohort
ICU patients ≥ 18  years with a minimum of two serum 
potassium values during ICU stay who were treated 
in one of the ICUs of the Department of Anaesthesiol-
ogy and Operative Intensive Care Medicine, Charité – 
Universitätsmedizin Berlin between January 2006 and 
May 2018 were eligible for inclusion. Potassium values 
> 10 mmol/l and < 2 mmol/l were excluded.

Data sources and ethics vote
We extracted data from the local patient documenta-
tion system. All patient data including blood gas analysis, 
laboratory measurements, medications, patient baseline 
characteristics and vital signs are documented in this 
patient data management system. The retrospective anal-
ysis of these data was approved by the local ethics com-
mittee, Ethikkommission Charité - Universitätsmedizin 
Berlin, Germany (EA2/187/18).

Exposure of interest and covariates
The exposure of interest was the patient’s mean potas-
sium value during the ICU stay. Patients were categorised 
into groups of mean potassium: < 3.0, 3.0–3.5, > 3.5–4.0, 
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> 4.0–4.5, > 4.5–5.0, > 5.0–5.5 and > 5.5 mmol/l. In addi-
tion, similar analyses were performed in categories of first 
potassium values at ICU admission. Potassium variability 
was measured in (a) standard deviation (SD) of serum 
potassium measurements per patient, classified into 1st, 
2nd and ≥ 3rd SD groups and (b) coefficient of variation 
(CV) (SD/mean potassium), classified into 4 groups: CV1 
0–10%, CV2 10–20%, CV3 20–30%, CV4 > 30%. Finally, 
we combined groups of mean potassium and variability 
and analysed in-hospital mortality risk. Potassium values 
were determined by blood gas analyser (Radiometer ABL 
600 or 800 FLEX, Copenhagen, Denmark) or laboratory 
standard. Investigated covariates were age, gender, mean 
blood glucose concentration, blood glucose variability 
measured as SD, minimum and maximum blood glu-
cose concentration, mean sodium concentration, sodium 
SD, acute physiology and chronic health evaluation 
(APACHE) II score, mean maximum sepsis-related organ 
failure assessment (SOFA) score, diabetes, acute kidney 
injury, chronic kidney disease, atrial fibrillation, length 
of stay in the ICU, number of potassium measurements 
and pH value. APACHE II score was evaluated at ICU 
admission whilst SOFA score was determined on a daily 
basis by physicians. Covariates identified by ICD-codes 
like hypokalaemia, hyperkalaemia, chronic kidney dis-
ease, acute kidney injury, diabetes, arterial hypertension 
and atrial fibrillation were taken from the patients’ hos-
pital records. ICD-10-GM derived covariates are listed in 
Additional file 1.

Endpoint
The primary endpoint was all-cause in-hospital mortal-
ity. Information on vital status for the study cohort was 
obtained from hospital records. The censoring date was 
May 31, 2018.

Statistical analysis
We used IBM© SPSS© Statistics version 24, Microsoft® 
Excel and SigmaPlot version 12.5 and GraphPad Prism 7 
for data analysis and visualisation. Results are expressed 
as median with interquartile range or as absolute num-
bers with percentages. For the variables potassium, glu-
cose, sodium and pH values, we calculated mean values 
for each patient and reported median and 25th/75th 
percentile of the cohort. A p value < 0.05 was consid-
ered statistically significant. For the statistical analysis 
of group differences, we performed Mann–Whitney U 
test, Kruskal–Wallis test and χ2 test. To verify confound-
ing factors, we performed a binary logistic regression 
analyses stepwise unadjusted, adjusted for sex, age  and 
mean pH value, and adjusted for clinically important 
possible confounders as listed above. 20-fold imputa-
tions and rerun of the binary logistic regression analyses 

was performed to confirm the results in spite of miss-
ing values. Survival curves for mean potassium range 
and potassium SD groups were performed according to 
Kaplan–Meier and tested by Log-Rank-test.

Potassium supplementation and in‑hospital mortality
In this subanalysis, we included only patients from our 
cohort treated between 2013 and 2018 with medication 
records available to compare in-hospital mortality risk of 
patients with and without potassium supplementation. 
Potassium supplementation included oral and/or intrave-
nous substitution for at least one time. In-hospital mor-
tality analyses were performed in each group of mean 
potassium concentration and potassium variability.

Results
We included 53,248 ICU patients with overall 1,337,742 
serum potassium values. 7.2% of these patients died dur-
ing hospital stay (n = 3823). Detailed information on 
patient’s baseline characteristics is shown for groups of 
mean potassium (Table  1) and for groups of variability 
(Additional file 1: Table S1). After exclusion of potassium 
measurements, < 2  mmol/l no patient presented with 
mean potassium concentrations of < 3.0 mmol/l.

In‑hospital mortality in groups of mean potassium, first 
potassium value and variability
Median potassium concentrations per patient was 
4.05  mmol/l [3.80/4.35], and median number of potas-
sium measurements was 7 [3/18]. We found a J-curved 
association between mean potassium concentrations and 
in-hospital mortality with the lowest mortality risk in the 
potassium range from > 3.5 to 4.0  mmol/l (Fig.  1a). This 
result was also present using smaller cut points with a 
range of 0.1  mmol/l (Additional file  1: Figure S1). Mor-
tality significantly increased within the normokalaemic 
range (p < 0.001, Fig.  1a). Mortality in the range of 3.0–
3.5 mmol/l was significantly lower (p < 0.001, Fisher test) 
than between > 4.5 and 5.0 mmol/l (Fig. 1a). In a subanal-
ysis, 12,647 patients with atrial fibrillation showed lowest 
mortality between > 3.5 and 4.0 mmol/l (Additional file 1: 
Figure S2). The distribution was different in patients 
receiving renal replacement therapy (Additional file  1: 
Figure S3). Considering the first potassium values at ICU 
admission, we identified a nadir of mortality (5.6%) in 
patients with initial potassium value of > 3.5–4.0 mmol/l 
(Additional file 1: Figure S4).

Mean of standard deviation (potassium variability) 
per patient was 0.4  mmol/l. An increase in potassium 
variability per patient to two or threefold was associ-
ated with a significant increase of in-hospital mortality 
rate (Fig.  1b). In an analysis, using smaller cut points 
with a range of 0.1  mmol/l a potassium variability 
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between 0.1 and 0.3  mmol/l was associated with the 
lowest mortality (Additional file 1: Figure S5). In agree-
ment, mortality increased significantly within the 
groups of CV (Additional file  1: Figure S6). The com-
bination of mean potassium concentrations between 
3.5 and 4.0  mmol/l and a low variability were associ-
ated with the lowest mortality (Fig. 1c: 1st SD mortality 

3.7%; Additional file 1: Figure S7: CV group 1 mortality 
3.6%).

Mean range and variability showed both an asso-
ciation with in-hospital mortality in a consistent 
regression.

Table 1  Baseline characteristics in categories of mean potassium range, n = 53,248 patients

Groups were categorised by means of potassium concentrations. Results are expressed as median with interquartile range or as absolute numbers with percentages. 
Missing values/patients are < 2% and considered as not relevant or indicated. Glucose values are available in n = 43,694 patients; glucose variability was determined 
in n = 33,031 patients. pH values are available in n = 30,558 patients. All presented parameters show significant differences in distribution over the categories with 
p < 0.001 tested by Kruskal–Wallis test

SOFA sepsis-related organ failure assessment, APACHE acute physiology and chronic health evaluation II score at ICU admission, SAPS simplified acute physiology score 
at ICU admission, ICU intensive care unit, AKI acute kidney injury, CKD chronic kidney disease

Characteristics 3.0–3.5 mmol/l > 3.5–4.0 mmol/l > 4.0–4.5 mmol/l > 4.5–5.0 mmol/l > 5.0–5.5 mmol/l >5.5 mmol/l

Number of patients 3333 20,790 20,599 7312 950 264

Age 64 [51/74] 63 [50/74] 67 [56/75] 69 [60/76] 65 [54/75] 60 [48/71]

Gender (%)

 Female/male 2249 (67.5)/1084 
(32.5)

10,904 (52.4)/9886 
(47.6)

7739 (37.6)/12,860 
(62.4)

2303 (31.5)/5009 
(68.5)

313 (32.9)/637 
(67.1)

85 (32.2)/179 (67.8)

APACHE II score 11.00 [5.00/17.00] 11.00 [5.00/16.00] 12.00 [6.00/19.00] 15.00 [8.00/22.00] 14.00 [5.00/21.00] 15.00 [4.00/23.00]

SOFA score (mean) 1.40 [0.40/3.00] 1.50 [0.33/2.89] 2.00 [0.50/3.75] 2.90 [1.33/4.63] 2.50 [0.50/4.51] 2.50 [0.00/5.29]

SAPS II 26.00 [14.00/37.00] 25.00 [13.00/36.00] 29.00 [17.00/41.00] 34.00 [22.00/50.00] 31.00 [14.00/44.00] 29.00 [13.00/48.00]

Length of ICU stay 
(h)

23.95 [15.25/69.45] 25.90 [16.60/75.90] 45.90 [19.30/138.60] 85.20 [23.50/167.90] 27.90 [14.80/85.25] 22.45 [10.40/74.15]

Mean glucose level 
(mg/dl)

n = 43,694

116.00 
[100.50/138.50]

117.67 
[102.50/138.02]

126.00 
[108.07/148.70]

135.86 
[117.41/158.00]

125.36 
[105.00/156.00]

116.50 
[92.77/150.50]

Mean glucose SD 
(mg/dl)

n = 33,031

17.79 [9.19/29.70] 19.09 [11.02/30.37] 23.50 [14.00/35.70] 29.02[20.23/42.33] 26.06 [16.28/40.88] 19.05 [7.82/39.92]

Glucose min (mg/
dl)

n = 43,694

103.00 
[88.00/123.00]

99.00 [87.00/118.00] 97.00 [84.00/118.00] 91.00 [77.00/109.00] 91.50 
[77.00/122.00]

93.00 [74.50/127.00]

Glucose max (mg/
dl)

n = 43,694

129.00 
[107.00/159.00]

137.00 
[112.00/172.00]

157.00 
[121.00/210.00]

193.00 
[144.00/252.00]

164.00 
[125.00/216.00]

138.00 
[106.50/187.50]

Sodium mean 
(mmol/l)

139.20 
[137.00/141.00]

139.00 
[137.20/140.82]

138.75 
[136.92/140.50]

138.50 
[136.68/140.16]

137.77 
[135.98/139.63]

137.48 
[135.71/139.10]

ph value mean
n = 30,558

7.41 [7.38/7.45] 7.40 [7.37/7.43] 7.40 [7.37/7.43] 7.39 [7.36/7.41] 7.35 [7.31/7.39] 7.33 [7.24/7.37]

Patients with 
mechanical venti‑
lation (%)

603/3319 (18.2) 4026/20,721 (19.4) 7111/20,515 (34.7) 3450/7275 (47.4) 284/948 (30.0) 80/263 (30.4)

Patients receiving 
renal replacement 
therapy (%)

93/3319 (2.8) 798/20,721 (3.9) 1995/20,515 (9.7) 1457/7275 (20.0) 394/948 (41.6) 126/263 (47.9)

ICD-10 diagnoses number of patients with positive diagnosis/absolute numbers (in %)

 Diabetes mellitus 1133/3333 (34.0) 6591/20,790 (31.7) 8234/20,599 (40.0) 3597/7315 (49.2) 424/950 (44.6) 98/264 (37.1)

 AKI 275/3333 (8.3) 1632/20,784 (7.9) 3333/20,592 (16.2) 1774/7309 (24.3) 242/950 (25.5) 76/264 (28.8)

 CKD 336/3333 (10.1) 2848/20,784 (13.7) 5151/20,592 (25.0) 2951/7309 (40.4) 674/950 (70.9) 151/264 (57.2)

 Atrial fibrillation 497/3333 (14.9) 3557/20,784 (17.1) 5521/20,592 (26.8) 2751/7309 (37.6) 262/950 (27.6) 59/264 (22.3)

 Hypertension 1692/3333 (50.8) 10,027/20,784 (48.2) 12,043/20,592 (58.5) 5031/7309 (68.8) 631/950 (66.4) 141/264 (53.4)

 Hypokalaemia 2217/3333 (66.5) 9313/20,784 (44.8) 8075/20,592 (39.2) 2412/7309 (33.0) 148/950 (15.6) 37/264 (14.0)

 Hyperkalaemia 39/33,333 (1.2) 279/20,784 (1.3) 934/20,592 (4.5) 930/7309 (12.7) 330/950 (34.7) 115/264 (43.6)
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Probability of survival
Probability of survival was significantly different in mean 
potassium groups and groups of potassium variabil-
ity. Mean potassium values between 3.5 and 4.5 mmol/l 
as well as a low potassium variability within the 1st SD 
were associated with higher probability of survival in the 
Kaplan–Meier Curves (Fig. 2).

Regression analysis
Increasing values for mean potassium and variability 
were independently associated with increased in-hospital 
mortality risk in the binary logistical regression analysis 
unadjusted and adjusted within model 1 for age, gender 
and pH value (Fig. 3 and Additional file 1: Table S2). In 
the model 2 adjusting stepwise for several clinical rel-
evant confounders, the results differed after adding pH 
value to this model (Fig.  3 and Additional file  1: Figure 
S8 without mean pH). Categorising model 2 into groups 
of pH value (< 7.36, 7.36–7.44, > 7.44), mean potassium 
levels 3.5–4.0  mmol/l were independently associated 
with low mortality after adjusting for multiple confound-
ers in the group of pH value < 7.36 (Additional file  1: 

Table S3). 1st SD was associated with decreased mortal-
ity after adjustment in each model. Within the model 2 
with several confounders, the 20-fold imputation showed 
the same results as the original data set and consequently 
excluded an impact of missing values. Regression model 
2 was visualised using a Forest plot (Fig. 3).

Potassium supplementation and in‑hospital mortality
For this subanalysis, we included 22,406 patients, who 
were admitted to one of the ICUs between 2013 and 
2018. 798 (5.2%) of these patients died during hospi-
tal stay. 12,892 (57.5%) patients received oral or intra-
venous potassium supplementation. Mean potassium 
concentration in patients receiving potassium sup-
plementation (p = 0.001) and variability (p < 0.001) 
was significantly higher compared to patients with-
out potassium supplementation (Additional file  1: 
Table  S4). Potassium supplementation was associated 
with increased mortality (11.6%) compared to patients 
without potassium supplementation (4.8%, p < 0.001). 
This result is also present in the separate analysis of 
mean potassium concentrations between 3.0–3.5, 

Fig. 1  Association between mean potassium and variability groups and in-hospital mortality, n = 53,248 patients. The table shows the absolute 
number of patients and the number of deaths in each group. χ2 test for all groups, Fisher Exact test for comparison between subgroups. a 
In-hospital mortality rate is lowest in potassium range > 3.5–4.0 mmol/l. b Groups of potassium variability shown in 1st, 2nd and ≥ 3rd SD of serum 
potassium. In-hospital mortality is lowest in the 1st SD and increases in each group. χ2 test for all groups and comparison between subgroups. c 
Lowest in-hospital mortality rate (3.7%) was observed in patients with low variability (1st SD) and mean potassium concentrations > 3.5–4.0 mmol/l. 
Groups within the potassium normal range (3.5–5.0 mmol/l) are coloured green. p values determined by χ2-test
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> 3.5–4.0, > 4.0–4.5, and > 5.0–5.5  mmol/l (Fig.  4a). 
Lowest mortality rate (2.0%) was observed in patients 
with mean potassium concentrations between > 3.5 
and 4.0  mmol/l who did not receive potassium sup-
plementation. Potassium supplementation was not 

associated with a reduction of in-hospital mortality 
risk in any of the groups. In each group of potassium 
variability (1st, 2nd, ≥ 3rd SD), potassium supplemen-
tation was associated with a significant increase in in-
hospital mortality (p < 0.001, Fig. 4b).

Fig. 2  Kaplan–Meier curves. Survival curves show probability of survival at hospital discharge for (a) mean potassium groups and (b) potassium 
variability groups (in SD), tested by Log-Rank test
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Unadjusted Model 1
(corrected for age, gender, mean 
pH value)

Model 2 20-fold imputation
for missing values

OR 95% CI p OR 95% CI p OR 95% CI p OR 95% CI p

Potassium groups (in mmol/l)
3.0-3.5 1.49 1.29-1.73 <.001 1.77 1.43-2.19 <.001 3.0-3.5 1.73 1.33-2.25 <.001 1.77 1.42-2.22 <.001

>3.5-4.0 1.00 1.0 >3.5-4.0 1.00 1.00

>4.0-4.5 1.60 1.48-1.74 <.001 1.46 1.31-1.63 <.001 >4.0-4.5 1.09 0.96-1.24 0.20 1.08 0.96-1.21 0.228

>4.5-5.0 2.09 1.89-2.30 <.001 1.56 1.37-1.77 <.001 >4.5-5.0 1.01 0.86-1.17 0.95 1.03 0.89-1.19 0.720

>5.0-5.5 2.94 2.44-3.55 <.001 2.06 1.63-2.60 <.001 >5.0-5.5 1.86 1.39-2.50 <.001 1.97 1.50-2.59 <.001

>5.5 5.40 4.07-7.16 <.001 3.49 2.44-4.98 <.001 >5.5 3.77 2.39-5.94 <.001 4.22 2.79-6.37 <.001

Potassium variability

1st SD 1.00 1.0 1st SD 1.00 1.00

2nd SD 1.75 1.63-1.88 <.001 1.85 1.69-2.02 <.001 2nd SD 1.25 1.12-1.39 <.001 1.21 1.10-1.34 <.001

≥3rd SD 2.74 2.41-3.11 <.001 2.59 2.20-3.06 <.001 ≥3rd SD 1.77 1.44-2.17 <.001 1.74 1.44-2.11 <.001

Covariates

Age 1.02 1.02-1.03 <.001 1.02 1.02-1.02 <.001

Gender 0.98 0.88-1.08 0.645 0.99 0.90-1.08 0.755

Glucose mean 1.00 1.00-1.01 0.158 1.00 0.99-1.00 0.478

Glucose SD 1.00 0.99-1.00 0.017 0.99 1.00-1.00 0.273

Glucose minimum 1.00 0.99-1.00 0.007 0.99 1.00-1.00 0.105

Glucose 
maximum 1.00 1.00-1.00 0.001 1.00 1.00-1.00 0.009

Sodium mean 1.04 1.03-1.05 <.001 1.04 1.03-1.05 <.001

Sodium SD 1.19 1.15-1.22 <.001 1.18 1.15-1.21 <.001

APACHE II (ICU 
admission) 1.04 1.03-1.04 <.001 1.04 1.03-1.04 <.001

SOFA Score 
maximum 1.00 0.99-1.01 0.436 1.00 1.00-1.01 0.727

Diabetes 1.07 0.96-1.19 0.233 1.09 0.98-1.20 0.112

AKI 4.42 3.97- 4.93 <.001 4.42 3.99-4.89 <.001

CKD 0.64 0.57-0.72 <.001 0.67 0.61-0.75 <.001

Atrial fibrillation 1.13 1.01-1.26 0.03 1.09 0.99-1.02 <.083

ICU length of stay 
(hours) 1.00 1.00-1.00 <.001 1.00 1.00-1.00 <.001

Number of 
measurements 1.00 1.00-1.00 0.152 1.00 1.00-1.00 0.086

Mean pH 0.00 0.00-0.00 <.001 0.00 0.00-0.01 <.001

Fig. 3  Adjusted odds ratios for in-hospital mortality. Reference for potassium categories is > 3.5–4.0 mmol/l, for potassium variability 1st SD. 
Unadjusted: n = 53,248 patients. Adjusted model 1: n = 30,558 patients, 22,690 missing values adjusted for gender, age and pH value. Adjusted 
model 2: n = 25,636 patients, 27,612 missing values, adjusted for gender, age, glucose mean, glucose SD, glucose maximum, glucose minimum, 
sodium mean, sodium SD, APACHE II score, SOFA score maximum, diabetes, acute kidney injury (AKI), chronic kidney disease (CKD), atrial fibrillation, 
number of measurements, ICU length of stay (in hours) and mean pH value; corrected for missing values by 20-fold imputations. Blood glucose 
concentrations in mg/dl and sodium concentration in mmol/l. Forest plot of original data from model 2
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Discussion
There is a lack of evidence for clear recommendations 
on potassium management in critically ill patients. We 
observed lowest mortality (3.7%) in ICU patients with a 
mean potassium range between > 3.5 and 4.0 mmol/l and 
low potassium variability. In-hospital mortality increased 
significantly for lower and higher potassium ranges 
including the normokalaemic range (3.5–5.0  mmol/l). 
More obvious, an increased potassium variability indi-
cated by increased potassium concentration standard 
deviation or coefficient of variation during hospital stay 
is associated with an increased in-hospital mortality. In 
addition, we found an increased in-hospital mortality risk 
in ICU patients receiving potassium supplementation.

Our findings are in line with results of a recent 
systematic review, investigating the association of 

potassium concentration with mortality and occur-
rence of ventricular arrhythmias in patients after myo-
cardial infarction in 12 studies. In those cardiac risk 
patients, they found an increased mortality risk when 
potassium concentrations were above 4.5 mmol/l [12]. 
In agreement, in patients with atrial fibrillation, we 
observed the lowest mortality when mean potassium 
was > 3.5–4.0  mmol/l. The few previous studies inves-
tigated the association between potassium ranges, 
variability and mortality in ICU patients reported a 
J- and U-shaped association between potassium and 
mortality [5, 13]. However, their classification lacked 
to define a tight potassium range with the lowest mor-
tality. Our findings are in line with results reported by 
Hessels et  al. and Uijtendaal et  al. who showed that 
potassium variability was independently associated 
with outcome [5, 13]. McMahon et  al. [6] investigated 

Fig. 4  Association between potassium supplementation and in-hospital mortality, n = 22,406 patients. The table shows number of death and total 
number of patients in groups of (a) mean potassium concentration and (b) potassium variability. (+) Patients received potassium supplementation, 
(−) patients did not receive potassium supplementation. p values determined by χ2 -test
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potassium concentrations at initiation of critical care in 
a comparable large ICU patient cohort. They stressed 
the importance of tight potassium regulation, as potas-
sium concentrations between 4.5 and 5.5 mmol/l were 
associated with an increase in mortality risk. Unfor-
tunately, they excluded patients with serum potas-
sium concentrations < 4.0  mmol/l, which was in our 
analysis identified as the group with the lowest mor-
tality. Unexpectedly, in our patient cohort, in-hospital 
mortality was significantly lower even in patients with 
mild hypokalaemic concentrations (3.0–3.5  mmol/l) 
as compared to 4.0–4.5  mmol/l. Contrary, in patients 
after myocardial infarction, potassium concentrations 
< 3.5 mmol/l were associated with an increased risk of 
ventricular arrhythmias [12].

Potassium supplementation in critically ill patients 
is usually performed intravenously with a high risk 
for causing severe hyperkalaemia [3, 14]. It may be an 
issue that potassium substitution is guided according to 
extracellular potassium measurements, which may not 
necessarily correlate with the intracellular potassium 
pool. In our cohort, mean potassium concentrations 
were slightly higher in patients receiving potassium 
supplementation. In addition, potassium substitu-
tion may increase potassium variability. We showed a 
significantly higher potassium variability in patients 
receiving potassium supplementation. Due to the lack 
of standardised protocols, decisions on when to start 
potassium supplementation are variable [15]. In our 
cohort, it was performed frequently, but was not asso-
ciated with mortality reduction. Contrary, there was a 
tendency for an increased in-hospital mortality risk in 
patients who received potassium supplementation in 
each potassium group.

pH value is known as one strong confounding factor of 
potassium as metabolic acidosis causes a potassium shift 
from the intracellular to the extracellular space [16]. In 
our data, pH has a major impact on in-hospital mortal-
ity. After adjusting for age, sex and pH value in model 
1 mean potassium levels and variability were indepen-
dently associated with mortality. When evaluating mul-
tiple confounding factors in model 2, the results were not 
that clearly after adding pH value. Complex interactions 
in between the confounding factors may be responsible 
for a bias. Interestingly, when calculating the regression 
model divided by pH groups < 7.36, 7.36–7.44, > 7.44, low 
mean potassium levels (3.5–4.0 mmol/l) were confirmed 
as beneficial for the acidosis group (< 7.36). This indicates 
that especially in those patients, a mean potassium range 
> 3.5–4.0 mmol/l seems to be beneficial. This may be due 
to prevention of hyperkalaemia. A low potassium vari-
ability is associated with improved outcome after adjust-
ing for multiple confounders including pH.

Interestingly, similar to our results, an association 
between mortality and mean glucose concentrations as 
well as glycaemic variability has been described by Krin-
sley [17–19]. In addition, hypoglycaemia is a risk factor 
for death in ICU patients [20]. However, the regression 
model 2 showed that our results are independent of 
mean, minimum or maximum glucose concentrations, as 
well as glycaemic variability, as risk factors for death [17–
20]. Thus, the association between potassium categories 
and variability can be discussed in context of glucose con-
trol by insulin therapy, which is beneficial for critically ill 
patients with stress-induced hyperglycaemia [21–23]. In 
human physiology, the activation of Na+K+-ATPase by 
insulin is essential for the immediate potassium uptake 
to avoid hyperkalaemia for example after ingestion [24]. 
Insulin leads as a GLUT 4-independent effect to the acti-
vation of the Na+/K+-ATPase and reduction of potassium 
concentrations [25, 26]. Therefore, it may have under-
estimated positive effects on potassium concentrations 
as it may favour lower normokalaemic mean potassium 
concentrations, which were in our study associated with 
lower mortality. However, it remains unclear if glucose-
independent insulin effects contribute to benefits of insu-
lin therapy in ICU patients [27]. In critically ill rabbits, 
normoglycaemia in combination with elevated insulin 
concentrations improved myocardial contractility [27]. In 
the Leuven insulin trial, there were 6% more potassium 
measurements below 4.0  mmol/l, whilst hypokalaemia 
< 3.5  mmol/l was successfully avoided in the group tar-
geting tight glucose concentrations 80–110  mg/dl [28]. 
Accordingly, the number of potassium measurements 
in the range of 3.5–4.0 mmol/l was slightly higher in the 
group with better survival.

Furthermore, insulin therapy may influence potas-
sium variability. A recent trial, investigating potassium 
concentrations before and after implementing tight gly-
caemic control in the ICU, found a reduced potassium 
variability after implementation of tight glycaemic con-
trol [13]. Since glucose control by insulin goes along with 
changes in potassium concentrations, close monitoring 
of both, potassium and glucose, is of importance. A pre-
vious prospective study showed a reduction of hyper- and 
hypokalaemia in ICU patients using a computer-guided 
potassium regulation program [29]. For the future, a con-
tinuous monitoring system for both glucose and potas-
sium in combination with an adequate protocol could 
be an interesting approach to target optimal glucose and 
potassium concentrations with a minimum variability.

Limitations
This retrospective study shows associations but was 
not designed to prove causality. ICU patients in general 
were pooled together. However, there may be different 
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potassium target ranges depending on the medical con-
dition. Potassium concentrations have numerous interac-
tions with medications, clinical and biological conditions, 
which were only partly considered in the multivariable 
regression model. The analysis of potassium supple-
mentation has several limitations and potential biases. 
A major limitation is the use of mean potassium con-
centrations for group categorisation, whilst short-term 
hypokalaemic episodes are not reported. Thus, hypoka-
laemic episodes and not the potential subsequent potas-
sium supplementation may have resulted in a mortality 
increase. Interestingly, initial potassium values are asso-
ciated with in-hospital mortality in the same manner as 
mean potassium levels. in addition, detailed informa-
tion on potassium doses as well as time point of potas-
sium measurement and application are lacking. We 
performed an analysis on potassium supplementation 
but did not consider nutrition or other medications such 
as insulin, ACE-blockers, diuretics, β-antagonists or 
β-sympathomimetics.

Conclusion
Clear potassium target ranges and recommenda-
tions for potassium supplementation have to be deter-
mined for ICU patients. Our findings indicate that ICU 
patients may benefit from a lower potassium target range 
between > 3.5 and 4.0  mmol/l and a minimal potassium 
variability. This may vary due to disease and pre-existing 
conditions. Potassium substitution should be applied 
with caution, only with a clear indication, under consid-
eration of potassium variability, and stopped or at least 
reduced to maintain steady state in time when reaching 
the lower target. Future studies need to critically evalu-
ated at which potassium range substitution should be 
initiated to avoid severe hypokalaemia and when to treat 
hyperkalaemia in ICU patients. Close trend monitoring 
of potassium levels may be useful to avoid elevated vari-
ability. Randomised controlled trials are needed to con-
firm our finding and may change clinical routine.
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